.06 NO:	0719	RD.
VENUN:	•	
		······
FILE NO:		

FILMED

GEOCHEMICAL REPORT

ON THE

CRIPPLE LAKE PROPERTY

N.T.S. 93 K/16

OMINECA MINING DIVISION

SITUATED AT COORDINATES: 54 DEG 50 MIN N 124 DEG 07 MIN W

NORANDA EXPLORATION COMPANY, LIMITED (10 PEBSENGL (FIAETAT LY)B R A N C H ASSESSMENT REPORT

JULY, 1989

BY: TERRY CAMPBELL

TABLE OF CONTENTS

.

SUMMAR	Y	••	•••			•••	••	••	••	••	••	••	••	••	•	••	••	•	••	••	•	1
INTROL	UCTI	ON		•••			••	••	•••	••	• •	• •		••	-		••	•			• •	2
LOCATI	ON &	AC	CES	s			••		••	••	••	••	• •	••	•	••	••	•		• •	• •	2
CLAIM	STAT	IST	ics		•	•••	••	• •	••	• •		••	• •	• •	-		••	•	••	• •	• •	2
TOPOGR	APHY	-3	VEG	ETA'	ric	ON			• •	••	••	••	••	••	-	• •	• •	•	• -	• •	• •	3
REGION	AL G	EOL	OG Y		•	•••	• •	••	••	• •	••	• •	••	••	-	••	• •	•	• •	• •	••	3
GEOCHE	MIST	RY		•••	• • •		••	••	••	••	- •	• •	* •	••	•		• •	•			• •	4
h	ETHO	D	•	•••	• • •		••	••	••		• •	••	••	••	-			•			• •	4
C	BSER	VAT	ION	S		• • •	••	••	••	••	••	••	• •	••	•		••	•	• •	• •	••	4
CONCLU	SION	S &	RE	COM	ME	NDA	TI	ON	ຣ		•	••	• •	••	•	••	••	•	• •	• •	••	6

APPENDIX	I	STATEMENT	0F	COSTS	7	
APPENDIX	II	STATEMENT	OF	QUALIFICATIONS	8	
APPENDIX	III	ANALYTICAL	. PF	ROCEDURE	9,	10

LIST OF FIGURES

.

· -

FIGURE	1	LOCATION MAP	1:8,000,000	2A
FIGURE	2	CLAIM MAP	1:50,000	2B

IN POCKET AT REAR OF REPORT

FIGURE	3	CU/AU	SOIL	GEOCHEMISTRY	1:5,	000
					•	

ASSESSMENT - GEOCHEMICAL REPORT CRIPPLE LAKE PROPERTY ______PAGE 1

SUMMARY:

The CL claims were staked to cover potential gold targets in the Cripple Lake area, in light of the recent gold discovery on the TAS property. None of the present base metal geochemistry warrants further follow-up at the present time, but the four gold anomalies require further fill-in lines and closer spaced sampling to confirm gold bearing horizons.

During the 1988 field season, 294 soil samples were collected from two mini grids and one recon soil line. The mini grids consisted of 25 meter sample intervals and 100 meter line spacing. The recon soil line (L11,400E) had a sample interval of 50 meters.

ASSESSMENT - GEOCHEMICAL REPORT CRIPPLE LAKE PROPERTY PAGE 2

INTRODUCTION:

The CL claims were staked to cover potential gold targets in the Cripple Lake area. The recent gold discovery on the TAS property has spurred exploration and staking in the immediate area. The CL claims were staked by Noranda Exploration personnel between February 26 and April 3 of 1987. During the spring of 1988, a total of 294 B horizon soil samples were collected from two detailed grids and a recon soil line.

This report describes the results of the soil geochem survey.

LOCATION & ACCESS:

The CL property is situated approximately 50 kilometres due north of the town of Fort St. James. The CL claims straddle Tezzeron Creek immediately south of Cripple Lake.

