	LOG NO: OSII RD.
ASSESSMENT REPORT	ACTION:
ON THE	
ESKAY CREEK PROPERTY	FILE NO:
DRILL EXPLORATION PROGRA	M
Kay 15 Claim	
Skeena Mining Division NTS 104B/9W Latitude 56 ⁰ 37'N Longitude 130 ⁰ 29'W British Columbia July 14, 1989	FILMED ASSESSMENT OCHOGICA
by	N N N N
Prime Explorations Ltd.	

Owner:

CONSOLIDATED STIKINE SILVER LTD. 800-900 West Hastings Street Vancouver, British Columbia V6C 1E5

Operator:

CALPINE RESOURCES INCORPORATED PRIME CAPITAL PLACE 10th Floor, 808 West Hastings Street Vancouver, British Columbia V6C 2X6

ESKAY CREEK PROJECT

•

,

TABLE OF CONTENTS

INTRODUCTION	
Objective	
Location and Access	
Physiography	
Climate	
Claims	
$History \dots \dots$	
Drilling	
3	
GEOLOGY	
Regional Geology	
Property Geology	
CONCLUSIONS	
RECOMMENDATION	
BIBLIOGRAPHY	
APPENDIX I Analytical Procedures	
APPENDIX II Contractor Services	
APPENDIX III Certificate of Qualifications	
APPENDIX IV Diamond Drill Logs and Assays Drill-Au Section 1:1000	
APPENDIX V Statement of Expenditures	
LIST OF FIGURES Figure 1. Location - British Columbia after page 1 Figure 2. Claim Location Map	

INTRODUCTION

Objective

The objective of the 1989 drill programme on the Eskay Creek Project was to test the property for gold and silver mineralization at depth. This report presents data on four holes that were drilled for a total of 838.4 metres on the Kay 15 claim.

Location and Access

The Eskay Creek project area is located 83 kilometers (52 miles) north-northwest of Stewart, B.C. (Figure 1) and 37 kilometers (23 miles) east of the Prime Resources Corporation and Cominco Limited SNIP Deposit. Access is by helicopter from Bronson, Stewart or Bell II on the Stewart-Cassiar Highway, 25 kilometers east. Tom MacKay Lake, 5 kilometers to the west is suitable for float plane landings, and an unused track runs from the property to the lake shore. An abandoned short airstrip is situated 10 kilometers south of the property.

Road access within the region is currently under review, and several different development corridors are proposed. One such corridor would pass within 20 kilometers of the project area.

Physiography

The Eskay Creek Project is located on the Prout Plateau within the eastern flank of the Coast Mountains. The Prout Plateau is a rolling massif ranging from 850 to 1300 meters elevation above sea level, characterized by severely glaciated, rocky terrain and subalpine vegetation. Relief on the property is approximately 200 meters and is locally sharp.

The property straddles a ridge, with Argillite Creek on the west and Eskay Creek on the east. Both creeks drain north and join Mackay Creek, a tributary of the south-flowing Unuk River. The Unuk River valley is located approximately 2.5 kilometers east of the property, comprising a relatively narrow, heavily forested canyon.

Climate

There is no meteorological data for the immediate project area. Historical records and current operating experience suggest that annual precipitation exceeds 300 mm, much of which falls as snow. Summer conditions last from late June to the end of September, and are characteristically coast insular or temperate and wet. Winter conditions span the remaining calendar months, during which snow accumulations can exceed 10 meters. Winter conditions are difficult to predict, as the controlling factor is a

continuous onslaught of warm, moist low pressure systems from the Gulf of Alaska which rise over the Coast Range and dump snow along the divide regions. The interior region immediately east is usually dominated by an arctic high pressure cell, which can become extremely well-entrenched, resulting in outflow conditions which can see both prolonged spells of cold, dry weather and high wind conditions.

Notwithstanding the unpredictable nature of the local weather, year long operations can be sustained by maintaining a properly winterized camp and providing a programme of avalanche control. Numerous other year round development projects are underway within the region, and the current exploration programme at Eskay has clearly demonstrated that cost-effective winter exploration campaigns can be mounted.

Claims

The Eskay Creek Property consists of thirty 2-post mineral claims located in the Skeena Mining Division (Figure 2). The claims are situated in NTS map-sheet 104B/9W, centered about 56⁰37' north latitude, and 130⁰29' west longitude. Claim descriptions are as follows:

<u>Claim Name</u>	<u>Record Nos.</u>	<u>Location Date</u>	<u>Expiry Date</u>
ток 1-6	37248-37253	May 25, 1972	May 31, 1999
TOK 7-14	37254-37261	May 26, 1972	May 31, 1999
TOK 15-22	37421-37428	Aug. 16, 1972	Sep. 6, 1999
KAY 11-18	21077-21084	Oct. 2, 1962	Oct. 11, 1999

History

The Eskay Creek area has undergone numerous exploration campaigns since discovery in 1932. The property is now operated on a joint venture basis between Calpine Resources Incorporated and Consolidated Stikine Silver Limited, with Prime Explorations Ltd. as the Project Manager.

Drilling

A winter drill exploration programme was initiated in mid-January of 1989 and completed in early May comprising 13,467.9 metres in 54 holes of NQ core. The drilling was done under contract by Falcon Drilling Ltd, of Prince George, British Columbia. All core was logged, split and stored on site at the Calpine camp.

Drill holes CA89-38 to 41 inclusive are submitted for this assessment report. Each drill hole has a length of approximately 200 metres with a lithology consisting of interlayered andesites and black argillites in the top part of each hole, and rhyolites and felsic volcanics bottoming the holes.

The split core samples were sent to Bondar-Clegg Laboratories in North Vancouver for gold and silver assays. Selected pulps were sent to TSL Laboratories, Saskatoon, for check analysis. Core samples sent to Bondar Clegg were fire assayed with an AA finish for Au and Ag using a one assay ton sample size. If the gold value was >0.100 ounce per ton, then the sample was re-assayed with a gravimetric finish. Samples with >.750 ounce per ton Au were analyzed for metallic gold (metallic sieve assay). Analytical procedures are shown in Appendix I.

Core samples sent to TSL Labs were fire assayed with a gravimetric finish for gold. Silver was assayed using an acid digestion (HCL-HNO3) with an AA finish.

Core logging and splitting was done under the supervision of G. McArthur. A list of contractors is shown in Appendix II and statement of qualifications is shown in Appendix III. The drill logs, assays and drill hole plan map and Au cross section for holes CA89-38 to 41 are shown in Appendix IV.

The statement of Expenditures is in Appendix V.

GEOLOGY

Regional Geology

The Eskay Creek area lies within the Intermontane tectonic belt, containing Stikine terrane rock assemblages. The Unuk River area is underlain by a thick, weakly metamorphosed Upper Triassic to Lower Jurassic volcanic and sedimentary arc-related units overlain by Middle Jurassic successor basin sedimentary units (Britton et al, 1989). Inconclusive evidence of late Triassic deformation exists. Large-scale northeast plunging vertical folds and major north-trending cataclastic and fault zones are thought to be principally related to late Jurassic to early Cretaceous plutonism and orogenesis.

Regional geological mapping by the Geological Survey of Canada, the British Columbia Ministry of Energy, Mines and Petroleum Resources and Newmont Mining Corp. (Granduc Mines Ltd.) has resulted in selective areal map coverage and a working stratigraphic column (Figure 3). Government reconnaissance mapping is on-going, and revision to the current understanding is anticipated. Rock unit correlation is based upon fossil control and gross unit similarities to adjacent southern map areas where more detailed geological mapping has been undertaken.

Stuhini Group

Upper Triassic volcanic and sedimentary rocks tentatively correlated to the Stuhini Group occur east of the Unuk River and

STRATIGRAPHIC COLUMN - 21 ZONE

west of Harrymel Creek. Stuhini rocks include variably deformed and metamorphosed siltstone, wacke, conglomerate and limestone overlain by basalt to andesite flows and breccias and locally dacite pyroclastic tuffs and breccias.

Hazelton Group

Unuk River Formation:

Earliest Lower Jurassic Unuk River Formation occur at moderate elevations east of the Unuk River and west of Harrymel Creek. The Unuk comprises a relatively monotonous sequence dominated by green andesite tuffs, flows and subordinate pyroclastic rocks, intercalated with wacke, siltstone, and minor conglomerate.

