

GEOCHEMICAL REPORT
FILMED

ON THE

CRIPPLE LAKE PROPERTY
N.T.S. $93 \mathrm{~K} / 16$

OMINECA MINING DIVISION

SITUATED AT COORDINATES:
54 DEG $50 \mathrm{MIN} N$
124 DEG 07 MIN W

NORANDA EXPLORATION COMPANY, LIMITED
 ASSESEMENTREPORT

JULY, 1989

TABLE OF CONTENTS

SUMMARY 1
INTRODUCTION 2
LOCATION \& ACCESS 2
CLAIM STATISTICS 2
TOPOGRAPHY \& VEGETATION 3
REGIONAL GEOLOGY 3
GEOCHEMISTRY 4
METHOD 4
OBSERVATIONS 4
CONCLUSIONS \& RECOMMENDATIONS σ
APPENDIX I STATEMENT OF COSTS 7
APPENDIX II STATEMENT OF QUALIFICATIONS 8
APPENDIX III ANALYTICAL PROCEDURE 9,10
LIST OF FIGURES

FIGURE 1	LOCATION MAP	$1: 8,000,000$	$2 A$
FIGURE 2	CLAIM MAP	$1: 50,000$	$2 B$

IN POCKET AT REAR OF REPORT
FTGURE 3 CU/AU SOIL GEOCHEMISTRY $1: 5,000$

SUMMARY:

The CL claims were staked to cover potential gold targets in the Cripple Lake area, in light of the recent gold discovery on the TAs property. None of the present base metal geochemistry warrants further follow-up at the present time, but the four gold anomalies require further fillin lines and closer spaced sampling to confirn gold bearing horizons.

During the 1988 field season, 294 soil samples were collected from two mini grids and one recon soil line. The mini grids consisted of 25 meter sample intervals and 100 meter line spacing. The recon soil line (Lil, $400 E$ had a sanple interval of 50 meters.

INTRODUCTIOR:

The CL claims were staked to cover potential gold targets in the Cripple Lake area. The recent gold discovery on the TAS property has spurred exploration and staking in the immediate area. The CL claims were ataked by Noranda Exploration personnel between February 26 and April 3 of 1987. During the spring of 1988, a total of 294 B horizon soil samples were collected from two detailed grids and a recon soil line.

This report describes the results of the soil geochem survey.

LOCATION_6_ACGESS:

The CL property is aituated approximately 50 kilometres due north of the town of Fort St. Janes. The CL claims straddle Tezzeron Creek immediately south of Cripple Lake.

The clains are directly accessible from the Germansen Road which cuts acrose the northwest half of the property. Numerous logging roads and clear-cut provide more local access.

The claims are found on NTS map $93 \mathrm{~K} / 16$ centred at 54 degrees 50 minutes North and 124 degrees 07 minutes West.

CLATM_STATISTICS:

The CL claims are all modified grid type claima found on claim nap $93 \mathrm{~K} / 16$ East, in the Omineca Mining Division.

CLAIM_NAME	UNITS	RECORD_\#	RECORD_DATE	GROUP
CL 1	20	8246	Mar 24	Cripple Lake
CL 2	12	8364	April 22	Cripple Lake
CL 3	14	8365	April 22	Cripple Lake
CL 4	18	8366	April 22	Cripple Lake

ASSESSMENT - GEOCHEMICAL REPORT

CRIPPLE_LAKE PROPERTY
PAGE
3

TOPOERAPHY_\&_VEGETATION:

The area is characterized by pine flata, lower swampy areas and outcrop knolls. The pine flat areas generally consist of stratified till, gravel and sand plains and small eskers. The swampy areas are usually low lying ground around Tezzeron and Cripple Creek. The outcrop knolls appear to be areas of more resistant rock producing a hummocky terrain.

Vegetation consists of mature stands of spruce, pine and fir, which is presently being logged off in some areas. Undergrowth is mainly slder with some devils club.

REGIONAL_GEOLOGY:

The area has most recently been described by J.E. Armatrong in G.S.C. Memoir 252, Fort St. James Map-Area in 1949. The area has also been covered on G.S.C. Map 971A by H.M.A. Rice in 1949 (Geclogy of Smithers-Fort St. James Area).

The CL claims lies in a broad northwest trending package of rocks knows as the Quesnel Trough. These include Upper Triassic to Lower Jurassic Takla Group volcanics and sediments which have been intruded by a series of felsic to ultramafic stocks and batholiths, ranging in age from. Upper Triassic to Lower Cretaceous.

The area is cut by numerous fault structures usually trending northwest, parallel to the Pinchi Fault. These may be sub-paralled splay faults with tensional or transverse structures trending east-west.

