LOG NO: 0717	RD.
ACTION:	
······································	
FILE NO:	

GEOLOGICAL AND GEOCHEMICAL SURVEYS

PREFORMED ON THE

LEECH GROUP

(Leech 1-3, Au 2-3, West 1-3)

VICTORIA MINING DIVISION

SUB-RECORDER RECEIVED	
.JUL 1 0 1989	
M.R. #\$ VANCOUVER, B.C.	

FILMED

N.T.S. 92B/12 Latitude 48°33' Longitude 123 54 . . Ĩ., 77. Y く祭 3 Authors : Terence J. McIntyre Dennis R. Bull R.G. Wilson ί. June 21, 1989 Date : Beau Pre Exploration Ltd. Owner : Valentine Gold Corporation Noranda Exploration Company, Limited Operator: (no personal liability) ς, S. . . . 5 ≪

TABLE OF CONTENTS

- -

1.0	INTRO	DDUCTIONl
	1.1 1.2 1.3 1.4 1.5 1.6	Location and Accessl Physiographyl Claims & Ownership4 Previous Work
2.0	METH	DDS
	2.1 2.2	Geological Mapping6 Geochemical Sampling7
3.0	GEOL	OGY
	3.1 3.2 3.4	Regional Geology
4.0	GEOC	HEMISTRY12
	4.1 4.2 4.3	Rock Samples
5.0	INTE	RPRETATION14

<u>PAGE</u>

LIST OF APPENDICES

- Appendix I: Analytical Method Descriptions for Geochemical Assessment Reports
- Appendix II: Rock Sample Descriptions
- Appendix III: Analysis Certificates
- Appendix IV: Statement of Costs
- Appendix V: Authors Qualifications

LIST OF TABLES

- Table 1 : List of Claims
- Table 2 : Heavy Mineral Concentrate (Fipke) Sample Results

LIST OF FIGURES

Figure	1	:	Project Location1:2,500,000
Figure	2	:	Property Location1:250,000
Figure	3	:	Claims Location1:50,000
Figure Figure	4 4a	:	Regional Geologyl:100,000 Legend for Regional Geology
Figure	5	:	Property Geology1:5,000
Figure	6	:	Sample Locations1:5,000
Figure	7	:	Geochemistry Au & Asl:5,000
Figure	8	:	Geochemistry Cu, Zn, Pb, Ag1:5,000

1.0 INTRODUCTION

1.1 Location and Access

The Leech Group lies approximately 23 km north-northwest of the township of Sooke, B.C. (Figure 1 and 2). The property is accessed from Sooke via the Butler Main and Jordan Main logging routes. Access from here to the various parts of the property is via logging roads which are generally in fair condition.

1.2 Physiography

The Leech Group lies with the Vancouver Island Mountain Range in the southern portion of the Insular Belt.

The physiography consists of relatively flat valley bottoms with moderate to precipitous valley sides. Elevations range from 490 m, at the valley floor, up to 850 m at the peaks.

Typically, the property is buried beneath thick glacial fluvial deposits at the valley floor, however, there is abundant outcrop above this elevation.

The climate in this part of Vancouver Island is generally mild. Heavy precipitation occurs mainly during the winter months, from November to March, with considerable accumulation of snow at higher elevations. The spring, summer and fall are a mixture of cool wet days and warm sunny days in approximately equal proportions. Due to the amount of snow which falls during the winter, work above the 500 m elevation cannot begin before mid-April, and above 800 m not before mid-May.

Vegetation in the area consists of a second growth forest of cedar, hemlock and douglas fir. All of the Leech Group has been clear cut logged providing very good access to all parts of the property as well as ample road cut outcrop exposure.

1.3 Claims and Ownership

The Leech Group (Figure 2) consists of the following claims:

TABLE 1: List of Claims

Name		Record #	Units	Due	Date	e
Leech	1	838	20	April	11,	1989
Leech	2	839	16	April	11,	1989
Leech	3	840	16	April	11,	1989
Au	2	1241	1	June	5,	1990
Au	3	1242	1	June	5,	1990
West	1	1238	1	June	5,	1990
West	2	1239	1	June	5,	1990
West	3	1240	1	June	5,	1990

Claim boundaries at 1:5,000 scale are shown on Figures 5.

The claims are owned by Valentine Gold Corporation subject to a net smelter royalty payable to an original owner. These claims are also subject to a former agreement between Valentine Gold Corp., and Beau-Pre Explorations Ltd.

All interest in the Leech Group of claims have been transferred for administrative purposes to Noranda Exploration Company, Limited (no personal liability), as stated in the option agreement between Noranda, Beau-Pre Explorations Ltd. and Valentine Gold Corporation.

1.4 Previous Work

The discovery of placer gold in the Leech River in 1864 led to a major but short lived gold rush in the area. Subsequently, many of the streams flowing across the "Leech River Schists" have been shown to contain fine placer gold.

In 1976 native gold was found in narrow quartz veins on Valentine Mountain, approximately 42 km west of Victoria.

Since then over 85 other occurrences of native gold within quartz veins have been found within the metasedimentary rocks of the Leech River complex.

4

VANCAL 11

5

Recent work on the Leech group has been restricted to a few pan concentrate, silt, soil, and rock samples, taken by Valentine Gold Corp. in 1987. None of the samples returned significant anomalous values. Historical work included prospecting and minor sampling by the original vendor, Elmo K. Johnson.

1.5 <u>Work Performed</u>

A total of 89 mandays were spent, from March 15, 1989 to June 21, 1989 on a reconnaissance exploration programme on the Leech claim group. A total of \$11,850.00 in exploration expenditures on the Leech group occurred between March 15, 1989 and April 10, 1989. A further total of \$12,111.45 of exploration expenditures occurred between April 11, 1989 and June 20, 1989.

The programme consisted of geological mapping and geochemical rock, soil, and pan/silt sampling. A total of 29 rocks, 450 soils, 9 pan concentrates and 11 silts were taken. The samples were analyzed for 30 element ICP plus atomic absorption Au.

1.6 <u>Personnel</u>

The work carried out on the Leech Group was performed by T. McIntyre (Regional Property Party Chief), J. McCorquodale (Detailed Property Party Chief), C.D. Frew (Geologist), K. Pearson (Geologist), D. Sharpe (Geologist), S. Louden, D. Dempsey, D. Caldicott, and C. Nepton (Fieldmen).

2.0 <u>METHODS</u>

2.1 <u>Geological Mapping</u>

Geological mapping coincident with geochemical sampling was carried out along north-south compassed traverses, along logging roads, and up creeks. Mapping was conducted at a scale of 1:5,000 over a total area of 10.89 square kilometres.

The geological mapping was carried out with a view to identifying lithology, metamorphism, structure, mineralization and quartz veining.

2.2 Geochemical Sampling

In most cases rock chip samples were taken of the quartz veins with a separate sample taken of the wall rock. The samples of the quartz vein material were taken, for a distance of 1.0 m, along it's strike length. Samples of the wall rock were taken for a distance of 0.5 m perpendicular to the strike of the quartz vein. Occasionally samples were taken of the vein only. These chip samples were across the vein for a representative strike length.

Rock samples, each weighing approximately 2 kg, were placed in 6 ml plastic bags, along with a sample tag number and shipped to Acme Analytical Laboratory in Vancouver for analysis.

Soil samples were taken along north-south running traverse lines. These lines were spaced approximately 400 m apart with stations established every 50 m. Samples weighing approximately 1 kg each were placed in Kraft paper bags, given a sample number, then air dried prior to shipment to Noranda's Vancouver laboratory.

Heavy mineral concentrate and silt samples were taken from tributaries leading into the Jordan River. The heavy mineral sampling was carried out using a method pioneered by C.E. Fipke. Favourable locations were selected on the property, and samples were taken from 30 cm deep holes. The material was sieved to -6 mesh until a 14 kg bulk sample was obtained. The sample was then to C.E. Fipke's facilities in Kelowna for size shipped fractionation and heavy liquid magnetic separation. Resultant -150 mesh and +150 - 60 mesh heavy, non-magnetic fractions were sent to Activation Laboratories Ltd. in Brantford, Ontario for Neutron Activation analysis for Au plus 33 other heavy elements.

In addition, a few pan and coincident silt samples were taken in the northeastern portion of the property. Pan samples were obtained by sieving stream sediment down to -6 mesh and panning this to a final volume of approximately 20 ml. Silt samples weighing approximately 1 kg were obtained from the same location as the pan sample. Both were given a sample number, partially air dried, then shipped to Noranda's Vancouver laboratory.

Appendix I contains descriptions of analytical techniques of analyzing used by Noranda's lab (Au analysis for stream sediments and soils) and Acme's lab (ICP + Au analysis for rocks, stream sediments and soils), C.E. Fipke's heavy mineral concentrate laboratory, and Activation Laboratories Ltd. (neutron activation for Au in heavy mineral concentrates). Appendix II contains rock sample lithologic descriptions, and Appendix III contains the laboratory analysis certificates of results.

3.0 GEOLOGY

3.1 <u>Regional Geology</u>

Regionally, the area is underlain by the metamorphosed pelitic, arenaceous, and volcanic rocks of the Leech River Formation (figure 4). Together, these make up the Leach River Block.

The Leech River Block is a discrete geotectonic unit (terrane) separated along its northern edge by the San Juan Fault Zone from early Jurassic Bonanza volcanics. The southern edge of the Leach River Block is separated from Eocene Metchosin Group volcanics by the Leach River Fault Zone. To the east the Leach River Block is separated from the Wark Diorite and the Colquitz Gneiss by the Cragg Creek Fault (Fairchild, 1979).

The area outlined by these fault zones is a narrow east-west trending block which extends from Port Renfrew on the west coast to Langford, near Victoria, on the east coast of Vancouver Island. The block is approximately 75 km long east-west and varies in width from 7-12 km in the west to less than 2 km in the east.

The Leech River Formation consists of metamorphosed arenites, pelites and volcanics as well as granitoid intrusive bodies. The age of deposition of these sediments, by Rb-Sr method is late Jurassic to Cretaceous (Fairchild, 1982). K-Ar dating indicates that the metamorphism and deformation occurred in early Tertiary time (Fairchild, 1982).

The rocks of the Leech River Formation have undergone regional progressive metamorphism from green schist up to amphibolite facies, and have been deformed into tight overturned megascopic folds whose axes trend approximately east-west and plunge easterly. A pervasive axial planar cleavage exists which strikes approximately east-west and dips within 15° north or south of vertical.

3.2 Property Geology

The geology of the Leech group is shown in Figure 5.

Results of geological mapping show the property to be underlain by continuous sequences of meta-sandstones, metapelites and minor metavolcanics (amphibolites) of the Leach River Formation. These have undergone regional metamorphism and been deformed into large scale tight folds whose axial planes trend approximately north-west and dip on average 74° to the north.

TRIASSIC TO CRETACEOUS

LEECH RIVER FORMATION: (MLC to ML) METAGREYWACKE UNIT: metagreywacke. meta-arkose. quartz-feldspar-biotite schist

ARGILLITE - METAGREYWACKE UNIT: thinly bedded greywacke and argillite, state, phyllite, quartz-biotite schist

CHERT-ARGILLITE-VOLCANIC UNIT: ribbon chert, cherty argillite, metarhyolite, metabasalt, chlorite schist

1.12

CONSTITUTION FORMATION (San Juan Island): thinly bedded greywacke, argillite and chert

LOWER TO MIDDLE JURASSIC

en:

ISLAND INTRUSIONS: granodiorite, guartz diorite

BONANZA GROUP

TRIASSIC AND/OR JURASSIC

ORCAS FORMATION (San Juan Island): ribbon chert, minor tull, breccia, lava

TRIASSIC UPPER TRIASSIC

sandstone, breccia, argillite

VANCOUVER GROUP

KARMUTSEN FORMATION: pillow basalt, breccia tuff, minor flows

Basaltic to rhyolitic tuff, breccia, flows, minor argillite, greywacke

PERMIAN AND/OR TRIASSIC

Unnammed volcanics (San Juan Island, Saanich Peninsula): basaltic to decitic lava, breccia, tull; minor limestone

HARO FORMATION (San Juan island): volcaniclastic

Limestone

PENNSYLVANIAN AND PERMIAN SICKER GROUP (PN, PM, PSS, PB)

BUTTLE LAKE FORMATION: limestone, greywacke, argillite

PENNSYLVANIAN AND MISSISSIPPIAN

SEDIMENT-SILL UNIT: argillite, greywacke, chert, diabase sills

SALTSPRING INTRUSIONS: metagranodiorite. metaquartz porphyry, quartz sericite schist

MYRA FORMATION: well bedded silicic tull and breccia, argillite, rhyodacite in flows and domes, minor basic tuff; quartz-sericite schist, phyllite; massive sulphides

porphyry; basic tull; chlorite-actinolite schist

metagrabbro, amphibolite

Geology by J. E. Muller, 1970, 1980

Compilation by J.E. Muller, 1979, 1980

Geological cartography by the Geological Survey of Canada

Any revisions or additional geological information known to the user would be welcomed by the Geological Survey of Canada

Ko 35 MESOZOIC

JURASSIC AND CRETACEOUS JKs

Files St. Geological boundary, (approximate). Fault, (approximate) Anticlinal axis Synclinal axis. Bedding, (inclined, vertical, overturned) Foliation (inclined, vertical, with plunge of lineation) Gneissosity, (inclined, vertical)

LEGEND

CAPILANO SEDIMENTS: sand, gravel; silt, clay

QUADRA SEDIMENTS: sand, gravel (includes some older beds)

SOOKE FORMATION: conglomerate, sandstone, shale

CATFACE INTRUSIONS: quartz diorite, agmatite

SOOKE GABBRO: mainly gabbro

NANAIMO GROUP (KC IO KGA)

minor siltstone, shale

minor siltstone, shale

ninor sandstone

minor siltstone, shale

minor siltstone, shale

UPPER JURASSIC AND LOWER CRETACEOUS

FIGURE

METCHOSIN VOLCANICS: TM1: pillow basalt, breccia, tuff;

GABRIOLA FORMATION: sandstone, conglomerate;

SPRAY FORMATION: shale, siltstone; minor sandstone

GEOFFREY FORMATION: sandstone, conglomerate;

NORTHUMBERLAND FORMATION: shale, siltstone;

DE COURCY FORMATION: sandstone, conglomerate:

EXTENSION-PROTECTION FORMATION: sandstone,

HASLAM FORMATION: shale, siltstone; minor sandstone

SPIEDEN FORMATION: conglomerate, sandstone, siltstone

4a

COMOX FORMATION: sandstone, conglomerate;

conglomerate; minor siltstone, shale

CEDAR DISTRICT FORMATION: shale, siltstone; minor sandstone

Tw2: mainly basaltic lava; Tw3: schistose metavolcanic rock

VASHON DRIFT: gravel, sand, till

Recent sediments

OLIGOCENE AND/OR MICCENE

EOCENE (AND OLDER?)

UPPER CRETACEOUS

OUATERNARY RECENT

0

>Qc

Qv

00

TERTIARY

Ts

Тg

TM

CRETACEOUS

KGA

Ks

KG

КN

Koc

KCD

, KEP

KH C

CENOZOIC

9a

LOWER DEVONIAN AND OLDER

NITINAT FORMATION: pillow lava and breccia of augite (uralite)

COLOUITZ GNEISS: quartz-feldspar gneiss

WARK GNEISS: massive and gneissic metadiorite.

3.2.1 AMPHIBOLITE (Unit 1)

The amphibolite unit occurs in beds which are generally 1 to 3 m thick. In fresh surface this unit varies from a pale greygreen to strong, bright chloritic green colour, and weathers pale to medium green. Several varieties of amphibolites were observed during mapping: (i) Ash Tuff; very fine grained, pale green in colour, moderately fissile, with sericite coatings on cleavage (ii) Ash/Crystal Tuff; very fine grained matrix with surfaces. approximately 10% amphibole clasts up to 10 mm long, the amphibole having disappeared due to retrograde metamorphism. (iii) Lapilli Tuff: fine to medium grained with fragments of feldspar, quartz and mafic minerals. Medium chloritic green colour, moderately schistose, slightly to moderately fissile. (iv) Volcanic Flows and Volcanic Breccia: medium to bright chloritic green colour in fresh surface, weathering to medium green-grey. Fine to medium grained, composed of feldspar, minor quartz and chlorite. Schistose and slightly fissile, with sericite on foliation surfaces.

The volcanic breccias consist of sub-angular to sub-rounded pebble to small cobble sized fragments of chloritic green volcanic in a fine grained chloritic green volcanic matrix.

3.2.2 METASANDSTONE (Unit 2)

The metasandstone unit occurs as interbeds within the metapelites. The metasandstone may be divided into two major sub units, the protoliths of which are believed to have been quartzo-feldspathic sandstone and greywackes. The sub-units have been termed massive metasandstone and greywacke in field mapping.

- i) <u>Massive Metasandstone (Unit 2b):</u> The quartzo-feldspathic sandstone is fine to medium grained. Colour in fresh surface is generally light grey although in some localities it is dark grey to black. In weathered surface it is grey to buff coloured. This unit is massive and very prominent. No bedding was observed except in contact with other units. It displays only minor schistosity and is centrally not fissile. The quartz-feldspar grains of which it is composed are elongated in the plane of foliation. Disseminated biotite, up to 5% is common. This unit is very hard to break as it has been at least partially recrystallized.
- ii) <u>Greywacke (Unit 2a)</u>: This unit is not seen to occur on the Leech claim group.

3.2.3 METAPELITE (Unit 3)

The metapelite unit occurs as interbeds of metasiltstone (biotite schist) and metamudstones (phyllite) from less than 0.5 m to greater than 20 metres thick. The metapelites themselves are interbedded with the metasandstone unit described below.

The metapelites are subdivided into the following sub-units:

- i) Biotite Schist (Unit 3b): These are fine grained, medium grey to black in colour and are composed of quartz and biotite which occur as light and dark bands 1~3 mm across (biotite schist). In a few localities, fine garnet porphyroblasts were observed within the schist (biotitegarnet schist). Sericite coatings were often observed on foliation.
- ii) Phyllite (Unit 3a): Believed to have originally been a mudstone, the phyllites are extremely fine grained and vary in colour from medium grey to black (carbonaceous) in some localities and light grey to medium brown in others. The phyllites are extremely fissile, with abundant sericite and minor biotite on cleavage surfaces.

3.3 <u>Structure</u>

Wherever observed, structural features were measured and noted.

The most predominant and pervasive structural feature observed during the mapping programme was the foliation, in the form of coplanar schistosity and cleavage. These foliation features strike approximately east-west and dip steeply north or south of vertical. Some minor parasitic folds were observed within the metapelites. These were visible as small "S" or "Z" folds within schist layers and quartz veinlets. The sizes of the parasitic folds vary between 1 cm and 5 cm across.

3.4 Quartz Veins and Mineralization

Quartz veins and veinlets occur throughout the rocks of the area mapped. They vary in size from 5 mm to 2 metres and are generally white milky "bull" quartz, with occasional subhedral crystals. Rusty weathering products such as limonite were frequently observed, although sulfide mineralization was rare. Occasionally small amounts of fine grained pyrite and lesser amounts of pyrrhotite were observed on fracture coatings. The sulfide mineralization was not observed to exceed 5% of any quartz vein material, and was generally far less. The majority of the quartz veins occur within the meta siltstones, where they generally parallel the schistosity. In the metasandstones, quartz veinlets 5 mm to 10 cm wide cross-cut the sandstone beds at angles of between 30° and 45°. Only rarely were quartz veinlets observed within the phyllites. In such cases, the veinlets occur parallel to foliation cleavage.

Within the amphibolite unit, quartz vein material occurs in veinlets 5 mm to 5 cm wide at angles of 0° to 45° to foliation.

The variations in the quartz veining between the various lithological units is believed to reflect the nature of the units themselves, and suggests that the quartz vein material is of metamorphic origin (sweats) rather than the result of hydrothermal activity.

The phyllites contain very little quartz vein material, due to the lack of available silica in this rock type. The quartz veins sub-parallel the cleavage, since this foliation provided the path of least resistance.

The metasiltstones contain the majority of the quartz vein material since they contained the available silica. The quartz veins in this unit occur mostly parallel to foliation, since this provided the path of least resistance.

The metasandstones and amphibolites contain more quartz veins than the phyllites, but far less than the metasiltstones. In most cases the quartz veins cross-cut the sandstones and amphibolites at angles of between 30° and 45°. The reason for these phenomena is as follows: Whilst these rock units contained ample silica for the sweating of material to form quartz veins, their massive, competent nature did not allow passage of silica bearing fluids until the tectonic stresses were sufficient to cause brittle deformation ie. breakage. This fracturing at $3--45^\circ$ to stress direction was subsequently filled with quartz of metamorphic origin.

4.0 <u>GEOCHEMISTRY</u>

Geochemical sample locations (Figure 6) and results (Au & As Figure 7, Cu, Zn, Pb, Ag Figure 8) are shown on plan at 1:5,000 scale. Results of other ICP elements from Appendix III have not been plotted.

4.1 Rock Samples

Rock samples obtained from quartz veins and quartz microveining within the metasandstone and phyllite units revealed no significant Au values. The only assay value appreciably above background value was R.59091 which assayed 54 ppb Au, and 14 ppm As. This sample was taken from a quartz vein in a road cut on the eastern portion of the property.

4.2 Soil Samples

Soil samples gave a few spot Au highs. These occurred along Traverse #1 which had a high of 85 ppb Au, along Traverse #13 which had a single high of 30 ppb Au, and along Traverse #14 which had values of 15 ppb, 55 ppb and 10 ppb Au occurring along the northern 400 m of the line. Background soil values are approximately 5 ppb Au. These were subsequently followed up with "fill in" 25 m soil samples taken along the traverse line and along detail soil lines 50 m on either side, and parallel to, the existing Traverse line. In addition, rock samples were taken of quartz veins and mineralization in the vicinity of the soil anomalies.

Follow-up samples collected around the 85 ppb Au sample of Traverse #1 returned only background values. Follow-up of Traverse #13 did not expand on the original 30 ppb Au anomaly. Two samples near the northern ends of the follow-up lines returned spot highs of 24 and 19 ppb Au. Follow-up of Traverse #14 confirmed the anomalies and expanded the area of Au anomalous soil samples. Values range from 12 to 45 ppb Au and the anomaly is open to the south.

Results of other elements are at or near background values with no anomalies recognized.

4.3 <u>Heavy Mineral Concentrate Samples</u>

Heavy mineral concentrate (Fipke) samples returned anomalous gold results for six of the eight drainages sampled. Anomalous results ranged from 610 ppb Au to 7430 ppb Au and occurred mainly within the -150 mesh fraction. Results for other elements show no discernable pattern. The following table is a summary of the results and sample weights for Au.

Sample No.	<u>Weight</u> (gms)	<u>Au -150 HN</u> (ppb)	<u>Weight</u> (gms)	<u>Au +150-60HN</u> (ppb)
55134	1.057	4690	0.811	45
55160	8.790	1670	5.652	7430
55176	0.779	1120	0.419	40
5550 2	1.878	87	1.596	<5
55611	0.800	980	0.700	7
55613	1.076	1020	1.080	8
55615	0.723	610	0.802	<14
55655	1.617	47	1.482	<14

TABLE 2: Heavy Mineral Concentrate (Fipke) Sample Results

The anomalies lie mainly within the finer -150 mesh sizes with the exception of #55160 which is anomalous in both -150 mesh (1670 ppb Au) and +150-60 mesh (7430 ppb Au).

Silt samples from these drainages show no anomalous results.

5.0 INTERPRETATION

The rocks underlying the Leech claims are mainly interbedded metamorphosed mudstones, siltstones and sandstones with occasional intercalated intermediate to basic volcanic derived amphibolites. The units, which strike northwest and dip northeast, contain minor quartz veining but limited sulphides. A lack of intrusive rocks limits the potential of hydrothermal activity and thus the economic potential for quartz hosted Au is considered low.

Geochemical samples (pan, silt, soil, rock) recorded background values with the exception of the "Fipke" heavy mineral concentrates. HMC samples from six of eight separate drainages returned anomalous values in the fine fraction. This fraction may represent a distant source and would require collection of individual gold grains for microscopic examination of roundness, gangue and deformity for confirmation of source. One sample contains elevated coarse and fine fraction Au values which may represent a near source anomaly. APPENDIX I

ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

.

ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

The methods listed are presently applied to analyses geological materials by the Noranda Geochemical Laboratory at Vancouver.

Preparation of Samples:

Sediments and soils are dried at approximately 80° C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for geochemical analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavy mineral fractions (panned samples * from constant volume), are analysed in its <u>entirety</u>, when it is to be determined for gold without further sample preparation.

Analysis of Samples:

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.4 g and chemical quantities are doubled relative to the above noted method for digestion.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn can be determined directly from the digest (dissolution) with a conventional atomic absorption spectrometric procedure. A Varian-Techtron, Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Elements Requiring Specific Decomposition Method:

Antimony - Sb: 0.2 g sample is attacked with 3.3 ml of 6% tartaric acid, 1.5 ml conc. hydrochloric acid and 0.5 ml of conc. nitric acid, then heated in a water bath for 3 hours at 95°C. Sb is determined directly from the dissolution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.3 g sample is digested with 1.5 ml of perchloric 70% and 0.5 ml of conc. nitric acid. A Varian AA-475 equipped with an As-EDL is used to measure arsenic content in the digest.

Barium - Ba: 0.1 g sample digested overnight with conc. perchloric, nitric and hydrofluoric acid; Potassium chloride added to prevent ionization. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: $0.2 \sim 0.3$ g is digested with 2.0 ml of perchloric 70% and 1.0 ml of conc. nitric acid. Bismuth is determined directly from the digest with an AA-475 complete with EDL.

Gold - Au: 10.0 g sample is digested with aqua regia (I part nitric and 3 parts hydrochloric acid). Gold is extracted with MIBK from the aqueous solution. AA is used to determine Au.

Magnesium - Mg: 0.05 - 0.10 g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with the use of a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot from a perchloric-nitric decomposition, usually from the multi-element digestion, is buffered. The aqueous solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

N.B.: If additional elemental determinations are required on panned samples, state this at the time of sample submission. Requests after gold determinations would be futile.

LOWEST VALUES REPORTED IN PPM:

Ag - 0.2	M n - 20	Za – 1	Au - 0.01
Cd - 0.2	Mo - I	Sb - 1	W - 2
Co - 1	Ni – l	As - 1	U - 0.1
Cu – I	Pb - 1	Ba - 10	
Fe - 100	v - 10	Bi - 1	

EJvL/ie

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

GEOCHEMICAL LABORATORY METHODOLOGY & PRICES - 1989

Sample Preparation

S80	Soils or silts up to 2 lbs drying at 60 deg.C and sieving 30 gms \$ -80 mesh (other size on request)	.85
SJ	Saving part or all reject	.45
S20R	Soils or silts - drying at 60 deg.C and sieving -20 mesh & pulverizing (other mesh size on request.)	2.00
SP	Soils or silts - drying at 60 deg.C pulverizing (approx . 100 gms)	1.50
RP100	Rocks or cores - crushing to -3/16" up to 10 lbs, then pulverizing 1/2 lb to -100 mesh (98%)	3.00
Cr	Surcharge crushing over 10 lbs	.25/1b
2 P X	Surcharge for pulverizing over 1/2 lb	1.00/lb
RPS100	Same as RP100 except sieving to -100 mesh and saving +100 mesh (200gms)	3.75
RPS100 1/2	Same as above except pulverizing 1/2 the reject - additional	1.00/15
RPS100 A	Same as above except pulverizing all the reject - additional	1.00/1b
OP	Compositing pulps - each pulp Mixing & pulverizing composite.	.50 1.50
нм	Heavy mineral separation - S.G.2.96 + wash -20 mesh	12.00
V1	Drying vegetation and pulverizing 50 gms to -80 mesh	3.00
V2	Ashing up to 1 1b wet vegetation at 475 deg.C	2.00
Н1	Special Handling	17.00/hr

Sample Storage

Rejects - Approx. 2 lbs of rock or total core are stored for three months and discarded unless claimed. Pulps are retained for one year and discarded unless claimed.

Additional storage - for 3 years \$10.00/1.2 cu.ft. box or 15 cents/sample pulp or 5 cents/sample soil

<u>Supplies</u>

Soil Envelopes Soil Envelopes Bags Plastic Bags Ties Assay Tags 10% HCl Dropping bottles Zn Test I Troy oz = 31.10 g 1 oz/ton = 34.3 ppm = 34.3 g/tonne = 34,300 ppb 1 % + 10% - 10%

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 El Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

GEOCHEMICAL ANALYSES - Rocks and Soils

Group 1 Digestion

.50 gram sample is digested with 3 mls 3-1-2 HC1-HNO3-H2O at 95 deg.C for one hour and is diluted to 10 ml with water. This leach is near total for base metals, partial for rock forming elements and very slight for refractory elements. Solubility limits Ag, Pb, Sb, Bi, W for high grade samples.

Atomic Absorption. - Analysis by Group 1A <u>Detection</u> Element Detection Element Detection Element Molybdenum Nickel Silver Antimony* Bismuth* ppm Copper 1 ppm 0.01 % т ppm 1 ppm 0.1 ppm ž ppm. Iron 0.1 ppm 1 ppm ppm Cadmium* Lead 22 Lithium ppm Vanadium 2 ppm Chromium 5 Zinc 2 Cobalt 1 ppmManganese ppm ppm Subsequent Element \$1.00 First Element \$2.25 Hydride generation of volatile elements and analysis by <u>ICP</u>.
 This technique is unsuitable for sample grading over .5% Ni or Cu.
 Cu Massive Sulphide.
 Detection Group 1B Element 0.1 ppm 0.1 ppm 0.1 ppm Arsenic Antimony First Element \$4.75 All Elements \$5.50 Bismuth 0.1 ppm 0.1 ppm Germanium 0.1 ppm 0.1 ppm Selenium Tellurium Price \$2.50 <u>Group 1C - Hg</u> Detection limit - 5 ppb

Hq in the solutions are determined by cold vapour AA using a F & J scientific Hg assembly. The aliquots of the extract are added to a stannous chloride/hydrochloric acid solution. The reduced Hg is swept out of the solution and passed into the Hg cell where it is measured by AA.

<u>Group 1D</u> - <u>ICP</u> Analysis Element Detection Ag Cd,Co,Cr,Cu,Mn,Mo,Ni,Sr,Zn As,Au,B,Ba,Bi,La,Pb,Sb,Th,V,W 0.1 ppm 1 ppm 2 ppm 5 ppm 0.01 % U Al,Ca,Fe,K,Mg,Na,P,Ti \$3.25 2 elements Any 4.50 5 elements 10 elements 5.50 6.25 All 30 elements Group 1E - Analysis by ICP/MS Detection Element Ga, Çe ppm Au, Bi, Cd, Hg, In, Ir, Os, Re, Rh, Sb, Te, Th, Tl, U 0.1 ppm (minimum 20 samples per batch or \$15.00 All Elements 15.00 surcharge) Hydro Geochemical Analysis Natural water for mineral exploration 26 element ICP - Mo,Cu,Pb,Zn,Ag,Co,Ni,Mn,Fe,As,Sr,Cd,V,Ca,P, Li,Cr,Mg,Ti,B,AI,Na,K,Ce,Be,Si \$8.00 F by Specific Ion Electrode U_by UA3 \$3.75 detection detection ppb PH DH 20 .õi 5.00 pH Au . 1 detection .001 ppb 4.00 * Minimum 20 samples or \$5.00 surcharge for ICP or AA and \$15.00 surcharge for ICP/MS. All prices are in Canadian Dollars

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis

852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

<u>Group 2</u> - G	eochemical Analysis by Specific Extraction and Pechniques	Instrumental	
Element	Method	Detection	Price
Barium	0.100 gram samples are fused with .6 gm LiB02 dissolved in 50 mls 5% HNO3 and analysed by ICP. (other whole rock elements	10 ppm	\$4.00
Boron	.5 g/Na202 fustion - 50ml in 20% HCl	2 ppm	4.00
Carbon	LECO (total as C or CO2)	.01 %	5.75
Carbon+Sulfur	Both by LECO	.01 %	6.50
Carbon (Graphite)	HCl leach before LECO	.01 %	8.00
Chromium	0.50 gram samples are fused with 1 gm Na202 dissolved in 50 ml 20% HCl, analysed ICP.	5 ppm	4.00
Fluorine	0.25 gram samples are fused with NaOH; leached solution is adjusted for pH and analysed by specific ion electrode.	10 ppm	4.50
Sulphur	LECO (Total as S)	.01 %	5.50
Sulphur insoluble	LECO (After 5% HCl leach)	.01 %	8.00
Tin	1.00 gram samples are fused with NH4I. The sublimed Lodine is leached with 5 ml 10% HCl, and analysed by Atomic Absorption.	l ppm	4.00
тl	.50 gram digested with 50% KNO3 - Dilute to	1 000	4 00
Tungsten	.50 gram samples are fused with Na202 dissolved in 20 ml H20, analysed by ICP.	l ppm	4.00
<u>Group 3</u> -	Geochemical Noble Metals		
<u>Element</u>	Method De	tection Price	
Au* I c M	10.0 gram samples are ignited at 600 deg.C, ligested with hot aqua regia, extracted by 11BK, analysed by graphite furnace AA.	1 ррв \$4.50	
Au**] Pd,Pt,Rh v c	10.0 gram samples are fused with a Ag inquart with fire assay fluxes. After cupulation, the lore bead is dissolved and analysed by AA or ICP/MS.	1 ppb 6.00 - 2 ppb 2.50 - 10.00 -	first element per additional for All 4
	Larger samples - 20 gms add \$1.50 30 gms add \$2.50		
Group <u>4A</u> -	Geochemical Whole Rock Assay		
0.200 gram s	amples are fused with LiBO2 and are dissolved i	in 100 mls 5% HM	103.
SiO2, Al2O3, ICP.	Fe203, CaO, MgO, Na2O, K2O, MnO, TiO2, P2O5, C	Cr205, LOI + Ba	рү
Price: \$3.7	5 first metal \$1.00 each additional \$9.00 for	C All.	
<u>Group 48</u> -	Trace elements		
Element Co,Cu,Ni,Zn, Ce,Nb,Ta,Y,Z	DetectionAnalysisPrSr10 ppmICP\$3.75 firstSr20 ppmICP\$1.00 additSr20 ppmICP\$6.00 for A	cice E element or tional to 4A	
<u>Group 4C</u> -	analysis by ICP/MS.		
Be, Rb, Y, Z Lu, Hf, Ta,	r, Nb, Sn, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, W, Th, U	Dy, Ho, Er, Tm,	Yb,
Detection: 1	to 5 ppm Price : \$20.00 for All.		
 Minimum 20 ICP/MS. A) samples or \$5.00 surcharge for ICP or AA and \$ All prices are in Canadian Dollars	\$15.00 surcharge	e for
	5		

ACTLABS

ACTIVATION LABORATORIES LTD

FEE SCHEDULE

EFFECTIVE MARCH 1, 1989

ACTIVATION LABORATORIES LTD. 383 Elgin Street, Units #2 & 17 P. O. Box 1420 Brantford, Ontario, Canada N3T 5T6 Telephone: 519-758-0310 (ERIC HOFFMAN) Fax: 519-758-8766 Envoy 100: ACTLAB iNET 2000: ACTLAB

Preparation Facilities

ACTIVATION LABORATORIES LTD. c/o TSL 1270 Fewster Drive, Unit 3 Mississauga, Ont. L4W 1A1

ACTIVATION LABORATORIES LTD. c/o TSL 302-48th Street East, Unit #2 Saskatoon, Saskatchewan S7K 6A4

ACTIVATION LABORATORIES LTD. c/o TSL 2031 Riverside Drive, Unit #2 Timmins, Ontario P4N 7C3

ACTIVATION LABORATORIES LTD. c/o TSL P.O. Box 9, Site 12 Rural Route 2, Reidville Deer Lake, Newfoundland A0K 2E0

ACTIVATION LABORATORIES LTD. c/o TSL 6 o 4 . 2971 Viking Way, Unit 108 Richmond, B.C. V6V 1Y1

604 - 270 - 4669 IVAN PEARY

QUALITY ANALYSES WITH RAPID TURNAROUND TIME AT A COMPETITIVE PRICE

ACTLABS

INTRODUCTION

Activation Laboratories is dedicated to providing **high quality analyses** with a **rapid turnaround** time at a **very competitive price.** The principals of the company have many years experience at providing analyses to the mineral exploration, university and government sectors and recognize the different needs of these groups.

Activation Laboratories is a full service laboratory and can handle all your analytical needs. We rely on many analytical methods, however, the primary techniques used include instrumental neutron activation analysis (INAA), inductively coupled plasma emission spectrometry (ICAP) and fire assay.

Our team of dedicated professionals will do their utmost to serve the needs of our clients. Please contact us to discuss your analytical requirements.

INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS (INAA)

INAA is an analytical technique which is dependent on measuring primarily gamma radiation which is emitted by the radioactive isotopes produced by irradiating samples in a nuclear reactor. Each element which is activated, will emit a "fingerprint" of gamma radiation which can be measured and quantified. Activation Labs use state of the art detection, electronic and computer systems to provide the most reliable analytical results available.

There are a number of advantages to using the INAA technique. These include:

- 1. No chemistry required, therefore little worry of contamination or whether the elements in question are in solution. The additional worry of whether there are abnormal amounts of a particular element which will cause chemical or instrumental interferences is also avoided with INAA.
- 2. INAA is a multielement technique capable of determining up to 35 elements simultaneously in most materials.
- 3. INAA is exceptionally sensitive to a number of trace elements including gold, the rare earths, platinum group metals and many other elements like arsenic, antimony, tantalum, uranium, thorium, etc. Many of these elements are very difficult and expensive to determine by conventional chemical procedures.
- 4. Trace elements including gold in organic materials such as humus or vegetation are easily determined directly with exceptionally low detection limits. The INAA technique does not require the expensive and slow ashing procedure of other chemical methods. This lack of ashing prevents potential loss of gold and improves the reliability of data due to lesser sample handling and potential human error.

INDUCTIVELY COUPLED PLASMA EMISSION SPECTROMETRY (ICAP)

The ICAP technique relies on placing the sample material into solution using either single acid, mixed acids or fusion techniques using fluxes. The sample solution is then introduced into a radio frequency excited plasma (\approx 8000°K). Each element in the solution produces a characteristic spectrum. The intensity of the spectral lines are directly proportional to the quantity of the element present. The advantages of this technique include:

- 1. ICAP is a multielement technique. The major rock forming elements and some important trace elements can be determined simultaneously to sensitivities better than x-ray fluorescence.
- 2. ICAP can provide very low cost multielement packages on partial acid digests.
- 3. Elements determined by ICAP are very complimentary to the INAA method.

APPENDIX II

ROCK SAMPLE DESCRIPTIONS

PROJECT # <u>120</u>

N.T.S. <u>92B/12</u>

LAB REPORT # _____

DATE April 30/89

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

		,				.	,				
SAMPLE NO.	LOCATION & DESCRIPTION	¥ Sulph.	TYPE	WIDTH (m)	Cu ppm	dd Mqq	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R59283	Argyll Cr. 700m elev. Qtz vein 0.10m x 1.0m, FeOx, Milky white gtz.	-	Chip	0.10							McIntyre & Frew
R59284	Argyll Cr. 700m elev. Sample of metasandstone/siltstone wall rock: 0.5m either side.	-	Chip	1.0							McIntyre & Frew
R59285	Argyll Cr. 545m elev. Qtz stringers in creek; 1.0m x 0.05m: FeOX.	-	Chip	0.05							McIntyre & Frew
R59286	Argyll Cr. 530m elev; Qtz vein Feox 1.0m x 0.06m.		Chip	0.06							McIntyre & Frew
							i i				
					:						

PROJECT # _____

LAB REPORT # _____

.

N.T.S. <u>92B/12</u>

DATE <u>May 12/89</u>

· · · ·

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

SAMPLE NO.	LOCATION & DESCRIPTION	ŧ Sulph.	TYPE	WIDTH (m)	Cu ppm	Pb Ppm	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R59293	Upper Deception Cr. Rd: Qtz stringers & blebs within amphibolite. Vgy Qtz 0.80m x 1.0m.	-	Chip	0.80	22	15	61	0.1	13	1	McIntyre
R59294	Upper Deception Cr. Rd: Qtz vein in phyllite wall rock. 0.12m x 1.0m.	_	Chip	0.12	12	4	33	0.3	2	8	McIntyre
R59295	Upper Deception Cr. Rd: Qtz stringers in phyllite wall rock 0.05m x 1.0m.	-	Chip	0.05	24	16	94	0.1	15	7	McIntyre
R59296	Upper Deception Cr. Rd: Qtz vein in phyllite wall rock. Vgy with limonite. 0.10m x 1.0m	-	Chip	0.10	17	5	16	0.1	3	4	McIntyre
R59297	Upper Deception Cr. Rd: Qtz vein in phyllite. Vgy with limonite. 0.10m x 1.0m,	-	Chip	0.10	24	8	58	0.3	8	5	McIntyre

PROJECT # _____

LAB REPORT # _____

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

ROCK SAMPLE REPORT

			1	<u> </u>	T	<u> </u>	<u>`</u>	1		1	
SAMPLE NO.	LOCATION & DESCRIPTION	% Sulph.	TYPE	WIDTH (m)	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R58725	Leech Group, Road J51, 980m along. Sample is rusty white quartz cross cutting foliation at +03L vertical. 1-2% dissem- inated fine grained biotite & pyrite throughout.	1-2	Channel	0.5x0.1	9	2	28	0.3	3	1	Northcote & Frew
R58726	Leech Group, Road J51, 955m from junction with Jordan Main. Sample is very coarse anhedral blotite with quartz pods up to l0cm hosted in phyllite. 2-3% disseminated pyrite and pyrrhotite, minor calcite.	2-3	Grab	0.5x0.5	490	10	262	0.3	22	8	Northcote & Frew

N.T.S. <u>92B/12</u>

DATE <u>May/89</u>

· •

1

PROJECT # 120

LAB REPORT # _____

N.T.S. <u>92B/12</u>

· · · · · ·

.

i

.

.

.

DATE <u>May/89</u>

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

SAMPLE NO.	LOCATION & DESCRIPTION	ξ Sulph.	TYPE	WIDTH (m)	Cu ppm	Pb ppm	2n ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R58722	Leech Group, Road J51, 1.2Km junction with Jordan Main. Sample is light grey quartz with pods of massive pyrite lo- cated in tight "Z" fold hosted in Phyllite.	5	Channel	0.5 x 0.05	23	5	28	0.1	4	4	Northcote & Frew
R58723	Leech Group, same location as R58723. Sample is Phyllite wall rock.	Trace	Chip	0.5	29	8	141	0.3	11	4	Northcote & Frew
R58724	Leech Group, Road J51, 1.1Km from junction with Jordan Main quartz breccia, rusty clear-white quartz with frag- ments of dark grey metasilt- stone with a trace of massive and disseminated pyrite and pyrrhotite.	Repr Trace	esentat Grab	ive 0.5x0.1 x0.1	20	2	56	0.2	5	3	Northcote 4 Frew

. .

PROJECT # _____

.

.

LAB REPORT # _____

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

ROCK SAMPLE REPORT

SAMPLE NO.	LOCATION & DESCRIPTION	% Sulph.	TYPE	WIDTH (m)	Cu ppm	dq mqq	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BX
R59580	Deception Creek West; 565m elevation. Sample is very rusty clear-white quartz with traces of biotite/chlorite and associated disseminated pyrite.	Trace	Panel	0.1x0.3	31	6	46	0.1	5	2	Frew

N.T.S. <u>92</u>

DATE ____April 30/89__

.

1

PROJECT # <u>120</u>

N.T.S. <u>92B/12</u>

LAB REPORT # _____

DATE April 1-May/89

· · · · · · ·

1

Т

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

SAMPLE NO.	LOCATION & DESCRIPTION	ء Sulph.	TYPE	WIDTH (m)	Cu ppm	dq mqq	Zn ppm	Ag ppm	As ppm	Au ppb	 SAMPLED BY
R59597	Located at Southern End of "Leech Traverse II. Sample is rusty, limonite-rich aplitic white vein with abundant blade- like vugs. Vein crosscuts foliation at Strike 348 Dip -75 (Foliation in phyllite host is Strike 315; Dip 63).	Nil	Channe:	0.1x1.0	14	2	11	0.1	5	1	Frew
R59598	Leech 10, North shore of small round lake. Sample is rusty clear-white quartz coplanar with foliation (Strike 287; Dip 60).	Nil	Panel	0.2x0.4	5	2	11	0.1	3	1	Callicott & Frew
R59599	Same location as R59598. Same type of quartz in R59598 but cross cutting at an orientation 230° vertical.	Nil	Channe:	1.0 x 0.05	6	2	7	0.1	6	1	Callicott

•

PROJECT # _ 120____

LAB REPORT # _____

N.T.S. <u>92B/12</u>

and the second sec

DATE <u>March/April/89</u>

1

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

SAMPLE NO.	LOCATION & DESCRIPTION	% Sulph.	TYPE	WIDTH (m)	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R55657(con't) R55491	vein orientation. 270+ Leech - Line #1 at 200mN Qtz vein in interlaminated phyllite/ss sheared zone. Quite gossanous. No sulfides observed. Qtz milky white. Shear zone parallel to folia- tion trend of ~290 %80°NE.	0	Chip	200cm	26	3	41	0.2	6	1	Pearson

PROJECT # <u>120</u>____

N.T.S. <u>92B/12</u>

``

LAB REPORT # _____

.

DATE <u>March/April/89</u>

..

.

.

1

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

SAMPLE NO.	LOCATION & DESCRIPTION	% Sulph.	TYPE	WIDTH (m)	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R59150 (con't)	rusty colour and locally vuggy texture. 1-2% visible sulphides cpy + py. Host rock is an Fe stained very fine grained phyllite with visible sulphides 2-3% py + cpy. Vein pinches & swells continuous over 4m. Taken on Leech Line #2 at 162mN										
R59201	Milky qtz vein sampled 20-30cm wide and length of outcrop 4m long. Chip sampled along 2m <1% visible sulphides py + cpy. Host rock Metasandstone. Vein parallel to foliation taken from Leech 2 Line at 535m.	<1	Chip Sample	2	9	8	19	0.1	2	1	McCorquo- dale
R55657	Quartz vein, Leech Claim Group, 20 metres upstream from H55655, white quartz, abundant Fe- stain, no visible sulphides,	Nil	Chip	1	3	3	7	0.1	2	2	Frew

PROJECT # <u>120</u>____

LAB REPORT # _____

N.T.S. <u>92B/12</u>

ч э

1

1

DATE <u>March/April/89</u>

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

SAMPLE NO.	LOCATION & DESCRIPTION	t Sulph.	TYPE	WIDTH (m)	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R55635(con't)	high biotite content - outcrop 7.0m wide ~ 30m long - taken 118m up logging road 940 on Leech claim group.		,							- - - -	
R55521	Leech claim group, northeast portion of claim block, boulder -like quartz vein in biotite phyllite.	Nil	Grab	0.2	9	8	52	0.1	8	5	Dempsey
R55665 #1 & #2	Taken 50m west of the north end of line Leech-4. Strongly stained white sacrosic quartz, strongly convoluted within phyllite by shearing (?), vuggy with abundant weathered feldspar.	RNil	epresen Grab	ative lxlm	16 10	4 2	27 13	0.1	62	1	Frew
R59150	2 Qtz veins each 20cm wide sampled over 3 metres on each vein. Qtz vein has 60% clear qtz and 40% milky qtz with	1-2	Chip	3	28	6	31	0.2	5	1	McCorquo- dale
NORANDA EXPLORATION COMPANY, LIMITED

PROJECT # _____

LAB REPORT # _____

.

N.T.S. <u>92B/12</u>

DATE June 16/89

PROJECT <u>BEAU PRE VALENTINE (LEECH GROUP)</u>

ROCK SAMPLE REPORT

SAMPLE NO.	LOCATION & DESCRIPTION	ξ Sulph.	TYPE	WIDTH (m)	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R58676	Same location as P58675; Phyllite with Qtz micro-veining limonitic with vuggy Qtz stringers. 304° 90°.		Grab	2.0	29	18	99	0.1	9	3	Saunders
R58691	Same location as P58695; Phyllite with qtz stringers. 3% limonite, yuqqy qtz 305°90°	_	Grab	1.0	11	8	33	0.3	6	3	Saunders
R58343	Leech 1 180N 50E. Qtz veins in Phyllite. 1-4cm veins strongly limonitic + vuggy. Sugar Qtz with some leached sulphides.	-	Chip	1.0	37	25	45	0.3	10	3	Singh

NORANDA EXPLORATION COMPANY, LIMITED

.