Betty Creek Formation:

Overlying the Unuk is the Lower Jurassic Betty Creek Formation, outcropping throughout the Unuk valley. The Betty Creek comprises red, maroon to green volcaniclastic conglomerate, andesite and dacite pyroclastic tuff and breccias with intercalated grit and arenaceous wacke.

Mount Dilworth Formation:

Overlying the Betty Creek is the Lower Jurassic Mount Dilworth Formation, outcropping on the Prout Plateau and at higher elevations west of Harrymel Creek and east of the Unuk River. The Mount Dilworth comprises dacite to rhyolite pyroclastic breccias, bedded tuff and subordinate flows and flow breccias.

Salmon River Formation:

Late Lower Jurassic Salmon River Formation outcrops north and west of the Prout Plateau. It comprises a drab sequence of grey siltstone, fine-grained arenite, chert and limestone.

Bowser Group

Ashman Formation:

Middle Jurassic units thought to be equivalent to the basal Ashman Formation occur on the Prout Plateau in the vicinity of Tom Mackay Lake. Ashman rocks include chert pebble conglomerate, grey to black mudstone and wacke and subordinate limestone and mafic volcanic flows.

Cenozoic to Recent subaerial olivine basalt flows and tephra are distributed widely in the region, though none are reported on the Prout Plateau. Deposits are widespread in the major river valleys, such as the Unuk, as well as in the Cone Glacier area, west of Harrymel Creek. Valley bottom deposits tend to be characterized by palisade-type sheet flows. At higher elevations ice-contact cones, domes and tephra fields predominate. Numerous felsic and mafic dykes, thought to be coeval with the young volcanic deposits, are locally abundant.

APPENDIX I

Analytical Procedures - Bondar-Clegg Ltd., Vancouver

PROCEDURE FOR ASSAY AU ANALYSIS

Fire Assay Procedure:

A prepared sample of one assay ton (29.166 grams) is mixed with a flux which is composed mainly of lead oxide. The proportions of the flux components (the litharge, soda, silica, borax glass and flour) are adjusted depending upon the nature of the sample. Silver is added to help collect the gold. The samples are fused at 1950^oF until a clear melt is obtained. The 30-40 gram lead button that is produced contains the precious metals. It is then separated from the slag. Heating in the cupellation furnace separates the lead from the noble metals. The normal-sized precious metal beads that are produced are transferred to test tubes and dissolved with aqua-regia. This solution is analyzed using Atomic Absorption by comparing the absorbance of these solutions with that of standard solutions. In case of high grade samples, the precious metal bead is parted to separate the silver and the remaining gold is weighed.

Comments:

As part of routine quality control duplicate analyses are done for about 15% of the samples. Also, all samples which are over 0.20 ounce per ton on the original fusion are run again to verify the results. If a sample gives erratic results, such as 0.10, 0.020, 0.30, these are indicated on the report. It is suggested that a new split should be taken from the reject for preparation and analysis by metallics sieve procedure. These assay results will always be signed by the registered assayer.

PROCEDURE FOR ASSAY Cu, Pb, Zn, AND Ag BY ATOMIC ABSORPTION ANALYSIS

Samples of 0.5 grams are weighed with 0.25 gram duplicates and digested in glass beakers with concentrated nitric and hydrochloric acids. The beakers are heated on the hot plate until the solution completely dries, and then the samples are redissolved with dilute hydrochloric acid. The solutions are run by Atomic Absorption, using the appropriate lamp and wavelength for each element. The absorbency for each element is recorded and compared to a standard series to determine the amount present.

The procedure is similar for assay Ag by Atomic Absorption, except the sample weight is 3 grams and hydrofluoric acid is also added during the digestion. Background correction is introduced in analyzing Ag on the A.A. to overcome the matrix problem.

Comments:

All samples having a value greater than 20% Cu or Pb, 10% Zn, or 10 ounces per ton Ag have to be rerun by classical methods. APPENDIX I

Analytical Procedures

.

BIBLIOGRAPHY

- Aldrick, D.J., Britton, J.M., Webster, I.C.L. and Russell, C.W.P., (1989); Geology and Mineral Deposits of the Unuk Area, B.C. GSB Open File Map 1989-10
- Annual Reports of the Minister of Mines, British Columbia; 1933, p 61; 1934, pp B30-B33; 1935, pp B9, B27; 1939, p 65; 1946, p 85; 1953, pp 87-89; 1963, p 10; 1964, p 20; 1965, p 44; 1967, p 30
- Britton, J.M., Webster, I.C.L., Aldrick, D.J. (1988); Unuk Map Area; <u>in</u> B.C. Ministry of Energy Mines & Petroleum Resources, Geological Fieldwork, Paper 89-1
- Donnelly, D.A. (1976); A Study of the Volcanic Stratigraphy and Volcanogenic Mineralization on the KAY Claim Group, Northwestern British Columbia, Unpubl. B.Sc. Thesis, UBC 54 pages
- Geology, Exploration & Mining in British Columbia; (1970), pp 64-65; and (1971) p 36
- Grove, E.W. (1986); Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox area. British Columbia Department of Energy, Mines and Petroleum Resources, Bulletin No. 63
- Grove, E.W. (1971); Geology and Mineral Deposits of the Stewart area, Northwestern British Columbia Department of Energy, Mines and Petroleum Resources, Bulletin No. 58
- Tipper, W., and Richards, T.A. (1976); Jurassic Stratigraphy and History of North-Central British Columbia, Geological Survey of Canada, Bulletin No. 270

Creek Fault). The major structure on the property appears to be a shallow northeast plunging asymmetric anticline. Fold limbs are either faulted and/or steeply dipping. The Eskay Creek Property is characterized by highly altered and gossanous rhyolitic units which host several gold-silver and minor base metal occurrences.

Gold mineralization is hosted within both rhyolite breccia and graphitic mudstone formations, beneath barren andesite flows. Disseminated stibnite is ubiquitous to the mudstone unit, developing into high grade massive stibnite-realgar bands up to 20 feet thick at the mudstone-rhyolite contact. Footwall alteration is intense, comprising sericite and gypsum in highly sheared rhyolite tuff and breccia. Associated sulphide minerals include stibnite, arsenopyrite and pyrite.

Steeply dipping faults and associated fractures appear to be a major controlling feature of the mineralization. Mechanically induced fracture systems formed channels which divided the mineralizing hydrothermal fluids. This produced the pattern of high grade ore zones surrounded by overlapping lower grade zones. Secondary control of gold mineralization was provided by host rock lithology.

RECOMMENDATION

Additional drilling needs to be done in order to delineate the extent of gold/silver mineralization. This should be done in conjunction with a summer exploration programme consisting of geological mapping, prospecting, and geophysical surveys to define additional drill targets.

- (1) Andesite flows, breccia and tuff with interbedded wacke and siltstone,
- (2) Tuffaceous wacke, mudstone, and conglomerate,
- (3) Dacite lapilli, crystal and lithic tuffs interbedded with black mudstone and waterlain tuff,
- (4) Rhyolite lapilli tuff and breccia,
- (5) Pillowed andesite flows and breccias with interbedded carbonaceous mudstone, and
- (6) Medium to thin-bedded conglomerate, wacke and mudstone.

Well preserved micro and macrofossils are locally abundant in most sedimentary units, providing relatively rigid stratigraphic control and indicating a predominately subaqueous depositional environment. Units 1 to 3 are tentatively correlated to the Betty Creek Formation, unit 4 to the Mt. Dillworth and units 5 and 6 to the Salmon River and/or Ashman Formations. Stratigraphic assignment may change pending the results of additional government mapping planned for 1989.

The major structure on the property appears to be a shallow northeast plunging asymmetric anticline with a steep eastern limb. The western limb is cut by the major Argillite Creek fault. The fold closes across the northernmost portion of the property at Mackay Creek, and it appears likely that favourable rhyolite geology may be preserved at depth north and east of the #23 showing area.

