| LOG NO: 0719 | RD. |
|--------------|-----|
| ACTION:      |     |
| -            |     |
| FILE NO:     |     |

#### ASSESSMENT REPORT ON DOME MOUNTAIN DIAMOND DRILLING

#### DOME NORTH GROUP - DOME MOUNTAIN OMINECA MINING DIVISION, BRITISH COLUMBIA

NTS 93L/10E, 15E

#### LATITUDE 54 Degrees 44.5' North LONGITUDE 126 Degrees 37.0' West

November - December, 1988

For: Tecshin Resources Ltd. Ste 100 - 581 Argus Road Oakville, Ontario L6J 3J4

GEOLOGICAL BRANCH

ASSESSMENT REPORT

FILMED

By: MPD Consultants Inc. P.O. Box 684, Smithers British Columbia V0J 2N0

> Steve Jenner, BSc. Project Geologist

December, 1988

./tee/dome/dec88rpt

### TABLE OF CONTENTS

| List | of Figures                                            | i  |  |  |  |  |
|------|-------------------------------------------------------|----|--|--|--|--|
| List | of Tables                                             | ii |  |  |  |  |
|      | 1. INTRODUCTION                                       |    |  |  |  |  |
| 1.1  | Location and Access                                   | 1  |  |  |  |  |
| 1.2  | Property Description                                  | 1  |  |  |  |  |
| 1.3  | Objective and Procedure                               | 1  |  |  |  |  |
| 1.4  | Regional and Property Geology                         | 9  |  |  |  |  |
| 1.5  | .5 Previous Exploration Activity                      |    |  |  |  |  |
|      | 2. Cabin-Fedral Area Fall 1988 Program                |    |  |  |  |  |
| 2.1  | Summary of Work Completed                             | 13 |  |  |  |  |
| 2.2  | Survey Results                                        | 13 |  |  |  |  |
| 2.3  | Diamond Drill Results                                 | 15 |  |  |  |  |
|      | 3. Elk Showing Fall 1988 Program                      |    |  |  |  |  |
| 3.1  | Summary of Work Completed                             | 18 |  |  |  |  |
| 3.2  | Survey Results                                        | 18 |  |  |  |  |
| 3.3  | Diamond Drill Results                                 | 18 |  |  |  |  |
|      | 4. Conclusions and Recommendations                    |    |  |  |  |  |
| 4.1  | Cabin-Fedral Area                                     | 20 |  |  |  |  |
| 4.2  | Elk Showing                                           | 21 |  |  |  |  |
| Refe | rences                                                | 22 |  |  |  |  |
| Appo | endix One - Drill Logs for Holes RP-87-11 to RP-87-14 |    |  |  |  |  |

Appendix One - Drill Logs for Holes RP-87-11 to RP-87-14 Appendix Two - Drill Logs for Holes RP-88-15 to RP-88-24 Appendix Three - Assay Certificates Appendix Four - Summary of Personnel Appendix Five - Statement of Costs

./tee/dome/dec88rpt

### LIST OF FIGURES

| FIGURE NO. | DESCRIPTION                                             | PAGE        |
|------------|---------------------------------------------------------|-------------|
| 1          | Dome Mountain Property Location Map                     | 2           |
| 2          | Dome Mountain Property Map                              | 3           |
| 3          | Dome Mountain Property Claim Map                        | 4           |
| 4          | Geology of Dome Mountain                                | 10          |
| 5          | Preliminary Stratigraphic Column, Dome Mountain         | 11          |
| 6          | Surface Drilling Plan, Cabin-Fedral Area<br>Scale 1:500 | Back Pocket |
| 7          | Section 52455 E, Cabin-Fedral Area<br>Scale 1:250       | Back Pocket |
| 8          | Section 52410 E, Cabin-Fedral Area<br>Scale 1:250       | Back Pocket |
| 9          | Section 52380 E, Cabin-Fedral Area<br>Scale 1:250       | Back Pocket |
| 10         | Section 52350 E, Cabin-Fedral Area<br>Scale 1:250       | Back Pocket |
| 11         | Section 52270 E, Cabin-Fedral Area<br>Scale 1:250       | Back Pocket |
| 12         | Surface Drilling Plan of Elk Showing<br>Scale 1:250     | Back Pocket |
| 13         | Section of Drill Holes RP-88-21, 22<br>Scale 1:250      | Back Pocket |
| 14         | Section of Drill Holes RP-88-23, 24<br>Scale 1:250      | Back Pocket |

./teeshin/dome/domesjcoverpg

### LIST OF TABLES

.

-

| <u>TABLE NO.</u> | DESCRIPTION                           | PAGE  |
|------------------|---------------------------------------|-------|
| One              | Dome Mountain Claim Inventory         | 5 - 8 |
| Two              | Summary of 1988 Cabin-Fedral Drilling | 14    |
| Three            | Summary of 1988 Elk Showing Drilling  | 19    |

./tee/dome/dec88rpt

#### 1 INTRODUCTION

-----

#### 1.1 LOCATION AND ACCESS

The Dome Mountain property is located approximately 34 kilometres due east of the town of Smithers, British Columbia (figure 1).

The property is readily accessible via the Babine Lake Forest Road for a distance of 35 kilometres and then south for 18 kilometres on the Chapman Lake Forest Road to the property access road near kilometre 69. Further access to the property is restricted to four wheel drive vehicles by way of a network of bush roads.

Alternate travel to the property may be accomplished by a 15 minute helicopter ride from Smithers.

#### 1.2 **PROPERTY DESCRIPTION**

The Dome Mountain property is comprised of 65 claims containing 237 units encompassing an area of 5,354.7 hectares. Figures 2 and 3 illustrate the claim locations and table one presents the claim inventory.

#### 1.3 OBJECTIVE AND PROCEDURE

The objective of the fall 1988 diamond drilling program on Dome Mountain was to follow up previous exploration work completed at the Cabin-Fedral and Elk zones located on the Porcupine and Elk claims respectively.

At the Cabin-Fedral zone, diamond drilling was initiated in order to determine the strike and dip of the zone(s), delineate any possible westward extension of the zone(s), and confirm the presence of gold values at depth below previous drill hole RP-87-14 (0.18 oz/ton Au over 0.5 metre).

At the Elk showing, diamond drilling was completed to investigate the -possibility of an east-west striking mineralized zone as indicated by trenching in 1985 by Noranda Exploration Limited.

The diamond drilling was completed by J. T. Thomas Diamond Drilling Limited during November 1988. A Longyear 38 rig was used to recover 1,338.90 metres of BQ core. A wide pad Cat D-6 bulldozer was used for drill pad construction and moves between setups. Collar locations are marked in the field with a picket.

All of the core was logged in Smithers by the author and where sampled, the entire core was sent to Min-En Laboratories (Smithers) for fire assay gold analysis. Geochemical analyses for silver were also carried out on selected





FIGURE 2. DOME MOUNTAIN PROPERTY MAP



DOME MOUNTAIN CLAIM MAP





Scole: 1:50,000

## TABLE ONE

### DOME MOUNTAIN CLAIM INVENTORY

| <u>Claim Name</u>     | <u>Claim</u><br>Type | <u>No. of</u><br><u>Units</u> | <u>Area_in</u><br><u>Hectares</u> |
|-----------------------|----------------------|-------------------------------|-----------------------------------|
| L'Orsa Option         |                      |                               |                                   |
| Byron 1               | MG                   | 14                            | 350.0                             |
| Byron 2               | MG                   | 12                            | 300.0                             |
| Emily                 | TP                   | 1                             | 20.9                              |
| Harold                | TP                   | 1                             | 20.9                              |
| Tony                  | MG                   | <u>16</u><br>44               | <u>400.0</u><br>1091.8            |
| L'Orsa et al. Option  |                      |                               |                                   |
| Betty 1               | MG                   | 20                            | 500.0                             |
| Boo Fraction          | FR                   | 1                             | 10.5                              |
| Boo 1                 | TP                   | 1                             | 20.9                              |
| Boo 2                 | TP                   | 1                             | 20.9                              |
| Boo 3                 | TP                   | 1                             | 20.9                              |
| Boo 4                 | TP                   | 1                             | 20.9                              |
| Boo 5                 | TP                   | 1                             | 20.9                              |
| Cope 1                | TP                   | 1                             | 20.9                              |
| Cope 2                | TP                   | 1                             | 20.9                              |
| Cope 3                | TP                   | 1                             | 20.9                              |
| Cope 4                | TP                   | 1                             | 20.9                              |
| Cope 5                | ТР                   | 1                             | 20.9                              |
| No. 2                 | RC                   | 1                             | 20.9                              |
| No. 3                 | RC                   | Ι                             | 20.9                              |
| No. 6                 | RC                   | 1                             | 20.9                              |
| Whistler              | RC                   | 1                             | 20.9                              |
|                       |                      | 35                            | 803.1                             |
| Reako Property Option |                      |                               |                                   |
| Bert I                | MG                   | 20                            | 500.0                             |
| Bert II               | MG                   | 20                            | 500.0                             |
| Dome B                | MG                   | 20                            | 500.0                             |
| Mat 1                 | MG                   | 20                            | 500.0                             |
| Repeater I            | MG                   | <u>20</u>                     | <u>500.0</u>                      |
|                       |                      | 100                           | 2500.0                            |
| McIntyre Mines Option |                      |                               |                                   |
| Bertha Fraction       | RC                   | 1                             | 5.7                               |
| Elk                   | RC                   | 1                             | 12.5                              |
| Gem                   | RC                   | 1                             | 20.8                              |
| New York              | RC                   | -                             | 19.0                              |
| Pioneer               | RC                   | 1                             | 20.5                              |
| Porcupine             | RC                   | -                             | 16.8                              |
| Trail                 | RC                   | -                             | 20.9                              |
|                       |                      | 7                             | 116.2                             |

angi i

Ô.

### Dome Mountain Claims Groups - Forks Group

| <u>Claim</u>       | <u>#_of</u>  | <u>Rccord</u> | <u>Mo. of</u> | Area       |
|--------------------|--------------|---------------|---------------|------------|
| Name               | <u>Units</u> | Number        | <u>Rccord</u> | (hectares) |
|                    |              |               |               |            |
| Raven L2897        | 1            | 1532          | Nov.          | 17.80      |
| Snowdrop L2904     | 1            | 1556          | Nov.          | 20.90      |
| No. 6 L2905        | 1            | 1541          | Nov.          | 20.90      |
| No. 2 L2909        | 1            | 1557          | Nov.          | 20,90      |
| No. 3 L2910        | 1            | 1540          | Nov.          | 20.90      |
| Wallace L2911      | 1            | 1560          | Nov.          | 20.80      |
| New York L2912     | 1            | 1554          | Nov.          | 19.00      |
| Josie L2913        | 1            | 1531          | Nov.          | 20.90      |
| Telkwa L2915       | 1            | 1533          | Nov.          | 12.70      |
| Vancouver L2916    | 1            | 1539          | Nov.          | 15.10      |
| Victoria Fr. L2917 | 1            | 1545          | Nov.          | 2.60       |
| Freda L2918        | 1            | 1546          | Nov.          | 19.90      |
| Trail L2919        | 1            | 1555          | Nov.          | 20.90      |
| Wallace Fr. L2920  | 1            | 1562          | Nov.          | 0.20       |
| Trail Fr. L2921    | 1            | 1547          | Nov.          | 16.20      |
| Tom Fr. L2922      | 1            | 1548          | Nov.          | 7.50       |
| Dome 1             | 1            | 1623          | Mar.          | 20.90      |
| Dome 2             | 1            | 1624          | Mar.          | 20.90      |
| Dome 3             | 1            | 1625          | Mar.          | 20.90      |
| Dome 4             | 1            | 1626          | Mar.          | 20.90      |
| Dome 6             | 1            | 1628          | Mar. 👘        | 20.90      |
| Babs 3             | 8            | 1983          | Aug.          | 200.00     |
| Babs 4             | 8            | 1984          | Aug.          | 200.00     |
| Babs 5             | 6            | 1985          | Aug.          | 150.00     |
| Dome B             | 20           | 3566          | Fcb.          | 500.00     |
| Boo Fr.            | 1            | 3950          | Jul.          | 10.50      |
| Boo 1              | 1            | 3951          | Jul.          | 20.90      |
| ·Boo 2             | 1            | 3952          | Jul.          | 20.90      |
| Boo 3              | 1            | 3953          | Jul.          | 20.90      |
| Boo 4              | 1            | 3954          | Jul.          | 20.90      |
| Boo 5              | 1            | 3955          | Jul.          | 20.90      |
| Cope 1             | 1            | 4500          | Oct.          | 20.90      |
| Cope 3             | 1            | 4502          | Oct.          | 20.90      |
| Cope 4             | 1            | 4503          | Oct.          | 20.90      |
| Cope 5             | 1            | 4504          | Oct.          | 20.90      |
| Betty 1            | _20          | 6041          | Fcb.          | 500.00     |
| -                  | 93           |               |               | 2110.30    |

÷

12000

·

## Dome Mountain Claims Groups - Dome North Group

\_\_\_\_

•

| <u>Claim</u>       | <u>#_of</u>  | Record | <u>Mo. of</u> | Area       |
|--------------------|--------------|--------|---------------|------------|
| Name               | <u>Units</u> | Number | <u>Record</u> | (hectares) |
|                    |              |        |               |            |
| Hawk L2888         | 1            | 1558   | Nov.          | 20.90      |
| Eagle L2889        | 1            | 1534   | Nov.          | 20.90      |
| Whistler Fr. L2890 | 1            | 1543   | Nov.          | 18.20      |
| Eagle Fr. L2891    | 1            | 1535   | Nov.          | 5.00       |
| Whistler L2892     | 1            | 1542   | Nov.          | 20.90      |
| Ptarmigan L2893    | 1            | 1529   | Nov.          | 20.90      |
| Hercules L2894     | 1            | 1536   | Nov.          | 20.90      |
| Pioneer L2895      | 1            | 1549   | Nov.          | 20.50      |
| Gem L2896          | 1            | 1550   | Nov.          | 20.80      |
| Porcupine L2899    | 1            | 1551   | Nov.          | 16.80      |
| Grizzly L2900      | 1            | 1530   | Nov.          | 18.80      |
| Triangle Fr. L2901 | 1            | 1537   | Nov.          | 5.00       |
| Elk L2902          | 1            | 1552   | Nov.          | 12.50      |
| Dome L2903         | I            | 1538   | Nov.          | 20.90      |
| No. 5 L2906        | 1            | 1544   | Nov.          | 20.30      |
| Bertha Fr. L2907   | 1            | 1553   | Nov.          | 5.70       |
| No. 1 L2908        | 1            | 1559   | Nov.          | 20.90      |
| No. 4 L2914        | 1            | 1561?  | Nov.          | 20.90      |
| Dome 5             | I            | 1627   | Mar.          | 20.90      |
| Repeater 1         | 20           | 3408   | Nov.          | 500.00     |
| Mat 1              | 20           | 3839   | Jul.          | 500.00     |
| Cope 2             | 1            | 4501   | Oct.          | 20.90      |
| Bert I             | 20           | 4831   | Oct.          | 500.00     |
| Bert II            | 20           | 4832   | Oct.          | 500.00     |
|                    | 100          |        |               | 2352.60    |

| TP | 1                                                              | 20.9                                                                                                                                                                                                                                                                                                                                           |
|----|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ТР | 1                                                              | 20.9                                                                                                                                                                                                                                                                                                                                           |
| TP | 1                                                              | 20.9                                                                                                                                                                                                                                                                                                                                           |
| RC | 1                                                              | 20.8                                                                                                                                                                                                                                                                                                                                           |
| RC | 1                                                              | <u>0.2</u>                                                                                                                                                                                                                                                                                                                                     |
|    | 12                                                             | 230.0                                                                                                                                                                                                                                                                                                                                          |
|    | TP<br>TP<br>TP<br>TP<br>TP<br>RC<br>RC<br>RC<br>RC<br>RC<br>RC | TP       1         TP       1         TP       1         TP       1         TP       1         TP       1         RC       1         12       12 |

,

\_\_\_\_

......

.

.

| Silver Standard Option | L  |     |             |
|------------------------|----|-----|-------------|
| Babs 3                 | MG | 8   | 150.0       |
| Babs 4                 | MG | 8   | 100.0       |
| Babs 5                 | MG | 6   | 100.0       |
| Dome                   | RC | 1   | 20.9        |
| Eagle                  | RC | 1   | 20.9        |
| Eagle Fraction         | RC | 1   | 5.0         |
| Freda                  | RC | I   | 19.9        |
| Grizzly                | RC | 1   | 18.8        |
| Hercules               | RC | 1   | 20.9        |
| Josie                  | RC | 1   | 20.9        |
| No. 5                  | RC | 1   | 20.3        |
| Ptarmigan              | RC | 1   | 20.9        |
| Raven                  | RC | 1   | 17.8        |
| Telkwa                 | RC | 1   | 12.7        |
| Tom Fraction           | RC | 1   | 7.5         |
| Trail Fraction         | RC | 1   | 16.2        |
| Triangle Fraction      | RC | 1   | 5.0         |
| Vancouver              | RC | 1   | 15.1        |
| Victoria Fraction      | RC | I   | 2.6         |
| Whistler Fraction      | RC | 1   | <u>18.2</u> |
|                        |    | 39  | 613.6       |
| GRAND TOTAL            | 65 | 237 | 5354.7      |

samples. Coarse rejects and the remaining core are stored in Smithers at J.T. Thomas Diamond Drilling.

#### 1.4 REGIONAL AND PROPERTY GEOLOGY

The following excerpt from MacIntyre (1985) summarizes the regional geology and mineralization specific to the Dome Mountain property and the 1988 diamond drilling:

#### Dome Mountain Geology

The core of Dome Mountain is underlain by a large southwest-verging, southeastplunging anticlinal structure that has been cut by northeast and northwesttrending high angle faults (fig. 4). The oldest rocks are well exposed on the crest of the mountain and a good stratigraphic column (fig. 5) has been established on the basis of this section. Seven major map units are recognized. Going up section these are: (1) fragmental volcanic unit (+1000 metres ?); (2) red volcaniclastic-green flow unit (150-200 metres); (3) volcanic wacke-conglomeratefelsic tuff unit (20-50 metres); (4) rusty argillite or shale unit (50-100 metres); (5) dark grey siltstone unit (250-300 metres); and (6) thin-bedded limestonesiltstone-wacke unit (50-100 metres); and (7) greenish grey massive volcaniclastic unit (+500 metres). The ages of these units and their correlations with Hazelton Group formations are not well established. Limestone samples are currently being processed for microfossils.

Several small plugs or dykes of diabase or diorite intrude the Hazelton Group on Dome Mountain; a stock of quartz porphyry or quartz monzonite is exposed near the Free-gold showing.

Hazelton Group

Telkwa Formation

Fragmental volcanic unit (1)

A chaotic assemblage of coarse-grained agglomerate, tuff-breccia and lapilli tuff with lesser intercalations of lithic, crystal and ash tuff, and volcanic derived sedimentary rocks crops out on Dome Mountain. These rocks are purple, mauve, green and grey in colour. Clasts range from less that 1 centimetre to 40 centimetres in diameter and are typically comprised of porphyritic andesite or crystal tuff. The matrix also contains abundant crystal and lithic fragments. In places the clasts are flattened parallel to bedding. Beds comprised of large rounded bombs up to 30 centimetres in diameter floating in a fine-grained ash Finer grained tuff beds within the unit are strongly matrix are common. foliated subparallel to bedding. The fragmental volcanic unit is believed to correlate with the Babine shelf facies of the Telkwa Formation as described by Tipper and Richards (1976).

./tee/dome/dec88rpt



Figure 4. Geological sketch map of the Dome Mountain gold camp.

(From McIntyre, 1987)



Figure 5 Preliminary stratigraphic column, Dome Mountain gold camp.

(From McIntyre, 1985)

#### Nilkitkwa Formation

Red volcaniclastic - green flow unit (2)

A distinctive unit of red volcaniclastic rocks and green to mauve amygdaloidal flows overlies the fragmental volcanic unit that forms the core of Dome Mountain. This unit is well exposed on the south slope of Dome Mountain and in Fedral Creek above and below the Forks showing. Near the crest of Dome Mountain the basal part of the unit is comprised of thin-bedded brick red lithic tuff, crystal tuff, volcanic wacke, and granule conglomerate that is locally crossbedded. Interlayered lime green, amygdaloidal basalt or andesite increases in abundance up section and comprises the upper part of the unit. Outcrops of this unit in Fedral Creek are thicker bedded and have less reworked volcanic detritus than those near the crest of Dome Mountain, suggesting a facies variation to the east. Here the volcanic part of the unit varies from mauve to green in color but still contains conspicuous chlorite-filled amygdules and vesicles.

The red volcaniclastic-green flow unit is probably the basal member of the Nilkitkwa Formation on Dome Mountain. It represents a period of exposure and erosion of the Telkwa Formation and deposition of subaerieal pyroclastic rocks. This apparently was followed by a marine transgression and deposition of green submarine basaltic flows.

Tipper and Richards (1976) describe a red tuff member of the Nilkitkwa Formation which is lithologically similar to the basal part of the red volcaniclastic-green flow unit on Dome Mountain. However this red tuff member is Toarcian in age and overlies a marine sedimentary unit of the Nilkitkwa Formation. If this relationship is correct then the red volcaniclasticgreen flow unit occurs lower down in the section and does not correlate with the red tuff member. Additional evidence supporting this conclusion is the fact that sedimentary rocks that apparently overlie the red volcaniclastic-green flow unit near the Forks showing are reported to contain a Lake Pliensbachian pelecypod (Myers, personal communication).

#### 1.5 PREVIOUS EXPLORATION ACTIVITY

The Cabin-Fedral zone is a continuous roughly east-west striking, southerly dipping mineralized zone hosted within massive to fragmental and tuffaceous andesite rocks of the Telkwa Formation. The Cabin vein itself outcrops near the headwaters of Fedral Creek and at this location the 3.0 metre wide vein strikes northeast and consists of quartz-carbonate with abundant pyrite and minor galena and chalcopyrite (MacIntyre, 1987). An alteration zone of strongly bleached and sheared rock envelopes the vein. In 1923, the Dome Mountain Mining Company drove a 107 metre long crosscut to intersect the zone and subsequently drifted a short distance along the vein's strike in either direction. Gold values from drift samples ranged from 0.02 to 0.61 oz/ton however, the gold mineralization proved to be too sporadic to be mined economically at the time (MacIntrye, 1985).

During 1985, Noranda Exploration drilled several holes near the old workings and an additional ten diamond drill holes were completed in 1986 by Canadian United Minerals but with the exception of hole DM-86-06 (0.36 oz/ton Au over 2.4 metres core length), none of the holes indicated the presence of a mineable zone. Further to the west of Fedral Creek, a single hole (C-85-32) was drilled by Noranda Exploration in 1985 (Schippers, 1988).

In September 1987, seven additional holes (RP-87-8 to RP-87-14) were drilled progressively west of Fedral Creek thereby extending the strike length of the Cabin-Fedral zone another 200 metres. The drill results, specifically holes RP-87-11 to RP-87-14 are summarized in a report by Davis (1987). Briefly, the drilling indicated the presence of two large, parallel, sub-vertical quartz-sulphide veins striking generally east-west with an improvement in grade towards the west. The most westerly hole, RP-87-14, returned the strongest alteration and quartz-sulphide mineralization and the most significant assay result - 0.18 oz/ton Au over 0.5 metre core length. Diamond drilling further to the west was recommended.

The Elk showing was identified and trenched in 1985 by Noranda Exploration on the basis of old trench evidence and a soil anomaly at L10500N, 9920 E. Myers (1985) describes the mineralization as quartz veins varying from 0.10 to 0.50 metre thick with the best assay result being a grab sample which returned 0.642 oz/ton Au. There is no mention of the attitude or geometry of the quartz veins however, additional trenching was recommended along strike presumably along the east-west line of trenching.

#### 2. CABIN-FEDRAL AREA FALL 1988 PROGRAM

#### 2.1 SUMMARY OF WORK COMPLETED

Six holes totalling 835.02 metres of BQ core were drilled on the Cabin-Fedral zone (Table Two). The same lithological units and alteration zone designations used in previous programs were used in the 1988 drilling to maintain continuity in the geological interpretation. Holes RP-87-11 through to RP-87-14 were relogged and partially resampled; drill logs for the relogged holes are included in appendix one. Drill logs for the 1988 drill program are included in appendix two.

#### 2.2 SURVEY RESULTS

A Brunton pocket transit, tripod and chain were used to locate the drill hole collars with respect to one another and to prominent field and topographic features (figure 6). During the course of this survey, it was noted that the field locations of holes RP-87-11 to RP-87-14 are not as indicated in the 1987 survey. Since a reliable control point could not be determined, the coordinates of hole RP-87-11 (68770.1 N, 52455.2 E) were arbitrarily assumed to be correct and holes

Table Two: Summary of 1988 Cabin - Fedral Drilling

## DOME MOUNTAIN PROJECT

DIAMOND DRILL SUMMARY

| Drill Hole | Coordina | tes       | Azimuth | Dip  | Length | Collar    | Da        | te        | Total  | Claim              |
|------------|----------|-----------|---------|------|--------|-----------|-----------|-----------|--------|--------------------|
| Number     | Latitude | Departure |         |      |        | Elevation | Started   | Finished  | Metres | Distribution       |
| RP-88-15   | 68793.4  | 52411.1   | 180°    | -45° | 150.00 | 1483.99   | Nov.2/88  | Nov.3/88  | 150.00 | 150.00 m Porcupine |
| RP-88-16   | 68806.6  | 52346.2   | 180°    | -45° | 153.70 | 1488.48   | Oct.31/88 | Nov.2/88  | 303.70 | 303.70 m Porcupine |
| RP-88-17   | 68871.4  | 52356.0   | 180°    | -45° | 128.62 | 1487.00   | Nov.3/88  | Nov.6/88  | 432.32 | 432.32 m Porcupine |
| RP-88-18   | 68672.4  | 52360.7   | 360°    | -45° | 127.13 | 1487.47   | Nov.7/88  | Nov.8/88  | 559.45 | 559.45 m Porcupine |
| RP-88-19   | 68634.5  | 52358.0   | 360°    | -45° | 150.30 | 1488.30   | Nov.8/88  | Nov.9/88  | 709.75 | 709.75 m Porcupine |
| RP-88-20   | 68686.6  | 52271.4   | 360°    | -45° | 125.27 | 1504.74   | Nov.10/88 | Nov.11/88 | 835,02 | 835.02 m Porcupine |
|            |          |           |         |      | 835.02 |           |           |           | 835.02 |                    |
|            |          |           | l       |      |        |           |           |           |        |                    |
|            |          |           |         |      |        |           |           |           |        |                    |
|            |          |           |         |      |        |           |           |           |        |                    |
|            |          |           |         |      | ·      |           |           |           |        |                    |
| )          |          |           |         |      | ]      |           |           |           |        |                    |
|            |          |           |         |      | 1      |           |           |           |        |                    |
|            |          |           |         |      |        |           |           |           |        | •                  |
|            |          |           |         |      |        |           |           |           |        |                    |

RP-87-12 to RP-87-14 and RP-88-15 to RP-88-20 are tied back to hole RP-87-11. Similarly, the elevations of holes RP-87-11 (1479.4) and RP-87-14 (1488.9) were arbitrarily assumed to be correct and the elevations of the other holes are tied back to these two holes. It is recommended that a check survey to correct the 1987 survey error(s) be completed prior to any future drilling on the Cabin-Fedral zone.

#### 2.3 DIAMOND DRILL RESULTS

Section 52455 E

No 1988 drilling was completed on this section line but hole RP-87-11 was relogged and partially resampled (figure 7). A single sheared and bleached mineralized zone (Cabin-Fedral zone?) over 4.40 metres of core length was noted in hole RP-87-11. The zone consists of chlorite-sericite-quartz-rich strongly sheared rock with a few percent fine grained pyrite, buff-white to buff-green carbonate-rich bleached rock and sections of white quartz-carbonate (veins) with pyrite and chalcopyrite. As expected, the most favorable gold values are concentrated in the quartz-sulphide mineralization; this mineralization returned up to 0.024 oz/ton Au. The entire zone is hosted within green fragmental to tuffaceous andesite.

Quartz-sulphide mineralization was also noted throughout most of the hole within green andesitic tuff and is typically present as subparallel stringers and small veins. The most significant vein was intersected between 81.49 to 81.77 metres (south of the suspected Cabin-Fedral zone) and returned 0.073 oz/ton Au over a core length of 0.43 metres. Especially notable is the presence of sphalerite along with pyrite and chalcopyrite; sphalerite has been previously cited as an indicator of gold enrichment (Schippers, 1988).

Section 52410 E

Diamond drilling commenced on Dome Mountain on November 2, 1988 with the collaring of hole RP-87-15 approximately 31.0 metres north of hole RP-87-12 on section 52410 E (figure 8). A review of RP-87-12 verified the presence of a single buff-white bleached carbonate-rich zone (Cabin-Fedral zone?) with two quartz-carbonate-sericite veins containing several percent five grained pyrite and Resampling returned 0.062 oz/ton Au and 1.18 oz/ton Ag over a core galena. Hole RP-88-15, which was intended to determine the length of 3.30 metres. zone's attitude and the persistence of values to depth, intersected several buffwhite bleached zones, two of which hosted quartz-sulphide veins. However, the highest assay value returned only 0.046 oz/ton Au and 1.16 oz/ton Ag over a core length of 1.07 metres and since all of the zones appeared similar, a direct correlation of the mineralization between RP-87-11 and RP-88-15 could not be completed at the time.

Section 52380 E

No 1988 drilling was carried out on this section line but hole RP-87-13 was relogged and partially resampled (figure 9). A single buff-green to buff-white

bleached zone with trace to one percent fine grained disseminated pyrite over 2.75 metres of core length was observed in RP-87-13. Several narrow quartzsulphide veins are present within the zone with the most significant being a quartz-carbonate-sericite vein with pyrite, sphalerite, galena and chalcopyrite between 76.30 to 76.60 metres which returned 0.050 oz/ton Au and 2.95 oz/ton Ag over 0.30 metre of core length. Gold values from the remainder of the zone are all nil to trace. The northern contact of the zone is gradational to relatively unaltered green andesitic tuff and over this distance a few narrow quartz-pyrite stringers and bleached zones are present. Of interest are a series of tightly folded quartz-pyrite stringers in sericitic sheared rock which collectively returned 0.071 oz/ton Au and 1.64 oz/ton Ag over 0.37 metres.

Section 52350 E

Drill holes RP-88-16 to RP-88-19 were drilled on section 52350 E to confirm and extend to depth the results returned from hole RP-87-14 (figure 10). In hole RP-87-14 a single, gray-white, carbonate-sericite-clay schistose bleached zone over 17.65 metres of core length was observed. Multiple quartz-carbonatesericite veins with significant concentrations of pyrite and galena are present within the zone. Resampling of the remaining core did not however, confirm the previous value of 0.18 oz/ton Au over 0.5 metre returned from one of the quartz-sulphide sections, rather, the two significant quartz-sulphide veins returned only anomalous ( 0.040 oz/ton Au) gold values.

Hole RP-88-16 was collared approximately 44.0 metres north of RP-87-14 and intersected a single barren, buff-white bleached zone which returned nil gold values over 6.65 metres of core length.

Hole RP-88-17 was collared over 100.0 metres north of RP-87-14 with the objective of determining the attitude of the mineralized zone(s) and the persistence of values at depth. Unfortunately, after 128.62 metres of drilling the hole had to be abandoned well short of the target at an impassable fault zone consisting of fine grained muddy gouge and fault breccia. Several narrow barren bleached zones, presumably parallel to the Cabin-Fedral zone, were noted in the hole. The most significant mineralization is a barren bleached zone-hosted quartz-sericite-pyrite vein which returned 0.014 oz/ton Au over 0.90 metre of core length.

The absence of a strong mineralized zone in hole RP-88-16 as observed in hole RP-87-14, coupled with the observation that most of the quartz stringers and vein contacts traced across the core axis at a low angle, indicated a possible moderate to steep southerly dip for the Cabin-Fedral zone. A dip of approximately 65 degrees to the south is reconcilable with the data on section 52410 E and would be consistent with the moderate southward dips of the Boulder and Cabin veins. Therefore, drill holes RP-88-18 and RP-88-19 were collared south of RP-87-14 and drilled north to intersect the suspected Cabin-Fedral zone.

Hole RP-88-18 intersected a weak, buff green bleached zone between 69.50 and 71.80 metres. Most of the zone consists of broken crumbly core resulting in poor core recovery. Pale green, very weakly altered andesite follows the bleached zone. All of the gold values returned are nil to trace. This alteration

zone may represent a very weak expression of the Cabin-Fedral zone.

Hole RP-88-19 intersected a typical buff-gray to buff-white bleached zone over a core length of 13.25 metres between 109.35 to 122.60 metres. The zone is similar in structure and mineralogy to the suspected Cabin-Fedral zone in hole RP-87-14. An irregular section of quartz with pyrite, galena and chalcopyrite within the zone returned 0.037 oz/ton Au and 0.50 oz/ton Ag over a core length 0.65 metres; all other gold and silver values from the zone are inconsequential. If this zone is the Cabin-Fedral zone, then a correlation between holes RP-87-14, RP-88-18 and RP-88-19 would indicate a dip of about 63 degrees to the south.

A distinctive narrow irregular shear zone characterized by schistose quartzchlorite-sericite-pyrite is present near the ends of holes RP-88-16 and RP-88-19. Assuming that this shear zone is parallel to the Cabin-Fedral zone, then hole RP-88-16 must have deviated deeper than is indicated by the acid tests and therefore, would not have intersected the Cabin-Fedral zone. The absence of typical bleached zone similar to the Cabin-Federal zone in RP-88-16 supports this possibility.

In addition to the Cabin-Fedral zone, several quartz-sulphide veins south of the aforementioned zone were intersected in holes RP-88-18 and RP-88-19. Two quartz veins with pyrite and galena between 55.00 to 56.70 and 57.00 to 57.67 metres were returned from RP-88-18. These veins returned nil to trace gold values. A similar quartz vein with pyrite, galena and chalcopyrite and attendant wallrock bleaching was intersected between 56.50 to 57.30 metres in RP-88-19. This vein assayed 0.041 oz/ton Au and 1.11 oz/ton Ag over 0.08 metre of core length. There appears however, to be no correlation between the two sets of veins and no suggestion that any of the veins extend to either the hole immediately above or below, whichever is the case.

Each of the holes on section 52350 E intersected an irregular sequence of green and maroon fragmental to tuffaceous andesitic rocks similar to those observed on the other sections. The maroon coloured andesitic rocks vary from fine to medium grained ash/lapilli tuff to very poorly sorted lithic agglomerate. The green coloured andesitic rocks vary from apparently massive andesite to fine grained ash and lapilli tuffs. Pale green andesite represents an alteration of previously green and perhaps maroon andesite. More often than not, green andesite grades in a subtle and diffuse manner to maroon andesite and vice versa with no apparent consistency. Distinct contacts, with the exception of a colour change, have not been recognized between the green and maroon andesitic units. Therefore, correlation between drill holes based upon the andesitic units alone is speculative as the colour variations may not reflect the volcanic stratigraphy.

Several narrow sections of broken core, fault breccia and silty chloritic gouge were noted in all of the drill holes thus indicating an episode(s) of faulting. Post-ore faulting has been observed underground at the Boulder and Cabin veins to the east.