PROJECT # <u>120</u>

LAB REPORT # _____

.

N.T.S. <u>92B/12</u>

1

DATE March/April/89

PROJECT BEAU PRE VALENTINE (LEECH GROUP)

ROCK SAMPLE REPORT

SAMPLE NO.	LOCATION & DESCRIPTION	ŧ Sulph.	TYPE	WIDTH (m)	Cu ppm	Pb ppm	Zn ppm	Ag ppm	As ppm	Au ppb	SAMPLED BY
R42092	-McIntyre, Dempsey, Louden 44.3m upstream. 17.2m down- stream from H55160.	-	Grab	Float	12	2	43	0.1	3	9	Dempsey
R55167	Road side. Qtz vein Po, minor mag <1%.	<1	Chip hi_grade	-	148	5	67	0.1	2	4	McIntyre
R55168	Road side. Footwall Amph, Po, Cpy 1%.	1	wallroo grab	ck -	843	8	179	0.1	7	7	Dempsey
R55170	McIntyre, Dempsey. trav. qtz vein 125m S, 8m East.	-	Grab		32	12	64	0.1	11	3	McIntyre
R55171	McIntyre, Dempsey. Trav, qtz vein, 85m S mark.	-	Grab	-	15	7	29	0.1	6	1	Dempsey
R80411	<u>Qtz stringer</u> taken out of host biotite metasandstone. Quartz stringer in stockwork pattern within host rock - taken on line at St 800mN.	-	Grab	<2cm	10	3	30	0.3	3	3	Pearson
R55635	Hematitic? Metasandstone - medium to fine grained contain- ing phyllite lenses throughout-	-	Grab	20cm	18	6	52	0.2	2	4	Pearson

APPENDIX III

.....

_

ANALYSIS CERTIFICATES

C.F. MINERAL RESEARCH LTD 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6

TEL(604)763-181 (604)860-852

C.F.M. 89-705

NORANDA EXPLORATION COMPANY LIMITED PROJECT:120 R. WILSON 19/05/89

CODE	SAMPLE NO.	FRACTION	VIAL WEIGHT (gms)
67V	H55134	-60+150HN	0.811
68V	H55160	-60+150HN	5.652
69V	H55176	-60+150HN	0.419
70V	H55502	-60+150HN	1.596
71V	H55611	-60+150HN	0.700
72V	H55613	-60+150HN	1.080
73V	H55615	-60+150HN	0.802
74V	H55655	-50+150HN	1.482

C.F. MINERAL RESEARCH LIMITED

1677 POWICK ROAD KELOWNA, BRITISH COLUMBIA CANADA V1X 4L1

TEL. (604) 860-8525 (604) 763-1815

COMPANY NORANDA

• .

.

C.F.M. Batch 89-705

Ŋ

The following discrepancies were noted when your samples were logged in :

Bag Marking	List Marking	Label used
55134	H 55134	1155134
55611	H55611	H 55 411
55613	<u>H55613</u>	4 55613
55615	H 55615	H 55615
55655	H55655	H 55655

.

The following samples were received but not listed :

The following samples were listed but not received :

TEL(604)763-1815 (604)860-8525

C.F.MINERAL RESEARCH LTD. 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6

···· ·· ·· · · · - - ·

____·

¢

.

.

NORANDA EXPLORATION COMPANY LIMITED C.F.M. 89-705 PROJECT: 120 R. WILSON 19/05/89

SAMPLE NUMBER	ORIGINAL WEIGHT (KG)	FRACTION	WEIGHT (GMS)
H55134	8.400		
H55134		-60+150HM	0.62
H55134		-60+150HP	4.86
H55134		-60+150HN	0.78
H55134		-150HM	0.32
H55134		-150HP	2.53
H55134		-150HN	1.03
H55160	7.800		
H55160		-60+150HM	3.05
H55160		-60+150HP	30.54
H55160		-60+150HN	5.66
H55160		-150HM	1.54
H55160		-150HP	14.16
H55160		-150HN	8.80
H55176	9.000		
H55176		-60+150HM	0.46
H55176		-60+150HP	5.42
Н55176		-60+150HN	0.42
Н55176		-150HM	0.20
H55176		-150HP	2.64
H55176		-150HN	0.77
H55502	7.400	20.150.00	1 10
H55502		-60+150HM	1.40
H55502		-60+150HP	13.47
HSSSUZ		-60+150KN	1.00
H55502		-150HM	1.10 6.00
H55502			0.99
H55502		-150HN	1.03
H55611	7.800		0.00
H55611		-60+150HM	0.30
H55611		-60+150HP	8.75
H55611		-60+150HN	0.70
H55611		-150HM	0.11
H55611		-150HP	4.10
H55611		-150HN	080

NORANDA EXPLORATION COMPANY LIMITED

R. WILSON 19/05/89

i

-

•

٤

.

10,00,00

SAMPLE NUMBER	ORIGINAL WEIGHT (KG)	FRACTION	WEIGHT (GMS)
 H55613	8.500		
H55613		-60+150HM	0.56
H55613		-60+150HP	4.55
H55613		-60+150HN	1.04
H55613		-150HM	0.26
H55613		-150HP	2.81
H55613		-150HN	1.07
H55615	10.000		
H55615		-60+150HM	0.36
H55615		-60+150HP	3.56
H55615		-60+150HN	0.78
H55615		<u>-150HM</u>	0.10
H55615		-150HP	1.81
H55615		-150HN	0.74
H55655	7.600		
H55655		-60+150HM	0.26
H55655		-60+150HP	10.01
H55655		-60+150HN	1.47
H55655		-150HM	0.06
H55655		-150HP	6.95
H55655		– 150HN	1.61

ALL SAMPLES HAVE BEEN UV LIGHT EXAMINED - NO SCHEELITE GRAINS WERE FOUND.

NORANDA EXPLORATION CO. LTD. PROJECT 8906-066 120 FILE # 89-1588

North States

.

SAMPLET	X0 P2N	CU PPN	PB PPN	Za PPX	kg P9X	NI PPX	Co PPN	65K Nd	Te 1	λs PPN	U PPK	Au PPM	Th PPH	ST PPM	Cd P9N	SD PPM	Bi PPM	V 29%	Ca 1	P 2	La PPN	CT PPN	Xg L	Ba PPN	71 1	8 775	41 1	Xa S	I ł	¥ PPX	Au" 798
58563 58538 58667 58569 38669	: 1	30 22 13 13 26	15 11 9 \$ 9	84 58 40 35 53	.2 .2 .3 .1 .1	30 18 10 6 17	9 6 1 3 9	512 199 133 124 502	5,75 4,40 5,07 3,64 3,42	7 6 9 9 5	5 5 5 5 5	KD KD KD KD KD	2 2 1 1 2	17 13 12 10 19	1 1 1 1	2 2 2 2 2	2 2 2 2 2	92 65 95 85 61	.22 .11 .13 .09 .24	.082 .054 .051 .040 .058	5 6 4 8	47 30 24 20 25	.97 .58 .28 .21 .54	59 16 22 21 30	.12 .09 .11 .09 .11	2 2 2 2 2 2	3.82 3.18 2.07 2.35 2.18	.01 .01 .01 .01 .01	.09 .04 .03 .02 .04	1 1 1 1	3 6 15 4 9
5\$670 58671 58672 58673 58674	1 1 1 1	8 22 22 33 20	7 12 17 17 3	29 65 79 90 54	.1 .1 .1 .1 .2	9 19 18 25 14	2 7 6 11 5	97 297 238 323 218	1.32 4.01 4.64 4.86 3.58	2 3 9 4 2	5 5 5 5	ND Vd ND ND ND) 2 3 3 3	6 17 18 15 14	1 1 1 1	2 2 2 2 2	2 2 2 2 2	36 78 60 70 67	.03 .20 .13 .12 .15	.017 .036 .080 .088 .088	15 7 14 8 6	14 34 35 43 26	.19 .62 .53 .69 .44	14 48 44 51 36	.01 .12 .05 .09 .06	2 2 2 2 2 2 2	1.35 3.20 3.43 4.62 3.11	.01 .01 .01 .01	. 02 . 03 . 03 . 04 . 04	1 1 1 1	15 5 7 2 33
58675 58377 58678 58679 58680	1 1 1 1	16 15 12 22 25	11 13 8 11 11	66 56 51 67 105	.2 .1 .4 .1 .1	15 13 12 21 32	7 5 9 13	239 297 219 527 541	4.24 3.97 3.87 3.40 3.30	4 6 5 12	5 5 5 5	ND ND ND ND	2 3 2 2 2	14 11 18 21 29	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	60 64 82 64 40	.13 .13 .22 .22 .19	.051 .044 .047 .047 .031	8 8 8 13	28 30 26 30 37	.49 .43 .39 .68 1.02	32 35 26 49 31	.06 .05 .09 .08 .05	2 2 3 2 2	2.88 3.11 2.54 2.73 2.31	.01 .01 .01 .01 .01	.03 .03 .03 .04 .03	1 1 1 1	17 13 45 12 5
58681 58682 58683 58684 58684		15 11 20 25 10	11 12 13 11 6	59 44 64 92 40	.1 .1 .1 .1	22 8 16 27 8	10 3 4 25 3	412 122 199 747 154	2.73 4.44 5.62 4.95 2.08	7 5 12 11 6	5 5 5 5	XÖ NC ND Di Di Di	1 1 2 1 2	28 13 17 20 11	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	50 80 76 59 40	.26 .15 .11 .15 .12	.035 .047 .063 .078 .031	5 12 13 4	31 26 30 32 15	.77 .21 .53 .59 .25	42 19 27 59 23	.07 .09 .05 .05 .05	2 2 2 2 3	2.47 1.98 2.58 3.35 1.63	.01 .01 .01 .01 .01	03 03 04 04 04	1 1 1 2	34 18 20 9 3
\$8686 58687 58688 58689 58689	1 1 1 1	18 11 22 32 32	11 11 12 12 12	59 73 53 86 72	.2 .1 .2 .1 .3	18 23 14 25 15	6 9 6 9 6	214 362 269 294 210	6.22 4.78 4.50 6.31 5.55	18 7 6 11 8	5 5 5 5 5	40 40 40 40	2 3 1 4 3	15 14 14 13 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	90 73 85 84 88	.12 .20 .19 .16 .17	.063 .172 .103 .120 .135	6 8 7 7 5	38 38 29 43 45	.57 .75 .45 .64 .45	35 30 26 55 25	.09 .12 .12 .09 .10	2 3 2 2 1	2.83 3.95 2.92 5.09 5.38	.01 .01 .01 .01 .01	.04 .03 .02 .04 .02	1 1 1 1	14 18 13 22 4
58691 58694 58695 58695 58695	1 1 1	28 30 26 8 T	11 12 11 11 9	61 77 84 37 48	.2 .3 .1 .1 .1	14 16 17 7 10	6 5 3 12	190 157 207 132 438	6.89 10.32 4.24 2.44 1.27	8 14 10 3 2	\$ \$ 5 5 5	KD KD KD KD	2 2 2 1 1	12 19 14 18 16	1 1 1 1 1	2 2 3 2 2	2 2 2 2 2	89 138 69 73 38	.15 .21 .14 .19 .16	.080 .144 .067 .028 .013	5 6 8 7	43 56 29 16 21	.43 .35 .51 .26 .30	23 34 25 28 36	.12 .14 .08 .09 .04	2 2 2 2 2 2	4,69 5,14 1,53 1,42 2,05	.01 .01 .01 .01 .01	.02 .03 .02 .02 .03	1 1 1 2 1	15 12 5 9 10
44550 58690 STD C/XU-S	1 1 18	27 32 58	13 12 36	90 75 132	.1 .1 7.1	28 26 67	14 12 29	804 575 1011	\$.00 3.42 4.05	9 5 38	5 5 18	ND KD 5	1 3 37	29 22 59	1 I 17	2 2 14	2 2 19	65 55 57	.30 .27 .50	.073 .055 .087) 13 37	34 28 55	.89 .80 .87	61 46 173	.10 .09 .05	2 3 31	2.90 2.33 1.96	.01 .01 .06	.05 .04 .13	1 1 11	6 1 19

Page 2

1

í

(

6

ť

(

Ç

t i

C

€

Ć,

1

τ

						NO	RANÍ	DA 1	XPLO	DRAT	ION	ço.	LTC). P	ROJE	CT	8906	5-06	6 1	20	FIL	2 #	89-1	1588								Page 3
SAMPLE	No PPN	Cu PPN	Pb PPK	20 29%	Ag PPN	Ni 898	Со Р7К	Xa PPN	le 1	As PPN	U PPK	AU PPB	76 PPK	SI PPM	Cd PPM	SD PPN	BÌ PPX	Y PPK	Ca ł	P 3	La PPM	Cr PPK	Kç t	Ba PPN	7i 1	8 Pek	41 \$	Xe L	r 1	¥ PPK	AU* PPB	
R 58343	2	37	25	45	.3	14	4	168	2.06	10	5	D	i	LÔ	Т	2	2	13	.12	.038	2	31	. 59	75	. 07	1	1.21	.03	. 32	3	3	
R 58676	1	29	18	99	.:	30	9	351	4.12	9	5	ND.	8	12	1	2	2	36	. 95	.038	12	- 41	1.45	55	. 04	2	3.01	. 12	.10	1	1	
R 59691	2	11	8	33	.3	13	2	129	1.54	6	5	ND	2	3	1	2	2	13	. 96	.024	3	18	.41	17	. 92	9	. 78	.01	.04	3	3	

Ċ.

C

£

(_

STATE DATE DATE

ACTIVATION LABORATORIES LTD

P.O. Box 1420, 383 Elgin St., Unit 17, Brantford, Ontario, Canada N3T 5T6 Telephone (519) 758-0310 Fax (519) 758-8766

> Invoice No.: 893 Work Order: 899 Invoice Date: 03-JUN-89 Date Submitted: 23-MAY-89 Your Reference: C.F.M. 89-705 Account Number: N-01

NC.ANDA EXPLORATION CO. LTD. LC50 DAVIE ST. P. . BOX 2380 NA COUVER.B.C. N68 3TS

AT : R. WILSON

CERTIFICATE OF ANALYSIS

INAA package, elements and detection limits:

P	5.	PPB	AG	5.	PPM	AŚ	2.	PPM	BA	200.	РРМ
£	5.	PPM	CA	1.	&	CO	5.	PPM	CR	10.	PPM
CS	2.	PPM	FE	0.02	&	HF	1.	PPM	нG	5.	PPM
I	40.	PPB	MO	20.	PPM	NA	500.	PPM	NI	200.	PPM
F	50.	PPM	SB	0.2	PPM	SC	0.î	PPM	SE	20.	PPM
SR	0.2	S	ТА	1.	PPM	TH	0.5	PPM	Ū	0.5	PPM
W	4.	PPM	ZN	100.	РРМ	ĽА	1.	PPM	ČE	3.	PPM
N	10.	PPM	SM	0.1	PPM	EU	0.2	PPM	тв	2.	PPM
ΫD	0.2	PPM	\mathbf{LU}	0.1	PPM						

CERTIFIED BY :

DR. ERIC HOFFMAN

Bample description	AU	AG	AS	BA	BR	CA	<u>0</u> 0	CR	<u>cs</u>	FE	HF	HG	IR	MO	MA	MI	RÐ	S8	sc	ŝË	SR	TA
	PPB	PPM	PPH	PPM	PPX			FPM	PPM	4		PPK			PFM 	PPM	다. 	P7H 	FPM	PPX	₩ ₩	
455134-60+150HN	45	<5	14	(200	46	14	9	120	(2	4.54	720	(5	(40	INT	1610	(200	<50	8.2	71	<20	<0.2	18
455160-60+150HN 200176-601106191	7430	<5 75	12	<200 (200	64 or	10	14	320 50	<2	9.79	230	<5 75	<40 240	INT	1950	(200	(50 (50	4.4	59	<20 (20	9.3	13
155502-60+150HN	49 (5	\\$ (5	26 	<299 (200	35 43	11 11	117 9	50 190	- 14 10	4.33 F. AA	1400 146	(S) (S)	(49) (30)	161 187	1759 2878	4.200 7.288	∖50 <50	8.2 8.6	51 62	<_20 29	\♥.Z √0-2	55 S
155611-60+150HN		- (5	72	(200	- 32	-12			72	1.83	7500		40	INT	1040	7200	(50	5.4	40	(20)	(0.2	78
155613-60+150HN	8	<u>نې</u>	13	<200	49	(2	<u> </u>	120	<2	4.11	640	(6	(40	INT	1400	(200	<50	6.9	56	<20	(0.2	59
155515-60+150HN JECCEELCALTEAUN	<14 Z14		19	1400	52	15	<5 40	49 60	(2	3.28	1100 200	<8) 75	<40 ∠∡≏	INT	2180	<260 2000	(60 754	4.6	45	(27	<0.2 70-2	73
199134-1564N	4690	\ \{\$	149 S	1229 (200	35	\4 (2	10 (5	00 99	< <u>\</u> 2 (2	4.00 2.76	499 1499	<5 <5	\49 (₫₿	INT TAT	2400 6410	<200 (260	<50 (50	1.4	47 60	\.20 {2≬	(0.2 (0.2	45 10
155160-150HN	1570	<5	10	(260-		<u> </u>	14	310	3	8.83	- 310	₹5	(40	INT	4590	7200	<5≬	3.1	55	₹20	XØ.2	7
155176-156HN	1120	(5	6	<200	38	7	9	140	<2	3.34	1500	(5	(40	INT	5980	(200	(50	4.0	54	<20	(0.2	11
155502-150MN 155502-150MN	78 490	(5 /C	12	(209 7060	28 06	- 5 75	6 /c	110 710	- 32	2.8/	250 250a	<5 75	(40) 7.80	1NI TNT	4590	<200 7000	(50 7ea	3.2	50 50	<20 700	- (0.2 - 79- 0	9 55
155613-150HN	1020	\0 <5	7	(200		\4 8	\\$ (5	×19 84	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.47 7.46	2500 1300	\0 {5	140 140	ana INT	4620 3090	<200 (200	159 (50	0.0 54	- 52 65	\.29 \?Ø	(0.2 (0.2	23
155515-150HN	610	<5	~2	(200	52	14	- (5	-13	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.43	-2000-			INT	- 5950	7200		3.5	- 58		7072.	12
155655-150HN	47	<5	17	870	27	<1	6	68	<2	2.25	980	⟨5	⟨40⟩	INT	4580	<200	< 50	3.7	54	(20	<0 .2	11
<u> </u>																						
											···	· • • •								. 		
									·				·			_						

Activation Laboratories Ltd. Work Order: 899 Report: 893

 \sim

Sample description	TH 	U - M99	₩ PPM	ZN	LA PPM	CE PPM	ND FF#	SK - PPM	EV PPM	TB PPM	YB PPH	LU - PPM -	Mass	 			 ·
H55134-60+150HN H55160-60+150HN H55176-60+150HN H55502-60+150HN H55502-60+150HN	110 46 150 28	60 12 120 12 120	18 <4 13 18 	<100 <100 <100 <100 <100	640 380 490 140	1000 590 1300 250	540 260 1100 140	73 41 190 25	19.6 11.2 44.0 7.8	5 5 29 4	49.9 21.3 121 15.5	10.0 4.2 20.1 2.9	0.8110 5.652 0.4190 1.595 0.7000	 	·	 <u>.</u> .	
H55613-60+150HN H55613-60+150HN H55615-60+150HN	150 180 290	94 120	91 29 140	<100 <100 <120	550 1000 1600	1300 1800 2700	1000 1100 1500	199 170 220	40.9 42.7 50.4	32 27 34	88.4 115	21.5 15.4 21.7	0.7000 1.080 0.8020				
H55555-50+150HN H55134-150HN H55150-150HN	270 61 	70 98 14	110 15 	<100 <100 <200	1500 240 190	2100 430 	1100 230 160	160 34 23	34.9 10.4 7.7	25 6 - 4	62.9 72.9 23.0	12.5 16.2 4 17	1.482 1.057 8:790-	 -		 	
H\$5176-150HN H\$5502-150HN H\$5611-150HN H\$5613-1564A)	72 25 97 96	100 20 180	8 5 12 22	<100 <100 230	240 120 220	450 180 530 570	330 83 370 400	44 17 57	10.9 5.5 18.1 20.0	9 3 11	79. 4 20. 4 137	16.9 3.9 29.6	0.7790 1.878 0.8000				
H55615-1504N	100	150		(100		670	390		19.5	13	115	25.0	0:7230	 	 	 	
H55655-150HN	86	82	12	<100	360	600	330	52	14.5	8	63.5	13.8	1.817				
						<u> </u>					· ··- 		<u> </u>	 	 	 	
······												.		 	 	 	

C.F.MINERAL RESEARCH LTD. 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA V1Y 5W6 TEL(604)763-1815 (604)860-8525

05-23-1989

INVOICE	3 NUMB.	ER: 618	3
Please	quote	invoid	e
number	when	making	payment.

NORANDA EXPLORATION COMPANY LIMITED

P.O. BOX 2380 VANCOUVER, BC V68 3TS

Attention: R. WILSON Project: 120 INVOICE RE PROCESSING HEAVY MINERAL SAMPLES C.F.M.89-705 Number of samples 8 Sample size: `10KG CS. Washing & Drying @ \$9.60/sample 76.80 Wet Sieving, Sizing and semigravity concentration @ \$16.75/sample 134.00 Tetrabromoethane separations using 0.5-1.0 micron double filtration: First 3000 g sized concentrate @ \$14.50/sample 116.00 Methylene Iodide separations using 0.5-1.0 micron double filtration: First sized concentrate @ \$22.00/sample 176.00 20.80 Sieving sample 1 times @ \$2.60 each/sample Electromagnetic separations: 2 sized heavy concentrates @ \$7.50 each/sample 120.00 Weighing 48 resultant concentrates to 0.02 gm tare accuracy @ \$.70 each 33.60 Vialing, Coding and weighing to 0.001 gm accuracy 16 concentrates @ \$2.60 each 41.60 Storing -20+60 mesh fractions @ \$2.20 each 17.60 Prepaid Shipping charges 28.50 _____ 120-FER, TOTAL COST \$ 764.90

THIS IS A PROFESSIONAL SERVICE, ACCOUNT DUE WHEN RENDERED, ACCOUNTS OVER 30 DAYS WILL BE CHARGED 2% PER MONTH INTEREST.

ACTIVATION LABORATORIES LTD

:

P.O. Box 1420, 383 Elgin St. Unit 2, Brantford, Ontario, Canada N3T 5T6 (519) 758-0310

5am	ipie Numbers (Series) 82V	No. Parcels in Shipment Elements to be Analyzed Au + 33	Remarks
Sam 67.V -	ipile Numbers (Series) 82V	No. Parcels in Shipment Elements to be Analyzed Au + 33	Remarks
5am 677 -	iple Numbers (Series) 82V	No. Parcels in Shipment Elements to be Analyzed Au+33	Remarks
Sam 677 -	npile Numbers (Series) 82V	Elements to be Analyzed	Remarks
<u>67</u> ¥-	82V	Au+33	
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
19 /89	Via <u><u><u> </u></u></u>	laZor	Prepaid R Collect 🛛
Results a	and Invoices To Be	Sent To Note: Noranda	requiresre
		by June 9-ple	ase fax to
	De Dacuite de	,	
	02 Results 100	R. WILSON A.S.A	P. Fax No:
375	🛛 Results 🕮 🖓 Invoices 🗆	R. WILSON A.S.A 604-689-84-	P. Fax No:
375	βαΩ Results α Ωaγ Invoices ⊡	R. WILSON A.S.A 604-689-84-	<u>P. Fax No:</u> 39
375	Def Results and Def Invoices	R. WILSON A.S.A 604-689-84-	<u>P. Fax No:</u> 39
375	Ø Results Ø Invoices O Results	<u>R. Wilson A.S.A</u> <u>604 - 689 - 84</u>	<u>P. Fax No:</u> 39
375	Ø Results Ø Invoices O Results O Invoices	<u>R. Wilson A.S.A</u> <u>604 - 689 - 84.</u>	<u>P. Fax No:</u> 39
	(geochem. Only) tore 1 month tore 1 year and re 19 189 Results : Ca. L. Ed.	(geochem. Only) tore 1 month	(geochem. Only)

C.F. MINERAL RESEARCH LTD TEL(604)763-181 263 LAKE AVENUE KELOWNA, BRITISH COLUMBIA CANADA VIY 5W6

NORANDA EXPLORATION COMPANY LIMITED C.F.M. 89-705 PROJECT:120 R. WILSON 19/05/89

.