Penetrative cleavage is observed in sedimentary rocks and the upper portion of the rhyolite, striking 030/75-80W. All other units are relatively undeformed. Metamorphic rank is sub-A northeast-trending vertical fault of unknown areenschist. displacement separates rocks of units 5 and 6 (Argillite Creek fault). A similar, parallel structure is postulated to underlie Eskay Creek upstream from the camp. Major and minor north and east-trending faults of unknown attitude and displacement have been mapped within units 3, 4 and 5. Numerous airphoto lineaments are suspected to represent faults, though some may be joints. Plans by Whiting portray many short-length faults, some of which coincide with airphoto features. Descriptions of the Northend prospect report flat-lying, small-displacement faults occupied by barren quartz veins. These are reminiscent of minor structures reported at the Snip and Johnny Mountain Deposits to the north in the Bronson Creek area, and may reflect the presence of low-angle reverse faults and\or post-mineral extension fissures.

CONCLUSIONS

The Eskay Creek Property is underlain by Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group separated from the nearby Triassic Bowser Group of marine-basin sediments by a possibly deep-seated fault structure (Argillite

Intrusive Rocks

Government mapping has not located any intrusive rocks on the Prout Plateau. Elsewhere in the region a variety of intrusives are documented, including Triassic gneissic quartz diorite stocks, Jurassic diorite and gabbro stocks and feldsparporphyritic granodiorite and syenite stocks and sills, and Tertiary feldspar-porphyritic monzonite stocks and felsic or basic dyke swarms. The eastern contact of the Tertiary Coast Plutonic Complex is approximately 25 kilometers southwest of Eskay Creek.

Metamorphism

According to Britton et al (1989) regional metamorphic rank is lower greenschist, characterized by saussuritized plagioclase feldspar, chlorite after mafic minerals, and white mica after clay. Metamorphic rank locally increases to lower amphibolite within one kilometre of the Coast Plutonic Complex. Contact metamorphic hornfels zones are common adjacent to the larger igneous intrusives.

Deformation

Folding:

Outcrop to regional scale, upright to slightly overturned vertical folds are documented both in the Eskay Creek area and the surrounding region. Fold axes trend 020 to 035° North, plunging 0 to 15° N. On the Prout Plateau a schistose rock fabric is present which may reflect this phase of deformation.

Faulting:

Topographic lineaments are abundant in the area, and many likely reflect faults or joints. Documented structures are rare, including small displacement normal and reverse faults. A major 150°N-trending schistose shear zone occupies the lower Unuk River valley, which to the north bifurcates or joins a major northtrending mylonite and cataclasite band underneath the Harrymel Creek valley and a major vertical fault under Clouter and Argillite Creeks on the Prout Plateau. Recent movement on the Harrymel structure is normal, however the zone is postulated to be an older, deep-seated major fault zone of unknown displacement.

Property Geology

The Eskay Creek Property is underlain by Lower to Middle Jurassic volcanic and sedimentary rocks of the Hazelton Group. Rock units are west-facing, striking 060°N/15-70.°W. Dips are steepest in the central and southern portion of the property, and become more shallow to the north. From oldest to youngest units, the stratigraphic section includes:

APPENDIX II

Contractor Services

APPENDIX II

Contractor Services

CONTRACTOR

Central Mountain Air Ltd. P.O. Box 998 Smithers, British Columbia VOJ 2N0

Falcon Drilling 1901 Olgilvie Street Prince George, British Columbia

Expediting

Drilling

Fixed Wing

Jaycox Industries P.O. Box 3633 Smithers, British Columbia VOJ 2NO

Northern Mountain Air Ltd. P.O. Box 368 Prince George, British Columbia V2L 4S2 Transportation -Helicopter

Transportation -

APPENDIX III

Certificate of Qualifications

.

APPENDIX III

Certificate of Qualifications

I, David W. Mallo of 4775 Hermatige Drive, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of Brandon University (1981) and hold a BSC (Spec) degree in geology.
- 2. I have been employed in my profession by various mining companies since graduation.
- 3. I am presently employed as a senior geologis with Prime Explorations Ltd., of 1000-808 West Hastings Street, Vancouver, British Columbia.

Doi W. Mallo

David W. Mallo Senior Geologist

DATED at Vancouver, British Columbia, this 14th day of July, 1989.

CERTIFICATE OF QUALIFICATIONS

- I, Gerald F. McArthur of Delta, British Columbia hereby certifiy:
- 1. I am a geologist with a business address at 11135 Monroe Drive, Delta, British Columbia, V4C 7T2.
- 2. I am a graduate of the University of British Columbia with a BSc geology (1973).
- 3. I have practised my profession in mineral exploration since graduation.
- 4. I am a Fellow of the Geological Association of Canada and a Professional Geologist registered in the Province of Alberta.

Gerald F. McArthur Geologist

DATED at Vancouver, British Columbia, this 26th day of \mathcal{J}_{∞} , 1989

APPENDIX IV

Diamond Drill Summary

Diamond Drill Logs and Assays Drill-Au Section 1:1000

,

÷.

÷

						DRILL]	HOLE L	OG						
LOCA	FION:	969.451N 708.697E									HOL	E NO.: CA-89-38	PAGE	NO: 1
AZIM.: DIP: 4	150 45°	ELEV.: 99.1 m LENGTH: 154.4 m				חת	o TEST				PRO	PERTY:		
STARI COMP PURP CORE	TED: LETEI OSE: RECO	CORE LENGTH: NQ March 7-8/89 D: March 10/89 - lost hole test zone upper tier holes WERY: Lost hole in fault unable to reenter	for survey	y below	Mete 48.8 50 m	rage i m	Dip 42	Azimuth 147 ⁰			CLAI SECT LOG DATT DRIL ASSA	M NO.: FION: 2+50S GED BY: GF. McA ED LOGGED: Mar LING CO.: Falcon AYED BY: Bondar	rthur ch 9/89 Clegg	
From	То	Description	Sample No.	From	То	Length	Ац рръ	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Рь ррт	Cuppm Znppm	As ppm	Sb ppm
0	4.0	HANGING WALL ANDESITE OB CASING - no recovery												
14.0	78.3	 UPPER ANDESITE andesite fine grained brown-greenish white calcite veining crackle breccia filling several (4) calcite events different color white (black-dol?) interbedded with black argillite pyrite lam beds 4.0 - 4.7 crackle breccia with internal white calcite remmed by xline black-brown calcite vein 20° to core axis 7.2 - 7. calcareous vein breccia 7.4 7.5 calcite fracture 15 - 20° to core axis 	109350 109351 109352 109353 109355 109355 109355 109355 109359 109369 109360 109361 109362 109363 109364 109365 109366 109366	5.3 3.8 10.5 14.8 23.5 26.0 30.8 36.0 40.5 42.0 43.5 45.0 46.5 48.0 49.5 51.0 52.5 54.0	$\begin{array}{c} 9.5\\ 5.3\\ 11.1\\ 16.3\\ 25.0\\ 27.5\\ 31.3\\ 38.0\\ 42.0\\ 43.5\\ 45.0\\ 46.5\\ 48.0\\ 49.5\\ 51.0\\ 52.5\\ 54.0\\ 55.5\end{array}$	$\begin{array}{c} 4.2\\ 1.5\\ 0.6\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0		<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <				
		- grey calcite breccia - oxidized rubble	109368 109369	55.5 57.0	57.0 58.5	$1.5 \\ 1.5$		< 0.002 < 0.002		< 0.02 < 0.02				

× • •

·" •

HOLE NO.: CA-89-38 PAGE NO.: 2

u 🎍

From	To_	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	РЬ ррм	Cu ppm	Zn ppm	As ppm	Sb ppm
		8.5	109370	58.5	60.0	1.5		< 0.002		< 0.02					
		- grey calcite breecia with	109371	60.0	62.0	2.0		< 0.002		< 0.02					
		hyaloclastite manc glass shards &	109372	62.0	63.5	1.5		< 0.002		< 0.02					
		andesite breccia fragments	109373	63.5	65.0	1.5		0.002		< 0.02					
			109374	65.0	66.5	1.5		< 0.002		< 0.02					
		- andesite pinow amyonies & chill	109375	66.5	68.0	1.5		< 0.002		< 0.02					
		margin 0.2 110	109376	68.0	69.5	1.5		< 0.002		< 0.02					
			109377	69.6	71.0	1.5		< 0.002		< 0.02					
		- arguite unit	109378	71.0	72.5	1.5		< 0.002		< 0.02					
		• Diack line grained bedded	109379	72.0	74.0	1.5		< 0.002		< 0.02					
		3.0	109380	74.0	75.5	1.5		< 0.002		< 0.02					
		9.85 - 10.07 - grey limestone black argillite	109381	70.0	77.0	1.0		< 0.002		< 0.02					
		fragments 60 ⁰ to core axis													
		10.2													
		- Iracture but to core axis													
		- pyrite bed 80° to core axis													
		• pyrnouse biades along beddding piar	le											•	
		 rubbly oxidized section calcite vein alternation 80° to core axis 											i.		
		11.2													
		- fracture 15° to core axis													
		11.5 - calcite fracture 30 ⁰ to core avia													
		11.8													
		- contact													
		- calcareous breccia													
		11.8 - 14.7													
		- light brown andesite													

A set of the set of

-

-

a 🖡

а с а с .

