LOG NO: 070+	RD.
ACTION:	
	· · · · · · · · · · · · · · · · · · ·

	5
	1 TILIVILL
	Summer and the second s
•	-

GEOLOGICAL REPORT on the POOLEY LAKE CLAIM GROUP

KAMLOOPS MINING DIVISION, BRITISH COLUMBIA

N.T.S. 82-L/12W, 92-I/9E

CLAIMS: YOO HOO, EP 2, EP 3, EP 4

	SUB-RECORDER RECEIVED
	JUN 2 8 1989
•	M R. # \$

GEOLOCICAL BRANCH ASSECRIMENT REPART

OWNERS:D. MORAAL, CORONA CORPORATIONOPERATOR:CORONA CORPORATIONAUTHOR:IAN MITCHELLDATE:JANUARY 1989

TABLE OF CONTENTS

.

ċ

.

		Page No.
1.	INTRODUCTION	1
2.	SUMMARY AND CONCLUSIONS	1
3.	PROPERTY AND OWNERSHIP	2
4.	LOCATION AND ACCESS	3
5.	TOPOGRAPHY AND PHYSIOGRAPHY	3
6.	1988 GEOLOGICAL PROGRAMME	5
	6.1 REGIONAL GEOLOGY	5
	6.2 PROPERTY GEOLOGY	6
	6.3 ROCK UNIT DESCRIPTIONS	8
	6.4 SAMPLING	12
7.	INTERPRETATION AND DISCUSSION OF RESULTS	12
8.	RECOMMENDATIONS	18
	CERTIFICATE OF QUALIFICATIONS	19
	STATEMENT OF EXPENDITURES	20
	BIBLIOGRAPHY	21

LIST OF TABLES

		Page No.
TABLE 1	: CLAIM INFORMATION	3
TABLE 2	ANOMALOUS Au GEOCHÉM > 1 g/t AND ASSOCIATED As, Ba, Sb and Mo (ppm)	15

DRAWINGS

Page No.

. •

DRAWING 1:	LOCATION AND CLAIM MAP	4
DRAWING 2:	REGIONAL AIRBORNE MAGNETICS	17

APPENDICES

APPENDIX A: LABORATORY ANALYTICAL PROCEDURES (Eco Tech Laboratory, Kamloops, B.C.)

APPENDIX B: SAMPLE ICP AND GEOCHEMICAL RESULTS

APPENDIX C: ROCK SAMPLE DESCRIPTIONS

APPENDIX D: CONDENSED GEOLOGICAL STRUCTURAL DATA FROM FIELD NOTES

APPENDIX E: LARGE FIGURES AND PLANS:

- 1. Geology Map
- 2. Structural Map
- 3. Sample Location Map

1. INTRODUCTION

The purpose of this report is to present the results of a mineral exploration program performed on the Pooley Lake Claim Group in 1988 under the direction of Corona Corporation personnel.

During the month of November 1988, the Kamloops Office of Corona Corporation carried out a geological mapping and sampling survey on the property. The mapping was by Ian Mitchell, geologist and sampling by assistant Paul Watt, both with Corona. The exploration program was under the supervision of R.C. Wells, district geologist for Corona's Kamloops office.

2. SUMMARY AND CONCLUSIONS

The Pooley Lake property lies within steeply deeping, NW striking Triassic Nicola Volcanics overlain by flat-lying Tertiary basalts of the Kamloops Group. No previous work has been recorded in the vicinity of the property nor is evident on the claims.

The exploration target was a volcanic hosted epithermal gold deposit. An extensive system of late stage, silica bearing, bleached and oxidized shears occur within the Nicola volcanics. These shear zones are usually less than 1 to 2 metres in width, typically display epithermal textures and locally are gold bearing.

Geological mapping and sampling was conducted during November 1988 in an attempt to clarify the extent of mineralization and outline targets for future detailed programmes. A total of 20 man days was spent prospecting in addition to 25 man days of reconnaissance mapping and sampling. Mapping was carried out at a scale of 1:5,000 and a total of 160 rock samples was collected. Sixteen of these samples yielded results greater than 1 g/t Au with the highest result producing 14.57 g/t Au over a .75 m sample width. Although correlation between zones is often difficult due to local steep terrain, there appears to be at least 6 separate zones hosting gold mineralization >1 g/t. The best results generally come from those zones which contain greyish quartz or chalcedony and small amounts of disseminated pyrite. Their orientation typically follows the dominant trend of shearing which has been generalized as $145^{\circ}/70^{\circ}$ SW. However, other auriferous zones are not limited to this trend.

Future work will include broader mapping coverage in addition to more detailed work on present areas of interest. Geophysical surveys followed by trenching or drilling should be considered.

3. PROPERTY AND OWNERSHIP

Only generalized regional information has been obtained on the property area at this point. No old workings were discovered on the claims during 1988 field work and regional geological mapping published to date is quite sketchy.

The Pooley Lake property consists of four claim blocks totalling 52 units. The initial claim blocks included the YOO HOO and the adjacent EP 1 on the east side. EP 1 has since been abandoned on June 11, 1988 and replaced by three larger claim blocks; EP 2, EP 3 and EP 4.

A list of the claim information comprising the Pooley Lake property follows in Table 1.

TABLE 1

CLAIM INFORMATION

<u>Claim</u>	<u>No. of Units</u>	<u>Record No.</u>	<u>Date Staking</u> <u>Completed</u>	<u>Owner</u>
чоо ноо	12	7580	March 25, 1988	D. Moraal
EP 2	16	7706	June 23, 1988	D. Horaal
EP 3	12	77 9 7	June 14, 1988	Corona Corp.
EP 4	12	7798	June 16, 1988	Corona Corp.

These claims are presently grouped together as the Pooley Lake Group. A property claim and location map is included on the following page.

4. LOCATION AND ACCESS

The Pooley Lake property is located some 20 km east of Kamloops, B.C., on the west edge of mapsheet 82-L/12 and is easily accessed via the Trans Canada Hwy. From the exit to the La Farge Cement plant, and across the bridge over the South Thompson River, the road is followed east for 4 to 5 km along the north bank of the river. A couple of old dirt roads near each end of the property provide access a few hundred metres northward to the base of the steep bluffs at the south edge of the claims.

5. TOPOGRAPHY AND PHYSIOGRAPHY

The south edge of the property lies on a large terrace of Quaternary sediments which once formed the north riverbank of the South Thompson River. From here, the flat and hummocky slope rises steeply to the north where a series of steep and fissured bluffs at the top roughly bisect the property from east to west. The north half of the property extends onto a broad terrace at the top with large rounded knolls.

The vast majority of outcrop on the property occurs along the top of the steep slope north of the South Thompson River. The southern exposure

and very dry climate has produced wide open grassy slopes only sparsely treed and vegetated chiefly with sagebrush, especially on the upper and lower terraces. A large talus field covers most of the bottom half of the main slope.

6. 1988 GEOLOGICAL PROGRAM

6.1 Regional Geology

The Pooley Lake property is situated within the Nicola Group volcanics. These non-fossiliferous, Upper Triassic rocks consist predominantly of greenish, augite porphyry andesites with minor tuffs, slate and conglomerate. Reddish or purple augite occur locally and flow breccia textures are common. The lavas are usually massive and relatively fresh looking, but are ocasionally epidotized or silicified. Intercalated with the lavas in small amounts are gren tuff, green-grey argillaceous tuff, and black slate.

Underlying the Nicola Group are the Cache Creek strata, separated from the basal conglomerate of the Nicola Group by an erosional unconformity. Overlying the Nicola Group with angular unconformity are the Tertiary volcanics of the Kamloops Group represented chiefly by basalts which form a great, dissected, horizontal sheet that lies on an erosional surface of early Tertiary age. Lavas form the bulk of the Kamloops Group and consist of dark brown or grey basalts to andesites which are sometimes trachytic, vesicular or amygdaloidal.

The regional trend of the Nicola Group volcanics is believed to be NW to SE.

6.2 Property Geology

The Pooley Lake Property lies within a sequence of flows and pyroclastics in the Upper Triassic Nicola Volcanics. As the best exposure occurs along the steep slope on the south half of the claim block, reconnaissance mapping was focussed on this area over an 11 day period in November 1988. (refer to Maps 1 and 2 in Appendix "E").

Mapping revealed a large package of porphyritic and non-porphyritic andesites to basalts with large sequences of intermediate to basic tuffs, lapilli tuffs and agglomerates. Occasional small trachytic or sometimes amygdaloidal andesite dykes which occur may represent the Tertiary Kamloops Group volcanics.

Propylitic alteration of the volcanics is common and locally intense. Chloritization is most prevalent, but epidote is quite common as fracture coatings and occasionally forms crystals within the volcanics. Calcite, quartz, dolomite and less frequently chalcedony, all occur as veinlets in the country rocks, particularly in the vicinity of shearing. Dolomite is sometimes found in veins 10 to 15 cm wide and milky quartz, with or without calcite, in veins up to 5 to 10 cm in width.

Relatively fresh volcanics are generally massive whereas areas of highly to intensely fractured country rock are typically associated with bleaching, oxidation and chlortization which in turn is usually related to shearing. Minor amounts of hematite and limonite are sometimes present, mainly in fractures. Pyrite is common in trace amounts, locally reaching up to 5 to 10% finely disseminated but only occasionally weathering gossanous. Minor silicification occurs locally.

The focus of attention was on an extensive system of late stage shearing which may represent an elaborate plumbing system for low temperature auriferous hydrothermal solutions. Silica enrichment, low temperature alteration and near surface textures such as vugs with colliform

or drusy coatings of quartz and calcite are typical within the shear zones. Such features are indicative of upper level activity in the epithermal type model.

The size of these shear zones varies from a few centimetres up to 2 or 3 metres in width. The zones are usually very distinct and well defined but are sometimes warped or undulating and locally pinch or swell. Alteration typically discolours the zones pale buff brown to orange-brown making the zones easy to identify from a distance. Zones may be isolated or occur as an intersecting network of smaller shears usually associated with one or more main shears. Some of the larger shear zones may be traced for distances up to 200 metres or more but steep terraine and loose rock often inhibited the ability to integrate similar zones due to lack of continuous ground coverage. However, the dry open exposure and lack of vegetation often allowed good visual inspection of inaccessible areas.

Alteration associated with these zones typically includes extensive bleaching and oxidization of the immediate country rock. It is often highly fractured and locally crumbly near the central shear. Whitish clay alteration is common in small blebs or along some fractures, and potassic alteration or chloritization occurs locally. Limonite is pervasive as either small specks or along fractures and yields a gossanous weathering to some zones.

The chief difference between these zones appears to be in the proportions of calcite, dolomite, various types of silica enrichment and pyritization. Calcite is almost always present, mainly as veinlets which are usually but not always parallel to the shearing. It occasionally occurs as small irregular blebs which likely are the result of extreme shearing and fracturing of the veinlets. It also sometimes occurs with milky quartz veining or as fracture or vug infilling and coatings. Dolomite is also common in veining or as matrix material in some of the breccias which occasionally develop within the shear zones.

Silica enrichment within the zones is widespread on the mapped portion of the property. It most frequently occurs in the form of milky quartz veining which is usually parallel or subparallel to the direction of shearing. Lesser amounts of clear to greyish quartz are occasionally found in conjunction with the milky quartz. Milky chalcedony veinlets are fairly common in many areas, and are also sometimes associated with grey or more rarely purple chalcedony. Minor amounts of barite, ankerite and siderite may be present.

There appears to be at least two or more phases of activity within the shear zones. This is indicated by the occasional cross-cutting and offsetting of some quartz, chalcedony or calcite veinlets and in the relationships of some locally developed breccias. The breccias are most often represented by chalcedony healed fragments of silicified and occasionally pyritic volcanics, or dolomite healed fragments of chalcedony and volcanics. Fine banding is sometimes apparent in the milky chalcedony. Local isolated occurrences up to 20 cm across with banding perpendicular to the strike of the zone suggests large fracture or void infilling.

Pyrite may be found in trace amounts but only occasionally reaches proportions of 2 to 5% in some zones. The presence of pyrite seems strongly associated with those zones which contain greyish quartz or chalcedony, especially where brecciated. Arsenopyrite, found as small specks in some milky quartz, is rare.

6.3 Rock Unit Descriptions

The following are descriptions of the various country rocks and alteration zones encountered while mapping.

A. COUNTRY ROCK

1. <u>Andesitic to Basaltic Tuff and Flows</u>: Dark greenish to greenish grey or purplish intercalated augite and hornblende prophyry flows and tuffs with occasional agglomerate sized fragments. Massive to highly fractured, weathering dark greyish to brownish and locally rusty. Occasionally nonporphyritic with a slightly silicified aphanitic nature. Augite and hornblende phenocrysts are typically 2 - 4 mm long but may reach up to 1 cm in length. Feldspar occurs less commonly as phenocrysts which generally reach only .5 to 1 or 2 mm in length. Minor chloritization is common and small amounts of epidote and hematite occur locally, chiefly as fracture coatings along with calcite and in some veinlets. Calcite veinlets or small 1 - 2 mm blebs are common locally and to a lesser degree milky quartz and chalcedony veinlets, especially in the vicinity of intense tectonic activity. Magnetite is common in trace amounts to a few percent, as are traces of disseminated pyrite. Minor bleaching and limonitic fracturing occurs locally. The volcanics frequently display, pitted weathered surfaces due to the erosion of porphyritic crystals and only rarely may be vesicular.

2. Lapilli Tuff and Agglomerate: Dark greenish to greyish tuff (as for unit #1) with light greenish to purplish monolithic fragments of feldspar porphyry tuff. Angular fragments range from 1 - 5 cm in size. Local propylitic alteration, especially chlorite and epidote. Occasional calcite and/or quartz and/or chalcedony veining. Traces of disseminated pyrite and hematite are common locally.

<u>3.</u> <u>Propylitized Tuffs and Plows:</u> Moderate to intense propylitic alteration of tuffs and flows (Units 1 and 2), most common in the vicinity of intense tectonic activity. Chloritization is most prevalent and is locally very intense. Epidote is most common as fracture infilling but occasionally forms crystals within the volcanics. Calcite occurs as veinlets or small blebs within the host rocks and disseminated pyrite and hematite are common locally in small amounts. The volcanic matrix is usually dark greenish but sometimes purplish, with light greyish to brownish weathered surfaces.

4. <u>Pyritic Tuffs and Flows</u>: Andesitic to Basaltic tuffs or flows as described in Units #1 and #2 but with 5% to locally 8% - 10% finely disseminated pyrite within relatively fresh host rocks.

5. <u>Bleached</u>, <u>Oxidized and Pyritic Tuffs and Flows</u>: Pale whitish, yellowish, buff bown, orange to greenish grey tuffs and flows. Usually very fractured and locally brecciated. Often highly oxidized and limonitic, especially along fractures. Slightly pyritic and locally slightly silicified, with up to 5% - 8% finely disseminated pyrite. Kaolinization is common and minor potassic alteration occurs locally.

<u>6. Quartz Calcite Andesite Dyke:</u> Medium greenish grey andesitic dyke with 2 mm up to 8 mm blebs of calcite and quartz together. Possibly amygdaloidal. Often pyritic with up to 5% to 8% finely disseminated pyrite locally. Slightly chloritic. Weathers light greyish-greenish with local whitish alkaline precipitate.

7. Trachytic Peldspar Porphyry Andesite Dyke: Medium to dark, greyishgreen andesite dyke with sub-trachytic feldspar crystals 1 to 3 mm in length. Minor accessory augite crystals the same size. Weathers light to dark brownish with minor potassic alteration and kaolinization. Occasional blebs of calcite and disseminated pyrite up to 5% locally.

B. STRUCTURALLY CONTROLLED ALTERATION ZONES

8. Bleached, Oxidized, Limonitic and Carbonate Enriched Tuffs and Plows:

Extremely fractured to crumbly tuffs and flows as in Units #1 and #2 which have been sheared and often brecciated in addition to intense bleaching, oxidation and local clay alteration. Colors vary from whitish, pale yellowish and brownish, to greyish, orange or purple. Weathered surfaces are usually light to dark brownish or rusty, and fractures are often highly limonitic. These zones are typically discrete, usually less than 2 metres in width and associated with a central shear. Various amounts of limonite and carbonate are usually present, including crystalline calcite veinlets which are often highly fractured and irregular. Veining is most common parallel or sub-parallel to the strike of shearing but occasionally cross cuts it. Dolomite is common, sometimes in large veins up to 10 cm in width or as matrix material in some breccias with Unit \$8 volcanic clasts. Calcite veining is often vuggy, with colliform or drusy textures. Ankerite is less frequently present as are locally small amounts of siderite and barite. Hematite may be present as small specks or some fracture and shear coatings and pyrite is locally disseminated in trace amounts. Small specks of arsenopyrite are rare. A whitish salty or alkaline, chalky precipitate occasionally coats some of these alteration zones. Augite and hornblende crystals alter pale greenish, while feldspar crystals are kaolinized. Minor to intense potassic alteration occurs locally.