The claims are directly accessible from the Germansen Road which cuts across the northwest half of the property. Numerous logging roads and clear-cut provide more local access.

The claims are found on NTS map 93 K/16 centred at 54 degrees 50 minutes North and 124 degrees 07 minutes West.

CLAIM_STATISTICS:

The CL claims are all modified grid type claims found on claim map 93 K/16 East, in the Omineca Mining Division.

CLAIM	NAME#	<u>UNITS P</u>	RECORD #	RECORD DA	<u>TEGROUP</u>	
CL 1		20	8246	Mar 24	Cripple L	ake
CL 2		12	8364	April 22	2 Cripple L	ake
CL 3		14	8365	April 22	2 Cripple L	ake
CL 4		18	8366	April 22	2 Cripple L	ake

ASSESSMENT - GEOCHEMICAL REPORT CRIPPLE LAKE PROPERTY PAGE 3

TOPOGRAPHY & VEGETATION:

The area is characterized by pine flats, lower swampy areas and outcrop knolls. The pine flat areas generally consist of stratified till, gravel and sand plains and small eskers. The swampy areas are usually low lying ground around Tezzeron and Cripple Creek. The outcrop knolls appear to be areas of more resistant rock producing a hummocky terrain.

Vegetation consists of mature stands of spruce, pine and fir, which is presently being logged off in some areas. Undergrowth is mainly alder with some devils club.

REGIONAL GEOLOGY:

The area has most recently been described by J.E. Armstrong in G.S.C. Memoir 252, Fort St. James Map-Area in 1949. The area has also been covered on G.S.C. Map 971A by H.M.A. Rice in 1949 (Geology of Smithers-Fort St. James Area).

The CL claims lies in a broad northwest trending package of rocks knows as the Queanel Trough. These include Upper Triassic to Lower Jurassic Takla Group volcanics and sediments which have been intruded by a series of felsic to ultramafic stocks and batholiths, ranging in age from Upper Triassic to Lower Cretaceous.

The area is cut by numerous fault structures usually trending northwest, parallel to the Pinchi Fault. These may be sub-parallel splay faults with tensional or transverse structures trending east-west.

ASSESSMENT - GEOCHEMICAL REPORT CRIPPLE LAKE PROPERTY

GEOCHEMISTRY:

METHOD

A total of 294 "B" horizon soil samples were collected using soil augers. The samples were placed in Kraft wet-strength paper bags, dried, then shipped to Noranda Labs in Vancouver, B.C., for analysis (for analytical procedure, see Appendix III). Samples were analyzed for copper and gold; results are plotted on 1:5,000 scale maps in rear pockets.

OBSERVATIONS

Creek Grid:

Gold values range from 5 to 170 ppb, with values greater than 20 ppb considered anomalous. Anomalous samples are listed as follows:

LOCATI	DN	AU (ppb)
L8800E	10275N	170
	10275N	30
L9100E	10350N	30
L9400E	10500N	40
	10850N	95
	10900N	35
	11000N	35
L9600E	10550N	25
L9700E	10350N	80

Copper values range from 18 to 120 ppm, with values greater than 100 ppm considered anomalous. Anomalous samples are listed as follows:

LOCATION	CU (ppm)
L9000E 10175N	110
L9400E 10050N	120
L9600E 10450N	114
L9700E 10000N	120

ASSESSMENT - GEOCHENICAL REPORT CRIPPLE LAKE PROPERTY PAGE 5

Clearcut Grid:

Gold values range from 10 to 430 ppb, with values greater than 20 ppb considered anomalous. Anomalous samples are listed below:

LOCATION	AU (ppb)
L10800E 10225N	430

No copper anomalies on the Clearcut grid.

L11400E:

Copper values range from 18 to 110 ppm, with values greater than 100 ppm considered anomalous. Anomalous samples are listed below:

LOCATION	CU (ppm)
L11400E 9050N	110

ASSESSMENT - GEOCHEMICAL REPORT CRIPPLE LAKE PROPERTY PAGE 6

CONCLUSIONS:

Most of the gold anomalies on the Creek Grid are concentrated in three areas. These anomalous areas should be regarded as good potential gold targets.