From	То	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Си ррш	Zn ppm	As ppm	Sb ppm
														·	
		- dark green chloritic veins with calcite													
		& paie green mineral, interval 50° to													
		14.3													
		- calcite vein 45° to core axis cut by													
		calcite-quartz 60° to core axis													
		14.7 - 10.4													
		14.7													
		- oxidized calcite vein													
		15.8													
		- pyrite													
		- pyrrhotite blade													
		15.8													
		 bedding 50° to core axis, calcite vein 30° to core axis, calcite vein 80° to 													
		core exis													
		- calcareous xlite zone													
		16.5 - 26.0													
		- andesite													
		- crackle dreccia white-black calcite													
		- broken ground & oxidized													
		22.5													
		- calcite vein dark grey rims													
		23.5 - 2 cm celoite main 55° to come wie													
		24.2													
		- ribbon banded grey-white calcite vein 50° to core axis, white calcite vein 75° to core axis, 75°													
		10^{-10} core axis - 70^{-1} to core axis 26.0 - 26.7													
		- argillite													

a e a e a

.

.

ы •

			Sample							ASSAYS				
From	To	Description	No.	From	To	Length	Au ppb	Au oz/t	Ag ppm	Ag oz/t	Pb ppm	Cu ppm Zn ppm	As ppm	Sb ppm
		34.9 - 38.7												
		 oxidized broken ground 												
		- andesite, calcite vein												
		38.7												
		- oxidized & broken ground												
		- andesite breccia black matrix argillace	ous											
		40.2												
		- conglomerate												
		41.3												
		- calcite crackle breccia												
		41.7												
		 pyrrhotite blade in black matrix 												
		andesite breccia												
		42.0 - 42.6												
		 grey calcite breccia 												
		 minor black argillite chips 												
		43.0 - 43.1												
		 conglomerate fragments rounded in 												
		black argillite matrix												
		43.25 - 43.6												
		- bedded crystallite (crinoids?) 45° to												
		core axis												
		43.6 - 44.5												
		 amydules in Andesite volcanic-pillows 												
		 argillite chip grey calcite crackle 												
		breccia												
		45.5 - 46.5 Andesite												
		- grey calcite crackle breccia												
		46.5 - 48.5 Andesite												
		- crackle breccia												
		48.5 - 54.8												
		- andesite with zones of grey calcite												
		crackle breccia												
		- black argulite chips in breecia												

а •

From		Description	Sample	F	 Та	Tomath	Au nah	A		ASSAYS	D1				
FIOI		Description	140.	rrom	10	Dengui	Au ppo	Au oz/t	Ag ppm	Ag oz/t	Po ppm	Cu ppm	Zn ppm	As ppm	SD ppm
		 54.8 - 57.6 black cherty argillite 45° to core axis with andesite breccia fragments disseminated pyrrhotite blades 57.6 - 60.1 green brown andesite breccia grey calcit matrix, black cherty argillite chips 60.1 - 62.2 cherty argillite, bedding 45° to core axis 60° to core axis, 50° to core axis 62.2 - 66.0 andesite breccia, with grey calcite crackle breccia, chilled volcanic amydolidal 	æ s,												
66.0	77.7	 andesite unit with argillaceous interbed, cherty brown fine grained amydules calcareous interanal calcite crackle breecia 77.2 dark grey black calcite crackle breecia fulling 664, 67, 70 - 71, 68.5 calcareous matrix vuggy vein 66.6, 67.3, 40° to core axis, 25° to core axis vein 66.7, 20° to core axis, 35° to core axis 													
77.77	78.3	 argillite bedded 77.7 contact 45° to core axis 78.3 - 77.8 bedding 85° to core axis 	109382	77.0	78.5	1.5		0.002		0.04					

.

.

From	To	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cuppm Znppm	As ppm	Sb ppm
		 78.2 45^o to core axis pyritic layers 60^o to core axis calcite veining 15^o to core axis base of argillite is cherty 												
78.8	154.4	FELSIC VOLCANIC UNIT - fine to coarse ash tuffs - large flow banded or fine siliceous flow - fragments 60 cm range - some glassy sections - possible coarse to fining upward	109383	78.5	80.0	1.5		< 0.002		< 0.02		:		
78.3	79.5	 siliceous greyish rhyolite fine ash tuff 1 - 2 cm fragments oxidized - broken ground, fault 												
79.5	84.0	 grey matrix supported, banded fragments 2 - 4 cm light greenish harder fragments blocky subrounded 	109384 109385 109386	80.0 81.5 83.0	81.5 83.0 84.5	1.5 1.5 1.5		<0.002 0.004 0.003		0.03 0.05 0.05				
84.0	84.4	 greenish matrix light green clasts matrix soft fine grained 1 - 2 cm fragments 												
34.4	87.0	- coarse grained 2 - 5 cm fragments	109387	84.5 86.0	86.0 87 5	1.5 1.5		0.003		0.06				
87.0	87.4	- matrix supported 70% matrix	103000	00.0	07.0	1.0		0.003		0.14				
97 .4	87.5	- fine ash, 45 ⁰ to core axis	109389	87.5	89.0	1.5		0.008		0.10				
87.5	91.7	 ash tuff, matrix supported 89.5 - 9 closely packed fragments 	109390	89.0	90.5	1.5		0.010		1.75				

.

HOLE NO.: CA-89-38 PAGE NO.: 8

.1

٠

. •

From	To	Description	Sample	From	 To	Length	למת נוא	Au ozlt	Ag ppm	ASSAYS	Pb ppm	Cu.nom	2n ppm	As nom	Sh pom
							ind ppo		<u></u>		<u> </u>	<u>ou ppu</u>	bit ppin	The ppin	DD ppin
91.7	92.0	- fine ash, 50° to core axis	109391	90 S	9 2 N	15		0.006		ñ 11					
• • • •	•		109392	92.0	93.5	1.5		0.003		0.06					
09.0	05 7	for much 0 days we wish	100000	00 E	05.0	1 F		0.000		0.10					
92.0	95.7	- iragments 2 - 4 cm greenish	109393	93.0	90.0	1.0		0.006		0.13					
		90.7 - 93	109394	95.0	96.0	1.5		0.002		0.19					
		- biotony light green calcareous	109392	90.0	98.0	1.5		0.003		0.11					
			109396	98.0	99.5	1.5		0.004		0.05					
		93 - 95.0	109397	99.5	101.0	1.5		0.002		0.02					
		- ash tuli, iragments 2 cm	109398	101.0	102.5	1.5		0.002		0.06					
		95.6 - 96.6	109399	102.5	104.0	1.6		< 0.002		0.23					
		- coarsering, tragments to 6 cm grey	109400	104.0	105.5	1.5		0.002		0.16					
		90.0 - 97.0	109401	105.5	107.0	1.5		< 0.002		0.23					
		- uner grained ash, bedding 45° to core	109402	107.0	108.5	1.5		0.002		0.06					
		axis	109403	108.6	110.0	1.5		0.002		0.17					
		97.5 - 99.5	109404	110.0	111.5	1.5		0.005		0.69					
		- coarser ash tuff, 1 - 2 cm fragments	109405	111.5	113.0	1.5		0.015		0.76					
		99.5 - 99.7	109406	113.0	114.5	1.5		0.002		0.08					
		 matrix dominant dark grey 	109407	114.5	116.0	1.5		0.003		0.09					
		99.7 - 100	109408	116.0	117.5	1.5		0.008		0.73				•	
		- coarser ash, more fragments, 1 - 2 cm	109409	117.5	119.0	1.5		0.003		0.03					
		100 - 100.1	109410	119.0	120.5	1.5		0.002		0.02					
		 fine ash, 45° to core axis 	109411	120.5	122.0	1.5		< 0.002		0.02					
		100.1 - 101	109412	122.0	123.5	1.5		0.002		0.03					
		 ash tuff, - 1 - 2 cm fragments 	109413	123.5	125.0	1.5		< 0.002		0.03					
		101 - 102	109414	125.0	126.5	1.5		< 0.002		0.03					
		 matrix dominant ash tuff 	109415	126.5	128.0	1.5		< 0.002		0.04					
		102 - 103	109416	128.0	129.5	1.5		< 0.002		0.03					
		- ash tuff	109417	129.5	131.0	1.5		< 0.002		0.02					
		103 - 105	109418	131.0	132.5	1.5		< 0.002		0.02					
		- fine grained section	109419	132.5	134.0	1.5		0.002		0.03					
		105 - 111	109420	134.0	135.5	1.5		0.002		0.03					
		 ash tuff, 2 - 6 cm fragments 	109421	135.5	138.0	2.5		0.002		0.03					
		111 - 124	109422	138.0	139.5	1.5		0.002		0.02					
		 fine ash, 1 cm or less, occasional 	109423	139.5	141.0	1.5		0.003		0.03					