<u>9.</u> Unit #8 Altered Volcaniclastics and Flows with Silica Enrichment as follows:

- <u>Milky Quartz</u>: Present as veining which is often fractured and irregular, or as matrix material in breccia with Unit #8 clasts.
 Vugs with colliform and drusy textures are common.
- b. <u>Milky and Grey Quartz</u>: As for 9a, but in addition to milky quartz, clear or greyish quartz is also present.
- c. <u>Milky Chalcedony:</u> Present as veinlets which are often fractured or irregular. It also occurs in a few locations as chalcedonic healed breccia with silicified Unit #8 clasts, as angular fragments in dolomite healed breccia, or as fracture and void infilling within Unit #8 hostrocks. The milky chalcedony is occasionally finely banded.
- d. <u>Grey Chalcedony:</u> Occurs chiefly as grey chalcedony healed breccia with Unit #8 clasts which are often slightly silicified and pyritic. It is occasionally associated with milky quartz or chalcedony in some veinlets.

- e. <u>Purple Chalcedony Breccia</u>: Deep purple chalcedony, only observed as matrix material in localized thin breccia zones with Unit \$8 clasts which are sometimes slightly silicified.
- f. <u>Pyrite Enriched:</u> 2% 5% pyrite finely disseminated or in small blebs and associated with silica enrichment. Pyrite may occur in any of the Unit #9 sub units but appears most closely associated with zones containing greyish quartz or chalcedony, especially where brecciated.

6.4 Sampling

A total of 160 rock samples were obtained from the MONTE property while prospecting and mapping during November 1988. This total included 40 grab samples and 120 chips, the vast majority of which were obtained from the altered shear zones.

Each sample was analyzed for 31 element ICP and Au geochem. Samples with greater than 800 ppb Au were subsequently assayed for gold and a few of the highest auriferous samples were then recut and assayed again to prove consistency in the results.

Samples were analyzed by Eco Tech Laboratories Ltd. of 1004 E. Trans Canada Hwy, Kamloops, B.C.

Sample locations are plotted on Map 3 in Appendix "E" and lab analyses are included in Appendix "B". Descriptions for each sample can be found in Appendix "C".

7. INTERPRETATION AND DISCUSSION OF RESULTS

The bulk of exposed shears and associated alteration zones occur on the west portion of the mapped area, within the YOO HOO claim block. East of the main creek which roughly separates the YOO HOO claim and EP 2 claim, the zones are more isolated and less frequent. Within the YOO HOO claim there exists two relatively broad areas of intense activity where numerous small intersecting shears in addition to larger zones have caused an overall gossanous weathering of the country rock. Both zones are easily visible from the main road below, the larger of the two being some 300 metres across and located at the top of the main slope.

Due to the great frequency of small shear/alteration zones, sampling was limited mainly to the larger ones, generally at least half a metre in width. The best gold value obtained from any of the samples was 14.57 g/t Au from a somewhat warped zone 3/4 metre in width at the sample site and located within the smaller of the two main gossanous zones. A recut of this sample analyzed at 15.29 g/t Au. This same zone locally swells to 2 metres in width and proved to be anomalous at other locations along its strike. Local steep slopes or overburden made it difficult to follow the zone uphill along strike (to the northwest) but when projected it appears can be sporadically traced for perhaps 400 metres where further sampling yielded high anomalous gold results. This zone is characterized by the presence of 2% to 5% sulphides and greyish quartz with local milky chalcedony where the 14.57 g/t Au sample was taken.

The second highest sample of 9.89 g/t Au re-analyzed at 9.25 g/t Au and was the only auriferous sample on the EP 2 claim greater than 1 g/t Au. This zone was characterized by dolomite healed breccia with milky chalcedony fragments and veins, and local greyish quartz. This zone also strikes uphill to the northwest into a fault gully and deserves more detailed investigation during follow up field work.

In general, the best gold mineralization appears to be closely related to zones which contain greater than trace amounts of disseminated pyrite and/or the presence of greyish quartz or chalcedony. Most pyritic breccias healed with grey chalcedony sampled to date have analyzed greater than 1 g/t gold, however, such zones presently appear to be very sporadic and limited in size. Elements such as barium, antimony, arsenic fluorine and mercury are often associated with upper level activity in an epithermal type model. However, the ICP results for barium, antimony and arsenic revealed only sporadic associations with significant gold values on the property. Like the presence of chalcedony or dolomite, these elements appear to enrich localized areas with various shear orientations and no particular affinity to alteration type. In general, arsenic and antimony appears to favour areas with broad gossanous weathering of the country rock while the highest barium values seem to be associated with the flat-lying shears. More detailed work would be required to examine for significant consistencies, if any, between these elements and gold mineralization.

The most consistent relationship between anomalous gold results and any other element was with molybdenum. In almost every instance, samples with the best gold results are accompanied by anomalous molybdenum of 15 ppm or greater and the remaining samples anomalous in molybdenum are usually in close vicinity to zones high in gold. As such, the presence of molybdenum may prove a useful tool in future exploration on the property for indicating proximity to gold bearing structures.

Table 2 on the following page is a list of all the anomalous gold geochem of l g/t or greater and the associated arsenic, barium, antimony and molybdenum values for each sample.

To aid in the analysis of the structural data obtained on the property, a stereonet was used to facilitate the interpretation of structural trends.

In summary, there appears to be three favoured orientations for the zones, although shearing is not limited to these and is found in almost all directions and dips. By far the most dominant trend averages to $145^{\circ}/70^{\circ}$ SW. The majority of zones with samples 400 ppb Au or greater favour this orientation although this is enhanced by the great frequency of zones along this trend. The vast majority of these zones are chalcedonic. The most anomalous gold zone (14.57 g/t Au) is quite warped but also has a NW-SE strike (103°) and also dips steeply southward from 65° to 85° S.

TABLE 2

,

.

ANOMALOUS AU GEOCHEM > 1.0 g/t Au AND ASSOCIATED As, Ba, Sb and Mo.

Sample #	Au g/t	Recut Au g/t	Sample Width(m)	As (ppm)	Ba (ppm)	Sb (ppm)	Mo (ppm)
52647	14.57	15.29	.75	2035	10	20	16
52601	9.89	9.25	1.5	10	10	5	6
49851	4.36		.5	620	50	25	20
49852	4.23		1.0	870	50	15	16
49853	3.33		1.0	895	35	15	10
49959	2.55	2.66	Grab	1700	35	85	17
49878	2.15		1.0	365	40	10	30
49955	1.52		Grab	840	70	55	8
52769	1.35		Grab	410	310	<5	16
49952	1.33		Grab	195	630	10	17
49888	1.29		1.0	960	185	45	. 10
52627	1.26		1.0	455	185	15	15
52646	1.25		0.1	165	265	5	9
52761	1.23		Grab	150	180	<5	32
52636	1.08	1.14	Grab	500	225	10	16
49963	1.01		Grab	390	135	30	6

The second dominant orientation of shearing averages to $074^{\circ}/20^{\circ}$ SE. This encompasses a range of flattish lying shears which are most dominant within the large main gossan zone at the top of the main slope. These flat lying shears tend to be much more undulating in nature than the steeper ones.

The third and last range of dominant shear orientation averages to $034^{\circ}/85^{\circ}$ whose steep dips vary from a SE direction to a NW one. These zones occur chiefly to the west of the main creek roughly separating the YOO HOO and EP 2 claims and are all chalcedonic.

From the slickensides measured within both altered and unaltered fault zones, a stereonet plot clearly illustrates a shallow dipping, horizontal nature of fault movement towards a southerly direction.

To look for regional structures and trends which may ultimately control the gold mineralization on the Pooley Lake property, regional government airborne magnetic maps and local geologic report maps were conferred. A copy of the regional airborne mag (scale 1:63,360) over the property area is included with the report on page 16. It demonstrates little more than a northwest to southeast regional trend in the country rocks.

The closest geology map to the property is that of P. Schiarizza and V.A. Preto in their report on the geology of the Adams Plateau - Clearwater - Vavenby area (Paper 1987-2) located north of the Pooley Lake property immediately above mapsheet 82-L/12. It also illustrates a northwest to southeast trend of regional faulting, the largest and closest of which is the Louis Creek fault. Projecting the trend of this large structure, however, brings it down far to the east of the property area.

8. RECOMMENDATIONS

The following list represents some recommendations for future work on the property:

1. Expansion of mapping coverage to the property boundaries with some emphasis on determining a more exact orientation of the host volcanics in relation to the structural zones.

2. More detailed follow-up mapping and sampling of the higher anomalous gold zones.

3. Establishing a grid, where possible, as a control for mapping and any future geophysical or geochemical soil surveys. The baseline should be oriented at azimuth 145°.

4. A geochemical soil survey of any grid lines established on the property.

5. A geophysical survey over grid lines including a magnetometer survey and possibly VLF.

6. A low level flight over the highly visible altered shear zones would enable more accurate correlations for establishing continuity between sporadically exposed anomalous zones.

7. Use of a small, backpack portable drill to test extensions of highly anomalous gold zones on the steep slopes with a series of short holes.

CERTIFICATE OF QUALIFICATIONS

I, IAN G. MITCHELL, of the City of Vancouver, British Columbia, do hereby certify that:

1. I am a graduate of the University of British Columbia with a B.Sc. Geology Majors, completed in 1983.

2. I have worked in the mineral exploration industry periodically since 1978 and am presently employed as a Project Geologist with Corona Corporation, Vancouver, B.C.

3. I did personally perform the work on the Pooley Lake Group of claims, Monte Creek, British Columbia.

IAN G. (MITCHELL, B.Sc.

Dated at Kamloops, British Columbia April 1989.

POOLEY LAKE PROPERTY, KAMLOOPS, B.C.

The following expenses were incurred by Corona's 1988 Exploration Program on the Pooley Lake Group of claims:

PROSPECTING:

20 man days @ \$147.50/day	\$ 2,950.00
MAPPING & SAMPLING:	
13 man days mapping @ \$239.00/day	3,107.00
12 man days sampling @ \$115.00/day	1,380.00
<pre>160 rock analyses (31 element ICP, Au Geochem, Au assay >1000 ppb by Eco Tech Labs, Kamloops) @ \$15.30/sample (ICP and Au Geochem) @ \$7.20/sample (Au assay where applicable) 4 recut Au assays @ \$11.50 each</pre>	2,663.20
REPORT PREPARATION:	

 15 man days @ \$125.00/day
 1,875.00

 Total (Work to be recorded)
 \$ 11,975.00

BIBLIOGRAPHY

.

.

· —

1. JONES, A.G. (1957)

.

,

.

.

~

.

.

٠

...

.

•

.

-

,

.

.

.

VERNON MAP AREA. G.S.C. MEMOIR #296 APPENDIX "A"

LABORATORY ANALYTICAL PROCEDURES

(ECO TECH LABORATORY, KAMLOOPS, B.C.)

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamicopa, B.C. V2C 2.3 (504) 573-5700 Fax 573-4557

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION (STANDARD)

1. Soil or Sediment: Samples are dried and then sieved through 80 mesh nylon sieves.

2. Rock, Core: Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.

METHODS OF ANALYSIS

All methods have either known or in-house standards carried through entire procedure to ensure validity of results.

1. Multi-Element Cd, Cr, Co, Cu, Fe (acid soluble), Pb, Mn, Ni, Ag, Zn, Mo

Digestion

Hot aqua-regia

Finish

Atomic Absorption, background correction applied where appropriate

A) Multi-Element ICP

Digestion

Hot aqua-regia

2. Antimony

Digestion

Hot aqua regia

3. Arsenic

<u>Digestion</u>

Hot aqua regia

4. Barium

Digestion

Lithium Metaborate Fusion

<u>Finish</u>

ICP

ŝ,

<u>Finish</u>

Hydride generation - A.A.S.

<u>Finish</u>

Hydride generation - A.A.S.

÷.

<u>Finish</u>

Atomic Absorption

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trane Cenada Hwy., Kemicope, B.C. V2C 2/3 (804) 573-5700 Fex 573-4557

5. Beryllium

Digestion

Hot aqua regia

6. Bismuth

Digestion

Hot aqua regia

7. Chromium

Digestion

Sodium Peroxide Fusion

8. Fluorine

Digestion

Lithium Metaborate Fusion

9. Mercury

Digestion

Hot aqua regia

10. Phosphorus

<u>Digestion</u>

Lithium Metaborate Fusion

11. Selenium

Digestion

Hot aqua regia

12. Tellurium

Digestion

Hot aqua regia Potassium Bisulphate Fusion <u>Einish</u>

Atomic Absorption

<u>Finish</u>

Atomic Absorption

<u>Finish</u>

Atomic Absorption

<u>Finish</u>

Ion Selective Electrode

<u>Finish</u>

Cold vapor generation - A.A.S.

<u>Finish</u>

I.C.P. finish

<u>Finish</u>

Hydride generation - A.A.S.

<u>Finish</u>

Hydride generation - A.A.S. Colorimetric or I.C.P.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamicopa, B.C. V2C 2.3 (504) 573-5700 Fax 573-4657

13. Tin

Digestion

Ammonium Iodide Fusion

<u>Finish</u>

Hydride generation - A.A.S.

Colorimetric or I.C.P.

14. Tungsten

Digestion

<u>Finish</u>

Finish

Potassium Bisulphate Fusion

15. Gold

Digestion

Fire Assay Preconcentration followed by Aqua Regia

Atomic Absorption

16. Platinum, Palladium, Rhodium

Digestion

<u>Finish</u>

Fire Assay Preconcentration followed by Aqua Regia

Graphite Furnace - A.A.S.

APPENDIX "B"

SAMPLE ICP

AND

GEOCHEMICAL RESULTS

.

ECO-TECH LABORATORIES LTD.

.14. 2.17

ASSAYING - ENVIRONMENTAL, TESTING 10041 East Trans Canada Hwy., Kambops, B.O. V2C 2.9 (804) 573-5700 Fax 573-4657

• •

DECEMBER 1, 1988

.

CERTIFICATE OF ANALYSIS ETK 88-706 ᄫᄚᇽᆮᄨᄨᅌᅌᅌᇗᇗᇗᇴᆕᅆᆞᆹᇦᅝᅮᅳᅮᄼᅕᇾᄬᆥᇾᄫᆟᇬᅮᅮᅮᄼ

CORONA CORPORATION #1440, 80D WEST PENDER STREET VANCOUVER, 8.C. V6C 2V6

ATTENTION: DARREL JOHNSON

SAMPLE	IDENT	IFICATION:	65 ROCK samples received PROJECT: 1049	November	23, 1988
ET¢	C	Description	Au (pph)	Au (g/t)	Au (07/t)
706 -	1	52601	> 1000	9.89*	.288
706 -	2	52602	140		
706 -	Э	52603	55		
706 -	4	52604	215		
706	5	52605	20		
706 -	6	52606	15		
706 -	7	52607	15		
706 -	U	52608	15		
706	2	52609	15		
706	10	52610	10		
706 -	11	52611	10		
706 -	12	52612	20		
706 -	13	52613	15		
706	14	52614	20		
706	15	52615	10		
706	16	52616	10		
706 -	17	52617	15		
706 -	18	52618	20		
706 -	17	52619	15		
706 -	20	52620	10		
706	21	52621	25		
706 -	22	52622	20		
706	23	52623	20		
706 -	24	52624	25		
706	25	52625	20		
706 -	26	52626	50		
706 -	27	52627	> 1000	1.26	.037
706 -	28	52628	350		
706 -	29	52629	175		
706 -	30	52630	510		
			Kenda ghra	S 5	2
Page 1			Frank J. Pezzotti. Ce	ertified 4	Assayer

ł

f

۰.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioope, B.C. V20 243 (604) 573-5700 Fax 573-4657

•

• :

CORONA CORPORATION

Į

ł

r

1

F

DECEMBER 1, 1988

.

· · · ·

::.

ET#	C	escription	нА (dqq)	Au (g/t)	Au (az/t)
				, <u>,</u> , , , , , , , , , , , , , , , , ,	=======
706 -	91	52631	140		
706 -	32	52632	800		
706 -	33	52633	550		
706 -	34	52634	45		
706 -	35	52635	245		
706 -	36	52636	> 1000	1.08	.031
706 ~	37	52637	40		
706 -	38	52638	25		• •
706 -	37	52639	415		
706 -	40	52640	735		
706 -	41	52641	30		
706 -	42	52642	25		
706 -	43	52643	20		
706	44	52644	20		
706 -	45	52645	230		
706 ~	46	52646	> 1000	1.25	.036
706 -	47	52647	>1000	14.57 ×	.425
706 -	48	52648	85		
706 -	49	49951	180		
706 -	50	49952	> 1000	1.33	.039
706 ~	51	49953	570		
706 -	52	49954	635		
706 -	53	49955	> 1000	1.52	.044
·706	54	47956	- 185		
706 -	55	49957	40		
706 -	56	49958	30		
706 -	57	49959	> 1000	2.55	.074
706 -	58	49960	145		
706 -	59	49761	25		
706 ~	60	49962	305		
706 -	61	49963	> 1000	1.01	.029
706 -	62	49964	40		
706 -	63	47965	160		
706 -	64	49966	30		
706 ~	65	49967	100		

NOTE: > = MORE THAN

* SAMPLE RECUT, SCREENED AND METALLICS ASSAYED

.

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

CC: RON WELLS HOLD FOR PICKUP

SC00/LAC5

E

ſ

l

į

(1)

1

1

ł

C

Ç

~

1

ECO-TECH LABORATORIES LTD.