Section 52270 E

Hole RP-88-20 was collared on section 52270 E and drilled north to intersect the

Cabin-Fedral zone (figure 11). This hole returned an irregular sequence of green and maroon andesitic rocks but failed to intersect a bleached zone similar to the Cabin-Fedral zone. A pair of quartz-pyrite veins were intersected near the end of the hole but returned discouraging gold values. Drilling was discontinued on the Cabin-Fedral zone and the drill rig was moved to the Elk showing south of the Boulder vein.

#### 3. ELK SHOWING FALL 1988 PROGRAM

#### 3.1 SUMMARY OF WORK COMPLETED

Four holes totalling 503.88 metres of BQ core were drilled on the Elk Showing (table three). All of the holes were collared at 45 degrees and drilled due north. The drill logs for holes RP-88-21 to RP-88-24 are included in appendix two.

#### 3.2 SURVEY RESULTS

A survey of the drill collar locations and topographic features was conducted using the same equipment and methods as that employed on the Cabin-Fedral zone. The drill collars, line pickets, roads, trenches and other features are plotted relative to one another and station 272 from the 1987 survey (figure 12). However, since the coordinates and elevation of station 272 could not be determined, the drill collar coordinates are scaled from the plan with respect to the line pickets and the elevations are plotted using station 272 as a datum. Prior to the start of drilling, an unsuccessful search was made to locate the post at the junction of the Elk M.C. L2902, Triangle Fraction M.C. L2901 and No. 1 M.C. L2908. Subsequent to the drilling, an old post lying on the ground was located by chance and although the inscription is difficult to read, this is probably the aforementioned corner post. Since claim lines were not noted in the field, the claim lines shown on figure 12 were scaled from a 1985 Noranda 1:5000 scale base map (Myers, 1985).

#### 3.3 DIAMOND DRILL RESULTS

A reconnaissance of the Elk showing was made prior to the start of diamond drilling but since all of the trenches excavated in 1985 by Noranda Exploration were filled in with overburden, brush and snow, an examination of the mineralization to determine the stike and dip was not possible. Therefore, it was assumed that the trenches covered an east-west stiking zone dipping subvertical to south (essentially parallel to the Boulder vein immediately north).

The Elk showing area is predominantly underlain by maroon to brick-red and esitic tuff and agglomerate of the lower Nilkitkwa/upper Telkwa Formations

Table Three: Summary of 1988 Elk Showing Drilling

## DOME MOUNTAIN PROJECT

DIAMOND DRILL SUMMARY

| Drill Hole                  | Coordina    | tes        | Azimuth       | Dip  | Length | Collar              | Da        | te          | Total  | Claim                                    |
|-----------------------------|-------------|------------|---------------|------|--------|---------------------|-----------|-------------|--------|------------------------------------------|
| Number                      | Latitude    | Departure  |               |      |        | Elevation           | Started   | Finished    | Metres | Distribution                             |
| RP-88-21                    | L104 + 76 N | L98 + 99 E | 36 <u>0</u> ° | -45° | 91,46  | 272 less<br>10.08 m | Nov.11/88 | Nov.12/88   | 91.46  | 91.46 Triange Fr.                        |
| RP-88-22                    | L104 + 35 N | L98 + 71 E | 360°          | -45° | 152.44 | 272 less<br>8.96 m  | Nov.12/88 | Nov. 13/88  | 243.90 | 68.00 No.1 L2908<br>84.44 m Triangle Fc  |
| RP-88-23                    | L105 + 18 N | L98 + 66 E | <u>360°</u>   | -45° | 99.97  | 272 less<br>3.84    | Nov.14/88 | Nov.15/88_  | 343.87 | 99,97 m Elk 1.2902                       |
| RP-88-24                    | L104 + 63 N | L98 + 28 E | <u>360°</u>   | -45° | 160.01 | 272 less<br>4.09 m  | Nov.13/88 | Nov. 14/88_ | 503.88 | 19.5 m No. 1 L2908<br>140.51 m Elk L2902 |
| End of Fall<br>1988 Program |             |            |               |      | 503.88 |                     |           |             | 503.88 |                                          |
|                             |             |            |               |      |        |                     |           |             |        |                                          |
|                             |             |            |               |      |        |                     |           |             |        |                                          |
|                             |             |            |               |      |        |                     |           |             |        |                                          |
|                             |             |            |               |      |        |                     |           |             |        | •                                        |
|                             |             |            |               |      |        |                     |           |             |        |                                          |
|                             |             |            |               |      |        |                     |           |             |        |                                          |
|                             |             |            |               |      |        |                     |           |             |        |                                          |
|                             |             |            |               |      |        |                     |           |             |        |                                          |
|                             |             |            |               |      |        |                     |           |             |        | ;                                        |
|                             |             |            |               |      |        |                     |           |             |        |                                          |

- 19 -

(refer to figure 4). Lesser amounts of patchy green andesitic tuff and buffgreen bleached rock are also present. Gold enrichment occurs in quartz-sulphide veins typically hosted within pale green andesitic rock and bleached zones.

Drill holes RP-88-21 and RP-88-22 were collared on a common section to detect the depth extension of a possible mineralized zone below trench 50 from which a grab sample of a quartz-sulphide stringer returned 0.642 oz/ton Au (figure 13). Hole RP-88-21 returned two patchy and weakly bleached zones, the first of which returned a high assay grading 0.026 oz/ton Au over 0.72 metres. All other assays from the two zones are insignificant. Hole RP-88-22 intersected a single noteworthy mineralized zone consisting of 1.20 metres core length of quartz with several percent pyrite, sphalerite and galena followed by 0.46 metre of buff bleached rock with fine grained disseminated pyrite. The entire section assayed 0.287 oz/ton Au over 1.66 metres; a sphalerite-rich section of the vein returned 0.480 oz/ton Au over 0.70 metre. Correlation of this zone, the first zone in hole RP-88-21 and the mineralization in trench 50 indicates a dip of approximately 65 degrees south.

Drill holes RP-88-23 and RP-88-24 were collared on a common section to detect the extension of a possible mineralized zone striking west from the old trenching (figure 14). Hole RP-88-23 intersected near surface, well south of the inferred Elk showing mineralization, a zone of patchy bleached rock with irregular quartz-pyrite stringers. This mineralization returned nil to strongly anomalous (0.096 oz/ton Au over 0.95 metre) gold values. A narrow quartz-sericite vein with minor pyrite and grading 0.072 oz/ton Au over 0.40 metre was intersected slightly to the north (downhole) of the bleached zone. Hole RP-88-24 returned a single narrow mineralized bleached zone that assayed 0.057 oz/ton Au over 0.57 metre. There appears to be no correlation of the mineralization between holes RP-88-23 and RP-88-24 nor does there appear to be westward continuation of the vein intersected in hole RP-88-22.

#### 4. CONCLUSIONS AND RECOMMENDATIONS

#### 4.1 CABIN-FEDRAL AREA

Diamond drilling completed to date indicates that the Cabin-Fedral zone strikes roughly east-west and dips 60-70 degrees south. Direct correlation of the mineralized zones between drill holes is difficult since the mineralized zones are similar in mineralogy, structure and grade, the geological units are not necessarily suitable for correlation, and post-ore faulting may be present. The interpretation of the structure and mineralization is based upon the following assumptions: (1) the Cabin vein as far west as hole C-85-32 dips 40-50 degrees south (Myers 1985); (2) hole RP-88-16 deviated steeper than indicated by the acid tests as suggested by the small shear zone near the ends of holes RP-88-16 and RP-88-19; (3) holes RP-88-16, RP-88-17 and perhaps RP-88-13 did not intersect the Cabin-Fedral zone; (4) possible post-ore faulting has not caused a significant displacement of the mineralization and; (5) other mineralization is parallel to the suspected Cabin-Fedral zone.

Therefore, it can be concluded that:

- 1) The Cabin-Fedral zone strikes roughly east-west and dips 60-70 degrees south.
- 2) Splays from the Cabin-Fedral zone and parallel zones are present.
- 3) Quartz-sulphide veins and stringers, which are the locus of gold-silver mineralization, are narrow, irregular and lenticular in geometry.
- 4) Quartz-sulphide veins with galena are enriched in silver; veins with sphalerite are enriched in gold and silver.
- 5) Due to the angle of drilling, the intersections in holes RP-87-11 to RP-87-14 are exaggerated.
- 6) Hole RP-88-20, which did not intersect the Cabin-Fedral zone, indicates that either the zone does not continue that far west or has been displaced by faulting.
- 7) The distribution of the gold/silver assay results indicates that no improvement in grade either to the west or with depth can be inferred.

It is recommended that:

- 1) The 1987 survey for the Cabin-Fedral area be corrected before the start of any additional exploration work.
- 2) Prior to further diamond drilling, an evaluation of the recent induced polarization survey be completed. Coincident chargeability and zinc soil anomalies should be considered primary targets.

#### 4.2 ELK SHOWING

The diamond drilling on the Elk Showing did not indicate the persistence to depth of a single, east-west striking, vertical to southerly dipping mineralized zone. However, the quartz-pyrite-sphalerite vein intersection from hole RP-88-22 (0.287 oz/ton Au over 1.66 metres) may suggest the presence of a significant mineralized zone of unknown geometry and attitude. Closely spaced follow-up diamond drilling to depth and to the east is warranted.

#### REFERENCES

- 1) Davis R., 1987: Dome Mountain Project Third Quarterly Report (July-September, 1987). Unpublished report, 8pp.
- MacIntyre D.G., 1985: Geology of the Dome Mountain Gold Camp, in: Geological Fieldwork 1984, Paper 1985-1, British Columbia Ministry of Energy, Mines and Petroleum Resources Pages 193 - 213.
- 3) MacIntyre D.G., 1987: Babine Project, in: Geological Fieldwork 1986, Paper 1987-1, British Columbia Ministry of Energy, Mines and Petroleum Resources. Pages 201 222.
- 4) Myers D., 1985: Report on Diamond Drilling, Dome Mountain. Unpublished Noranda Exploration Limited report. 29pp.
- 5) Myers D., 1986: Report on Geology, Geophysics, Geochemistry and Trenching, Dome Mountain. Unpublished Noranda Exploration Limited report. 70pp.
- 6) Schippers K.H., 1988: 1987 Summary Report of the Dome Mountain Project. Unpublished report. 28pp.

APPENDIX ONE

Drill Logs for Holes RP-87-11 to RP-87-14

./teeshin/dome/domesjcoverpg

#### TEESHIN RESOURCES LTD. DOME MOUNTAIN PROJECT

# EXPLANATION OF GEOLOGY AND ABBREVIATIONS

#### **GEOLOGICAL UNITS**

#### SYMBOL

#### DESCRIPTION

VgGreen andesiteVgtGreen andesite tuffVgaGreen andesite agglomerateVmMaroon andesiteVmtMaroon andesite tuffVmaMaroon andesite agglomerateVbBleached zone

### MINERALOGICAL ABBREVIATIONS

| cal  | calcite          |
|------|------------------|
| carb | carbonate        |
| chl  | chlorite         |
| сру  | chalcopyrite     |
| epi  | epidote          |
| gal  | galena           |
| ру   | pyrite           |
| qc   | quartz-carbonate |
| qtz  | quartz           |
| ser  | sericite         |
| sph  | sphalerite       |

#### OTHER ABBREVIATIONS

| bc                      | broken core         |
|-------------------------|---------------------|
| bx                      | breccia             |
| CA                      | core axis           |
| str                     | stringer            |
| fg                      | fine grained        |
| mg                      | medium grained      |
| cg                      | coarse grained      |
| diss                    | disseminated        |
| wkf                     | weakly foliated     |
| mf                      | moderately foliated |
| wf                      | well foliated       |
| $\overline{\mathbf{w}}$ | with                |
| 11                      | parallel            |
| sub-//                  | sub-parallel        |
| [-]                     | concentrated        |
| tr                      | trace               |

./teeshin/dome/abbreviations

| NAME OF   | PROPERTY  | DOME MOUNTAIN PROJECT     |     |         |
|-----------|-----------|---------------------------|-----|---------|
| HOLE NO.  | RP-87-11  | LENGTH 91.44 METRE        | 5   |         |
| LOCATION  | PORCUPINE | CLAIM- WEST OF CABIN VEIN |     | <u></u> |
| LATITUDE  | 68770.1 N | DEPARTURE 52455.2         | E   |         |
| ELEVATION | 1479.4    | AZIMUTH 180°              | DIP | 40*     |
| STARTED _ | UNKNOWN   | FINISHED UNKNOWN          |     |         |

| FOOTAGE | DIP    | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|--------|---------|---------|-----|---------|
| 0       | -40°   | 180°    |         |     |         |
| 39.63   | -390   | -       |         |     |         |
| 76.20   | 2      | ଦେଇ     |         |     |         |
| 91.44   | -40.5° | ~       |         |     |         |

HOLE NO. <u>RP-87-11</u> SHEET NO. <u>LOF 7</u> REMARKS <u>RELOGGED AND PARTIALLY</u> RESAMPLED NOVEMBER, 1988. NQ CORE - ALL LENGTHS IN METRES.

LOGGED BY STEVE JENNER

| F O O<br>MET | TAGE<br>Res |                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         | SAMP | LE |       |    | A | SSAY   | s      |  |
|--------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|------|----|-------|----|---|--------|--------|--|
| FROM         | то          | JESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO. | SUL PH- | FROM | TO | TOTAL | 36 | × | OZ/TON | OZ/TON |  |
| 0.00         | 12.19       | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |      |    |       |    |   |        |        |  |
| 12.19        | 59.00       | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                                                             |     |         |      |    |       |    |   |        |        |  |
|              |             | Typical green to gray-green fg to mg tuff, lapilli tuff<br>w infrequent agglomerate-sized lithic fragments and<br>locally glz-rich grains (dacitic portions of unit?);<br>generally massive appearing but w frequent usually<br>evenly spaced sub-11 glz, glz-py, glz-carb threads<br>and stringers at 35-50° (average 40°) to CA; limit at<br>59.00 marked by glz-carb lined fracture at 30° to CA<br>after which follows maroon volcanic rock |     |         |      |    |       |    |   |        |        |  |
|              |             | @ 12.19 to 20.00<br>Generally earthy brown, broken core probably due<br>to near surface weathering; section of white gtz<br>w tr py at 19.60 to 19.90 (sample # 38907 : 0.003<br>oz/ton Au)                                                                                                                                                                                                                                                     |     |         |      |    |       |    |   |        |        |  |

3RIDGES -- TORONTO -- 368-1168

NAME OF PROPERTY DOME MOUNTAIN PROJECT

|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HOLE NO |         |      |         |       | Sн | F 7 |        |        |  |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|------|---------|-------|----|-----|--------|--------|--|
| F00   | TAGE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | SAMP | LE      |       | T  |     | ASSAYS |        |  |
| FROM  | то    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO.     | % SULPH | FROM | FOOTAGE | TOTAL | 1  | x   | OZ/TON | OZ/TON |  |
| 12.19 | 59.00 | GREEN ANDESITE TUFF continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |      |         |       |    |     |        |        |  |
|       |       | @ 23.40 to 23.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |      |         |       |    |     |        |        |  |
|       |       | Section of white ofte-carb to tr cubic py and ~40%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |         |      |         |       |    |     |        |        |  |
|       |       | sericitic green volkanic rack w tr fg py (sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |      |         |       |    |     |        |        |  |
|       |       | #38908: 0.004 oz/ton Au)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |         |      |         |       |    |     |        |        |  |
|       |       | @26.87 to 26.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |      |         |       |    |     |        |        |  |
|       |       | Section of white atz w 40% green to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |      |         |       |    |     |        |        |  |
|       |       | chl-ser, minor carb. and tr by at the to can r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |         |      |         |       |    |     |        |        |  |
|       |       | diss py in immediate wallrock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |         |      |         |       |    |     |        |        |  |
|       |       | C 29.75 to 29.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |      |         |       |    |     |        |        |  |
|       |       | Section of barren white gtz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |         |       |    |     |        |        |  |
|       |       | @ 35.00 to 35.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |      |         |       |    |     |        |        |  |
|       |       | Section of barren-appearing white gtz at 50° to CA;<br>immediate wallrock has tr fg py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |         |      |         |       |    |     |        |        |  |
|       |       | @ 35.13 to 35.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |         |      |         |       |    |     |        |        |  |
|       |       | Weakly sheared chloritic section $\overline{\omega}$ schistosity at 30° to CA and bounded by such for the sector to the sector of the sector |         |         |      |         |       |    |     |        |        |  |
|       |       | 30° to CA // to schistosity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |      |         |       |    |     |        |        |  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |      |         |       |    |     |        |        |  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |      |         |       |    |     |        |        |  |
|       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |         |      |         |       |    |     |        | 1      |  |

LANGRIDGES - TORONTO - 366-1168

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-87-11 SHEET NO. 3 of 7

| F00   | TAGE  | DESCRIPTION                                            |     |         | SAMP | .E      |       | <u> </u> | <u> </u> | ASSAYS |        |   |
|-------|-------|--------------------------------------------------------|-----|---------|------|---------|-------|----------|----------|--------|--------|---|
| FROM  | то    |                                                        | NO. | 3 SULPH | FROM | FOOTAGE | TOTAL | 1        | 3        | OZ/TON | OZ/TON |   |
| 12.19 | 59.00 | GREEN ANDESITE TUFF continued                          |     |         |      |         |       |          |          |        |        |   |
|       |       | @ 40.60 to 40.64                                       |     |         |      |         |       |          |          |        |        |   |
|       |       | Mineralization consisting of white gtz = chl-carb-ser  | ·   |         |      |         |       |          |          |        |        |   |
|       |       | and tr-1% py, a few speaks of cpy all at 40°           |     |         |      |         |       |          |          |        |        |   |
|       |       | to CA                                                  |     |         |      |         |       |          |          |        |        |   |
|       |       | @ 42.14 to 42.57                                       |     |         |      |         |       |          |          |        |        |   |
|       |       | Breccioted green andesite is buff bleached material    |     |         |      |         |       |          |          | ļ .    |        |   |
|       |       | (qtz-carb?) infilling between frogments; degree of     |     |         |      |         |       |          |          |        |        |   |
|       |       | brecciation (size of frogments decreases is relatively |     |         |      |         |       |          |          |        |        |   |
|       |       | more bleached material suspending fragments) increases |     |         |      |         |       |          |          |        |        |   |
|       |       | towards 42.57 at which a fracture at 40° to CA         |     |         |      |         |       |          |          |        |        |   |
|       |       | marks end of subunit; limit at 42.14 gradational       |     |         |      |         |       |          |          |        |        |   |
|       |       | to massive and esite over 0.05 metre                   |     |         |      |         |       |          |          |        |        |   |
|       |       | C 46.25 to 46.28                                       |     |         |      |         |       |          |          |        |        |   |
|       |       | A 0.02 to 0.03 metre wide section of white atz w       |     |         |      |         |       |          |          |        |        |   |
|       |       | 2 mg cubic py and tr sph (?) at 40° to CA              |     |         |      |         |       |          |          |        |        |   |
|       |       | (corresponds to sample # 38919: 0.035 oz/ton Au,       |     |         |      |         |       |          |          |        |        |   |
|       |       | actual measurements of sample are 46.12 to 46.42)      |     |         |      |         |       |          |          |        |        |   |
|       |       |                                                        |     |         |      |         |       |          |          |        |        |   |
|       |       |                                                        |     |         |      |         |       |          |          |        | ľ      | · |
|       |       |                                                        |     |         |      |         |       |          |          |        |        |   |
|       |       |                                                        |     |         |      |         |       |          |          |        |        |   |
|       |       |                                                        |     |         |      |         |       |          |          |        |        |   |

LANGRIDGES - TORONTO - 366-1168

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_ RP-87-11\_\_\_\_\_ SHEET NO. 4 of 7

|                                 | FOOT  | FAGE                                                    | DESCRIPTION                                                                                                                                                                                                                              |      |         | SAMPI | LE      |       | ASSAYS |   |        |        |    |
|---------------------------------|-------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-------|---------|-------|--------|---|--------|--------|----|
|                                 | FROM  | то                                                      | DESCRIPTION                                                                                                                                                                                                                              | NO.  | % SULPH | FROM  | FOOTAGE | TOTAL | -      | 7 | OZ/TON | OZ TON |    |
|                                 | 12.19 | 59.00                                                   | GREEN ANDESITE TUFF continued                                                                                                                                                                                                            |      |         |       |         |       |        |   |        |        |    |
|                                 |       |                                                         | @ 58,00 to 59.00                                                                                                                                                                                                                         | 1222 |         | 58.00 | 50.00   |       |        |   |        |        |    |
|                                 |       |                                                         | Variable weak buff bleaching and patchy marcon                                                                                                                                                                                           | 1373 | _       | 59.00 | 59.60   | 0.60  |        |   |        | 0.001  |    |
|                                 |       |                                                         | coloured rock; an irregular white gtz stringer at                                                                                                                                                                                        | 1374 | tr      | 59.60 | 60.20   | 0.60  |        |   |        | 0.001  |    |
|                                 |       |                                                         | bleached andesite                                                                                                                                                                                                                        | 1375 | tr      | 60.20 | 60.90   | 0.70  |        |   |        | 0.001  |    |
|                                 |       | i                                                       |                                                                                                                                                                                                                                          | 1376 | tr      | 60.90 | 61.47   | 0.57  |        |   |        | 0.005  |    |
|                                 | 59.00 | 59.60                                                   | MAROON ANDESITE TUFF                                                                                                                                                                                                                     | 1377 | 1       | 61.47 | 61.85   | 0.38  |        |   |        | 0.006  |    |
|                                 |       | Typical marcon to purple andesite tuff but to irregular | 1378                                                                                                                                                                                                                                     | 3    | 61.85   | 62.39 | 0.54    |       |        |   | 0.023  |        |    |
|                                 |       |                                                         | bleached stringers and patchy bleached zones                                                                                                                                                                                             | 137  |         | 62.39 | 63.00   | 0.61  |        |   |        | 0.010  |    |
|                                 |       |                                                         |                                                                                                                                                                                                                                          | 1381 |         | 63.50 | 64.00   | 0.50  |        |   |        | 0.024  |    |
|                                 | 59.60 | 64.00                                                   | Sheared / Bleached Zone                                                                                                                                                                                                                  |      |         |       |         |       |        |   |        |        |    |
|                                 |       |                                                         | Variable zone consisting mostly of sheared-appearing green<br>andesite w chl-ser and fine gtz-py and py threads which<br>are irregular to 11 to schistosity; also minor amounts<br>of buff coloured bleached rack and gtz-sulphide zones |      |         |       |         |       |        |   |        |        |    |
| LANGRIDGES - TORONTO - 366-1168 |       |                                                         | € 59.60 to 60.90<br>Buff-green bleached and sheared rock w schistosity<br>varying from ~30° to CA between 59.60 to 60.20<br>and along CA w open low amplitude folds between<br>60.20 to 60.90; a few gtz-py threads 11 to<br>schistosity |      |         |       |         |       |        |   |        |        | ¢. |

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. <u>RP-87-11</u> SHEET NO. <u>5 of "7</u>

| F00   | TAGE  |                                                                                                                                                                                                                  |     |         | SAMPL | .ε            |       |   |   | ASSAYS |        |            |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------|---------------|-------|---|---|--------|--------|------------|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                      | NO. | % SULPH | FROM  | FOOTAGE<br>TO | TOTAL | x | x | OZ/TON | OZ/TON |            |
| 59,60 | 64.00 | SHEARED / BLEACHED ZONE continued                                                                                                                                                                                |     |         |       |               |       |   |   |        |        |            |
|       |       | @ 60.90 to 61.47                                                                                                                                                                                                 |     |         |       |               |       |   |   |        |        |            |
|       |       | Two sections of gtz-ser w tr py, gal at 60.90 to                                                                                                                                                                 |     |         |       |               |       |   |   |        |        |            |
|       |       | 61.20 and 61.37 to 61.47 separated by a section                                                                                                                                                                  |     |         |       |               |       |   |   |        |        |            |
|       |       | of sheared chloritic rock to tr py; margins of                                                                                                                                                                   |     |         |       |               |       |   |   |        |        |            |
|       |       | gtz very irregular and at 15-40° to CA                                                                                                                                                                           |     |         |       |               |       |   |   |        |        |            |
|       |       | @ 61.47 to 61.85                                                                                                                                                                                                 |     |         |       |               |       |   |   |        |        |            |
|       |       | Typical buff to buff-green bleached rock w                                                                                                                                                                       |     |         |       |               |       |   |   |        |        |            |
|       |       | irregular atterpy stringers and contorted blebs                                                                                                                                                                  |     |         |       |               |       |   |   |        |        |            |
|       |       | @ 61.85 to 62.39                                                                                                                                                                                                 |     |         |       |               |       |   |   |        |        |            |
|       |       | Section of white gtz w minor ser-carb and 3%<br>brassy py as irregular massive aggregates and fg<br>stringers; also tr yellow-green cpy                                                                          |     |         |       |               |       |   |   |        |        |            |
|       |       | @ 62.39 to 64.00                                                                                                                                                                                                 |     |         |       |               |       | ļ |   |        |        |            |
|       |       | Sheared chl-ser-gtz rich rock is well defined<br>schistosity at 45° to CA; sheared material contains<br>1-2% fg py in gtz-py threads and stringers or in<br>culphide trains; gtz-carb-py-gal section at 63.22 to |     |         |       |               |       |   |   |        |        |            |
|       |       | 63.27; qtz-py section at 50° to CA at 63.63 to<br>63.67                                                                                                                                                          |     |         |       |               |       |   |   |        |        | <b>e</b> . |

LANGRIDGES ~ TORONTO ~ 366-1168

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-87-11 SHEET NO. 6 of 7

LANGRIDGES - TORONTO - 366-1168

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-87-11 SHEET NO. 7 of 7

| FOO   | TAGE  |                                                       |     |         | SAMPI | .ε            |       |   |   | ASSAYS |        |   |
|-------|-------|-------------------------------------------------------|-----|---------|-------|---------------|-------|---|---|--------|--------|---|
| FROM  | то    | DESCRIPTION                                           | NO. | % SULPH | FROM  | FOOTAGE<br>TO | TOTAL |   | x | 02/TON | OZ/TON |   |
| 64.00 | 91.44 | GREEN ANDESITE TUFF continued                         |     |         |       |               |       |   |   |        |        |   |
|       |       | @ 85.70 to 86.10                                      |     |         |       |               | ]     |   |   |        |        |   |
|       |       | Sheared appearing chil-ser rich rock wa few irregular |     |         |       |               |       |   |   |        |        |   |
|       |       | gtz-py stringers (corresponds to sample # 38944       |     |         |       |               |       |   |   |        |        |   |
|       |       | which returned trace oz/ton Au)                       |     |         |       |               |       |   |   |        |        |   |
|       |       | @ 86.45 to 86.65                                      |     |         |       |               |       |   |   |        |        |   |
|       |       | Several sub-11 gtz stringers separated by bleached    |     |         |       |               |       |   |   |        |        |   |
|       |       | butt-coloured andesite                                |     |         |       |               |       |   |   |        |        |   |
|       |       |                                                       |     |         |       | -             |       |   |   |        |        |   |
|       | 91.44 | END OF HOLE                                           |     |         |       |               |       | Į |   |        |        |   |
|       |       |                                                       | Ì   |         |       |               |       |   |   |        |        |   |
|       |       |                                                       |     |         |       |               |       | ĺ |   | į      |        |   |
|       |       | Note: Selective Resampling of ZONES OF INTEREST ONLY. |     |         |       |               |       |   |   |        |        |   |
| 1     |       | DRILL HOLE COORDINATES AND ELEVATION ASSUMED          |     |         |       |               |       | ļ |   |        |        |   |
| 1     |       | TO BE CORRECT AND USED FOR TIE-IN OF                  | ]   |         |       |               |       |   | 1 |        |        |   |
| 8     |       | HOLES RP-88-12 TO RP-88-20.                           |     |         | :     |               |       |   |   |        |        |   |
|       |       |                                                       |     |         |       |               |       |   |   |        |        |   |
|       |       |                                                       |     |         |       |               |       |   |   |        |        |   |
| 5     |       |                                                       |     |         |       |               |       |   |   |        |        | • |
|       |       |                                                       |     |         |       |               |       |   |   |        |        |   |
|       |       |                                                       |     |         |       |               |       |   |   |        |        |   |
| 1     |       | 1                                                     | •   | 1 1     | ł     | ł             | •     |   | 1 | I      |        | • |

LANGRIDGES - TORONTO - 366-1168

| NAME O<br>HOLE NO<br>LOCATIO<br>LATITUD<br>ELEVATIO<br>STARTED | F PROPI<br>D. <u>RP</u> -<br>N <u>Por</u><br>E <u>687</u><br>ON <u>~14</u><br>D <u>UN</u> | ERTY DOME MOUNTAIN PROJECT<br>87-12 LENGTH 91.44 METRES<br>CLIPINE CLAIM - WEST OF CABIN VEIN<br>62.8 N DEPARTURE 52411.5 E<br>183.4m AZIMUTH 180° DIP -45°<br>KNOWN FINISHED UNKNOWN                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIP<br>-45°<br>T€\$T5                                                                   | AZIN<br>180 | нтин<br>0°<br>имд               | FOOTAGE    |                                           |                                           | HOLE N<br>REMAI                      | 10. KP-<br>RKS <u>RE</u><br>SE<br>NO<br>IN<br>D BY <u>S</u> | 87-12 SH<br>LOGGED<br>PTEMBI<br>Q CORE<br>METRE<br>TEVE J | EET NO.<br>AND RE<br>ER, 198<br>S, ALL<br>S<br>ENNER | LOTO<br>SAMPLED<br>8<br>LENGTHS  |  |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------|---------------------------------|------------|-------------------------------------------|-------------------------------------------|--------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|----------------------------------|--|
| F 0 0 T                                                        | TO                                                                                        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                         | _           | NO.                             | SULPH      |                                           | L E                                       |                                      | - 36                                                        | *<br>*                                                    | SSA                                                  | oz/ton                           |  |
| 0.0                                                            | 15.24                                                                                     | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                         |             |                                 | IDES       | FROM                                      | 10                                        | TOTAL                                |                                                             |                                                           | <u> </u>                                             | /Au                              |  |
| 15. 24                                                         | 35.40                                                                                     | <ul> <li>GREEN ANDESITE TUFF</li> <li>Varies mg tuff is rare lapilli fragments to fragment tuff often is a whith averaging 40-50° to CA atz-carb threads sporadically throughout writ a 11 to white; limit at 35.40 arbitrary and be solely on colour change</li> <li>© 16.58 to 16.68°</li> <li>Two atz-carb stringers at 35° to CA; string 3% sulphides (% py 12 % cpy) as irregular of throughout; immediate (within 0.05m) wallrook sericitic is tr py; entire subunit is 'rusty'</li> <li>© 17.00 to 17.35</li> <li>Approximately 10% near barren appearing atz brassy cubic py within stringers; very slight of immediate wallrock</li> </ul> | ental<br>i; gtz c<br>rd usue<br>used<br>pers car<br>proins<br>ik is<br>str; t<br>bleact | ry<br>r     | 589<br>290<br>291<br>292<br>293 | - 1 - tr - | 16.20<br>16.50<br>16.75<br>17.00<br>17.35 | 16.50<br>16.75<br>17.00<br>17.35<br>18.00 | 0.30<br>0.25<br>0.25<br>0.35<br>0.65 |                                                             |                                                           | 0.05<br>0.11<br>0.01<br>0.07<br>0.02                 | 0.001<br>0.001<br>0.006<br>0.006 |  |

HOLE NO. <u>RP-87-12</u> SHEET NO. <u>LOF6</u> Þ
#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-87-12 SHEET NO. 2 of 6

| F00'  | TAGE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                     |                              |                     | SAMPL                              |                                   | ASSAYS                       |   |              |                              |                                  |   |  |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------|------------------------------------|-----------------------------------|------------------------------|---|--------------|------------------------------|----------------------------------|---|--|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                     | NO.                          | % SULPH             | FROM                               | FOOTAGE<br>TO                     | TOTAL                        | 2 | 2            | OZ/ZON                       | OZ TON                           |   |  |
| 15.24 | 35.40 | GREEN ANDESITE TUFF continued                                                                                                                                                                                                                                                                                                   | 1094                         | 1                   | 18.00                              | 19.00                             | 1.00                         |   |              | 0.01                         | 0.001                            |   |  |
|       |       | @ 20.15 to 20.45                                                                                                                                                                                                                                                                                                                | 1095                         | -                   | 19.00                              | ZO.15                             | 1.15                         |   |              | 0.01                         | 0.001                            |   |  |
|       |       | Two qtz stringers (±5% of subunit) ii heavy E]'s of cg<br>py; wallrock is pyritized (tr-1% fg py) over length<br>of subunit                                                                                                                                                                                                     | 1096<br>1097<br>1098<br>1098 | tr<br>tr<br>tr<br>- | 20. 15<br>20. 45<br>20.65<br>20.93 | 2.0.45<br>20.65<br>20.93<br>21.43 | 0.30<br>0.20<br>0.28<br>0.50 |   |              | 0.04<br>0.02<br>0.04<br>0.03 | 0.001<br>0.001<br>0.001<br>0.001 |   |  |
|       |       | E 20.45 to 20.65<br>Single gtz-py str at 20.50                                                                                                                                                                                                                                                                                  | 1100<br>1101                 | -                   | 21.43<br>21.83                     | 21.83<br>22.75                    | 0.40<br>0.92                 |   |              | 0.01                         | 0.001                            |   |  |
|       |       | C 20.65 to 20.93                                                                                                                                                                                                                                                                                                                | 1102                         | tr                  | 22.75                              | 23.00                             | 0.25                         |   |              | 0.01                         | 0.001                            |   |  |
|       |       | Single qtz-py str at 20.83         1103           @ 21.43 to 21.83         1104           Coarse broken core         1106                                                                                                                                                                                                       | 1103                         | -                   | 23.00                              | 23.80                             | 0.80                         |   |              | 0.01                         | 0.001                            |   |  |
|       |       |                                                                                                                                                                                                                                                                                                                                 | -+r                          | 23.80<br>24.05      | 24.05<br>25.00                     | 0.25                              |                              |   | 0.16<br>0.01 | 0.00<br>0.002.               |                                  |   |  |
|       |       |                                                                                                                                                                                                                                                                                                                                 | 1106                         | -                   | 25.00                              | 25.42                             | 0.42                         |   |              | 0.0Z                         | 0.001                            |   |  |
|       |       | @ 22.75 to 23.00<br>Single pyrific at stringer at 22.81                                                                                                                                                                                                                                                                         | 1107<br>1108<br>1109         | ++<br>-<br>-        | 25.42<br>25.97<br>26.30            | 25.97<br>26.30<br>27.00           | 0.50<br>0.33<br>0.70         |   |              | 0.07<br>0.05<br>0.01         | 0.001<br>0.001                   |   |  |
|       |       | @ 23.80 to 24.05<br>Single pyritic at stringer at 23.90                                                                                                                                                                                                                                                                         |                              |                     |                                    |                                   |                              |   |              |                              |                                  |   |  |
|       |       | <ul> <li>24.36 to 24.38</li> <li>Earthy rusty core at 50° to CA</li> <li>25.42 to 25.97</li> <li>Single 0.02m wide atz-carb stringer tr py, sph; rusty fracture is rusty gouge and bright green malachite scale on fracture surface is 11 to stringer contact at 40° to CA; minor bleaching/py in immediate wallrock</li> </ul> |                              |                     |                                    |                                   |                              |   |              |                              |                                  | • |  |