There are three linear gold anomalies and three scattered isolated anomalous values on the Creek Grid. The anomalies trend roughly east-west. The anomalous areas should be regarded as good gold targets. There is one isolated anomalous value located on the Clearcut Grid, found on L10800E and requires more soiling to locate any further anomalous zones.

The copper values are scattered and isolated throughout the grid. The low values are not enough to indicate economic copper mineralization on the property.

RECOMMENDATIONS:

- 1. Compass and flag lines 100 meters apart around anomalous areas on the Creek and Clearcut grids.
- 2. Soil sample around anomalous values.

•

3. Conduct a magnetometer survey over the Clearcut and Creek grids.

ASSESSMENT - GEOCHENICAL REPORT CRIPPLE LAKE PROPERTY PAGE 7

.

APPENDIX I

STATEMENT OF COSTS

GEOCHENICAL REPORT CRIPPLE LAKE PROPERTY

1.	WAGES:			
	Soil Geochemi: Linecutting -	stry - 7 md @ \$100/day 5 md @ \$100/day	\$ \$	700.00 500.00
2.	FOOD, ACCOMMO	DATIONS & TRANSPORTATION:		
	12 md @ \$50/d	ау	\$	600.00
з.	ANALYSIS:			
	294 samples @	\$8.75 per sample	\$ 2	,572.50
4.	TRUCK RENTAL:			
	12 md 0 \$50/d	ay	\$	600.00
5.	COST OF REPOR	T PREPARATION:		
	Author	\$200		
	Drafting	\$200		
	Typing	\$ 50	₫ \$5	450.00

APPENDIX II

STATEMENT OF QUALIFICATIONS

I, Terrence Campbell, of Prince George, Province of British Columbia, do hereby certify that:

1. I am a geologist residing at 7740 Gladstone Drive, Prince George, British Columbia.

2. I am a 1985 graduate of the University of British Columbia, B.Sc. (Geology).

3. I am a member in good standing of the British Columbia Yukon Chamber of Mines.

4. I presently hold the position of Field Geologist with Noranda Exploration Company, Limited (no personnal liability) and have been in their emoloy since 1986.

2611

Terrence Campbell

. .

ANALYTICAL METHOD DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

Revised:01/86

The methods listed are presently applied to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver. (March, 1984)

Preparation of Samples

Sediments and soils are dried at approximately 80° C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). <u>Heavy mineral</u> <u>fractions (panned samples) are analysed in its entirety</u>, when it is to be determined for gold without further sample preparation. See addendum.

Analysis of Samples.

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.2 g or less depending on the matrix of the rock, and twice as much acid is used for decomposition than that is used for silt or soil.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn (all the group A elements of the fee schedule) can be determined directly from the digest (dissolution) with an atomic absorption spectrometer (AA). A Varian-Techtron Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Elements Requiring Specific Decomposition Method

Antimony - Sb: 0.2 g sample is attacked with 3.3 mL of 6% tartaric acid, 1.5 mL conc. hydrochloric acid and 0.5 mL of conc. nitric acid, then heated in a water bath for 3 hours at 95° C. Sb is determined directly from the acid solution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.4 g sample is digested with 1.5 mL of 70 × perchloric acid and 0.5 mL of conc. nitric acid. A Varian AA-475 equipped with an As-EDL measures the arsenic concentration of the digest.

Barium - Ba: 0.1 g sample is decomposed with conc. perchloric, nitric and hydrofluoric acid. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 g - 0.3 g is digested with 2.0 ml of perchloric 70% and 1.0 ml of conc. nitric acid. Bismuth is determined directly from the digest into the flame of the AA instrument c/w EDL.

Gold - Au: 10.0 g sample (Pan-concentrates see below) is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with Methyl iso-Butyl ketone (MIBK) from the aqueous solution. Gold is determined from the MIBK solution with flame AA.