CODE	SAMPLE NO.	FRACTION	VIAL WEIGHT (gms)
75V	H55134	-150HN	1.057
76V	H55160	-150HN	8.790
77V	H55176	-150HN	0.779
78V	H55502	–150HN	1.878
79V	H55611	-150HN	0.800
80V	H55613	-150HN	1.076
81V	H55615	-150HN	0.723
82V	H55655	-150HN	1.617

	PROPERTY/LO	CATION: BEAUPRE-VALEN	VTINE	CODE : 8905-017
	Project No. Material Remarks	:120 :140 SDILS & :1 SILT	Sheet:1 of 3 Geol.:J.Mc.	Date rec'd:MAY.15 Date compl:MAY.19
nan Setter to a			Values in PPM,	except where roted.
1993 S.J.	т.т.	SAMPLE	PPR	
	No.	Nc.	<u>ค</u> น	
	73	44587		
	74	44588	5	
	75	44589	5	
	76	44590	5	
	77	44591	5	
	78	44592	5	
	79 80	94333 44594	3 5	
	80 A1		2 5	
	82	44596	5	
	83	44597	- 5	
	84	44598	5	
	85	58701	5	
	86	58702	5	
	87	58703	5	
	38 5 5	58704	5	
	89	58705	5	
	90	56706	5	
10000000000	91 92	56709	ត គ	
	93	58709		
	94	58710	5	
	- 95	58711	5	
	96	58712	5	
	97	58713	5	
	98	58714	5	
gaag alaa	99	58715	5	
S. 20 5500	100	58716	5	
	2	58/1/	5	
	ت 4	58719	3 5	
	, 5	58720	с 5	
	6	56721	5	
	7	58988	5	
	8	58989	5	
	Э	58590	5	
	10	58991	5	
	, 11	58592	5	
	12	58993	5	
	13 14	58994 RRDCH	30	
	14 15		ະ 5	
	16	58977	3 E	
	17	5899A	5 5	
	18	58999	ب ۲	
	19	59000	5	
	20	59101	5	
	21	59102	5	

· . ·				
•				
	т.т.	SAMPLE	898	8905-017
,	No.	No.	Ĥu	Pg. 2 of 3
	22			
	23	59103	20	
	24	59105	5	
	25	59106	5	
	26	59107	5	
San dhabhail	27	59108	5	
are tastalah	28	59109	5	
	29	59110	5	
	30	59111	5	
	31	59112	5	
	32	59113	5	
	33	59114	5	
	34	59115	5	
	35	59116	5	
	36 ·	59117	ວັ	
	37	59118	5	
11 T.B.	38	59119	5	
	39 70	29120	5	
	40	コラ1ご1 転送1	5	
	41 42		ರ ಕ	
	43	55125	5	
	44	59125	<u>ت</u>	
	45	59126	5	
	46	59127	5	
	47	59128	5	
	48	59833	5	
	49	59534	5	
وشاماره مارو المسابقة والمار معاردة والمسار	50	59535	5	
	52	59536	5	
	23 54	201337 505 20	5	
	ತ್ *	27328 56576		
	55	5954A		
	57	59541		
ai a	58	59542		
	59	59543	5	
	60	59544	5	
	61	59545	5	
	62	59546	5	
	63	59547	5	
	. 64	59029	5	
	60 80	59030	5	
	66 67	37031 850000		
	59	55052 55033		
	69	50000	د_ع روز	
	70	59035	· · · · ·	
	71	59036	5	
	72	59037	55	
	73	59038	5	
	74	59039	5	
	75	59040	5	
	76	59041	10	
	77	59043	5	
	78	38951 58955	10	
	13	20225	5	

	· ·			
	т. т.	SAMPLE	명덕덕	6905-017
	No.	No.	Au	Pg. 3 of 3
	60 61	SAGEA		
	81 82	50504		
	87 87	58956		
· .	84	58957	5	
	85	5895A	5	
	86	58959	5	
	87	58960	S	
	BB	58961	5	
	89	58962	5	
	90	58963	5	
	91	58964	-	
	92	58965	5	
	93	58966	5	
	94	58967		
	95	58968	5	
	96	58969	- 5	
	97	58970	5	
	9 8	58971	5	
	99	58972	5	
	100	58973	5	
	52	58974	5	
	53	58975	5	
	54	58976	5	
	55	58977	5	
	56	58978	5	
	57	58979	5	
Malata and	58	58980	5	
000000	59	58981	5	
	60	58982	5	
	61	58983	5	
	6 2	58984	5	
	63	58985	5	
	64	58986	5	
	65	58987	5	
	6 6	59593	ti de la companya de	

Beaupre- Valentine (Mc)

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

8905-017

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNOJ-H2O AT 95 DEG. C FOR GNE HOUR AND IS DILUTID TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CE NG BA TI B W AND LIMITED FOR HA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* AWALTSIS 31 ACID LEACH/AA FROM 10 GK SAKPLE.

NORANDA EXPLORATION CO. LTD. PROJECT 8905-017 120 File # 89-1077

\$247131	Хc	Cu	71	2 n.	Å¢.	1	Ce	Nn.	fe	h s	ť	A a	7t	55	Cd	Sþ	B 1	¥	Ca	P	10	C7	Kg	₿a	Ťi	B	Al	Na	£	. W	አ ቢያ
	Pex.	PFK	29N	PPK	268	2 P X	99H	PPN	ł	2PX	PPN	868	29 <u>%</u>	PPN	9 F 1	PPN	PPN	PPX	ł	1	89 <u>%</u>	PPN	٤	P9N	٤	PPK	ł	1	ł	228	PPB
55175	2	25	2	35	.1	11	6	215	1.53	6	÷	ND	• 1	11	1	2	2	41	.16	. 025	2	26	.60	204	.12	2	. 93	.04	. 0	1	5
55177	1	13	3	12	. 2	12	- 4	167	1.61	5	5	HD	ĩ	11	1	2	1	31	.07	.024	3	20	.48	101	.07	3	. 8 5	. 03	. (2	2	1
\$8722	3	23	5	26	.1	15	1	178	1.22	ŧ	5	Зí D	1	ŗ	!	2	2	19	. 08	.014	2	15	.35	64	.05	2	. 50	.01	.32	1	
53723	1	29	3	14	. 1	43	15	825	5.84	11	5	HD	ţ	ŝ	1	2	2	125	. 18	.066	1	- 75	1.95	367	.25	2	3.92	, 02	1.31	1	4
58724	2	25	2	56	.?	3	ł	229	2.0	5	5	КÔ	2	1:	1	3	:	37	.12	.040	4	29	.82	55	.08	1	1.07	.03	.35	1	3
58725	2	9	2	28	.3	13	4	218	1.45	3	5	НD	1	ş	1	2	3	24	. 03	.003	2	10	. 29	51	.04	2	. 50	.01	.14	2	1
58726	1	190	:0	282	.3	179	- 45	1360	8.39	22	5	ΚD	1	102	1	2	:	148	1.11	.263	B	31	2.06	112	.17	7	1.76	. 35	1.14	:	8
59727	1	õ	3	8	.1	13	2	73	. 43	2	5	XD	1	2	1	2	2	5	.04	.009	2	11	.07	13	.01	2	.13	.01	. 14	1	:
58754	1	19	5	19	.1	15	:0	421	3.00	5	5	ЯD	2	15	1	2	1	75	. 1 6	.043		38	1.2	392	. 21	2	2.06	. 4 5	1.10	:	1
59221	1	30	10	54	.1	36	17	103	2.22	50	5	хD	3	1	1	2	:	н	. 06	.001	7	20	.54	26	.02	2	.99	.01	30,	1	ł
59288	:	11	15	96	.1	35	19	137	3.79	20	5	۹D	5	12	1	2	2	26	.16	. 063	13	30	1.16	42	. 02	6	2.10	.:	.05	ì	1
59289	1	21	3	27	.1	23	9	298	1.50	5	5	НD	1	19	1	2	2	25	. 22	.041	3	26	. 61	5	. 09	8	. 79	.02	.01	1	:
59299	2	17	5	÷3	.1	26	6	240	1.67	6	5	82	2	2	1	2	2	17	.06	. 025	5	14	.56	28	. 01	6	. 95	. 02	. 66	1	1
59291	:	10	8	38	.1	39	6	335	1.64	14	5	ЯD	1	9	1	2	2	12	.10	. 024	3	15	. 65	24	.04	6	. 86	.0;	.05	1	54
80397	2	26	;1	70	.1	27	13	223	3.35	9	5	XC	5	\$	Т	2	2	18	.04	.035	11	12	. 51	36	, 01	\$	1.03	.01	.08	1	\$
STD C/A0-R	18	61	42	112	8. 5	73	31	1018	3.90	41	17	8	17	51	13	и	21	58	. 17	. 086	38	56	.87	180	. 67	34	1.81	.06	.13	12	490

ł (. ť ι., ſ, 0(,8

٤

• :

t

1

ŧ

ł

1

ţ

S Ο

ACME ANALYTICAL LABORATORIES LTD.

-

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

40

GEOCHEMICAL ANALYSIS CERTIFICATE

ECP - .505 GRAM SAMPIS IS DIGESTED WITH INL I-1-2 HCC-EMOI-HIG AT 95 DEG. C FOR OME HOUR AND IS DILUTID TO DO ML WITH WATER. THIS LEACH IS PARTIAL FOR MM PE SE CA P LA CE MG BA 71 B W AND LIMITED FOR MA K AMO AL. AU DEFECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: POID

第二次のない

÷

\$347103	же Е2И	Cs PPH	25 799	11 29X	94 1153	Х; 729	20 P?N	N: PPX	Fe t	28 895	5 898)() 979	dt Ker	52 295	C1 ?2%	55 121	31 P9N	96 A 1964	۲2 ۱	P	La Fen	CT PJN	KÇ 1	Ba Zem	1: 1	B Pfn	11 1	¥a t	ţ	11 275
41581 44588 41585 41585 41590 41591	1 ; ;]]		; ; ;; ;;	21 25 25 25	.1 .2 .1 .1	8 1 1 2 2 2	5 8 4 10 1	118 124 15 230 10	1.01 1.15 .71 1.02 .31		(CH Dk CH Dk Sh	· 1 1 1	28 10 65 26 117	1 1 1 5	111 LA 111 LA 111	312244	25 15 26 69 3	.1) .36 .15 .19 .44	.021 .146 .072 .001 .027	9 5 14 9 2	17 40 11 35 2	.36 .45 .23 .71 .10	59 55 157 102 54	. 06 . 19 . 02 . 01	1 1 5 3	1.11 5.06 1.14 3.25 .14	.91 .91 .91 .91 .91	.01 .10 .01 .03 .03	1 1 1 1 1
44592 44392 44591 44591 44555 44555	1	14 25 35 14	1 13 13 15 15	55 48 91 91 65	.1 .1 .1 .1	1 5 29 28 16	i 28 18 17	11 48 2000 241 154	.14 .21 1.06 3.63 5.96	1 1 1 1 1	5 5 5 5	HD Yd HD Yc HD	1 1 1	92 77 51 9 32		3 7 1 7 1	3 1 2 2 2	1 83 86 11	.51 .52 .37 .67 .21	.045 .042 .047 .058 .033	1 20 13 5 [3	6 51 40 21	.09 .04 .52 .10 .42	46 80 125 39 59	.02 .01 .08 .08 .09	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.11 .46 1.15 4.09 1.72	.02 .01 .01 .01 .01	. 01 . 02 . 05 . 04 . 01	1 ; 1]
(4591 44595 5970) 50702 59703		29 19 17 17 13	* 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	92 40 75 57 69		20 5 25 25	5 10 12 12	237 106 315 275 25)	3.44 5.59 2.56 2.15 2.17	8 13 3 5 6	5555	NG HD 50 HD HD	3 3 3 3 3	12 12 25 11 11	l 1 1 1	2 2 2 1	2] 2]]	55 96 52 45 60	.10 .11 .19 .18 .11	.061 .112 .041 .541 .043	: 1 1 7	39 18 31 31 30	.54 .21 .36 .73 .61	46 15 64 12 52	.12 .13 .11 .11 .11	2	3.46 2.19 3.21 3.25 3.01	.01 .41 .51 .01	. 26 . 02 . 06 . 04 . 04	: : : :
58704 58705 58706 58706 58707 58708	: ! 1 !	38 27 31 35 11	15 17 5 15 10	16 60 60 65 40		30 18 11 23 21	11 1 1 1 1 1 1	281 249 231 253 126	3.29 3.11 3.41 2.86 2.53	4 9 10 5 4	5	KD KD KD KD KD	351	15 11 11 12 14	1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 3 2	51 39 59 50 66	.11 .11 .11 .09 .01	.035 .041 .055 .526 .014	5 5	14 25 10 32 20	.91 .56 .56 .10 .21	83 35 27 61 31	.14 .14 .13 .13 .12	2 4 2 5 2	2.61 2.90 3.35 3.27 1.81	.01 .01 .01 .03 .03	.08 .03 .01 .15 .01	1
50709 58730 58711 50712 50712		12 14 15 19 22	7 12 9 5 66	51 85 21 52 (3	.1 .1 .1 .1	21 10 5 17 13	6 Տլ Տ Բ	263 669 86 562 239	2.55 3.39 2.86 3.45 3.55	1 12 10 12	5 5 5 5	ND Ng Ng Nd Nd	3 1 1 2	12 10 6 9 7	! 	2 2 3 2 2	2 2 2 3	51 52 84 56 51	. 10 . 08 . 06 . 29 . 06	. 926 . 948 . 936 . 943 . 968	5 5 5 6	129 10 20 32 33	.15 .51 .13 .52 .47	52 30 11 27 26	.14 .12 .01 .08 .08	2 3 4 2 2	3.00 3.56 1.25 2.53 2.44	.0: .0: .01 .01	.08 .04 .02 .03 .04	1 1 1 1 2
58714 58715 58716 58717 58717 58717	1 1 1 1	27 27 17 14 29) 7. 3 12 19	62 10 88 44 5]	.1	19 17 27 22	1 11 11 11	506 22* 359 126 301	1.11 3.32 3.17 1.71 3.24	1 2 6 1	5 5 5 5	ND ND ND ND ND	2 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 14 14 15 16	1 1 1 1	2 2 2 2 3 3	2 2 2 2	51 53 51 51	.16 .11 .13 .15 .14	.052 .043 .455 .032 .022	6 1 1 1	28 31 34 21 31	.69 .41 1.00 .36 .01	58 41 53 31 52	.11 .15 .16 .10 .16	1 1 2 1	2.16 3.56 1.03 .59 2.33	.01 .01 .01 .01	.01 .01 .09 .04 .07	1 1 3 1
58719 58720 58721 58388 58388 58385	נ ו ו	18 13 52 44 45	5 6 9 1	40 21 91 14 86	.3 .1 .2 .1 .3	8 19 30 21	3 5 12 11 50	128 [38 368 432 355	3.02 2.71 3.96 3.30 3.81	7 5 10 11	5555	ND DX DX DX DX	1	11 13 15 14 50] 	1 2 1 2	1 1 1 1 1 1	71 91 72 49 55	.08 .12 .10 .13 .00	.042 .033 .013 .056 .030	5 T 9 J	25 57 33 39	.30 .20 1.02 .92 1.03	22 11 16 16 16	.12 .13 .15 .15 .12 .11	2 3 7 3	1,35 1,37 5,53 2,58 3,42	.01 .01 .02 .31 .01	.92 .91 .90 .08 .07	1 2 1 1
55990 STD C	1	1 10	5 40	16 133	1	5 73	2 31	5 7 1020	.82 1.90	1 41	5 18	ND F	1	6 12	ו פי:	2 15	2 20	39 60	. 04 . 18	.010 .029	5 39	6 59	.08 .89	11 :82	.01 .01	2 32	. 15 1. 74	.01 .06	.52 .11	2 13

(3

Į.

Т

ć

ζ.

1

í.

(

7

Ċ

C

t

¢

í

i,

NORANDA EXPLORATION CO. LTD. PROJECT 8905-017 120 FILE # 89-1130

Contraction of the second

23

SAMPLES	No PPN	CU 29%	PD PPM	IC PPX	λç PPX	111 5 PX	Co PPM	Nn 99%	7e 1	As PPN	U FPX	AU PPX	TI: 29%	Sr PPX	Cđ Pen	52 794	B1 PPX	¥ 294	Ca t	₽ ₹	La PPX	CT PPN	Hợ t	81 795	ti 1	B FPK	Al L	Na Ł	I 1	۲ ۲۹۶
58591 58592 58593 58594 58593	 	70 41 40 34 9) 0 [5 2 21 3	80 89 43 11 29	.1 .1 .1 .2 .2	65 38 14 15 6	19 24 3 6 4	511 105 166 172 171	4.00 3.61 1.91 5.31 1.63	11 3 1 2	5 5 5 5	NC NC XD XD XD	1 1 5 1	10 12 1 6 12		22222	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5D 42 37 67 41	.14 .13 .94 .04 .10	.053 .051 .007 .078 .013	6 10 4 5 5	22 35 21 53 15	1.31 .94 .57 .50 .32	63 59 35 21 59	.20 .06 .05 .13 .08	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.85 1.37 1.16 5.27 .80	.03 .01 .01 .01 .01	. 17 .06 .03 .02 .03	1 1 1 2
58396 58997 58998 58395 58395 58320	1 1 1 1	21 15 24 32 22	10 5 7 5 7	59 36 40 55 60		18 15 11 29 17	54697	153 107 130 245 214	3.54 4.24 4.58 3.65 3.30	8 7 6 11	5 5 5 5	XD XI ND ND	2 2 3 3	7 6 6 8 7	1 1 1	2 2 2 2		54 57 99 67 52	.04 .02 .04 .05	.014 .016 .022 .036 .039	5 4 6	31 24 29 39 32	.49 .32 .14 .71 .59	46 15 29 57 41	.08 .06 .12 .09 .10	3 4 2 5 2	2.68 1.36 2.11 4.15 2.53	.01 .01 .01 .01 .01	.04 .04 .03 .05 .94	1 1 1
59101 59102 59103 59103 59104 59105	1 1 1 1	21 18 23 28 32	9 9 3 3 3	71 63 89 70		19 11 20 25 23	10 49 7 11	511 1741 241 306 357	3.72 2.03 3.21 3.31 3.30	5 3 7 3	5 5 5 5 5	no Kđ NC ND NC	1 1 2 2	5 9 8 8	! 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2	62 42 45 51 47	.07 .07 .07 .06 .05	.039 .025 .036 .028 .033	5 8 5 5	26 17 26 36 33	.63 .30 .56 .73 .67	48 57 52 53 49	.11 .06 .08 .11 .08	1 1 2 2 2	2.00 3.38 2.28 3.53 3.11	.01 .01 .01 .01 .01	.05 .03 .03 .04 .04	1 3 1 1 1
59106 59307 59108 59108 59105 59110	1]]]	57 32 19 23 22	13 6 15	69 63 51 66 55	-2 -1 -1	45 10 11 17 3	13 \$ 6 7 5	448 222 153 275 107	3.94 2.92 2.96 2.51 2.77	12 2 6 2	5 5 5 5	XD He NC NC	222222222222222222222222222222222222222	10 9 9 6	l 1 1 1	2 2 2 1 1	2 2 2 2 4	51 53 65 196 41	.07 .06 .05 .08 .08	.046 .034 .041 .029 .069	5 5 4 5	40 34 33 49 23	.99 .70 .51 1.15 .22	60 30 53 47 36	. 13 . 14 . 20 . 26 . 08	8 2 2 2 1	4.13 3.47 2.57 1.95 3.35	.0: .0] .0] .0] .0]	.06 .10 .07 .05 .05	1 ! 1 1
59111 59112 59113 59114 59115	1 1 1 1	7 20 20 24 35	6 6 7 3	24 53 47 86 85	.1 .1 .2 .7	10 16 13 13 30	4 7 5 6 11	115 173 183 166 355	1.85 2.95 3.54 5.56 3.94	3 2 4 12 8	5 5 5 5 5	NT H o Nd NC ND	1 1 2 1 4	6 6 5 8 9	1 1 1 1	1 2 2 2 2	2 4 2 2	68 78 67 122 67	.06 .06 .05 .07 .06	.025 .021 .065 .073 .056	1 1 3 4 7	22 16 28 33 43	. 46 . 78 . 35 . 33 . 95	44 54 14 10 33	.21 .20 .06 .12 .09	2 2 2 2 2 2	1.10 2.34 1.84 1.45 3.38	.01 .01 .01 .01 .01	.09 .10 .03 .03 .04	1 1 1 1
59216 59117 59118 59219 59120 .	1 1 1 1	27 22 15 16 23	15 9 9 1 1	55 62 52 45 50	.3 .3 .3 .1	19 19 9 8 16	7 6 6 3 7	229 241 176 123 168	3, 98 4,00 3,69 3,57 3,38	11 4 2 3 4	5 5 5 5	ND ND ND NC ND	5 2 2 2 1) 12 11 7 7] 1 1 1 1	2 2 2 2 2 2	5 2 5 2 2	58 73 78 65 68	. 95 . 11 . 08 . 05 . 07	.038 .048 .022 .022 .022	6 5 3 3	25 28 30 29 35	.54 .69 .78 .52 .54	17 53 43 19 36	.09 .21 .25 .07 .06	3	2.12 2.37 1.83 1.94 2.61	.01 .01 .01 .01 .01	.03 .11 .07 .04 .03	1 1 1 1 1
59121 59122 59121 59121 59124 59125	1 1 1 1	29 40 33 32 14	10 17 9 5 2	70 80 91 57 42	.6 .3 .1 .2 .6	18 31 25 25 9	10 10 8 5	183 248 324 242 177	5.17 4.06 3.42 3.23 2.45	7 3 4 5 6	555	ND XD ND ND ND	5 4 2 3 1	9 3 14 12 32	1 1 1 1	2 2 2 2 2	2 2 2 3	56 58 54 54 56	.08 .06 .11 .11 .11	.075 .035 .059 .045 .045	7 7 5 4	14 18 33 29 18	.51 .82 .78 .65 .26	34 62 48 39 18	.05 .04 .06 .07 .06	4 2 3 2 2 3	4.37 8.90 9.00 2.73 1.31	.01 .01 .01 .01 .01	.05 .05 .07 .05 .03	1 1 1 2
59126 310 C	1 18	20 63	7 37	56 137	.1 1.1	14 73	6 30	205 957	1.69 1.86	3 29	5 20	HC 1	2 36	12 50	1 18	2 15	2 18	72 58	.14 .32	.020 .087	5 37	26 55	.56 .87	34 176	. 08 . 07	3 2 32 1	. 33	.01 .98	.03 .13	1 11

Page 2

10

f

£

t.

(

t

(

 i_{12}

e.

C

ŧ

C

£.