A88AYING - ENVIRONMENTAL TESTING 10041 East Trens Canada Hwy., Kamisees, B.C. VEC 2J8 (804) 873-8700 Fex 573-4857

DECEMBER 7, 1988

CERTIFICATE OF ANALYSIS ETK 88-728

Corona Corporation 312, 409 Granville St. VANCOUVER, B.C. V&C 1T2

Attention: Darrel Johnson

SAMPLE	IDENTIFICATION:	56 RÚCK sai PROJEC	mples received T: 1047	December	1, 1988
			Au	AU	Au
ET#	Des	cription	(ppb)	(g/t)	(01/1)
******		*************			*****==
728 -	1	52649	105		
728 -	2	52650	470		
720 .	3	47051	>1000	4.36	.127
728 ·	4	49852	>1000	4.23	.123
728 -	5	49853	>1000	3.33	.097
728 -	6	47854	180		
728 -	7	47855	185		
728	0	49856	115		
728 -	9	49852	200		
728 -	10	49858	10		
728 -	11	49859	10		
728 -	12	49860	10		
720 -	13	49861	5		
728 -	14	49862	5		
728 -	15	49863	<5		
728 -	16	49864	25		
728 -	17	49865	10		
720	19	49866	10		
720	17	49867	15		
728 -	20	47868	15		
728 -	21	49869	10		
720	22	49870	20		
720	23	49871	10		
728 -	24	49872	20		
720	25	47873	45		
728	26	49874	15		
7,28 ~	27	49875	20		
728 -	28	49876	20		
720 -	29	49877	20		
728 -	30	49878	₹1000	2.15	.063
				- 9	
_		. <u>Le</u>		23	
Page 1		💦 🔽 Frank 🕻	J. Pezzotij, Če	rlified a	Assayer

[

r

1

7

ſ

ł

7

ECO-TECH LABORATORIES LTO.

ABBAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamisopa, S.C. V20 2.3 (604) 573-5700 Pax 573-4057

Corona Corporation

DECEMBER 9, 1988

CT H			Au	Au	Au
EI#		Description	(ppb)	(g/t)	(oz/t)
392382:	=====	***************************************			***=====
720	J1	498/9	75		
720 -	32	49880	140		
/20	33	49881	70		
728 -	34	47882	5		
728	35	49883	5		
728 -	36	47884	30		
728 -	37	47885	5		
720 -	30	49886	30		
728 -	37	49887	430		
720 -	40	47998	> 1000	1.29	.038
728 -	41	47887	20		
728 -	42	47870	5		
/28 -	49	49891	35		
728 -	44	47892	5		
728 -	45	49893	175		
728 -	46	47874	75		
728 -	47	47075	10	. <u>.</u>	
728 -	48	47876	25		
728 -	49	49897	35		
728 -	50	47078	10		
729 -	51	49899	275		
728 -	52	- 47700	1 5		
728 -	53	49901	25		
728 -	54	49902	10		
728 ~	55	49203	10		
728 -	56	49904	40		
120	20	17704	10		

NOTE: (= less than

PW ECO-TECH LABORATORIES LTD. Frank J. Pozzotti, A.Sc.T. B.C. Cortified Assayer

CC: RON WELLS KAMLOOPS, D.C. FAX: KAMLOOPS/VCR SC00/LACS

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kambooe, B.C. V2C 2.19 (804) 573-5700 Fax 573-4687

DECEMBER 14, 1988

CERTIFICATE OF ANALYSIS ETK 88-7068

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, D.C. V6C 2V6

ATTENTION: DARREL JOHNSON

SAMPLE IDENTIFICATION: 65 ROCK samples received November 23, 1988 PROJECT: 1049

ASSAY CHECKS REQUEST OF DARREL JOHNSON

			ORIC	INAL RES	BULTS	ABBAY	CHECKS
			Au	Au	Au	Au	Au
ET#	E	Description	(ррђ)	(g/t)	(oz/t)	(g/t)	(oz/t)
							A III II I
706 -	1	52601	>1000	9.89 *	.288	9.25*	. 270
706 -	36	52636	>1000	1.08	.031	1.14	. 033
706 -	47	52647	>1000	14.39 *	+ ,425	15.29×	.446
706 -	57	49959	>1000	2.55	.074	2.66	.070

NOTE: > - MORE THAN

* SAMPLE RECUT, SCREENED AND METALLICS ASSAYED

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer**

' †

cc: RON WELLS HOLD FOR PICKUP

S0887LAC5

ł

METALLIC CALCULATION

SAMPLE NUMBER	-140 VALUE	+140 VALUE	CALCULATED VALUE
706-1	8,979999	36,87501	9.247791
706-47	15.25	86.538 46	15,28707

[

ſ

ſ

ſ

ſ

ſ

ſ

[

Γ

 $\left[\right]$

ſ

 $\left[\right]$

ſ

r E

~

 $\left[\right]$

 $\left[\right]$

CORONA CORPORATION - ETK 88-668A

. .

10041 EAST TRANS CAMADA HAY. KARLODPS, J.C. V2C 2/3 PHORE - 604-573-5700

MUNERINER 21,1998

FAX - 604-573-4557

WALVES IN PPH UNLESS OTHERWISE REPORTED

PW

SARP. 8

PAGE 1

1440. 000 WEST PENDER STREET VANDOUVER, N.C. VIC 2% ATTENTION: MAREL JOHNSTO

14

PERSECT # 1045

29 BOCK SAMPLES RECEIVED HOVENUER 14, 1988

DESCRIPTIONS V AS AL (X) ETKI AS. B BA BE CA(2) CD CD C2 CD (TE(1) , K(1) EA MACED BUT HE HALES HE P PB 58 Ś2 SR TI(I) Ľ U. 71 U Y Au (geoci 668 \$2751 (.01 01.4 . 16 90 (2 60 **(5** 4.16 2 12 (14 1.55 1102 22 .82 22 200 10 (5 (20 176 10 24 (10 46 3.56 5 64.9 2 52752 03 .4 . 18 20 (2 10 **(5** 10.66 2 37 34 5.14 .02 52 18 -CS 298 E10 15 16 .06 1446 32 220 <20 478 (10 (10 ٤ {10 4.38 - (.01 668 2 52753 32 6.78 5A .4 .50 %170.4 (2 4 40 (5 .28 10 R 152 .65 (1) .82 124 1 .12 28 1248 12 170 (20 76 <. D1 10 A0 (10 6 90 5 653 52754 58 .2 - 4 5 <2 10 (5 <19 45 . 10 6 16 126 34 3.34 .0 (14 (.01 118 11 .12 28 700 18 15 (20 22 <. **1** -14 34 2 668 -5 52755 50 (.2 .32 *5920 (2 80 ٢5 5 166 32 62 5 .14 16 24 4.16 . 15 (10 .62 214 -44 . \$2 £20 26 25 (20 30 10 36 <10 (.**8**1 52756 50 (.2 .52 668 -E 130 (2 376 - (5 1.32 2 36 135 72 4.67 . 13 3.36 1666 . 67 63 1240 14 65 <!Q 78 (10 g 62 10 (18 4 (26 254 _å! 662 -7 52757 5 C .2 .22 -140 **{2** 466 -508 - (5 .39 2 29 214 32 2.00 .13 <18 .10 220 16 .¢i 44 200 4 (5 (29 42 <.01 <10 30 <10 2 × 662 -52758 5F .1 - 18 (1520- -- 3 (2 -518 -65 .28 3 26 24 10 30 (10 2 195 14 320 2.62 .04 {10 .04 232 25 .62 205 5 (26 63 (.01 18 225 - 9 52759 00 .2 1.70 70 ٤ - 50 (5 2.86 4 18 50 48 5.92 10 10 .72 204 5 .05 35 2180 5 (29 33 .10 10 150 - (16 8 5£. 5 10 52769 13 415 962 -10 .14 100 (2 1110 **(5** 14.76 4 ١£ 22 26 4.70 2978 .02 3 448 2 **(5** <20 104 30 116 \$ 36 .04 {(0) 3.20 12 366 <.0L 52761 14A .4 658 -- 1 1 .12 150 (2 180 6 1.36 56 2.08 16 52 1230 4 8 326 .05 (10 1.32 676 11 .01 240 2 (5 (21 20B **{.01** {10 20 (10 2 669 -12 52762 150 .4 .16 60. (2 120 (5 1.38 2 24 130 28 5.42 12 .62 42 389 65 220 18 72 <10 5 25 .0 (10 4.66 1884 (20 (.01 82 663 --13 52762 158 .2 .14 20 (2 1770 6 B. 34 2 52 2.88 12 (10 125 4 150 .06 (10 2.12 1402 34 .02 240 s (25 26 (.01 **(10** 10 6 50 668 -16 \$2764 16 8.2 .10 430 2 74 3 2.02 2 12 <10 CFHC ٤ 240 10 1.74 .0£ (10 .72 64 22 .61 14 428 **C** (26 86 <.01 12 2 26 668 + - 15 52765 RA .28 20 (2 4660 (S 9.15 <10 £ 2 18 198 48 5.24 . 12 <10 1.1 1355 24 .42 78 720 1 (28 486 1.01 1ê 54 5 83 662 16 \$2766 18 .8 .22 S (2 -960 **(5**) 23 11.16 2 16 150 62 5.10 .08 <10 4.38 1164 22 .82 26 \$20 ¢ 5 (20 343 (.01 [0] 48 <10 £ 5 - 833 17 52767 19 .2 .26 2 350 (5 1007 0.B2 4 -24 152 140 4.80 598 54 <10 ٤. 96 .13 (10 3.78 1306 12 .02 74 820 ٤ 10 (20 <.81 10 20 669 -- 18 52768 12 .4 .24 30 (2 1480 (\$)15.00 2 10 20 44 2.14 1636 3 22 (10 6 35 10 .04 (10 1.40 te. .92 14 220 1 20 826 **{.01** (10 ££8 -- 19 52769 /48 .2 6360 .12 -110 · 2 310 (5 6.28 2 10 206 12 4.52 . 66 (15 2.14 1254 15 .02 14 360 ź <S <20 400 10.3 (10 30 (10 4 23 662 -20 52170 /5A .4 .18 (2 1528) (5 7.12 CE 5 20 24 164 94 1.60 .11 2.18 1152 .82 12 660 5 (\$ <20 518 (.0) <10 74 (10 4 28 CO. 14 6£8 -21 5 5217: 20 . B .65 75090 - (2 \$0 (5 .55 7 35 54 248 25 98 (10 60 7.94 .03 <10 .12 - 45B 12 .02 SM 12 65 (2)44 . 92 <10 669 -22 52772 24 .4 - 38 /130 12 450 (5 12.02 2 22 102 76 - {t? :12 20 E4 5.78 .20 10 4.16 1596 . 02 18 受迫 6 5 (20 446 (.01 10 8 . 668 -- 22 52773 22 .4 n .50 20 26 282 R 70 (5 2.86 2 52 3.60 .03 10 .84 1018 15 .02 26 550 2 (5 (20 46 (.01 (:0 110 (10 5 14 669 -5 -24 52714 234 .4 . 44 70 3.52 2 34 234 78 4 4126 (5 44 5.78 18 26 **(S** (20 82 (.0: Æ 8 .07 10 1.10 1294 .02 460 £ {10 - (16 668 -- 25 5 6220 52775 238 1.2 .18 40 :550 (5 5.08 2 20 166 165 (.01 32 (10 60 4 110 3.92 . 09 (18 3.24 1264 12 72 420 12 <20 (10 6 . 02 668 -5 26 52776 230 .4 . 32 20 730 **(5** 12.92 {1 30 102 36 3.42 .12 (10 5.20 1248 35 560 12 - (5 (20) 330 (.01 86 (10 4 68 2 12 .02 (10

ECO-TECH LABORATORIES LTD. Eren Strand Strand

. . .

10 A.

CORONA CORPORATION - ETK 88-706A

PAGE (Etxa	2	PW SAMP DESCRI	ø PTICKS	ALT'A TYPE	ر عد	41(2)	AS	8	24	19	CA(1)	(8	CO	CR	CU F	T(II)	K1)	LA	NS(1)			HA(2)	IJ	P	Pi	58	511	52	T!(I)	Ų	V	¥	*	28	ррь Ац
706 -	27	••••	52627	1-	,4	.19	455	(2	195	(5	6.12	12	15	160	27	4.00	. 10	(10	2.42	1547	15	.03	17	539	6	15	(20	M3	(.01	iO	92	(10	5	47	/160
796 -	28		52629	Тr	.1	. 46	285	(2)	225	<5	5,95	8	24	31	10	5.31	.24	10	2.25	1494	3	.03	3	1620	10	HO	(20	344	<.0 1	29	127	(10	£t	Æ	35.
706 -	29		52629	9.4	.6	.34	205	1 (2)	145	- (5	8.23	6	20	50	71	6.21	. 16	{10	4.13	! 551	4	.02	27	1360	Ń	10	(20	559	{.01	10	204	<10	8	£3	175
706 -	30		52£30	-1 c	4	.42	195	(2	215	<5	5.53	6	21	144	- 47	5.15	.19	{10	3.14	1373	10	.02	- 29	830	6	:5	(20	311	(.0£	(10	130	(10	7	69	5/0
706 -	-31		52631	43	1	.48	305	(2	295	ັດ	5 . 91	7	23	- 43	55	6.02	.24	19	1.62	1569	- 4	.63	- 9	1500	8	40	(20	155	.01	30	*9	{10	13	104	140
706 -	32		52632	9 d	.4	.25	- 565	1 (2	85	(5	5.59	- 14	ద	126	42	4.71	.15	- (10	2.01	1222	- 13	£0.	- 24	610	8	30	(20	1.85	<.01	10	126	70	7	43	8+0
706 -	33		52633	-1 d	.2	. 40	េទ	(2	200	G	5.26	5	28	87	•	5 . K	.19	10	1,88	1089	7	.63	22	1980	6	20	(20	162	{_01	:0	207	(10	9	62	ەكك
706 -	- 34		\$2634	98	4	.23	155	(2	340	- (5	3,01	4	21	67	110	4.98	. 15	-10	1.32	1536	7	.02	12	924	8	မေ	- (26	414	(.0t	10	97	(10	8	19	45
706 -	X		52635	90	.6	.24	150	(2	255	- (3	3.13	- 5	20	76	75	4.72	.[3	<10	3.53	1692	7	.02	:4	650	8	- 201	{ 2 8	232	C.05	:0	122	{10	\$	66	245
706 -	36		52636	96	.2	.20	500	- (2	225	- (5	4,90	12	10	127	:7	1.44	.(1	{10	1.56	807	- 16	.03	9	510	6	ţ0	(20	200	€_01	i0	52	(10	4	28	7080
706 -	37		\$2637	90	.4	.21	35	<2	265	- C	6.69	2	56	130	31	4.72	.06	(30	1.78	1757	. 9	.62	25	460	8	:0	(20	239	(.0I	10	140	{10	7	67	47
706 -	18		\$2633	9 0	.2	.06	15	<2	125	- (5	4.15	1	7	1n	6	2.23	.47	{10	1.34	561	- 14	.42	•	130	4	5	{20	175	((10	52	<19	3	30	25
706 -	79		\$2639	90	.4	.39	220	1 (2	185	ດ	6.41	6	컨	97	71	4.42	.16	50	2.Z	1224	8	.02	12	240	8	15	(20	339	<.01	10	126	(10	7	60	415
706 -	- 40		\$2640	10	.2	. 13	250	1 (2	310	- (5	5.36	6	- 14	178	it.	2.71	.07	{10	1.86	#14	16	.02	. 9	270	6	18	(20	155	{ .01	(10	57	(10	3	វា	735
706 -	41		52641	20	.4	.25	35	· (2	170	G	4.60	1	19	68	32	1.10	.12	{10	1,90	550	7	.02	12	450	6	10	{20	117	(.0 1	20	13H	(10	5	47	30
706 -	42		52642	10	.6	.50	- 65	- (2	490	- {5	8.41	3	27	42	73	6.23	.14	20	2.43	1555	3	.63	13	1120	tØ	30	(21	908	.01	20	216	(10	11	68	
706 -	43		52643	76	.6	.33	40	(2	405	(5	1.77	Z	19	- 54	J1	5.67	.09	10	1.75	1556	5	.03	5	650	60	20	{20	466	.01	40	150	{10	10	89	
705 -	-44		\$2644	76	.4	.37	165	1 (2	300	(5	1.29	4	5	27	4	1.2	.11	19	5.66	1588	4	.42	7	1199	8	3	(20	365	(.6 1	26	167	(10	u	£7	
766 -	45		52645	30	.4	.25	325		170	(5	7.62		3	66	15	2.K	.14	10	2.54	1469	5	. 62	7	970		29	(2)	346	4.01	10	73	(10	8	48	230
NG -	-16		52646	26	6	.12	165	(2	265	(5	9.42	ŧ	13	107	н	1.22	.07	10	2.44	1677	1	.02	9	150	10	S	(20	538	6.01	(1)	n	(10	E	55	12.56
706 -	17		52647	16	.2	.20	2035	1 (2	10	(5	2.18	6	14	10	31	4.37	.15	10	. 99	53	15	.92		120	H	20	(20	139	(.01	20	- 44	(10	5	49	1452
706 -	48		\$2649	8	.4	1.24	140	1 (2	50	(5	2.64	4	78	34	45	1.91	.11	30	.1	1123	1	65	14	1900		5	(20	228	.02	20	G	(10	18	£9	£ 5
706 -	49	360	19551	92	.4	.12	179	ā	05	σ	6.23	- È	17	200	54	4.09	.12	(10	2.77	1174	ត	.42	20	600	6	361	(2)	304	<.01	10	129	<10	5	66	150
706 -	50	36	49952	41	.8	.24	195	a	630	- 15	.93	5	14	209	27	2.91	.14	(10	. 36	76.8	17	.62	- 17	450	Ě	10	(24	53	.01	10	112	(10	3	28	1510
795 -	51	\$70	49953	79	.6	.20	380		120	ō	2.08	10	22	121	13	2.11	.16	(10	.4	465	12	.412	7	590	10	15	{28	98	6.01	10	29	<10	- 4	35	\$70
785 -	52	375	49954	74	.4	.12	110	0	130	- KS	1.22	5	24	109	58	4.55	.10	(10	2.15	1151	9	.13	35	598	ï	- 35 J	(20	243	6.01	10	143	(10	6	20	635
706 -	33	370	49955	90	.6	.24	F49	- 9	70	đ	5.84	18	24	69		1.7	.14	10	1.57	1099	ż	.83	- 19	796	÷	- 51	- (76	76	6.01	10	110	{10	,	71	1520
716 -	54	37D	49156	24		.16	178	0	70	65	1.30	3	21	192	25	0.75	.87	(16		244		. 64	74	390	Ĩ	s	(20	37	C.81	(10	64	(10	i	17	115
7% ~	55	36	49957	34		.32	- 35	0		(5		i	74	165	60	4.72	.04	10		749	16		51	776	Ľ.	a)	0	5	.01	10	151	660	5	43	4.0
736 -	x	34	69958	24		.75	1945		54		2.33	4	29	166	54	1.5		10	. 16	192	- 11		- 14	426	- 1		- (70	ū	. 61	10	214	(16	5	50	1.0
76 -	57	J/A	19959	90		-16	1760	10	35	- A	2 96	77		165	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 67		/16	1.45	522	- 17		39	246	ž	- 140 (85	(20)	152	2 61	/10	54	(10	,	54	250
786 -	50	318	(9960	34	1	02	50		35		9 67	1	16		74	3 43		14	4 75	1524		41		136		15	/10	144	2 41	(10	52	/16	-	79	146
786 -	59	32	49961	8	1	nK.	10		20	Š.	17 17	1	25	4		4 69		710	1.16	1167	÷	בעי. רת	12	110		10	/26	300	7.01	10	20	710	ŝ	45	
746 -	50	334	49962	21		-90	415	L n			• 76	×		59		1.82 C 14	11	(10	4 51	1202	2	-03	- 14	110	15	151	(30	200	1.41	20	76	/16	,	44	3.5
746 -	11	318	10.000	31.	.0		704	6	175		7 59	11			SI	4 15		412	7.94	1175	E E	.w. m		200 610	17		220	1114 1114	2 81	20	47	(10	, r	75	1010
146 -	57	26	10/164	2	.7		14	· 14	510		14 90		10	20	-TR TA	1 74	-19	21A	1.47	1923		.03	12	419	1)	241 5	200	2014	2 45	10	יר אנ	210	5	49	410
	12	150	77,01			נە. در	160	. /2	120	ы м	E 19	۰ ۲	17 15	20	67 63	4/7 4 (L	17	415	2 82	1/04	9 9	.V3 67	- 13	14V 858	12	-	149	3303	1.VI 7.81	/16	4	218	3	0	40