HOLE NO.: CA-89-38 PAGE NO.: 9

and the second second

_	_		Sample			-				ASSAYS	_				
From	To	Description	No.	From	To_	Length	Au ppb	Au oz/t	Ag ppm	Ag oz/t	Рь ррш	Cu ppm	Zn ppm	As ppm	Sb ppm
		fragments to 2 cm, mineralized fractures	109424	141.10	142.5	1.5		0.002		0.04					
		splaherite, pyrite disseminated pyrite	109425	142.5	144.0	1.5		< 0.002		0.02					
		in matrix	109426	144.0	145.5	1.5		< 0.002		0.02					
		111 - 112	109427	145.5	147.0	1.5		< 0.002		0.03					
		- dark grey matrix	109428	147.0	148.5	1.5		0.002		0.02					
		112 - 115.6	109429	148.5	150.0	1.5		0.002		0.02					
		ash, angular to rounded, 2 - 4 cm	109430	150.0	151.5	1.5		0.002		0.02					
		- veinlet with pale greenish mineral	109431	161.5	153.0	1.5		< 0.002		0.02					
		60° to core axis	109432	153.0	154.5	1.5		< 0.002		0.02					
		115.6 - 115.7													
		- heavy pyrite disseminated in matrix													
		110.0 - 117.0													
		- line ash, matrix dominant, dark grey n	natrix												
		. cultido disseminated punito													
		116.9													
		- fracture & veinlet 30 - 35 ⁰ to core													
		axis													
		116.5													
		- sphalerite disseminated & pyrite													
		disseminate in matrix													
		116.9													
		- pyrite disseminations													
		117.3													
		 pyrite disseminations 													
		117.4													
		- fabric in ash 45 ⁰ to core axis													
		118.4													
		 blotchy alternation 													
		119.9													
		- fabric 50° to core axis			•										
		- light grey white fragments in dark grey	matrix												
		- fragments irregular to rounded													
		121 - 124													
		 more grassy fragments 													

" **b**

- · ·

· · · · ·

m	То	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cuppm Znppm As ppm	. Sb ррш
		122											
		- minor veinlet											
		123.5											
		- minor veinlet 65° to core axis											
		123 • 133.8 light geographic geographic in deriver											
		- light greenish grey fragments in darker											
		- $4 \text{ sh} 2 - 4 \text{ cm}$											
		129 - 133.8											
		 coarse ash base fragments 6 - 8 cm 											
		130.4											
		- broken ground											
		133.8 - 138.1											
		- dark grey fragments in dark grey											
		- foliation 50° to core axis											
		- pyritic matrix											
		134.5											
		- calcite vein 50 - 60° to core axis											
												· .	
		- Calcite fracture bu - 55° to core axis											
		- coarse ash tuff											
		- light green fragments & glassy fragment	s										
		subrounded in darker green matrix	•										
		142.2											
		- 15 cm fragments, flow banded											
		145 - 145.4											
		- succous grey tragment 40 cm											
		- 20 cm green grev silicenus fragmant		•									
		147.8 · 148											
		- finer grained foliation 45 ⁰ to core axis											
		$148 - 154.\overline{4}$											
		- finer ash tuff											

.

· · · ·

× .

ъ

.

			Sample							ASSAYS				
From	То	Description	No.	From	To	Length	Au ppb	Au oz/t	Ag ppm	Ag oz/t	Pb ppm	Cuppm Zn ppm	As ppm	Sb ppm

.

 light grey green fragment in darker green matrix fragment 2 - 4 cm subrounded

154.4 END OF HOLE

- drill hole lost in fault

• • • • •

DRILL HOLE LOG

.1

HOLE NO.: CA-89-39

PAGE NO: 1

LOCATION	969 451N	708 697E
LOCALION.	202 40111	100.09112

ł

PURPOSE: CORE RECOVERY:						DATED LOGGED: March 12/89 DRILLING CO.: Fallon ASSAYED BY: Bondar Clegg
STARTED: COMPLETED:		- •	102.7 m 203.3 m	-78 ° -78 °	149 ⁰ 149 ⁰	SECTION: 2+50S LOGGED BY: Christine Swanson
AZIM.: 150 DIP: -77	ELEV.: 99.1 m LENGTH: 203.3 CORE LENGTH:	NQ	Meterage	DIP TEST Dip	Azimuth	PROPERTY: Eskay Creek CLAIM NO.:

			Contibié						MOUNTO				
, tom	<u>To</u>	Description	No.	From 1	ſo	Length Au ppb	Au oz/t	Ag ppm	Ag oz/t	Pb ppm	Cu ppm Zn ppm	As ppm Sb	ppm

0 3.0 CASING AND OVERBURDEN

- PILLOWED INTERMEDIATE VOLCANICS 3.0 8.9 - maroon pillowed volcanics with pale green quench rinds
 - pillows from 0.5 to 0.8 m in depth along core length
 - rinds up to 1 cm wide
 - trace pyrrhotite along fractures at 75° to core axis and in matrix between pillows also 1% pyrite

INTERMEDIATE VOLCANIC FLOWS 8.9 79.5 AND INTERLAYERED BLACK ARGILLITES

- Intermediate Volcanics (Andesites)
 - pale to medium green
 - aphanitic to fine grained phaneritic
 - locally amygdular
 - locally brecciated (crackle breccias)
 - occassional ?? chill margins
 - crackle breccia matrix: light grey calcite, 1-3% pyrite, 1-3% pyrrhotite, trace chlorite, trace epidote
- Graphitic Argillites (mudstones) (euxinic shales)

.,

b.