LANGRIDGES - TORONTO - 366-1168

-----

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. <u>RP-87-12</u> SHEET NO. <u>3 of 6</u>

| TAGE  | DECONDENS                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           | ASSAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| то    | DESCRIPTION                                                                                                                                                                                                      | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SULPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FOOTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                                                                                                                                                                                         | OZ TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | OZ/TON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 35.40 | GREEN ANDESITE TUFF continued                                                                                                                                                                                    | 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | @27.43 to 27.73                                                                                                                                                                                                  | hu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Rusty core to gtz and near massive py at v20° to                                                                                                                                                                 | 1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           | 0.0Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | CA; rusty discolouration obscures detail                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 36.60 | MAROON ANDESITE TUFF                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Virtually the same as previous whit but maroon in overall colour                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 38.95 | GREEN ANDESITE TUFF                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 42.75 | MAROON ANDESITE TUFF                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Crystal to lapilli tuff w sporadic random atz-carb<br>Stringers ; arbitrary limits based on gradational<br>colour change over 0.05 metre                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 47.85 | GREEN ANDESITE TUFF                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | Green crystal to lapilli tuff w random gtz-carb stringers;<br>between 46.45 to 47.85 unit is fg w crenulation<br>cleavage, leucoxene (?), increasing gtz stringers and<br>slight bleaching adjacent to stringers |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | таде<br>то<br>35.40<br>36.60<br>38.95<br>42.95<br>47.85                                                                                                                                                          | TAGE     DESCRIPTION       10     35.40     GREEN ANDESITE TUFF continued       @27.43 to 27.73     Rusty core to gtz and near massive py at v20° to CA; rusty discolouration obscures detail       36.60     MAROON ANDESITE TUFF       Virtually the same as previous unit but maroon in overall cobur       38.95     GREEN ANDESITE TUFF       42.75     MAROON ANDESITE TUFF       42.75     MAROON ANDESITE TUFF       Crystal to lapilli tuff to sporadic random qtz-carb stringers; arbitrary limits based on gradational colour change over 0.05 metrc       47.85     GREEN ANDESITE TUFF       Green crystal to lapilli tuff to random qtz-carb stringers; between 46.45 to 47.85 unit is fg to crenulation cleavage, leucoxene(?), increasing qtz stringers and slight bleaching adjacent to stringers | TAGE     DESCRIPTION       TO     NO.       35.40     GREEN ANDESITE TUFF continued     1110       B.10     CA; rusty discolouration obscures detail     1110       36.60     MAROON ANDESITE TUFF     Virtually the some as previous with but maroon in overall colour       38.95     GREEN ANDESITE TUFF       Virtually the some as previous with but maroon in overall colour       38.95     GREEN ANDESITE TUFF       42.75     MAROON ANDESITE TUFF       Crystal to bapilli tuff \$\overline{tu}\$ sporadic random atz-carb stringers \$ arbitrary limits based on gradational colour change over 0.05 metrc       47.85     GREEN ANDESITE TUFF       Green crystal to bapilli tuff \$\overline{tu}\$ random atz-carb stringers, between 46.45 to 47.85 unit is \$\overline{tu}\$ carbitrary stringers and slight bleaching adjacent to stringers | TAGE       DESCRIPTION         10       No. Isluming         35.40       GREEN ANDESITE TUFF continued         8.41       GREEN ANDESITE TUFF continued         8.427.43       to 27.73         Rusty core w gte and near massive py at ~20° to       1111         36.60       MAROON ANDESITE TUFF         Virtually the zome as previous unit but maroon in overall cobur       1112         38.95       GREEN ANDESITE TUFF         Crystal to lapilli tuff w sporadic random qtz-carb stringers; arbitrary limits based on gradational colour change over 0.05 metre         42.95       MAROON ANDESITE TUFF         47.85       GREEN ANDESITE TUFF         Green Crystal to lapilli tuff w random qtz-carb stringers; arbitrary limits based on gradational colour change over 0.05 metre         47.85       GREEN ANDESITE TUFF         Green Crystal to bapilli tuff w random qtz-carb stringers; between 46.45 to 47.85 unit is fy w centual of the colour change over 0.05 metre         47.85       GREEN ANDESITE TUFF         Green Crystal to bapilli tuff w random qtz-carb stringers; between 46.45 to 47.85 unit is fy w centual of the centual of the colour change over 0.05 metre         47.85       GREEN ANDESITE TUFF         Green Crystal to bapilli tuff w random qtz -carb stringers; between 46.45 to 47.85 unit is fy w centual of the stringers and slight bleaching adjacent to stringers | TAGE     DESCRIPTION     SAMPL       10     No.     Escription     No.     Escription       35.40     GREEN ANDESITE TUFF continued     1110     -     27.00       35.40     GREEN ANDESITE TUFF continued     1110     -     27.00       82.71.43 to 27.73     Rusty core w gtz and near massive py at v20° to CA; rusty discolouration obscures detail     1111     3     27.43       36.60     MAROON ANDESITE TUFF     Virtually the same as previous unit but maroon in overall colour     1112     11     1112       38.95     GREEN ANDESITE TUFF     Virtually the same as previous unit but maroon in overall colour     1112     1112       38.95     GREEN ANDESITE TUFF     Virtually the same as previous unit but maroon in overall colour     1112     1112       42.75     MAROON ANDESITE TUFF     Crystal to lapilli tuff with sporadic random gtz-carb stringers; arbitrary limits based on gradational colour change over 0.05 metrc     1112       47.85     GREEN ANDESITE TUFF     Green crystal to bapilli tuff w random gtz-carb stringers; between 46.45 to 47.85 unit is fg w corenulation change, leucoxene (?), increasing gtz stringers and slight bleaching adjacent to stringers | TAGE     DESCRIPTION     SAMPLE       10     100     100     100     100     100     100     100       35.40     GREEN ANDESITE TUFF continued     1110     -     27.00     27.43       82.40     GREEN ANDESITE TUFF continued     1110     -     27.00     27.43       82.40     GREEN ANDESITE TUFF continued     1110     -     27.00     27.43       82.41     GREEN ANDESITE TUFF     1111     3     27.73     28.05       36.60     MAROON ANDESITE TUFF     Virtually the same as previous unit but maroon in overall cobur     1112     4     4       38.95     GREEN ANDESITE TUFF     Virtually the same as previous unit but maroon in overall cobur     111     4     4     4       42.95     MAROON ANDESITE TUFF     Virtually the same as previous unit but maroon in overall cobur     111     5     4     4     4       42.95     GREEN ANDESITE TUFF     Crystal to lapilli tuff to sporadic random at coarb stringers; colour change over 0.05 metrc     4     4     4     4       47.85     GREEN ANDESITE TUFF     Green crystal to lapilli tuff to random at coarb stringers; between 46.45 to 47.85 unit is fg to creaulation change, leucoxene (?), increasing at stringers and slight bleaching adjacent to stringers     4     4     4 | TAGE     SAMFLE       TO     SAMFLE       35.40     GREEN ANDESITE TUFF continued       @ 27.43 to 27.73     BILO 27.43 o.43       BLID     -     27.00 27.43 o.43       SAMFLE       BLID     -     27.00 27.43 o.43       SAMFLE       BLID     27.00 27.43 o.43       SAMFLE       CA ; rusty discolouration obscures detail       36.60       MAROON ANDESITE TUFF       Virtually the some as previous unit but marcon in overall colour       overall colour       38.95 GREEN ANDESITE TUFF       Crigibal to lopilit tuff III sporedic random qtz-carb       stringers j arbitrary limits based on gradational       colour change over 0.05 metre <td>TAGE     SAMPLE       TO       TO DESCRIPTION       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO STATE       TO SAMPLE       TAGE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO TOTAL&lt; 1</td> TO SAMPLE       TO TOTAL       SAMPLE       CAT, 33 to 27, 73       Rusty core is give and near massive py at v20° to       1110       1110       27,73 28.05       O 27,43 to 27,73       36.60       MAROON ANDESITE TUFF       Virtually the same as previous unit but maroon in overall colsur       OVERAL       OVERAL       ANDESITE TUFF       Crystal to hapilli tuff ID sporodic reardom qtz-carb       Shiringers is arbitrary limits based on grodational       classing | TAGE     SAMPLE       TO       TO DESCRIPTION       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO STATE       TO SAMPLE       TAGE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO SAMPLE       TO TOTAL< 1 | TAGE     SAMPLE       TO       TAGE       TO       TO       SAMPLE       TO       TO       TO       TO       TO       TO       TAGE       TO       TO       TAGE       TO       TO <th colspan<="" td=""><td>SAME <math>E</math>SAME <math>E</math>ASAMETOSAME <math>E</math>ASAMEToSAME <math>E</math>ToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToTo<th colspa<="" td=""><td>SAMPLE     SAMPLE     S</td></th></td></th> | <td>SAME <math>E</math>SAME <math>E</math>ASAMETOSAME <math>E</math>ASAMEToSAME <math>E</math>ToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToTo<th colspa<="" td=""><td>SAMPLE     SAMPLE     S</td></th></td> | SAME $E$ SAME $E$ ASAMETOSAME $E$ ASAMEToSAME $E$ ToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToToTo <th colspa<="" td=""><td>SAMPLE     SAMPLE     S</td></th> | <td>SAMPLE     SAMPLE     S</td> | SAMPLE     S |

### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_ RP-87-12 SHEET NO. \_ 4 of 6

| FOO   | TAGE  |                                                                                                                                                                                                                                                                                                                                          | SAMPLE                                                       |                       |                                                             | ASSAYS                                                      |                                                              |   |                                   |                                                              |                                                                     |                     |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------|---|-----------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|---------------------|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                              | NO.                                                          | % SULPH               | FROM                                                        | FOOTAGE<br>TO                                               | TOTAL                                                        | 2 | ×                                 |                                                              | ALL                                                                 |                     |
| 47.85 | 52.65 | BLEACHED ZONE<br>Typical buff coloured 'bleached' zone is several sulphide-                                                                                                                                                                                                                                                              | 1113<br>1114                                                 | -<br>tr               | 46.45<br>47.00                                              | 47.00<br>47.85                                              | 0.55<br>0.85                                                 |   |                                   | 0.01<br>0.04                                                 | 0.001<br>0.001                                                      |                     |
|       |       | rich gtz sections<br>@47.85 to 48.60<br>Approximately 60% gtz-carb w up to 20% locally<br>Py, and fg gal (py % 12 than gal %) and<br>accessory chl, ser; remainder is buff coloured<br>silicified rock w ~1% fg Py<br>@48.60 to 49.00<br>Greenish, slightly bleached tuff similar to that<br>immediately before 47.85<br>@49.00 to 50.45 | 1115<br>1116<br>1117<br>1118<br>1119<br>1120<br>1121<br>1122 | 4 tr 1<br>5 2 8 tr tr | 47.85<br>48.60<br>49.00<br>50.00<br>50.45<br>51.15<br>52.00 | 48.60<br>49.50<br>50.00<br>50.45<br>51.15<br>52.00<br>52.65 | 0.75<br>0.40<br>0.50<br>0.50<br>0.45<br>0.70<br>0.85<br>0.65 |   | <u>1.18</u><br><u>1.69</u><br>1.0 | 1.28<br>0.02<br>0.75<br>3.30<br>0.35<br>1.06<br>0.16<br>0.01 | 0.073<br>0.06<br>0.043<br>0.155<br>0.027<br>0.027<br>0.051<br>0.067 | <u>0.062</u><br>3.3 |
|       |       | Section of white gtz w local El's of near massive<br>sulphides (about 3 % overall w py % 12 gal %)<br>and minor carb, chl/ser (langely incorporated<br>wallrock; sulphides and chl/ser-rich portions form<br>irregular trains, wisps etc. commonly at 25° to CA;<br>gray-white gouge lined fracture at 50.27                             |                                                              |                       |                                                             |                                                             |                                                              |   |                                   |                                                              |                                                                     | •                   |

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-87-12 SHEET NO. 5 of 6

| F00-  | TAGE  |                                                                                                                                                                                                                                                                                                                                                       |                      |              | SAMPL                   | -E                      |                      |   |   | ASSAYS               |                         | <u>.</u> |
|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------------------------|-------------------------|----------------------|---|---|----------------------|-------------------------|----------|
| FROM  | то    |                                                                                                                                                                                                                                                                                                                                                       | NO.                  | % SULPH      | FROM                    | FOOTAGE<br>TO           | TOTAL                | 2 | x | 0Z/ 100              | OZ/TON                  |          |
| 47.85 | 52.65 | BLEACHED ZONE continued                                                                                                                                                                                                                                                                                                                               |                      |              |                         |                         |                      |   |   | <u>-</u>             |                         |          |
|       |       | @ 50.45 to 51.15<br>Pyrite-rich buff coloured bleached zone; py-gtz<br>present as worm-like trains, py also as 'splotches'                                                                                                                                                                                                                            |                      |              |                         |                         |                      |   |   |                      |                         |          |
|       |       | in bleached rock; crenulation cleaubge disrupts<br>mineralization                                                                                                                                                                                                                                                                                     |                      |              |                         |                         |                      |   |   |                      |                         |          |
|       |       | @ 51.15 to 52.65                                                                                                                                                                                                                                                                                                                                      |                      |              |                         |                         |                      |   |   |                      |                         |          |
|       |       | Buff coloured bleached zone w a few gtz and gtz-py threads                                                                                                                                                                                                                                                                                            | 1123<br>1124<br>1125 | -<br>3<br>tr | 52.65<br>53.60<br>53.75 | 53.60<br>53.75<br>54.40 | 0.95<br>0.15<br>0.65 |   |   | 0.01<br>1.71<br>0.18 | 0.001<br>0.038<br>0.013 |          |
| 52.65 | 91.44 | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                   | 1126                 | -            | 54.40                   | 55.00                   | 0.60                 |   |   | 0.01                 | 0.001                   |          |
|       |       | Typical green to greay-green tuff/lapillituff is random<br>gtz and gtz-carb threads; also sporadic gtz-py stringers<br>less than 0.02 metres wide often is attendant wallrock<br>bleaching and or sericitization; previous sampling<br>(September, 1987) of stringers returned trace to 40.026<br>oz/ton Au, no consistent stringer zones intersected |                      |              |                         |                         |                      |   |   |                      |                         |          |
|       |       | © 53.60 to 53.75<br>Section of milky white qtz ü minor ser. and 3%<br>py ü tr gal., sph. ; scricitic contacts; adjacent<br>wallrack is moderately bleached ü a few random<br>qtz stringers                                                                                                                                                            |                      |              |                         |                         |                      |   |   |                      |                         | €.       |

08M 2

#### NAME OF PROPERTY DOME MOUNTAIN PROTECT

HOLE NO. RP-87-12 SHEET NO. 6 of 6

| FOO                     | TAGE  | DEFERIDIN                                                                                              |              |         | SAMPI          | LE             |              |   | AS   | SAYS       |                |            |
|-------------------------|-------|--------------------------------------------------------------------------------------------------------|--------------|---------|----------------|----------------|--------------|---|------|------------|----------------|------------|
| FROM                    | то    |                                                                                                        | NO.          | % SULPH | FROM           | FOOTAGE        | TOTAL        | 2 | * 02 | Aon        | OZ/TON         |            |
| 52.65                   | 91.44 | GREEN ANDESITE TUFF continued                                                                          |              |         |                |                |              |   |      | 2          |                |            |
|                         |       | @ 59.45 to 59.80                                                                                       | 1127         | -       | 57.20          | 57.80          | 0.60         | ł | 0.   | 01         | 0.001          |            |
|                         |       | Section of pyritic (170) green tuff wa few gtz-py                                                      | 1129         | +-      | 59.10          | 58.80          | 0.30         |   | 0.   | .12        | 0.001          |            |
|                         |       | stringers at various core angles (cut wkf)                                                             | 1130         | -       | 58.80          | 59.45          | 0.65         |   | 0.   | 01         | 0.001          |            |
|                         |       | C 61.35 to 61.60                                                                                       | 1131         | 1       | 59.45          | 59.80          | 0.35         |   | 0.   | 06         | 0.041          |            |
|                         |       | Heterogeneous swirked appearing section consisting of sericitic green to marcon tuff wirregular criss- | 1132         | -       | 59.80          | 60.50          | 0.70         |   | 0    | .01        | 0.001          |            |
|                         |       | crossing atz-py stringers; previous sample #38979<br>returned 0.D17 oz/ton Au                          |              |         |                |                |              |   |      |            |                | }          |
|                         |       | @ 67.10 to 67.60                                                                                       | 1133         | tr      | 67.10          | 67.60          | 0.50         | ĺ | 0    | .07        | 0.002          |            |
|                         |       | Section of sericitic tuff w ~5% gtz-carb stringers that carry 1-2% py/cpy                              | 1134<br>1135 | 2<br>-  | 67.60<br>67.85 | 67.85<br>68.50 | 0.25<br>0.65 |   | 0    | .88<br>.01 | 0.013<br>0.001 |            |
|                         |       | @ 67.60 to 67.85                                                                                       |              |         |                |                |              |   |      |            |                | ł          |
|                         |       | White gtz w minor carb and 2% py w tr cpy                                                              |              |         |                |                |              |   |      |            |                |            |
|                         |       | @ 80.29 to 80.34                                                                                       |              |         |                |                |              |   |      |            |                |            |
| -1168                   |       | Milky white atz to tr py                                                                               |              |         |                |                |              |   |      |            | ÷.             |            |
| RIDGES - TORON10 - 366- | 91.44 | END OF HOLE                                                                                            |              |         |                |                |              |   |      |            |                | <b>•</b> . |
| LANG                    |       | ·                                                                                                      |              |         |                |                |              |   |      | ·          |                |            |

LANGRIDGES - TORONTO - 366-1168

| NAME OF PROPERTY DOME MOUNTAIN PROJECT        |
|-----------------------------------------------|
| HOLE NO. RP-87-13 LENGTH 124.00 METRES        |
| LOCATION PORCUPINE CLAIM - WEST OF CABIN VEIN |
| LATITUDE _ 68797.7 N DEPARTURE _ 52379.0 E    |
| ELEVATION ~1485.8 m AZIMUTH 180° DIP -44°     |
| STARTED UNKNOWN FINISHED UNKNOWN              |

| FOOTAGE | DIP    | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|--------|---------|---------|-----|---------|
| 0       | - 44 ° | 180°    |         |     |         |
| 67.05   | -43°   | -       |         |     |         |
| 121.92  | _44°   | -       |         |     |         |
|         |        |         |         |     |         |

HOLE NO. 82-87-13 SHEET NO. 1076

REMARKS <u>RELOGGED AND RESAMPLED</u> SEPTEMBER, 1988'

NQ CORE, ALL LENGTHS

LOGGED BY STEVE JENNER

| FOO                | TAGE<br>RES | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |        | 5 A M P | Lε      |       | ASSAYS |   |        |        |  |  |  |
|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|---------|---------|-------|--------|---|--------|--------|--|--|--|
| FROM               | то          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO. | SULPH- | FROM    | FOOTAGE | TOTAL | 36     | Æ | OZ/TON | OZ/TON |  |  |  |
| 0.0                | 15.24       | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |        |         |         |       | -      |   |        |        |  |  |  |
| 15.24              | 75.25       | GREEN ANDESITE TUFF, AGGLOMERATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |         |         |       |        |   |        |        |  |  |  |
| TORONTO - 366-1188 |             | Alternating subunits of agglomenate / tuff, lapilli tuff;<br>agglomenate typically of unsorted, volcanic breccia<br>fragments set in fg to mg fragmental matrix, breccia<br>fragments often have maroon discolouration, and from<br>15.24 to approx 17.75 matrix/fragments have maroon<br>discolouration; tuff, lapilli tuff typically green,<br>overall fg to mg ū weak preferred orientation at<br>35-45° to CA; inregular random qtz threads and<br>stringers (* py) present consistently throughout unit<br>(41% of any section); agglomeritic subunits at<br>15.24 to 17.75, 18:72 to 19.50, 22.05 to 22.75, 39.00<br>to ~48.00 |     |        |         |         |       |        |   |        |        |  |  |  |
| LANGRIDGES -       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |         |         |       |        | - |        |        |  |  |  |

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. 82-57-13 SHEET NO. 2 of 6

| F00                    | TAGE  | DESCRIPTION                                                                                                                                                          |     |         | SAMPI | -E      |       | ASSAYS |   |        |        |   |  |  |
|------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------|---------|-------|--------|---|--------|--------|---|--|--|
| FROM                   | то    | DESCRIPTION                                                                                                                                                          | NO. | 3 SULPH | FROM  | FOOTAGE | TOTAL | x      | × | 02/TO# | OZ/TON |   |  |  |
| 15.24                  | 75.25 | GREEN ANDESITE TUFF, AGGLOMERATE continued<br>@ 18.10 to 18.60                                                                                                       |     |         |       |         |       |        |   |        |        |   |  |  |
|                        |       | Broken core to earthy brown tracture surfaces<br>@ 20.80 to 21.20                                                                                                    |     |         |       |         |       |        |   |        |        |   |  |  |
|                        |       | Broken core to earthy brown fracture surfaces                                                                                                                        |     |         |       |         |       |        |   |        |        |   |  |  |
|                        |       | © 24.60 to 25.00<br>Rusty angular broken core                                                                                                                        |     |         |       |         |       |        |   |        |        |   |  |  |
|                        |       | @ 27.77 to 27.82<br>Milky white qtz = 60% py (lesser cpy)                                                                                                            |     |         |       |         |       |        |   |        |        |   |  |  |
|                        |       | @ 55.50 to 55.60<br>Sub-11 gtz stringers (50%) which carry up to 10% py                                                                                              |     |         |       |         |       |        |   |        |        |   |  |  |
|                        |       | © 60.85 to 60.88<br>Milky white gtz w accessory cal/chl and 10% py                                                                                                   |     |         |       |         |       |        |   |        |        |   |  |  |
| 366-1168               |       | @ 70.52 to 70.72<br>Greenish-white bleached andesite w a few white<br>qtz-carb str at ~35° to CA (11 to 'bleached zone'<br>contacts); tr py in str and bleached rock |     |         |       |         |       |        |   |        |        |   |  |  |
| LANGRIDGES - TORONTO - |       | @ 70.90 to 71.00<br>Similar to that between 70.52 to 70.72                                                                                                           |     |         |       |         |       |        |   |        |        | • |  |  |

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP- 87-13 SHEET NO. 3 of 6

| F00   | TAGE  |                                                       |      |         | SAMPI | .E      |       |   |   | ASSAYS   |        |   |
|-------|-------|-------------------------------------------------------|------|---------|-------|---------|-------|---|---|----------|--------|---|
| FROM  | то    | DESCRIPTION                                           | NO.  | 3 SULPH | FROM  | FOOTAGE | TOTAL | 3 | x | OZ/TON   | SZ/TON |   |
| 15.24 | 75.25 | GREEN ANDESITE TUFF, AGGLOMERATE continued            |      |         |       |         |       |   |   | <u> </u> |        |   |
|       |       | @ 72.18 to 72.55                                      |      |         |       |         |       |   |   |          |        |   |
|       |       | Several tightly folded atz-py stringers at low CA     | 1033 | tr      | 70.50 | 71.00   | 0.50  |   |   | 0.11     | 0.003  |   |
|       |       | hosted in gray-green, sericitic, sheared (?) volcanic | 1034 | -       | 11.00 | +2.18   | 1.18  |   |   | 0.05     | 0.001  |   |
|       |       | rock; py in str is cg cubic and crushed cubes, py     | 1035 | 3       | 42.18 | 12.55   | 0.37  |   |   | 1.64     | 0.071  |   |
|       |       | in sheared material is fg diss.; arbitrary limits     | 1036 | -       | 72.55 | 73.75   | 1.20  |   |   | 0.04     | 0.001  |   |
|       |       | to mineralized zone                                   | 1037 | 1       | 73.75 | 74.00   | 0.25  |   |   | 0.34     | 0.001  |   |
|       |       | @73.75 to 74.00                                       |      |         |       |         |       |   |   |          |        |   |
|       |       | Similar to 72.18 to 72.55 but much less intense       |      |         |       |         |       |   |   |          |        |   |
| }     |       | "alteration" and fewer gtz str present; gt-carb       |      |         |       |         |       |   |   |          |        |   |
|       |       | str carry py and cpy (py % 2 cpy %); gtz-carb         |      |         | l.    |         |       |   |   |          |        |   |
|       |       | str at 20-25° to CA                                   |      |         |       |         |       |   |   |          |        |   |
|       |       |                                                       |      |         |       |         |       |   |   |          |        |   |
| 75.25 | 78.00 | BLEACHED ZONE                                         |      |         |       |         |       |   |   |          |        |   |
|       |       | Varies considerably from weak buff-areen alteration   |      |         |       |         |       |   |   |          |        |   |
| 1     |       | (original volconic fexture' visible) to a speckled to |      |         |       |         |       |   |   |          |        |   |
|       |       | mottled appearance as between 75.25 to 76.30          |      |         |       |         |       |   |   |          |        |   |
| 8     |       | towards to buff-white bleached rock often w tr-12 fa  |      |         |       |         |       |   |   |          |        |   |
|       |       | diss py often adjacent to atz-sulphide sections:      |      |         |       |         |       |   |   |          |        |   |
|       |       | limits at 75.25 and at 78.00 gradational over         |      |         |       |         |       |   |   |          |        |   |
|       |       | 0.10 metre                                            |      |         |       |         |       |   |   |          |        | • |
| 3     |       |                                                       |      |         |       |         |       |   |   |          |        |   |
|       |       |                                                       |      |         |       |         |       |   |   |          |        |   |
| Ś     |       |                                                       |      |         |       |         |       |   |   |          |        |   |

### NAME OF PROPERTY DOME MOUNTAIN PROTECT

HOLE NO. <u>RP-87-13</u> SHEET NO. <u>4 of 6</u>

| FOO   | TAGE   | DESCRIPTION SAMPLE                                                                                                                                                                                                                                                                                                                      |              |         |       |                |              |   | ASSAYS |              |        |  |
|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-------|----------------|--------------|---|--------|--------------|--------|--|
| FROM  | то     | DESCRIPTION                                                                                                                                                                                                                                                                                                                             | NO.          | % SULPH | FROM  | FOOTAGE<br>TO  | TOTAL        | 3 | x      | 02/A0H       | OK TON |  |
| 75.25 | 78.00  | BLEACHED ZONE' continued                                                                                                                                                                                                                                                                                                                | 1038         | -       | 74.00 | 75.25          | 1.25         |   |        | 0.03         | 0.001  |  |
|       |        | @ 76.30 to 76.60                                                                                                                                                                                                                                                                                                                        | 1039         | -       | 75.25 | 75.85          | 0.60         |   |        | 0.04         | 0.001  |  |
|       |        | Section of qtz-carb w accessory ser/ch1 (incorporated                                                                                                                                                                                                                                                                                   | 1040<br>1041 | tr<br>5 | 75.85 | 76.30<br>76.60 | 0.45<br>0.30 |   |        | 0.06<br>2.95 | 0.001  |  |
|       |        | gal % I cpy %; internal portion consists of gfz                                                                                                                                                                                                                                                                                         | 1042         | 1       | 76.60 | 27.05          | 0.45         |   |        | 0.44         | 0.004  |  |
|       |        | breccia in sulphide rich matrix; both contacts<br>sharp, sericite-lined and at ~40° to CA                                                                                                                                                                                                                                               | 1043         | tr      | 77.05 | 77.90          | 0.85         |   |        | 0.11         | 0.001  |  |
|       |        | © 76,60 to 77,05                                                                                                                                                                                                                                                                                                                        |              |         |       |                | ı            |   |        |              |        |  |
|       |        | Section of $qtz$ -carb $\overline{w}$ 1 % fg-mg py; this<br>section separated from previous by intervening<br>section of sheared (?) chl-ser (wall rock) (0.08 m)                                                                                                                                                                       |              |         |       |                |              |   |        |              |        |  |
|       |        | @ 77,05 to 77.90                                                                                                                                                                                                                                                                                                                        |              |         |       |                |              |   |        |              |        |  |
|       |        | Bleached, buff-white (silicified and carbonatized?)<br>weakly foliated, alteration zone w tr fg diss py                                                                                                                                                                                                                                 |              |         |       |                |              |   |        |              |        |  |
| 78.00 | 106.95 | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                                     |              |         |       |                |              |   |        |              |        |  |
|       |        | Varying pole gray-green to green, fg to mg tuff/<br>lapilli tuff usually $\bar{w}$ a whith at ~45-50° to CA;<br>occasionally white qtz-carb str. locally at random<br>orientations; contact $\bar{w}$ maroon agglomerate/tuff is<br>abrupt and distinct; broken angular core at 82.90 to<br>83.20 and 83.30 to 83.60 and 84.50 to 84.80 |              |         |       |                | -            |   |        |              |        |  |

LANGRIDGES - TORONTO - 366-1168

NAME OF PROPERTY DOME MOUNTAIN PROTECT

HOLE NO. \_ RP-87-13 \_\_\_\_\_ SHEET NO. \_ 5 of 6

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. <u>RP-87-13</u> SHEET NO. <u>6 of 6</u> SAMPLE ASSAYS

| F00    | TAGE   | DESCRIPTION                                                                                                                                                                       | SAMPLE |         |      |         |       | ASSAYS |   |        |        |   |  |
|--------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|------|---------|-------|--------|---|--------|--------|---|--|
| FROM   | то     | DESCRIPTION                                                                                                                                                                       | NO.    | % SULPH | FROM | FOOTAGE | TOTAL | 2      | z | OZ/TON | OZ/TON |   |  |
| 106.95 | 110.00 | MAROON ANDESITE AGGLOMERATE, TUFF                                                                                                                                                 |        |         |      |         |       |        |   |        |        |   |  |
|        | -      | Predominantly greenish to reddish subangular<br>Fragments set in a maroon, fy to my matrix; a few<br>random isolated white qtz str.; limits to zone<br>defined entirely by colour |        |         |      |         |       |        |   |        |        |   |  |
| 110.00 | 124.00 | GREEN ANDESITE TUFF (FRAGMENTAL LAVA)                                                                                                                                             |        |         |      |         |       |        |   |        |        |   |  |
|        |        | @ 111.10 to 111.45                                                                                                                                                                |        |         |      |         |       |        |   |        |        |   |  |
|        |        | Section of qtz-carb w minor incorporated wall rock<br>and 2-3% cubic and crushed py                                                                                               |        |         |      |         |       |        |   |        |        |   |  |
|        | 124.00 | END OF HOLE                                                                                                                                                                       |        |         |      |         |       |        | - |        |        |   |  |
| 1-1-00 |        |                                                                                                                                                                                   |        |         |      |         |       |        |   |        |        | • |  |
|        |        |                                                                                                                                                                                   |        |         |      |         |       |        |   |        |        |   |  |

| NAME OF PROPERTY DOME MOUNTAIN PROJECT        |   |
|-----------------------------------------------|---|
| HOLE NO. RP- 87-14 LENGTH 64.00 METRES        | _ |
| LOCATION PORCUPINE CLAIM - WEST OF CABIN VEIN |   |
| LATITUDE 68762.4 N DEPARTURE 52350.0 E        |   |
| ELEVATION ~1488.9 m AZIMUTH 180° DIP -45°     |   |
| STARTED UNKNOWN FINISHED UNKNOWN              |   |

| FOOTAGE | OIP   | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|-------|---------|---------|-----|---------|
| 0       | - 45° | 180°    |         |     |         |
| NO      | TESTS | FOUND   |         |     |         |
|         |       |         |         |     |         |
| L       |       | L       |         |     | L       |

HOLE NO. RP-87-14 SHEET NO. 105-5

REMARKS <u>RELOGGED AND RESAMPLED</u> SEPTEMBER, 1988 NQ CORE, ALL LENGTHS

LOGGED BY STEVE JENNER

| FOO   | TAGE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                      |     |         | SAMP | LE      |       | ASSAYS |    |        |        |   |  |  |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|------|---------|-------|--------|----|--------|--------|---|--|--|
| FROM  | то    | of SCRIFTION                                                                                                                                                                                                                                                                                                                                                     | NO. | SUL PH- | FROM | FOOTAGE | TOTAL | z      | 36 | OZ/TON | OZ/TON |   |  |  |
| 0.0   | 16.78 | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                                                                               |     |         |      |         |       |        |    |        |        |   |  |  |
| 16.78 | 19.05 | MAROON ANDESITIC AGGLOMERATE                                                                                                                                                                                                                                                                                                                                     |     |         |      |         |       |        |    |        |        |   |  |  |
|       |       | Heterogeneous unit consisting of pale greenish to marcon<br>angular to subongular volconic fragments (poorly<br>sorted, 0.005 m to greater than core diameter) set<br>floating in an overall marcon mg granular matrix;<br>rusty brown carbonate (ankerite?) fills random<br>hairline fractures; contact at 19.05 obscured by rusty<br>brown earthy core         |     |         |      |         |       |        |    |        |        | • |  |  |
| 19.05 | 23.60 | GREEN ANDESITIC AGGLOMERATE, TUFF<br>Pale gray-green, overall fy to rare lapilli fragments of<br>similar composition and volcanic (ardesite, andesite<br>Porphyry) argular fragments similar to previous unit;<br>rare local slight moroon discolouration; contact at<br>23.60 obscured by rusty fractures<br>@ 19.65 to 19.85<br>Rusty gravel sized broken core |     |         |      |         |       |        |    |        |        | r |  |  |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO \_\_\_\_\_\_ RP- 87-14\_\_\_\_\_