GEOCHEMISTRY:

METHOD

A total of 294 "B" horizon soil samples were collected using soil augers. The samples were placed in kraft wet-strength paper bags, dried, then shipped to Noranda Labs in Vancouver, B.C., for analysis (for analytical procedure, see Appendix III). Samples were analyzed for copper and gold; results are plotted on 1:5,000 scale maps in rear pockets.

OBSERVATIONS

Creek Grid:

Gold values range from 5 to 170 ppb, with values greater than 20 ppb considered anomalous. Anomalous samples are listed as follows:

LOCATION
L8800E 10275 N
10275 N
L9100E 10350 N
L9400E 10500N
10850 N
10900 N
11000 N
L9600E 10550 N
L9700E 10350N
Copper values range from 18 to 120 ppm, with values greater
100 ppm considered anomalous. Anomalous samples are listed
Copper values range from 18 to 120 ppm, with values greater
than 100 ppm considered anomalous. Anomalous samples are listed as follows:

17030L9400E 10500N304095353525

$$
80
$$

```
\begin{tabular}{ll} 
LOCATION & CU (ppm) \\
L9000E \(10175 N\) & 110 \\
L9400E \(10050 N\) & 120 \\
L9600E \(10450 N\) & 114 \\
L9700E 10000 N & 120
\end{tabular}
LOCATION
    L9000E 10175N
    110
    L,9400E 10050N 120
    L9600E 10450N
    124
    L9700E 10000N 120
```

Glearcut_Grid:
Gold values range from 10 to 430 ppb, with values greater than 20 ppi considered anomalous. Anomalous samples are listed below:

LOCATION AU (ppb)
L10800E 10225N 430

No copper anomalies on the Clearcut grid.

Copper values range frok 18 to 110 pph, with values greater than 100 ppr considered anomalous. Anomalous samples are listed below:

LOCATION
L11400E GO50N

CU (ppm)
110

```
ASSESSMENT - GEOCHEMICAL REPORT
```


GONCLUSIONS:

Moat of the gold anomalies on the Creek Grid are concentrated in three areas. These anomalous areas should be regarded as good potential gold targets.

There are three linear gold anomalies and three scattered isolated anomalous values on the Creek Grid. The anomalies trend roughly east-west. The anomalous areas should be regarded as good gold targets. There is one isolated anomalous value located on the clearcut Grid, found on L10800E and requires more aoiling to locate any further anomalous zones.

The copper values are scattered and isolated throughout the grid. The low values are not enough to indicate economic copper mineralization on the property.

RECOMMENDATIONS:

1. Compass and flag lines 100 meters apart around anomalous areas on the Creek and Clearcut grids.
2. Soil aample around anomalous values.
3. Conduct a magnetometer survey oyer the Clearcut and Cxeek grids.

APPENDIX I

STATEMENT OF COSTS
GEOCHEMICAL REPORT
CRIPPLE LAKE PROPERTY

1. WAGES:

Soil Geochemistry - 7 md 0 sloo/day
$\$ \quad 700.00$ Linecutting - 5 ad © $\$ 100 /$ day
$\$ \quad 500.00$
2. FOOD, ACCOMMODATIONS \& TRANSPORTATION:

12 ad @ s50/day
$\$ 600.00$
3. ANALYSIS:

294 samples 58.75 per sample $\$ 2,572.50$
4. TRUCK RENTAL:

12 nd $650 / \mathrm{day}$ s 500.00
5. COST OF REPORT PREPARATION:

Author	$\$ 200$
Drafting	$\$ 200$
Typing	$\$ 50$

$\frac{3}{5}-5,420.00$

APPENDIX IT

STATEMENT OF QUALIFICATIONS

```
I, Terremice Campbell, of Frimce Gearge, Frovince of British
Coluntia, do hereby certify that:
1. I am a geologist residing at 774| Gladstane Drive,
Frirscem George, Eritish Colsmbioia.
2. I an a 1985 nradtate of the University gf Eritish
Ccilumbia, E.Sc. {Gpology).
3. I am a member in gomd stamdirg Gf the Eritish Columoia
Yukor, Chamber of mimes.
4. I preseritly hold the position ori field Gealogist with Norancia Exploratiom Compariy, Limited (no pernsormal Iiability) arad have been in their emolay sirce 1986.
```


Terremce Canpobe11

The methods listed are preseritly applied to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver. (March, 1984)

Preparation of Samples

Sediments and soils are dried at approximately $80^{\circ} \mathrm{C}$ and sieved with a 80 mesh nylon screer. The -80 mest (0.18 mm) fraction is used for andlysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). Heavymineral fractions (parined samples) are arialysed irg its entirety, when it is to be determined for gold without further sample preparation. See addendum.