1 - 1**9**1. 6 - 1

•

4

.

PV

10341 EAST TRANS CANADA HAT. XAN. 00PS, B.C. V2C 233 PHINE - 604-573-5700 FAT - 604-573-4557

VALUES IN IPH UNLESS OTHERWISE REPORTED

PAGE 1

HECEMBER 1,1998

CORONA CORPORATION - ETK 88-706A

1040, 600 WEST PERCER STREET WHENHER, L.C. WEC 2% ATTENTION & JUNISON

PEOJECT 8 1049

68 BOCK SAMPLES RECEIVED MAVENBER 23, 1968

.

PAGE I																			0		SPIL		C34CB #		01 23 ₁ 3	1 76							aab
ETKA	DESCRIPTION	PILT'A I TYPE	46	A.(1)	15	B	84	n	EA (2)	0	0	(R	띠	ÆD	K(2)	LA	16(C)		11	M(I)	Ð	P	FS	58	SI	SR.	нcə	IJ	V	U	۲	ZN	- А _Ш
706 -	1 5260	1 70		. 16	====== 10	<2	10	<u>(</u> 5	9.52	1	31	74	ท	4.72	.0	0</td <td>6.73</td> <td>1435</td> <td>6</td> <td>.43</td> <td>30</td> <td>220</td> <td>12</td> <td>5</td> <td>{24</td> <td>:45</td> <td>(.01</td> <td>10</td> <td>127</td> <td><10</td> <td></td> <td>76</td> <td>959</td>	6.73	1435	6	.43	30	220	12	5	{24	:45	(.0 1	10	127	<10		76	959
706 -	2 5260	90	.2	.23	20	(2	10	(5	9.41	1	75	119	26	ł.20	.02	(10	6.62	1341	7	.63	20	270	12	5	(20	311	(.0]	10	65	10	5	54	140
706 -	3 5260	9 90	.4	. 60	20	0	120	- (5	7.83	1	15	13	92	LØ	.15	10	4.33	1615	d	D .	25	1450	12	5	Q9	322	.01	(10	173	{10	11	74	55
706 -	4 5260	9.	.2	. 60	20	(2	5	-{5	4.87	:	27	32	- 51	L42	.:5	14	1.77	1174	a	.63	8	2020	8	5	(20	137	.05	(18	314	(10	16	Et	215
706 -	5 5260	9 4 1	.6	.53	:5	<2	195	- {\$	8.38	:	29	34	- 176	LØ	.:3	(10	4.34	2478	3	.03	7	1040	10	10.	- 629	202	.03	- 10	193	(10	19	71	20
766 -	6 5260	5 9c	.4	.19	:0	(2	15	<5	9.35	L	26	76	15	4.43	.44	<10	5.71	1234	3	.03	- 28	340	14	5	(29	590	.01	(10	144	(10	6	84	
766 -	7 5260	90	.4	.47	:0	(2	120	-(5	7.84	1	18	127	- 64	4.38	.65	(10	ŧ.27	1552	3	.63	19	1240	8	5	(20	241	.ai	(19	138	(10	10	42	
765 -	8 5260	i 9c	.2	1.80	-15	<2	105	- (5	2.99	1	34	112	113	5.75	.65	19	2.16	846	1	.07	55	1720	4	15,	(20	t83	.01	10	169	(10	7	77	
766 -	9 5268	90	.4	.12	10	(2	65	G	19.14	1	27	23	•	5.28	.01	(10	6.12	2466	5	.03	:0	150	10	5	<20	301	(, Q)	10	27	(10	ľ	69	
705 -	10 5261	3	.4	2.02	25	2	45	- (5	2.58	1	27	68	64	\$.15	.16	10	2.13	1005	5	.07	6	1768	10	151	(20	56	.21	10	168	<10	14	አ	
706 -	11 5261	6	.4	2.21	1 5	(2	15	- 6	2.46	1	40	56	- 4	7.15	.08	(16	3.00	1177	2	.14	22	1540	8	- 20 İ	(26	122	.33	(10	785	(10	14	69	
706 -	12 5261	1 96	.2	.21	640	1.12	t1 5	(5	9.70	16	5	6	11	1.4	.04	(10	2.84	2943	26	.63	- 4	200	10	\$	<26	328	(.0)	10	43	(10	16	67	
706 -	13 5261	1 ?c	.2	.57	36	4	50	- <5	7.15	ł	18	38	- 40	5.4	.28	(10	2.19	1413	2	.13	15	250	۲6	15 j	(29	175	(.01	20	62	(10	10	н	
706 -	14 \$261	15	.4	1.84	40	2	25	- (5	1.96	2	22	43	55	6.49	.11	- (1 4	1.83	977	11	.65	18	1760	18	75	<20	- 34	.25	30	209	10	10	90	
766 -	15 5261	5 6	.4	2.06	35	2	30	(5	2.53	1	35	61	- 65	1.7	.14	- (10	2.67	1030	5	. 14	75	1220	B	5	(2)	131	.75	28	217	<10	9	73	
766 -	15 5261	57	.2	.97	25	(2	30	- 3	1.09	i	- 14	- 47	75	1.15	.10	- (14	п.	613	6	. 10	6	1410	6	5	(20	37	.17	(10	56	(10	10	- 47	
766 -	17 5261	1 9 d	.2	.61	65	- 12	315	g	6.20	3	36	132	- 94	£.10	.29	- CD	2.31	1412	2	Ω.	ា	1230	10	- 45 I	C20	465	<.01	10	92	(10	- 10	ល	
706 -	13 5261	h () 🛛	.¢	. 20	55	2	160	ଘ	7.71	2	26	107	73	5,00	.15	Ω.€	4.21	1345	6	.02	36	\$00	10	ଷ	3	222	(.01	10	78	<10	7	70	
766 -	19 5261) 5	.4	1.78	25	(2	50	ଘ	1.39	2	21	70	114	7.24	.jB	1 ●	1.23	565	- 4	.66	• •	2180	- 16	् st	Ċŧ.	82	.37	- 30	2 5	(10	10	3	
706 -	20 5262	5	.6	1.70	30	(2	- 64	- (5	1.24	2	17	ES	- 63	7.31	.14	(10	1.22	443	2	20.	7	1760	10	10	(20	- 6E	.41	t e	284	(10	8	78	
706 +	71 5262	5	.4	1.60	35	2	60	G	1.12	2	- 14	E3	67	6.81	. 18	10	.5	201	5	.0	- 5	1680	12	10	Gŧ	70	.52	10	464	<10	5	71	
706 -	22 5262	25	.4	2.3	35	(2	15	(5	2.41	2	32	Ж	- 106	6.36	.10	10	1.21	705	5	.0	- 15	1950	20	15	21	84	.4	- 1ê	69	(10	ę	38	
7% -	73 5262	90	.6	. 90	75	(2	360	۵,	19.35	1	23	\$65	- 51	3.E9	.0	10	3.44	:493	E	.02	57	BBO	10	10	20	Z1 2	<.0L	10	121	(10	9	56	
7% -	24 5262	94	.2	.51	15	(2	430	Q	7.25	2	75	169		4.37	.21	10	3.18	:230	2	.62	51	1780	- E	10	(20	231	(,0ł	L0	147	(10	5	57	
706 -	75 5262	5 4	.4	2.17	70	2	40	6	2.40	1	33	5 t	121	6.11	.08	10	1.35	939	•	.06	19	1890	10	10	(20	- 44	.12	10	3 7 i	(10	11	102	
706 -	26 5262	9c	.4	.49	610	$\vdash \alpha$	125	a a	8.03	17	39	Ж	166	£.Q7	.14	10	3,4	1501	6	.02	- 41	1819	12	- 60 j-	- (20	35 1	(.01	<[0]	192	(10	10	88	50

िल

CORONA CORPORATION - ETK 88-728A

1004) EAST TRANS CANADA NAY. KANLBOPS, B.C. V2C 2J3 PHONE ~ 504-573-5700 FAX ~ 604-573-4557 1440, 900 WEST PENCER STRETT WINCOUVER, D.C. VEC 206 ATTENTION: 0. JOHNSON

16CEI 162 8, 1988

745E 1

PALLES IN PPH CALESS OF-ERVISE REPORTED

FROJECT HIGHS

55 ROCK SMIPLES RECEIVED RECEIVED RECEIVED 1, 1989

prb

		TOTIONE			45				Ch/73		60		AU 67	(T)	K(1)	141	6 (7)	1		403)	11	•	78	59	58	521	ເກດ	12	¥	N.	Y	28	Au
LING						•																				202074		4+-444					
178	1	52649	2	.49	155	0	770	G	5.75	4	1B	93	47 6	.83	.29	(10	2.26	1948	•	.03	9	1080	16	30	(20	133	(.01	10	58	{10	9	93	105
128 -	;	57550	.7	33	145	10	£00 -	· (5	8.39	i	23	12	- 39 (.17	(14	3.17	1484	~ 6	.02		710	4	25	(20	462	{_0 1	20	13	<10	E	107	470
778 -	ì	49851	.,	. 20	626 ~-	12	50	Š	6.25	3	2	196	43 4	. 12	.16	(10	2.3	1146	20	.62	14	700	10	z	(20	266	(.01	26	រា	<10	E	64	6360
728 -	-	49852		.39	174	4	50	65	(.19	4	15	167	21 1	L17	.21	{10	1.12	104	121	,03	18	836	8	15	{20	248	{.0[10	39	(10	7	32	4230
229 -	Ś	19853		.58	195	à	35	Ġ	5.50	3	19	140	24	.25	.23	(10	1.58	:I S	10	.02	6	830	HÔ	15	(20	25	<.0E	24	53	{10	5	64	3330
728 -	Ĩ.	49854		.52	(50	a	55	- (5	6.86	2	77	66	51 5		.27	10	2.54	1151	•	.93	21	1294	12	15	(20	395	(.0i	20	71	(10	น	n	180
728 -	i	49855	.4	.58	410	(2	35	(5	5.70	Ī	34	*	182		.25	10	2,77	1954	5	.A2	57	1440	12	125 -	- (20	342	{.91	10	7B	(19	£	ង	185
728 -	8	19856	.4	.49	215	(2	150	4	6.76	1	(1	39	46		.26	(10	2.06	11 H	2	.12	19	700	8	33	20	431	(.01	20	62	<10	19	60	//5
728 -	9	49857	-2	.36	135	(2	355	CS.	4.51	- 4	12	171	- Э - З	2.73	.14	-(10	1.5	809	17	.43	- 14	484	4	20	(20	194	(.01	10	42	(10	4	40	200
728 -	10	19858	.2	.38	15	(2	75	- (5	1.34	1	11	162	- H :	3.N	.94	(10	1.43	711	11	.62	17	610	8	5	36	361	.01	(10	,132	(Q 0	5	2	10
728 -	11	49859		.58	28	2	70	<\$	7.66	1	26	145	10 -	1.52	.06	(10	3.58	95 4	4	.02	20	1330	10	10	(20	371	.02	<10	7199	(10	5	5	10
729 -	12	43664	.4	.Ճ	5	¢	20	- (5	19.25	1	, 23	2	22	1.02	.02	< 10	3.83	2016	7	.42	20	440	12	5	G	589	{.01	19	132	(10	6	70	10
728 -	13	45961	.4	.35	15	2	215	- (5	1.25	1	31	69	13	6,41	.63	{]0	3.66	1164	6	.03	22	674	16	10	(20	426	10,	(]0	146	(]9	3	A D	5
728 -	14	49862	.4	.34	15	-{2	1250	- (5	9.36	1	42	119	28	1.89	.64	<10	5.37	1922	3	.43	34	690	10	10	(2)	475	.01	{10	106	(10	13		3
729 -	15	49863	.4	-92	385	<2	190	- (5	5.46	1	36	121	92	5.15	.26	10	3.42	1113	1	.43	45	1300	6	30	(20	779	(,01	10	12	(10	ž	70	<5
728 -	16	49854		.44	25	{2	115	- {5	8,70	2	31	199	51	1.21	.16	<10	4.23	1128	5	.63	38	780	12	ş	Q	15	(.01	(10	32	(38	1	EV 6.0	23
728 -	17	49865	.2	.70	20	{2	1030	· (S	E.84	1	32	250	29	4, 67	.07	fO	.63	1221	a	.02	62	1438	B	2	(20	71	.91	10.	145	(10	3	_10 K 1	10
728 -	18	49866	.2	.74	15	<2	595 -	- (5	7.66	1	n	248	81	3.64	.14	<10	2.00	1355	6	.03	56	1610	E	5		21	.01	19	201	(14	1	21	10
728 -	19	49967	.2	. 28	205	(2	160	- (5	6.50	5	11	193	25	3, 42	.17	(10	3.01	341	15	.42	12	438	6	78	G	444	(.01	10	101	Clu	3	80	15
729 -	20	49868	.4	.50	:5	(2	320	្រុ	1.39	1	23	196	3	4, 20	.01	<t0< td=""><td>3.63</td><td>121</td><td>5</td><td>.63</td><td>35</td><td>660</td><td>E</td><td>19</td><td></td><td>244</td><td>.02</td><td>(26</td><td>147</td><td>(10</td><td>5</td><td>23</td><td>15</td></t0<>	3.63	121	5	.63	35	660	E	19		244	.02	(26	147	(10	5	23	15
778 -	21	49869	.2	1.18	お	Q	730	- 0	1.75	2	24	164	91	5.17	.19	10	1.%	1123		.0	- 4	1310	E	2	(7)	736	(.91	39	72	(10	14	73	20
728 -	22	49870	.4	.75	40	-{2	585	- a	7.02	2	75	117	52	4.86	.22	10	3.37	1221		.03		3460		5		2/6	(10	63	/(0	2	30	10
778 -	23	49871	.2	.33	20	a	780 -	- 3	5.25	2	17	- 95	48	4.67	.14	(10	4.97	1417	13	.02	77	619		39 ~~	20	116	(, P]	39	160	210	13	107	20
728 -	24	49872	-2	2.32	20	<2	185	5	4.73	2	37	214	120	6.51	.13	10	3.51	1189	E	.11	<u>n</u>	1004	. u		124	504	.00	- 34	()] ()]	/10	14	6	45
729 -	25	19873	.4	.45	65	<2	185	đ	\$.72	2	20	82	28	5. 10	.16	<10	3.52	1322	10	.43	34	HUBO			(10)	140	4. VL 2. ΔL	70	61	/10		100	15
729 -	x	69674	2	19	10	()	1335 -	- (5	4,71	1	35	- 91	31	5.92	.09	<10	4.66	1667	•	.9Z	×	319	•	6	120	.	14.61		- 10	110			

CORONA CORPORATION - ETK 88-728A

.