(

NORANDA EXPLORATION CO. LTD. PROJECT 8905-017 120 FILE # 89-1130

A CONTRACTOR OF A CONTRACTOR O

\$1#713¥	NO PPX	Cu PPM	55M 96	La PFX	AÇ Pek	181 PP4	Co ??N	HA 2PX	Pe N	A S PPX	56K	U.S. H95	11). P P X	т2 Р РХ	C:1 PPN	SD PPK	8) ??N	V 299	Ca R	? 1	La PPX	CT PPN	Nợ l	B# PEN	ti k	8 295	41 \$	Xa X	I ł	¥ PPS
59127 59123 5932 59535 59535 59535	1 1 1 1	17 5 18 17 14	15 5 16 9 7	58 50 49 61 75	.2	35 11 6 13	33 4 5 6 13	262 137 114 129 336	L.67 1.50 3.53 4.17 2.62	12 12	555	80 50 80 80 80 80	1 2 1 1	22 11 8 11 25	 	2 2 2 2 2	2 2 2 2	29 30 80 83 50	.17 .08 .07 .07 .13	.043 .011 .055 .143 .011	19 4 5	28 17 32 44 28	.51 .45 .41 .62 .80	47 29 21 47 122	.02 .02 .13 .15 .09	3 1 2 8 2	2.75 1.36 2.97 2.53 1.76	.01 .01 .01 .01 .01	.04 .03 .02 .09 .05	1 1 1 1 1
59526 59527 59538 59529 59529	l 1 1 1	6 8 12 16 20	9 7 15 8 13	35 54 32 48 61	.1 .3 .1 .2 .2	5 14 3 18 20	5 8 1 5 8	113 203 104 172 242	2,34 2,14 3,18 2,86 3,99	2 2 5 5 7	5	ND NC ND ND	1 1 3 2 3	1 1 9 11	1 1 1 1 1	64 T. 1 14 64 64	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	62 72 64 89 53	.09 .10 .04 .08 .10	.013 .DDE .032 .034 .033	3 4 4 5	23 36 24 34 31	.32 .73 .32 .46 .63	20 52 28 35 45	.16 .21 .19 .09 .12	2 4 2 3	1.27 1.89 3.11 3.52 2.74	.01 .01 .01 .01 .01	.02 .09 .06 .04 .05	1 1 2 1
59542 59542 59542 59542 59544 39545	2 1 1 1 1	34 18 27 3 4	13 16 13 2 2	79 52 52 35 34	.2 .1 .2 .2 .1	27 15 13 12 2	9 1 6 7 1	243 157 176 113 61	3.28 4.15 3.23 1.04 .14	5 3 3 2 2	555	NC Nd Nd Nd Nd	5 3 1 1	10 9 10 13 87	1]] 1	? 2 2 2 2	2 3 2 5	50 65 65 21 2	.05 .04 .06 .09 .11	. 031 . 055 . 031 . 005 . 044	6] 7 2	10 36 35 20 1	.79 .46 .52 .41 .10)7 54 32 84 62	.13 .23 .12 .06 .01	2 3 2 9	5.41 4.48 3.70 1.59 .10	10. 10. 10. 10. 10.	.12 .14 .05 .03 .05	1 1 1 1
58585 59547 59029 39030 59031	1	6 11 10	12 5 8 1 3	46 28 27 57 37	.1 .1 .2 .2	4 5 13 3	3 3 1 5 2	18 61 85 191 194	.86 .61 1.42 1.39 1.56	2 2 1 4	5 5 5 5	ND ND ND ND	1 1 2 1	28 15 7 6 8	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3	8 21 48 32 29	.09 .09 .05 .04 .06	.090 .053 .011 .022 .023	7 B 5 6 5	5 17 12 19 15	.08 .19 .15 .51 .30	73 35 17 29 14	.01 .02 .94 .02 .02	2 4 2 2 2	.15 .91 .89 1.74 .91	.01 .01 .01 .01 .01	.05 .02 .02 .03 .93	2 1 2 1 2
59032 59033 59034 59035 59036		22 32 34 41 27	11 \$ 10 12 6	88 72 75 79 54	.2 .1 .5 .3	15 31 30 27 20	1 12 13 12 9	341 372 529 547 290	2.93 3.37 3.82 3.87 3.87 3.24	6 8 9 7 8	55555	XC Kd Nd Nd No	3 3 1 3 2	\$ 15 22 17 12	!]]]	2 2 2	2 2 2 2 2	46 61 70 ?5 68	.08 .13 .24 .19 .11	.058 .114 .069 .033 .047	7 8 8 7 5	29 37 42 40 30	.47 .70 .94 .89 .55	41 55 62 59 39	.01 .09 .12 .11 .08	2 2 3 1	3.27 3.17 2.92 3.26 2.42	.01 .01 .01 .01 .01	.01 .05 .05 .05 .03	1 1 1 1
59037 59038 59038 59040 59041	1 1 1 1	13 13 28 19 60	6 21 16 10 4	34 93 75 28 59	.2 .3 .5 .3	9 32 21 5 24	4 15 10 2 9	141 491 342 99 319	2.70 4.28 3.42 2.03 2.91	4 12 12 8 4	5 5 5 5 5	XO XC XO XO XD	2 7 2 3 3	15 12 15 6 16	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	64 49 52 60	.11 .08 .17 .05 .23	.024 .107 .081 .024 .064	5 27 9 4 5	19 35 30 17 35	.27 .82 .50 .26 .82	37 61 42 47 35	.04 .02 .04 .05 .14	2 2 2 2 2	1.32 3.91 2.53 1.66 2.24	.01 .01 .01 .01 .01	.03 .05 .04 .02 .02	1 1 1 1
58043 58951 58952 58953 58954	1 3 2 1	20 98 38 19 21	1 11 10 13 16	29 140 110 60 59	.2 .3 .4 .5	9 69 25 13 12	5 23 18 7 7	151 374 690 359 234	2.36 4.55 4.85 3.81 4.38	3 13 4 9 5	5 5 5 5	HD KD ND ND ND	2 4 3 1 4	8 14 13 6 7	i 1 1 1	2 2 2 2 3	2 2 2 2 2 2	62 95 78 69 72	.03 .08 .05 .04 .06	.027 .032 .052 .038 .079	4 9 6 1	20 59 40 15 42	.28 1.18 .79 .61 .45	17 98 81 51 41	.10 .16 .10 .10 .15	2 2 6 2 3	1.81 1.96 3.50 3.53 3.77	.01 .01 .01 .01 .01	.01 .22 .10 .07 .06	2 1 1 1 1
58955 570 C	1	15 51	2 38	55 132	.5 1.0	14 73	1 30	248 945	3,30 3,75	5 38	5 19	NC 7	1 31	7 19	1 18	2 19	2 17	84 57	. 05 . 46	.060	1 37	35 55	.66 .35	38 171	. 22 , 06	2 34	2.57 1.79	.01 .06	.08 .14	i 12

Page ∿3

1 8

t

¢

ť

î.

ſ

٢

t

•

£.

(. .

é.

(• •

(÷

(

(

C.

(

t

NORANDA EXPLORATION CO. LTD. PROJECT 8905-017 120 FILE = 89-1130

CANADA CA

さい きょっき 富富

:

5827111	Xc 22X	Cu 2PX	28 385	2n PFK) Yù Yù	H: PSN	03 728	915 789	7e 1	As Ffn	U Kat	Au 20x	67 1695	55 X53	63 729	52 223	81 225	¥ X95	Ca 1	F	La PPX	Cr 9PX	NÇ E	82 784	נ? נ	B PPN) }	Xa X	1 1	ŭ FFN
50555	I	15	5	51	.1	13	1	423	2.81	2	5	YD	l	20	:	:	3	64	.:1	.029	÷	12	. 66	52	. 19	;	2.05	.:1	.06	1
58557	2	21	11	55	.2	10	5	242	1.51	2	5	SO.	1	11	1	1	1	53	. 1	.013	1	35	.61	72	.15	5	3.11	. 21		L
58555	1	á	11	25	.:	5	2	- 14	1.11	2	5	30	ł.	6	3	1	1	18	.03	.022	i	- 14		- 13	. 58	-	1.12	.\$1	- 92	1
58559	l	11	10	15	-1	1î	ţ	18:	1.55	1	5	QK	:	к	1	1	:	42	.04	. 213	4	17	. 39	50	, 05	5	1.65	. 21	- 4	2
58961	1	20	12	51		З	ŝ	126	3.12	-	5	NC.	:	ę	:	3	6	55	. 05	-034	-	28	.43	45	. 10	3	2.64	-61		:
56361	:	11	11	15	.1	12	1:	354	1.98	5	5	\$ 2	1	12	:	1	:1	55	.15	.610	[0	- (l	6.0	105	.1	10	3.51	.21	.17	1
58640	:	- 45	14	101	.:	15		351	1.65	1	5	3C	3	.3	!	÷	3	- 51	. 95	.038	11	46	1.20	126	.11	-	4.52	-61	-25	1
56563	i	- 22	4	11	.2	15	ŗ	[11	2.74	2	5	50	÷	- 2	1	1	3		.05	. 226	1	13		52	- 14	?	1.96	.91		4
58954	:		E		.÷.	- 15	5	132	1.7	3	1	10		3			÷	11	. 61			12	.92	19	.21	4	1.i] 5.18	.01	. 93 1 4	3
56165	l	13	10	55	.1	21		224	2.34	1	5	XC		11		1	÷	Q.	.45	.012	12	13		13	. 16	:	91 18	.41	.14	÷
52956	:	13	н	:9:	.:	35	:3	133	4.35	2	3	SC	5	- 14	1		5	50	.95	.042	11	U	1.11	100	-14	2	5.62	9	.11	1
9191	1	41	6	95	.1	13	11	20	4.14	2	5	30	5	- 11	i	- 2	ĩ	56	-04	.031	5	43	1.0	172	.12	-	1,99	-93	- 68	+
58952		11	15	- 55	. l	11	6	183	2.23	3	5	60	3	10	1	4	1	6:	. 05	. 913	1	52 • •	. 61		کا.	,	1.35	. iri. A 1	. 19	L
51963	:	-	5	22	.:	5	1	15	.63	2	5	10	1	9	l	-		23	. 01	.009	1	10	-44	11	.[]	1.	14.	.9.	. 34	1
53575	L		;	15	2	11	5	138	5.61	3	5	50	3	;	1	3	10	104	. 24	. 212	3	47	. 41	11	. 15	,	1.96		.00	I
58511	:	15	t	44	.4	9	1	208	5.39	2	5	X D	ł	11	2	1	12	51	. 01	. 817)	26	.56	63	.20	8	1.56	. 21	.12	2
58372	:	15	12	36	. :	23	11	275	0.0	1	5	80	÷	13	÷	÷	1	11	. 25	.242		43	1.14	24	- 64		1.1.	. 21	- 45	
58573	1	3	11	15	. 1	23	10	250	1.25	1	1	H)		11	1	1	1	66	. 21	.016	10		. 92	11	.05	5	5-71 5-65	.41	-11	
51574	;	21	3	58		15	1	204	1.57	3	3	SC.	4				11	61	- 14	.Q46 4.04	¢	- 11	ور. ۲۹	52	. 1V 64	i J	5.01	. ki 11	.u:	:
58315	-	l.	1)	17	.1	26	,	271	5.6]	j	;	90	1	1	1		15	21	. 11		,	11	. 61	36	.46	•	2.36	. 4 1		,
58979	!	29	3	:17	.1	22	37	:725	1.11	ş	5	VD:	2	12	l	3	2	82	.11	.041	\$	- 11	.87	111	.13	5	2.52	.01	-11	1
58377	i	11		.13		25	12	155	1.65	2	ł	ЯD	1	ł	1	2	11	55	.12	.030	ł	46	. 10	57	.33	Ê	2.70	.1	. 29	1
55975	1	:5	5	35	.1	15	Ģ	212	1.35	2	5	ND:	1	9	1	4	2	- 15	.11	.0]9	1	38	.76	46	.17	2	1.76	-01	- 65	:
56379	l	14	5	53	.1	12	i	153	5.05	2	5	NO.	2	3	:	2	11	82	.13	.015	4	36	. 64	55	. 28		1.92	. 81	.97	1
55982	1	26	E	3	. 1	21	15	292	3.82	3	5	¥0	2	i0	:	2	4	34	.12	. 950	4	59	1.13	76	.26	1	3.10	. 01	.11	ì
53595	ι	j	÷	30	.1	f	5	[15	1.16	;	5	XQ.	l	52		ł	2	55	.12	.010	1	16	.13	25	.12	9	. 62	.01	. 92	:
58982	1	21	12	5		14	10	293	3.00	3	5	52	2	13	1		4	82	. 12	. D23	5	18	. 83	110	.25	2	1.37	. 21	.11	l
53953	1	26	5	65	.2	31	11	153	1.12	13	រ	NG.	3	8	I	5	ì	163	. 01	.015	5	55	.74	44	.26	4	1.17	. 21	.01	1
58531	:	20	1	84	.1	14	i i	207	5.61	3	5	H D	1	11	1	i	;	31	.11	. 022	5	58	1.03	- 51	.21	13	2.30	. 21	. 25	1
58935	;	11	ł	31	.:	11	9	147	3.08	2	3	XD	1	ī	Ι	2	5	80	. 28	.023	1	11	. 64	;	.17	2	2.66	. 92	. 02	1
56585	:	а	;	28	.2	26	\$	200	1.15	2	!	NO.	1	ŝ	:	5	2	54	.30	.015	2	64	.98	1	.22	2	1.18	.02	.81	1
58937	2	22	11	15	.1	14	8	529	1.95	2	5	80	3	1	3	1	11	100	. 09	. 231	1	57	. 58	14	.75	ĩ	1.11	.01	.63	1
59593	1	36	9	121	.3	34	21	885	3.40	9	5	КD	3	26		3	1	- 9	.30	.010	12	36	.88	42	.11		2.81	.0]	.05	1
570 C	11	62	49	132	7.1	73	31	1019	3.\$1	42	11	,	35	51	15	15	22	59	. 17	. 986	38	53	.47	111	. 07	31	1.79	.36	کا.	17

ŧ

Page 4

÷

2

ſ

÷

I.

I.

:

Τ.

f

1

0

{

(

 ϵ

t

(

Ç

i,

÷.

I.

· •

Valentine - Leek Group (The)

ť

1

¢

.

t

€

€

11

Ç.

¢,

C

€

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 ACME ANALYTICAL LABORATORIES LTD.

ななないないないないないない

÷

GEOCHEMICAL ANALYSIS CERTIFICATE

ICT - . 506 GRAN SAMPLE IS DIGISTED WITH SHL 3-1-2 HCL-HK03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILDTED 70 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MY FE SE CA P LA CE NG BA TI B Y AND LINITED FOR HA & AND AL. AU DITECTION LINIT BT ICP IS 3 PPM. - SAMPLE TYPE: P1-P2 SOIL P3 ROCK AU* ANALYSIS BY ACID LEACH/AA PROM 10 GH SAMPLE. nr .

	DATE	REC	EIVE	D:	JUN	19 1989	D.	ATE	REP	ORT	MAI	LED:	7	rne	23	19	s:	IGNE	DB	ч.,	~.:+	<u>۲۰۰۰</u>] D .	TOTE,	C. LEOX	G, J.W	ANG;	CERTI71	10 B.C	. 4553	2117	
					N	DRAN	DA E	XPL	ORA	TION	co.	LTI	5. ⁷ 1	ROJ	ECT	890	5-06	6 1	20	F	ile #	89	-158	88	Pa	ige	1					
	SAMPLET	H0 22%	Cu PPX	Pb PPN	to PPK	AÇ PPX	14 ??N	C0 ??N	Kn P?K	Fe 1	As 77K	0 PPN	AU PPX	76 999	SC PPN	Cd PPH	SD PPK	81 ?PK	V PPH	Ca ł	Р 3	La PPM	Cr PPN	Kç 1	Ba PPN	ti ł	9 PPX	11 1	Xa 1	1	¥ PPN	965 968
	PSSID: P58402 P58403 P58404 P58404 P58405	1 1 1 1 1	31 11 9 9 14	13 10 9 7 11	91 54 45 31 62	.1 .1 .2 .2	31 18 14 9 20	23 8 1 3 6	1328 302 213 112 229	3.91 2.72 1.88 1.29 3.\$6	10 2 2 6 5	5 5 5 5 5	HD NC NC ND	1 1 2 2	15 14 14 7 10	! [] 1	2 2 2 2 2 2	2 2 4 2 2	42 56 40 62 51	.16 .12 .12 .06 .07	.053 .015 .010 .015 .021	12 5 6 4 7	34 33 23 19 29	.95 .96 .57 .24 .62	68 77 58 26 41	.07 .17 .14 .09 .09	5 2 2 3 2	2,46 2,11 1,60 1,57 2,61	.01 .01 .01 .01 .01	.06 .14 .07 .03 .04	1 1 1 1	3 1 1 2 1
	P58406 P58407 P58408 P58408 P58408 P58410	1 2 1 1	22 26 20 19 24	11 14 11 10 13	65 82 74 64 72	.1 .2 .1 .3	22 23 23 26 21	7 85 27 11 10	286 3030 9929 772 265	4.02 4.07 3,16 2.99 3.61	7 9 1 5 5	5 5 5 5	ND ND ND ND	2 1 1 1 2	11 17 24 16 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	55 57 52 52 67	.11 .13 .21 .12 .12	. 033 . 059 . 056 . 019 . 028	8 15 10 8 5	34 38 29 37 45	. 69 . 66 . 59 . 81 . 90	37 119 186 106 77	.14 .12 .08 .13 .22	2 5 3 3	2.94 3.50 2.80 2.85 3.78	.01 .01 .01 .01 .01	.04 .08 .08 .11 .13	1 1 1 1	3 2 2 1 1
	P50411 P50412 P50414 P50414 P50415 P50415	1 1 1 1	23 24 41 34 35	14 11 11 9 10	69 80 76 66 78	.2 .1 .1 .1	23 29 32 27 34	6 8 10 8 21	258 373 355 304 656	4.33 3.92 3.82 3.41 3.30	10 7 12 7 8	5 5 5 5	ND KD KD KD KD KD	3 2 3 3 2	7 10 13 12 18	1 1 1 1	2 2 2 2 2 2	2 2 2 2 3	19 46 55 54 19	.04 .09 .13 .12 .18	.019 .014 .056 .048 .045	6 8 7 9	37 36 41 36 33	.78 .99 1.00 .83 .89	48 58 50 42 53	.07 .08 .14 .12 .11	3 1 7 4	2.89 2.55 2.99 2.65 2.22	.01 .03 .01 .01 .01	.04 .04 .12 .10 .12	1 1 1 1	1 24 19 2 2
	P58417 P58418 P58419 P58420 P58422	1 1 1 1	25 15 39 22 15	8 6 17 10 11	57 30 92 81 41	.1 .1 .2 .1	21 10 36 31 13	6 3 10 9 4	198 116 279 337 161	4.29 3.25 5.73 3.41 5.25	11 B 13 6 9	S 5 5 5	HD HD ND ND ND	2 2 4 1 1	1 6 8 12 7	1 1 1 1	2 2 2 2 2	4 2 3 2 2	60 30 61 41 75	.05 .03 .03 .11 .05	.023 .013 .020 .021 .043	7 4 7 9 6	35 20 55 36 26	.60 .26 .97 1.03 .38	39 26 81 69 33	.07 .08 .09 .08	2 2 6 2 2	2.89 1.96 4.77 2.56 2.44	.01 .01 .01 .01 .01	.03 .02 .06 .06	T 1 1 1	7 1 2 2 1
	58327 58328 58329 58330 58331	1 1 1 1	13 3 12 38 9	10 2 6 12 8	51 17 45 61 44	.2 -1 .1 .1	13 2 10 23 10	6 1 ₽ ₽	184 58 131 292 163	3.82 .98 3.27 3.70 2.50	5 4 7 9 5	5 5 5 5	ND ND ND ND	1 1 1 3 1	7 5 6 14 7	L 1 1 1	2 2 2 2 2 2	2 2 3 3	89 24 63 60 48	.07 .04 .06 .06	.030 .015 .023 .035 .029	4 2 4 7 4	34 7 28 17 21	.63 .10 .50 1.07 .48	37 9 20 106 43	.30 .05 .10 .15 .18	2 2 2 2 2 2	2.71 .73 2.39 3.59 2.42	.01 .01 .01 .01 .01	.07 .02 .03 .30	1 2 8 1 1	1 1 1 3 1
	54332 58333 58334 58335 58336	1 1 1 1	9 3 6 20 29	9 7 8 12 15	48 28 33 61 78	.2 .1 .2 .2	8 5 16 18	1 2 6 8	132 101 118 180 201	3.29 1.51 3.42 4.09 4.07	1 2 4 4 6	5 5 5 5	DU Du Dr Dr Dr Dx Dx	2 1 1 2 2	1 9 1 4 9	1 1 1 1 1	2 2 2 2 2	3 2 2 2 2	64 30 73 85 76	.04 .17 .15 .03	.027 .011 .038 .030 .038	4 4 3 4	26 13 20 51 45	.48 .27 .26 .82 .89	32 33 27 41 106	.15 .15 .15 .12 .20	2 2 3 1 2	2.25 1.15 1.61 3.41 4.03	.01 .01 .01 .01	.07 .07 .05 .10 .22	1 1 1 1 1	I 1 2 1
	58337 58339 58339 58360 58360	1 1 1 1	24 8 11 9 21	14 9 10 € 13	62 48 50 42 62	.1 .1 .1 .1	18 12 9 7 17	7 5 3 2 6	208 181 214 123 205	3,93 1,49 2,79 2,88 1,39	3 5 6 3	5 5 5 5	ND ND ND ND	2 1 1 1 2	9 7 6 7 7	1 1 1 1	2 2 2 2 2 2	1 3 2 3 2	73 73 54 57 66	.05 .07 .06 .05 .04	.030 .021 .033 .041 .025	4 3 4 4	40 32 29 21 38	.82 .65 .\$1 .40 .78	71 53 38 20 47	.21 .20 .09 .08 .15	3 2 2 2 2	3.78 2.38 2.00 1.93 4.78	.01 .01 .03 .01 .01	. 13 . 12 . 10 . 01 . 08	1 2 1 1	1 1 1 1
26 RW	58342 STD C/AU-S	1 17	8 58	5 39	25 132	.1 6.6	1 68	2 30	87 1025	2.22 4.15	3 10	5 20	ND 7	1 36	5 49	1 19	2 14	2 16	42 58	.03 .19	.031 .088	3 34	17 56	. 27 . 85	20 177	.12 .07	2 {1	2.23 1.91	.01 .05	.05 .13	2 11	1 52

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: APR 12 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: Apol.1.7/.49.

GEOCHEMICAL ANALYSIS CERTIFICATE

- SAMPLE TYPE: ORGANIC AU* AWALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

NORANDA EXPLORATION CO. LTD. PROJECT 8903-012 120 FILE # 89-0785

80 A.C. 366

146633468865686

· .

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716

1

ų.

÷Č.

.

۰·

Т

÷

7

κ.

(

÷.

÷.

ŧ.

1

÷

22

۰.

ŧ.