\_\_\_\_\_ SHEET NO. 2 04 5

| FOOTAGE |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |         | SAMPL                                     | .E                                        |                              |    |   | ASSAYS                               |                                           |   |
|---------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------|-------------------------------------------|-------------------------------------------|------------------------------|----|---|--------------------------------------|-------------------------------------------|---|
| FROM    | το    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO.                                  | T SULPH |                                           | FOOTAGE                                   | TOTAL                        | 7. | 7 | OZ TON                               | 0240m                                     |   |
| 19.05   | 23.60 | GREEN ANDESITE AGGLOMERATE, TUFF continued                                                                                                                                                                                                                                                                                                                                                                                                                                                | · ·                                  | 1025    | FROM                                      |                                           |                              |    |   |                                      |                                           |   |
|         |       | @ 19.85 to 20.50<br>Section To 10% white atz-carb as atz str at 10-20°<br>to CA; 20-40% crushed cubic py within atz str;<br>limit at 19.85 bounded by rusty fracture and<br>limit at 20.50 arbitrary                                                                                                                                                                                                                                                                                      | 1001<br>1002<br>1003<br>1004<br>1005 | - 2     | )9.05<br> 9.85<br>20.50<br>21.50<br>22.50 | 19.85<br>20.50<br>21.50<br>22.50<br>23.60 | 0.80<br>0.65<br>1.00<br>1.00 |    |   | 0.04<br>0.11<br>0.06<br>0.06<br>0.05 | 0.001<br>0.005<br>0.001<br>0.001<br>0.002 |   |
| 23.60   | 41.25 | BLEACHED ZONE<br>Essentially a section of fg, gray-white sericite (clay?)-<br>qtz-carbonate (calcite?) schist often to tr-2% fg<br>diss. py.; lesser amounts of white barren to<br>sulphide-rich qtz and pale green to buff coloured<br>(probably a lesser degree of alteration) and esitic rock;<br>ser-qtz-carb schist characterized by strong foliation,<br>white earthy appearance and soft broken core;<br>limit of zone at 41.25 marked by abrupt start of<br>green and esitic tuff | 1006<br>2007<br>1008                 | t 0 t   | 23.60<br>24.00<br>24.25                   | 24.00<br>24.25<br>24.60                   | 0.40<br>0.25<br>0.35         |    |   | 0.07<br>1.29<br>0.06                 | 0.001<br>0.050<br>0.003                   |   |
|         |       | © 24.00 to 24.25<br>White atz w minor carbonate and ~10% sulphides as<br>trains of fg py w minor cpy and tr gal at ~45°<br>to CA; immediate wall rock is buff coloured silicified<br>core w irregular atz str.                                                                                                                                                                                                                                                                            |                                      |         |                                           |                                           |                              |    |   |                                      |                                           | ٢ |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. <u>RP-87-14</u> SHEET NO. <u>3 of 5</u>

| F00'  | TAGE  | DESCRIPTION                                                                                                                       |              |          | SAMPI          | -E              |              | ASSAYS |   |              |                |  |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------|--------------|----------|----------------|-----------------|--------------|--------|---|--------------|----------------|--|
| FROM  | то    | DESCRIPTION                                                                                                                       | NO           | SUL PH   | FROM           | FOOTAGE         | TOTAL        |        | 3 | 02 TON       | AUL UZ TON     |  |
| 23.60 | 41.25 | BLEACHED'ZONE continued                                                                                                           | 1            | 1        |                | <u> </u>        |              |        |   | <u>†</u> -   |                |  |
|       |       |                                                                                                                                   | 1009         | ++       | 24.60          | 25.00           | 0,40         |        |   | 0.11         | 0.004          |  |
|       |       | e 24.60 to 26.00                                                                                                                  | 1010         | 1        | 25.00          | 25.50           | 0.50         |        |   | 0.04         | 0.005          |  |
|       |       | Predominantly buff coloured siliceous core $\overline{w}$ a few random atz str (at low angles to CA) and tr-1%                    | 1011         | tr       | 25.50          | 26.00           | 0.50         |        |   | 0.05         | 0. <u>0</u> 2  |  |
|       |       | fg diss py; grades to sericite schist at ~26.00                                                                                   | 1012         | tr       | 26.00          | 27.00           | 1.00         |        |   | 0.05         | 0.002          |  |
|       |       | @ 26.00 to 27.65                                                                                                                  | 1013         | ++       | 27.00          | 27.65           | 0.65         |        |   | 0.04         | 0.001          |  |
|       |       | Sericite-qtz schist iv tr fg diss py                                                                                              | 1014         |          | 27.65          | 28.50           | 0.95         |        |   | 0.05         |                |  |
|       |       | C 27.65 to 29.40                                                                                                                  | 1015         | -        | 28.50          | 29.40           | 0.90         |        |   | 0.03         | 0.001          |  |
|       |       | Buff to green and esite tuff $\overline{\omega}$ a few random gtz-carb<br>stringers; abrupt transition to ser-gtz schist at 29.40 | 1016         | tr       | 29.40          | 30.00           | 0.60         |        |   | 0.04         | 0.001          |  |
|       |       | @ 29.40 to 34.40                                                                                                                  | 1018         | tr       | 31.00          | 32.00           | 1.00         |        |   | 0.12         | 0.002          |  |
|       |       | Sericite-oftz schist i tr fg diss py; almost entirely                                                                             | 1019         | tr<br>tr | 32.00<br>33.00 | 33.00<br>711 00 | 1.00         |        |   | 0.06         | 0.001          |  |
|       |       | earthy broken core; core recovery (4.60/5.00) is 92%                                                                              | 1021         | tr       | 34.00          | 34.40           | 0.40         |        |   | 0.06         | 0.001<br>0.002 |  |
|       |       | © 34.40 to 35.10                                                                                                                  | 1000         |          |                |                 |              |        |   |              |                |  |
|       |       | Heterogeneous section consisting 75% of silicified                                                                                | 1022         | 1        | 34.40          | 35.10           | 0.70         |        |   | 0.24         | 0.007          |  |
|       |       | remainder as white gtz w 2-3% py                                                                                                  | 1023<br>1024 | 2<br>2   | 35.10<br>36.00 | 36.00<br>36.80  | 0.90<br>0.80 |        |   | 0.90<br>0.90 | 0.035<br>0.012 |  |
|       |       | @ 35.10 to 36.80                                                                                                                  |              |          |                |                 |              |        |   |              |                |  |
|       |       | White oftz w 2-3% py w rare fg gal and minor<br>(10%) sericite schist                                                             |              |          |                |                 |              |        |   |              |                |  |
|       |       | `                                                                                                                                 |              |          |                |                 |              |        |   |              |                |  |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_\_\_\_\_\_ SHEET NO. 4 05 5

| FC    | OTAGE   |                                                                                                                                                                                                      | '                    | OLEN           |                | - 0 7 - 1               | 4            | SHI | EET NO | . <u>4 of</u> | 5              |  |  |  |
|-------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|----------------|-------------------------|--------------|-----|--------|---------------|----------------|--|--|--|
| FROM  | то      | DESCRIPTION                                                                                                                                                                                          |                      | 1 + 4/1 Pu     | SAMP           | LE                      |              |     | ASSAYS |               |                |  |  |  |
| 23.60 | 0 41.25 | BLEACHED ZONE CONTINUED                                                                                                                                                                              | NO                   | IDES           | FROM           | FOOTAGE                 | TOTAL        |     | ~      | 01 A8.        | 62 TON         |  |  |  |
|       |         | e 36.80 to 37.20                                                                                                                                                                                     | 1025                 | 5              | 36.80          | 37.20                   | 0.40         |     |        | 0.52          | 0.018          |  |  |  |
|       |         | Angular atz/silicified fragment breccia cemented by<br>atz/py; broken core from 36.80 to 37.00                                                                                                       | 1026<br>1027<br>1027 | tr<br>tr<br>tr | 37.20          | 38.00<br>38.80<br>39.25 | 0.80         |     |        | 0.30          | 0.005<br>0.001 |  |  |  |
|       |         | @ 37.20 to 39.25                                                                                                                                                                                     |                      |                | 20.10          |                         | 0.45         |     |        | 0.06          | 0.001          |  |  |  |
|       |         | Silicified sericite schist w 5% random gtz str which<br>carry up to 10% py as fg granular masses; broken<br>core from 38.80 to 39.25                                                                 |                      |                |                |                         |              |     |        |               |                |  |  |  |
|       |         | @ 39.25 to 39.95                                                                                                                                                                                     | 1029                 | 15             | 39.25          | 39.95                   | 0.70         |     |        | 1.52          | 0.036          |  |  |  |
|       |         | White $qtz = 10 - 15\%$ sulphides (predominantly py =<br>lesser amounts of gal); abrupt contacts                                                                                                     | 1030<br>1031         | 2<br>2         | 39.95<br>40.50 | +0.50<br>41.25          | 0.55<br>0.75 |     |        | 0.05<br>0.24  | 0.00Z          |  |  |  |
| 41.25 | 64.00   | © 39.95 to 41.25<br>Pale buff-green, 'altered' andesite tuff (?); a few<br>py-rich gtz str at random low angles to CA;<br>fg py 'splotches' throughout most of sub-unit<br>GREEN ANDESITE Accusation |                      |                |                |                         |              |     |        |               |                |  |  |  |
|       |         | Overall medium green, fg to mg to angular fragments<br>locally; fragments often a purple colour; random<br>gtz-carb threads locally; broken earthy core at<br>47.8 to 48.0 and 56.0 to 56.5          |                      |                |                |                         |              |     |        |               |                |  |  |  |
|       |         | continued                                                                                                                                                                                            |                      |                |                |                         |              |     |        |               |                |  |  |  |
|       |         | 1                                                                                                                                                                                                    | I.                   | 1              | 1              | 1                       |              | I   | 1      | ł             |                |  |  |  |

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-87-14 SHEET NO. 5 OF 5

| FOO                  | TAGE                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  | SAMPL         | E                   |       | ASSAYS |   |        |                  |   |  |  |
|----------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|---------------|---------------------|-------|--------|---|--------|------------------|---|--|--|
| FROM                 | то                  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NO.  | * SULPH,<br>IDES | FROM          | FOOTAGE             | TOTAL | •      | 2 | 02 TON | OZ TON           |   |  |  |
| F00<br>FROM<br>41.25 | TAGE<br>TO<br>64.00 | DESCRIPTION<br>GREEN ANDESITE AGGLOMERATE, TUFF continued<br>A few minor buff coloured silicified (carbonatized?)<br>alteration zones w tr - 1% fg py and minor qtz; zones<br>are irregular w indistinct boundaries and are at<br>41.70 to 41.80, 41.95 to 42.00, 42.80 to 43.00, 43.17<br>to 43.30, 43.48 to 43.83, 44.02 to 44.15, 44.30 to<br>44.45 (white qtz w 10% py associated w this interval)<br>@ 47.80 to 48.65<br>Bleached breccia zone w unsorted, argubar, buff<br>to maroon fragments floating in a fg buff matrix;<br>subunit is devoid of sulphide mineralization | 1032 | - SULPH,<br>10ES | SAMPL<br>FROM | -E<br>FOOTAGE<br>TO | 0.85  | 3      | 7 | 01 10H | 02 100<br>02.001 |   |  |  |
|                      | 64.00               | END OF HOLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                  |               |                     |       |        |   |        |                  | • |  |  |

| 1        |                                           |
|----------|-------------------------------------------|
|          |                                           |
|          |                                           |
| ÷        | APPENDIX TWO                              |
| •        | Drill Logs for Holes RP-88-15 to RP-88-24 |
| ۲        |                                           |
| <b>#</b> |                                           |
| 4        |                                           |
| ۴        |                                           |
|          |                                           |
| ۲        |                                           |
|          |                                           |
| ۲        |                                           |
| Ċ        |                                           |
| 4        |                                           |

./teeshin/dome/domesjcoverpg

#### TEESHIN RESOURCES LTD. DOME MOUNTAIN PROJECT

# EXPLANATION OF GEOLOGY AND ABBREVIATIONS

#### **GEOLOGICAL UNITS**

#### SYMBOL

#### DESCRIPTION

VgGreen andesiteVgtGreen andesite tuffVgaGreen andesite agglomerateVmMaroon andesiteVmtMaroon andesite tuffVmaMaroon andesite agglomerateVbBleached zone

### MINERALOGICAL ABBREVIATIONS

| cal  | calcite          |
|------|------------------|
| carb | carbonate        |
| chl  | chlorite         |
| сру  | chalcopyrite     |
| epi  | epidote          |
| gal  | galena           |
| ру   | pyrite           |
| qc   | quartz-carbonate |
| qtz  | quartz           |
| ser  | sericite         |
| sph  | sphalerite       |

#### **OTHER ABBREVIATIONS**

.\*

| bc     | broken core         |
|--------|---------------------|
| bx     | breccia             |
| CA     | core axis           |
| str    | stringer            |
| fg     | fine grained        |
| mg     | medium grained      |
| cg     | coarse grained      |
| diss   | disseminated        |
| wkf    | weakly foliated     |
| mf     | moderately foliated |
| wf     | well foliated       |
| w      | with                |
| //     | parallel            |
| sub-// | sub-parallel        |
| [-]    | concentrated        |
| tr     | trace               |

| NAME OF   | PROPERTY DOME MOUNTAIN PROJECT             |
|-----------|--------------------------------------------|
|           | RP-88-15 LENGTH 150,00 METRES              |
| HOLE NO.  | PARCUPULAE CLAIM - WEST OF CABIN VEIN      |
| LOCATION  | FORCEPTINE COUNT MEST OF COUNT             |
| LATITUDE  | 68793.4 N DEPARTURE                        |
| ELEVATION | 1 1483.99 AZIMUTH 180 DIP -43              |
| STARTED   | NOVEMBER 2, 1988 FINISHED NOVEMBER 3, 1988 |

| FOOTAGE | DIP  | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|------|---------|---------|-----|---------|
| 0       | -45° | 180°    |         |     |         |
| 71.62   | -45° |         |         |     |         |
| 153.70  | -43° | —       |         |     |         |
|         |      |         |         |     |         |

HOLE NO. <u>RP-88-15</u> SHEET NO. <u>LOF5</u> REMARKS <u>ALL LENGTHS IN</u> METRES.

LOGGED BY STEVE JENNER

| FQO   | TAGE  |                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         | SAMP | LE |       |    |   | SSAY   | 15     |  |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|------|----|-------|----|---|--------|--------|--|
| FROM  | TO    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                     | NO. | SUL PH- | FROM | TO | TOTAL | 36 | x | OZ/TON | OZ/TON |  |
| 0.0   | 16.77 | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                              |     | 10-00   |      |    |       |    |   |        |        |  |
| 16.77 | 17.50 | MAROON ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                            |     |         |      |    |       |    |   |        |        |  |
| 17.50 | 20.45 | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                             |     |         |      |    |       |    |   |        |        |  |
| 20.45 | 22.80 | MAROON ANDESITE TUFF, AGGLOMERATE                                                                                                                                                                                                                                                                                                                                                                               |     |         |      |    |       |    |   |        |        |  |
|       |       | An intervening section of green andesite tuff between<br>24.53 to 24.87; limits to previous four units<br>arbitrary and based upon colour, typically gradational<br>over 0.02 to 0.05 metres                                                                                                                                                                                                                    |     |         |      |    |       |    |   |        |        |  |
| 22.80 | 81.43 | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                             |     |         |      |    |       |    |   |        |        |  |
|       |       | Predominantly green fg tuff to lapilli tuff rarely w<br>a whith at 45° to CA; also infrequent sections of<br>maroon and esite lapilli tuff which grades from/to<br>finer grained green tuffs; white gtz and gtz-carb<br>stringers usually at 40-50° to CA common throughout<br>unit; some stringers tightly folded; stringers over<br>0.01 metre wide usually contain cubic to fg Py;<br>continued on rext page |     |         |      |    |       |    |   |        |        |  |

RIDGES - TORONTO - 366-1168

### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_ RP-88-15\_\_\_\_\_\_ SHEET NO. \_ 2 of 5\_\_\_\_\_

| 500   | TAGE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                  | SAMPL                                                                                           | .E                                                                                              |                                                                      |   |                     | ASSAYS                                                               |                                                                      |       |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---|---------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO.                                                                          | % SULPH          | FROM                                                                                            | FOOTAGE<br>TO                                                                                   | TOTAL                                                                | 2 | 2                   | 0Z TON                                                               | oz/tow                                                               |       |
| 22.80 | 81.43 | GREEN ANDESITE TUFF continued<br>Significant atz-py and atz-carb-py stringers up to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                  |                                                                                                 |                                                                                                 |                                                                      |   |                     | - 3                                                                  |                                                                      |       |
| 81.43 | 84.20 | 0.02 metres wide and at 45° to CA at 26.08,<br>27.55, 28.97, 45.05, 47.25, 49.75, 50.07, 51.60,<br>68.80, 79.11, 79.20 and 79.71; also a few narrow<br>sections consisting of a few sub-11 stringers w<br>attendant buff green wallrock bleaching and these<br>are at 29.28 to 29.37, 29.60 to 29.92 and<br>73.90 to 74.05; a 0.01 metre wide seam of<br>silty gouge at 30.57.<br>BLEACHED ZONE, QUARTZ<br>Between 81.43 to 82.50 and 84.00 to 84.06 milky<br>white gtz w accessory yellow-white carb, gray-green<br>sericite; section between 81.43 to 82.50 contains<br>3-57° Py.cpy as fg trains at low CA and fg clots;<br>section at 84.00 to 84.06 contains ~37° py, gal<br>w gal EI near boundaries; a greasy sericitic<br>Fracture & minor gouge at 20° to CA centred at<br>82.00; both sections at low CA (20-40° to CA);<br>remainder is massive-appearing gray-green-white,<br>slightly bleached andesite (?) w 2-37° pyritic spots<br>between about 83.40 and 84.20 | 1155<br>1156<br>1157<br>1158<br>1160<br>1161<br>1162<br>1163<br>1163<br>1164 | - tr - 3 - 3 - 2 | 78.00<br>79.00<br>80.00<br>81.43<br>82.50<br>83.40<br>85.00<br>85.50<br>85.50<br>86.00<br>87.00 | 79,00<br>80,00<br>81,00<br>81,43<br>82,50<br>83,40<br>85,00<br>85,50<br>86,00<br>87,00<br>88,00 | 1.00<br>1.00<br>0.43<br>1.07<br>0.90<br>0.60<br>0.50<br>0.50<br>1.00 |   | <u>0.48</u><br>2.77 | 0.06<br>0.05<br>0.05<br>1.16<br>0.05<br>0.39<br>0.12<br>0.06<br>0.05 | 0.001<br>0.001<br>0.046<br>0.001<br>0.012<br>0.012<br>0.012<br>0.012 | 0.018 |

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-15 SHEET NO. 3 of 5

| F                               | OOTAGE    |                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE<br>No. (* SULPH) FOOTAGE |      |       | 1  |       |  |   | - ·    |        |  |
|---------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------|-------|----|-------|--|---|--------|--------|--|
|                                 |           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                           |                                 |      | JAMPI |    |       |  |   | ASSAYS |        |  |
| FRO                             | м то      |                                                                                                                                                                                                                                                                                                                                                                       | NO.                             | IDES | FROM  | TO | TOTAL |  | z | OZ/TON | OZ/TON |  |
| 84.                             | 20 93.00  | GREEN ANDESITE TUFF<br>Overall medium green, fg w a mf at ~30° to CA;<br>a few white qtz stringers at random orientations<br>throughout unit; limit at 93.00 arbitrary and<br>marked by gradational colour change over 0.03m                                                                                                                                          |                                 |      |       |    |       |  |   |        |        |  |
| 93.0                            | ∞1∞.15    | MAROON ANDESITE TUFF<br>Maroon coloured, fg tuff to numerous sections of<br>lapilli / fragmental tuff set in a fg matrix; lapilli<br>clasts tend to be reddish to reddish-white in colour;<br>throughout most of unit a wkf to mf at 30-35° to<br>CA; limit at 100.15 again arbitrary and based<br>upon cobur change over 0.03 m                                      |                                 |      |       |    |       |  |   |        |        |  |
| LANGRIDGES - TORONTO - 366-1168 | 15 128.14 | GREEN ANDESITE<br>Overall green, fg apparently massive unit is a wkf<br>at 30 - 40° to CA is rare intervening sections<br>of tuffaceous - appearing green andesite (?); pasty<br>beige fg leucoxene throughout most of unit;<br>maroon andesite at 117.77 to 118.20; sericite/clay<br>lined slips at 115.26 (20° to CA), 122.57 (60° to<br>CA) and 124.42 (40° to CA) |                                 |      |       |    |       |  |   |        |        |  |

-

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-15 SHEET NO. 4 of 5

| FOOT   | TAGE   |                                                                                   |      |         | SAMPL  | .Е            |       |   |   | ASSAYS |        |   |
|--------|--------|-----------------------------------------------------------------------------------|------|---------|--------|---------------|-------|---|---|--------|--------|---|
| FROM   | то     | DESCRIPTION                                                                       | NO.  | % SULPH | FROM   | FOOTAGE<br>TO | TOTAL | 3 | z | OZATON | OZ TON |   |
| 100.15 | 128.17 | GREEN ANDESITE continued                                                          | 1167 | -       | 105.00 | 105.60        | 0.60  |   |   | 8      | 0.001  |   |
|        |        | Numerous atz and atz-carb veinlets often w varying                                | 1168 | tr      | 105.60 | 106.20        | 0.60  |   |   | JVE    | 0.001  |   |
| }      |        | amounts of fg cubic py and attendant wallrock                                     | 1169 | -       | 106.20 | 106.75        | 0.55  |   |   | 15 2   | 0.001  |   |
|        |        | bleaching veinlets usually 60.02 wide and at                                      | 0711 | -       | 106.75 | 107.50        | 0.75  |   |   | FOR    | 0.001  |   |
|        |        | $GA'_{i}$ (30 - 1453 to $GA'_{i}$ (30 - 1453 to $GA'_{i}$ (30 - 1453 to $GA'_{i}$ | 1171 | -       | 107.50 | 108.50        | 1.00  |   |   | e,     | 0.001  |   |
|        |        | varying Cris (30 = +3+ to Cr); significant grz-py                                 | 1172 | -       | 108.50 | 109.35        | 0.85  |   |   | AYe    | 0.001  |   |
|        |        | and bleached wallrock at 105.69 to 105.95, 106.03                                 | 1173 | _       | 109.35 | 109.25        | 0.50  |   |   | Ass    | 0.001  |   |
|        |        | to 106.13, 108.60 to 108.73, 109.37 to 109.85,                                    | 1174 |         | 109.85 | 110.75        | 0.90  |   |   | F      | 0.001  |   |
|        |        | 110.20 to 110.45 (very weak) and 127.26 to                                        | 1175 | _       | 110.75 | 111.50        | 0.75  |   |   | ž      | 0.001  |   |
| ŀ      |        | 127.60 (50% gtz-py); limit at 128.17 abrupt and                                   |      |         |        |               |       |   |   |        |        |   |
|        |        | marked by section of qtz                                                          |      |         |        |               |       |   |   |        |        |   |
|        |        |                                                                                   |      |         |        |               |       |   |   |        |        |   |
| 128.17 | 133.19 | BLEACHED FOUL                                                                     |      |         |        |               |       |   |   |        |        |   |
|        |        |                                                                                   | 1176 | -       | 126.00 | 126.80        | 0.80  |   |   | 0.05   | 0.001  |   |
|        |        | Miliciation zone w varying degrees of 'bleaching' from                            | 1177 |         | 126.80 | 127.25        | 0.45  |   |   | 0.06   | 0.001  |   |
|        |        | butt-green to complete tan-white gtz-ser-clay-carb                                | 1178 | 1       | 127.25 | 127.60        | 0.35  |   |   | 0.13   | 0.006  |   |
|        |        | alteration; gray-white zilty gouge from 132.99 to                                 | 1179 | -       | 127.60 | 128.17        | 0.57  |   |   | 0.05   | 0.003  |   |
|        |        | 133.19; mf at 20-30° to CA                                                        | 1180 | 2       | 128.17 | 128.45        | 0.28  |   |   | 0.17   | 0.012  |   |
|        |        |                                                                                   | 181  | -       | 128.45 | 129.55        | 1.10  |   |   | 0.07   | 0.001  |   |
|        |        | C 128.45                                                                          | 1182 | +       | 129.55 | 130.15        | 0.60  |   |   | 0.18   | 0.005  |   |
|        |        | White gtz w minor carb and 2% fg py as aggregates                                 | 1123 | -       | 130.15 | 131.30        | 1.15  |   |   | 0.06   | 0.001  |   |
|        |        | thear sericitic contacts at 80° to CA                                             | 1184 | tr      | 131.30 | 132.20        | 0.90  |   |   | 0.05   | 0.001  |   |
|        |        | @ 129 90 1- 122 07                                                                | 1185 | -       | 132.20 | 132.99        | 0.79  |   |   | 0.05   | 0,001  |   |
|        |        |                                                                                   | 1186 | gouge   | 132.99 | 133.19        | 0.20  |   |   | 0.04   | 0.001  | • |
|        |        | to CA                                                                             | l    | l       |        |               |       |   |   |        |        |   |
|        | 1      |                                                                                   |      |         |        |               |       |   |   |        |        |   |
|        |        |                                                                                   |      |         |        |               |       |   | ļ |        |        |   |

LANGRIDGES - TORONTO - 366-1168

### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-15 SHEET NO. 5 of 5

| FOO    | TAGE   |                                                                                                                                                                                                                                                 |   |         | SAMPL | .Е      |       |   |   | ASSAYS |        |  |
|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|-------|---------|-------|---|---|--------|--------|--|
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                     |   | % SULPH | FROM  | FOOTAGE | TOTAL | 7 | × | OZ/TON | OZ/TON |  |
| 133.19 | 137.10 | MAROON ANDESITE TUFF                                                                                                                                                                                                                            |   |         |       |         |       |   |   |        |        |  |
| 137.10 | 141.00 | GREEN ANDESITE TUFF<br>Between 137.40 to 140.60 unit is weakly bleached<br>$\overline{w}$ widely spaced gtz-carb stringers at $\ge 60^{\circ}$ to<br>CA; at 139.30 to 139.60 stringers account for<br>20% of unit; gradational contacts to unit |   |         |       |         |       |   |   |        |        |  |
| 141.00 | 145.35 | MAROON ANDESITE TUFF                                                                                                                                                                                                                            | : |         |       |         |       |   |   |        |        |  |
| 145.35 | 145.70 | GREEN ANDESITE TUFF (?)                                                                                                                                                                                                                         |   |         |       |         |       |   |   |        |        |  |
| 145.70 | 147.57 | MARCON ANDESITE                                                                                                                                                                                                                                 |   |         |       |         |       |   |   |        |        |  |
| 147.57 | 150.00 | GREEN ANDESITE                                                                                                                                                                                                                                  |   |         |       |         |       |   |   |        |        |  |
|        | 150.00 | END OF HOLE                                                                                                                                                                                                                                     |   |         |       |         | •     |   |   |        |        |  |
|        |        |                                                                                                                                                                                                                                                 |   |         |       |         |       |   |   |        |        |  |

3RIDGES - TORONTO - 366-116

| NAME OF PROPERTY DOME MOUNTAIN PROPERTY              |
|------------------------------------------------------|
| HOLE NO. <u>RP-88-16</u> LENGTH 153.7 METRES         |
| LOCATION PORCUPINE CLAIM - WEST OF CABIN VEIN        |
| LATITUDE                                             |
| ELEVATION 1488.48 AZIMUTH 180° DIP -45°              |
| STARTED OCTOBER 31, 1988 FINISHED NOVEMBER 2"D, 1988 |

| FOOTAGE | DIP   | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|-------|---------|---------|-----|---------|
| 0       | - 45° | 180°    |         |     |         |
| 70.0    | -45°  | _       |         |     |         |
| 107.0   | -46°  |         |         |     |         |
| 150.0   | - 46° | -       |         |     |         |

#### HOLE NO. <u>BP-88-16</u> SHEET NO. <u>1 of 5</u> REMARKS <u>ALL LENGTHS IN</u> METRES

v

LOGGED BY STEVE JENNER

| FOOM                            | TAGE<br>RES | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                             |     |        | SAMP | LE      |       |    | •  | SSAN   | r s    |  |
|---------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|------|---------|-------|----|----|--------|--------|--|
| FROM                            | то          |                                                                                                                                                                                                                                                                                                                                                                                                                         | NO. | SULPH- | FROM | FOOTAGE | TOTAL | 36 | 35 | OZ/TON | OZ/TON |  |
| 0.0                             | 19.20       | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                      |     |        |      |         |       |    |    |        |        |  |
| 19.20                           | a1.70       | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                                     |     |        |      |         |       |    |    |        |        |  |
| 21.70                           | 24.70       | MAROON ANDESITE TUFF, AGGLOMERATE<br>Overall maroon, fragmental, unsorted assemblage w<br>buff blooched rock between 21.80 to 22.05 and<br>between about 22.40 to 22.90; frequent rusty<br>fractures at ~30° to CA in this and previous<br>whit, particularly in blooched areas; limits to unit<br>arbitrary since colour change gradational over<br>0.20 metre                                                         |     |        |      |         |       |    |    |        |        |  |
| LANGRIDGES - TORONTO - 366-1168 | 58.35       | GREEN ANDESITE, ANDESITE TUFF<br>Dark green, fg massive appearing unit that becomes<br>increasingly fragmental and tuffaceous between<br>about 39.50 and 38.35 $\bar{w}$ occasional lapilli-sized<br>fragments in a fg matrix $\bar{w}$ a wkf at 40-50° to CA;<br>random white qtz, qtz-carb stringers throughout<br>most of unit; between 54.15 to 54.18 gritty chloritic<br>mud; pebbly broken core at 56.95 to 57.05 |     |        |      |         |       |    |    |        |        |  |

### NAME OF PROPERTY DOME MOUNTAIN PROPERTY

HOLE NO. RP-88-16 SHEET NO. 2 of 5

| FOO   | TAGE                                           | DECOURTION                                            |     |         | SAMPL | .E            |       |     |   | ASSAYS |        |            |
|-------|------------------------------------------------|-------------------------------------------------------|-----|---------|-------|---------------|-------|-----|---|--------|--------|------------|
| FROM  | то                                             | DESCRIPTION                                           | NO. | % SULPH | FROM  | FOOTAGE<br>TO | TOTAL | 7   | 7 | OZ/TON | OZ/TON |            |
| 24.70 | 58.35                                          | GREEN ANDESITE, ANDESITE TUFF continued               |     |         |       |               |       |     |   |        |        |            |
| ļ     |                                                | Sulphide-rich (py, rarely tr cpy) milky white gtz     |     |         |       |               |       |     |   |        |        |            |
|       |                                                | stringers all £0.02 metres wide at various core       |     |         |       |               |       |     |   |        |        |            |
|       |                                                | angles (10-60° to CA) at 29.95, 32.22, 32.43,         |     |         |       |               |       |     |   |        |        |            |
|       |                                                | 38.04, 48.30 and 49.71                                |     |         |       |               |       |     |   |        |        |            |
|       |                                                | @ 50.53 to 50.71                                      |     |         |       |               |       |     |   |        |        |            |
|       |                                                | Bleached section is minor atz-chl-ser as thin         |     |         |       |               |       |     |   |        |        |            |
|       |                                                | wispy stringers; diffuse limits over 0.02 metre       |     |         |       |               |       |     |   |        |        |            |
|       |                                                | @ 51.32 to 51.81                                      |     |         |       |               |       |     |   |        |        |            |
|       |                                                | Bleached section to minor marcon andesite             |     |         |       |               |       |     |   |        |        |            |
| 58.35 | 65.00                                          | BLEACHED ZONE                                         |     |         |       |               |       |     |   |        |        |            |
|       |                                                | Typical buff-white bleached zone consisting of gtz-   |     |         |       |               |       |     |   |        |        |            |
|       |                                                | carb-ser-clay w minor chl, (usually dark green and    |     |         |       |               |       | ł   |   |        |        | }          |
|       |                                                | hairline fracture filling), epi and locally 1-2% fg   |     |         |       |               |       |     |   |        |        |            |
|       |                                                | diss py; remnant texture: (fragments similar to those |     |         |       |               |       |     |   |        |        |            |
|       |                                                | observed in andesite tuff) and faint relict marcon    |     |         |       |               |       |     |   |        |        |            |
|       |                                                | and green colour indicates that with is an alteration |     |         |       |               |       |     |   |        |        |            |
|       |                                                | zone; numerous tractures often infilled w cal-clay    |     |         |       |               |       |     |   |        |        | <b>e</b> . |
|       | gouge at ~ 10° to CA (local II wht also); 0.03 |                                                       |     |         |       |               |       |     |   |        |        |            |
|       |                                                | 0.02 metre chloritic muse at 65 00                    | l   | 1       |       |               |       |     |   |        |        | [          |
|       |                                                |                                                       |     |         |       |               |       | · · |   |        |        |            |

### NAME OF PROPERTY DOME MOUNTAIN PROPERTY

HOLE NO. RP-88-16 SHEET NO. 3 of 5

| FOO   | TAGE  |                                                                                                                                                                                                                                                                                                                                                                                                             |                      |         | SAMPL                   | _E                      |                      |   |   | ASSAYS               |                         |  |
|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-------------------------|-------------------------|----------------------|---|---|----------------------|-------------------------|--|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                 | NO.                  | % SULPH | FROM                    | FOOTAGE                 | TOTAL                | x | x | 02/201               | OZ TON                  |  |
| 58.35 | 65.00 | BLEACHED ZONE continued                                                                                                                                                                                                                                                                                                                                                                                     | 1187                 | -       | 58.35                   | 59.00                   | 0.65                 |   |   | 0.01                 | 0.001                   |  |
|       |       | e 59.86 to 59.98                                                                                                                                                                                                                                                                                                                                                                                            | 1188                 | -       | 59.00                   | 59.75                   | 0.75                 |   |   | 0.02                 | 0.001                   |  |
|       |       | A 0.02 metre wide atz-carb-py (1-2%, generally                                                                                                                                                                                                                                                                                                                                                              | 1189                 | 1       | 59.75                   | 60,50                   | 0.75                 |   |   | 0.02                 | 0.001                   |  |
|       |       | along contacts) stringer at ~15° to CA;<br>stringer has irregular contacts                                                                                                                                                                                                                                                                                                                                  | 1190                 | -       | 60.50                   | 61.25                   | 0.75                 |   |   | 0.01                 | 0.001                   |  |
|       |       | @ 60.40 to 60.46                                                                                                                                                                                                                                                                                                                                                                                            | 1191<br>1192         | 1       | 62.25                   | 62.25<br>63.10          | 0.85                 |   |   | 0.07                 | 0.001                   |  |
|       |       | A 0.01 metre wide qte-py (1% cubic py EJ along<br>stringer margins) stringer at 20° to CA; immediate<br>(within 0.05 metre) wallrock has 1-2% fg diss py                                                                                                                                                                                                                                                    | 1193<br>1194<br>1195 | 1 1     | 63.10<br>64.00<br>64.70 | 64.00<br>64.70<br>65.00 | 0.90<br>0.70<br>0.30 |   |   | 0.01<br>0.02<br>0.01 | 0.001<br>0.001<br>0.001 |  |
|       |       | <ul> <li>@ 62.33 to 62.88</li> <li>A 0.02 to 0.03 metre wide qtz-carb-py (170 py E7 along stringer margins, tr gal associated w py) stringer at very low core angle (5-10°)</li> <li>@ 63.00 to 63.10</li> <li>Same stringer as between 62.33 to 62.88 cutting across core</li> <li>@ 64.70 to 65.00</li> <li>Increasingly chloritic w a 'swirled' appearance around irregular clots of qtz-carb</li> </ul> |                      |         |                         |                         |                      |   |   | -                    |                         |  |

### NAME OF PROPERTY DOME MOUNTAIN PROPERTY

### HOLE NO. \_ RP-88-16 SHEET NO. \_ 4 of 5

| FOO    | TAGE    |                                                                   |      |         | SAMP  | .E            |       |   |   | ASSAYS |        |   |
|--------|---------|-------------------------------------------------------------------|------|---------|-------|---------------|-------|---|---|--------|--------|---|
| EROM   | то      | DESCRIPTION                                                       | NO.  | % SULPH | FROM  | FOOTAGE<br>TO | TOTAL | 2 | z | OZ/JON | 02 TON |   |
| 65.00  | 88.85   | MAROON ANDESITE TUFF, FRAGMENTAL ANDESITE                         |      |         |       |               |       |   |   |        |        |   |
| 1      | ]       | @ 85.15 to 85.60                                                  |      |         |       |               |       |   |   |        |        |   |
|        |         | Maroon andesite breccia annealled by fg gtz-carb;                 |      |         |       |               |       |   |   |        |        |   |
|        |         | fragments are angular and decrease in size towards                |      |         |       |               |       |   |   |        |        |   |
|        |         | margins of subunit; arbitrary subunit limits                      |      |         |       |               |       |   |   |        |        |   |
| 88.85  | 90.90   | GREEN ANDESITE TUFF                                               | 1196 | _       | 88.25 | 89.00         | 0.75  |   |   | 0.01   | 0.001  |   |
|        |         | C 89.13 to 89.22                                                  | 1197 | 1       | 89.00 | 89.30         | 0.30  |   |   | 0.36   | 0.007  |   |
|        |         | section of gtz-py (3%) is sharp sericitic contacts                | 1198 | -       | 89.30 | 90.00         | 0,70  |   |   | 0.01   | 0.001  |   |
|        |         |                                                                   |      |         |       |               |       |   |   |        |        |   |
| 90.90  | 100.60  | MAROON ANDESITE TUFF                                              |      |         |       |               |       |   |   |        |        |   |
|        |         | @ 96.32 to 96.84                                                  |      |         |       |               |       |   |   |        |        |   |
|        |         | Maroon andesite breccia similar to that between<br>85.15 to 85.60 |      |         |       |               |       |   |   |        |        |   |
| 100.6  | 0112.65 | GREEN ANDESITE, ANDESITE TUFF                                     |      |         |       |               |       |   |   |        |        |   |
| 89     |         | Overall green but w local purplish discolourations,               |      |         |       |               |       | 1 |   |        |        |   |
| 1-005  |         | generally fg to mg w tiny fragments locally;                      |      |         |       |               |       |   |   |        |        |   |
|        |         | appears massive; limits to unit based upon                        | l    |         |       |               |       |   |   |        |        |   |
|        |         | tairly abrupt (over 0.01 metre) colour changes                    |      |         |       |               |       |   |   |        |        | ľ |
| CGES - |         |                                                                   |      |         |       |               |       |   |   |        |        |   |
| ANGRIC |         |                                                                   |      |         |       |               |       |   |   |        |        |   |
| 2      |         |                                                                   | I.   | 1       | I     | 1             | I     | I | 1 | I      | 1      | ł |