FNEL 2																															- 1 (P
ETK#	DESCRIPTIONS	46	AL(T)	lis)	94 	D)	(DQ)	(1)	21	<u> </u>	37 LD	1) EG	() (1 16(T)	756	20.1	14(1)	11	P	P1	50	SN	2	H (T)	1	¥		¥	Di	Æ
729 -	27 49875	.2	.50	130	Q	355	G	.78	3	Z	362	58 2	59 .1	16 (1	0.30	ßI	33	.03		476	(15	(20	70	<.01	10	48	<10	4	6	20
728 -	28 49876	.2	.64	1125	2	215	- (5	. 18	3	19	243	- 54 - 7,	n	39 (1	0.05	231	£2	.03	30	990	19	155-	-20	43	(.61	30	192	{10	4	61	20
728 -	29 49677	.2	1.65	1996	- 2	30	6	.35	- 4	20	158	- 39 - 4.	36 .8	K. (.05	235	13	.63	20	970		50	(20	24	(.6]	20	л	<to< td=""><td>5</td><td>53</td><td>20</td></to<>	5	53	20
729 -	30 49678	.2	. 12	365	Q	60	5	4.92	1	7	244	15 2.	34 .(3 . (1	(B. 0	185	- 30	.03	- 14	310	3	10	(20	313	(.0 1	30	21	₹L€	\$	31	2/5
728 -	31 (9879	.2	. JB	195	a	70	- G	E.13	1	- 14	110	39 1	31 _1	n a	9 2.79	123	- 14	.43	Ż	600	1	ದ	(20	300	(.01	10	- 18	<10	5	55	75
728 -	32 (9680	-2	.49	350	Q	45	G	ε.20	1	21	- 49	41	07	2	0 7.21	1024	7	.63	8	1080	18	25	(20	353	(.91	20	- 13	{10	9	75	140
T18 -	33 19681	.4	.X	290	Q	50	G	ភោ	1	70	n	63 4	DI	a c	0 2.58	1174	5	. #2	71	1210	E	- 4	(70	230	{ . CL	30	- 39	(10	10	0	70
778 -	14 1968 2	.4	.33	220	Q	690	G	5.74	1	23	· 163	S 1	71 .I		0 2.45	1591	16	.63	- 79	619	- 6	20	20	55	<ti< td=""><td>10</td><td>5</td><td>10</td><td>6</td><td>63</td><td>5</td></ti<>	10	5	10	6	63	5
T18 -	35 15683	4	.S2	190	2	135	G	-67	1	- 34	201	124	IS	H C	.22	597	- 11	.63	- 48	900	6	76	(20	39	.01	19	n	<10	5	52	5
728 -	HERE 3C	.2	.24)10000 —	2	E.	Q	.11	2	13	200	17 5	61 .2	K (IO (.01	131	21	.03	- 26	380	Le.	465 -	- (70	23	(.CI	- 20	- 44	<19	2	63	30
726 -	37 (9685	.2	.62	710	(2	50	Q	1.92	1	5	- 114	64 E	55 .1	14 - Ki	0 .29	570		.0	26	550	6	ゴ	(20	51	•61	79	- 15	40	7	56	5
78 -	38 (9666	.2	.23	190	(2	330	୍	5.59	1	5	S	35 3,	46 .1	17 - C	0 2.56	76	1	.63	17	650	6	20	30	335	(.0]	30	39	(19	5	51	30
128 -	39 49687	.6	.36	545 —	2	125	ď	8.62	1	21	121	22 1	55 .I	IS (1	9 3.41	1467		.02	- 17	670	- 6	20	(20	229	{,0 1	20	63	(16	8	68	430
778 -	40 19688	.4	.50	36 -	a	165	G	4.72	1	- 28	114	123 \$	67 . 1	IB (1	0 1.47	1366	10	EØ.	37	1230	8	45	(20	751	(.01	10	99	{10	9	68	1290
728 -	() (9889	.6	.42	30	a	40	ď	11.21	L L	- 29	115	<u>76</u> 5	67 .0	15 (i	0 1.79	1956	7	.02	- 14	580	1	5	(2)	32	.41	- 29	120	(15	16	60	20
728 -	12 19690	4	.50	90	6	#15	G	8.9t	•	28	151	804,	54 . 1	17 (1	D 1.15	1961	10	.01	- 41	1070	- 6	15	<20	6 0	(.01	30	132	<10	9	50	5
78 -	(3 4999)	.4	41	165	6	୍ ସ୍ଥେ -	- 4	8.35	2	Π	158	101 5.	•• .1	1 8 (1	0 1.93	1389	13	.92	- (3	970	6	- 45	(20	51	(.01	30	81	<10	7	70	35
128 -	14 (9892	.2	.75	- 7745 —	a	22	đ	.36	2	23	173	- 29 L	18 .1	IA (1	64.	172	16	.63	- 24	796	- 14	320	(20	- 59	(.0)	20	- 64	(10	4	67	5
78 -	15 (9893	4	.47	(15	2	320	đ	6.83	1	27	153	56.5	39 .1	1 1 (1	0 2,59	1182	12	.63	- 53	1!20	6	- 29	(20	390	16.3	<10	66	< 10	8	63	175
728 -	49EH	- •	.52	135	B	610 -	~ 0	6.95	- 4	28	101	Y 6.	00 .2	13 1	0 2.91	1116	- 11	.63	- 32	1330	- 6	- 45	<20	517	{ . ¶L	10	5	{ [9	10	H	75
26 -	17 (9695	4	.37	15	B	1475 -	– Q	9.55	2	22	89	- (7 - 5,	10 J	li (d	0 4.18	1433	12	.03	- 14	910	6	5	(20	61	(.)t	10	- 74	(10	1	82	10
D£ ~	18 (9696	ه.	,49	245	2	H5 -	- 6	9.18	6	76	135	- (4 - 5,	30 .1	6 (1	0 1.94	1401	11	.03	26	919		20	(20	35	{.01	10	15	(10	10	71	25
28 -	19 19697	- 4	.51	290	6	465	q	16.24	7	36	66	66	54 .:	5 4	9 3.:2	1400	12	.63	- 59	1210	1	25	(20	665	6.01	<10	98	10	- 5	17	- 35
7E -	50 (5658	f	.41	20	(2	230	4	8.52	2	25	272	- 5H - S.	27 .4	K (0 3.44	1547	- 14	.03	- 41	760	- 4	15	(20	318	.40	19	145	(10	7	53	10
78 -	il 49899	- . 4	.31	129	(2	505 -	- 05	7.99	4	74	210	78 4,	72 .(19 KI	0 3,45	1596	1	.63	- 51	576	8	10	(20	24	.01	29	135	(10	8	65	275
X -	2 49500	-6	.53	15	12	130	۵	11.13	2	36	155	- 60 K.	42 .0	17 (I	4.96	1750	7	.03	55	56	- 1	15	<20	394	.01	30	158	(10	1	13	15
728 -	3 49901	.2	-47	10	(2)	45	9	7.80	1	20	15 1	103 4,	X.,	H (I	N. E. 6	1453	- 17	.02	62	960	- 6	5	(20	214	.01	10	- 141	26	7	61	35
ZE -	H 19502	4	-34	10	(2	20	- (5	5.62	1	- 13	177	49 (12 .6	15 (1	9 1.65	926	t9	.02	- 24	710	6	5	(20	214	.01	:0	CH	(10	7	59	10
26 -	5 49903	1.0	.42	30	(2	240	a	1Q.0J	2	22	:37	32 1	99 . :	• (I	8 3.89	2456	- 16	.43	- 73	720		5	(29	- \$74	(.0)	20	107	(10		6	45
2E - 3	6 (9504		.39	50	<2	270	5	9.89	t	16	- 41	631	98.	19 1	0 3.47	1323	6	.01	18	1110	4	15	(20	492	(. #]	:e	109	(18	14	65	10

- 20

INTE: < = LESS THAN

> = GREATER THAN

CC: SOM WELLS KANLDOPS, D.C. FA1

ECH-TECH LABORATORIES LTD. Non Enders Laboratory Nanager

SCORALACANAS

	e	<u> </u>	TEC	-1.J I	4.0.0	0.4.7	001								60 0																		
	₽₩	си-	, 20	, 1) L			0.1	ES	L 1 1						LUN		A ()	JKPU	IKAI	1106		EIK	ิบย	-70	64								
PAGE 3 EIKt	SHIMP.# DESCRIPTIONS	TYPE	A 6	NL(1)	A 5	3	64	81	(1) A	0	¢	CR	Û	ÆG?	((1)	u	N2(Z)	ju.	ND	m(2)	K }	P	PB	53	9	98	11(2)	Ű	۷	¥	Y	n	Au
706 - 706 -	64 35 6 49966 65 35C 49963	ମ୍ମ କ ମୁନ	.4 .6	.30 .24	50 1357	(2 (2	430 195	(S (S	8.42 6.87	2 4	34 21	89 87	74 61	4.83 <.19	. 16 . 14	<10 <10 <10	1.02 2.60	(387 154	D I) I	.03 .47	62 73	1330 1030	8 8 8	30 35	(20 (20	383 237	(_01 (_01	:د ۲۵	64 49	<12 <10	8 6	50 61	30
W016:	(= LESS THAI																																•

FAT: 20N WELLS KANLOOPS, B.C.

SCRBALACAMAS

an agus far

÷.,

man for

.

.

-

.

• • •

. .

. :

.

ECO-TECH LABORATORIES LID. Frank J. Perzotti, A.Sc.T. E.C. Certified Assayer

. . . .

.

· . · .

CORDNA CORPORATION - ETK 88-668A

						-																	-							
P#SE 2 ET%1	deedriftidas V as a	4 <u>(</u> 2) 25	5	54	3:	CA(3)	53	()	53	53 1	E(1)	<u> </u>	Là	xs(1)	NH.	JIÐ 1	M(X)	RE	₽	7B	58	SX	5P 7	({T)	IJ	ŗ	u	¥	34	Pr ^b Au
663 7 27 663 - 28 653 - 29	52777 24A .8 52778 24 B .3 52758 24 D .4	1.0 +2160 + .13 +110 .55 +1770 +	2 2 2 2	1820 1790 1380	(5 (5 (5	.24 11.28 .25	5 2 5	24 26 25	145 132 215	65 22 50	4,82 4,56 4,80	.11 .96 .CE	<10 (10 (10 (16	.01 4.74 .10	110 1632 350	(4 (3	.02 .02 .02	26 34 38	1920 599 420	د 2 27	S (5 15	<20 (20 (20	62 250 24	.03 (.)1 (.01	(19 19 (10	78 62 43	(10 (19 (19	4 5 2	56 44 74	150 736
663 - 3) 663 - 31 663 - 31	52781 24 E .4 52782 26 .2 52783 27 8	.52 -8790* .54 -4790 24 -40	2 6	169 1670	(5 - (5 - (5	,16 ,12	6	38 20 15	225 254	H 33	4.50	.06	(10 (10	.12	456 224	14 19	.02	46 26	400 259	16 6	16 5	(70 (20	23 24	<.01 <.61	<10 <10	44 26 72	(15) (19)	4	100 46 54	20 5
669 - 33 669 - 34	52784 28A.4 52785 29 8.4	.55 (110) .44 (628	5	950 192	(5) (5) (5)	8.95 .23	4	36 44 33	180 180 284	74 59	6.54 5.52	.21 .98	10	5.06	1500	1 1 1 1	.92	38	1349 230	10 14	15 45	<29 (29 (20	535 75	.01	19 (10	54 54	(10 (10	8	72 94	5
662 - 32 663 - 37	52787 24 .4 52788 30A .4	.50 6790/ .70 £930		(90 (30) (320)	(5 (5	.96 3.02	8 10	12 14 40	273 254	20 70 72	4.12 3.76 4.24	ю. Ю. 30.	(10 (10 (10	.01 .02 1.12	115 2209 740	22 16	.92 .02 .92	20 16 38	160 420	15 14 14	15 10	(20 (20 (20	16 16 94	.01 .01 .01	10 10	43 28 54	<10 <10	2	2% 62	555
668 - 3 3	24-C .6	.54 -5922 -	2	£4	(5 (5	. 52	10	21 30	299 295	љ 44	4.56 7.78	.06 .11	<10 10	.16 .29	364 842	16 18	.92 .92	30 74	369 399	16 18	29	< 20 (20	42 18	(.01 (.01	(19 10	12 96	(10	4	120 120	s 5

,

NOTE: (= less than

> = more than

ę. ECO-TECH LASORATORIES LTD. Frank J. Perzotti, A.Sc.T. B.C. Certified Assayer

. •

de altr

CC: RON WELLS KAYLOOPS, N.C. FA1: KAYLOOPS SC88/LAC5

ROCK SAMPLE DESCRIPTIONS

APPENDIX "C"

~

POOLEY LAKE <u>PROSPECTING</u> SAMPLES

Sampled by P.W.

.

Nov 1988.

PW No.	ECO T. No.	DESCRIPTION	ANALYZE FOR	SAMPLE SIZE % of Bag
01	52751	Mainly fine brittle fractured milky grey qtz.	Au geochem ICP	25\$
33	52752	Milky to brownish qtz vein stockwork. Limonitic numerous anastomosing qtz veins to 1 cm.	•	single grab
5A	52753	Milky qtz chalcedony fragments (to 5 cm) breccia limonitic, clay altered matrix (chaotic breccia) frags not orientated.	•	50%
5B	52754	Moderate light clay alteration, chalce- donic veins to 1 cm also silicification. Weak banding.		50%
50	52755	Moderate clay alt. Early qtz veins to 1.5 cm with up to 5% sulfides cut by later more chalcedonic locally vuggy veins (anas- tomosing) limonitic, to banded.	•	50%
50	52756	Otz. veined fairly fresh pinkish to grayish feldsp phenos to 3 mm. Mafic clots to 3 mm. F.P. rep sample taken.	•	30%
5E	52757	Grey qtz. and fine sulfides > chalcedonic qtz. coarse breccia locally clayey/limonitic	•	40%
SF	52758	Large milky qtz veins coarse vuggy deformed core. banded sheared/margins >10 cm wide.		50 %
6	52759	Weak brecciated andesite v. fine sulphides Numerous gypsum veins 3 - 5 mm and coatings some goethite.	·	25\$
3	52760	Sheared milky grey qtz vein weak banded > 5 ∩ wide.		10%
4A	52761	Milky gtz veins locally weakly broken.		105
5	52762	Milky qtz + grey qtz + brownish qtz (breccia	?) •	20%
5B	52763	V. vuggy milky gtz, local barite? breccia?	•	205
6	52764	Milky gtz material.		205

PW-No.	ECO.T. No.	DESCRIPTION A	NALYZE FOR	SAMPLE SIZE % of bag
12	52768	Quartz) carb vein breccia, stockwork some barite.	Au Seoches ICP	301
148	52769	Milky qtz veining sheared local parting 1-3% fine dissem py.	•	301
15A	52770	Strongly sil/hematitic patchy breccia close to intrusive? [rregular milky qtz stringers vein K spathization. Rep taken.	•	30%
20	52771	Some sort of breccia milky qtz, F.P.? late chalcedonic veins limonitic, clayey locally.	•	403
21	52772	Sheared milky to greyish qtz vein ? Scm. Light green mineral.		203
22	52773	Light white to pinkish fine banded chalcedony no distinct sulfides.	•	201
23A	52774	Pinkish qtz, chalcedony, clay alt, limonitic breccia locally vuggy. v. fine sulphides.	•	205
23B	52775	Milky qtz vein strong lighter coloured silici- fication breccia, stockwork.	•	40%
23C	52776	Qtz carb. breccia vuggy, Local hem, green chl. limonitic.	•	201
24A	52777	Clay altered fine granular sed unit some fine with veins.	qtz ·	403
248	\$2778	Milky qtz vein/strong silicification no apparent sulphides.	nt '	30%
240	52779	Rusty weathered milky qtz. vein/chałcedonic. 1- fine sulphides.	-25	301
24D	52780	Rusty weathered gtz, chalcedony breccia numeron late lensy veinlets gypsum? Locally vuggy goe	us • thit e .	301
24E	52781	Vuggy breccia of strongly silicified coarse 3-3 Fragments.	5 cm -	25\$
26	52782	Coarse banded milky to pinkish chalcedony. Rep sample	•	405
27	52783	Fine qt: chalcedony veins/stockwork sheared par rock?	rent •	405

_

PW No.	ECO.T. No.	DESCRIPTION	ANALYZE FOR	SAMPLE SIZE % of bag
17	52765	Weak to mod clay alt local 1-2 cm milky qtz vein, chalcedonic?	Au geochem ICP	151
18	52766	Strongly banded to sheared grey qtz + chalce- donic qtz.	•	201
19	52767	Brecciated milky qtz + some barite strongly sil wall rocks - fm grained sil + barite.	•	40%

-

. .