Magnesium - Mg: 0.05 - 0.10 g sample is digested with 4 ml perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with a nitrous oxide flame determine: Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot,taken from a perchloric-nitric (3:1) decomposition, usually from the multi-element digestion, is diluted with water and a phosphate buffer. This solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

LOWEST VALUES REPORTED IN PPM

Ë

Ag - 0.2	Mn - 20	Zn - 1	Au - 0.01 (10PPB)
Cd - 0.2	Mo – I	Sb - 1	W - 2
Co - 1	Ni - 1	As - 1	U - 0.1
Cu – í	P6 - 1	Ba - 10	
Fe - 100	V - 10	Bi - 1	

PRI	OPERTY/LOCA	NC **** 710N:57	DRANDA VANCO 1************** 'UART GOLD	UVER LABO	RATDRY *****	** CODE	:880606		<u>ר</u> קר <u>י</u> 14 אוג 14	1988
Pro Mai	oject No. terial	: :57	283 2 SOILS	Sheet:1 Geol.:G.	of 11 M.	Date Date	rec'd:J compl:J	UN23 UL11	······	ي ي.
1121		-		Values i	n PPM,	except	where n	oted. '	TSIL	_
			بندی بند عالی مجمد ده مان ه ها			e로려포드슈쑤)				
No.		No.	Cu	•	Au					
65	L 10800E	 9950	20		10					
66		9975	18		10					
67	1	0000	20	- i	20	~				
68	14	0025	28		10 40	1				
70	14	0030	20		10	ζ				
71	1	0100	20		10					
72	10	0125	16		10					
73	1	0150	16		10 C					
74	- 10	0200	20		10					
76	10	0225	24	4	30					
77	14	0250	18		10					
78	14	0275	22	:	10					
79	· <u>1</u> (0300	26		10					
50	108005-10	250N	20		10					
111	10300E-10	1950	18		10		<u> </u>	-		1.4.1
112	10 100 E	3975	22		10					
113	10	0000	20	. :	10					
114	10	0025	18	:	10					
115	10	0050	20		$\frac{10}{10}$ 7					
115	10	0100	22		10 (
118	. 10	0125	16		10					
119	10	0150	16	:	10 1					
120	1(0175	34		10					
121	10	0200	18		10 0					
122	10	0223	20		10					
124	10	0275	18		10					
125	10	0300	18		10					
126	10	0325	18		10					
127	10900E-10	350 <u>N</u>	28	·	$\frac{10}{10^{-1}}$					
143	UDDE 1	9975 0075	18		10	,				
145	1	0125	22		10 7 6					
146	. 1	0175	24		10 -					
147	10	0225	20		10					
148	11000E-10	0273 325N	28		10	_				
145	110002-10			النورية بين علويت عن من التريخ.		· · · · · · · · · · · · · · · · · · ·		·	· · · · · · · · · · · · · · · · · · ·	
T. T No.	'. Sł	NO.	Eu	Zn	<u>РЬ</u>	g As	Au			
11	11100E-9	950N SC	IL 42	120	2 0.	4 8	10	-0.	Jord	
12	11100E-9	1975N	22	60	2 0.	2 6	10	•		
· -, 4,						•				
	••									
		·							Ŋ,	