NAME OF PROPERTY DOME MOUNTAIN PROPERTY

HOLE NO. RP-88-16 SHEET NO. 5 of 5

| FOO     | TAGE           | DESCRIPTION                                                                                                                                                                       | SAMPLE                |             |                            |                            |                      | ASSAYS   |          |                      |                         |                         |
|---------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|----------------------------|----------------------------|----------------------|----------|----------|----------------------|-------------------------|-------------------------|
| FROM    | то             |                                                                                                                                                                                   | NO.                   | % SULPH     |                            | FOOTAGE                    |                      |          | · .      | 07/700               | 01.70                   |                         |
| 100.60  | 112 (5         | GREEN ANDESITE ANDESITE THEE CONTINUES                                                                                                                                            |                       | IDES        | FROM                       | 10                         | TOTAL                | <u> </u> | <u> </u> | Ag-                  | Au                      |                         |
|         | 112.60         | @ 109.28 to 109.35<br>Qtz stringer at ~60° to CA w attendant bleaching<br>of wallrock, minor py                                                                                   | ) 199<br>1200<br>1201 | <br>++-<br> | 111.00<br>111:75<br>112.05 | )11.75<br>112.05<br>112.65 | 0.75<br>0.30<br>0.60 |          |          | 0.02<br>0.59<br>0.05 | 0.001<br>0.002<br>0.001 |                         |
|         |                | C 111.80 to 111.95<br>Section of gtz is 2% fg py and tr cpy; sharp<br>sericitic contacts; minor fg py in immediate<br>slightly bleached wallrock                                  |                       |             |                            |                            |                      |          |          |                      |                         |                         |
| 112.65  | <b>।२</b> १.34 | MAROON ANDESITE TUFF, AGGLOMERATE<br>@ 120.45 to 120.70<br>Sheared appearing chloritic section w gtz stringers<br>11 to mf at 30° to CA; minor chloritic mud                      | 1202<br>1203<br>1204  |             | 119.75<br>120.45<br>120.70 | 120.45<br>120.70<br>121.50 | 0.70<br>0.25<br>0.70 |          |          | 0.03<br>0.01<br>0.02 | 0.001<br>0.001          |                         |
| 129.34  | 153.66         | GREEN/MAROON ANDESITE<br>@ 129.90 to 130.23<br>Section of gtz-ser-chl w minor carb and 1-270<br>fg Py; ser-chl define mf at 45° to CA; sharp<br>sericitic contacts<br>END OF HOLE | 1205<br>1206<br>1207  |             | 129.34<br>129.90<br>130.23 | 129.90<br>130.23<br>130.80 | 0.56<br>0.33<br>0.57 |          |          | 0.02<br>0.69<br>0.04 | 0,001<br>0,190<br>0,001 | ,                       |
| 1-71.24 | 153.66         | GREEN/MAROON ANDESITE<br>@ 129.90 to 130.23<br>Section of gtz-ser-ch1 w minor carb and 1-270<br>fg Py; ser-ch1 define nf at 45° to CA; shorp<br>sericitic contacts<br>END OF HOLE | 1205                  | 1 -         | 129.34<br>129.90<br>130.23 | 129.90<br>130.23<br>130.80 | 0.56<br>0.33<br>0.57 |          |          | 0.02<br>0.69<br>0.04 |                         | 0,001<br>2.140<br>2.001 |

LANGRIDGES - TORONTO - 366-1168

| NAME OF PROPERTY DOME MOUNTAIN PROJECT             |
|----------------------------------------------------|
| HOLE NO. RP-88-17 LENGTH 128.62 METRES             |
| LOCATION PORCUPINE CLAIM - WEST OF CABIN VEIN      |
| ATITUDE 68871.4 N DEPARTURE 52356.0 E              |
| ELEVATION 1487.00 AZIMUTH 180° DIR -45°            |
| CTARTER NOVENERS 3 1978 SUBJECT NOVEMBER ( 1988    |
| STARTED HOVENDER S, 1186 FINISHED HOVENDER B, 1100 |

| FOOTAGE | DIP   | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|-------|---------|---------|-----|---------|
| 0       | -45°  | 180°    |         |     |         |
| 66.0    | - 45° | -       |         |     |         |
| 128.00  | 8ROKE | т       |         |     |         |
|         |       |         |         |     |         |

#### HOLE NO. RP-88-17 SHEET NO. 101 7

REMARKS <u>AL. LENGTHS IN</u> METRES. HOLE ABANDONED DUE TO IMPASSABLE GROUND.

LOGGED BY STEVE JENNER

| FOO<br>ME                       | TAGE  | GE DESCRIPTION SAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |        | SAMP           | LE       |       | A S S A Y S |   |        |        |  |  |
|---------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------|----------------|----------|-------|-------------|---|--------|--------|--|--|
| FROM                            | то    | besek i Prok                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO.  | SULPH- | FROM           | FOOT AGE | TOTAL | 36          | 3 | OZ/TON | OZ/JON |  |  |
| 0.00                            | 16.15 | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |        |                |          |       |             |   |        |        |  |  |
| 16.15                           | 27.48 | GREEN ANDESITE TUFF<br>Medium to dark green, generally fg and chloritic w<br>infrequent lapilli-sized angular fragments and<br>rarely large (greater than core diameter) andesitic<br>fragments; orientation at ~30° to CA defined by<br>tiny elongated chloritic fragments; occasional fine<br>qtz-cal threads at various CA's; most of core<br>broken into short (±0.10 m) lengths at rusty joint<br>or fracture planes; contact at 27.48 marked by<br>broken core and abrupt start of bleached zone | 1275 |        | 23.00<br>23.45 | 23.45    | 0.45  |             |   |        | 0.001  |  |  |
| LANGRIDGES - TORONTO - 366-1168 |       | © 23.45 to 23.77<br>Yellow-buff bleached zone is fg diss py and white<br>gtz is 17° py at 23.55 to 23.77; limit at 23.45<br>is 11 to mf at 35° to CA and limit at 23.77<br>marked by broken rusty core                                                                                                                                                                                                                                                                                                 | 1277 | _      | 23. 77         | 24.50    | 0.73  |             |   |        | 0.001  |  |  |

### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP- 88-17 SHEET NO. 2 of 7

| FOO    | TAGE  |                                                            |     |       | SAMPL | .E      |       | ASSAYS |   |         |        |   |
|--------|-------|------------------------------------------------------------|-----|-------|-------|---------|-------|--------|---|---------|--------|---|
| 5804   | то    | DESCRIPTION                                                | NO. | SULPH | FROM  | FOOTAGE | TOTAL | 2      | z | .0Z/TON | 0Z/TON |   |
| 16.15  | 27.48 | GREEN ANDESITE TUFF continued                              |     |       |       |         |       |        |   |         |        |   |
|        |       | @ 25.63 to 26.21                                           |     |       |       |         |       |        |   |         |        |   |
|        |       | Barren maroon-white bleached fragmental andesite           |     |       |       |         |       |        |   |         |        |   |
|        |       | $\overline{w}$ patchy earthy rusty discoburations; most of |     |       |       |         |       |        |   |         |        |   |
|        |       | core broken into short (±0.05m) lengths                    |     |       |       |         |       |        |   |         |        |   |
| 27.48  | 29.70 | BLEACHED ZONE                                              |     |       |       |         |       |        |   |         |        |   |
|        |       | Barren marcon-white to buff bleached fragmental to         | ·   |       |       |         | {     |        |   |         |        |   |
|        |       | tuffaceous andesite is infrequent sections of rush         |     |       |       |         | }     |        |   |         |        |   |
|        |       | broken core; limit to whit at 29.70 and time!              |     | 1     |       |         |       |        |   |         |        | [ |
|        |       | over 0.10 metre                                            |     |       |       |         |       |        |   |         |        |   |
|        |       | @ 29.10 to 29.15                                           |     |       |       |         |       |        | ĺ |         |        |   |
|        |       | Irregular section of white gtz is tryy                     |     |       |       |         |       |        |   |         |        |   |
| 29.70  | 32.20 | GREEN ANDESITE TUFF                                        |     |       |       |         |       |        |   |         |        |   |
|        |       | Similar to that between 16.15 to 27.48; crumbly            |     |       |       |         |       |        |   |         | 1      |   |
|        |       | earthy pale green broken core between 30.80 and            |     |       |       |         |       |        |   | 1       |        |   |
| 88     |       | 31.25; limit at 32.20 marked by broken core and            |     |       |       |         |       |        |   |         |        |   |
| 366-11 |       | 0.01 metre silly maroon gouge                              |     |       |       |         |       |        |   |         |        |   |
| 1      |       |                                                            |     |       |       |         | ļ     |        | ļ |         |        |   |
| NOHO   |       |                                                            |     |       |       |         | I     |        |   |         |        | ľ |
|        |       |                                                            |     |       |       |         |       |        |   |         |        |   |
| RIDGE  |       |                                                            |     |       |       |         |       | {      |   |         |        |   |
| LANG   |       |                                                            |     |       |       |         |       |        |   |         | 1      |   |
| 1      | 1     |                                                            | *   | •     | •     |         | -     |        |   |         |        |   |

### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-17 SHEET NO. 3 of 7

| FOO   | TAGE  |                                                                                                                                                                                                                                                                                                                                                                  |     | _       | SAMPL | .E            |       |   |   | ASSAY5 |        |  |
|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------|---------------|-------|---|---|--------|--------|--|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                      | NO. | % SULPH | FROM  | FOOTAGE<br>TO | TOTAL | 7 | 7 | 02/100 | OZ/TON |  |
| 32.20 | 33.51 | MAROON ANDESITE TUFF<br>Overall maroon fg tuff ü maroon to pale green<br>frequent lapilli fragments and less frequent larger<br>andesitic fragments; overall a very gritty granular<br>appearance ü small elongated shard-like fragments<br>defining a orientation at 35-45° to CA; contact<br>at 33.51 marked irregular but sharp start of<br>bleached andesite |     |         |       |               |       |   |   |        |        |  |
| 33.51 | 34.65 | BLEACHED ZONE<br>Barren white-marcon to pale marcon bleached zone<br>w white to buff bapilli to agglomerate-sized lithic<br>fragments; elongation of some fragments defines<br>orientation at 35° to CA                                                                                                                                                          |     |         |       |               |       |   |   |        |        |  |
| 34.65 | 36.67 | GREEN ANDESITE TUFF<br>Typical green lapilli tuff $\bar{w}$ infrequent darker green<br>agglomerate sized lithic fragments; at 35.00<br>about 0.01 metre green gritty gouge; unit is<br>overall a pale green perhaps indicating that some<br>bleaching has occurred; limit at 36.67 gradational<br>over 0.05 metres                                               |     |         |       |               |       |   |   |        |        |  |

IRM 7

### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-17 SHEET NO. 4 of 7

| FOO   | TAGE  |                                                                                                                                                                                                                                                                                                                                                                                |                                                              |         | SAMPI                                                                         | .E                                                                   |                                                              |   |   | ASSAYS |                                                             |  |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|---|---|--------|-------------------------------------------------------------|--|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                    | NO.                                                          | 3 SULPH | FROM                                                                          | FOOTAGE<br>TO                                                        | TOTAL                                                        | z | z | 02/TON | OZ/TON                                                      |  |
| 36.67 | 39.20 | BLEACHED ZONE                                                                                                                                                                                                                                                                                                                                                                  |                                                              |         |                                                                               |                                                                      |                                                              |   |   |        |                                                             |  |
|       |       | Barren maroon-white bleached lapilli tuff ѿ white<br>lapilli unsorted fragments grading to ma≤sive,<br>homogeneous chalky white bleached rock; gradational<br>to pale green andesite over 0.05 metre at 39.20                                                                                                                                                                  |                                                              |         |                                                                               |                                                                      |                                                              |   |   |        |                                                             |  |
| 39.20 | 51.40 | GREEN ANDESITE TUFF<br>Typical pale green to green tuff, lapilli tuff w local<br>orientation at 35-40° to CA; barren bleached rock<br>at 40.50 to 41.10; marcon fragmental tuff w<br>pale green fragments at 43.00 to 44.35; broken<br>core at 45.80 to 46.33 and 46.65 to 47.15;<br>limit at 51.40 gradational over 0.05 metre                                                |                                                              |         |                                                                               |                                                                      |                                                              |   |   |        |                                                             |  |
| 51.40 | 57.32 | BLEACHED ZONE<br>Typical marcon-white to buff bleached fragmental<br>andesite; rare inregular tightly folded isolated gtz<br>stringers present; grades to marcon andesite tuff<br>over 0.20 metre<br>@ 54.65 to 55.55<br>Section of white gtz w minor gray-green sericite<br>and 1% py EI towards 55.55; both contacts<br>sharp, contact at 55.55 II to foliotion at 30° to CA | 1278<br>1279<br>1280<br>1281<br>1282<br>1283<br>1283<br>1285 |         | 51.40<br>52.00<br>53.00<br>53.65<br>54.65<br>54.65<br>55.55<br>56.00<br>56.75 | 52.00<br>53.00<br>53.65<br>54.65<br>55.55<br>56.00<br>56.75<br>57.32 | 0.60<br>1.00<br>0.65<br>1.00<br>0.90<br>0.45<br>0.75<br>0.57 |   |   |        | 0.001<br>0.001<br>0.001<br>0.001<br>0.014<br>0.001<br>0.001 |  |

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-17 SHEET NO. 5 of 7

| FOOT  | TAGE           |                                                                                                                                                                                                                                                                                                                                    | SAMPLE               |            |                         |                         |                      | ASSAYS |   |        |                         |   |
|-------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------|-------------------------|-------------------------|----------------------|--------|---|--------|-------------------------|---|
| FROM  | то             | DESCRIPTION                                                                                                                                                                                                                                                                                                                        | NO.                  | % SULPH    | FROM                    | FOOTAGE<br>TO           | TOTAL                | 2      | x | 02/100 | OZ TON                  |   |
| 57.32 | 68.20          | MAROON ANDESITE TUFF                                                                                                                                                                                                                                                                                                               |                      |            |                         |                         |                      |        |   |        |                         |   |
|       |                | © 61.83 to 62.07<br>Barren bleached andesite                                                                                                                                                                                                                                                                                       |                      |            |                         |                         |                      |        |   |        |                         |   |
|       | 74.95          | GREEN ANDESITE TUFF<br>Typical green andesite tuff, lapilli tuff is rare agglomente<br>sized fragments; patchy marcon coloured tuff locally;<br>at 68.46 to 68.49 white gtz is py and slight<br>bleaching of immediate wallrock; abrupt colour change<br>at 74.95<br>@ 72.10 to 72.50<br>Weak, barren, buff coloured bleached zone | 1286<br>1287<br>1288 | <br>+r<br> | 67.50<br>68.20<br>68.60 | 68.20<br>68.60<br>69.40 | 0.70<br>0.40<br>0.80 |        |   |        | 0.001<br>0.001<br>0.001 |   |
| 74.95 | 76.40<br>77.77 | MAROON ANDESITE TUFF<br>@ 75.28 to 75.42<br>Weak, buff coloured andesite<br>GREEN ANDESITE TUFF<br>Minor potchy bleached andesite throughout unit                                                                                                                                                                                  |                      |            |                         |                         |                      |        |   |        |                         | • |
|       |                |                                                                                                                                                                                                                                                                                                                                    |                      |            |                         |                         |                      |        |   |        |                         |   |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

| FOO   | AGE    |                                                                                                                                                                                                                                                                                                                     |              |         | SAMPL          | _E             |      |   |   | ASSAYS |        |
|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|----------------|----------------|------|---|---|--------|--------|
| 500   |        | DESCRIPTION                                                                                                                                                                                                                                                                                                         | NO.          | % SULPH |                | FOOTAGE        |      | 2 | * | OZ/TON | 02,704 |
| 77.77 | 79.25  | BLEACHED ZONE<br>Weak buff-green to buff bleached zone; between<br>78.75 and 78.94 gray-green silty sericitic gouge;                                                                                                                                                                                                | 1289         | -<br>tr | 77.77          | 78.75          | 0.98 |   |   |        | 0.001  |
|       |        | between 78.94 and 79.25 a couple of irregular<br>gtz stringers w tr py and chl-ser-rich altered rock;<br>contact at 79.25 marked by gtz str at 75° to CA                                                                                                                                                            | 1291         | -       | 79.25          | 80.00          | 0.75 |   |   |        | 0.001  |
| 79.25 | 86.30  | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                 |              |         |                |                |      |   |   |        |        |
|       |        | @ 84.65 to 84.85                                                                                                                                                                                                                                                                                                    | 1292         | -       | 83.75          | 84.45          | 0.70 |   |   |        | 0.001  |
|       |        | About 0.05 metre silty green gouge followed by white<br>gtz tr - 170 mg cubic py; gtz contacts sharp at<br>40° to CA                                                                                                                                                                                                | 1293<br>1294 | +r<br>- | 84.45<br>85.00 | 85.00<br>86.00 | 0.55 |   |   |        | 0.001  |
| 86.30 | 92.3Õ  | MAROON ANDESITE TUFF                                                                                                                                                                                                                                                                                                |              |         |                |                |      |   |   |        |        |
| 92.30 | 126.79 | GREEN/MAROON ANDESITE TUFF<br>Overall fg andesite tuff perhaps in minor flow<br>andesite; subtle diffuse green-maroon colour<br>variations throughout unit but overall green in colour;<br>pyritic qtz stringers usually \$0.02 metre wide and at<br>\$40° to CA at 95.08, 95.33, 75.53, 97.19, 98.61<br>and 110.75 |              |         |                |                |      |   |   |        |        |

FORM 2

NAME OF PROPERTY DOME MOUNTAIN PROJECT

|        |        |                                                                                                            | HOLE NO                      |         |                                      |                                      |                              | SHEET NO. 7 of 7 |   |        |                                  |  |
|--------|--------|------------------------------------------------------------------------------------------------------------|------------------------------|---------|--------------------------------------|--------------------------------------|------------------------------|------------------|---|--------|----------------------------------|--|
| FOO    | TAGE   |                                                                                                            |                              |         | SAMPI                                | .E                                   |                              |                  |   | ASSAYS |                                  |  |
| FROM   | то     | DESCRIPTION                                                                                                | NO.                          | % SULPH | FROM                                 | FOOTAGE                              | TOTAL                        | 1                | * | 02/100 | 07. TON                          |  |
| 93.20  | 126.79 | GREEN/MAROON ANDESITE TUFF                                                                                 |                              |         |                                      |                                      |                              |                  |   |        |                                  |  |
|        |        | @ 113.20 to 114.60<br>Very weak buff cobured bleached zone w dark<br>green chloritic streaks at 40° to CA  | 1295<br>1296<br>1297<br>1298 |         | 112.20<br>113.20<br>114.00<br>114.60 | 113.20<br>114.00<br>114.60<br>115.40 | 1.00<br>0.80<br>0.60<br>0.80 |                  |   |        | 0.001<br>0.001<br>0.001<br>0.001 |  |
| 126.79 | 128.62 | MAROON ANDESITE TUFF                                                                                       |                              |         |                                      |                                      | -<br>-                       |                  |   |        |                                  |  |
|        |        | Between 128.01 to 128.62 Fine marcon-gray mud which<br>could not be drilled past; hole abandoned at 128.62 |                              |         |                                      |                                      |                              |                  |   |        |                                  |  |
|        | 128.62 | END OF HOLE                                                                                                |                              |         |                                      |                                      |                              |                  |   |        |                                  |  |
|        |        |                                                                                                            |                              |         |                                      |                                      |                              |                  |   |        |                                  |  |

-RM 2

----

| NAME OF   | PROPERTY   | DOME   | Moun       | TAIN PROFE  | RTY     |      |
|-----------|------------|--------|------------|-------------|---------|------|
| HOLE NO.  | RP- 88 -   | 18     | LENGTH     | 27.13 MET   | RES     |      |
| LOCATION  | Poraupin   | VE CLA | IM - WES   | T OF CABIN  | J. VEIN |      |
|           | 68672.     | 4 N    |            | F 52360,7   | -       |      |
| ELEVATION | 1487.47    | +      | AZIMUTH _  | 360°        | DIP     | -45° |
| STARTED   | NOVEMBER 7 | 1988   | FINISHED _ | NOVEMBER 8. | 1988    |      |

| FOOTAGE | DIP  | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|------|---------|---------|-----|---------|
| 0       | -45* | 360°    |         |     |         |
| 122.00  | -48° | -       |         |     |         |
|         |      |         |         |     |         |
|         |      |         |         |     |         |

#### HOLE NO. <u>RP-88-18</u>SHEET NO. <u>1075</u> REMARKS <u>ALL LENGTHS IN</u> METRES

LOGGED BY STEVE JENNER

| FOR   | TAGE  | DESCRIPTION                                                                                                                                                                                                        | SAMPLE       |        |                |                |              | ASSAYS |    |              |                |  |
|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------|----------------|----------------|--------------|--------|----|--------------|----------------|--|
| FROM  | то    |                                                                                                                                                                                                                    | NO.          | SUL PH | FROM           | FOOTAGE        | TOTAL        | 35     | 36 | OZ/ZON       | OZATON         |  |
| 0.00  | 6.10  | CASING, OVERBURDEN                                                                                                                                                                                                 |              |        |                |                |              |        |    |              |                |  |
| 6.10  | 31.50 | GREEN ANDESITE TUFF                                                                                                                                                                                                |              |        |                |                |              |        | i. |              |                |  |
|       |       | Typical green, occasionally maroon fg tuff is infrequent<br>lapilli fragments; random gtz-carb threads and<br>stringers throughout; at 16.94 to 17.10 rusty earthy<br>crumbly core; broken core at 20.10 to 20.60; |              |        |                |                |              |        |    |              |                |  |
|       |       | limit at 31.50 arbitrary since a gradational colour change over 0.10 metre                                                                                                                                         | 1241         | -      | 28.40          | 29.10          | 0.70         |        |    | 0.01         | 0.001          |  |
|       |       | @ 29.12 + 29.50                                                                                                                                                                                                    | 1242<br>1243 | +r<br> | 29.10<br>29.50 | 29.50<br>30.20 | 0,40<br>0,70 |        |    | 0.13<br>0.02 | 0.004<br>0.001 |  |
|       |       | Chloritic sheared rock i swirled qtz-chl-ser-carb<br>irregular stringers 11 to schistosity at ~60°<br>to CA; tr py associated i qtz                                                                                |              |        |                |                |              |        |    |              |                |  |
| 31.50 | 44,19 | MAROON ANDESITE TUFF<br>An interval of green andesite from 35.66 to 36.75;<br>sporadic which to mf at ~40° to CA                                                                                                   |              |        |                |                |              |        |    |              |                |  |
NAME OF PROPERTY DOME MOUNTAIN PROPERTY

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HOLE NO                                                              |                                 |                                                                               |                                                                               |                                                                      | SHEET NO. 2 of 5 |   |                                                              |                                                             |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|---|--------------------------------------------------------------|-------------------------------------------------------------|--|--|
| FOOTAGE     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                                 | SAMPL                                                                         | .E                                                                            |                                                                      |                  | • | ASSAYS                                                       |                                                             |  |  |
| FROM TO     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NO.                                                                  | % SULPH                         | FROM                                                                          | FOOTAGE<br>TO                                                                 | TOTAL                                                                | 3                | 3 | 02/A00                                                       | OZ TON                                                      |  |  |
| 44.19 69.50 | GREEN ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |                                 |                                                                               |                                                                               |                                                                      |                  |   |                                                              |                                                             |  |  |
|             | Typical green anderite tuff; between 44.19 and<br>50.00 most of core broken $\bar{w}$ sardy chloritic gauge<br>at 45.64 to 45.76 and minor barren bleaching;<br>final 0.50 metre of whit is very chloritic and<br>broken<br>@ 53.65 to 54.10<br>Buff white bleached rock and gtz stringer at<br>10-20° to CA; stringer hosts minor gal and tr py<br>@ 55.00 to 56.70<br>White gtz vein $\bar{w}$ minor chl-ser and generally<br>barren except for a few isolated 'splothez' of<br>fg gal-py; contact at 55.00 is abrupt and<br>broken but contact at 56.70 at only 15° to<br>CA and this is point where gtz section ends;<br>from 56.00 to 56.70 more sericite but<br>virtually no sulphidez<br>@ 57.00 to 57.67<br>White gtz $\bar{w}$ tr gal-py; both contacts at low CA<br>and may be same gtz section as between<br>55.00 to 56.70 | 1244<br>1245<br>1246<br>1247<br>1248<br>1250<br>1251<br>1252<br>1253 | - + - + - + + - + - + + - + - + | 53.00<br>53.60<br>54.20<br>55.00<br>56.00<br>57.00<br>57.70<br>58.15<br>58.90 | 53.60<br>54.20<br>55.00<br>56.70<br>57.00<br>57.70<br>58.15<br>58.90<br>59.50 | 0.60<br>0.60<br>0.80<br>1.00<br>0.70<br>0.70<br>0.45<br>0.75<br>0.60 |                  |   | 0.02<br>0.07<br>0.02<br>0.01<br>0.05<br>0.35<br>0.05<br>0.01 | 0.003<br>0.004<br>0.004<br>0.001<br>0.001<br>0.003<br>0.003 |  |  |

. . . . .

NAME OF PROPERTY DOME MOUNTAIN PROPERTY

\_ SHEET NO. 3 of 5

HOLE NO. RP-88-18 ASSAYS SAMPLE FOOTAGE DESCRIPTION 2 SULPH FOOTAGE NO. OZ TON ۰. ۰. TOTAL FROM то IDES FROM TO GREEN ANDESITE TUFF continued ... 44.19 69.50 @57.71 to 58.13 0.06 0.001 1254 69.50 71.00 1.50 tr White qtz is tr-1% py (a few specks of cpy); 0.05 0.004 0.80 1255 71.00 71.80 contact at 58.13 at low CA (20°) 0.02 0.003 1256 0.50 71.80 72.30 0.01 0.001 1257 72.30 73.00 0.70 \_ 0.05 0.004 1258 73.00 74.00 1.00 @ 64.68 to 64.80 0.04 0.001 1259 1.00 74.00 75.00 tr Irregular white gtz stringers is masses of py along 0.02 0.001 1260 0.70 75.00 75.70 one side of core 0.12 0.006 1261 75.70 76.25 0.55 0.03 0.001 1262 76.25 77.00 0.75 0.02 0.001 1263 77.00 78.00 1.00 69.50 71.80 BLEACHED ZONE 0.01 0.005 1264 78,00 79.00 1.00 ----Very weak buff-green alteration zone; very little 0.01 0.001 1265 0.75 79.00 79.75 sulphide - rich qtz; arbitrary limits; most of zone 79.75 80.50 0.75 0.05 0.005 1266 is crumbly broken core is poor core recovery 0.03 0.004 80.50 81.40 1267 0.90 0.02 0.012 1268 81.40 82.00 0.60 82.00 82.75 0.75 0.04 0.001 1269 71.80 90.00 GREEN ANDESITE TUFF 0.04 0.001 1270 82.75 83.50 0.75 Typical andesite tuff but a characteristic pale 83.50 84.10 0.07 0.001 1271 0.60 green colour; mf at ~40° to CA throughout 84.10 85.00 0.03 0.001 0.90 1272 \_\_\_\_ most of unit - 366-1168 @ 75.70 to 75.25 LANGRIDGES - TORONTO Swirled irregular gtz-chl-carb-ser is 1% py; sharp contacts essentially 11 to mf of hast rock

# NAME OF PROPERTY DOME MOUNTAIN PROPERTY HOLE NO. RP-88-18 SHEET NO. 4 of 5

|               |         |                                                        |      |         | SAMPL  | Ē     |       |   |   | ASSAYS |        |   |
|---------------|---------|--------------------------------------------------------|------|---------|--------|-------|-------|---|---|--------|--------|---|
| FOO           |         | DESCRIPTION                                            | NO.  | % SULPH | FROM   | TO    | TOTAL | 7 | z | OZ/ZON | OZATON |   |
| FROM<br>71.80 | 90.00   | GREEN ANDESITE TUFF continued                          |      |         |        |       |       |   |   |        |        |   |
|               |         | @ 83.50 to 83.80                                       |      |         |        |       |       |   |   |        |        |   |
|               |         | Section of gtz-carb-chl at apparent low angle          |      |         |        |       |       |   |   |        |        |   |
|               |         | to CA (core too broken to determine angle)             |      |         |        |       |       |   |   |        |        |   |
| 90.00         | 105.75  | GREEN/MAROON ANDESITE TUFF                             |      |         |        |       |       |   |   |        |        |   |
|               |         | Andesite tuff is subtle and diffuse colour variations. |      |         |        |       |       |   |   |        |        |   |
|               |         | very soft, crumbly (to chloritic sand) core from about | l    |         |        |       |       |   |   |        |        |   |
|               |         | 100.00 to 100.60; chloritic gouge (0.03 metre          |      |         |        |       |       |   |   |        |        | Í |
|               |         | wide) at 102.25 and 102.52; limit at 105.75            |      |         |        |       |       |   |   |        |        |   |
|               |         | marked by abrupt colour change                         |      |         |        |       |       |   |   |        |        |   |
| 105.75        | 5109.92 | MAROON ANDESITE TUFF, FRAGMENTAL TUFF                  | 1273 | _       | 112.47 | 13.00 | Ó.53  |   |   | 0.10   | 0.001  |   |
|               |         |                                                        | 1274 | -       | 13.00  | 13.90 | 0.90  |   |   | 0.05   | 0.001  |   |
| 109.93        | 112.47  | GREEN ANDESITE TUFF                                    |      |         |        |       |       |   |   |        |        |   |
| 112.47        | 113.90  | BLEACHED ZONE                                          |      |         |        |       |       |   |   |        |        |   |
| 168           |         | Very weak buff-green alteration; minor ofz in tr py;   | 1    | ł       |        | ļ     |       |   |   |        |        |   |
| - 366-        |         | arbitrary limits since gradational to andesite over    |      |         |        |       |       |   |   |        |        |   |
|               |         | 0.05 metre                                             |      |         |        |       |       |   |   |        |        |   |
| DHOL          |         |                                                        |      |         |        |       |       |   |   |        |        |   |
| CES           |         |                                                        |      |         |        |       |       |   | Ì |        |        |   |
| NGRID         |         |                                                        |      |         |        |       |       |   |   |        |        |   |
| 5             |         |                                                        | 1    | I       | I      | I     | I     | • | I | I      | T      | • |

· · · ·

#### NAME OF PROPERTY DOME MOUNTAIN PROPERTY

HOLE NO. RP-88-18 SHEET NO. 5 of 5

|                            | FOO   | TAGE   |        |          | DESCRIPTION |   |     |         | SAMPL | .Ε      |       |   |   | ASSAYS |                 |   |
|----------------------------|-------|--------|--------|----------|-------------|---|-----|---------|-------|---------|-------|---|---|--------|-----------------|---|
|                            | FROM  | то     |        |          |             | • | NO. | % SULPH | FROM  | FOOTAGE | TOTAL | 2 | 2 | OZ/TON | 02/ <b>TO</b> N |   |
| h                          | 13.90 | 127.13 | MAROON | ANDESITE | TUFF        |   |     |         |       |         |       |   |   |        |                 |   |
|                            | -     | 127.13 | END OF | HOLE     |             |   |     |         |       |         |       |   |   |        |                 |   |
|                            |       |        |        |          |             |   |     |         |       |         |       |   |   |        |                 |   |
|                            |       |        |        |          |             |   |     |         |       |         |       |   |   |        |                 | • |
|                            |       |        |        |          |             |   |     |         |       |         |       |   |   |        |                 | i |
| 8                          |       |        |        |          |             |   |     |         |       |         |       |   |   |        |                 |   |
| RIDGES - TORONTO - 366-116 |       |        |        |          |             |   |     |         |       |         |       |   |   |        |                 | • |
| LANG                       |       |        |        |          |             |   |     |         |       |         |       |   |   |        |                 |   |

| NAME OF  | PROPERTY DOME MOUNTAIN PROJECT             |
|----------|--------------------------------------------|
| HOLE NO  | RP-88-19 LENGTH 150.30 METRES              |
| LOCATION | PORCUPINE CLAIM-WEST OF CABIN VEIN         |
|          | 68634.5 N DEPARTURE 52358.0 E              |
| ELEVATIO | N 1488.30 AZIMUTH 360° DIP -45°            |
| STARTED  | NOVEMBER 8, 1988 FINISHED NOVEMBER 9, 1988 |

| FOOTAGE | DIP   | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|-------|---------|---------|-----|---------|
| 0       | -45°  | 360°    |         |     |         |
| 49.70   | -47°  | 1       |         |     |         |
| 114.30  | -45°  | -       |         |     |         |
| 150.30  | - 45° | -       |         |     |         |

HOLE NO. RP- 88-19 SHEET NO. Lof 5

REMARKS <u>ALL LENGTHS IN</u> METRES

LOGGED BY STEVE JENNER

| FOO                             | OOTAGE<br>METRES DESCRIPTION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |         | SAMP | LE      |       | ASSAYS |   |        |        |  |  |
|---------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|------|---------|-------|--------|---|--------|--------|--|--|
| FROM                            | то                           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO. | SUL PH- | FROM | FOOTAGE | TOTAL | 35     | × | OZ/TON | OZ/TON |  |  |
| 0.00                            | 10.00                        | CASING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |      |         |       |        |   |        |        |  |  |
| 0.00                            | 7.28                         | OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |      |         |       |        |   |        |        |  |  |
| 7.28                            | 50.70                        | GREEN/MAROON ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |      |         |       |        |   |        |        |  |  |
| LANGRIDGES – TORONTO – 366-1168 |                              | Overall greenish and chloritic but i subtle colour<br>variations i marcon sections being generally mg bpilli<br>tuff and green sections being fg tuff; a few low<br>angle fractures is red earthy mud between 7.28 and<br>about 21.00; unit is massive appearing infrequent<br>random qtz-cal threads and stringers throughout; limit<br>to unit at 50.70 marked by start of purplish-buff<br>bleached zone at low CA (~25°)<br>@ 43.48 to 43.82<br>Section of coarse calcite crystals (rhombs)<br>@ 44.19 to 45.41<br>Section of pebbly broken core is silly chloritic mud;<br>core recovery is 0.99/1.22×100 = 817. |     |         |      |         |       |        |   |        |        |  |  |