MONTE PROJECT

.

PROSPECTING SAMPLES BY P.W.

PW Samp ‡	ECO SAMP #	DESCRIPTION		SAMPLE SIZE % of Bag	
36A	49951	Híghly silic. breccia, very vuggy. Límonitic. Mílky + grey gtz. Minor carb.	Au + ICP	25	
36B	49952	As for 49952 Tr Py	ft	25	
37A	49953	Bleached and oxidized tuff. Tr py. Calc- sil veinlets rare. Limonitic. Minor mil. qtz.	ŦŦ	20	
37B	49954	As for 49953. Extremely silic more milky qtz.	71	25	
37C	49955	As for 49953 Tr py.	59	20	
37D	49956	Highly silic tuff. Much milky to grey chalced, and fractured gtz veins. Limonitic. Local Bx. Tr py. + Hematite.	79	25	
38	49957	As for 49956 but extremely vuggy and highly limonitic. Much clay alt'n.	FT	25	
39	49958	As for 49957 but extremely hematite rich also	o "	25	
31 A	49959	Highly silic. and Bx tuff. Vuggy and limon- itic, much milky chalced & fract qtz veins. Clay alt'n. Dolom?	79 97	20	
31B	49960	Extremely vuggy, milky qtz healed tuff Bx. Limonitic. Minor dolom.	11	25	
32	49961	Dolomite, Tr py. Limonitic	F \$	20	
33A	49962	Silic. & Bx tuff. Milky qtz. Limonitic Fract'd dolom. veins.	Ŧŧ	25	
33B	49963	Silic tuff. Milky & grey qtz fract. veining Dołomite. Limonitic Tr py.	77	25	
34	49964	Mainly dolomitic veining. Limonitic + slightly vuggy. Tr py. & clay alt'n.	71	20	
35 A	49965	Highly silic tuff. Fract milky qtz. veining Limonitic. Tr py carb.	ş t	20	
35B	49966	Bleached & silic tuff. Fract'd milky qtz veins. Carb veinlets. Limonitic.	82	25	
35C	49967	As for 49966 - dolom?	11	20	

SAMPLE NO.	E DESCRIPTION ANA F		SAMPLE SIZE % of Bag
49854	Bleach + oxid tuff w local milky qtz veining + local Bx. Limonitic Tr - 4% py locally. Anastomosing veinlets to 20%.	Au+ICP	25
49855	As for 854. 2-4% py. Mainly bleached, greenish tuff + local silic.	fI	15
49856	Oxid/bleach tuff with dolomitic veining. V. limonitic limonitic. Clay alt'n. Tr py.	11	25
49857	Oxid. + bleach tuff + 30% milky qtz in veins - often fract'd. Dolomitic locally limonitic.	11	30
49858	Highly oxid, purplish andes/tuff. highly fract + local Bx. Silic zones with minor milky qtz. veining + frags of milky qtz + chalced. Locally vuggy. Limonitic. Rose chalced	y " of	25
49859	As for 858. More Bx. + calc + limonite	f#	30
49860	Oxid. tuff + minor milky qtz Bx + crystalline carb. Limonite + clay alt'n.	ft	20
49861	Purp, oxid tuff + mín milk qtz veins + much Bx dolom. + tuff clasts. Clay alt'n. Hemat. Limon. carb.	77	20
49862	Purp, oxid. tuff + very vuggy qtz + dolom veins. Limonite Barite?	28	25
49863	Crumbly, oxid, sheared tuffs. Minor qtz + carb fract'd veinlets. Limonitic.	tr	20
49864	As for 49858	18	20
49865	Limonitic dolomite vein + 40% milky qtz. Ankerite? Barite?	f#	20
49866	Sheared, oxid, purplish tuffs. Bx. locally, carb veinle fract'd. Minor milky qtz. Limonitic.	ets "	20
49867	Sheared, bleach + oxid tuff in 20% milky qtz-fract'd veins. Limonitic.	11	20
49868	V. fract'd, oxid, purplish tuff in anastomosing carb. veinlet stockwork. Limon. Vuggy. <5% fract'd milky qtz	57 •	20
49869	Bleach, oxid + chloritic, limonitic tuff. fract'd veini in carb, dol + qtz. Hemat. Tr py.	ng "	30
49870	As for 49869 but local shearing.	#	25

SAMPLE NO.	DESCRIPTION	ANALYZED FOR	SAMPLE SIZE % of Bag
49871	Shear, crumb. oxid tuff. Veining with carb and/or dolom. and/or milky qtz. Hemat specks. Limon + Tr py.	Au+ICP	25
49872	Footwall of 49872 – silic tuff with 5-8% py – bleached slightly.	11	10
49873	Bx + oxid, límonite tuff. Sheared + vuggy. Carb vein- lets + minor dol. + milk qtz + magnesite?	17	25
49874	Bleach, oxid, limonite, tuff. Anastomos. dol veinlets. Local Bx + 10% milky qtz + minor grey qtz in fract'd veins. Minor chalced. locally vuggy. Clay alt'n. Barite	" ?	20
49875	Milky chalced vein-fract'd, 5 cm wide. Local Bx. Limoniti Tr - 2% py.	.c "	20
49876	Purple, oxid, tuff, limonitic shearing. Bx + extreme cla alt'n. Hemat specks. Local fract'd milky qtz + chalced.	LY "	15
49877	Extremely bleached + clay alt'd, oxid tuff pyritic - 5% Limonitic veinlets with fract'd minor chalced. yellow ppt coating.	**	25
49878	Sheared purple, oxid tuff with intense calc-sil veinlets milky qtz. Hemat. Salty ppt.	+ **	25
49879	Oxid, fract'd tuff - limonitic + locally Bx. 20% milky qtz. Minor dolom + chalced in fract'd veinlets. Locally vuggy.	**	30
49880	V. fract, limonitic, sheared, oxid tuff, crumbly locally Minor fract'd dolom, milky qtz + chalced veinlets.	17	25
\$9881	Bleach oxid, tuff-locally crumbly. Limonitic shearing. Same descrip as 49880 - 15% veins.	**	25
19882	V. fract'd, oxid + limonitic tuff. Vuggy veining locally - fract'd milk chalced frags. Minor milk qtz + dolom.	, 17	20
19883	Sheared, purplish, oxid, tuff. Clay alt'n. Milky chalced healed Bx common - Lg frags. Tr - 2% py.	1 11	20
49884	Pod of pyritic, limonitic, oxid tuffs 1/2m ² . Same as PW #28B 3 m East. Some grey chalced healed Bx. –10% py + much clay alt'n.	n	15
49885	V. fract'd sheared limonitic, oxid tuff. 5 - 10% milky chalced frags.	18	20

SAMPLE NO.	DESCRIPTION	ANALYZED FOR	SAMPLE SIZE % Of Bag
49886	V. fract'd sheared, limonitic, oxid tuff. 10% fract'd. milky qtz + dolom veins.	Au+ICP	20
49887	As for 49880 but 15-20% milky chalced. Local Bx + vuggy.	**	25
49888	Crumbly shear in 5% fract'd chalced veinlets (milky) Minor carb. Extremely limonitic.	"	25
49889	Dolomític shear. Highly fract'd - within purplish, bleach, oxíd. tuff.	**	25
49890	Highly fract, Bx, limonitic shear zones with clay alt'n and 10% fract'd milky gtz + chalced.	**	25
49891	As for #49890 but 20% milky qtz and more Bx.	79	25
49892	Highly fract'd, purplish, oxid, tuff in milky and chalced healed Bx. Tr - 2% py.	11	30
49893	Oxid, crumbly, limonitic shear zone. Clay alt'n and minor hemat. Fract'd milky qtz veins.	ŦŦ	25
49894	Oxid, bleach, limonitic tuff with clay alt'n. 15% fract'd milky qtz vein and minor dolom.	27	20
49895	Oxid, bleach, tuff with shearing + limon fracts. Barite? Fract'd milky chalced + dolom veins.	*1	15
49896	Bleach, oxid tuff with highly choritic bands. Local milky + grey chalced healed Bx. Limonitic. Clay alt'n + minor dolomite. Locally vuggy. Tr - 1% py.	IJ	20
49897	Crumbly, limonitic, bleach, + oxid shear zone. 10% fract'd milky qtz veining. Locally Bx + minor carb. + dolom.	F1	30
49898	Sheared, purplish, oxid, bleach tuff and purple chal- cedony Bx. 15% milky chalced + dolom veining. Limon- itic. Minor hemat + clay alt'n. Locally vuggy.	17	20
49899	As for 49880. Locally vuggy.	*1	25
49900	Sheared, purpl. oxid. bleach. tuff with dolom veining Limonitic. Local Bx + clay alt'n. 2% fract'd milky chalced.	ŦŦ	25
49901	Limonitic, dolomite rich shear zone. Minor miłky chalced + gtz veining. Locally vuggy.	**	30

SAMPLE NO.	DESCRIPTION		SAMPLE SIZE % of Bag
49902	Same as for 49898	Au+ICP	25
49903	Sheared and crumbly tuffs with fract'd + milky qtz healed Bx. Limon. Hemat. Local Vug + dol.	ŦŦ	20
49904	Sheared, limonitic, purple, oxid + bleach tuff. Highly fract'd to Bx with anastomos dolom veinlets.	**	25
52601	Milky + grey qtz + dolomíte breccia. Vuggy, limonitic Qtz + chalced veinlets	77	25
52602	As for 52601 - dolomitic.	21	25
52603	Oxidized, locally silic + brecc limonitic tuff. Chalced + dolomite veinlets. Minor hematite.	**	20
52604	Oxidized tuff. Chloritic + locally highly silic + hematitic. Minor brecc.	17	20
52605	As for 52604 but milky quartz veining and vuggy text. Dolom.	\$9	25
52606	As for 52601 - darker chalced in matrix.	Ħ	30
52607	Vuggy veinlets of milky qtz and dolomite + grey chalced in oxidiz, chloritic tuff. Minor hematite. Limonite	**	30
52608	Chloritic, Hb porph tuff in contact with 52607. Shear contact. Epid.	42	25
52609	5 cm zone in massive tuffs, of milky to yellowish qtz + dolomite vein. Bx. locally. Limonitic bands 1 mm thick. Carbonate. Tr py.	11	10
52610	Chloritic, epidote enriched tuff with minor qtz-carb veinlets. Tr - 4% py.	38	20
52611	Andesitic dyke with 5-8% dissem py + calcite blebs. Hb porph.	15	10
52612	5 cm highly silic zone of veins - milky qtz + dolom + greyish qtz. Limonitic. Veins anastomosing. Within highly fract + oxidized zone.	**	20
52613	Highly fract + oxid tuff with anastomosing veinlets of milky qtz + chalced.	9 7	25
52614	Highly fract., oxid + bleached chloritic tuff. 1-5% py	FT	25

-

DESCRIPTION	ANALYZED FOR	SAMPLE SIZE % of Bag
As for 52611	ER	10
F-spar porphyry dioritic dyke. 1-5% Py locally	79	20
Highly oxid + bleached tuff with milky qtz + carb. veinlets. Minor greyish chalced + local brecc. Highly fract. Trace py. Clay alt'n.	\$¥	25
Oxidized limonitic, bleached + brecciated tuff. Minor milky qtz., carb + chalced. veinlets. Locally slightly vuggy. Clay alt'n. Dolomitic.	18	25
Highly fract + limonitic, gossanous tuff. Chloritic Locally bleached and brecciated. Tr - 8% py locally.	ŦŦ	30
As for 52619	27	30
	DESCRIPTION As for 52611 F-spar porphyry dioritic dyke. 1-5% Py locally Highly oxid + bleached tuff with milky qtz + carb. veinlets. Minor greyish chalced + local brecc. Highly fract. Trace py. Clay alt'n. Oxidized limonitic, bleached + brecciated tuff. Minor milky qtz., carb + chalced. veinlets. Locally slightly vuggy. Clay alt'n. Dolomitic. Highly fract + limonitic, gossanous tuff. Chloritic Locally bleached and brecciated. Tr - 8% py locally. As for 52619	DESCRIPTIONANALYZED FORAs for 52611"F-spar porphyry dioritic dyke. 1-5% Py locally"Highly oxid + bleached tuff with milky qtz + carb. veinlets. Minor greyish chalced + local brecc. Highly fract. Trace py. Clay alt'n."Oxidized limonitic, bleached + brecciated tuff. Minor milky qtz., carb + chalced. veinlets. Locally slightly vuggy. Clay alt'n. Dolomitic."Highly fract + limonitic, gossanous tuff. Chloritic Locally bleached and brecciated. Tr - 8% py locally."

	MONTE PROJECT	MAPPING SAMPLES	SAMPLED	BY P.W. +	Ι.Η.
SAMPLE NO.		DESCRIPTION		ANALYZED FOR:	SAMPLE SIZE % of Bag
52621	As for 52619	· · ·		Au+ ICP	30
52622	As for 52619 but mode: 8% py.	rately silic. and massive.		17	20
526 23	Milky qtz + calcite ve Shearing, Limontic, Cl	einlets. Locally Bx (brec lay alt'n.	c)	ŧŦ	25
52624	As for 52623 Tr py.			F4	25
52625	Fresh green Hb porph t finely dissem. Epid.	tuff. Choritic. Py 5-8%		87	15
52626	Oxidized, limonitic sh qtz + carb + calced. v Locally hematitic alor	near zone. Local brecc. : veins. Tr py. clay alt'n. ng fract. Dolomite.	Milky	17	20
52627	As for 52626. More qt some grey. Dolomite.	z and chalced - mostly mi	lky,	11	20
52628	As for 52626. Slightl veinlets. Much clay a	y vuggy – some anastomosi lt'n.	ng	11	20
52629	As for 52628 + dolomit	e.		73	20
52630	Milky quartz rich shea + greyish chalced. Tr. gypsum? Blocky fractu	r zone. Limonitic Minor py. Minor clay alt'n. ring to highly fract. loc.	carb. Tr ally.	17	25
52631	Oxid. limonitic tuff w milky qtz - local bred	with numerous small shears c. Tr py. Clay alt'n.	with	**	20
52632	Highly silic, limonite chalced. Local brecc.	e zone. Milky + grey qtz. + hematite.	+	11	25
52633	As for 52632 Tr py.			ri	20
52634	Two milky qtz + grey q Limonitic. Minor dolom	tz - 5 cm veins in shears a + calc.		17	25
52635	Silica flooded shear z Carb + grey chalced. Locally vuggy. Minor	one – much milky gtz. Min Limonitic + hematite frac dolom?	nor t.	я	25
52636	Silica enriched shear. veins. Local brecc. o veinlets.	Limonitic milky + grey o xidized tuff frags. + cabo	itz onate	Ħ	25

SAMPLE NO.	DESCRIPTION	ANALYZED FOR	SAMPLE SIZE % of Bag
52637	Highly fract. shear + milky qtz. veins. Vuggy + limonitic. Local Bx and clay alt'n.	Au+ICP	25
52638	7 cm limonitic milky qtz. vein.	11	15
52639	Heavily oxid tuff + milky qtz. veining. Shearing	T9	
52640	Highly silic.+ Bx shear. Milky + grey qtz. Minor chalced veinlets. Vuggy, limonitic. Clay alt'n.	F T	20
52641	Oxid. tuff + milky qtz veining. Large frags white chalced (to 10 cm). Limonitic. Local Bx.	11	25
52642	Milky qtz healed Bx. Oxidiz. tuff frags to 1 cm. Límonitic + Dolomitic; carb + vuggy.	¥8	25
52643	Milky qtz healed Bx + veinlets. Dolomite? Minor grey qtz + carb. veins fractured. Surrounding tuffs massive + blocky fract.	71	20
52644	Oxid, chlor + v fract. tuff + 10% milky, limonitic qtz veining. Local grey qtz + Bx. Poss Barite?	34	25
52645	Oxid + silic tuff + milky + grey qtz + chalced veins. Limonitic. Tr - 1% py. Clay alt'n. Locally vuggy.	**	20
52646	Milky + grey qtz veins in highly fract, oxid. tuff. Hematite. Local carb + poss dolom. Limon + Tr py.	1 1 ·	20
52647	Sheared + v. fract,. oxid tuff + milky qtz. V. limon- itic 1 - 5% py. Milky + grey qtz. Local chalced vein- lets. Calcite blebs. Vuggy locally. clay alt'n.	**	25
52648	Intensely oxidized + fract, hematitic tuff. Crumbly intersecting milky qtz veinlets.	Tŧ	25
52649	Oxid. tuffs + milky to orangy limonitic qtz veining. Chalced veinlets. Hemat + clay alt'n.	11	25
52650	Dolom. healed Bx. oxid tuff + minor chalced frags. Limonitic. Hematitic.	*1	20
49851	Same as 52647 Tr - 1% py.	89	20
49852	Milky qtz healed Bx. Locally vuggy. Limonitic. Minor grey qtz. Tr Py.	**	25
49853	As for 852 - 25% limonitic milky qtz veins.	f 1	30