ŧ

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR OKE HOUR AND IS DILUTED TO 10 KL WITH WATER. THIS LEACH IS PARTIAL FOR NH ZE SE CA P LA CE NG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BT ICP IS 3 PPH. - SAMPLE TYPE: P1-P2 SOIL PULP P3 SILT PULP

DATE	RECE	IVE	D:	APR 1	7 1989	DA	TE	REPO	RT	MAIL	ED:	- Aj	pil	19/	67	sı	GNE	D BY	ζ.,	. . .	۲	D.T	078. C	. LEONG	, J.WA	NG; CS	ATIFIE	D B.C.	ASSAT	ERS
				NO	RANE)A E	KPLC	RAT	ION	co.	LTD	. P	ROJE	ст	8904	-01	0 12	0	Fil	e #	в∮-	080	3	Pa	ge 1					
SAMP134	HC Kqq	Cu PPM	25 895	ZC PPN	Да ??Я	N I FPN	CO PPN	Mn Ppn	; a 1	96н И99	י <u>י</u> 195	Au Ppn	th PfH	ST 275	Cđ PPX	SD PPM	18 19 19	7 289	C2 1	÷	La Pex	CT PPX	Kç L	Ba Pon	:: 1	8 PPX	4] \$	Fa 3	Ĩ.	¥ PPK
42093 42094 42095 42095 42095 42097	1 1 1 1 1	1 36 21 15 34	14 19 10 12 23	54 102 65 42 102	.1 .1 .1 .1	17 31 15 12 32	5 11 8 6 10	195 351 207 175 408	3.33 1.79 2.18 3.09 4.02	2	5 5 5 5	ND NC ND ND YD	3 2 1	9 11 11 11 11	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1: 3 4 2 7	54 61 78 59	.15 .13 .12 .13 .19	.013 .040 .046 .022 .827	4 3 4 5	29 35 25 21 38	.48 .34 .41 .39 1.02	28 49 28 26 68	.07 .11 .98 .11 .15	3 2 2 2 2	2.34 3.55 2.48 1.50 3.60	.01 .01 .01 .01 .01	. 02 . 03 . 02 . 02 . 04	1 1 1 1
42093 42059 42100 55137 55138	1 ! 1 1	29 16 12 23 15	10 13 9 8 11	19 29 34 59 41	.1 .1 .1	26 10 6 15 5	10 4 5 6	503 117 134 193 102	4.21 3.29 3.25 2.58 2.55] 2 3 2 2	5 5 5 5 5 5	ND Nd NC ND	1 1 1 2	10 12 11 7 6	 	2 2 2 2 2 2	2	64 72 88 50 44	.10 .14 .05 .05	.042 .032 .025 .036 .033	4 4 5 3	34 20 20 27 23	.71 .25 .23 .59 .31	43 21 20 47 20	.09 .10 .09 .15 .11	2 	3,44 1,25 1,43 3,23 3,06	.01 .01 .01 .01 .01	.01 .01 .01 .07 .04	1 2 1 1 1
55139 55140 55141 55142 55142 55143	1 1 1 1	51 22 16 5 21	20 18 12 8 11	66 56 31 14 50	.1 .2 .2 .2 .1	:0 8 5 3 31	7 6 4 2 6	145 132 98 44 165	4.14 4.03 7.46 1.15 3.88	2 4 3 2 8	5 5 5 5	NO No No No HC	4 2 2 4]] 8 5 5	1 1 1 1	2 2 2 2 2 2	3 11 5 2	86 73 83 52 61	.05 .04 .08 .03	.087 .087 .074 .022 .066	5 5 5	40 10 16 9 30	.63 .46 .28 .11 .39	72 36 21 13 21	.22 .17 .15 .25 .07	55322	4.50 3.38 1.15 .42 2.57	.01 .01 .01 .31 .01	.18 .06 .04 .03 .02	1 1 1 1
55144 55145 55146 55147 55143	1 1 1 1	47 24 43 30	12 9 5 15 15	88 62 10 86 62	.1 .2 .5 .2	31 20 4 25 25	13 7 2 10 8	450 233 46 274 222	3.82 4.46 .97 5.59 7.21	12 20 2 9 12	5 5 5 5 5	ND Ng ND ND ND	5 3 7 4	8	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 10 1	51 63 32 53 72	. 08 . 04 . 98 . 03 . 03	. 977 .071 .910 .074 .952	2 5 5 5 5	33 32 7 56 41	[.08 .64 .96 .71 .57	33 28 4 27 38	.11 .07 .04 .10 .11	3 7 2 2 2	2.49 2.22 .38 5.49 2.39	.01 .01 .01 .91 .01	.06 .02 .01 .02 .02	1 2 1 1
55149 55150 55151 55152 55163	1 1 1 1	3 33 19 4 26	4 21 25 8 7	20 74 115 14 72	.1 .2 .3 .1 .3	20 7 2 20	2 8 1 1 9	93 255 1102 70 255	1.28 3.22 .28 1.21 4.35	2 8 2 2 5	5 5 5 5 5	ND ND ND ND ND	1 5 1 1 3	? 7 56 8 11	1 1 1 1	2 2 2 2 2	2222	23 47 61 73	.08 .04 2.07 .10 .10	.026 .114 .017 .011 .011	3 5 2 5	8 32 4 7 32	.15 .83 .13 .05 .79	9 18 50 6 50	.04 .11 .01 .05 .13	2 2 9 5 2	.70 1.72 .23 .18 2.90	.01 .01 .01 .01 .01	.03 .09 .06 .03 .07	2 1 1 2 1
55164 55163 55166 55504 55505	1 1 1 1	22 28 33 59 9	16 10 9 23 2	80 71 86 94 15	-1 -4 -1	23 24 27 32 8	10 13 17 13 4	257 205 384 344 115	3.77 3.38 3.46 3.94 1.83	2	5 5 5 5	ND XC XD ND XD	1 2 5 1	12 13 15 9 9	1 1 1	2 2 2 2 2	1 2 2 2 2	63 58 61 81 43	.10 .11 .11 .04 .07	.037 .034 .033 .046 .017	1 15 11 5	32 29 32 49 12	.70 .77 .94 1.35 .22	64 74 105 183 37	.11 .10 .12 .17 .06	2 3 4 2 2	3.23 2.98 3.10 5.85 .81	.01 .01 .01 .01	.06 .07 .12 .38 .03	1 1 1 2
55506 55507 55508 55509 55516	1 1 1 1	8 23 1 4 4B	4 10 9 7 5	19 63 19 27 85	.1 .4 .5 .1	5 19 2 1 34	3 9 3 1 1?	77 151 1999 103 152	2.01 3.69 .38 .36 3.86	2 5 2 7	5 5 5 5 5 5	ND ND ND NC NO	: 	9 9 69 2? 9	1 1 1 1	2 2 2 2 2	2 2 2 2 4	65 56 9 1 51	.07 .08 .54 .60 .08	.024 .034 .037 .061 .078	4 5 2 7	11 32 3 1 27	. 14 . 52 . 31 . 06 . 89	11 44 98 19 77	.08 .00 .01 .01 .11	3 2 4 5	.64 2.66 .19 .07 4.46	.01 .01 .03 .01 .01	. 02 . 04 . 03 . 07 . 07	1 1 2 1
55511 STD C	1 19	22 54	11 41	48 133	.1 1.2	11 59	7 31	208 1028	3.24 3.93	3 12	5 17	ND 7	1 39	9 51	1 [3	2 15	2 23	35 61	.08 .47	. 354 . 195	6 41	22 55	. 38 . 90	41 181	.13 .07	1 37	2.30 1.77	.01 .06	.01 .13	1 13

NORANDA EXPLORATION CO. LTD. PROJECT 8904-010 120 FILE # 89-0803

1,-242

SAXPLES	HC PPN	Cu FPX	45 799	CT PPN	AQ PPN	H! 22N	Co PPX	Mn PPX	Pe 3	As ?PN	U ??N	AU PPN	Th PPM	ST PPN	Cd PPM	SD PPX	81 29%	V PPN	Ca 1	P Ş	La PPN	CT PPM	NĢ Ş	Ba PPK	7: 1	8 ??M	А1 1	Na ł	я 1	¥ FFX	
55512	1	11	:	13	.1	10	8	342	1.12	2	5	RD	1	59	:	2	2	21	. 55	.044	ដេ	19	. 28	89	.04	2	. 89	.01	.03	2	
55513	1	24	11	69	.1	22	10	235	3.31	11	5	ND	2	:0	1	6	2	58	.07	.027	7	34	.76	83	.13	1	3.02	. 01	.12	1	
55514		5	- 11	48	. 3	1	1	239	.05	2	è	XD	1	31		5	- 2	2	57	.062	2	1	. 09	33	.01	5	.06	.01	. 10	ł	
55515	1	12	17	60	.2	22	9	254	5.14	10	5	ЯD	5	3	1	- 2	2	88	.08	.049	5	49	.51	26	.11	•	1.70	.01	. 13	1	
55518	3	27	12	53	.1	à	٤	184	1.98	10	\$	ЯD	1	11	1	2	2	99	.1	. 091	3	31	. 40	19	.11	2	3.04	.01	.OŹ	1	
55517	1	19	1	27	.1	f	i	117	2.52	3	5	80	1	11	1	5	2	14	.16	.010	1	17	. 2t	13	.10	2	1.12	.01	.0:	1	
\$55:8	1	6	i	18	.1	5	3	109	1.9€	4	ţ	NC.]	11	2	2	2	3	. 11	.014	3	12	.17	8	.14	2	. 63	. M	.01	:	
55519	1	25	12	65		19	11	275	3.41	- +	5	85	1	12	1	2	2	71	.15	.036	- +	35	. 62	26	.:2	2	3.59	. 01	.03	1	
55520	:	7	1	27	.1	1	4	130	1.85	5	5	ND	1	13	1	2	\$	37	.1*	.022	- 4	15	- 71	29	.09	2	. 8 5	.0:	.02	1	
55526	I	25	;5	îé	.1	ló	1	223	2.73	6	5	ND.	2	3	ş	2	2	51	. 06	. 043	5	32	. 56	50	.12	2	2.91	. D t	. 64	1	
55627	1	21	13	58	.1	19	;	231	3.31	5	5	NC	2	7	1	2	2	19	.64	.046	4	35	. 67	24	.15	2	3.82	.01	. N	1	
55528	1	21	14	ê9	. 4	28	9	241	3.21	11	ş	NÐ	4	8	1	1	3	52	. 65	.057	5	45	.75	41	. 09	4	3,40	.01	.05	1	
55629	1	10	8	\$1	.1	5	- 1	130	2.21	6	5	NC	2	8	1	2	2	- 15	.03	. 321	3	22	. 55	33	. 67	2	1.54	. 11	. 17	1	
55632	1	21	16	63	.1	17	7	227	3.08	7	5	ND	2	3	:	- 5	2	60	.05	.012	4	41	,70	35	.18	5	3.99	.01	. 06	1	
\$5633	1	12	12	51	.:	9	5	157	2.61	5	5	NC	:	ž	1	2	2	50	.05	.039	4	27	. 13	28	.09	2	2.13	.01	.97	1	
55632	1	23	17	65	. 2	14	7	250	3.26	17	5	ND	3	7	1	ł	2	60	.05	. 36 8	5	38	. 64	45	.13	4	3.96	.01	.07	1	
55633	1	5	7	26	. 1	1	2	59	1.95	3	5	MD	2	6	1	- 2	2	- 47	. 03	.020	3	12	. 18	22	.11	2	1.19	. 91	.03	1	
55634	:	31	21	64	.1	11	3	257	3.23	9	5	ND	5	9	1	2	2	57	.07	.042	6	34	. 69	- 45	.13	1	1.11	.01	.09	1	
80401	1	9	12	37	.1	10	4	\$2	.75	3	5	80	1	21	1	3	2	28	.15	.063	16	20	.23	82	.02	3	1.41	.01	.02	:	
30402	1	ł	1	31	.;	12	1	83	.72	3	5	ND	ĩ	13	1	2	2	20	.10	.048	12	18	.19	99	.02	1	1.17	.01	. 02	1	
80492	1	5	7	24	.1	6	1	18	.21	2	5	ND	1	55	:	2	2	5	.43	.012	13	6	. 06	95	. 02	3	. 59	.91	. 01	I	
30404	1	26	11	58	.1	સ	11	420	2.75	10	5	XD	3	15	:	2	2	51	.11	.036	1	30	. 81	116	.12	2	2.47	.01	. 21	I.	
90405	!	21	10	54	.1	19	9	221	3.49	11	5	ND	2	10	1	2	Ż	59	.05	.015	5	31	. 69	63	.11	2	2.46	.01	.07	1	
30406	1	13	13	36	.1	1	4	110	2.72	7	5	X2	3	9	i	2	3	61	.05	. 921	- 4	22	.27	25	. 09	4	2.11	.01	.03	2	
80407	1	12	2	69	.1	15	10	403	2.68	2	5	NÇ	3	10	1	2	3	47	.08	.019	6	17	.62	47	. 98	2	1.57	.01	.05	1	
80408	ł	25	;5	42	.1	ş	8	172	3.69	10	5	NC	3	ŝ	1	1	2	155	.05	.059	4	40	. 36	18	.20	2	2.20	.01	. 0 2	1	
80409	1	18	10	38	.3	11	5	211	2.91	9	5	ND	2	1	1	5	3	55	.08	.062	5	23	. 32	21	.06	3	1.51	.01	.02	1	
80410	1	17	6	39	.1	11	ų.	21*	3.18	11	5	NÓ	1	6	1	2	2	59	.06	.052	5	26	.34	20	. 01	1	1.81	.01	.02	1	
80376	1	6	9	22	.8	2	2	55	1.39	5	5	HD	1	9	1	2	3	47	. 11	. 036	3	1	.03	13	.03	7	. 39	. O T	.02	2	
379 C	19	63	43	134	7.0	89	32	1022	3.94	45	18	8	10	50	19	15	21	60	.46	.091	10	- 55	. 89	181	.01	17	1.H	.06	.13	11	

Page 2

÷

<u> (</u>

(. .

{

1

£

•

ŧ

r

t

¢

(

 $\{\cdot,$

C.

(

t.

 $X_{\mathcal{F}}$

ι

•

-

						NOK		~ "	FDOF			. . .	510,	FRO	,,,,,			010	120	, ,	TDE	* 0	9-00	05							
SAMPLE#	NO 29N	Cu PPN	PD PPN	2n 899	Ağ PPK	N1 PPN	CC PPN	Xa 29X	ţ.	AS FPN	U ??N	AU PPN	Th Ppn	ST PPK	Cđ PPN	SD PPN	B1 P?W	V PPN	C8 1	P	La PPK	Ct PPM	Nộ t	Ba PPN	7i 2	9 PPM	л1 Х	Na 1	ţ	¥ 22H	
55125	;	22	10	86	.3	22	15	800	2.58	8	5	ND	ı	31	1	3	2	55	.23	.035	9	36	. 72	157	.11	3	2.22	.01	.16	1	
55159	1	30	14	18	.1	25	14	450	3.27	8	- 5	ND	2	17	t	2	2	60	.11	.022	1	31	. 83	93	.12	1	2.30	.01	.11	1	
\$5169	1	15	8	53	.1	140	17	1568	5.32	6	5	ND	l	- 5	1	t	2	171	.08	.008	3	504	.10	18	. 84	2	2.58	.01	.01	1	
55503	1	36	11	55	.2	31	16	587	3.28	10	5	ND .	3	21	1	3	2	52	.19	.017	9	31	. 86	63	.07	2	2.27	.61	.08	1	
55612	1	30	á	97	.2	32	30	595	2.75	g	5	ND	2	11	1	2	2	64	.07	.022	8	35	. 84	154	. 16	2	2.98	.01	. 23	1	
55614	;	26	6	85	.1	23	13	618	2.15	6	5	ND	I	33	1	2	2	52	.11	. 031	6	30	.76	150	.14	2	2.26	.01	.18	τ	
55616	1	25	6	80	.1	22	11	199	2.39	6	5	ND	1	31	1	2	2	67	.16	.028	6	37	. 87	168	.17	2	2.64	.01	. 17	1	
55656	1	37	5	72	.1	26	12	362	2.19	1	5	ND	2	19	1	2	2	48	.14	. 032	7	31	. 93	175	- 14	2	1.70	.01	.0	1	
59169	1	21	1	104	.1	25	13	590	2.97	5	5	ND	2	13	:	2	2	55	. 17	.029	2	35	.95	168	.13	2	2.17	.01	.24	1	
96371	1	32	9	75	. 3	3	12	451	3.38	1	5	KD	3	20	1	2	2	60	.24	.035	5	11	. 80	38	.10	2	2.15	.01	.03	1	

NORANDA EXPLORATION CO. LTD. PROJECT 8904-010 120 FILE # 89-0803

-

-

Page 3

(-1) = 0

Ţ,

(

۰,

t.

(

r

í.

Į.

ł

(

1

0

t.

١.

e.

ACHE ANALYTI	ICAL LA	.ABOR#	TORTE																			.; ;	(* : *					
				S LTD) .	852	Έ.Ι	HAST:	INGS	5 ST	. VA	NCOL	IVER	в.с	2.	V6A	1R6		РН	ONE	(604)253	3-31	58	FAJ	(60	4)25	3-1
			TCP - THIS - SAM	GI .500 GRA LBACH IS IPLE TIPE:	E Ó Ak sahi Partu : Rock	CHE PLE IS DIG AL FOR KN AUT A	MI BSTED VI PI SR CA HALTSIS	CA TH 3KL 1 7 LA (BT ACIO	I. 3-1-2 CR HG E D LBACH	ДР ИСС-ЯХ ИСС-ЯХ И СС-ЯХ И ХА УК	JA 3 103-820 8 N XNI Rok 10	C. Y :) AT 95) LINIT GH SAN	SI. DIG. (ID JOR PLA.	S (POR H HA K)	CE GKS ROT AND AL	E R DR AM . AU	ТІ IS DI D2TECT , Р	E I Lotid (Lon Li	C / 70 10 X17 81	ат ИL 719 IC7)	E 18 VA78 18 J Pe)R. 24.						
DATE R	ECEIVE	ED:	APR 12 19	183 DJ	АТЕ	REPOR	IAM 1	LED:	Ap	ו הי י חי	/# PR0.1	89 FCT	SI 890/	GNE	о ву	· 20	·	ہے۔ ا		ចា1. (=07/	. LBONG	;, J.W	XG; CI	RTITI	ID 8.C	. ASSA'	ters	
SANFLEI Pi	NO CU PPN PPK	I PE I PPX	2n à PPN PPI	normi No ni Pn PPK	Cc PPN	Nn F PPN	e As PPK	U PPN	AU PPK	Th PPX	ST PPK	Cd PPM	SD PPK	B1 PPM	Y PPM	C8 1	Р 1 2	La PPK	CT PPM	Ng K	Ba PPK	ti 3	B PPX	31 1	Xa 1	ĩ	¥ PPK). 1999
42092 35167 35158 55170 35171	2 12 \$ 148 1 843 2 32 3 15	2 5 8 7	43 . 67 . 179 . 64 . 29 .	1 19 1 32 1 143 1 30 1 19	7 12 53 13 5	373 1.8 361 3.0 873 10.5 436 2.6 239 1.3	1 3 9 2 0 7 6 11 8 6	5 5 5 5	ND ND ND	1 1 4 1	20 26 16 8 4	1 1 1 1	2 2 2 2 2 2	2 2 16 2 2	34 46 142 24 11	.19 .47 .38 .06 .03	.031 .154 .151 .032 .018	4 7 5 11 8	20 77 528 23 13	.68 .63 1.53 .89 .35	91 107 71 44 19	.10 .09 .21 .03 .02	1 2 4 2 2	1.01 1.40 3.66 1.40 .57	.04 .04 .05 .02 .01	.32 .57 1.05 .09 .04	1 1 1 2 2	5 4 7 3
55172 55173 55174 55521 55522	2 8 2 8 3 9 2 9 2 10	7 3 8 33	59 . 4 . 23 . 52 . 7 2.	1 14 1 9 2 22 1 18 2 1	8 1 5 5 1	407 2.6 157 .5 143 1.1 231 2.0 27 .2	5 15 D 18 F 4 D 8 5 3	5 5 5 5 5	ND ND ND	3 1 2 2 1	16 E 5 11 2	1 1 1 1	1 7 2 2 2	2 2 2 3 2	64 6 26 21 3	.10 .19 .15 .09 .03	.022 .075 .025 .019 .008	8 2 3 3 2	28 7 19 15 4	1.04 .08 .42 .70 .05	207 17 41 35 6	. 22 . 01 . 90 . 07 . 01	4 17 2 2	1.87 .16 .58 .95 .20	,07 .01 .02 .02 .08	1.05 .04 .11 .08 .02	1 2 1 1) 6 3 5 28
55523 55524 55525 55635 5917D	1 91 2 7 3 7 2 16 2 18	9 2 2 6 4	46 1 4 52 70	1 56 3 7 1 6 2 14 1 1	21 1 1	397 3.D 34 .2 39 .3 108 2.2 339 7.9	15 2 7 2 3 2 3 2 3 2	5 5 5 5	ND ND ND ND	1 1 1 3 2	35 1 1 24 29	1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	E7 1 1 2 49 45	.01 .01 .20 .18	.021 .001 .004 .038 .065	2 2 5 6	99 6 6 26 2	1.95 .01 .03 1.01 .80	39 2 6 192 277	.23 .01 .01 .18 .12	8 3 2 2	3.48 .05 .08 1.30 1.82	.12 .01 .01 .05 .08	.27 .01 .02 .67 .14	3 1 1 1	5 6 12 4 3
59171 80351 80411 87D C/RU-R =	1 108 1 103 2 10 19 52	B 11 3 42	10 .3 46 .3 30 .3 136 7.3	3 55 3 39 3 12 2 71	11 18 5 31	137 .8 311 2.4 179 1.3 1042 3.9	1 2 5 18 1 3 1 43	5 5 18	ND ND ND 8	1 2 3 39	68 185 14 52	1 1 1 20	2 2 2 15	2 2 17	21 3 59 2 25 61	1.20 2.48 .10 .46	.018 .161 .015 .092	2 2 3 41	29 48 17 54	.42 .71 .49 .87	7 101 100 161	.17 .08 .97	2 2 2 37	4.51 3.90 .65 1.75	. 36 . 22 . 02 . 05	.02 .31 .31 .13	1 3 2 12	4 5 3 510

. •**i**

:

1

j

;

			NORANDA VAND	:01	JVER LABORATORY	
	PROPERTY/LO	DCATION	: BEAUPRE-VALE	N.	TINE	CODE : 8904-010
	Project No. Materiaî Remarks		:120 :65 SOILS & :10 SILTS		Sheet:1 of 2 Geol.:T.Mc.	Date rec'd:APR.12 Date compl:APR.13
					Values in PPM,	except where noted.
	 Τ. Τ. No.	SAMPLE No.	========= ۹۹ ۹	 28 1u		
					······································	
	68	42093	SOIL	5		
	69	42094		2		
	70	42093		2		
	71	42036		5		
	72	46037		- -		
	73 - 74	42030		2		
	74	42099		ີ ຄ		
	73	42100				
	78	33137 SE137		5		
	70	55130		5		
	78	55139		2		
	79	55140		 		
	80 6 t	55141		ີ ສ		
		55142		្រ ម		
				ت ح		
	03 84	55144		5		
	0** 0*:	55165		ں ج		
	63 62	55140		5		
655688888	08 A7	55147		с 		
	57 58	55140		с Е		
	89	55150		5		
	30	55162		5		
	91	55163		5		
	92	55164		5		
	93	55165		5		
	94	55166		o.		
en essere -	95	55626	•	-		
	96	55627		-		
	97	55628		5		
	38	55629		5		
	99	55630		-		
	100	55631		5		
	52	55632		5		
	53	55633		5		
	54	55634		5		
	55	55504		5		
	56	55505		5		
	57	55506		5		
	58	55507		5		
	59	35510	•	5		
	60	55511		5		
	61	55513	:	5		
	62	55515		5		
	63	55516		5		
	64	55517	2	25		
	65	55518	-	5		
	66	55519	SOIL	5		
	LUAPE IK JAC TI	Mc RW't	IP			
		-				

.

41 41 41

	Т.Т.	SAMPLE	PPB	8904-010
-	No.	Nc.	Au	Pg. 2 of 2
	 67	55520 SOIL	5	
	68	80405	5	
	69	80406	5	
	70	80407	40	
	71	80408	5	
	72	80409	5	
	73	80410	5	
	74	55169 SILT	5	
	75	80377 SILT	5	
	76	55656 SILT	5	
	77	55612 SILT	5	
	78	55159 SILT	5	
	79	59169 SILT	5	
	BO	55503 SILT	5	
	51	55616 SILT	5	
	82	55614 SILT	5	
	83	55161 SOIL	5	
	84	80376	5	
	85	5550B	5	
	B 6	55509	5	
	67	55512	5	
	88	55514 SOIL	5	
	89	55135 SILT	5	
	90	80401 SOIL	5	
	91	80402	5	
	92	80403	5	
	93	80404 SOIL	5	

. _ _

ngri (se e.