Analysis of Samoles.

Decomposition of a 0.200 sample is done with concertrated perchloric and nitric acid (3: i), digested for 5 hours at refiux temperature. pulps of rack or core are weighed out at 0.2 g or less depending on the matrix of the rock, and twice as much acid is used for decompositian than that is used for silt or soil.

The corscentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zr (all the group A elemerits cif the fee schedule) car be determined directly from the digest (aissolution) with ar atoric absorption spectrometer (AA). A Variar-Techtrore Model AA-5 or Madel AA-475 is used to measure elemental concentratiors.

Elements Requigirn Specific Decompositian Methad

Antimony - Sb: 0. \because g sample is attacked with 3.3 mL of $6 \times$ tartaric acid, 1.5 mL coric. hydrachloric acid ard 0.5 mL of coric. nitric acio, then heated in a water bath for 3 houns at 950 C . 5 S is determined directly from the acid solutior with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: $0.2-0.4$ g sample is digested with 1.5 mL of $70 x$ perchloric acid and 0.5 mL of conc. ritric acid. A Varian AA-475 equipped with an As-EDL measures the arsenic concertration of the digest.

Barium - Baz 0.1 g sample is decomposed with conc. perchloric. nitric and hydrofluoric acid. Atomic absorption using a nitrous oxide-acetylene fiame determines Ba from the aqueous solutior.

Bismuth - Bi: $0.2 \mathrm{~g}-0.3 \mathrm{~g}$ is digested with 2.0 nl of perchloric $70 x$ and 1. O m of conc. nitric acid. Bismuth is determined directly from the digest into the flame of the AA irstrument c / w EDL.

Gold - Aus 10.0 g sample (Pan-concentrates see below) is digested with aqua regia (i part nitric and 3 parts hydrochioric acid). Gold is extracted with Methyl iso-Butyl ketone (MIBK) from the aqueous solution. Gold is determired from the MIBK solution with flame AA.

Magnesium - Mg: $0.05-0.10$ g sample is digested with 4 ml perchlonic/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carborate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot, taken from a perchlaric-nitric (3:i) decomposition, usually from the multi-element digestion, is diluted with water and a phosphate buffer. This solution is exposed to laser iight, and the iuminescence of the uraryl ion is quantitatively meagured on the ua-3 (Scintrex).

LOWEST VALLES REPORTED IN PPM

$A g-0.2$	Mri-20	Zri-1	Au - 0.01 (10ppg)
Cd - 0.2	$\mathrm{Mo} \mathrm{-} 1$	Sb-1	$w-2$
Co - 1	$\mathrm{Ni}-1$	$\theta_{5}-1$	$U-0.1$
$\mathrm{Cu}-1$	P6-1	Ba-10	
$F E-100$	$v-10$	Ei -1	

NDRANDA VANCOUVER LABORATORY

Sheet: 1 of 11
Geol. :G.M.

Date complisulisi

Material
Remarks

$=$	283
$: 572$	SOILS
$=$	

Values in phys except where noted. $\quad 151 L$

T.T. SAMPLE	NO.	Pu	Nu
NO.	NO.	Cu	

No. $\mathrm{Cu} \quad \mathrm{Au}$

$9<108005$	9950	20
9975	18	

$671000020 \quad 20$

68
69

70

71
7こ

73

74
75

76

77
78
79

50	10325
81	$10000 E-10350 N$

$11107008 \quad 9950$

1129975

10000
10025

10050 10075 10100 10125 10150 10175 10200 10225 10250 10275 10300 $\begin{array}{lc}125 & 10325 \\ 127 & 109005-10350 \mathrm{~N} \\ 143 & 11000 E \\ 9975\end{array}$ | 125 | 10325 |
| :--- | :---: |
| 127 | $109005-10350 \mathrm{~N}$ |
| 143 | $11000 E$ |
| 9975 | | 9975 10075 10125 10175 102 E 5 10275

$11000 \mathrm{E}-10325 \mathrm{~N}$

114

115

116

117
118
119 120 121 12 123 124 125

143	$\\| 000 E$	9975
144		10075
145		10125
146		10175
147		10225
148		10275
149	$11000 E-10325 \mathrm{~N}$	