7 7	SOMD E						PPR	8807-016	
No.	No.	Cu	Zn	РЪ	Ag	As	Au	Pg. 2 of	2
13	11100E-10000N	20	66	2	0.2	1	10		
14	10025	16	82	1	0.2	1	10		
15	10050	20	94	2	0.2	1	10		
16	10075	44	110	2	0.2	2	10		
17	10125	24	80	2	0.2	1	10		
18	10150	16	64	ĩ	0.2	1	10		
19	10175	22	66	1	0.2	4	10		
20	10200	26	100	1	0.2	1	10		
21	10225	18	82	4	0.2	2	10		
22	10250	22	82	2	0.2	1	10		
23	10275	20	60	1	0.2	1	10		
24	00501	18	60	1	0.2	1	10		
25	10325	24	78	2	0.2	1	10		
26	11100E-10350N	28	66	t	0.2	8	10		
27	11200E-9950N	20	74	1	0.2	10	10		
28	9975	28	88	s	0.2	6	10		
23	10000	56	130	г	0.4	14	10		
30	10025	24	94	2	0.2	12	10		
31	10050	18	62	1	0.2	1	10		
32	10075	22	76	5	0.2	1	10		
33	10100	18	82	1	0.2	1	10		
34	10125	24	78	1	0.2	1	10		
15	10150	28	72	2	0.2	1	10		
36	10200	50	78	2	0.2	6	10		
37	10325	34	130	2	0.2	6	10		
38	11200E-10350N SOIL	22	78	1	0.2	1	10		
- <u></u>	······································		·	··				••	
	• • • • • • • • • • • • • • • • • • •		. •						

`

Γ. Τ.	SAMPLE		PPB	8	806-067	
Na.	No.	Cu	Au	P	- 4 of	11
43	11400E-7400N	24	10			
44	7450	20	10			
45	7500	24	10			
46	7550	22	20			
47	7600	24	10			
48	7650	26	10			
49	7700	24	10			
50	7750	26	10			
51	7800	62	10	•		
52	7850	30	10			
53	7900	30	10			
54.	7950	22	20			
55	BOÕO	24	10			
56	8050	′ 2 4	10			
57	8100	18	10			
58	8150	34	10			
59	8250	18	- 10			
60	8300	20	10			
61	8350	18	10 (*			
62	8400	. 20	10			
63	8450	· 48	10 7			
64	8500	44	10			
65	8700	50	10			
66	8750	32	10			
67	8800	58	10			
68	8850	34	10			
63	8900	44	10			
70	8950	20	10			
71	9000 114005-8050N	74	10			
<u> </u>	11400E-9030N		10			· ····
73	11400E-9100N	. 44	20 ()			
74	9150	36	10			
-		52	10 -	· • • · · ·		

. .

NORANDA VANCOUVER LABORATORY *******

PROPERTY/LOCATION:STUART Au (CRIPPLE LAKE) CODE : 8901-001

··· -- -- -

_____ ·

-

Project No.	:283	Sheet:1 of 3	Date rec'd:DEC.12
Material	:154 SOILS	Geol.:G.M.	Date compl:DEC.16
Remarks	:		

Values in PPM, except where noted.

т. т.	SAMPLE					Baá
No.	No.	Eu	Zri	РЪ	Ag	Au
 2	8800E-10125N	20	130	1	0.2	
З	10150	30	84	2	0.2	5
4	10225	22	54	2	0.2	5
5	10250	24	170	2	0.2	5
6	10275	18	100	2	0.2	170
7	10300	32	54	1	0.2	5
8	8800E-10450N	76	72	1	0.2	5
9	8900E-10150N	30	100	1	0.2	5
10	10175	26	190	1	0.2	5
11	10200	30	120	2	0.2	5
12	10225	28	100	2	0.2	
13	10250	30	180	2	0.4	ទ 💦 ក្នុំស្រុក 🖓 👘
14	10275	48	110	2	0.2	5 1
15	10300	30	94	2	0.2	10 0 000 2.9 1089
16	10325	28	140	1	0.2	10 UEC 2 8 1500 .
17	10350	32	92	2	0.2	
18	10375	38	56	1	0.2	5 00000000000
19	10400	50	100	4	0.2	5
20	10425	28	110	1	0.2	5 0 1
21	8900E-10450N	28	120	2	0.2	5 (men to Jo
22	9000E-10125N	38	64	1	0.2	15 00/0/
23	10175	110	140	2	1.2	5
24	10225	32	60	1	0.2	5
25	10275	36	98	1	0.2	30
26	10325	18	130	1	0.2	5
27	10375	40	120	1	0.4	5
28	9000E-10425N	32	100	1	0.2	5
29	3100E-10100N	18	120	1	0.2	5
30	10125	32	58	1	0.2	5
31	10150	26	70	4	0.2	Έ
32	10175	22	140	4	0.2	5
33	10200		82	4	ú. 2	5
.34	10225	30	100	2	0.2	10
35	10275	39	54	2	0.2	5
36	10300	28	70	2	0.2	- 5
37	10325	29	88	ā	0.2	5
38	10350	25	120	2	0.2	30
হল	10375	40	100	2	0.2	5
40 40	10400	26	110	ē	0.2	
40	10425	38	120	4	0.8	
42		32	68	4	0.2	5
43	9200E-10025N	30	100	4	0.2	5
44	10200	24	60	2	0.2	- 5
45	10225	<u>20</u> 7 <u>8</u>	50	ē	0.2	5
46	10250	24	120	2	0.2	5
47	10275	74	130	2	0.2	10
48	10300	11 U 24	 	- 4	0.2	
49	9200E-10325N	24	120	2	0.2	5