			Sample				ASSAYS				
From	То	Description	No.	From To	Length Au ppb	Au oz/t	Ag ppm Ag oz/t	Pb ppm	Cuppm Znppm	As ppm	Sb ppm

- dark grey to black

- layer/bedding denoted by lighter, coarser grained, pyrite rich layers (3 - 5% pyrite)
- lode casting indicating way-up direction (in up-hole direction)
- lighter layers commonly 1 cm wide
- darker, finer grained layers commonly 0.75 cm wide, occassionally up to 10 cm wide
- crystallites occassionally seen in darker, thicker layers
- occassional light grey calcareous layers
- 8.9 9.1
- calcareous, dark grey, argillite layer
- no layering
- 9.1 13.9
 - anderite crackle breccia
 - trace pyrrhotite, trace pyrite
- 13.9 14.8
- calcareous, dark grey, layered argillite, layers at 40° to core axis
- 14.3 19.6
- andesite flow locally brecciated
- 19.6 22.0
 - graphitic argillite
 - bedding at 65° to core axis
- 22.0 23.6
- andesite crackle breccia
- 23.6 24.3
- dark grey, layered calcareous graphitic argillite, layers at 45° to core axis
- 24.3
- andesite flows, locally brecciated, trace pyrite, 1% pyrrhotite
-

From To	Description	Sample No.	From	То	Length	Aunoh	Au oz/t	Ag nom	ASSAYS	Ph nom	Ըս որտ	Zn ppm	As 5000	Sh ppm
From To	Description 24.6 - 30.0 - rusted rubble zone as in 31.0 - 31.2 and 31.5 to 32.0 27.4 - 27.5 - calcite vein at 45° to core axis 46.5 to 46.7 - intense, oxidation zone - slightly rubbly 49.7 - 54.5 - debris flow - lithic wacke to 51.2 - medium grained - devitified glass shards, abraded andesite and shaley fragments - grades to argillite - bedding at 50° to core axis - andesite fragment from 51.3 to 51.7 - 1% pyrite, 2% pyrrhotite throughout 54.5 - 60.9 - andesite flows and crackle breccias - trace pyrite, trace pyrhotite 60.9 - 63.5 - andesite breccia with a calcareous argillite matrix - trace pyrhotite 63.5 - 64.8 - graphitic argillite - bedding at 45° to core axis - 5% andesite clasts in layers - 1% pyrite in lighter layers 64.8 - 79.5	Sample No.	From	To	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Сиррт	Zn ppm	As ppm	Sb ppm

. .- .

. .

• •

- .

. .

-" **+**

.,

			Sample				AS	SAYS		
From	То	Description	No.	From To	Length Au ppb	Au oz/t	Ag ppm Ag	oz/t Pb ppm	Cuppm Zn ppm As ppm	Sb ppm

67.6

- calcite vein at 40° to core axis 68.8 - 70.7

- calcite veining sub-parallel to core axis

- up to 3 cm wide

72.0 - 73.5

- aphanitic andesite blocks, pale green
 20 to 50 cm across looks somewhat like
- pillows without unaltered core

72.2 - 72.4

- quartz veining at 40° to core axis
- 1 cm wide
- 5 quartz veins over interval

TRANSITION ZONE 79.5 80.0

- dark green
- clasts of paler green, chloritized rock

(clasts up to 2 cm across - 5%

- original fabric almost obliterated

RHYOLITE UNIT 80.0 120.1

80.0 - 81.6

- intensely silicified lapilli tuff

- trace pyrite

81.6 - 120.1

- moderatelly silicified rhyolite lapilli tuff units
- 1 3% pyrite as coarse grained (>2 mm across) disseminations and blebs (up to 1.5 cm across)
- 5% of clasts appear to have been argillically altered (clay altered) before being silicified
- high fracture density (>1 per cm)

-1

٨

	<i></i>	•	Sample	_			A	ASSAYS				
From	10	Description	No.	From To	Length Au ppb	Au oz/t	Ag ppm A	Ag oz/t	Рь ррт	Cu ppm Zn	opm As p	opm Sbppm

- occassional oxidized fractures
- 84.2 84.8
- andesite pillows (dyke)
- about 10 cm across
- marroon cores grading to pale green vesicular rinds (chill margins)
- 92.0 92.7
 - rubble zone
- high fracture density throughout
- 10% fractures oxidized
- fine fractures filled with quartz, between 450 to 70° to core axis

120.1 121.0 TRANSITION ZONE

- intensely altered, dark yellow green rock (epidote, chlorite, sericite alteration)
- all original texture obliterated
- blocky
- fracture planes at 30 to 70° to core axis

121.0 130.3 ANDESITE DYKE

- green-beige to beige, aphanitic
- vesicular, altered (clay alteration) flow
- minor brecciation
- trace pyrite
- calcite fracture filling 45° to 80° to core axis

130.3 132.3 TRANSITION ZONE

ì

- intensely altered (original textures oblitered) rhyolite ash flow
- clasts sheared, sheared out in foliation direction (sub-parallel to core axis)
- chlorite, sericite, talc alteration

.

." •

From	То	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cu ppm	Zn ppm	As ppm	Sb ppm
		 quartz/calcite veining at 35⁰ to core axis up to 1 cm wide 1 per 20 cm 													
132.3 1	134.8	ANDESITE BRECCIA (BRECCIATED DYR - aphanitic beige andesite clasts in unaltered rhyolite glass (ash) matrix - possibly a brecciated dyke	E)												
134.8	143.5	 RHYOLITE altered rhyolite lapilli tuff units chlorite sericite, tale, minor foliations and fracturing at 45° to core axis 1% pyrite 141.2 - 141.3 amygdular, beige andecite dyke weakly brecciated 142.4 - 143.1 spherulites of epidote and chlorite, possibly altered glass unit 													:
1 43.5 1	145.8	ANDESITE DYKE - light beige 0.1 m chill margins to beige ma marcon fine grained phaneritic cores - weakly brecciated - trace pyrite	iroon												
145.8	148.7	 RHYOLITE UNIT altered rhyolite lapilli tuff to ash chlorite, sericite 2% pyrite as fine blebs foliations at 40° to core axis fractures filling - quartz/adularia frequency of 1 per 5 cm up to 2 cm 													

and the second second

• • • • • • • •

and the second second

ar a c

From	To	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cu ppm	Zn ppm	As ppm	Sb ppm
		wide at 50 ⁰ to core axis throughout 80.0 to 149.3													
148.7	149.3	ANDESITE DYKE - as before													
149.3	151.5	 RHYOLITE ash flow unit chloritized sericitized ash flow minor foliations at 35° to core axis 30% matrix clasts up to 2 cm across with average being 0.5 cm trace pyrite 													
151.5	151.7	ANDESITE BRECCIA - brecciated andesite dyke - andesite fragments in a glassy rhyolite matrix													
151.71	161.4	 RHYOLITE ash flow units moderately silicified, altered rhyolite fragments (translucent grass green) in altered glass ash matrix trace pyrite 152.7 154.9 intensely silicified fractured interval fractures at 45° to core axis filled with quartz up to 0.5 cm wide frequency of 1 per 0.5 cm 116.0 foliations at 20° to core axis 	109515 109516 109517 109518 109519 109520	153.0 154.5 156.0 157.5 159.0 160.5	154.5 156.0 157.5 159.0 160.5 162.0	1.5 1.5 1.5 1.5 1.5 1.5									

a service a service ser

3

From	То	Description	Sample No.	From	To	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cu ppm	Zn ppm	As ppm	Sb ppm
		 151.7 - 154.2 2% fragments have a calcite rim, looks like secondary alteration because they are rounded to subrounded compared to the subangular fragments of the remainer of the tuff unit color of flow becomes a darker green (a bottle green) as we go to the bottom this unit 10% glassy fragments, slightly chlorite altered 158.4 to 159.7 5% of clasts are almost transparent light green, siliceous with flecks of white calcite in them)												
161.4	164.2	 ANDESITE BRECCIA andesite clasts in a dark green glassy matrix clasts are pale beige, amygdaloidal (filled vessels) amygdulls up to 1 mm diameter 10% glassy dark green matrix 	109521	162.0	163.5	1.5									
164.2	164.4	RHYOLITE ASH TUFF - siliceous - pale grey-beige - rhyolite ash flow - coarse grained - 5% matrix - "stylolite" type contacts between clasts	109522	163.5	165.0	1.5									
1 64.4	166.2	INTERMEDIATE DYKE - beige - fine grained phaneritic	109523	165.0	166.5	1.5									

- brecciated from 164.2 to 166.7

." •

.

.