NORANDA EXPLORATION CO. LTD. PROJECT 8905-009 120 FILE # 89-1060

SAMPLE:	HD PPN	Cu PPK	₽Ъ PPM	2n PPN	XQ 2PK	N1 PPK	Co Pex	NN PPK	Ie 1	дs Ррк	U PPH	AU 2PM	Th PPN	ST PPN	Cd PFN	SD PPH	B I P8K	V P9x	Ca l	9 1	La PPN	CT PPK	KĢ	BA FPK	71 3	9 ? P N	21 1	Na t	K 3	¥ 29x	207 P28
66631	1	76	,	26	٦	7	;	169	1.69	103	5	NC		U	1	,	2	6	. 07	. 023	ş	5	. 73	116	. 05	2	.78	.64	.35	1	2
66627	,	29	ŝ	27	1	í.	1	191	1.61	,	ś	ND	i	16	1	;	2	i	. 10	.046	1	1	.20	86	.07	;	.75	. 06	.14	;	i
55566	1	56	č	15		15	ç	266	1 38	ì	÷.	NT	1	12	i	:	;	17	1.19	.038		51	.70	5	. 20	5	75	.10	. 0.7	;	;
11101	1	10	ś	12	1		;	145		, i	ć	ND	i		1	÷	;	16	36	016	;	11	19		61	;	30	62	19	i	;
33384	,	20	5	14		14	- 1	100	1 11	1	1	ערו ערו	;	ì	;	;	•	ŭ	10	670		й		198	08	;	1 06	62		;	1
12281	,	20	;	ţu	.:	10	'	tan	1.11	11				,	•	•	•		. 10	.030	,	••		170		•	1.00			·	•
35556	2	7	2	6	.1	8	2	78	. (6	2	5	8D	ł	2	1	2	2	1	.02	.004	2	9	.09	28	.02	ż	.17	.01	.11	1	1
55587	2	56	4	90	.1	33]0	503	3.76	2	5	NC	5	13	1	1	2	79	. 13	.050	1	53	1.21	280	. 19	- 2	2.27	.03	1.34	1	1
\$\$588	2	21	8	68	. 2	25	9	435	3.01	2	- 5	KD	6	8	1	2	- ŧ	57	. 09	.032	é	36	. 99	209	. 17	2	1.80	.01	1.12	1	1
59226	3	31	6	13	. 2	28	11	333	3.82	Ģ	- 5	RD	5	10	1	2	2	105	. 15	.062	9	70	1.45	332	.17	- 1	2.52	.03	1.13	1	5
59227	3	3	2	3	.1	14	1	44	. 62	3	5	ND	2	2	:	2	2	7	.01	.00?	2	16	.08	23	.01	2	.13	.01	.05	1	ł
59228	ł	5	:	2	.1	9	1	23	.37	558	5	ND	1	2	;	2	2	1	.01	.003	ż	9	.01	23	.01	2	.02	.01	.01	1	13
\$9229	3	20	15	21	.1	34	12	396	1.37	35	5	ND	3	ő	L	2	2	118	.15	.056	7	31	1.65	163	.19	- 4	2.99	.01	1.44	1	5
59233	1	20	13	181	. 1	56	38	525	1.58	2	5	NC	1	78	1	2	2	159	1.73	. 365	2	100	1.10	226	. 32	2	5.79	.19	2.29	1	13
\$9214	1	103	8	40	.1	68	17	262	2.38	2	5	NC.	1	83	1	2	2	66	2.42	.408	2	- 94	.81	26	.08	2	2.53	.16	.04	12	ł
59196	3	13	5	15	.2	20	4	71	. 89	B	5	ND	2	4	1	:	2	7	.03	.011	2	13	.11	9	.01	3	. 29	.01	.03	2	2
59497	2	24	3	61	.1	25	1	111	2.13	2	5	ND	4	1 1	t	2	1	50	.07	.021	4	28	. 87	116	. 09	2	1.11	. 92	. 65	1	1
59580	2	31	6	46	.1	14	6	225	1.94	5	5	ЯС		9	1	2	?	28	.07	.025	2	15	.63	34	.03	2	.75	.03	.10	1	2
1 59593	3	12	9	29	.1	н	- t	130	1.44	ł	5	89	1	П	1	2	2	22	.05	.019	2	15	. 25	15	. 02	4	. \$1	,03	.88	1	2
59384	,	ii.	19	106	.1	17	10	289	3.80	10	5	ND	10	13	1	:	2	\$ G	.06	.046	8	19	1,10	129	.11	2	2.34	.02	. 56	1	4
59585	2	27	7	16	.2	14	5	19	1.73	145	5	ND	1	9	1	2	1	н	.01	.018	1	11	.14	59	.02	ł	. 34	.02	.11	1	32
39586	3	6	ż	3	.1	ę	1	39	. 34	5	5	ND	ż	3	1	3	÷	3	. 02	.002	2	12	.04	17	. 01	3	.06	.01	.02	t	3
80352	2	9		28	.2	9	3	154	1.19	4	5	ND	- 1	1	l	2	2	18	.04	.917	1	15	.40	71	. \$5	2	. 62	.02	.37	1	3
STD C/30-2	11	Ø	4.6	172	5.5	77	31	956	3 73	18	20	7	38	50	1	14	20	58	.46	.089	38	55	. 84	174	.06	34	1.81	. 06	.13	12	180

LEECH

(

С.

ŧ.

٠.

1

ŕ

t.

Ξ.

* 17

(-)

٤

{

{

Page

		PPB	8905-009
	MPLE	Au	Pg. 2 of 2
i l			
	and the second		
	P ^e		
97			
98			
÷			
)			
೨೭ ೯೪	i.		
÷			
<u>రా</u> ర్			
56			
7			
_ 3 rr			
39 N			
1			
62			
63			
4	- (80433	5	
చె ఉడ	80434	5	
55	80435	2 2	
8	80437	5	
69	80438	5	
~ 0	80439	5	
1	B0440	5	
72	LEELT Y BOARD		
13	60442	5 5	
- 5	80444	5	
76	80445	5	
'7	80446	5	
'8 	80447	ື 5	
79	80448	5	
30	80450	5	
32	755581	5	
83	59582	5	
34	59583	5	
35		5	
86	LEEU (DADAD	ය ස	
) २८	59587	5	
69	59588	5	
30	59589	5	
∃1	59590	5	
92 52	59591	5 5	
93 98	SECEC/ LISE	2600	
95 95	59231	10	
96	59232	2 <u>-</u>	

	59529	1	53	14	123	.1	62	16	588	4.41	11	5	ND	2	10	1	2	2	63	.14	.028	21	51	.96	67	.07	2 3.5	0.01	. 03	ĩ	
	595	1		11		. 8		1		80	••	5		2	1.	•	÷	•	63	••	,022	•	31	**	37	**	1 11	· •.01		+ 1	•
	59531	1	25	10	58	.1	19	8	239	4.69	11	5	ND	2	-11	1	2	2	80	.18	.034	- E	13	.44	29	.03	6 6.3	2 .01	. 91	i	
	_ 59532	1	27	11	62	.1	15	1	218	6.63	10	5	ND	2	12	1	2	2	- 77	.20	.057	4	33	. 38	29	.03	1 2.2	3.01	.02	1	
	(B0433	1	43	12	85	. 2	29	11	278	3.61	10	5	HD	5	12	1	- 4	2	59	. 10	. 035	7	36	. 69	49	.07	2 3.6	3 .01	.04	1	
LERH	}																														
	C80434	1	34	18	97	.1	33	12	304	4.64	15	5	ND	- 4	12	1	2	2	58	. 09	.039	5	ţΰ	.91	- 45	.05	2 3.5	1 .01	.03	1	
	STD C	18	62	39	132	8.5	71	31	960	3.71	42	22	6	38	50	16	14	22	58	- 44	.087	38	55	. 82	175	. 07	36 1.8	0.05	.14	12	

Page 3

۲ روب

(

C

¢

ţ

Ł

£

f

¢

(

4

(

(

(.

ť.

Č9

C

NORANDA EXPLORATION CO., LTD., PROJECT 8905-009 120 FILE # 89~1060 λ¢ 81 Хn ī e A 5 Ű λu ∣ th 12 Cđ sð 3i ¥ Ca ₽ La CT. Ŋф 8a 71 8 A1 Na 1 ¥ SAMPLES КC Cυ 25 ไล Có PPN PPK PPN PFN PPK PPN PPN Ł 1 PPH PPH 1 ٩. PPN PPN PPN ł PPN PPN PPX PPX 22X 1 ٦ \$ 25% PPN PPH 22K 2 P N NC 59 .06 80435 15 50 .3 11 5 134 4.18 ş 5 - 3 - 7 1 2 .042 4 -21 .34 36 .03 2 1.95 .01 .03 1 1 13 5 NÐ 1 2 59 .06 .013 .17 23 5 9 4 101 2.05 5 -1 8 2 6 15 ,03 2 .98 .01 . 02 80436 1 -6 25 -.1 1 è. 5 ND 1 10 i. 2 62 .10 .039 29 25 17 28 .2 23 8 233 3.98 2 6 .60 50 .87 2 3.20 .01 .03 1 80437 1 15 5 ЖD 4 10 1 2 63 .11 ,063 5 101 .1 44 14 339 4.65 2 43 . 82 11 .11 2 5.99 .01 . 05 80138 t - 54 11 1 .5 15 6 138 3.50 13 5 ЯD 5 1 1 2 2 50 .05 .043 6 22 .40 26 1 20 9 46 .04 1 2.43 .01 .03 60439 1 \$0440 23 16 69 .1 20 1 205 4.99 14 5 ND 5 2 2 59 . 08 .144 6 32 .45 25 .03 2 4.02 . 01 .03 1 1 23 10 .3 13 252 3.97 6 5 ND 3 6 1 î 2 49 .03 .049 5 23 .58 38 .04 5 2.04 .01 80441 - 61 6 .03 1 1 s .1 6 3 156 2.25 3 5 ND 1 6 1 2 2 35 .03 .022 5 14 . 39 17 .03 2 1.37 .01 80442 1 9 39 .02 1 5 ND 3 1 2 47 . 05 .039 6 23 .56 1 19 15 51 .1 15 5 179 3.27 7 1 ; 32 .04 2 3.16 .01 .03 80113 1 80144 43 11 92 . 2 25 10 228 4.33 13 5 XD. 5 8 L 2 2 46 .06 .080 5 35 .15 14 .03 2 5.34 .01 . 05 1 1 80445 1 20 .1 2 86 .86 3 5 NC 6 1 2 -2 26 .03 .014 3 1 .15 .07 3 .73 1 11 . 01 . 03 4 1 ĩ 1 5 ХD .02 .028 16 6 2 11 19 .51 80146 ÷ 13 8 54 .2 5 159 2.56 ŧ. 2 1 2 4 22 .04 2 2.32 .01 .05 1 80447 [-7 8 40 .2 8 1 143 2.76 5 5 ND. 3 £ 1 2 2 45 .04 .022 ŧ 18 .33 29 .04 2 1.90 .01 .03 -2 5 . 65 3 ô! .1 18 7 196 3.19 6 ND 2 8 1 2 2 52 .06 .014 Ł 21 30 .05 .01 .05 30143 2 16 3 1.80 1 5 3 80449 1 18 8 60 .1 15 5 184 3.05 ŧ. ND 2 6 1 2 52 .03 .015 5 22 .57 38 . 05 3 2.19 .01 . 65 1 80459 1 13 9 \$5 .3 15 5 144 1.76 9 5 ЯÐ 4 5 1 1 2 53 .03 .015 8 21 .45 24 .04 2 2.11 .01 . 96 - 1 .1 6 1 18 2.83 1 5 ЯC 3 8 1 2 1 73 .06 .050 16 .18 19 59581 10 10 25 3 .11 3 1.38 .01 . 02 1 1 5 HD 2 14 10 44 .1 14 5 137 3.43 5 8 i 2 2 80 .06 .038 3 27 .41 41 .10 2 3.18 59582 1 . 01 . 05 1 5 70 1.62 5 NÐ З 5 2 59583 ł 1 3 20 .1 2 ۰. 1 2 47 .04 .023 2 11 .18 16 .14 2 .72 .01 .03 2 5 ND 2 59584 5 12 29 .1 B 4 121 2.28 5 3 1 2 2 64 .06 .026 1 17 .41 22 .15 1 2 1.01 .01 .04 1 59585 15 51 . 4 3 1 211 .16 3 5 ND 1 34 2 .28 .060 2 2 .12 .01 4 1 2 4 64 4 .19 .01 . 05 LEETY 1 59586 1 36 16 .1 25 10 269 4.37 6 5 ND 4 9 2 87 .09 .041 1 52 1.05 63 15 1 2 . 29 5 4.70 .01 . Ó 8 1 59587 1 6 21 .1 Ĵ 4 84 2.56 3 5 ۳D 1 7 1 2 2 105 .03 .024 2 20 . 27 3 11 .28 2 .64 .01 . 02 1 5 59588 20 1 53 . 2 13 1 167 1.59 9 XD. ŧ 3 1 2 2 97 .09 .040 37 .52 31 1 3 . 21 2 2.37 .01 .05 1 2 5 ND 2 2 38 1 15 .1 6 64 .87 1 5 2 .05 .014 2 10 . 22 18 59589 1 6 1 .13 2 .51 .01 .04 1 167 .59 59590 25 14 34 .3 - 6 2 3 5 XD 16 1 Ż 2 19 .16 .029 1 6 . 13 14 .03 10 .36 .03 1 1 .01 2 59591 1 24 17 58 .1 20 9 193 4.02 3 5 ND 3 9 1 2 2 85 .08 .066 3 45 . 82 69 .28 2 2.69 .01 . 13 -1 5 2 58592 1 1 9 11 .1 19 5 133 2.05 2 ND 8 1 2 2 56 .07 .014 4 35 . 64 50 .22 4 1.74 .01 .07 2 161 4.29 107 5 59230 2 24 11 58 .1 -14 5 3 6 5 1 2 2 89 .04 .043 5 34 . 50 55 .15 2 3.28 .01 .14 2 11 . 2 12 \$ 108 5.68 19 5 RD . 5 1 2 3 149 .05 .071 37 .26 59231 1 17 10 5 17 .24 2 3.03 .01 .01 1 .10 .034 59232 .3 15 7 115 2.79 11 5 XD 3 9 1 4 2 63 1 26 .43 1 40 9 44 48 .12 5 2.26 .01 .10 2 \$70 C 41 132 7.0 72 30 924 3.64 36 18 7 36 49 17 18 21 56 .44 .085 35 52 .81 174 .06 18 59 34 1.79 .06 .14 -11

•			
г. т. Ю	SAMPLE No.	ррв Ач	8903-012 Pg. 5 of 7
 25 2 2 2 2 3 3 2 2 2 3 3 2 3 3 3 3 3 3 3 3		! !	
34444444445555 91 23 56 90 54	LEECH-1 55462 55463 55464 55465 55466 55466 55467 55468 55469 55470 55470 55470 55471 55472 55473 55473 55474	ទេសទ្សទ្ ទេសទ្សទ្ ទេសទស្សទ្ស ស្ត្	
34 55555666666666677777	LEECH-1 55478 LEECH-2 55036 55037 55038 55039 55040 55040 55041 55042 55043 55043 55044 55044 55045 55045 55046 55048 55049 55050 55051 55052	מימי היו היו היו היו היו היו היו היו היו הי	
1374 1377 1377 1377 1377 133 137 133 137 133 137 133 137 133 137 137	LEECH-2 55053 LEECH-3 55054 55055 55056 55057 55058 55059 55060 55061 LEECH-3 55062	ວ 5 5 3 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	

•							
.т. ю.		SAMPLE No.				РРВ Ач	8903-012 Pg. 6 of 7
83	LEECH-3	55063				5	
84		55064				5	
8:		55065				5	
86		55066					
87		33067 85064					
01		55065					
0. 90		55070					
90 94		55071					
9:		55072				5	
93		55073				5	
94	LEECH-3	55074				5	
9:	LEECH-4	55101				5	
9L		55102				5	
97		55103				5	
Э.		55104				5	
9'		55105					
00		55106				5	
52		55107					
ට. සං.		55108 55109				ວ 5	
		551105				5	
5		55111				5	
5		55112				5	
58		55113				5	
51	LEECH-4	55114				5	
6,		55484	SÜIL	PIT	#1	5	
61		55485				5	
62		55486				5	
6		55487				5	
6.,		55488				5	
65		55489	H.C. 81			5	
6		55490	SUIL	PIT	#1	5	
6	CEECH-5	55666	SOL	114	#2	20 E	
68 29		00667 86454				ل ج	
7		55669				5 5,	
7,		55670				5	
72		55671				5	
7		55672				- 5	
7	LEECH-2	55673	SOIL	ріт	#2	5	
75	LEECH-3	55492	SOIL	РĨТ	#3	5	
7		55493				5	
7		55494				C.	
78		55495				5	
74		55496				5	
8		55497				5	
0. 60		33438 55700					
oc A	∣ЕЕСн⊸з	JJ499 55500	ເດຍ	οrτ	#7		
8	FRS	55659	SOLE	יגיי דים	μD		
85		55660		1 7 1		5	
87		55661				5	
e		55662				5	
88		55663				5	
89		55664	SOIL	PIT		5	
э (artib 5	55651	SOIL	Tig		5	
•							
-----------------	----	----------	-----	------------			
τ.τ.		SAMPLE	PPB	8903-012			
NO.		No.	Au	Pg. 7 of 7			
5_	RX	55658	5				
53		59150	5				
5		55491	5				
5		59201	5				
56		55665 #1	5				
57		55665 #2	5				
5		59176	5				
5° 2		55657	-5				
60 6		59126	5				

						NOR	AND?	A EX	PLOF	ATI	ס אכ		LTD.	PR	DJEC	T 8	903-	012	120	F	ILE	# 8	9-07	32							Page	7
SAMPLES	No PPM	CU P2N	66 928	2n PPN	λġ PPN	N1 PPN	CO P PN	Ma PPK	Fe 3	As PPN	U PPM	Au PPN	?h PPX	ST 2PM	Cð PPN	sð PPN	B1 PPM	y PPN	Ca %	٩ بر	La PPN	Ст РРН	¥Ģ X	Ba PPN	Ti X	B PPM	31 3	Na 1	R S	N PPM		
- 55462 55463 55464	2 1 1	33 17 20	12 5 8	38 53 60	.1 .1 .1	8 19 17	5 9 7	168 156 196	1,83 3,32 3,57	- 2 7 3	5 5 5	ND DM DM	2 2 3	5 7 7	I 1 1	2 3 2	2 3 2	34 77 76	. 01 . 08 . 09	.151 .033 .048	13 4 4	13 39 45	.24 .65 .76	39 - 40 62	.08 .27 .29	2 2 2	8.76 2.66 2.90	.01 .03 .01	.98 .07 .13			
5346 <u>5</u> 55466 55467 55468 55469	1 1 1 1	24 1 30 8 5	; 3 5 7 6	66 10 57 51 23	.1 .1 .1 .1	12 1 20 12 11	5 1 8 8 4	124 51 204 194 128	2.96 .89 2.77 3.39 2.24	12 6 3 12 6	5 5 5 5	UN Dr Dr Dr Dr	3 1 3 2 1	7 6 9 9	1 1 1 1	2 2 2 2 2 2	2 2 3 2 2	69 33 53 89 86	.03 .04 .06 .11 .09	.032 .016 .014 .033 .012	5 3 5 3	40 7 36 36 28	.59 .04 .72 .65 .65	40 3 59 37 14	.13 .06 .15 .29 .20	2 2 2 2 2	3.49 .34 3.85 1.71 .85	.01 .01 .01 .01 .01	.11 .01 .08 .08 .02	1 2 1 1		
35470 55471 55472 55473 55474) 1 1 1 1	29 25 9 6 23	15 14 11 3 6	56 72 40 31 76	.1 .1 .1 .1	13 15 11 3 19	7 8 5 4 9	216 251 130 106 240	4.96 3.82 3.09 2.79 3.58	20 2 4 6 3	5 5 5 5 5	ND ND ND ND ND	5 2 2 2 2 2	12 9 8 9 9	I 1 1 1 1	3 2 2 3 2	2 3 2 2 3	102 68 75 86 64	.02 .06 .05 .04 .06	.024 .041 .017 .013 .024	7 5 4 4	55 42 23 21 39	1.08 .86 .41 .34 .79	41 49 27 20 56	.13 .16 .20 .21 .22	2 2 2 2 2 2	3.20 5.10 1.91 1.17 4.44	.01 .01 .01 .01 .01	.12 .09 .06 .04 .11	1 2 2 1		
55475 55476 55478 55036 55037	1 1 1 1	5 4 34 14 18	5 3 6 6 10	20 20 81 56 52	.1 .1 .1 .1 .2	3 1 24 10 11	2 2 10 6 7	61 55 304 118 152	1.80 1.18 3.57 4.54 3.70	3 6 3 14 10	5 5 5 5 5	NC ND ND ND ND	1 4 3 3	4 18 5 6	1 1 1 2	2 2 2 3 2	2 2 2 2 2 2	45 43 56 101 81	. 02 . 02 . 08 . 05 . 05	.019 .013 .039 .066 .045	2 2 8 4 5	12 9 36 64 35	.14 .09 .95 .48 .53	15 16 85 31 42	.10 .03 .14 .24 .21	2 3 4 2 2	.73 .73 3.30 3.35 3.44	.01 .01 .01 .01 .01	.04 .02 .25 .06 .07	1 ! ! ! !		
55038 \$70 c	1 20	8 63	9 44	34 137	.1 7.5	3 71	5 31	9 9 1037	3.03 4.12	11 42	5 20	טא 7	2 38	5 49	1 20	2 15	3 22	81 51	.05 .51	.040 .097	3 40	25 56	. 44 .92	33 175	.26 .07	2 34	1.20 1.81	,01 .05	.08 .14	2 12		

(BARRANE)S

í

e

Ċ

٢

{

¢

{

 \mathbf{x}^{+}

 $\langle \hat{C}^{n}$

C

ŧ

ť

£

1

. 4 . 1 1

۰. چ

NORANDA EXPLORATION CO. LTD. PROJECT 8903-012 120 FILE # 89-0732

.

SAMPLEX	Уру И СК	Cu ??X	76 PPN	2n 228	<u></u> рук рук	N1 P7M	CC 295	Mn 22%	Fe 1	25 29N	9 794	28 229	îb PPM	ST PPN	ed Pfm	5E 22%	81 22%	1 759 759	Ca 1	9 N	La 2PX	CT SPN	Kç l	Bs PPM	71 2	ê X95	1: 1	Na 1	R K	¥ 225
55029 35040 55041 35042 55042	1 : 1 :	5 34 21 15 6	2 22 7 5	25 87 53 62 39		24 13 12 2	2 (2 9 1	75 336 135 195 132	1.11 3.73 3.31 3.19 1.70	52341	5 5 5 5	NC ND ND ND NC	1	5 3 7 15 5	; 2 1 1		12322	42 74 91 79 41	.03 .07 .12 .08 .03	.016 .042 .024 .037 .017	35544	13 49 61 29 17	.25 1.03 .64 .50	32 80 50 31 35	.16 .22 .34 .13 .07	111111	.91 5.56 1.98 1.55 1.29	.01 .01 .01 .01 .01	.06 .13 .09 .06 .09	
55044 55045 55046 55047 35048	1 2 1 1	12 25 17 20 14	20 9 17 7	49 71 51 72 34	.i .1 .1 .i	13 14 7 16 9	7 9 6 11 5	214 231 141 215 160	2,63 3,15 4,08 4,30 1,30 2,62	No to to to to	5 5 5 5 5	NTO NCO NCO NCO NCO	2 2 2 1	11 10 8 10 11	1	2 2 2 3 2	2 2 5 2 3	72 58 66 87 60	.11 .07 .05 .05 .13	.023 .050 .029 .035 .338	3 3 4 2	13 35 15 44 33	.86 .77 .50 .90 .35	31 60 33 63 23	.23 .15 .19 .17 .25	3 2 3 2 6	1.65 4.11 3.30 3.01 1.52	.01 .01 .01 .01 .01	.06 .13 .05 .11 .05	2
55049 55050 55031 55052 55033	1 1 1 1	17 10 12 40 15	9 10 9 14 14	44 34 34 68 42	.1	12 9 10 26 5	8 4 14 4	211 93 146 338 118	2 77 3.13 2.48 4.45 2.77	9 5 3 2 3	5 5 5 5	NE ND ND ND ND	2 2 1 2 2	9 7 13 13 19	1 1 2 1	2 3 3 3	2 2 1 2 2	70 51 64 89 39	.11 .04 .15 .11 .05	.054 .038 .028 .082 .039	3 3 4 4	35 22 27 59 26	.79 .28 .47 1.44 .34	39 1D 44 144 35	.29 .06 .22 .29 .09	2 5 3 8	1.54 1.00 1.16 4.24 2.18	.01 .01 .01 .01 .01	.06 .03 .08 .10 .06	1 2 2 1 1
55054 55035 55056 35057 55058	1 1 1 1	11 26 16 11 12	3 17 4 5 3	52 30 59 39 33	.1 .2 .4 .1	15 15 17 7	7 2 4 3	202 235 222 175 308	3.30 4.10 3.54 1.99 3.42	9	5 5 5	ND ND ND ND	64 10 4 4 61 63	5 7 7 8 10	1 2 1 1 1	3 3 2 2 2	20203	91 79 76 61 64	.09 .06 .07 .07 .07	.032 .088 .052 .017 .057	4 6 4 5	38 41 43 25 30	.69 .75 .51 .48 .51	13 72 43 75 56	. 31 . 22 . 24 . 1 9 . 18	3 2 2 2 2	1.52 5.85 3.66 1.65 2.62	.01 .01 .01 .01 .01	.03 .12 .07 .09 .08	1 1 1 1
55059 55060 55061 55062 55063	1 1 1 1	18 27 41 25 37	18 16 28 15 21	56 31 100 74 92	.1	E 18 36 21 22	7 6 13 9 11	184 823 514 336 294	9.72 3.85 3.93 3.51 4.43	5 8 12 3 10	5 5 5 5	NC ND ND ND ND	3 1 1 3 5	; 9 13 11 9	1 1 2 1	3 3 2 2 2	2 2 2 2 2 2	60 71 57 70 60	.05 .07 .06 .08	.057 .065 .055 .048 .201	5 5 10 6 8	33 41 44 41 50	.48 .62 1.11 .80 .82	49 38 115 34 65	.14 .09 .12 .16 .13	2 2 7 3 3	3.25 3.33 4.36 3.22 5.46	.01 .01 .01 .01 .01	.10 .07 .19 .14 .14	1 3 2 2
55064 55055 55066 55057 55068		42 36 26 22 21	22 13 20 13 13	101 96 84 75 85	.1 .1 .2 .1	38 33 19 23 20	12 11 8 9 15	325 296 215 265 341	3.90 3.95 3.87 4.27 3.52	3 3 2 2	5 5 5 5 5	ND ND ND ND	4 3 4 3 2	12 11 9 11 10	3 1 1 2	2 2 2 2 2	3 2 2 3	58 66 56 67 72	.05 .05 .04 .96 .11	.038 .036 .039 .054 .028	3 6 6 6	46 49 47 40 48	1.10 1.01 .64 .81 1.18	92 106 56 50 58	.14 .14 .11 .12 .22	2 2 3 4 2	5.24 5.08 4.71 3.19 3.27	.01 .01 .01 .01 .01	.23 .14 .08 .12 .09	3 1 1 1 1
55069 55070 55071 55072 55073	1 1 1 1	13 31 24 27 35	16 16 20 20 22	57 80 59 78 90	.1 .1 .1 .1	10 22 15 23 26	5 10 6 11	123 276 173 259 288	3.87 4.38 4.76 3.69 3.91	5 3 7 2 8	5 5 5 5	ND ND ND ND ND	4 3 4 4	7 11 12 9 11	1 3 2 1 2	3 2 3 2 2	2 3 2 2 3	80 69 83 55 59	.04 .06 .06 .04 .04	.045 .052 .038 .050 .049	6 8 5 8 9	35 47 45 40 43	.38 .95 .38 .88 1.04	4D 75 41 143 96	.10 .15 .17 .16 .12	4 2 5 4 2	3.29 4.23 3.61 4.51 4.21	.01 .01 .01 .01 .01	.05 .13 .09 .34 .23	2 1 3 1
55074 STD C	1 20	23 63	11 40	65 142	.1 7.9	18 70	9 31	211 1053	3.50 4.10	15 10	5 22	ND B	2 39	16 52	2 20	1 15	2 23	83 64	.05 .51	.033 .098) 42	39 57	1.01 .96	58 182	.11 .07	2 38	3.02 1.95	.01 .05	.05 .13	1 12

Page 8 ·

•

•

ŧ

(

ť

6

0

É

1

ь.