·

APPENDIX "D"

CONDENSED GEOLOGICAL STRUCTURE DATA FROM FIELD NOTES

155% 156% / 54% NE 52601-3; EP1#11 9c 9690 ppb(#601) 300/82°H " 9c 1160 (#11) 155% 020/82°E " 9c 1160 (#11) 155% 0200/82°E 025%->195% 52604,5;EP1#12; 9a 215 ppb (#602); 155% 0200/82°E 025%->195% 52607,08;EP1#17 9c 9c 140°/85%W 08%>194% 52607,08;EP1#17 9c 9d 150°/64*SW 045/67%NW 52607,08;EP1#17 9c 1330(#368); 153% 045/67%NW 52607,08;EP1#17 9c 1330(#368); 153% 045/67%NW 52607,08;EP1#17 9c 1330(#368); 153% 045/67%NW 52617,18;#36A+B 9d 130(#368); 153% 045/67%NW 526217,18;#36A+B 9d 130(#368); 153% 103%/85%N #17 9c 1260 ppb 102%/45%S 102%/45%S 52623 9a 102%/220175(#29) 135%/71%SN 52624 <	SHEAR	VEIN	SLICKENSIDES	ASSOC. SAMPLES	ALT'N TYPE	AU (25+ppb)
0.30∞/82°W " 9c 1160 (#11) 156∞/70°NE " 9c 1400 ppb (#602); 55" (#603) 015∞/48°E 020°/62°E 25∞>195∞ 52604,5;EP1#11; 9a 215 ppb (#604) 155∞ 020°/62°E " " 9c 140°/60° 140°/80°SW 08°>194° 52607,08;EP1#17 9c 9d 150°/64°SW 04°>194° 52607,08;EP1#17 9c 1330(#36B) 153°/74°SW 103°/85°NE #238 9a 1330(#36B) 153°/74°SW #23C 9a 1330(#36B) 1330(#36B) 175°/35°W #18 9c 103°/45°NE #23C 100°/45°NE #23C 9a 102°/85°S 110°/45°NE 102°/85°S 102°/85°S #18 9c 102°/85°S 102°/85°S 102°/85°S 52624 9a 102°/85°S 135°/71°SW 135°/71°SW 52627 9c 150° ppb 135°/71°SW 133°/74°SW 52627 9c 150° ppb 135°/71°SW 133°/74°SW 52627 9c 150° ppb 135°/74°SW 135°/74°SW 52637 9c 100° ppb (#36); 135°/74°SW 135°/74°SW <t< td=""><td>1550</td><td>156°/54° NE</td><td></td><td>52601-3;EP1#11</td><td>9c</td><td>9890 ppb(#601)</td></t<>	1550	156°/54° NE		52601-3;EP1#11	9c	9890 ppb(#601)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	030°/82°W		**		9c	1160 (#11)
015°/48°E 000°/65°E 025°>195° 52604,5;EP1\$12; 9a 215 ppb (\$604) 155° 020°/82°E EP1\$15A;52506 9c 20° 140°/85°W 08°>194° " 9c 215 ppb (\$604) 140°/85°W 04°>194° " 9c 130(\$36A); 150°/64°SW 045'67°NW 52607,08;EP1\$17 9c 130(\$36B) 153°/74°SW \$2509 9a 130(\$36B) 130(\$36B) 153°/74°SW \$223C 9a 130(\$36B) 130(\$36B) 100°/55°SW \$2507,08;EP1\$17 9c 130(\$36B) 130(\$36B) 153°/74°SW \$2507,18;\$36A+B 9d 180(\$36A); 130(\$\$26B) 110°/45°NE \$2527 9a 220 ppb 135°/71°SW 135°/71°SW 52626 9c 50 ppb 135°/71°SW 135°/71°SW 52627 9c 150(\$28)75(\$\$28) 9a 502\$10 ppb 135°/71°SW 135°/71°SW 52630 9c 510 ppb 125° 135°/71°SW 135°/74°SW <t< td=""><td></td><td>156º/70ºNE</td><td></td><td>59</td><td>9c</td><td>140 ppb (#602);</td></t<>		156º/70ºNE		59	9c	140 ppb (#602);
013× /48*E 000*/53*E 020*/53*E 020	015 - / 40	0000 / 650 5				55 " (#603)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	012°/48°E	000°/65°E	0250>1950	52504,5;EP1#12;	9a	215 ppb (#604)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	100° /050M	020°/82°E		EPI#15A;52606	90	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140*/05**		090	E2607 00.801#17	90	
140°/80° SW 52609 9a 150°/64° SW 045′ 67° NW 52617, 18; #36A+B 9d 130(#36A); 153°/74° SW 9d 1330(#36B) 9d 1330(#36B) 153°/74° SW 9d 1330(#36B) 9d 1330(#36B) 177°/35°W #23C 9a 175°/85° SM 145°/58° SM #18 9c 100°/32° SM 108°/32° SM #117 9c 9d 135°/1° SM 52623 9a 155° /18° SM 110°/45° NE 52624 9a 175°/85° SM 125°/71° SM 52627 9c 1260 ppb 145° /17° SM 52627 9c 1260 ppb 133°/74° SM 52630 9c 510 ppb 135° /17° SM 52634 9b 45 ppb 125°/55° 133°/74° SM 52633 9c 245 ppb 135° /18° SM 52631 9c 1000° ppb(#36); 285(#16) 285(#16) 125° /48° SM 52637 9a 050° #45° 285 (#16) 285 (#16) 125° /48° SM 52637			0.49 = -21.940	52607,08;EP1#17	90	
150°/64° SW 045°/67° NW 52003 94 180(#36A); 153°/74° SW 9d 1330(#36B) 9d 153°/74° SW #23B 9a 220 ppb 145°/58° SW #18 9c 220 ppb 145°/58° SW #18 9c 220 ppb 145°/58° SW 108°/22° SW #17 9c 100°/45° NE 100°/45° NE 52623 9a 102°/85° S 102°/85° S 52624 9a 15°/76 SW 175°/85° S 52626 9c 50 ppb 135°/71° SW 135°/71° SW 52620 9c 350(#28)175(#29) 13°/74° SW 133°/74° SW 52630 9c 510 ppb 10°/75 SW 133°/74° SW 52630 9c 510 ppb 10°/75 SW 133°/74° SW 52633 9c 245 ppb 136°/80° SW #19 9a 9a 9a 136°/80° SW #19 9a 9a 9a 136°/80° SW 52637 9a 40 ppb 9b 138°/46° SW 16° ->152° 52640 9c <td></td> <td>1400/800 50</td> <td>04/194-</td> <td>52609</td> <td>90</td> <td></td>		1400/800 50	04/194-	52609	90	
100 / 54 50 / 54 50 / 50 / 50 / 50 / 50 /	1500/640 SW	045/679 NW		52609 52617 18·#368+8	્યુ	190/#363\.
153°/74° SW 9d 103°/85° NE #23C 9a 177°/35°W #23B 9a 220 ppb 145°/58° SW 145°/58° SW #18 9c 100°/45° NE 108°/32° SW #17 9c 100°/45° NE 108°/32° SW #17 9c 100°/45° NE 102°/85° S 25623 9a 10°/45° NE 102°/85° S 52624 9a 175°/85° W 152°/185° W 52626 9c 50 ppb 135°/1° SW 155°/71° SW 52627 9c 1260 ppb 135°/1° SW 52627 9c 350(#28)175(#29) 135°/1° SW 52630 9c 510 ppb 100°/5° S 52634 9b 45 ppb 13°/74° SW 52637 9c 510 ppb 13°/74° SW 52635 9c 245 ppb 13°/74° SW 52637 9a 9a 00°/55° SW #21 9b 140°/75° SE 52635 13°/74° SW 52637 9a 255(#16) 13°/74° SW 52637 9a 25(#16) 13°/74° SW 52637 9a 25(#16) 13°/74° SW 52637 9a 25 13°/74° SS	100 / 04 04	045.07.14		52017,10,#50A/B	34	1330(#36B)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	153°/74°SW				9d	
177°/35°W #23B 9a 220 ppb 145°/58°SW #18 9c 108°/32°SW 108°/32°SW #17 9c 110°/45°NE 52623 9a 102°/35°S 102°/65°S 52624 9a 175°/85°W 175°/85°W 52626 9c 50 ppb 135°/71°SW 52627 9c 1260 ppb 145°/78°W 52628,29 9c 350(#28)175(#29) 135°/71°SW 52630 9c 510 ppb 100°/45°S 52634 9b 45 ppb 125°/75°SW #21 9b 45° ppb 125°/55°SW #21 9a 285(#16) 136°/80°SW #21 9b 40° pb 136°/80°S 136°/80°SW #2635;#16 9b 1000 ppb(#36); 122°/68°SW 52637 9a 285(#16) 182°/68°SW 52637 9a 25 ppb 148°/85°S 18°/35°S 52638 9a 25 ppb 128°/68°SW 52639 9a 15 ppb 52642 138°/84°SW 16°>		103º/85ºNE		#23C	9a	
145°/58°SW #18 9c 108º/32°SW 108°/32°SW #17 9c 10°/45°NE 52623 9a 10°/45°NE 52624 9a 175°/85°N 102°/85°S 52624 9a 175°/85°N 52626 9c 50 ppb 135°/71°SW 52627 9c 1260 ppb 145°/77°SW 52628,29 9c 350(#28)175(#29 10°/45°NE 52630 9c 510 ppb 10°/45°S 123°/74°SW 52630 9c 510 ppb 10°/25°S 52634 9b 45 ppb 125°/55°SW #21 9b 145°/78°S 133°/74°SW #21 9b 9a 000°/25°S 52635 9c 245 ppb 136°/80°SW #19 9a 0280(#16) 285(#16) 9b 10000 ppb(#36); 152°/168°SW \$2637 9a 40 ppb 285(#16) 9a 152°/68°SN 52637 9a 25 ppb 285(#16) 9a 080°/65°N 52637 9a 40 ppb 135°/784°SN 15° ppb	177º/35º₩			#23B	9a	220 ppb
108°/32° SW 108°/32° SW #17 9c 110°/45° NE 52623 9a 102°/85° S 102°/85° S 52624 9a 175°/85° W 175°/85° W 52626 9c 50 ppb 135°/71° SW 52627 9c 1260 ppb 145°/77° SW 52628,29 9c 510 ppb 135°/71° SW 52630 9c 510 ppb 100°/25° S 52634 9b 45 ppb 125°/55° SW #21 9b 45 ppb 136°/74° SW 52635 9c 245 ppb 136°/80° SW #21 9a 083°/36° S 9c 136°/80° SW 52635 9c 245 ppb 1000 ppb(#36); 285(#16) 9a 1000 ppb(#36); 285(#16) 285(#16) 152°/68° SW 52637 9a 40 ppb 18°/35° S 52638 9a 25 ppb 135°/84° SW 135°/84° SW 52637 9a 415 ppb 52°/84° SW 52°/84° S	145°/58°SW	145°/58°SW		#18	9c	
110°/45°NE 52623 9a 102°/45°NE 102°/45°NE 52624 9a 175°/85°W 175°/85°W 52626 9c 50 ppb 135°/71°SW 52627 9c 1260 ppb 135°/71°SW 52628,29 9c 350(#28)175(#29) 133°/74°SW 52630 9c 510 ppb 100°/25°S 52634 9b 45 ppb 125°/55°SW #21 9a 136°/65°S 52635 9c 245 ppb 136°/80°SW #19 9a 083°/36°S 12635 9c 245 ppb 136°/80°SW 52635 9c 245 ppb 136°/80°SW 52637 9a 9a 152°/68°SW 52637 9a 40 ppb 18°/35°S 52638 9a 25 ppb 148°/83°NE 9a 35°/84°SW 52637 9a 152°/84°SW 15°>152° 52640 9c 735 ppb 062°/75°SE 52642 9a 9a 152°/84°SW 16°>152° 152°/84°SW 152°/84°SW	108º/32ºSW	108º/32ºSW		#17	9c	
102°/85°S 102°/85°S 52624 9a 175°/85°W 175°/85°W 52626 9c 50 ppb 135°/71°SW 52627 9c 1260 ppb 145°/77°SW 52628,29 9c 350(#28)175(#29 133°/74°SW 133°/74°SW 52630 9c 510 ppb 100°/25°S 52634 9b 45 ppb 140°/65°SW #121 9b 140°/65°SW #19 9a 083°/36°S 52635 9c 245 ppb 136°/80°SW 52636;#16 9b 1000 ppb(#36); 285(#16) 152°/68°SW 9a 080°/65°N 52637 9a 40 ppb 18°/35°S 52638 9a 25 ppb 18°/35°S 52638 9a 25 ppb 135°/84°SW 52637 9a 40 ppb 135°/84°SW 52637 9a 40 ppb 135°/84°SW 52639 9a 415 ppb 152°/84°SW 152°/84°SW 16°>152° 52640 9c 735 ppb 062°/75°SE 062°/75°SE 52642 9a 000°/20°E 52641 9c 30 ppb 152°/84°SW 152°/84°SW 16°>152° 52640 9c 735 ppb 062°/75°SE 062°/75°SE 52643 9b 170°/64°SW 170°/64°SW 52643 9b 170°/64°SW 170°/64°SW 52643 9b 170°/64°SW 170°/64°SW 52643 9b 170°/64°SW 140°/50°SW 40°/50°SW 9a 140°/50°SW 140°/50°SW 52645 9c 230 ppb 160°/60°SW 140°/50°SW 52645 9c 1450 (#647); 85°S	110°/45°NE	110º/45ºNE		52623	9a	
1/5°/85°W 1/5°/85°W 52526 9c 50 ppb 135°/71°SW 135°/71°SW 52627 9c 1260 ppb 145°/77°SW 52630 9c 350(#28)175(#29) 133°/74°SW 133°/74°SW 52630 9c 510 ppb 100°/25°S 52634 9b 45 ppb 125°/55°SW #21 9c 350(#28)75(#29) 136°/80°SW #21 9b 136°/80°SW #21 9b 136°/80°SW 52635 9c 245 ppb 136°/80°SW 52637 9a 2000 ppb(#36); 152°/68°SW 52637 9a 25 ppb 148°/80°NE 9a 25 ppb 245 ppb 135°/84°SW 52637 9a 40 ppb 152°/84°SW 150°-75°S 52638 9a 25 ppb 152°/84°SW 150°-75°S 52642 9a 000°/20°E 30 ppb 162°/63°SW 16°>152° 52642 9a 30 ppb 162°/63°SW 9a 160°/64°SW 170°/64°SW 52643 9b 9a 140°/50	102º/85ºS	1020/850\$		52624	9a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/5º/85ºW	1/5º/85ºW		52626	90	50 ppb
1430/74°SW 33°/74°SW 5263,29 9c 330(#28)1/3(#29) 133°/74°SW 133°/74°SW 52630 9c 510 ppb 100°/25°S 52634 9b 45 ppb 125°/55°SW #21 9a 083°/65°SW 52635 9c 245 ppb 136°/80°SW 52637 9a 000 ppb(#36); 152°/68°SW 9a 285(#16) 285(#16) 152°/68°SW 9a 25 ppb 285(#16) 152°/68°SW 52637 9a 40 ppb 18°/36°S 118°/35°S 52638 9a 25 ppb 138°/84°SW 52639 9a 415 ppb 52642 135°/84°SW 135°/84°SW 16°>152° 52640 9c 735 ppb 062°/75°SE 062°/75°SE 52641 9c 30 ppb 162°/63°SW 16°>152° 52642 9a 000°/20°E 52641 9c 30 ppb 9a 16°- 9a 16°- 162°/63°SW 162°/63°SW 52643 9b 140°/50°SW 9a 16°- 16°- 16°-	135°//1°5₩	1320/110SW		52627	9C	1260 ppb
133*/14*SN 52630 96 510 ppb 100*/25*S 52634 9b 45 ppb 125*/55*SW #21 9b 140*/65*SW #19 9a 083*/36*S 52635 9c 245 ppb 135*/74*SW \$2635 9c 245 ppb 136*/80*SW \$2635 9c 245 ppb 136*/80*SW \$2637 9a 40 ppb 18*/36*S 118*/35*S 52638 9a 25 ppb 148*/83*NE 9a 25 ppb 9a 35*/84*SW 135*/84*SW 9a 152*/84*SW 135*/84*SW 16*>152* 52640 9c 735 ppb 062*/75*SE 062*/75*SE 52642 9a 30 ppb 162*/63*SW 16*>152* 52641 9c 30 ppb 162*/63*SW 16*>152* 52642 9a 30 ppb 140*/85*SW 16*>152* 52644 9b 140*/65*SW 9a 100*/65*SW 16*/65*SW 52643 9b 150 ppb 160*/60*SW<	1220/7/054	1220 /740 551		52628,29	9C	350(#28)1/5(#29)
125°/25° SW #21 9b 43 ppb 125°/55° SW #21 9b 140°/55° SW #19 9a 083°/36° S 52635 9c 245 ppb 136°/80° SW 52635 9c 245 ppb 136°/80° SW 52637 9a 40 ppb 152°/68° SW 52637 9a 40 ppb 18°/36° S 118°/35° S 52638 9a 25 ppb 135°/84° SW 135°/84° SW 52639 9a 415 ppb 135°/84° SW 152°/84° SW 16°>152° 52640 9c 735 ppb 062°/75° SE 062°/75° SE 52642 9a 000°/20° E 30 ppb 162°/63° SW 162°/63° SW 52643 9b 140°/50° SW 160°/64° SW 52644 9b 140°/55° SW 160°/60° SW 52645 9c 230 ppb 160°/60° SW 160°/60° SW 52645 9c 230 ppb 160°/65° SW 52645 9c 230 ppb 155 ppb 165°/05° SW 1250 ppb 103°/65° - 103°/65° S 52645 9c <t< td=""><td>1000/2508</td><td>1000/14°0M</td><td></td><td>52630</td><td>90</td><td>AF ab</td></t<>	1000/2508	1000/14°0M		52630	90	AF ab
140°/55° SW #19 9a 083°/56° S 52635 9c 245 ppb 136°/80° SW 52636;#16 9b 1000 ppb(#36); 285(#16) 9a 285(#16) 285(#16) 152°/68° SW 9a 9a 285(#16) 152°/68° SW 52637 9a 40 ppb 18°/36° S 118°/35° S 52638 9a 25 ppb 148°/83° NE 9a 35°/84° SW 9a 35°/84° SW 9a 135°/84° SW 135°/84° SW 52639 9a 415 ppb 52°/84° SW 15°/75° SE 52642 9a 000°/20° E 000°/20° E 52641 9c 30 ppb 9a 162°/63° SW 162°/63° SW 52643 9b 140°/85° SW 140°/50° SW 160°/60° SW 52644 9b 140°/85° SW 140°/50° SW 140°/50° SW 52645 9c 230 ppb 160°/60° SW 160°/60° SW 52645 9c 230 ppb 165°/05° SW 413 9b 415 ppb 52646 9b 1250 ppb	100-725-3			401	9D 95	45 PPD
110 100 113 1	140º/65ºSW			# 2 L	95	
136°/80° SW 52635;#16 9b 1000 ppb(#36); 152°/68° SW 9a 080°/65° N 52637 9a 40 ppb 18°/36° S 118°/35° S 52638 9a 25 ppb 148°/83° NE 9a 9a 15 ppb 15 ppb 135°/84° SW 135°/84° SW 52639 9a 415 ppb 152°/64° SW 152°/75° SE 52640 9c 735 ppb 062°/75° SE 062°/75° SE 52641 9c 30 ppb 162°/63° SW 162°/63° SW 52643 9b 100° pb 140°/85° SW 52644 9b 9a 10° pb 140°/85° SW 162°/63° SW 52643 9b 9a 140°/85° SW 9a 9a 9a 118° 50° SW 140°/50° SW 160°/60° SW 52645 9c 230 ppb 165°/05° SW 160°/60° SW 52645 9c 230 ppb 165°/05° SW #13 9b 415 ppb 52646 9b 1250 ppb 103°/65° - 103°/65° S 52647,49851 9f. (210 (#647)); <	0830/3605			52635	9a 9r	245 ppb
152º / 68º SM 9a 080º / 65º N 52637 9a 080º / 65º N 52637 9a 18º / 36º S 118º / 35º S 52638 9a 135º / 84º SM 135º / 84º SM 52639 9a 135º / 84º SM 152º / 84º SM 52639 9a 135º / 84º SM 152º / 84º SM 16º>152º 52640 9c 735 ppb 062º / 75º SE 062º / 75º SE 52642 9a 000° / 20º E 30 ppb 162º / 63º SM 162º / 63º SM 52643 9b 170° / 64º SM 9a 140º / 85º SM 162º / 63º SM 52644 9b 140º / 50º SM 9a 140º / 50º SM 160º / 60º SM 52645 9c 230 ppb 165º / 05º SM 160º / 60º SM 52645 9c 230 ppb 165º / 05º SM 160º / 60º SM 52645 9c 230 ppb 103º / 65º S 52647,49851 9f,c 1450 (#647); 85º S 52647,49851 9f,c 1450 (#647);	136º/80ºSW			52636+#16	95 95	1000 ppb(#36)/
152°/68° SW 9a 9a 080°/65° N 52637 9a 40 ppb 118°/36° S 118°/35° S 52638 9a 25 ppb 148°/83° NE 9a 9a 9a 9a 135°/84° SW 135°/84° SW 52639 9a 415 ppb 152°/84° SW 135°/84° SW 16°>152° 52640 9c 735 ppb 062°/75° SE 062°/75° SE 52642 9a 00°/20° E 52641 9c 30 ppb 162°/63° SW 162°/63° SW 52643 9b 170°/64° SW 52644 9b 140°/85° SW 162°/63° SW 52644 9b 9a 140°/50° SW 9a 140°/50° SW 160°/64° SW 52645 9c 230 ppb 140°/50° SW 9a 160°/60° SW 140°/50° SW 52645 9c 230 ppb 145° ppb 52646 9b 1250 ppb 165°/05° SW 145° ppb 52646 9b 1250 ppb 103°/65° S 52647,49851 9f,c 145°0 (#647); 4360 (#851)				02000,#10	,,,	285(#16)
080°/65°N 52637 9a 40 ppb 118°/36°S 118°/35°S 52638 9a 25 ppb 148°/83°NE 9a 135°/84°SW 9a 15 ppb 135°/84°SW 135°/84°SW 52639 9a 415 ppb 152°/84°SW 152°/84°SW 16°>152° 52640 9c 735 ppb 062°/75°SE 062°/75°SE 52642 9a 00° 00°/20°E 52641 9c 30 ppb 162°/63°SW 162°/63°SW 52643 9b 9a 140°/85°SW 9a 140°/85°SW 160°/60°SW 52644 9b 9a 160°/60°SW 9a 160°/60°SW 160°/60°SW 52645 9c 230 ppb 165°/50°SW 9a 103°/65°- 103°/65°S 52647,49851 9b 1250 ppb 1250 ppb 1250 ppb 103°/65°- 103°/65°S 52647,49851 9f,c 14570 (#647); 4360 (#851)	152º/68ºSW				9a	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	080°/65°N			52637	9a	40 ppb
1480/830 NE 9a 1350/840 SW 1350/840 SW 52639 9a 1520/840 SW 1520/840 SW 160>1520 52640 9c 735 ppb 0620/750 SE 0620/750 SE 52642 9a 9c 30 ppb 0620/200 E 52641 9c 30 ppb 9b 1620/630 SW 1620/630 SW 52643 9b 9a 1400/850 SW 1620/630 SW 52644 9b 9a 1400/850 SW 190/640 SW 52645 9c 230 ppb 1400/500 SW 1400/500 SW 9a 9a 9a 1400/500 SW 1600/600 SW 52645 9c 230 ppb 1650/050 SW 1600/600 SW 52645 9c 230 ppb 1650/050 SW 1600/600 SW 52645 9c 230 ppb 1030/650 - 1030/650 S 52647,49851 9b 1250 ppb 1030/650 - 1030/650 S 52647,49851 9f,c 14570 (#647); 4360 (#851) 4360 (#851) 4360 (#851) 4360 (#851)	118º/36ºS	118º/35º\$		52638	9a	25 ppb
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	148º/83ºNE	105.000		50/20	9a	
132°/34° SW 132°/34° SW 132°/34° SW 160°/32° 52640 9e 735 ppb 062°/75° SE 062°/75° SE 52642 9a 9e 30 ppb 162°/63° SW 162°/63° SW 52643 9b 9e 30 ppb 162°/63° SW 162°/63° SW 52643 9b 9a 170°/64° SW 170°/64° SW 52644 9b 140°/85° SW 9a 9a 9a 140°/50° SW 160°/60° SW 52645 9c 230 ppb 165°/05° SW 160°/60° SW 52645 9c 230 ppb 165°/05° SW #13 9b 415 ppb 52646 9b 1250 ppb 103°/65° - 103°/65° S 52647,49851 9f,c 14570 (#647); 4360 (#851)	133°/84° 5W	1500/84°5W	160	52639	9a 0-	415 PPD 725
000°/20°E 52641 9c 30 ppb 162°/63°SW 162°/63°SW 52643 9b 170°/64°SW 170°/64°SW 52644 9b 140°/85°SW 9a 9a 140°/50°SW 140°/50°SW 9a 160°/60°SW 160°/60°SW 52645 9c 230 ppb 165°/05°SW #13 9b 415 ppb 103°/65°- 103°/65°S 52647,49851 9f,c 14570 (#647); 85°S 4360 (#851) 4360 (#851) 4360 (#851)	152°/04°3N	152"/04" 5M 0620/750 CP	100>1520	52640	90	135 PPD
162°/63°SW 162°/63°SW 52643 9b 170°/64°SW 170°/64°SW 52643 9b 140°/85°SW 9a 9a 140°/50°SW 140°/50°SW 9a 160°/60°SW 160°/60°SW 52645 9c 230 ppb 165°/05°SW #13 9b 415 ppb 103°/65°- 103°/65°S 52647,49851 9f,c 14570 (#647); 85°S 4360 (#851) 4360 (#851) 4360 (#851)	0020/7005	002-775-55		52642	9a	30 mmh
170°/64° SW 170°/64° SW 52643 9b 140°/85° SW 9a 140°/50° SW 140°/50° SW 9a 160°/60° SW 160°/60° SW 52645 9c 230 ppb 165°/05° SW 160°/60° SW 52645 9c 230 ppb 165°/05° SW #13 9b 415 ppb 103°/65° - 103°/65° S 52647,49851 9f,c 14570 (#647); 85° S 4360 (#851) 4360 (#851)	1629/630SU	1620/63058		52641	90 9h	10 PPD
140°/85°SW 9a 140°/50°SW 140°/50°SW 160°/60°SW 160°/60°SW 165°/05°SW 52645 9b 415 ppb 52646 9b 103°/65°- 103°/65°S 85°S 52647,49851 9f,c 14570 (#647); 4360 (#851)	170º/64º SW	170º/64º SW		52644	9b	
140°/50° SW 140°/50° SW 9a 160°/60° SW 160°/60° SW 52645 9c 230 ppb 165°/05° SW #13 9b 415 ppb 103°/65° - 103°/65° S 52647,49851 9f,c 14570 (#647); 85° S 4360 (#851)	140º/85ºSW	1.0 , 01 0.0		02011	9a	
160°/60°SW 52645 9c 230 ppb 165°/05°SW #13 9b 415 ppb 52646 9b 1250 ppb 103°/65°- 103°/65°S 52647,49851 9f,c 85°S 4360 (#851)	140º/50º SW	140º/50ºSW			9a	
165°/05°SW #13 9b 415 ppb 103°/65°- 103°/65°S 52646 9b 1250 ppb 103°/65°- 103°/65°S 52647,49851 9f,c 14570 (#647); 85°S 4360 (#851)	160º/60º SW	160º/60ºSW		52645	9c	230 ppb
52646 9b 1250 ppb 103º/65º - 103º/65º S 52647,49851 9f,c 14570 (#647); 85º S 4360 (#851)	165°/05°SW	_ , ,		#13	9b	415 ppb
103º/65º- 103º/65ºS 52647,49851 9f,c 14570 (#647); 85ºS 4360 (#851)				52646	9b	1250 ppb
85•5	103º/65º-	103º/65ºS		52647,49851	9£,c	14570 (#647);
1000 (1001)	85°S				-	4360 (#851)
068°/85°S 9f,c 1230(#14A); 1350(#14B)	068°/85°S				9f,c	1230(#14A); 1350(#14B)
045°/86°NW 52648 8 85	045º/86ºNW			52648	8	85
020°/35°NW 130°/80°SW 52649 9c 105	020º/35ºNW	130°/80°SW		52649	9c	105