From	Τo	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Рь ррт	Cuppm Znppm	As ppm	Sb ppm
		- trace pyrite												
166.2	169.2	 RHYOLITE TUFF blotchy calcite blebs in a slightly altered rhyolite tuff trace epidote throughout light to medium grey in color 	109524 109525	166.5 168.0	168.0 169.5	1.5 1.5								
169.2	169.8	 ANDESITE BRECCIA siliceous, pale beige, amygdaloidal andesite clasts in an intensely sheared chlorized matrix shears at 35° to core axis 10% matrix 	109526	169.5	171.0	1.5								
169.8	170.7	ANDESITE DYKE - beige, fine grained phaneritic rubble - 20% recovery - trace pyrite on fragments												
170.7	187.4	 RHYOLITE ASH TUFFS moderately foliated unit foliations range from 30° to 40° to core axis epidote - calcite alteration of matrix (10% epidote, 10% calcite) from 170.7 to 173.5 m 173.5 - 178.1 rhyolite clasts have been altered to a pale emerald green clasts also siliceous 15% matrix tension gashes (1 per 2 cm) at 50° to core axis 	109527 109528 109529 109530 109531 109532 109533 109535 109535 109536 109537	171.0 172.5 174.0 175.5 177.0 178.5 180.0 181.6 183.0 184.5 186.0	172.5 174.0 175.5 177.0 178.5 180.0 181.5 183.0 184.5 186.0 .187.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5								

.

- calcite filled

• • • • •

" **b**

			Sample							ASSAYS			· · · · ·		
From	То	Description	No.	From	To	Length	Au ppb	Au oz/t	Ag ppm	Ag oz/t	Pb ppm	Cuppm Z	n ppm	As ppm	Sb ppm
		 178.1 - 181.7 5% epidote/calcite alteration 181.7 - 183.5 relatively unaltered moderately foliated rhyolite ash tuff light grey, siliceous clasts calcite/quartz fracture filling, no preferred orientation to fractures unconformable lower contact at 50° to core axis appears to be erosional 183.5 - 187.4 weakly altered rhyolite ash tuff coarse grained 183.7 - 183.9 vesicular (amygdaloidal) volcanic fragment brecciated with calcite (quartz as matrix) possibly edge of andesite dyke pale yellow-beige 													
187.4 2	203.3	 INTERMEDIATE VOLCANIC FLOWS andesite, possibly dacite, dyke swarm light green-beige aphanitic amygdular locally breccciated with black, fine grained (cryprocrystalline/aphanitic) matrix (no discernable textures) trace pyrite 193.0 - 193.3 zone of 15% calcite blebs in darker colored volcanic 	109538 109539 109540 109541 109542 109543 109544 109545 109546 109548	187.5 189.0 190.5 192.0 193.5 195.0 196.5 198.0 199.5 201.0 202.5	189.0 190.5 192.0 193.5 195.0 196.5 198.0 199.5 201.0 202.5 203.3	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5									

-

.

coarser grained

· . . .

.

.

and the second second

•

								· · · · · · · · · · · · · · · · · · ·		
			Sample				ASSAYS			
From	<u>To</u>	Description	No.	From To	Length Au ppb	Au oz/t	Ag ppm Ag oz/t	Pb ppm	Cuppm Znppm A	sppm Sbppm

.

trace pyrrhotite
 calcite fracture filling throughout

Is the fracture fining finiting for the second se

.

END OF HOLE

DRILL HOLE LOG

s . . . s . .

.

-1 .

A CARACTER AND A CONTRACT AND A

LOCATION:	969.451N	708.697E
-----------	----------	----------

-

LOCA	ATION:	969.451N 708.697E									HOL	E NO.:CA-89-40	PAGE NC	: 1
AZIM DIP:		ELEV.: 99.1 m LENGTH: 230.7 m				DI	P TEST				PRO	PERTY: Eskay (reek	
STAR COM PURI	TED: PLETE: OSE:	CORE LENGTH: NQ March 14/89 D:			Mete 115 231	rage m .m -	Dip -78 ⁰ 76.7 ⁰	Azimuth 344 ⁰ 337 ⁰			CLA SEC LOG DAT	IM NO.: TION: 2+50S GED BY: Christi ED LOGGED: M	ne Swans« arch 16/89) I
CORE	E RECC	OVERY:									DRII ASSA	LLING CO.: Falc AYED BY: Bonda	n r Clegg	
From	То	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cuppm Zn ppn	1 As ppm	Sb ppm
0	3.0	OVERBURDEN AND CASING												
3.0	23.6	 ANDESITE FLOWS pale green aphanitic to fine grained phaneritic locally amydular local crackle breccia with matrix of grey calcite, 1% pyrite, 1% pyrrhotite, trace chlorite occassional calcite fracture filling from 35° to 55° to core axis up to 1 cm wide frequency of 1 per 30 cm rusted, intensely fractured zone from 15.2 to 17.1 m 21.5 - 22.8 calcareous argillite rubble from 21.5 - 22.6 massive from 22.6 to 22.8 	109549 109550 109551	7.5 15.2 20.0	9.0 16.6 22.0	1.5 1.4 2.0		< 0.002 < 0.002 < 0.002		<0.02 <0.02 <0.02				
23.6	3 3.1	ARGILLITE - medium grey calcareous layers up to 30 cm thick interlayered with dark black argillite and lighter coarser	109552 109553 109554	24.5 27.5 32.0	26.0 29.0 33.5	1.5 1.5 1.5		<0.002 <0.002 <0.002		0.02 0.04 0.02				

а •

_			Sample							ASSAYS		·			······
From	To	Description	<u>No.</u>	From	To	Length	Au ppb	Au oz/t	Ag ppm	Ag_oz/t	Pb ppm	Cu ppm	Zn ppm	As ppm	Sb ppm
		 grained pyrite rich layers up to 1 cm thick up to 30.1 m calcareous layers make up 60% of this unit, frequently crystallite-rich' bedding at 35° to core axis 23.8 - 24.0 andesite rubble, rounded and rusted 27.2 - 29.0 rubbly fractured argillite, oxidized fractures 30.1 - 30.4, 31.7 - 31.9, 32.6 - 32.8 andesite breccias with grey calcareous argillite matrix 30.4 to 33.1 dark grey black argillite with lighter, pyrite rich layers bedding at 20° to core axis calcite veining at 35° to core axis up to 4 cm wide frequency of 1 per 1 m 1 - 3% pyrite overeall 												•	
33.1	72.8	 ANDESITE FLOWS as before 34.2 - 35.1 argillite calcareous bedding at 20° to core axis 43.3 - 51.5 pillowed andesites pillow textures pale green quench rinds grading into marroon to green aphanitic to fine phaneritic cores 	109555 109556 109557 109558 109559 109560 109561 109562 109563	84.0 42.5 48.0 53.5 61.5 65.0 69.0 70.5 72.0	35.5 44.0 49.5 55.0 63.0 66.5 70.5 72.0 73.5	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		<0.02 <0.02 <0.02 <0.02 0.03 <0.02 <0.02 0.02 0.03					

phaneritic cores
 amygdular

ана. В стран

From	То	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cu ppm	Zn pom	As ppm	Sb ppm
		 pillow breccia with matrix of 50% clasts of andesite and argillite and 50% grey calcite, trace pyrite, trace pyrrhotite, trace clorite 51.5 - 72.8 back into andesite flows matrix in crackle breccia as in pillow breccia before 53.1 - 57.2 oxidized fractures 1 per 5 cm 71.5 - 71.9 andesite breccia with argillite matrix bedding at 60° to core axis 1 - 2% fine grained pyrite in lighter coarser grained layers crystallites in finer grained, darker layers 												<u> </u>	
72.8	74.0	 GRAPHITIC ARGILLITE a more siliceous argillite grey black bedding denoted by coarser, pyrite rich siliceous layers (1 - 2% pyrite overall) occassional crystallites in fine grained darker layers bedding at 30° to 50° to core axis 													
74.0	74.5	TRANSITION ZONE - rhyolite clasts (up to 2 cm across) - 20% clasts - in an argillite matrix (argillite as above) - 1 - 2% pyrite	109564	73.5	75.0	1.5		< 0.002		0.03					
74.5	85.4	RHYOLITE UNIT - rhyolite ash tuff unit	108565 108566	75.0 76.5	76.5 78.0	1.5 1.5		<0.002 <0.002		0.02 0.02					