'ORM 1

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-19 SHEET NO. 2 of 5

| FOO            | TAGE  |                                                        |       |         | SAMPL | .E            |       |   |   | ASSAYS |        |    |
|----------------|-------|--------------------------------------------------------|-------|---------|-------|---------------|-------|---|---|--------|--------|----|
| FROM           | то    |                                                        | NO.   | 3 SULPH | FROM  | FOOTAGE<br>TO | TOTAL | 2 | z | 02/TON | OZ TON |    |
| 7.28           | 50.70 | GREEN/MAROON ANDESITE TUFF continued                   |       |         |       |               |       |   |   | 5      |        |    |
|                |       | @ 48.98 to 49.09                                       | 12.08 | -       | 50.70 | 51.50         | 0.80  |   |   | 0.03   | 0.001  |    |
|                |       | Irregular zone of marcon-buff alteration associated    | 1210  | 2       | 52.28 | 53.00         | 0.70  |   |   | 0.41   | 0.014  |    |
|                |       | w a few random gtz-cal stringers; irregular limits     | 1211  | tr      | 53.00 | 54.00         | 1.00  |   |   | 0.18   | 0.027  |    |
| [              |       |                                                        | 1212  | -       | 54.00 | 55.00         | 1.00  |   |   | 0.01   | 0.001  |    |
| 50.70          | 53.00 | BLEACHEN ZONE                                          | 1213  | -       | 55.00 | 55,75         | 0.75  |   |   | 0.01   | 0.001  |    |
|                |       |                                                        | 1214  | _       | 55.75 | 56.15         | 0.40  |   |   | 0.02   | 0.001  |    |
|                |       | alteration is reindom biff the interval                | 1216  |         | 56.15 | 56,50         | 0.35  |   |   | 0.06   | 0.001  |    |
|                |       | grading to chalky, buff coloured rack also local       | 1217  | +r      | 57.30 | 58.00         | 0.70  |   |   | 0.03   | 0.001  |    |
|                |       | buff-green bleaching w tr fg py; arbitrary limits      | 1218  | _       | 58.00 | 59.00         | 1.00  |   | 1 | 0.01   | 0.001  |    |
|                |       | to zone                                                |       |         |       |               |       |   |   |        | l      |    |
|                |       | @ 52.28 to 52.40                                       |       |         |       |               |       |   |   |        |        |    |
|                |       | Section of white of TO 107 F                           |       |         |       |               |       |   |   |        |        | 1  |
|                |       | fg gal; muddy contacts                                 |       |         |       |               |       |   |   |        |        |    |
|                |       | @ 52.78 to 52.85                                       |       |         |       |               |       |   |   |        |        |    |
|                |       | Section of white qtz = 15% py and tr gal               |       |         |       |               |       |   |   |        |        |    |
| 53 <i>.0</i> 0 | 56.15 | GREEN ANDESITE TUFF                                    |       |         |       |               |       |   |   |        |        |    |
|                |       | Between 53.00 and about 54.40 unit is fg w a           |       |         |       |               |       |   |   |        |        |    |
|                |       | very fine schistosity at 65-70° to CA; pasty leucoxene | 1     |         |       |               |       |   |   |        |        | ]. |
|                |       | present; pale green colour is distinctive              |       |         |       |               |       |   |   |        |        |    |
|                |       |                                                        | ł     |         |       |               |       | ļ |   |        |        |    |
| 5              |       |                                                        |       |         |       |               |       |   |   |        |        |    |

### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_\_\_\_\_\_\_ SHEET NO. \_\_\_\_\_\_ SHEET NO. \_\_\_\_\_\_

| EOC   | TAGE    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         | SAMPL | .E      |       |     |   | ASSAYS |        |   |
|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------|---------|-------|-----|---|--------|--------|---|
|       | 1 70    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO. | % SULPH | FROM  | FOOTAGE | TOTAL | 2   | 2 | OZ/TON | OZ/TON |   |
| FROM  | 1       | Carry Automa Turs and and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |         |       |         |       |     |   |        |        |   |
| 53.00 | 56.15   | GREEN ANDESITE TUFF continued                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |         |       |         |       |     |   |        |        |   |
|       |         | Between about 54.40 and 56.15 more typical green                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |         |       |         |       |     |   |        |        |   |
|       |         | fy to my tutt, lapilli tutt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |         |       |         |       | · · |   |        |        |   |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |       |         |       |     |   |        |        |   |
|       |         | @ 53.95 to 53.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ļ   |         |       |         |       |     |   |        |        |   |
|       |         | White atz w 3% fa py                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |         | {     |         |       |     |   |        |        |   |
|       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |       |         |       |     |   |        |        |   |
| 56,15 | 56.50   | BLEACHED ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   |         |       |         |       |     |   |        |        |   |
|       |         | Buff-green bleached andesite: relict tuffaceous frament                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | 1       |       |         |       |     |   |        |        | ļ |
|       |         | still visible; limit at 56.15 gradational over 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ]   |         |       |         |       |     | 1 |        |        |   |
|       |         | metre; sharp contact at 56.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1   |         |       |         |       |     |   |        |        |   |
| 1     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | Į       |       |         |       |     |   |        |        |   |
| 56.50 | 57.30   | QUARTZ - SWAHING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1       |       |         |       |     |   |        |        | ł |
|       |         | Milky white at a to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |         |       |         |       |     |   |        |        |   |
|       |         | subbidge (and 2 ) is a sericite and 2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1   | Ì       |       |         |       |     |   |        |        |   |
| ļ     |         | contacts ( sublider 1:11 ) ) is sharp distinct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |       |         |       |     |   |        |        |   |
|       |         | section: most of case have a line in the intervention of the line in the line in the line is the line |     |         |       |         |       |     |   |        |        |   |
|       |         | sort lengths                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |         | [     |         |       |     |   |        |        |   |
| 57.30 | 0109.35 | GREEN ANDESHE TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |         |       |         |       | {   | { |        |        |   |
| 168   |         | Typical for to ma tuff, lapilli tuff is a with locally at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     | ļ       |       |         |       |     |   |        |        | 1 |
| 366-  |         | 60° to CA: a few marrow coburged sections - 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 1       |       |         |       | 1   |   | ļ      |        |   |
| 2     |         | limits and these are at 85.85 to 87 50 given i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |         |       |         |       |     |   |        |        | 1 |
| ORO   |         | 91.50 and 99.00 to 101 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1   |         |       |         |       |     |   |        |        | • |
| 1-5   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |       |         |       |     |   |        |        |   |
| IDGE  |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |         |       |         |       |     |   |        |        |   |
| ANG   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1   |         |       |         |       | 1   |   |        |        |   |
| -     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ł       | 1     | 1       | I     | 1   | 1 | 1      | I      | I |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-19 SHEET NO. 4 of 5

| FOO            | TAGE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                             |                                                | SAMPL                                                                                                                                                                                    | .E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                       |   |   | ASSAYS                                                                                                                       |                                                                                                                                                       |  |
|----------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---|---|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| FROM           | то     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NO.                                                                                                                         | % SULPH                                        | FROM                                                                                                                                                                                     | FOOTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOTAL                                                                                                                                 | * | x | OZATON                                                                                                                       | 02/TON                                                                                                                                                |  |
| 109.35         | 122.60 | Bleached Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                             |                                                |                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                       |   |   |                                                                                                                              |                                                                                                                                                       |  |
| FROM<br>109.35 | 122.60 | BLEACHED ZONE<br>Typical buff-gray to buff-white, dull, earthy appearing<br>alteration zone w an intervening pale buff green<br>section between 112.50 to 116.00; 0.01 metre sendy<br>gray-white gouge at 116.05 to 116.08; broken crumbly<br>core w sandy gouge at ~116.80 to 17.35 and also<br>at ~118.35 to ~119.00<br>@ 112.88 to 113.00<br>Trregular section of gtz w 270 py, gal, cpy (a few<br>similar irregular stringers follow between 113.00 to<br>113.50)<br>@ 120.50 to 121.25<br>Qtz stringer (0.01-0.03 metre wide) w 170 py<br>and tr gal traces along CA | NO.<br>1219<br>1220<br>1221<br>1222<br>1223<br>1224<br>1225<br>1225<br>1225<br>1225<br>1225<br>1223<br>1233<br>1233<br>1234 | * SULPH<br>10E5 - ++ ++ ++ ++ ++ ++ ++ ++ ++ + | FROM<br>109,35<br>110,10<br>111,00<br>112,00<br>112,85<br>113,50<br>114,50<br>114,50<br>115,50<br>115,50<br>116,00<br>117,00<br>117,00<br>117,00<br>120,00<br>120,00<br>121,25<br>122,00 | 110.10<br>111.00<br>112.00<br>112.85<br>113.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>115.50<br>114.50<br>115.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50<br>114.50 | 107AL<br>0.75<br>0.90<br>1.00<br>0.85<br>0.65<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>0.50<br>0.75<br>0.75<br>0.60 | 2 | * | 0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.03<br>0.01<br>0.03<br>0.03<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05 | 0.001<br>0.003<br>0.003<br>0.001<br>0.037<br>0.001<br>0.037<br>0.001<br>0.002<br>0.001<br>0.005<br>0.001<br>0.005<br>0.001<br>0.005<br>0.001<br>0.005 |  |
|                |        | @ 122.00 to 122.50<br>Qtz stringer (0.01 metre wide) is tr-190 fg py<br>traces along CA; small tight drag folds present                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1235<br>1236<br>1237                                                                                                        |                                                | 122.60<br>123.25<br>124.00                                                                                                                                                               | 123.25<br>124.00<br>125.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.65                                                                                                                                  |   |   | 0.01                                                                                                                         | 0.001<br>0.001<br>0.001                                                                                                                               |  |

LANGRIDGES - TORONTO - 366-1168

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-19 SHEET NO. 5 of 5

| FOOTAGE |        | DESCRIPTION                                                                                                                                                                           |                      |         | SAMPLE                     |                            |                      |   | ASSAYS |                      |                         |   |  |
|---------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|----------------------------|----------------------------|----------------------|---|--------|----------------------|-------------------------|---|--|
| FROM    | то     | DESCRIPTION                                                                                                                                                                           | NO.                  | % SULPH | FROM                       | FOOTAGE                    | TOTAL                | 2 | x      | 02 ATON              | OZATON                  |   |  |
| 122.60  | 150.3  | GREEN ANDESITE TUFF, FRAGMENTAL TUFF                                                                                                                                                  |                      |         |                            |                            |                      |   |        | <u></u>              |                         |   |  |
|         |        | Typical fg tuff; very taint foliation (?) at 40-60°<br>to CA; a few random gtz-cal threads throughout<br>writ; maroon coloured sections from 136.00 to 138.00<br>and 141.00 to 147.25 | 1238<br>1239<br>1240 | - 2 -   | 130.00<br>130.62<br>131.62 | 130.62<br>131.62<br>132.25 | 0.62<br>1.00<br>0.63 |   |        | 0.01<br>0.42<br>0.03 | 0.001<br>0.012<br>0.001 |   |  |
|         |        | @ 123.88 to 123.95<br>Vuggy pitted broken gtz w tr-1% fg py; immediate<br>wallrock is bleached                                                                                        |                      |         |                            |                            |                      |   |        |                      |                         |   |  |
|         |        | @ 125.27 to 125.32<br>Sandy chloritic gouge<br>@ 130.64 to 131.62<br>Complex zone of swirled drag falled in the                                                                       |                      |         |                            |                            |                      |   |        |                      |                         |   |  |
|         |        | mineralization w 2% py and gal (% py 2 % gal);<br>both contacts fairly sharp                                                                                                          |                      |         |                            |                            |                      |   |        |                      |                         |   |  |
|         | 150.30 | END OF HOLE                                                                                                                                                                           |                      |         |                            |                            |                      |   |        |                      |                         | • |  |

LANGRIDGES - TORONTO - 366-1168

| NAME OF PROPERTY DOME MOUNTAIN PROJECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| HOLE NO. RP-88-20 LENGTH 125.27 METRES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| LOCATION PORCUPINE CLAIM- WEST OF CABIN VEIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| $\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$ |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u> |
| ELEVATION 1007.14 AZIMUTH 500 DIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2        |
| STARTED NOVEMBER 10, 1988 FINISHED NOVEMBER 11, 1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |

| FOOTAGE | DIP   | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|-------|---------|---------|-----|---------|
| 0       | -45°  | 360°    |         |     |         |
| 45.70   | -46.5 | -       |         |     |         |
| 125.00  | NO    | GOOD    |         |     |         |
|         |       |         |         |     |         |

#### HOLE NO. <u>BP-38-2</u>0sheet no. <u>Lof 3</u> REMARKS <u>ALL LENXETHS IN</u> METRES

LOGGED BY STEVE JENNER

| FOO   | TAGE  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         | SAMP                    | LE                      |                      |    |   | S S A ' | rs                   |  |
|-------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-------------------------|-------------------------|----------------------|----|---|---------|----------------------|--|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NO.                  | SUL PH- | FROM                    | FOOTAGE                 | TOTAL                | 76 | × | OZ/TON  | OZ/TON               |  |
| 0.00  | 7.01  | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |         |                         |                         |                      |    |   |         |                      |  |
| 7.01  | 46.33 | GREEN/MARCON ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         |                         |                         |                      |    |   |         |                      |  |
| 46.33 | 58.60 | MAROON ANDESITE AGGLOMERATE, TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |         |                         |                         |                      |    |   |         |                      |  |
| 58.6C | 69.42 | GREEN/MAROON ANDESITE TUFF                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |         |                         |                         |                      |    |   |         |                      |  |
| 69.42 | 97.10 | MAROON ANDESITE TUFF, AGGLOMERATE<br>Brick red to moroon coarse lapilli tuff to a fg<br>groundmass; occasional agglomeritic sections to<br>subangular lithic fragments; a few random gtz threads<br>typically along joint surfaces; a few intervening fg<br>green sections of leucoxene andesite tuff (?) and<br>these are at 73.47 to 73.85 and 80.59 to 81.18<br>@ 78.62 to 78.95<br>Barren milky white gtz from 78.62 to 78.79 followed<br>by green, epidote-rich andesite | 1299<br>1300<br>1301 |         | 78.00<br>78.62<br>78.95 | 78.62<br>78.95<br>80.00 | 0.62<br>0.33<br>1.05 |    |   |         | 0.81<br>0.81<br>0.81 |  |

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_ RP-88-20\_\_\_\_\_ SHEET NO. \_ 2 of 3

| FOO    | TAGE   |                                                                                                                                                                                                                                                                                                       |                                      |         | SAMPL                                       | .Е                                 |                                      |   |   | ASSAYS |                                  |   |
|--------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------|---------------------------------------------|------------------------------------|--------------------------------------|---|---|--------|----------------------------------|---|
| FROM   | то     | DESCRIPTION                                                                                                                                                                                                                                                                                           | NO.                                  | % SULPH | FROM                                        | FOOTAGE<br>TO                      | TOTAL                                | z | 2 | 02/100 | OZ TON                           |   |
| 69.42  | 97.10  | MAROON ANDESITE TUFF, AGGLOMERATE continued<br>@ 92.55 to 93.65                                                                                                                                                                                                                                       |                                      |         |                                             |                                    | 1                                    |   | - |        |                                  |   |
|        |        | Green, fg leucoxene andesite tuff (?); limits diffuse<br>over 0.05 metre; minor gtz at 93.17 to 93.22                                                                                                                                                                                                 |                                      |         |                                             |                                    |                                      |   |   |        |                                  |   |
| 97.10  | 101.60 | GREEN ANDESITE TUFF<br>Medium green, fg, leucoxene andesite tuff $\overline{w}$ chloritic<br>streaks defining an orientation at ~70° to CA; a<br>few white gtz-cal threads at random CA's; contact<br>at 97.10 sharp and marked by chloritic slip at<br>70° to CA, limit at 101.60 diffuse over 0.10m | 1302<br>1303<br>1304<br>1305<br>1306 |         | 97.10<br>98.00<br>99.00<br>100.00<br>101.00 | 98.00<br>99.00<br>100.00<br>101.00 | 0.90<br>1.00<br>1.00<br>1.00<br>0.60 |   |   |        | 0.001<br>0.001<br>0.001<br>0.001 |   |
| 101.60 | 112.75 | MAROON ANDESITE TUFF, AGGLOMERATE                                                                                                                                                                                                                                                                     |                                      |         |                                             |                                    |                                      |   |   |        |                                  |   |
| 112.75 | 121.95 | GREEN ANDESITE TUFF<br>Medium green, fg w rare shard-like lapilli-sized frogments<br>andesite tuff; limit at 112.75 gradational over<br>0.05 metre, limit at 121.95 marked by frocture<br>@113.22 to 113.34<br>Swirled white gtz stringer hosted in chloritic rock;<br>tr fg py in gtz and chl        | 1307<br>1308<br>1 <i>30</i> 9        |         | 112.75<br>113.15<br>113.45                  | 113.15<br>113.45<br>114.00         | 0.40<br>0.30<br>0.55                 |   |   |        | 0.001<br>0.022<br>8.006          | Ø |
| ś      |        |                                                                                                                                                                                                                                                                                                       |                                      |         |                                             |                                    |                                      | 1 |   |        |                                  | ŀ |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_ RP-88-20\_\_\_\_\_ SHEET NO. \_ 3 of 3\_\_\_\_\_

| FOO    | TAGE    |                                                     |              |           | SAMPL            | E                |              | ASSAYS |   |        |                |   |  |
|--------|---------|-----------------------------------------------------|--------------|-----------|------------------|------------------|--------------|--------|---|--------|----------------|---|--|
| FROM   | то      | DESCRIPTION                                         | NO.          | % SULPH   | FROM             | FOOTAGE<br>TO    | TOTAL        | 2      | 3 | OZ/TON | OZ TON         |   |  |
| 112.75 | 121.95  | GREEN ANDESITE TUFF continued                       |              |           |                  |                  |              |        |   |        |                |   |  |
|        |         | @ 120.55 to 121.05                                  | 1310         | -         | 120.00           | 120.55           | 0.55         |        |   |        | 0.001          |   |  |
|        |         | Massive white atz w 1% py as irregular "splotches"; | 1311         | 1         | 120.55           | 121.05           | 0.50         |        |   |        | 0.004          |   |  |
|        |         | both contacts at ~80° to CA; tr cpy present         | 1312<br>1313 | tr<br>  _ | 121.05<br>121.53 | 121.53<br>121.95 | 0.48<br>0.42 |        |   |        | 0.012<br>0.001 |   |  |
|        | ļ       | @ 121.05 to 121.44                                  |              |           |                  |                  | 1            |        |   |        |                |   |  |
|        |         | Green and esite tuff is 5% parallel regular spaced  |              |           |                  |                  |              |        |   |        |                |   |  |
|        |         | gtz threads; tr fg py present in host rock          |              |           |                  |                  |              |        |   |        |                |   |  |
|        |         | @ 121.44 to 121.53                                  |              |           |                  |                  |              |        |   |        |                |   |  |
|        |         | Same as 120.55 to 121.05                            |              |           |                  |                  |              |        |   |        |                |   |  |
|        |         |                                                     |              |           |                  |                  |              |        |   |        |                |   |  |
| 121.95 | 5125.27 | MAROON ANDESITE TUFF                                |              |           |                  |                  |              |        |   |        |                |   |  |
|        | 125.27  | END OF HOLE                                         |              |           |                  |                  |              |        |   |        |                |   |  |
| 2      |         |                                                     |              |           |                  |                  |              |        |   |        |                |   |  |
|        |         |                                                     |              |           |                  |                  |              |        |   |        |                |   |  |
|        |         |                                                     |              |           |                  |                  |              |        |   |        |                | • |  |
| 1 000  |         |                                                     |              |           |                  |                  |              |        |   |        |                |   |  |
| 2      |         |                                                     |              |           |                  |                  |              |        |   |        |                |   |  |

| NAME OF PROPERTY DOME MOUNTAIN PROJECT               |
|------------------------------------------------------|
| HOLE NO. RP-88-21 LENGTH 91.46 METRES                |
| LOCATION ELK SHOWING - TRIANGLE FR. M.C. 12901       |
| LATITUDE LIOHATON APPROX DEPARTURE 198199 E APPROX   |
| ELEVATION STN 272 LESS 10.08 m AZIMUTH 360° DIP45°   |
| STARTED NOVEMBER 11, 1988 FINISHED NOVEMBER 12, 1988 |

| FOOTAGE | DIP    | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|--------|---------|---------|-----|---------|
| 0       | -45°   | 360°    |         |     |         |
| 45.73   | ~ 44°  | -       |         |     |         |
| 91.46   | -42.5° | _       |         |     |         |
|         |        |         |         |     |         |

#### HOLE NO. <u>RP-88-2</u>] SHEET NO. <u>LOF2</u> REMARKS <u>ALL LENGTHS IN</u> METRES

LOGGED BY STEVE JENNER

| FOO                             | TAGE  |                                                                                                                                                                                                                             |                      |         | SAMP                      | LE                      |                      |    |   | SSAI                    | 15     |  |
|---------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|---------------------------|-------------------------|----------------------|----|---|-------------------------|--------|--|
| FROM                            | то    | DESCRIPTION                                                                                                                                                                                                                 | NO.                  | SUL PH- | FROM                      | FOOTAGE                 |                      | 75 | × | OZ/TON                  | oz/ton |  |
| 0.00                            | 3.05  | CASING, OVERBURDEN                                                                                                                                                                                                          |                      |         |                           |                         |                      |    |   |                         |        |  |
| 3.05                            | 91.46 | MAROON ANDESITE AGGLOMERATE, TUFF<br>Chaotic assemblage of bpilli to agglomerate sized<br>subangular lithic fragments in a fg to cg granulor<br>groundmass                                                                  |                      |         |                           |                         |                      |    |   |                         |        |  |
|                                 |       | © 11.10 to 11.50<br>Barren maroon-buff bleached zone w a few random<br>rusty fractures<br>© 38.08 to 38.62                                                                                                                  | 1314<br>1315<br>1316 |         | 10.50<br>11. 10<br>11. 50 | 11-10<br>11.50<br>12.25 | 0.60<br>0.40<br>0.75 |    |   | 0.001<br>0.001<br>0.001 |        |  |
| LANGRIDGES - TORONTO - 366-1168 |       | Barren marcon-buff bleached zone w pale green-yellow<br>ser-chl (?) as a convoluted, swirled texture<br>@ 38.62 to 40.25<br>Sheared appearing marcon andesite lapilli tuff w a<br>irregular schistosity averaging 30° to CA |                      |         |                           |                         |                      |    |   |                         |        |  |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

|      |       |                                                                                          | н            | OLE N   | 0. <u>RP-</u>  | 88-21          | ۱     | SHE | ET NO. | 22     | è 2                     |   |
|------|-------|------------------------------------------------------------------------------------------|--------------|---------|----------------|----------------|-------|-----|--------|--------|-------------------------|---|
| FOO  | TAGE  |                                                                                          |              |         | SAMPI          | E              |       |     |        | ASSAYS |                         |   |
| FROM | то    | DESCRIPTION                                                                              | NO.          | 3 SULPH | FROM           | FOOTAGE        | TOTAL | z   | r      | OZ/TON | OZATON                  |   |
| 3.05 | 91.46 | MAROON ANDESITE AGGLOMERATE, TUFF continued                                              |              |         |                |                |       |     |        |        |                         |   |
|      |       | @ 40.25 to 40.97                                                                         |              |         |                |                |       |     |        |        |                         |   |
|      |       | Barren maroon-green-buff coloured bleached zone w                                        | 1317         |         | 38.08          | 38.62          | 0.54  | ĺ   |        |        | 0.00Z                   |   |
|      |       | abrupt limits                                                                            | 1318         | -       | 38.62          | 39.50          | 0.88  |     |        |        | 0.001                   |   |
|      |       | @ 50.53 to 51.06                                                                         | 1319         | -       | 39.50<br>40.25 | 40.25<br>40.97 | 0.72  |     |        |        | 0.026                   |   |
|      |       | Barren red-green-buff coloured bleached zone w<br>diffuse limits over 0.05 metre         |              |         |                |                |       |     |        |        |                         |   |
|      | -     | @ 52.00 to 52.55                                                                         |              |         | 1              |                |       |     |        |        |                         |   |
|      |       | Green andesite tuff                                                                      | 1321         | -       | 50.53          | 51.06          | 0.53  |     | -      |        | 0.001                   |   |
|      |       | @ 52.55 to 53.40                                                                         | 1322         |         | 51.06          | 52.00          | 0.94  | 4   |        |        | 0.003                   |   |
|      |       | Green andesite is a single 0.01-0.02 metre wide<br>atz stringer running down core avis i | 1324<br>1325 | 1       | 52.55<br>53 40 | 53.40<br>54.00 | 0.85  |     |        |        | 0.001<br>0.010<br>0.001 |   |
|      |       | cubic py in stringer, also some cpy splotches                                            | 1326         | -       | 54.00          | 55.00          | 1.00  |     |        |        | 0.001                   |   |
|      |       | @ 55.60 to 56.10                                                                         | 1328         | -       | 55.60<br>55.60 | 55.60          | 0.50  |     |        |        | 0.005                   |   |
|      |       | Buff sericitic rock is a single 0.01 metre wide<br>ate-py stringer rupping               | 1329         | -       | 56.10          | 56.39          | 0.29  |     |        |        | 0001                    |   |
|      | 91.46 | END OF HOLE                                                                              |              |         |                |                |       |     |        |        |                         | • |

LANGRIDGES - TORONTO - 366-1168

NAME OF PROPERTY DOME MOUNTAIN PROSECT HOLE NO. <u>RP-88-22</u> LENGTH <u>152,44 METRES</u> LOCATION <u>0.0 TO 68.0 METRES ON NO1 MC. L2908; REST ON TRANSLE FR 12901</u> LATITUDE <u>LIOX+35N APPROX</u> DEPARTURE <u>L98+71E APPROX</u> ELEVATION <u>STN 272 LESS 8.96 m</u> AZIMUTH <u>360°</u> DIP <u>-45°</u> STARTED <u>NOVEMBER 12, 1988</u> FINISHED <u>NOVEMBER 13, 1988</u>

| FOOTAGE | DIP   | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|-------|---------|---------|-----|---------|
| 0       | -45°  | 360°    |         |     |         |
| NO      | TESTS | FOUND   |         |     |         |
|         |       |         |         |     |         |
|         |       |         |         |     |         |

HOLE NO. <u>KP-88-2</u>2 SHEET NO. <u>LOF-3</u> REMARKS <u>ALL LENGTHS IN</u> METRES

LOGGED BY STEVE JENNER

| FROM     TO       0.00     18.29       CASING, OVERBURDEN       18.29       89.35       MAROON ANDESITE TUFF, AGQLOMERATE       Maroon to brick red, mg to cg granular tuff w       frequent lapilli to agglomerate circed lithic fragments;       fragments elongated 11 to orientation at 50° to cA       throughout most of unit.       @ 43.75 to 43.87       Green, fg andesitic tuff (?)       @ 44.90 to 45.95                     | DZ/TON OZ/TON              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 0.00 18.29 CASING, OVERBURDEN<br>18.29 89.35 MAROON ANDESITE TUFF, AGALOMERATE<br>Maroon to brick red, mg to cg granular tuff w<br>frequent lapilli to aggiomerate sized lithic fragments;<br>fragments elongated 11 to orientation at 50° to cA<br>throughout most of unit<br>@ 43.75 to 43.87<br>Green, fg andesitic tuff (?)<br>@ 44.90 to 45.95<br>1330 - 44.00 44.90 0.90<br>1331 - 44.00 45.30 0.40<br>1332 - 45.30 45.95 0.65      | Au                         |
| <ul> <li>18.29 89.35 MAROON ANDESITE TUFF, AGALOMERATE</li> <li>Maroon to brick red, mg to cg granular tuff willing frequent lapilling to agylomerate sized lithic fragments; fragments elongated 11 to orientation at 50° to cA throughout most of unit.</li> <li>@ 43.75 to 43.87 Green, fg andesitic tuff (?)</li> <li>@ 44.90 to 45.95</li> <li>1330 - 44.00 44.90 0.90 (1331 - 44.90 45.30 0.40 (1332 - 45.30 45.95 0.65)</li> </ul> |                            |
| Green, fg andesitic tuff (?) w a section of barren<br>white qtz w dhl-ser at 45.02 to 45.19<br>@ 52.07 to 52.20<br>Barren maroon-buff bleached zone<br>@ 52.32 to 52.72<br>Barren maroon-buff bleached zone w 0.01 metre gouge<br>at 52.32                                                                                                                                                                                                | 0.00 J<br>0.00 J<br>0.00 J |

FORM I

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-22 SHEET NO. 2 of 3

| F00                             | TAGE  | DECORIDATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |         | SAMPI                                                                | -E                                                                   |                                                      |   |   | ASSAYS |                                                                      |       |
|---------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------|---|---|--------|----------------------------------------------------------------------|-------|
| FROM                            | то    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO.                                                                          | % SULPH | FROM                                                                 | FOOTAGE                                                              | TOTAL                                                | 2 | z | OZ/TOW | OZ TON                                                               |       |
| 89.35                           | 93.05 | GREEN ANDESITE TUFF (?)<br>Pale green, fg chloritic and sericitic altered andesite<br>tuff (?) w an apparent schistosity (?) at 45° to<br>CA; a few irregulor contorted gtz stringers w yellow-<br>green sericitic margins are present; sharp abrupt<br>limits to unit                                                                                                                                                                                                                                                                                                               | 1333                                                                         |         | 88.75                                                                | 89.35                                                                | 0.60                                                 |   |   |        | 0.001                                                                |       |
| LANGRIDGES – TORONTO – 366-1166 |       | <ul> <li>@ 91.10 to 92.30</li> <li>Section of white qtz w accessory ser particularly near margins and between 91.20 to 92.30; between 91.10 to 91.80 about 170 fg to mg cubic and granular py except within 0.05 metre off contact at 91.10 where 1070 mg crushed cubic py and a black-brown mineral (sphaleñte?); between 92.80 to 91.30 about 170 fg py and tr gal; contact at 91.10 is 30° to CA and marked by sericitic gouge; irregular contact at 92.30</li> <li>@ 92.30 to 92.76</li> <li>Buff coloured bleached zone w 1-270 fg diss py and py as sulphide trains</li> </ul> | 1334<br>1335<br>1336<br>1377<br>1338<br>1377<br>1370<br>1377<br>1340<br>1341 | - 311   | 89.35<br>89.90<br>90.50<br>91.10<br>91.80<br>92.30<br>92.76<br>93.05 | 89.90<br>90.50<br>91.10<br>91.80<br>92.76<br>92.76<br>93.05<br>94.00 | 0.55<br>0.60<br>0.70<br>0.50<br>0.46<br>0.29<br>0.95 |   |   |        | 0.001<br>0.001<br>0.480<br>0.202<br>0.085<br>0.085<br>0.002<br>0.001 | 0.381 |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_ RP-88-22 \_\_\_\_ SHEET NO. \_3 of 3 FOOTAGE SAMPLE ASSAYS DESCRIPTION FROM то % SULPH FOOTAGE NO. 3 3 OZ/TON 02/100 IDES FROM TO TOTAL 93.05 152.44 MAROON ANDESITE TUFF @ 146.20 to 147.67 Barren maroon-buff-white bleached zone 152.44 END OF HOLE .