 $\sim 2^{10}$

(

(

(

ξ.

.

						NO1	4	E2	1	ATI		ο. :		PRO		: 8	9	12		F	II	8	9-							•
SANPLE4	KO PPK	Cu 7PM	PD PPN	ZD Ppy	Ag PPN	H1 PPN	Co PPH	Kn PPN	Te t	AS PPX	U P PN	Au PPM	Th PPN	ST PPM	Cd PPX	SD PPN	B1 PPN	V PPN	Ca R	P t	La PPM	CT PPN	Ng X	Ba PPN	71 1	6 PPN	A1 %	Sa R	х १	V PPN
55101 55102 55103 55104 55105	i 1 1 1 1	28 12 12 30 19	2 7 3 10 13	65 43 47 70 68	.1 .2 .1 .1 .2	23 13 14 13 19	7 6 4 8 11	272 169 168 301 246	3.03 3.60 2.37 3.27 3.24	2 9 5 10 7	5 5 5 5	ND ND NC ND ND	2 2 2 2 2 2	14 8 9 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2	69 92 57 71 63	.05 .07 .06 .10 .08	.020 .028 .022 .025 .034	3445	43 37 26 43 42	.94 .58 .46 1.07 .86	98 22 44 84 60	.23 .26 .20 .21 .20	2 2 2 2 3	3.77 1.60 2.08 2.66 3.28	.01 .01 .01 .01 .01	.14 .05 .06 .12 .07	1 1 1 3
55106 35107 55108 55109 55110	2 1 1 1	43 26 21 12 9	10 14 12 8 9	114 96 104 59 53	.4 .2 .1 .1	22 19 14 12 9	13 11 9 9 6	292 275 480 307 196	4.35 3.71 3.87 3.00 3.16	23 9 3 2 3	5 5 5 5	DK DK DK DK DK	3 3 3 2 2	10 9 7 10 11	1 1 1 1	2 2 2 2 2	2 2 3 2 2	67 79 57 53 62	.05 .09 .05 .08 .06	.052 .033 .031 .032 .026	5 5 5 4	43 41 40 26 26	. 69 . 87 . 88 . 51 . 13	58 63 35 51 47	.12 .24 .06 .18 .18	3 2 2 2 2 2	4.48 3.13 2.92 2.28 1.99	.01 .01 .01 .01 .01	.09 .10 .05 .06	5 1 2 1 2
5511: 55112 55113 55114 55484	I 2 1 1 1	9 18 22 15 10	12 7 6 9 28	53 71 80 54 83	.1 .2 .1 .1	6 17 15 10 4	4 7 7 4 1	165 213 215 365 1152	2.79 3.54 3.91 2.83 .24	4 5 7 2	5 5 5 5 5	ND ND ND ND	2 2 1 1	15 14 14 10 32	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	50 75 81 58 6	.07 .06 .08 .08 1.00	.024 .021 .037 .059 .069	5 5 5 2	23 40 44 26 3	. 40 . 70 . 84 . 39 . 09	46 69 57 28 45	.17 .19 .20 .04 .01	2 5 2 8	1.87 2.52 2.92 1.69 .17	.01 .01 .01 .01 .01	.07 .10 .10 .05 .04	1 2 1 2 1
55485 35486 55487 55488 55489	1 1 1 1	8 1 22 30	16 3 2 14 14	55 10 34 77 86	.2 .1 .1 .1	3 1 6 17 25	I 1 7 9	341 53 122 253 326	.12 .51 2.44 3.70 3.66	2 2 9 7 2	5 5 5 5 5	ND ND ND ND	1 1 2 3 3	47 7 8 10 9	1 1 2 2	2 2 2 2 2	2 2 2 2 2 2	3 30 61 67 59	.45 .04 .05 .05 .07	.049 .008 .010 .020 .021	2 2 4 5 5	2 5 20 40 42	.12 .07 .38 .85 1.00	66 13 29 49 68	.01 .08 .19 .25 .22	1 4 3 2 2	.12 .34 1.47 3.82 4.75	.01 .01 .01 .01 .01	.04 .03 .06 .10	1 1 1 1
55490 55666 55667 55668 55668	1 2 2 1	29 30 50 52 54	30 16 27 13 25	86 81 107 101 103	.1 .3 .2 .3 .3	21 19 25 25 27	10 5 10 9 9	301 1086 597 380 291	3.77 2.84 5.32 5.33 4.71	8 9 14 12 8	5 5 5 5 5	ND ND ND ND ND	3 1 6 5	9 19 10 10 10	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	62 44 77 76 73	.05 .38 .08 .06	.021 .121 .170 .151 .094	3 8 8 8	42 28 51 48 49	1.00 .50 .77 .75 .78	67 45 55 56 61	,22 ,07 ,11 ,11 ,12	2 5 2 2 2 2	4.55 2.05 4.56 4.58 4.50	.01 .01 .01 .01 .01	.17 .09 .11 .10 .10	3 1 1 1
55670 55671 55672 55673 55492	1 1 1 1	19 57 11 29 12	17 26 24 19 20	98 94 97 81 46	.5 .2 .4 .2 .6	26 32 25 15 5	9 9 5 2	272 295 255 208 1120	4.53 4.39 4.83 4.81 ,46	12 16 11 15 3	5 5 5 5 5	ND ND ND ND ND	5 5 3 1	10 10 10 10 10	2 3 2 1 1	3 2 2 2 2 2	2 2 2 2 2 2	71 69 73 79 11	.06 .07 .07 .07 .53	.072 .064 .061 .117 .050	7 7 7 6 2	47 50 45 39 5	.81 .87 .57 .54 .14	66 62 54 43 52	.12 .14 .09 .09 .02	3 2 2 3 3	4.35 5.04 4.42 3.48 .28	.01 .01 .01 .01 .01	.10 .11 .06 .05 .07	1 2 1 2
35493 55494 35495 55496 55497	1 1 1 1	B 2 19 26 25	17 2 5 2	34 24 62 71 70	.1 .1 .1 .1	4 7 14 16 21	1 2 7 7 7 7	1057 172 263 218 192	.45 .95 3.58 3.19 2.87	2 2 9 13 30	5 5 5 5 5	ND ND ND ND ND	1] 2 3	15 5 11 12 10	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	12 33 78 62 57	.31 .04 .05 .07 .07	.024 .011 .039 .042 .032	2 5 6 5	5 12 41 35 35	.13 .36 .84 .88 .71	42 13 62 85 61	.03 .10 .18 .16 .16	3 2 2 2 2	.29 .64 2.32 3.02 3.37	.01 .01 .01 .01 .01	.06 .03 .13 .17 .09	2 1 1 1 1
55498 STD C	1 19	14 62	1 35	48 139	.1 7.0	9 68	4 29	117 972	2.08 3.77	13 44	5 19	ND 7	2 36	8 47	1 19	2 15	2 23	19 58	. D6 . 47	.020 .087	5 38	24 53	.57 .86	39 166	.15	4 36	1.77	.01 .06	.05	3 12

'≙ 9

٢

Ĺ.

t

1

t.

í

(

Ċ.

¢

(

ł

I.

						NOR		EX		'ATI	··· ·	·ɔ.	L	PR	o	- 8	901	^12	1~	F	IL-	" 8	9-07								
SAMPLE	No PPN	Cu PPN	Pb P?k	2n PPN	AÇ PPN	NI PPM	CO PPK	Mn PPM	re t	AS PPN	U PP n	AU PPN	Th PPX	ST PPN	Cđ PPK	SD PPM	BI PPN	9 9 9 9	Ca ł	P %	La PPN	CT PPM	¥	Ba PPM	ti t	B PPK	41 1	Ka t	K L	4 1979	
55499	1	14	3	46	. 2	13	6	177	2.58	9	5	ND	2	11	1	2	2	60	. 09	.031	6	26	. 61	36	.17	2	2.06	.01	.05	1	
55500	1	24	8	61	.1	11	8	245	3.10	6	5	ND	3	11	2	2	2	59	.12	.017	7	32	.76	53	.15	2	2.95	.01	.08	t	
55651	1	3	;	44	. 3	1	1	387	.10	2	5	ND	1	28	1	2	2	3	. 31	.030	2	2	.15	21	.01	5	.09	.01	.04	1	
55652	I	1	4	49	.1	1	1	440	.03	2	5	ND	1	20	1	2	2	I	.16	.025	2	1	.08	11	.01	2	.05	.02	.01	1	
55653	1	3	5	16	.1	1	1	154	. 05	2	5	ND	1	17	1	2	2	2	.11	.017	2	1	.01	17	,01	5	. 09	.0;	.01	1	
55654	1	3	2	3	.1	1	1	36	. 11	3	s	ND	1	3	1	2	2	5	.01	.003	8	1	.01	5	. 02	3	.10	.01	.01	1	
55659	l	3:	12	45	.2	26	9	406	2.01	б	5	ND	1	25	1	2	2	47	.58	,031	3	- 43	. 83	36	.13	3	1.23	.01	.07	1	
55660	1	22	15	52	.1	17	1	215	3.66	6	5	ND	2	- 14	1	2	2	79	. 21	.023	5	39	.56	31	.15	2	2.91	.01	.05	1	
55661	1	10	9	32	. 1	1	5	122	3.16	2	5	ND	1	10	1	2	2	107	. 15	.015	5	25	.24	21	.14	6	1.35	.01	.03	1	
55662	1	22	15	76	. 1	24	10	257	1.01	5	S	HD.	2	13	2	2	2	82	. 20	.023	6	45	. 69	42	.16	2	3.40	.01	.05	1	
55663	1	30	31	71	.1	32	10	311	3.66	3	5	ND:	2	и	1	2	2	72	. 24	.019	5	16	. 88	45	. 16	2	3.65	.01	. 05	1	
55664	1	28	16	67	.1	27	a	284	3.64	12	5	NO.	2	10	1	2	2	74	.23	.023	6	44	.76	41	.15	5	3.33	.01	.05	1	
\$70 C	19	52	41	132	1.3	73	31	1023	3.92	15	18	8	36	18	18	18	24	59	. 19	.091	38	56	.90	175	.05	35	1.85	.06	.14	12	

(

(.

¢

ŧ

(·

ţ

52

{

(

ţ

						NO	Ą	E>	٤	ATI	ï	0.		PRC		2 89		12		FI	I	89) - · · -	• •				·		1
SAMPLES	но Ррк	Cu PPN	PD PPN	2n PPN	ÂĢ P7N	N1 PPN	Co PPN	Nn PPN	te 3	As PPN	U PPN	Au PPN	7ћ ?РК	ST PPN	Cđ PPH	SD PPM	BI PPN	V PPM	Ca 3	P X	La PPN	Cr P?K	Xg %	Ba PPK	TÍ ł	B PPK	л1 ¥	Ha ł	I }	W PPK
5563E	1	н	2	15	.1	6	1	59	. 72	2	5	ND	1	3	1	2	2	9	. 01	.004	2	216	.13	12	.02	5	.22	.01	.06	1
59150	1	28	6	31	. 2	12	3	122	1.08	5	5	NÐ	1	23	1	2	3	32	.46	.007	2	152	. 30	19	. 02	2	.55	.03	.14	1
55491	1	28	3	- 41	. 2	23	7	193	3.89	6	- 5	ND	1	8	1	2	2	17	. 08	.032	2	128	.17	31	. 02	2	.71	.02	.10	1
59201	1	9	8	19	.1	7	4	186	.90	2	5	ND	1	8	1	2	2	I Ø	.06	.017	3	159	. 28	55	.05	2	44	.04	.23	1
55665 #1	1	16	1	27	.1	16	I	86	1.20	6	5	жD	1	1	1	2	2	11	.04	.021	2	190	.24	9	.01	2	.30	,01	.04	I
55665 42	I	10	2	13	.1	7	1	47	.78	2	5	Ю	t	4	1	2	2	5	.03	.015	Ż	200	.11	6	.01	3	.18	.01	. 02	1
59176	1	10	2	:9	.1	7	6	155	1.82	2	5	ND.	2	27	1	2	2	13	. 58	.013	21	137	.31	2	.10	3	. 66	.07	.01	1
55657	1	3	3	7	.1	1	2	38	. 19	2	5	ND.	1	26	1	2	2	5	. 01	.005	2	231	.05	,	,01	2	.09	.01	.03	2
59126	1	30	1	38	.1	21	;	306	1.51	3	5	ND.	1	28	1	2	2	29	. 68	.113	2	141	.50	3	.03	6	1.29	. 06	, DŠ	1
55097	1	38	2	109	.)	113	48	1988	10.64	8	5	ND	1	4	6	2	2	151	.05	. 029	6	184	2.66	79	.01	5	3.93	.02	, 08	1
STD C	18	61	43	134	7.3	72	31	1012	3.76	44	20	ß	34	46	18	19	20	59	.45	.090	37	56	. 83	166	.05	35	1.81	.06	.14	12

•

(: '

(

1

ť

1

ł

ŧ.

i 1

Ċ

C

(

(

(

'e 11

		NOR	ANDA VANCOU	VER LABORATORY	
• •	PROPERTY/LC	CATION:BEA	UPRE-VALENT	INE	CODE :8903-012
-	Project No. Material Remarks	:120 :25 :Var	SOILS Sidus size f	Sheet:1 of 1 Geol.:R.W. ractions pulverized Values in PPB, e	Date rec'd:APR.06 Date compl:APR.18 except where noted.
	 T.T. Na.	SAMPLE No.	Au -10/+4	Au 60 -407+80	
	52 54 56 58 60 62 64 66 68 70 72	55485 55487 55488 55489 55490 55667 55668 55669 55669 55670 55671 55672	5 5 70 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	មេស ស ស ថា ថា ស ស ស	
1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	74 76 78 80 82 84 86 88 90 92 92 94 96 98	55673 55494 55495 55495 55497 55498 55499 55500 55660 55661 55662 55663 55663	ភ្អេស ឆ្នេស ឆ្នេស ឆ្នេស ឆ្	ភ្សាសាសាសាសាសាសាសា	
	98 100	55654	5	10	

and the state

APPENDIX IV STATEMENT OF COSTS

•

STATEMENT OF COSTS FOR THE LEECH GROUP (FIELD COSTS)

1. <u>WAGES: March 15, 1989 to June 20, 1989</u>.

.

FIELD EQUIPMEN SHIPPING MISCELLANEOUS/ ANALYSES LUTHOR, DRAFTIN	T TRANSPORTATION G (AUTOCAD), TYPING		* \$ \$ \$ \$	89.20 57.26 86.17 7137.93 1400.00
FIELD EQUIPMEN SHIPPING MISCELLANEOUS/ ANALYSES	<u>T</u> TRANSPORTATION		* \$ \$ \$	89.20 57.26 86.17 7137.93
FIELD EQUIPMEN SHIPPING MISCELLANEOUS/	<u>T</u> TRANSPORTATION		∓ \$ \$	89.20 57.26 86.17
FIELD EQUIPMEN SHIPPING	<u>T</u>		* \$ \$	89.20 57.26
FIELD EQUIPMEN	<u>T</u>		\$	89.20
			Ŧ	
TRUCK/TIRE REP	ATR		ŝ	40.08
OFFICE SUPPLIE	<u>S (FIELD)</u> Blueprints, Photocoj	pies	\$	34.37
GAS	35 days x \$12.75/day	ł	\$	446.25
TRUCK	35 mandays x \$9.15/c	lay	\$]	.,411.20
<u>GROCERIES</u>	89 mandays x \$14.21/	'man	\$ 1	.,264.91
ACCOMMODATION:	March 15, 1989 to Ju 89 mandays x \$10.72/	ine 20, 1989 /manday	\$	954.08
89 mandays x \$	124.04/manday ==	\$11,040.00	\$11	,040.00
35 mandays x \$1 27 mandays x \$1 10 mandays x \$1 2 mandays x \$1 7 mandays x \$ 2 mandays x \$ 1 manday x \$ 5 mandays x \$	40/manday 104/manday 190/manday 112/manday 74/manday 124/manday 117/manday 65/manday	\$ 4,900.00 \$ 2,808.00 \$ 1,900.00 \$ 224.00 \$ 518.00 \$ 248.00 \$ 117.00 \$ 325.00		
	5 mandays x \$1 7 mandays x \$1 0 mandays x \$1 2 mandays x \$1 7 mandays x \$1 7 mandays x \$1 1 mandays x \$1 5 mandays x \$1 89 mandays x \$1 89 mandays x \$1 ACCOMMODATION: BROCERIES FRUCK	5 mandays x \$140/manday 7 mandays x \$104/manday 0 mandays x \$190/manday 2 mandays x \$112/manday 7 mandays x \$124/manday 2 mandays x \$124/manday 1 manday x \$117/manday 5 mandays x \$65/manday 39 mandays x \$124.04/manday == ACCOMMODATION: March 15, 1989 to Ju 89 mandays x \$10.72/ SROCERIES 89 mandays x \$10.72/ SROCERIES 89 mandays x \$14.21/ ACCOMMODATION: March 15, 1989 to Ju 89 mandays x \$10.72/ SROCERIES 89 mandays x \$14.21/ ACCOMMODATION: March 15, 1989 to Ju 89 mandays x \$10.72/ SROCERIES 89 mandays x \$10.72/ SROCERIES 89 mandays x \$12.75/day DFFICE SUPPLIES (FIELD) Blueprints, Photocol	5 mandays x \$140/manday \$ 4,900.00 7 mandays x \$104/manday \$ 2,808.00 0 mandays x \$190/manday \$ 1,900.00 2 mandays x \$112/manday \$ 224.00 7 mandays x \$112/manday \$ 248.00 1 manday x \$124/manday \$ 248.00 1 manday x \$124/manday \$ 117.00 5 mandays x \$ 65/manday \$ 325.00 	5 mandays x \$140/manday \$ 4,900.00 7 mandays x \$104/manday \$ 2,808.00 0 mandays x \$190/manday \$ 1,900.00 2 mandays x \$112/manday \$ 224.00 7 mandays x \$112/manday \$ 518.00 2 mandays x \$112/manday \$ 518.00 2 mandays x \$112/manday \$ 518.00 2 mandays x \$124/manday \$ 248.00 1 manday x \$117/manday \$ 117.00 5 mandays x \$65/manday \$ 325.00

* A total of \$11,850 in exploration expenditures occurred between March 15, 1989 and April 10, 1989.

GEOCHEMICAL ANALYSIS COSTS FOR THE LEECH GROUP

SOILS* 1. 6.25/sample analyzing by ICP for 30 elements. Ŝ. Ś 3.50/sample analyzing by AA for Au. \$ 1.60/sample drying and sieving. \$ 1.10/sample data processing. \$ 12.45/sample * 450 samples \$5602.50 2. ROCKS * \$ 3.50/sample crushing & pulverizing \$ 6.25/sample analyzing by ICP for 30 elements. \$ 1.10/sample data processing. \$10.35/sample * 29 samples \$ 300.15 з. SILTS * as soils listed above. \$ 12.45 * 16 \$ 199.20 4. PAN CONCENTRATES \$1.60/sample digestion and Cu analysis \$ 1.80/sample Zn, Pb, Ag analysis by AA \$ 5.00/sample Au Analysis by AA \$ 8.40/sample * 4 \$ 67.20 5. HEAVY MINERAL CONCENTRATE - (FIPKE ANALYSIS) \$ 95.61/sample seiving, heavy liquid separation, electromagnetic separation. \$ 95.61 * 8 \$ 764.88 \$ 12.75/sample INAA 34 element analysis (2 fractions). $$12.75 \times 16$ \$ 204.00 -----\$ 7137.93

* Analysis by 30 element I.C.P.: Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, As, U, Au, Th, Sr, Cd, Sb, Bi, V, Ca, P, La, Cr, Mg, Ba, Ti, B, Al, Na, K, W.

APPENDIX V

- -----

.

AUTHORS QUALIFICATIONS

AUTHORS QUALIFICATIONS

I, Terence J. McIntyre of 894 Pacific Drive, Delta, Province of British Columbia, do hereby certify that:

- I have been employed as a Geologist for Noranda Exploration Company, Limited (no personal liability) from the spring of 1987 to the present.
- I graduated from the Montana College of Mineral Science and Technology in 1986 with a BSc degree in geological engineering.
- I have worked in mineral exploration and in mines since 1983.

Terence J. McIntyre

AUTHORS QUALIFICATIONS

I, Dennis R. Bull of the Municipality of Surrey, Province of British columbia, do hereby certify that:

- I am a Geologist residing at 12918 64th. Avenue, Surrey, B.C.
- I graduated from the University of Alberta in 1986 with a BSC (Honours) degree in Geology.
- I have worked in Mineral Exploration since 1974 and have practised my profession as a Geologist since May, 1987.
- I am presently a Project Geologist with Noranda Exploration Company, Limited.

1.2.

Dennis R. Bull

AUTHORS QUALIFICATIONS

- . -----

I, Robert G. Wilson of the City of Vancouver, Province of British Columbia, do hereby certify that:

- I am a geologist residing at 3328 West 15th. Avenue, Vancouver B.C.
- I graduated from the University of British Columbia in 1976 with a BSc degree in Geology.
- I have worked in mineral exploration since 1973 and have practiced my profession as a geologist since 1976.
- I am presently a Project Geologist with Noranda Exploration Company, Limited (no personal liability).
- I am a member of the Geological Association of Canada (Cordillera Division).
- I supervised this project and have reviewed the findings presented within this report.

Rob Wilson Project Geologist