21/12 P6 DP

T.T. SAMPLE

.

•

Nc.	Nc	Cu	2n	. Pb	Ag 	Ац Рд. 3 ст 3	
107	9500E-10000N	38	76	2	0.2		
108	10025	36	96	4	0.2	5	
109	10050	32	88	4	0.2	5	
110	10075	34	70	2	0.2	5	
111	10100-	32	76	2	0.2	5	
112	10125	36	70	2	0.2	5	
113	101,50	40	<u>8</u> 3	4	0.2	ร	
114	10175	36	82	2	0.2	5	
115	10200	36	80	2	0.2	5	
115	10225	40	80	4	0.2	20	
117	10525	34	92	2	0.2	5	
118	10550	24	100	4	0.2	25	
119	10575	36	78	4	0.2	5	
120	10500	28	78	2	0.2	5	
121	10625	56	100	4	0.2	5	
199	10650	38	32	2	0.2	5	
123	10675	28	100	4	0.2	5	
124	10700	40	72	2	0.2	5	
125	10725	44	84	2	0.2	5	
1.26	10750	36	58	2	0.2	5	
127	10775	40	110	4	0.2	5	
1.2A	10900	50	100	2	0.2	5	
120	10825	38	80	2	0.2	- 5	
:30	10850	60	88	2	0.2	15	
131	10875	38	98	2	0.2	5	
132	9800E-10900N	36	78	3	0.2	5	
133	9700E-10000N	120	78	2	0.4	10	
134	10025	24	88	2	0.2	5	
135	10050	34	94	1	0.2	20	
1.35	10100	38	90	2	0.2	5	
137	10125	38	88	2	0.2	5	
138	10150	 34	80	1	0.2	5	
139	10175	42	84	2	0.2	5	
140	10200	40	86	2	0.2	5	
141	10225	38	80	ε	0.2	5	
142	10250	36	60	1	0.2		
143	10275	36	76	2	0.8	5	
3 44	10300	36	50	1	0.2	5	
145	10325	36	82	1	0.2	5	
145	10350	36	84	2	0.2	- BO	
147	10375	38	90	1	0.2	15	
148	10400	38	72	2	0.2	10	
149	10425	36	76	1	0.2	10	
150	CUECK NI -6	50	150	Б.А.	1.2	_	
150	10450	55 66	74	20	0.2	5	
102	10435	 	170	_ .9	0.2	10	
132	10500		70	ť	0.0	1 V 5	
100	10300 1055#	20	/0 70	۲ ۲	ດ ອີ	ц Е	
154 155	10550	34 70	70	r t	0.0		
100		3 <u>–</u>	60	•	0.2	10	
157	10373 97005-105000	70	20	+ +	0.2 0 2		
م تب د	7100E-10000M	ےد	00	1	V. G	تى	

-

:

. _. . . ____