LANGRIDGES - TORONTO - 366-1168

| NAME OF PROPERTY DOME MOUNTAIN PROJECT               |  |
|------------------------------------------------------|--|
| HOLE NO. RP-88-23 LENGTH 99.97 METRES                |  |
| LOCATION ELK SHOWING - ELK M.C. 12902                |  |
| LATITUDE 105+18 N APPROX DEPARTURE 198+66 E APPROX   |  |
| ELEVATION 50 22 1555 384 AZIMUTH 360° DIR -45°       |  |
|                                                      |  |
| STARTED NOVEMBER 14, 1988 FINISHED NOVEMBER 15, 1988 |  |

| FOOTAGE | DIP    | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|--------|---------|---------|-----|---------|
| 0       | -450   | 360°    |         |     |         |
| 51.83   | -44°   | -       |         |     |         |
| 99.97   | -40,5° | -       |         |     |         |
|         |        |         |         |     |         |

#### HOLE NO. <u>RP-88-23</u> SHEET NO. <u>1074</u> REMARKS <u>ALL LENGTHS IN</u> METRES

#### LOGGED BY STEVE JENNER

| FOOT | TAGE  |                                                                                                                                                                                                                                                                                                 |                              |                 | SAMP                             | LE                               |                              |    |   | SSA    | / S                              |  |
|------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|----------------------------------|----------------------------------|------------------------------|----|---|--------|----------------------------------|--|
| FROM | то    | DESCRIPTION                                                                                                                                                                                                                                                                                     | NO.                          | SUL PH-         | FROM                             | FOOTAGE                          | TOTAL                        | 36 | × | OZ/TON | OZ/TON                           |  |
| 0.00 | 3.05  | CASING, OVERBURDEN                                                                                                                                                                                                                                                                              |                              |                 |                                  |                                  |                              |    |   |        |                                  |  |
| 3.05 | 60.18 | MAROON ANDESITE TUFF<br>Typical maroon andezite tuff; extensive weak alteration<br>zone consisting of patchy green andezite, bleached<br>zones and pyritic gtz stringers between about 16.00<br>and 23.00<br>@ 14.46 to 14.90                                                                   | 1342<br>1343<br>1344<br>1345 | +r<br>- +r<br>- | 16.15<br>16.75<br>17.10<br>17.40 | 16.75<br>17.10<br>17.40<br>18.00 | 0.60<br>0.35<br>0.30<br>0.60 |    |   |        | 0.091<br>0.001<br>0.001<br>0.001 |  |
|      |       | Barren maroon-buff bleached zone<br>@ 16.15 to 16.75<br>Maroon-buff bleached zone w tr fg py and a 0.04<br>metre wide gtz-py stringer at ~45° to CA<br>@ 16.75 to 17.12<br>Green andesite tuff (?)<br>@ 17.12 to 17.38<br>Maroon-white bleached zone w a 0.03 metre gtz-py<br>str at ~45° to CA |                              |                 |                                  |                                  |                              |    |   |        |                                  |  |

ORM 1

#### NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-23 SHEET NO. 2 of 4

| FOO   | TAGE  |                                                                                         |          |         | SAMPL | E             |       |   |   | ASSAYS    |        |   |
|-------|-------|-----------------------------------------------------------------------------------------|----------|---------|-------|---------------|-------|---|---|-----------|--------|---|
| FROM  | то    | DESCRIPTION                                                                             | NO.      | 2 SULPH | FROM  | FOOTAGE<br>TO | TOTAL | z | x | 0 Z / TON | OZ/TON |   |
| 3.05  | 60.18 | MAROON ANDESITE TUFF continued                                                          | 1346     |         | 17.00 | 18.50         | 0.50  |   |   |           | 0.001  |   |
|       |       | Q 17 39 L 19 00                                                                         | 1347     | tr      | 18.50 | 19.10         | 0.60  |   |   |           | 0.001  |   |
|       |       |                                                                                         | 1348     | -       | 19.10 | 19.80         | 0.70  |   |   |           | 0.001  |   |
|       |       | Green andesite tutt                                                                     | 1349     | -       | 19.80 | 20.46         | 0.66  |   |   |           | 0.001  |   |
|       | 1     | @ 18.00 to 18.30                                                                        | 1350     | tr      | 20.46 | 20.88         | 0.42  |   |   |           | 0.∞1   |   |
|       |       | Barren buff bleached zone                                                               | 1351     | -       | 20.88 | 21.45         | 0.57  |   |   |           | 0.001  |   |
|       |       | Q VR 20 to VR CO                                                                        | 1352     | tr      | 21.45 | 22.00         | 0.55  |   |   |           | 0.008  |   |
|       |       |                                                                                         | 1353     | tr      | 22.00 | 22.95         | 0.95  |   |   |           | 0.001  |   |
|       | ·     | marcon andesite tutt                                                                    | 1354     |         | 2013  | ×3.50         | 0.55  |   |   |           |        |   |
|       |       | @ 18.50 to 19.10                                                                        |          |         |       |               |       |   |   |           |        |   |
|       |       | Buff bleached zone to tr py and an irregular 0.04                                       |          |         |       |               |       |   |   |           |        |   |
|       |       | metre wide gtz-py stringer                                                              |          |         |       |               |       |   |   |           |        |   |
|       |       | @ 19.10 to 20.46                                                                        |          |         |       |               |       |   |   |           |        |   |
|       |       | Maroon/green and esite tuff w patchy bleached rock                                      |          |         |       |               |       |   |   |           |        |   |
| 1     |       | @ 20.46 to 20.88                                                                        |          |         |       |               |       |   |   |           |        |   |
|       |       | Buff coloured bleached zone $\overline{w}$ tr py and a 0.01 metre wide at z-py stringer |          | -       |       |               |       |   |   |           |        |   |
|       |       |                                                                                         |          |         |       |               |       |   |   |           |        |   |
| 168   |       | C 20.88 to 21.45                                                                        | <b>I</b> |         |       |               |       |   |   |           |        |   |
| 366-1 | 1     | Green/marcon andesite tuff                                                              |          |         |       |               |       |   |   |           |        |   |
| 2     |       | @ 21.45 to 22.95                                                                        |          |         |       |               |       |   |   |           |        |   |
| OHO   |       | Buff bleached zone is to for discover and o                                             |          |         |       |               |       |   |   |           | .      | , |
| L - S |       | random 0.01 metre wide gtz-py stringer                                                  |          |         |       |               |       |   |   |           |        |   |
| RIDG  |       | Y IV Wigets                                                                             |          |         |       |               |       | ļ |   |           |        |   |
| LAN   |       |                                                                                         |          |         |       |               |       | 1 |   |           |        |   |
| 1     |       | Į.                                                                                      | I        | I       | 1     | 1             | I     | I | I | I         | r 1    |   |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. \_\_\_\_\_\_ SHEET NO. \_\_\_\_\_ OF 4

| FOO                             | TAGE  | DESCRIPTION                                                                                                                                                                                                                                                                                                                                   |                                                      |                        | SAMPI                                                       | .E                                                 |                                              |   | ASSAYS |                                                             |   |
|---------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|-------------------------------------------------------------|----------------------------------------------------|----------------------------------------------|---|--------|-------------------------------------------------------------|---|
| FROM                            | то    |                                                                                                                                                                                                                                                                                                                                               | NO.                                                  | 7 SULPH                | FROM                                                        | FOOTAGE                                            | TOTAL                                        | 1 | 02/100 | 0Z TON                                                      |   |
| 3.05                            | 60.18 | MAROON ANDESITE TUFF continued                                                                                                                                                                                                                                                                                                                |                                                      |                        |                                                             |                                                    |                                              |   | 1      | _~~~                                                        |   |
|                                 |       | <ul> <li>@ 26.25 to 26.46</li> <li>Pyritic buff bleached zone w 0.02 metre wide qtz-cal-py stringer</li> <li>@ 27.25 to 27.60</li> <li>Pyritic buff bleached zone; schistosity at 45° to CA but only 15° to CA near 27.60</li> <li>@ 27.60 to 28.00</li> <li>White qtz w 1% py and sericitic, wf rock w a schistosity at 15° to CA</li> </ul> | 1355<br>1356<br>1357<br>1358<br>1359<br>1360<br>1361 | - +<br>+<br>+<br>+<br> | 25.50<br>26.15<br>26.50<br>27.25<br>27.60<br>28.00<br>28.35 | 26.15<br>27.25<br>27.60<br>28.00<br>28.35<br>29.00 | 0.65<br>0.35<br>0.35<br>0.40<br>0.35<br>0.65 |   |        | 0.001<br>0.001<br>0.001<br>0.001<br>0.072<br>0.029<br>0.001 |   |
| LANGRIDGES – TORONTO – 366-1168 | 75.28 | ©28.00 to 28.35<br>Barren-appearing bleached zone<br>GREEN ANDESITE TUFF<br>© 67.62 to 67.77<br>Barren white cal-gtz<br>© 70.17 to 70.70<br>Weak barren maroon-buff bleached zone<br>© 72.22 to 72.38<br>Buff barren bleached zone                                                                                                            |                                                      |                        |                                                             |                                                    |                                              |   |        |                                                             | • |

NAME OF PROPERTY DOME MOUNTAIN PROJECT

|       |                |                                                                                                                                                                                               | н                    | OLE N          | 0. <u>_RP-</u>          | 88-23                   |                      | SHE | ET NO. | <u> </u> | <u>f 4</u>              |
|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|-------------------------|-------------------------|----------------------|-----|--------|----------|-------------------------|
| FOO   | TAGE           |                                                                                                                                                                                               | Ι                    |                | SAMPL                   | .8                      |                      |     |        | ASSAYS   |                         |
| FROM  | то             | DESCRIPTION                                                                                                                                                                                   | NO.                  | % SULPH        | FROM                    | FOOTAGE<br>TO           | TOTAL                | z   | x      | 0Z/TON   | OZATON                  |
| 5.28  | 77.62          | MAROON ANDESITE TUFF                                                                                                                                                                          |                      |                |                         |                         |                      |     |        |          |                         |
| 17.62 | <b>'79</b> .69 | BLEACHED ZONE<br>Typical buff coloured bleached andesite is tr fg diss<br>py and a few random gtz-py stringers; both<br>'contacts' abrupt                                                     | 1362<br>1363<br>1364 | +r<br>+r<br>+r | 77.62<br>78.30<br>79.00 | 78.30<br>79.00<br>79.69 | 0.68<br>0.70<br>0.69 |     |        |          | 0.001<br>0.001<br>0.001 |
| વ.6૧  | 99.97          | MAROON/GREEN ANDESITE, ANDESITE TUFF<br>@ 88.87 to 88.95<br>White gtz to minor col-ch1 and tr py<br>@ 97.10 to 97.35<br>Pyritic buff bleached zone to 0.08 metre gtz-carb<br>section to tr py | 1365                 | tr             | 97.10                   | 97.35                   | 0.25                 |     |        |          | 0.001                   |
|       | 99.97          | END OF HOLE                                                                                                                                                                                   |                      |                |                         |                         |                      |     |        |          |                         |

RM 2

| FOOTAGE | DIP   | AZIMUTH | FOOTAGE | DIP | AZIMUTH |
|---------|-------|---------|---------|-----|---------|
| 0       | - 45° | 360°    |         |     |         |
| 100     | -45°  | -       |         |     |         |
| 160.06  | -45°  | -       |         |     |         |
|         |       |         |         |     |         |

HOLE NO. BP-98-24 SHEET NO. 10F2 REMARKS ALL LENGTHS IN METRES

LOGGED BY STEVE JENNER

| FOO   | TAGE  |                                                                                                                                                                                                                                                                                                     |                               |              | SAMP                    | LE                      |                      |    | ,  | SSA    | rs                      |  |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|-------------------------|-------------------------|----------------------|----|----|--------|-------------------------|--|
| FROM  | то    | DESCRIPTION                                                                                                                                                                                                                                                                                         | NO.                           | SUL PH-      | FROM                    | FOOTAGE                 | TOTAL                | 36 | 35 | OZ/TON | OZ/ZON                  |  |
| 0.00  | 18.29 | CASING, OVERBURDEN                                                                                                                                                                                                                                                                                  |                               |              |                         |                         |                      |    |    |        |                         |  |
| 18.29 | ¥9.95 | MAROON ANDESITE TUFF<br>Typical maroon andesite tuff, lapilli tuff; minor patchy<br>green andesite tuff between about 29.40 and 35.00<br>and in this section there are a few gtz-col stringers<br>up to 0.03 metre wide at random orientotions                                                      | 1366<br>1367<br>1 <i>3</i> 68 | -<br>+r<br>- | 43.00<br>43.71<br>44.27 | 43.71<br>44.27<br>45.00 | 0.71<br>0.56<br>0.73 |    |    |        | 0.003<br>0.006<br>0.001 |  |
| 79.95 | 92.72 | @ 43.71 to 44.27<br>Sheared appearing green to yellow green chloritic and<br>sericitic rock wa few inregular gtz stringers w<br>tr fg py; 0.01 metre gouge at 44.27 GREEN ANDESITE TUFF Typical fg green andesite tuff wa preferred orientation<br>at ~45° to CA and w patchy barren bleached zones |                               |              |                         |                         |                      |    |    |        | •                       |  |

**38M** 

NAME OF PROPERTY DOME MOUNTAIN PROJECT

HOLE NO. RP-88-24 SHEET NO. 2 of 2

| FOO    | TAGE   | DESCRIPTION                                                               |      |         | SAMPL  | .E      |       |   |   | ASSAYS |        |   |
|--------|--------|---------------------------------------------------------------------------|------|---------|--------|---------|-------|---|---|--------|--------|---|
| FROM   | то     |                                                                           | NO.  | 7 SULPH | FROM   | FOOTAGE | TOTAL | 2 | 2 | OZ/TON | OZ TON |   |
| 92.72  | 106.64 | MAROON ANDESITE TUFF                                                      |      |         |        |         |       |   |   |        |        |   |
|        |        | @ 98.46 to 98.80                                                          |      |         |        |         |       |   |   |        |        |   |
|        |        | Barren buff-tan bleached zone                                             |      |         |        |         |       |   |   |        |        |   |
|        |        | @99.75 to 100.01                                                          |      |         |        |         |       |   |   |        |        |   |
|        |        | Buff coloured bleached zone w a single 0.02 metre<br>Wide gtz-py stringer |      |         |        |         |       |   |   |        |        |   |
| 106.64 | 160.01 | GREEN ANDESITE, ANDESITE TUFF                                             |      |         |        |         |       |   |   |        |        | İ |
|        |        | Typical for to more and esite to minor sections of                        |      |         |        |         |       |   |   |        |        |   |
|        |        | more tuffaceous appearing andesite                                        | 1369 | -       | 138.50 | 139.23  | 0.73  |   |   |        | 0.001  |   |
|        |        |                                                                           | 1370 | tr      | 139.23 | 139.80  | 0.57  |   |   |        | 0.057  |   |
|        |        |                                                                           | 1371 | -       | 139.80 | 140.50  | 0.70  |   |   |        | ٥.∞۱   |   |
|        |        | @ 110.45 to 111.60                                                        |      |         |        |         |       |   |   |        |        |   |
|        |        | A 0.01 metre wide gtz-py stringer and wallrock                            |      |         |        | :       |       |   |   |        |        |   |
|        |        | bleached zone running down one side of core                               |      |         |        |         |       |   |   |        |        |   |
|        |        | @ 139.23 to 139.80                                                        |      |         |        |         |       |   |   |        |        |   |
|        |        | . Weak buff-maroon bleached zone $\overline{w}$ tr py and a               |      |         |        |         |       |   |   |        |        | : |
|        |        | few random gtz stringers                                                  |      |         |        |         |       |   |   |        |        |   |
|        |        |                                                                           |      |         |        |         |       |   |   |        |        |   |
|        | 160.01 | END OF HOLE                                                               |      |         |        |         |       |   |   |        |        |   |
|        |        |                                                                           |      |         |        |         |       |   |   |        |        |   |
|        |        |                                                                           |      |         | ļ      | 1       | ļ     |   |   |        |        |   |

LANGRIDGES - TORONTO - 366-1168

#### APPENDIX THREE

#### Assay Certificates

./teeshin/dome/domesjcoverpg



#### EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 887 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Certificate of ASSAY</u>

Company:MPD CONSULTANTS Project:RP-87-11 Attention:S.JENNER File:81-190/P1 Date:DEC.1/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

|           | Sample<br>Number                      |                | AG<br>G/TONNE         | AG<br>OZ/TON | AU<br>G/TONNE | AU<br>OZ/TON |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|---------------------------------------|----------------|-----------------------|--------------|---------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | · · · · · · · · · · · · · · · · · · · | and the second | موجدة متنبين الأحاجان | r <b>#</b> - |               |              | and the second sec |
|           | 1372                                  |                | 2.3                   | 0.07         | .02           | 0.001        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| فتتت      | 1373                                  |                | 0.6                   | 0.02         | .03           | 0.001        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -         | 1374                                  |                | 1.2                   | 0.04         | .01           | 0.001        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 1375                                  |                | 1.7                   | 0.05         | .04           | 0.001        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 1376                                  |                | 4.2                   | 0.12         | .18           | 0.005        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -         | 1377                                  |                | 1.8                   | 0.05         | . 19          | 0.006        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 1378                                  |                | 38.2                  | 1.11         | .79           | 0.023        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| يتنق      | 1379                                  |                | 2.0                   | 0.06         | .34           | 0.010        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| _         | 1380                                  |                | 13.9                  | 0.41         | . 46          | 0.013        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 1381                                  |                | 10.4                  | 0.30         | .83           | 0.024        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 1382                                  |                | 0.3                   | 0.01         | . 20          | 0.006        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 1383                                  |                | 65.0                  | 1.90         | 2.50          | 0.073        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | 1384                                  |                | 7.8                   | 0.23         | 1.88          | 0.055        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>کی</u> | 1385                                  |                | 1.5                   | 0.04         | .16           | 0.005        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Certified by

\*\*\*\*\*

MIN-EN LABORATORIES LTD.



#### EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Certificate of ASSAY</u>

Company:M.P.D.CONSUTLANTS Project:HOLE RP-87-12 Attention:S.JENNER File:81-150/P1 Date:SEPT 27/88 Type:ROCK ASSAY

<u>We hereby certify</u> the following results for samples submitted.

| Sample<br>Number | AG<br>G/TONNE    | AG<br>OZ/TON | AU<br>G/TONNE | AU<br>DZ/TON |                                                                                                    |
|------------------|------------------|--------------|---------------|--------------|----------------------------------------------------------------------------------------------------|
| 1089             | 1.8              | ö.05         | . Ö1          | 0.001        | n an tha an tha an tha an tha an |
| 1090             | 3.6              | 0.11         | .03           | 0.001        |                                                                                                    |
| 1091             | . 5              | 0.01         | .02           | 0.001        |                                                                                                    |
| 1092             | 2.4              | 0.07         | .19           | 0.006        |                                                                                                    |
| 1093             | . 6              | 0.02         | .21           | 0.004        |                                                                                                    |
| 1094             | . 4              | 0.01         | .03           | 0.001        |                                                                                                    |
| _ 1095           | .5               | 0.01         | .01           | 0.001        |                                                                                                    |
| 1096             | 1.3              | 0.04         | .02           | 0.001        |                                                                                                    |
| 1097             | .6               | 0.02         | .01           | 0.001        |                                                                                                    |
| 1098             | 1.2              | 0.04         | .01           | 0.001        | ·                                                                                                  |
| 1079             | " <i>9</i>       | 0.07         | ENTER         | 0.001        |                                                                                                    |
| 1100             | . 2              | 0.GA / *     | .02           | 0.001        | OK CONTERED                                                                                        |
| _ 1101           | .3               | 0.01         | .01           | 0.001        | OR ENTERED                                                                                         |
| 1102             | . 2              | 0.01         | .02           | 0.001        |                                                                                                    |
| 1103             | . 2              | 0.01         | .01           | 0.001        |                                                                                                    |
| 1104             | 5.4              | 0.16         | . 19          | 0.006        |                                                                                                    |
| 1105             | .3               | 0.01         | .06           | 0.002        |                                                                                                    |
| 1106             | . 6              | 0.02         | .02           | 0.001        |                                                                                                    |
| 1107             | 2.4              | 0.07         | .02           | 0.001        |                                                                                                    |
| 1108             | 1.6              | 0.05         | .03           | 0.001        |                                                                                                    |
| 1109             | .3               | 0.01         | .02           | 0,001        |                                                                                                    |
| 1110             | . 4              | 0.01         | .01           | 0.001        |                                                                                                    |
| 1111             | 30.2             | 0.88         | .22           | 0.006        |                                                                                                    |
| 1112             | . 7              | 0.02         | .02           | 0.001        |                                                                                                    |
| 1113             | erege<br>Be taul | 0.01         | . O 1         | 0.001        |                                                                                                    |
| 1114             | 1.5              | 0.04         | .03           | 0.001        |                                                                                                    |
| _ 1115           | 44.0             | 1.28         | 2.49          | 0.073        |                                                                                                    |
| <b>1</b> 1116    | . 6              | 0.02         | .21           | 0.006        |                                                                                                    |
| 1117             | 25.8             | 0.75         | 1.49          | 0.043        |                                                                                                    |
| 1118             | 113.0            | 3.30         | 5.32          | 0.155        |                                                                                                    |

Certified by\_\_

MIN-EN LABORATORIES LTD.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Certificate of ASSAY</u>

Company: M.P.D.CONSUTLANTS Project: HOLE RP-87-12 Attention: S.JENNER File:81-150/P2 Date:SEPT 27/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

| Sample<br>Number |     | AG<br>G/TONNE | AG<br>OZ/TON | AU<br>G/TONNE | ÂU<br>OZ/TON |                               |
|------------------|-----|---------------|--------------|---------------|--------------|-------------------------------|
| · .              | . • |               |              | 4/15 100      |              | Terman and at the terminal of |
| 1119             |     | 11.9          | 0.35         | . 92          | 0.027        |                               |
| <b>1</b> 120     |     | 36.4          | 1.06         | 1.75          | 0.051        |                               |
| 1121             |     | 5.6           | 0.16         | .23           | 0.007        |                               |
| 1122             |     | " <i>«</i> ∔. | Ο.Ο1         | . 19          | 0.006        |                               |
|                  |     |               |              |               |              |                               |

OK, ENTERED

Certified by\_

MIN-EN LABORATORIES LTD.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

<u>Certificate of ASSAY</u>

Company: M.P.D.CONSULTANTS Project: RP-87-12 Attention: S.JENNER File:81-152/P2 Date:SEPT.29/88 Type:ROCK ASSAY

NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

VANCOUVER OFFICE: 705 WEST 15TH STREET

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

He hereby certify the following results for samples submitted.

| Ż | Sample<br>Number                     | AG<br>G/TONNE                    | AG<br>OZ/TON                         | AU<br>G/TONNE                    | AU<br>OZ/TON                              |                                                    | · .         |
|---|--------------------------------------|----------------------------------|--------------------------------------|----------------------------------|-------------------------------------------|----------------------------------------------------|-------------|
|   | 1123<br>1124<br>1125<br>1126<br>1127 | 0.3<br>58.5<br>6.2<br>0.3<br>0.2 | 0.01<br>1.71<br>0.18<br>0.01<br>0.01 | .02<br>1.31<br>.43<br>.01<br>.03 | 0.001<br>0.038<br>0.013<br>0.001<br>0.001 | n na sa san sa |             |
|   | 1128<br>1129<br>1130<br>1131<br>1132 | 0.2<br>4.0<br>0.3<br>2.2<br>0.2  | 0.01<br>0.12<br>0.01<br>0.06<br>0.01 | .01<br>.02<br>.02<br>1.40<br>.01 | 0.001<br>0.001<br>0.001<br>0.041<br>0.001 |                                                    | OK, ENTERED |
|   | 1133<br>1134<br>1135                 | 2.3<br>30.0<br>0.2               | 0.07<br>0.88<br>0.01                 | .08<br>.43<br>.01                | 0.002<br>0.013<br>0.001                   |                                                    |             |

Certified by

MIN-EN (LABORATORIES LTD.



ŧ

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

#### <u>Certificate of ASSAY</u>

Company:M.P.D. CONSULTANTS LTD. Project:HOLE RP-87-13 Attention:S.JENNER File:81-134/P1 Date:SEPT.17/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

|          | Sample<br>Number | AG<br>G/TONNE | AG<br>OZ/TON | AU<br>G/TONNE | AU<br>OZ/TON |                                         |
|----------|------------------|---------------|--------------|---------------|--------------|-----------------------------------------|
|          | 1033             | 3.9           | 0.11         | .09           | 0.003        |                                         |
| -        | 1034             | 1.7           | 0.05         | .02           | 0.001        |                                         |
|          | 1035             | 56.2          | 1.64         | 2,44          | 0.071        |                                         |
|          | 1036             | 1.2           | 0.04         | .04           | 0.001        |                                         |
|          | 1037             | 11.7          | 0.34         | .02           | 0.001        |                                         |
|          | 1038             | 1.1           | 0.03         | .01           | 0.001        | *************************************** |
| ر<br>الم | 1039             | 1.2           | 0.04         | .01           | 0.001        |                                         |
| -        | 1040             | 1.9           | 0.06         | .04           | 0.001        |                                         |
|          | 1041             | 101.2         | 2.95         | 1.73          | 0.050        |                                         |
| <b></b>  | 1042             | 11.7          | 0.34         | .19           | 0.006        |                                         |
|          | 1043             | 3.8           | 0.11         | .02           | 0.001        |                                         |
|          | 1044             | 2.1           | 0.06         | .01           | 0.001        |                                         |
| -        | 1045             | 1.7           | 0.05         | .04           | 0.001        |                                         |
| _        | 1046             | 1.9           | 0.06         | .26           | 0.008        |                                         |

OK - ENTERED

Certified by

------

MIN-EN LABORATORIES LTD.

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, BC. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE:

11MMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996



SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company:MPD CONSULTANTS Project:TEESHIN/HOLE RP-87-14 Attention:STEVE JENNER File:81-128/P1 Date:SEPT 11/88 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

| Sample<br>Number | AG<br>G/TONNE       | AG<br>07/TON     | AU<br>G/TONNE | AU<br>OZ/TON                  | . F           |     |                                       |                            |
|------------------|---------------------|------------------|---------------|-------------------------------|---------------|-----|---------------------------------------|----------------------------|
| LOOT             | 1-4                 | 0.∲ 29/*<br>0.04 | 1446 yes 1995 | dese de partes est<br>100.001 | ala tit atati | -   |                                       | je u zakla na zaklada<br>N |
| 1002             | 3.9                 | 0.11             | .17           | 0,005                         | •             | et. |                                       | n 1                        |
| 1003             | 2.1                 | 0.06             | . 01          | 0:001                         |               | į   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | \$<br>\$                   |
| 1004             | 2.2                 | 0.06             | .02           | 0.001                         | • •           | -   |                                       |                            |
| 1005             | 1.8                 | 0.05             | . 06          | 0.002                         |               |     |                                       |                            |
| 1006             | 2,4                 | 0.07             | . 01          | 0,001                         |               |     |                                       |                            |
| 1007             | 44.3                | 1.29             | 1.71          | 0.050                         |               |     |                                       |                            |
| 1008             | 2.2                 | 0.06             | .09           | 0,003                         |               |     |                                       |                            |
| 1009             | 3.7                 | 0.11             | - 19          | 0,004                         |               |     |                                       |                            |
| 1010             | 1.5                 | 0.04             | . 17          | 0,005                         |               |     |                                       |                            |
| 1011             | 1.6                 | 0.05             | .08           | 0.002                         |               |     |                                       |                            |
| 1012             | 1.8                 | 0.05             | .02           | 0.001                         |               |     |                                       |                            |
| 1013             | 1.2                 | 0.04             | .01           | 0.001                         |               |     |                                       |                            |
| 1014             | 1.7                 | 0.05             | 201           | 0.001                         |               |     |                                       |                            |
| 1015             | 1.1                 | 0.03             | .01           | 0.001                         |               |     |                                       |                            |
| 1016             | 1.3                 | 0.04             | .04           | 0.001                         |               |     |                                       |                            |
| 1017             | 1.4                 | 0.04             | .06           | 0.002                         |               |     |                                       |                            |
| 1018             | 4.2                 | 0.12             | <b>.</b> 09   | 0.003                         |               |     |                                       |                            |
| 1019             | 2.1                 | 0.06             | 50.           | 0.001                         |               |     |                                       |                            |
| 1020             | All Car and The set | 0,04             |               |                               | 1. y . 1      | £   | 28. (* <b>.</b> *                     | e kato kato y              |
| 1021             | 3.8                 | 0.11             | .08           | 0.002                         |               |     |                                       |                            |
| 1022             | 8.3                 | 0.24             | . 24          | 0.007                         |               |     | OK. EN                                | JTERED                     |
| 1023             | 30.8                | 0,90             | 1.21          | 0.035                         |               |     | •                                     |                            |
| 1024             | 24.1                | 0.70             | . 41          | 0.012                         |               |     |                                       |                            |
| 1025             | 17.8                | 0.52             | . 60          | 0.018                         |               |     |                                       |                            |
| 1026 ,           | 10.3                | 0.30             | . 16          | 0.005                         |               |     |                                       |                            |
| 1027             | 1.8                 | 0.05             | .02           | 0.001                         | ÷             |     |                                       |                            |
| 1028             | 2.1                 | 0.06             | .02           | 0.001                         |               |     |                                       |                            |
| 1029             | 52.2                | 1.52             | 1.24          | 0.035                         |               |     |                                       |                            |
| 1030             | 1.6                 | 0,05             | .08           | 0.002                         |               |     |                                       |                            |

Certified by\_

MIN-EN LABORATORIES LTD.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company:MPD CONSULTANTS Project:TEESHIN/HOLE RP-87-14 Attention:STEVE JENNER

File:81-128/P2 Date:SEPT 11/88 Type:ROCK ASSAY

<u>We hereby certify the following results for samples submitted.</u>

| Sample<br>Number |        | AG<br>G/TONNE | AG<br>OZ/TON G | AU<br>5/TONNE | AU<br>OZ/TON   |            |
|------------------|--------|---------------|----------------|---------------|----------------|------------|
| 1031<br>1032     |        | 8.3<br>2.1    | 0.24<br>0.06   | .04<br>.02    | 0.001<br>0.001 |            |
|                  |        |               |                |               |                |            |
|                  |        |               |                |               |                |            |
|                  |        |               |                |               |                |            |
|                  |        |               |                |               |                |            |
|                  |        |               | ·····          |               |                | ······     |
|                  |        |               |                |               |                |            |
|                  |        |               |                |               |                |            |
|                  | •<br>• |               |                |               |                | OK-ENTERED |

MIN-EN CABORATORIES LTD.





SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Certificate of ASSAY</u>

Company:MPD CONSULTANTS Project:HOLE RF-88-15 Attention:S.JENNER File:81-179/F1 Date:NOV.12/88 Type:ROCK ASSAY

<u>We hereby certify the following results for samples submitted.</u>

| Sample<br>Number                     | AG<br>G/TONNE                    | AG<br>OZ/TON                         | AU<br>GZTUNNE                    | AU<br>OZ/TON                              |                          |
|--------------------------------------|----------------------------------|--------------------------------------|----------------------------------|-------------------------------------------|--------------------------|
| 1155<br>1156<br>1157<br>1158<br>1159 | 1.9<br>1.8<br>1.1<br>1.7<br>39.9 | 0.06<br>0.05<br>0.03<br>0.05<br>1.16 | .02<br>.04<br>.01<br>.01<br>1.59 | 0.001<br>0.001<br>0.001<br>0.001<br>0.046 | OK ENTERED               |
| 1160<br>1161<br>1162<br>1163<br>1164 | 2.1<br>1.7<br>1.6<br>13.2<br>4.1 | 0.06<br>0.05<br>0.05<br>0.39<br>0.12 | .02<br>.04<br>.01<br>.40<br>.40  | 0.001<br>0.001<br>0.001<br>0.012<br>0.012 |                          |
| 1165<br>1166                         | 2.2<br>1.8                       | 0.06                                 | .02<br>.01                       | 0.001                                     |                          |
| •                                    |                                  |                                      |                                  |                                           |                          |
| <br>                                 |                                  |                                      |                                  |                                           |                          |
| •                                    |                                  |                                      |                                  |                                           |                          |
|                                      |                                  |                                      | Certi                            | fied by                                   | MIN-EN LABORATORIES LTD. |



# ABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996 ASSAY Certificate of

Company: MPD CONSULTANTS Project:HOLE RP-88-15 Attention:STEVE JENNER

File:81-181/P1 Date:NOV 14/88 Type:ROCK ASSAY

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

VANCOUVER OFFICE:

**TIMMINS OFFICE:** 

He hereby certify the following results for samples submitted.

| Sample<br>Number                                                                      |                     | <br>AG<br>G/TONNE                                                                                                   | AG<br>OZ/TON                         | AU                              | AU<br>OZ/TON                              | n an | <b>1</b> |
|---------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------|-------------------------------------------|------------------------------------------|----------|
| 1167<br>1168<br>1169<br>1170<br>1171                                                  | nad an traitean ann | <br>s - en ser en | i gi ti yucti i ita tanak            | .02<br>.01<br>.01<br>.01<br>.02 | 0.001<br>0.001<br>0.001<br>0.001<br>0.001 | OK ENTERED                               | >        |
| 1172<br>1173<br>1174<br>1175<br>1176                                                  |                     | 1.8                                                                                                                 | 0.05                                 | .02<br>.01<br>.02<br>.04<br>.01 | 0.001<br>0.001<br>0.001<br>0.001<br>0.001 |                                          |          |
| 1177<br>1178<br>1179<br>1180<br>1181                                                  |                     | 1.9<br>4.3<br>1.8<br>5.9<br>2.3                                                                                     | 0.04<br>0.13<br>0.05<br>0.17<br>0.07 | .02<br>.21<br>.11<br>.41<br>.02 | 0.001<br>0.006<br>0.003<br>0.012<br>0.001 |                                          |          |
| <ul> <li>1.182</li> <li>1.183</li> <li>1.184</li> <li>1.185</li> <li>1/186</li> </ul> | 94<br>2 - 340 - 4   | 6.1<br>1.9<br>1.8<br>1.7<br>1.4                                                                                     | 0.18<br>0.06<br>0.05<br>0.05<br>0.04 | .16<br>.01<br>.02<br>.03        | 0.005<br>0.001<br>0.001<br>0.001<br>0.001 |                                          |          |

Certified by

MIN-EN LABORATORIES LTD.



#### SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Certificate of ASSAY</u>

Company:M.P.D.CONSULTANTS Project:DOME MOUNTAIN 684 Attention:S.JENNER File:81-182/P1 Date:NOV.14/88 Type:ROCK ASSAY

<u>He hereby certify</u> the following results for samples submitted.

| Sample<br>Number | AG<br>G/TONNE | AG<br>OZ/TON | AU<br>G/TONNE | AU<br>OZ/TON |                                       |
|------------------|---------------|--------------|---------------|--------------|---------------------------------------|
| 1187             | 0.3           | 0.01         | .01           | 0.001        |                                       |
| 1188             | Ö.6           | 0.02         | .01           | 0.001        |                                       |
| 1189             | 0.8           | 0.02         | .01           | 0.001        |                                       |
| 1190             | 0.5           | 0.01         | .01           | 0.001        | OK ENIERED                            |
| 1191             | 0.2           | 0.01         | .02           | 0.001        | · · · · · · · · · · · · · · · · · · · |
| 1192             | 2.3           | 0.07         | .05           | 0.001        |                                       |
| 1193             | 0.2           | 0.01         | .01           | 0.001        |                                       |
| 1194             | O.6           | 0.02         | .01           | 0.001        |                                       |
| 1195             | 0.2           | Ö.Ö1         | .01           | 0.001        |                                       |
| 1196             | 0.5           | 0.01         | .01           | 0.001        |                                       |
| 1197             | 12.4          | 0.36         | .24           | 0.007        |                                       |
| 1198             | 0.3           | 0.01         | .01           | 0.001        |                                       |
| 1199             | 0.8           | 0.02         | .01           | 0.001        |                                       |
| 1200             | 20.2          | 0.59         | .07           | 0.002        |                                       |
| 1201             | 1.6           | 0.05         | .02           | 0.001        |                                       |
| 1202             | 1.0           | 0.03         | .01           | 0.001        |                                       |
| 1203             | <b>0.</b> 4   | 0.01         | .04           | 0.001        |                                       |
| 1204             | 0.8           | 0.02         | .01           | 0.001        |                                       |
| <b>a</b> 1205    | 0.6           | 0.02         | .01           | 0.001        |                                       |
| 1206             | 23.7          | 0.69         | 6.51          | 0.190        |                                       |
| 1207             | 1.5           | 0.04         | .01           | 0.001        | 1 RP-88-16                            |
| 1208             | 0.9           | 0.03         | .01           | 0.001        | PD-88-19                              |
| 1209             | 0.8           | 0.02         | . ó2          | 0.001        | V KF 80 11                            |
| 1210             | 13.9          | 0.41         | .49           | 0.014        |                                       |
| 1211             | 6.2           | 0.18         | .92           | 0.027        |                                       |
| 1212             | 0.5           | 0.01         | .01           | 0.001        | · · · · · · · · · · · · · · · · · · · |
| 1213             | 0.3           | 0.01         | .02           | 0.001        |                                       |
| 1214             | 0.6           | 0.02         | .01           | 0.001        |                                       |
| 1215             | 2.1           | 0.06         | .01           | 0.001        |                                       |
| 1216             | 38.0          | 1.11         | 1.39          | 0.041        |                                       |

Certified by\_

MIN-EM LABORATORIES LTD.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company: M.P.D.CONSULTANTS Project: RP-88-17 Attention: S.JENNER File:81-187/P1 Date:NOV 24/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

| Sample<br>Number                             | •                                     | AU<br>G/TONNE                   | AU<br>OZ/TON                              |       |        |      |
|----------------------------------------------|---------------------------------------|---------------------------------|-------------------------------------------|-------|--------|------|
| 1275<br>1276                                 |                                       | .01<br>.03                      | 0.001<br>0.001                            |       |        |      |
| 1277<br>1278<br>1279                         |                                       | .01<br>.01                      | 0.001<br>0.001                            |       |        |      |
| 1280                                         |                                       | .02                             | 0.001                                     | ····· |        | **** |
| 1281<br>1282<br>1283<br>1284                 |                                       | .01<br>.48<br>.01<br>.01        | 0.001<br>0.014<br>0.001<br>0.001          |       |        |      |
| 1285<br>1286<br>1287<br>1288<br>1288<br>1289 | · · · · · · · · · · · · · · · · · · · | .01<br>.01<br>.02<br>.01<br>.03 | 0.001<br>0.001<br>0.001<br>0.001<br>0.001 |       |        |      |
| 1290<br>1291<br>1292<br>1293<br>1294         |                                       | .11<br>.01<br>.01<br>.02<br>.01 | 0.003<br>0.001<br>0.001<br>0.001<br>0.001 | × 50  | ··· ·. |      |
| 1295<br>1296<br>1297<br>1298                 |                                       | .01<br>.03<br>.02<br>.01        | 0.001<br>0.001<br>0.001<br>0.001          |       |        |      |

MIN-EN/LABORATORIES LTD.

#### MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company: M.P.D.CONSULTANTS Project: HOLE RP-88-18 Attention: S.JENNER File:81-185/P1 Date:NOV.24/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

| Sample<br>Number | AU<br>G/TONNE | AU<br>OZ/TON |  |
|------------------|---------------|--------------|--|
| 1254             | .04           | 0.001        |  |
| <b>i</b> 1255    | .12           | 0.004        |  |
| 1256             | .10           | 0.003        |  |
| 1257             | .03           | 0.001        |  |
| 1258             | .13           | 0.004        |  |
| 1259             | .02           | 0.001        |  |
| 1260             | .01           | 0.001        |  |
| <b>#</b> 1261    | .19           | 0.006        |  |
| 1262             | .01           | 0.001        |  |
| 1263             | .03           | 0.001        |  |
| 1264             | . 16          | 0.005        |  |
| 1265             | 01            | 0.001        |  |
| 1266             | .18           | 0.005        |  |
| 1267             | .15           | 0.004        |  |
| 1268             | . 41          | 0.012        |  |
| <b>—</b> 1269    | . 02          | 0.001        |  |
| 1270             | .01           | 0.001        |  |
| 1271             | .03           | 0.001        |  |
| <b>1272</b>      | .01           | 0.001        |  |
| 1273             | .01           | 0.001        |  |
| 1274             | .01           | ò.001        |  |

Certified by

LABORATORIES LTD. MIN-EN
|                                        | LABORATORIES L<br>SPECIALISTS IN MINERA<br>CHEMISTS + ASSAYERS + ANAL   | TD.<br>L ENVIRONMENTS<br>YSTS • GEOCHEMISTS | VANCOUVER OFFICE:<br>705 WEST 15TH STREET<br>NORTH VANCOUVER, B.C. CANADA V7M 1T2<br>TELEPHONE (604) 980-5814 OR (604) 988-4524<br>TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621<br>TIMMINS OFFICE:<br>33 EAST IROQUOIS ROAD<br>P.O. BOX 867<br>TIMMINS, ONTARIO CANADA P4N 7G7<br>TELEPHONE: (705) 264-9996 |
|----------------------------------------|-------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                        | Certi                                                                   | ficate                                      | of Assay                                                                                                                                                                                                                                                                                                      |
| Company:M.<br>Project:DC<br>Attention: | P.D CONSULTANTS<br>DNE MOUNTAIN 684<br>S.JENNER                         |                                             | File:81-183/P2<br>Date:NOV.19/88<br>Type:ROCK ASSAY                                                                                                                                                                                                                                                           |
| <u>We hereby</u>                       | <u>certify</u> the followi                                              | ng results for                              | samples submitted.                                                                                                                                                                                                                                                                                            |
| Sample<br>Number                       | AG AG<br>G/TONNE OZ/TON                                                 |                                             |                                                                                                                                                                                                                                                                                                               |
| 1271<br>1272<br>1273                   | $\begin{array}{ccc} 2.9 & 0.08 \\ 1.0 & 0.03 \\ 3.3 & 0.10 \end{array}$ | · · · ·                                     | • .                                                                                                                                                                                                                                                                                                           |
| 1274                                   | 1.6 0.05                                                                |                                             | OK, ENTERED                                                                                                                                                                                                                                                                                                   |
|                                        |                                                                         |                                             | RP-88-18                                                                                                                                                                                                                                                                                                      |
|                                        |                                                                         |                                             |                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                         |                                             |                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                         |                                             |                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                         |                                             |                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                         |                                             |                                                                                                                                                                                                                                                                                                               |
|                                        |                                                                         |                                             | • ·                                                                                                                                                                                                                                                                                                           |
|                                        |                                                                         | Certified by                                | MIN-EN LABORATORIES LTD.                                                                                                                                                                                                                                                                                      |



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 **TIMMINS OFFICE:** 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

| Company:M<br>Project:D<br>Attention | .P.D CONSULT<br>ONE MOUNTAIN<br>:S.JENNER | ANTS<br>1 684 |               |                                       |                   | File:81-183/P1<br>Date:NOV.19/88<br>Type:ROCK ASSAY |
|-------------------------------------|-------------------------------------------|---------------|---------------|---------------------------------------|-------------------|-----------------------------------------------------|
| <u>He hereby</u>                    | <u>certify</u> th                         | e follow      | ving resu     | lts for                               | samples sub       | mitted.                                             |
|                                     |                                           |               |               | · · · · · · · · · · · · · · · · · · · |                   |                                                     |
| Sample<br>Number                    | AG<br>G/TONNE                             | AG<br>OZ/TON  | AU<br>G/TONNE | AU<br>OZ/TON                          | ••                |                                                     |
| 1241                                | 0.2                                       | 0.01          | .01           | 0.001                                 | •                 |                                                     |
| 1242                                | 4.3                                       | 0.13          | .15           | 0.004                                 |                   |                                                     |
| 1243                                | 0.7                                       | 0.02          | .01           | 0.001                                 |                   |                                                     |
| 1244                                | 0.6                                       | 0.02          | .10           | 0.003                                 | OK,               | ENTERED                                             |
| 1245                                | 2.4                                       | 0.07          | .21           | 0.006                                 | R                 | P-88-18                                             |
| 1246                                | 0.6                                       | 0.02          | . 06          | 0.002                                 | ~~~~~~~~~~~~~~~~~ | Z <i>aŭeu-da</i> ĥeereene <i>nenere</i> ere         |
| 1247                                | 4.4                                       | 0.13          | .12           | 0.004                                 |                   |                                                     |
| 1248                                | 0.2                                       | 0.01          | .05           | 0.001                                 |                   |                                                     |
| 1249                                | 1.8                                       | 0.05          | .02           | 0.001                                 |                   |                                                     |
| 1250                                | 11.7                                      | 0.34          | .24           | 0.007                                 |                   |                                                     |
| 1251                                | 11.9                                      | 0.35          | . 10          | 0.003                                 |                   |                                                     |
| 1252                                | 1.6                                       | 0.05          | .05           | 0.001                                 |                   |                                                     |
| 1253                                | 0.5                                       | 0.01          | .10           | 0.003                                 |                   |                                                     |
| 1254                                | 2.0                                       | 0.06          |               |                                       |                   |                                                     |
| 1255                                | 1.6                                       | 0.05          |               |                                       |                   |                                                     |
| 1256                                | 0.7                                       | 0.02          |               |                                       |                   |                                                     |
| 1257                                | 0.2                                       | 0.01          |               |                                       |                   |                                                     |
| 1258                                | 1.7                                       | 0.05          |               | 4                                     |                   |                                                     |
| 1259                                | 1.3                                       | 0.04          |               |                                       |                   |                                                     |
| 1260                                | <b>0.8</b>                                | 0.02          |               |                                       |                   |                                                     |
| 1261                                | 4.2                                       | 0.12          |               |                                       |                   |                                                     |
| 1262                                | 0.9                                       | 0.03          |               |                                       |                   |                                                     |
| 1263                                | 0.6                                       | 0.02          |               |                                       |                   |                                                     |
| 1264                                | 0.4                                       | 0.01          |               |                                       |                   |                                                     |
| 1265                                | 0,3                                       | 0.01          |               |                                       |                   |                                                     |
| 1266                                | 1.8                                       | 0.05          |               |                                       |                   |                                                     |
| 1267                                | 0.9                                       | 0.03          |               |                                       |                   |                                                     |
| 1268                                | 0.7                                       | 0.02          |               |                                       |                   |                                                     |

Certified by\_\_\_\_

0.04

0.04

1.3

1.4

1269

1270

H

\_\_\_\_

MIN-EN LABORATORIES LTD.

\_\_\_\_\_\_\_





SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 667 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Certificate of Assay</u>

Company:M.P.D.CONSULTANTS Project:DOME MOUNTAIN 684 Attention:S.JENNER File:81-182/P2 Date:NOV.14/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

| Sample                                                                           | AG                              | AG                                   | AU                              | AU                                        |                        |
|----------------------------------------------------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------------------------|------------------------|
| Number                                                                           | G/TONNE                         | OZ/TON                               | G/TONNE                         | OZ/TON                                    |                        |
| 1217<br>1218<br>1219<br>1220<br>1221                                             | 0.9<br>0.4<br>0.3<br>0.8<br>0.6 | 0.03<br>0.01<br>0.01<br>0.02<br>0.02 | .01<br>.01<br>.02<br>.10<br>.10 | 0.001<br>0.001<br>0.003<br>0.003          | OK ENTERED<br>RP-88-19 |
| 1222                                                                             | 0.3                             | 0.01                                 | .02                             | 0.001                                     |                        |
| 1223                                                                             | 17.2                            | 0.50                                 | 1.27                            | 0.037                                     |                        |
| 1224                                                                             | 0.9                             | 0.03                                 | .02                             | 0.001                                     |                        |
| 1225                                                                             | 0.2                             | 0.01                                 | .07                             | 0.002                                     |                        |
| 1226                                                                             | 3.0                             | 0.09                                 | .79                             | 0.023                                     |                        |
| <ul> <li>1227</li> <li>1228</li> <li>1229</li> <li>1230</li> <li>1231</li> </ul> | 0.6<br>1.8<br>1.9<br>0.6<br>1.7 | 0.02<br>0.05<br>0.06<br>0.02<br>0.05 | .01<br>.02<br>.04<br>.18<br>.01 | 0.001<br>0.001<br>0.001<br>0.005<br>0.001 |                        |
| <ul> <li>1232</li> <li>1233</li> <li>1234</li> <li>1235</li> <li>1236</li> </ul> | 2.4<br>1.6<br>2.2<br>0.5<br>1.9 | 0.07<br>0.05<br>0.06<br>0.01<br>0.04 | .20<br>.16<br>.06<br>.01<br>.01 | 0.006<br>0.005<br>0.002<br>0.001<br>0.001 |                        |
| 1237                                                                             | 0.4                             | 0.01                                 | .01                             | 0.001                                     |                        |
| 1238                                                                             | 0.3                             | 0.01                                 | .01                             | 0.001                                     |                        |
| 1239                                                                             | 14.5                            | 0.42                                 | .41                             | 0.012                                     |                        |
| 1240                                                                             | 1.0                             | 0.03                                 | .01                             | 0.001                                     |                        |

Certified by

MIN-EX LABORATORIES LTD.



er der in delte

#### SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

#### VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### <u>Certificate of ASSAY</u>

Company:M.F.D.CONSULTANTS Froject:RF-88-7X 20 Attention:S.JENNER File:81-187/P2 Date:NOV 24/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

| Sample<br>Number | AU<br>G/TONNE | AU<br>OZ/TON |      |      | · |  |
|------------------|---------------|--------------|------|------|---|--|
| 1299             | . 01          | 0.001        |      |      |   |  |
| 1300             | .01           | 0.001        |      |      |   |  |
| 1301             | .02           | 0.001        |      |      |   |  |
| 1302             | .05           | 0.001        |      |      |   |  |
| 1303             | .01           | 0.001        |      |      |   |  |
| 1304             | .01           | 0.001        | <br> | <br> |   |  |
| 1305             | .03           | 0.001        |      |      |   |  |
| 1306             | .01           | 0.001        |      |      |   |  |
| 1307             | .01           | 0.001        |      |      |   |  |
| 1308             | . 77          | 0.022        |      |      |   |  |
| 1309             | .22           | 0.006        | <br> |      |   |  |
| 1310             | .01           | 0.001        |      |      |   |  |
| 1311             | . 14          | Ŏ.QO4        |      |      |   |  |
| 1312             | .42           | 0.012        |      |      |   |  |
| 1313             | .02           | 0.001        |      |      |   |  |
|                  |               |              | <br> | <br> |   |  |

Certified by

MIN-EN LABORATORIES LTD.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of ASSAY

Company:M.P.D.CONSULTANTS ■ Froject:RP-88-12 21 Attention:S.JENNER File:81-187/P3 Date:NOV 24/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

\*\*\*\*\*\*

| W        | Sample<br>Number                     | AU<br>G/TONNE                   | AU<br>OZ/TON                              |                                       |
|----------|--------------------------------------|---------------------------------|-------------------------------------------|---------------------------------------|
|          | 1314<br>1315<br>1316<br>1317<br>1318 | .01<br>.01<br>.01<br>.08<br>.01 | 0.001<br>0.001<br>0.001<br>0.002<br>0.001 |                                       |
| <b>#</b> | 1319<br>1320<br>1321<br>1322<br>1323 | .01<br>.90<br>.03<br>.10<br>.01 | 0.001<br>0.026<br>0.001<br>0.003<br>0.001 |                                       |
|          | 1324<br>1325<br>1326<br>1327<br>1328 | .34<br>.01<br>.01<br>.13<br>.18 | 0.010<br>0.001<br>0.001<br>0.004<br>0.005 | · · · · · · · · · · · · · · · · · · · |
| -        | 1329                                 | <br>.01                         | 0.001                                     |                                       |

Certified by

MIN-EN LABORATORIES LTD.



#### SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

VANCOUVER OFFICE: VANCOVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate いず ASSAY

Company: MPD CONSULTANTS Project: RP-88-22 Attention: STEVE JENNER

File:81-188/P1 Date:NOV 27/88 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

|       |         | 740                                                                       |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|-------|---------|---------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| umber | G/TONNE | OZ/TON                                                                    |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 330   | .03     | 0.001                                                                     |                                                | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |
| 331   | .01     | 0.001                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 332   | .01     | 0.001                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 333   | .02     | 0.001                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 334   | .02     | 0.001                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 335   | .03     | 0.001                                                                     | 나 쓴 도상 수 한 한 한 가 수 수 수 수 수 수 수 수 수 수 수 수 수 수 수 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 336   | . 35    | 0.010                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 337   | 16.45   | 0.480                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                 |
| 338   | 6.91    | 0.202                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 339   | 2,93    | 0.085                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
| 340   | .06     | 0.002                                                                     | ******                                         | 1-19 C (1) C (2) C |                                                   |
| 341   | .03     | 0.001                                                                     |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       | *****   |                                                                           | ***********                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         | م جه مر بيومو بو او بو بو بو بو بو او |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | بنان با نا با |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |
|       |         |                                                                           |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |

Certified by MIN-EN LABORATORIES LTD.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621 **TIMMINS OFFICE:** 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

## Certificate of Assay

Company:MPD CONSULTANTS Project:RP-88-23 Attention:STEVE JENNER File:81-188/P2 Date:NOV 27/88 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

| Sample<br>Number | AU<br>G/TONNE | AU<br>OZ/TON |
|------------------|---------------|--------------|
| 1 7 4 7          | <u>र</u> ११   | A 601        |
| 1242             |               | 0.071        |
| 1040             | n 8.125.<br>  | 0.001        |
| 3 3 4 4          | .03           | 0.001        |
| 1345             | . 01          | 0.001        |
| 1346             | .02           | 0,001        |
| 1347             | .01           | 0.001        |
| 1348             | . 01          | 0.001        |
| 1349             | .03           | 0.001        |
| 1350             | .01           | 0.001        |
| 1351             | .02           | 0.001        |
| 1352             |               | 0.008        |
| 1353             | 3.29          | 0.096        |
| 1354             | .03           | 0.001        |
| 1355             | . 02          | 0.001        |
| 1356             | . 02          | 0.001        |
| 1357             |               | 0.001        |
| 1358             | .03           | 0.001        |
| 1750             | 2.49          | 0.072        |
| 1340             |               | 0 029        |
| 3<br>1           | . 76          | 0,027        |
|                  | • \/ •        |              |
| 1362             | .02           | 0.001        |
| 1363             | . 05          | 0,001        |
| 1364             | .03           | 0.001        |
| 1365             | .02           | 0.001        |

Certified by

MIN-EN LABORATORIES LTD.



SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS . ASSAYERS . ANALYSTS . GEOCHEMISTS

## VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 A FAX (604) 980-9621 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

#### Certificate of Assay

Company: MPD CONSULTANTS Project: RP-88-24 Attention:STEVE JENNER

File:81-188/P3 Date: NOV 27/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

|   | Sample<br>Number | AU<br>G/TONNE | AU<br>OZ/TON |  |
|---|------------------|---------------|--------------|--|
|   | 1366             | .10           | 0,003        |  |
|   | 1367             | . 22          | 0.006        |  |
|   | 1368             | .01           | 0.001        |  |
|   | 1369             | .02           | 0,001        |  |
| Ű | 1370             | 1.94          | 0.057        |  |
|   | 1371             | .02           | 0.001        |  |

| C | ertified by | Bu may | 6 |
|---|-------------|--------|---|

MIN-BN LABORATORIES LTD.

## APPENDIX FOUR

## Summary of Personnel

## 1988 Dome Mountain Drill Program

| Name/Address                                                                                          | <b>Position</b> | Field Work                                                                                                                           |
|-------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Steve Jenner<br>1456 Bunsden Avenue<br>Mississauga, Ontario<br>L5H 2B4                                | Geologist       | Oct.19 - 21, 1988Oct.23, 1988Nov.7 - 10, 1988Nov.11, 1988Nov.12, 1988Nov.14, 1988Nov.15 - 18, 1988Nov.20 - 25, 1988Nov.27 - 28, 1988 |
| Glenn Foerster<br>P.O. Box 70<br>Apt. 806 - 1731 Main Street<br>Smithers, British Columbia<br>V0J 2N0 | Geotechnician   | Nov. 7 - 12, 1988<br>Nov. 14 - 18, 1988<br>Nov. 21 - 22, 1988                                                                        |
| Koos Schippers<br>42 Melcalfe Street<br>Toronto, Ontario<br>M4X 1R7                                   | Engineer        | Nov. 27 - 30, 1988                                                                                                                   |

./tee/dome/dec88rpt

-

#### APPENDIX FIVE

## Summary of 1988 Exploration Expenditures

#### 1988 Dome Mountain Drill Program Statement of Costs

#### <u>Wages - Consultants</u>

| Geologist                                                                       |                                                   |                    |
|---------------------------------------------------------------------------------|---------------------------------------------------|--------------------|
| Oct. 19 - 21                                                                    | 3.0 days @ \$225.00/day                           | \$ 675.00          |
| Oct. 23                                                                         | 1.0 days @ \$225.00/day                           | 225.00             |
| Nov. 7 - 10                                                                     | 4.0 days @ \$225.00/day                           | 900.00             |
| Nov. 11                                                                         | 0.5 days @ \$225.00/day                           | 112.50             |
| Nov. 12                                                                         | 1.0 days @ \$225.00/day                           | 225.00             |
| Nov. 14                                                                         | 1.0 days @ \$225.00/day                           | 225.00             |
| Nov 15 - 18                                                                     | 4.0 days @ \$225.00/day                           | 900.00             |
| Nov. 20 - 25                                                                    | 5.5 days @ \$225.00/day                           | 1,237.50           |
| Nov 27 - 28                                                                     | 2.0 days @ \$225.00/day                           | 450.00             |
| Engineer                                                                        |                                                   |                    |
| Nov. 27 - 30                                                                    | 3.0 days @ \$300.00/day                           | <u>\$ 1,200.00</u> |
| Total Wages - Consultants (25.0                                                 | man days total)                                   | <u>\$ 6,150.00</u> |
| Wages - Employees                                                               |                                                   |                    |
| Geotechnician                                                                   |                                                   |                    |
| Nov. 7 - 12                                                                     | 6.0 days @ \$120.00/day                           | \$ 720.00          |
| Nov 14 - 18                                                                     | 5.0 days @ \$120.00/day                           | 600.00             |
| Nov 21 - 22                                                                     | 2.0 days @ \$120.00/day                           | 240.00             |
| Total Wages - Employees (13.0                                                   | man days total)                                   | <u>\$1,560.00</u>  |
| <u>Transportation</u>                                                           |                                                   |                    |
| 2 Ford F250 4 x 4 3/4 ton 1<br>Oct. 1, 1988 to Nov. 3<br>\$625.00 per month per | Pick-Up Trucks<br>1, 1988 (2 months)<br>r vehicle | <u>\$ 2,500.00</u> |
| Diamond Drilling                                                                |                                                   |                    |
| J.T. Thomas Diamond Drill<br>1338.7 metres (4392 fe                             | ing<br>eet) BQ core at \$21/ft.                   |                    |
| Porcupine M.C.                                                                  | 834.9 metres                                      | \$57,519.00        |
| Triangle Fr. M.C.                                                               | 175.9 metres                                      | 12,117.00          |
| Elk M.C.                                                                        | 240.5 metres                                      | 16,569.00          |
| No. 1 M.C.                                                                      | 87.4 metres                                       | 6,027.00           |
|                                                                                 |                                                   | \$92,232.00        |

./tee/dome/dec88rpt

## Assaying - Drill Core Analysis

| Min-En Laboratories               |                                      |                    |
|-----------------------------------|--------------------------------------|--------------------|
| 12 samples Au. Ag                 | \$15.00/assay plus \$3.75/prep/assay | \$ 225.00          |
| 20 samples Au                     | \$8.50/assav plus \$3.75/prep/assav  | 245.00             |
| 11 samples Ag                     | \$6.50/assay                         | 71.50              |
| 54 samples Au, Ag                 | \$15.00/assay plus \$3.75/prep/assay | 1.019.50           |
| 34 samples Ag                     | \$6.50/assay plus \$3.75/prep/assay  | 348.50             |
| 13 samples Au                     | \$8.50/assay                         | 110.50             |
| 21 samples Au                     | \$8.50/assay plus \$3.75 prep/assay  | 257.25             |
| 55 samples Au                     | \$8.50/assay plus \$3.75 prep/assay  | 673,75             |
| 42 samples Au                     | \$8.50/assay plus \$3.75 prep/assay  | 514.50             |
| Total 262 samples                 |                                      | <u>\$3,465.50</u>  |
| Report Preparation                |                                      |                    |
| Author (Wages)                    | 7.5 days @ \$225.00/day              | \$ 1.687.50        |
| Blueprinting copies               |                                      | 129.57             |
| Total                             |                                      | <u>\$ 1,817.07</u> |
| Total Exploration Expenditures    |                                      | \$107,724.57       |
| Total Apportioned to Dome North ( | Group                                | \$107,724.57       |

-

./tee/dome/dec88rpt





|     |             |   |       |        |       |        | <br>RP-8    | 9 <b>8</b> -20 |
|-----|-------------|---|-------|--------|-------|--------|-------------|----------------|
|     | •<br>•<br>• |   |       |        |       |        | •<br>•<br>• |                |
|     |             |   |       | · ·    |       | •<br>• |             |                |
|     |             |   |       |        |       |        |             |                |
| -   |             |   |       |        |       |        | ·<br>·      |                |
| 145 | 50 m        |   |       |        |       |        |             |                |
|     |             |   |       |        |       |        |             |                |
|     |             |   |       |        | · · · |        |             |                |
|     |             | • |       |        |       |        |             |                |
|     |             |   |       | ·<br>· |       |        |             |                |
|     |             |   |       |        |       |        |             |                |
|     |             |   |       |        |       |        |             |                |
|     |             |   | · · · |        |       |        |             |                |
|     |             |   |       |        |       |        |             |                |
|     |             |   |       |        | ·.    |        |             |                |
|     |             |   |       |        |       |        |             |                |

![](_page_121_Figure_1.jpeg)

| 1<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I |         | * *********************************** |      | · · · · | -<br>- |             |              |
|--------------------------------------------------------------------------------------------------|---------|---------------------------------------|------|---------|--------|-------------|--------------|
| 1<br>Tree<br>OX<br>C                                                                             |         |                                       |      |         |        |             |              |
| 1<br>Trees<br>o                                                                                  |         |                                       |      |         |        |             |              |
| 1<br>Trees<br>Do<br>C                                                                            |         |                                       |      |         |        |             |              |
| 1<br>TEES<br>DO<br>C                                                                             |         |                                       |      |         |        |             |              |
| 1<br>Trees<br>Do                                                                                 |         |                                       |      |         |        |             |              |
| 1<br>I                                                                                           |         |                                       |      |         |        |             |              |
| 1<br>Trees<br>or<br>to sur-                                                                      |         |                                       |      |         |        |             |              |
| I<br>I<br>I                                                                                      |         |                                       |      |         |        |             | •            |
|                                                                                                  |         |                                       |      |         |        |             |              |
| 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                               |         |                                       |      |         |        |             |              |
| 1<br>I                                                                                           |         |                                       |      | -<br>-  |        |             |              |
| 1<br>TEES<br>DO<br>C                                                                             |         |                                       |      | •       |        |             |              |
| 1<br><u>Trees</u><br>Do                                                                          |         |                                       |      | •       |        | · .         |              |
| l                                                                                                |         |                                       |      |         |        |             |              |
| I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I      |         |                                       |      |         |        |             |              |
| ž<br>ž<br>ž<br>ž<br>ž<br>ž<br>ž                                                                  | <u></u> |                                       | <br> | ·       |        |             |              |
| ι<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ<br>Δ                               |         |                                       |      |         |        |             |              |
| A<br>1<br>TEES<br>DOI<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      |         |                                       |      |         |        | · · · · · · |              |
|                                                                                                  |         |                                       |      |         |        |             |              |
| I<br>I<br>I<br>I                                                                                 |         |                                       |      |         |        |             | . •          |
| ι<br>Δι                                                                                          |         |                                       |      |         |        |             |              |
| ۵                                                                                                |         |                                       |      |         |        |             |              |
| tees<br>Do<br>o                                                                                  |         |                                       |      |         |        |             |              |
| 1                                                                                                | nt      |                                       |      |         |        |             |              |
| in t<br>A s S<br>1<br>1<br>ت<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>د<br>ب<br>ا              |         |                                       |      |         |        |             |              |
| I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I      |         |                                       |      |         |        |             |              |
| L                                                                                                |         |                                       |      |         |        |             |              |
| L F<br>A S S<br>1<br>T<br>E<br>E<br>DOI<br>C<br>Sou 1988                                         |         |                                       |      |         |        |             |              |
| A S S<br>1<br>TEES<br>DOT<br>SN 1988                                                             |         |                                       |      |         |        |             |              |
| A SS<br>1<br>TEES<br>DOI<br>C<br>SAJ 1988                                                        |         |                                       |      |         |        |             |              |
| U F A<br>A S S<br>I<br>TEES<br>DOI<br>(<br>Saj 1998                                              |         |                                       |      |         |        |             |              |
| L E E<br>A S S<br>I<br>TEES<br>DOI<br>C<br>SAJ 1985                                              |         |                                       |      |         |        |             |              |
| A S S<br>1<br>TEES<br>DOI<br>C<br>SAU 1988                                                       |         |                                       |      |         |        |             |              |
| A SS<br>1<br>TEES<br>DOI<br>SAJ 1988                                                             |         |                                       |      |         |        |             |              |
| A S S<br>1<br>TEES<br>DOI<br>C<br>SAU 1988                                                       |         |                                       |      |         |        |             |              |
| TEES<br>DOI<br>C<br>SAJ 1988                                                                     |         |                                       |      |         |        |             | <b>A</b> S S |
| TEES<br>DOI<br>C<br>SAJ 1988                                                                     |         |                                       |      |         |        |             | 1            |
| TEES<br>DOI<br>0<br>SAJ 1988                                                                     |         |                                       |      |         |        |             |              |
| DO<br>(<br>)<br>SAJ 1988                                                                         |         |                                       |      |         |        |             | TEES         |
| ۵<br><br>SAJ 1988                                                                                |         |                                       |      |         |        |             | DO           |
| 0<br>                                                                                            |         |                                       |      |         |        |             | -            |
| 0<br><br>SAJ 1988                                                                                |         |                                       |      |         |        |             |              |
| 0<br><br>SAJ 1988                                                                                |         |                                       |      |         |        |             |              |
| SAJ 1988                                                                                         |         |                                       |      |         |        |             | °<br>E       |
|                                                                                                  |         |                                       |      |         |        |             | SAJ 1988     |

![](_page_121_Picture_3.jpeg)

![](_page_122_Figure_0.jpeg)

| LEGEND                                                                                         |   |  |
|------------------------------------------------------------------------------------------------|---|--|
| GICAL UNITS                                                                                    |   |  |
| BREEN ANDESITE                                                                                 |   |  |
| BREEN ANDESITE TUFF                                                                            |   |  |
| SREEN ANDESITE AGGLOMERATE                                                                     |   |  |
| MAROON ANDESITE                                                                                |   |  |
| MAROON ANDESITE AGGLOMERATE                                                                    |   |  |
| BLEACHED ZONE                                                                                  |   |  |
| OGICAL ABBREVIATIONS                                                                           |   |  |
| calcite py pyrite<br>carbonate gc guartz-carbonate                                             |   |  |
| chlorite qtz quartz<br>chalcopyrite ser sericite<br>epidote sph sphalerite                     |   |  |
| galena                                                                                         |   |  |
| ABBREVIATIONS                                                                                  |   |  |
| broken core wkf weakly foliated<br>breccia mf moderately foliated                              |   |  |
| core axis wf well foliated<br>stringer ŵ with<br>fine grained 11 parallel                      |   |  |
| medium grained sub II sub parallel<br>coarse grained [-] concentrated<br>disseminated tr trace |   |  |
|                                                                                                |   |  |
| DLS                                                                                            |   |  |
| claim post (located) and lines                                                                 |   |  |
| permanent survey point                                                                         |   |  |
| drill hole collar and horizontal projection                                                    |   |  |
| drill hole gold assay ≦ 0.001 oz/ton Au<br>(refer to drill log for interval)                   |   |  |
| drill hole gold assay in oz/ton Au<br>(refer to drill log for interval)                        |   |  |
| sample location in trench                                                                      |   |  |
| A SURVEY BY CLOSED TRAVERSES<br>RUNTON POCKET TRANSIT, TRIPOD AND CHAIN.                       |   |  |
| D FIGURE 3 FOR MAP AREA LOCATION<br>MATE MAGNETIC DECLINATION IS <b>26° EAST</b> .             |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
| ·                                                                                              |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
|                                                                                                |   |  |
| OGICAL BRANCH                                                                                  |   |  |
| SSMENT REPORT                                                                                  |   |  |
| 2 0 0 5                                                                                        |   |  |
| シ, フリノ                                                                                         |   |  |
|                                                                                                |   |  |
| SHIN RESOURCES LIMITED                                                                         | _ |  |
| JNE MOUNTAIN PROJECT                                                                           |   |  |
| FIGURE 6<br>URFACE DRILLING PLAN                                                               |   |  |
| CABIN - FEDRAL AREA                                                                            |   |  |
| SCALE 1:500                                                                                    |   |  |
|                                                                                                |   |  |
| METRES                                                                                         |   |  |
|                                                                                                |   |  |

![](_page_123_Picture_0.jpeg)

|       |      |         |       |           | • '                |
|-------|------|---------|-------|-----------|--------------------|
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
| 1450m | <br> |         | ,<br> |           |                    |
|       |      |         | •     |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      | х.<br>• |       |           |                    |
| •     |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       | ;         |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           | V <u>e</u>         |
|       |      |         |       |           | Vm <b>t</b><br>Vqt |
|       |      |         |       | Vr<br>Vat | nt /               |
|       |      |         |       | ~         |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       | •         |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |
|       |      |         |       |           |                    |

-

![](_page_124_Picture_1.jpeg)

![](_page_125_Picture_0.jpeg)

|                                                                                                                 | $\left  \right $ |
|-----------------------------------------------------------------------------------------------------------------|------------------|
| LEGEND                                                                                                          |                  |
| GICAL UNITS                                                                                                     |                  |
| SREEN ANDESITE                                                                                                  |                  |
| GREEN ANDESITE TUFF                                                                                             |                  |
| GREEN ANDESITE AGGLOMERATE                                                                                      |                  |
| AROON ANDESITE                                                                                                  |                  |
| MAROON ANDESITE TUFF                                                                                            |                  |
| MAROON ANDESITE AGGLOMERATE                                                                                     |                  |
| BLEACHED ZONE                                                                                                   |                  |
| LOGICAL ABBREVIATIONS                                                                                           |                  |
| calcite py pyrite<br>carbonate qc quartz-carbonate<br>chlorite qtz quartz                                       |                  |
| chalcopyrite ser sericite<br>epidote sph sphalerite<br>galena                                                   |                  |
|                                                                                                                 |                  |
| ABBREVIATIONS                                                                                                   |                  |
| roken core' wkf weakly foliated                                                                                 |                  |
| reccia mi moderately follated<br>ore axis wf well foliated<br>tringer $\bar{w}$ with<br>ine grained II parallel |                  |
| nedium grained sub-ll sub-parallel<br>coarse grained [-] concentrated<br>lisseminated tr trace                  |                  |
|                                                                                                                 |                  |
| 15                                                                                                              |                  |
| claim post (located) and lines                                                                                  |                  |
|                                                                                                                 |                  |
| permanent survey point                                                                                          |                  |
| drill hole collar and horizontal projection<br>drill hole gold assay $\leq$ 0.001 oz/ton Au                     |                  |
| (refer to drill log for interval)<br>drill hole cold assay in oz/ton Au                                         |                  |
| (refer to drill log for interval)                                                                               |                  |
| sample location in trench                                                                                       |                  |
| SURVEY BY CLOSED TRAVERSES<br>NTON POCKET TRANSIT, TRIPOD AND CHAIN.                                            |                  |
| FIGURE 3 FOR MAP AREA LOCATION<br>ATE MAGNETIC DECLINATION IS 26° EAST.                                         |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
| LOGICAL BRANCH<br>ESSMENT REPORT                                                                                |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
|                                                                                                                 |                  |
| HIN RESOURCES LIMITED                                                                                           |                  |
| 1E MOUNTAIN PROJECT                                                                                             |                  |
| FIGURE 12                                                                                                       |                  |
| RFACE DRILLING PLAN                                                                                             |                  |
| OF ELK SHOWING                                                                                                  |                  |
| SCALE 1:250                                                                                                     |                  |
| 5 10 15 20 25                                                                                                   |                  |
| METRES                                                                                                          |                  |
| 3                                                                                                               |                  |
|                                                                                                                 |                  |

![](_page_126_Picture_0.jpeg)

# TRENCH SAMPLES LOCATED 2.5 METRES TO EAST 39101 Vgt Grab/0.003 oz/ton Au 39225 qtz-py Grab/0.642 oz/ton Au

()

SAJ 1988

DATUM STN 272 GEOLOGICAL BRANCH ISSESSMENT REPORT TEESHIN RESOURCES LIMITED DOME MOUNTAIN PROJECT FIGURE 13 SECTION OF DRILL HOLES RP-88-21, 22 ELK SHOWING AREA LOOKING WEST SCALE 1:250 METRES Section and and

| <b>–</b> |               |                                       | and the second |
|----------|---------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------|
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          | DATUM STN 272 |                                       |                                                                                                                  |
|          |               | RP-88-24                              |                                                                                                                  |
|          |               | · · · · · · · · · · · · · · · · · · · |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | · ·                                                                                                              |
|          |               |                                       | · .                                                                                                              |
|          |               |                                       | ₩                                                                                                                |
|          |               | •                                     |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               | -                                     | 1                                                                                                                |
|          |               | ·                                     |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | [                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | l                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | 1                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | -                                                                                                                |
|          |               |                                       | !                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               | NO. T. M.C.<br>L. 2908                | ·                                                                                                                |
|          |               |                                       | 1                                                                                                                |
|          |               |                                       | l                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | ،<br>ا                                                                                                           |
|          |               |                                       | 1                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | ]                                                                                                                |
|          |               |                                       | •                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | 1                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | -                                                                                                                |
|          |               |                                       | l                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          | ·             |                                       |                                                                                                                  |
|          |               |                                       | 1                                                                                                                |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       |                                                                                                                  |
|          |               |                                       | 1                                                                                                                |
| 1        |               |                                       | 1                                                                                                                |

![](_page_127_Figure_1.jpeg)

## POSITION OF INFERRED ELK MINERALIZATION ON SURFACE

Vgt

Vm,gt

SAJ 1988

![](_page_127_Figure_16.jpeg)