101020
101010
10 C

$$
10
$$

$$
10
$$

$$
430
$$

$$
10
$$

$$
10
$$

$$
10
$$

$$
10
$$

18	10
22	10
20	10

$$
\frac{10}{10}
$$

	SAMPLE No.	PpB Au		8806-067		
No.				Pre 4 of	11	
43	$11400 \mathrm{E}-7400 \mathrm{~N}$	24	10			
44	7450	20	10			
45	7500	24	10			
46	7550	22	20			
47	7500	24	10			
48	7650	26	10			
49	7700	24	10			
50	7750	26	10			
51	7800	62	10			
52	7850	30	10			
53	7900	30	10			
54.	7950	2 c	20			
55	8000	24	10			
55	B050	24	10			
57	8100	18	10			
58	8150	34	10			
59	9250	28	10			
60	8300	20	10			
61	8350	18	10			
62	8400	20	10			
63	8450	48	10			
64	8500	44	10			
65	8700	50	10			
66	8750	32	10			
67	8800	58	10			
68	B850	34	10			
69	- 8900	44	10			
70.	< 8950	20	10			
71	$\therefore 9000$	74	10			
72	$11400 \mathrm{E}-9050 \mathrm{~N}$	110	10			
73	1:400E-9100N	44	10			
74	9150	36	10			
75	11400E-9200N	52	10			

FSDRANDA VANCDUVER LAEGRATURY

PROPEFTY LDCATBEN:STUART AU (CRIPPLE LAKE) CODE : SGOI-COI

Praject No.	$=293$
Materiai	$=154$ SOILS
Kemarks	$:$

Greft:1 of 3
Eecil. = ©. M.

Values ir: FFM, except where ricted.

21/2. Po DP

T．T．${ }^{\text {a }}$		SAnFOLE					PFE	590：－00	
NG．		NC．	Cu	7n	F＇	An	Au	Fg． 3 cit	3
107	9600	E－ 10000 N	58	76	2	$0 . E$	탄		
108		1006	56	58	4	0.8	5		
109		10050	30	88	4	O．	5		
110		10075	34	70	®	0.3	탄		
111		10100.	$5 \pm$	76	z	$0 . \mathrm{E}$	5		
112		10125	30	70	ミ	$0 . \%$	E		
115		10150	40	85	4	O．玉	5		
114		10175	36	$5 \cdot$	E	O．	\％		
115		10000	35	50	E	0.3	5		
115		30ここ巨	40	90	4	6．${ }^{3}$	$E 0$		
117		1055	34	32	2	6.2	5		
118		105S0	24	300	4	$0 . 』$	こ5		
119		10575	36	75	4	$0 \cdot$	5		
1 ± 0		10500	Es	75	Ξ	O．こ	5		
131		106 ± 5	56	100	4	O．E	5		
1 를		10 ESO	58	30	2	O．	5		
：		10675	®s	100	4	0．${ }^{\text {a }}$	E		
124		10700	40	7セ	ت	0.5	5		
155		$107 E 5$	44	84	E	0．E	E		
1 こ6		10750	56	58	\because	O．E	5		
1こ7		10775	40	$1: 0$	4	O．E	E		
1 ®В		10500	50	100	こ	6． 2	5		
：$=9$		10805	35	50	Ξ	O．E	5		
：30		1055	60	58	\pm	6－ 0^{2}	15		
131		10575	35	73	2	Oご	5		
130	550	OE－10500N	56	75	Ξ	O．こ	5		
13%	9700	E－10000\％	120	78	E	6.4	16		
154		1005	こ4	Es	\pm	O．E	¢		
155		10050	34	54	1	0.8	$\because 0$		
135		10100	58	50	Σ	O．E	5		
137		10105	38	88	E	$0 . \Xi$	5		
135		10150	S4	80	1	O．2	5		
135		1037E	$4{ }^{4}$	84	E	O．	5		
140		10 OOG	40	55	®	0.2	E		
141		$10 こ 5$	33	80	E	0．	5		
142		10050	． 56	80	1	O．E	E		
143		10こ75	Te	76	$\underline{3}$	0.0	5		
144		10360	36	$\bigcirc 0$	1	0．E	5		
145		10305	36	Sせ	1	O．	5		
145		10350	36	84	こ	$0 . E$	80		
147		10375	38	50	\pm	O． 0^{2}	$1 \pm$		
148		10400	З8	7 －	E	－3．	10		
143		10425	36	75	1	0.5	20		
150	CHECK	Nu．-6	$5 \pm$	150	E8	1．	－		
151		10450	4.4	74	Ξ	O．E	5		
15¢		10475	덜	130	E	Q．E	19		
15゙		10500	38	78	1	O．E	5		
154		10 965	34	70	1	O．	5		
155		1055	3ご	74	1	O．き	10		
155		10575	70	90	：	O．E	30		
157	3700	OE－10をOON	Э゙	60	1	0.2	5		