SHEAR	VEIN	SLICKENSIDES	ASSOC. SAMPLES	ALT'N Type	AU (25+ppb)
020º/35ºNW	130º/80ºS	W	52649	9c	105
164º/62ºSW			52650	9c	470
103º/85ºS	154º/60ºS	W	49852, 49853	9b,a	4230(#852) 3330(#85
	130°-220° 60°-85°	/ Sw	#14A+B	+9f	1230(#14A) 1350(#14
003º/12ºE	003º/12ºE		#12	9a	
150°/70°SW				9a	
108º/63ºSW				9a	
052º/05ºNW			49854	9a,f	180
125º/66º SW				9a,f	
154º/85ºSW	154º/85ºS	W		9 a	
105º/82ºS	105º/82ºS		49856,57	8,9a	115(#856); 200(#857
007º/70º-90ºW			49858,859; EP1-8	9e,c	
150°/71°NE			49860	9a	
159°/70°SW	159º/70ºS	W 34°>159°	49851	9a	
	0300/7405	E		9d	
	163º/45ºS	W	49862	9a	
	120º/64ºN	E		9a	
044º/48ºSE			49863	9a	
170º/33ºNE	170º/33ºN	Е	49864	9e,c	25 ppb
170º/08ºNE	-			9e,c	
174º/54ºE	174º/54ºE		49865	8a	
105º/38ºN	105º/38ºN		49866, 49867	9a	
148º/64ºNE	148º/64ºN	E 13º>148º	49868	8*9a	
085º/66ºS	0850/6605		49873	8+9a	45 ppb
108º/16ºS	108º/16ºS		49871	9a	
100º/15ºS	·		49869,870	9a	
130°/03°NE			49874	9b	
148º/30ºNE	060º/80ºE		49875	9c,t	
032º/80ºSE			49877	9f,c	
032º/80ºSE			49876	9c	
126º/69ºS			49878	9a	2150 ppb
012º/20ºE			49879,880	9c	75 (#879); 140 (#88
034º/80-90ºNW			#5A, B	9c	
142º/58ºNE	_		49881	9c	70 ppb
125º/72ºS	125º/72ºS		49882	9c	
036º/88ºSE				9c	
010º/87ºE			49883; #28A+B	9c∙f	
110º/65-80ºS	110º/65-8	0°S		90	
039º/78ºNW			49885; #29	9c .	·
077º/35ºS			49886	9a	30 ppb
062º/87ºS			#30A	91,c	
038º/87ºS			49887	9c	430
136º/66ºSW			#31A	9c	2550
112¤/85°S	112º/85ºS		#31B	9a	145
156°/88°SW		100>1560	#33A+B	9b	305 (#33A) 1010 (#:

SHEAR	VEIN SLI	CKENSIDES	ASSOC. SAMPLES	ALT'N Type	AU (25+ppb)
044º/30º SE				9b	
140º/73ºSW			49888	9c	1290
0440/900				9c	
044º/65ºSE			49889	8	
122º/85ºS				8	
020º/88ºE			49890	9c	
110º/85ºS	110°/85°S		49891	9c	35
0300/900			49892	9d,f	
129º/34ºN	03ª	>353ª	#35A+B+C	9a	160(A),30(B) 100(C)
120º/48ºSW	120º/48ºSW		49893	9a	175
145°/80°SW	145º/80ºSW			9a	
010º/85ºW	010°/85°W			9a	
100°/82°S			49894	9a	75
0340/900				9c	
131º/64ºSW				9a	
146º/75ºNE			49895	9c	
114º/31ºS	50°	>122°	49896	9d	25
035º/84ºSE				9d	
100°/46°N			49897	9a	35
073º/76-86º SE	073º/81ºSE 08	3°>253	49898	9e	
050°/20°SE	050º/20ºSE		49899	9c	275
166º/84ºNE	08º	°>166°	49900	8+9c	
110°/80°5	110º/80º5		49901	8+9c	35
000º/73ºW	29"	>180°		8	
048º/68ºSE	280	₽>228°	49902	9e	
070º/54ºS			49903	9a	45
070°/78°NW			49904	8	

LARGE FIGURES AND PLANS

APPENDIX "E"

LEGEND

ł	Andesitic to basaltic tuffs and flows.
2	Lapilli tuff and agglomerate.
3	Tuffs and flows, propylitic alteration.
4	Pyritic tuffs and flows.
5	Bleached, oxidized and pyritic tuffs
6	Quartz, calcite, amygdaloidal andesitic dyke.
7	Trachytic feldspar porphyry andesite dyke.
8	Bleached, oxidized, timonitic and carbonate enriched tuffs and flows

Refer to page 8 of report for unit descriptions.

SYMBOLS

Contour interval approximately 30 metres.

GEOLOGICAL BRANCH ASSESSMENT REPORT

LEGEND

strike on/ Vein, strike and dip. × Slickensides, trend and plunge. to the second Slickensides, trend and plunge, with inferred direction of slip. Gulley

Claim line

KR3

_____.

•

Legal corner post.

1 **•**

Contour interval approximately 30 metres.

GEOLOGICAL BRANCH ASSESSMENT REPORT

Carlin at an engine water a construction of the second second second second second second second second second

CORONA CORPORATION POOLEY LAKE PROJECT

STRUCTURAL MAP

IM/KG	SCALE:	мојестно.: 1049		
18: 82 L/12W	March/89	MAP NO.: 2		

LEGEND

X ⁵²⁶¹⁸	Sample	location	and	number
	Gulley			
	Claim lin	e		
	Legal co	erner pos	5 †	

Contour interval approximately 30 m

GEOLOGICAL BRANCH ASSESSMENT REPORT

18,8

CORONA CORPORATION POOLEY LAKE PROJECT SAMPLE LOCATION MAP