-

a second a second s

-

ar 🔒

From	To	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Рь ррт	Cu ppm	Zn ppm	As ppm	Sb ppm
		 very siliceous clasts ranging from coarse ash to 7 cm across pale grey clasts in a darker matrix 10% matrix 1 - 3% pyrite as fine grained wispy portions of matrix and as occassional blebs up to 1 cm across high fracture density, 1 per 3 cm lower contact at 30° to core axis definite contact moderately foliated, 35° to core axis from 85.0 - 85.4 	108567 108568 108569 108570 108571	78.0 79.5 81.0 82.5 84.0	79.5 81.0 82.5 84.0 85.5	1.5 1.5 1.5 1.5 1.5 1.5		<0.002 <0.002 <0.002 0.003 <0.002		< 0.02 < 0.02 < 0.02 < 0.02 < 0.02					
85.4	91.8	 GRAPHITIC ARGILLITE as in first argillite but more carbon rich graphite along shear planes at 55° to core axis bedding at 55° to core axis cross cutting shear planes 3 - 5% pyrite in coarser, pyrite rich layers occassional calcite veins at 45° to core axis up to 0.1 cm wide crystallites in darker layers 90.3 fossil fragment 85.8 - 86.1 20% andesite fragments rubbly 	108572 108573 108574 108575	85.5 87.0 88.5 90.0	87.0 88.5 90.0 91.5	1.5 1.5 1.5 1.5		0.002 0.002 0.002 0.002		0.05 0.05 0.04 0.03				х -	
91. 8	122.8	ANDESITE FLOWS - light to medium green - aphanitic to fine grained phaneritic	109576 109577 109578	91.5 93.0 94.5	93.0 94.5 96.0	1.5 1.5 1.5		<0.002 <0.002 <0.002		<0.02 <0.02 <0.02					

and the second second

-

-

. . . .

HOLE NO.: CA-89-40 PAGE NO.: 5

From	To	Description	Sample No	From	То	Length	Au pph	Au 07/t	Ag pom	ASSAYS	Ph nom	20.000	As DOM	Sh nom
						Dengen	IIII PPO	110 041	rag ppm	115 040	ro ppm	the phil	us hhm	ор Брш
		- locally porphyritic	109579	96.0	97.5	1.5		< 0.002		0.03				
		 locally amygdular 	109580	97.5	98.0	1.5		< 0.002		0.02				
		 occassional crackle breecias with grey 	109581	98.0	100.5	1.5		< 0.002		< 0.02				
		calcite, trace chlorite, trace pyrite as	109582	100.5	102.0	1.5		< 0.002		< 0.02				
		matrix	109583	102.0	103.5	1.5		< 0.002		< 0.02				
		91.8 - 99.1	109584	103.5	105.0	1.5		< 0.002		< 0.02			•	
		 andesite breccia 	109585	105.0	106.5	1.5		< 0.002		< 0.02				
		 aphanitic to above andesite type clasts 	109586	106.5	108.0	1.5		< 0.002		< 0.02				
		in a black argillite	109587	108.0	109.5	1.5		< 0.002		< 0.02				
		- matrix	109588	109.5	111.0	1.5		< 0.002		< 0.02				
		- occassional argillite zones	109589	111.0	112.5	1.5		< 0.002		< 0.02				
		95.1 to 97.8, 99.1 - 99.4	109590	112.5	114.0	1.5		< 0.002		< 0.02				
		- poor recovery (40% in 95.1 to 97.8	109591	114.0	115.5	1.5		< 0.002		< 0.02				
		zone) no distinct bedding planes	109592	115.5	117.0	1.5		< 0.002		< 0.02				
		- calcite veining and shearing at 80° to	109593	117.0	118.5	1.5		< 0.002		< 0.02				
		core axis	109594	118.5	120.0	1.5		< 0.002		< 0.02				
		- rubble zones:	109595	120.0	121.5	1.5		< 0.002		< 0.02				
		112.0 - 115.8 oxidized fractures	109596	121.5	123.0	1.5		< 0.002		< 0.02				
		121.8 - 121.1 rubbly oxidized fracture												
		zone												
		122.5 - 122.8 as above											•	
100 0 4	ንንስ ማ	DUVOLUTE INTE	100507	109.0	104 5	1 5				~ 0.00				
122.0	630.1	alionous shuslita bassia ash tuff	100500	104 5	124.0	1.0		< 0.002		< 0.02				
		- Sinceous myolice precess sin cuit	100500	100.0	120.0	1.0		< 0.002		< 0.02		•		
		units sectors with an desite interests for turned	100600	120.0	127.0	1.0		< 0.002		< 0.02				
		- contact with andesite intensely fractured	100601	127.0	129.0	1.0		< 0.002		< 0.02				
		rubbly and oxidized 122.8 to 123.5 (poor	109001	129.0	130.5	1.5		< 0.002		< 0.02				
		recovery 40%)	109002	100.0	132.0	1.0		< 0.002		< 0.02				
		- no argunte	109603	132.0	133.5	1.5		< 0.002		< 0.02				
		- pale grey rhyolite clasts 0.5 cm to 8 cm	109604	133.5	135.0	1.6		< 0.002		< 0.02				
		across in medium grey line grained	109605	135.0	136.5	1.5		< 0.002		< 0.02				
		matrix	109606	136.6	138.0	1.5		< 0.002		< 0.02				
		- intense micro-tracturing, tractured 1 per	109607	138.0	139.5	1.5		< 0.002		< 0.02				
		em.	109608	139.5	141.0	1.5		< 0.002		< 0.02				
		 occassional oxidized fractures 	109609	141.0	142.6	1.5		< 0.002		< 0.02				

the second se

HOLE NO .: CA-89-40 PAGE NO.: 6

-

.

a,

.

۰,

	_		Sample							ASSAYS					
From	To	Description	No.	From	To	Length	Au ppb	Au oz/t	Ag ppm	Ag oz/t	Pb ppm	Cu ppm Z	n ppm	As ppm	Sb ppm
		- rubble zone from 129.6 to 128.9	109610	142.5	144 0	15		< 0.002		~ 0.09					
		- 3- 5% pyrite as fine grained wisny blebs	109611	144 0	145.5	1.5		< 0.002		< 0.02					
		in matrix and occassional blebs up to	109612	145.5	147.0	15		< 0.002		< 0.02					
		1 cm across from 122.8 to 132.7	109613	147 0	148.5	1.5		< 0.002		~0.02					
		- foliations at 40 to 55° to core axis	109614	148.5	160.0	15		< 0.002		~0.02					
		- microfractures (1 per cm)	109515	150.0	151.5	1.5		< 0.002		~0.02					
		- calcite/ovrite filled	109516	151.5	153.0	1.5		0.002		< 0.02					
		- orientation of 30° to 50° to core axis	109650	202.5	204 0	1.5		< 0.002		< 0.02		•			
		137.3 to 160.1 - breeria units (autobreeria)	109651	204.0	205.5	1.5		< 0.002		~ 0.02					
		- average clast size approximately 10 cm.	109652	205.5	207.0	1.5		< 0.002		< 0.02					
		grading to coarse ash at top of units	109653	207.0	208.5	1.5		< 0.002		<0.02					
		- contacts at 148.4, 155.3	109654	208.5	210.0	15		< 0.002		< 0.02					
		- 1 - 3% pyrite as microfracture filling	109655	210.0	211.5	1.5		< 0.002		~0.02					
		with calcite	109656	211.5	213.0	1.5		< 0.002		< 0.02					
		132.8 - 160.2	109657	213.0	214 5	1.5		< 0.002		< 0.02					
		- calcite pyrite alteration - moderate	109658	214.5	216.0	1.5		< 0.002		< 0.02					
		- microfracture filling	109659	216.0	217.5	1.5		< 0.002		< 0.02					
		- 5 - 8% calcite	109660	217.5	219.0	1.5		< 0.002		< 0.02					
		- 1 - 3% pyrite	109661	219.0	220.5	1.5		< 0.002		< 0.02					
		- at 30° to 50° to core axis	109662	220.5	222.0	1.5		< 0.002		< 0.02					
		147.1 - 147.3	109663	222.0	223.5	1.5		< 0.002		< 0.02				a.	
		- 10% pyrite	109664	223.5	225.0	1.5		< 0.002		< 0.02					
		- fine grained as fracture filling	109665	225.0	226.5	1.5		< 0.002		< 0.02					
		143.0 - 143.2	109666	226.5	228.0	1.5		< 0.002		< 0.02					
		- intensely brecciated andesite dyke with	109667	228.0	229.5	1.5		< 0.002		< 0.02					
		calcite matrix	109668	229.5	230.7	1.2		< 0.002		< 0.002					
		152.3						- 01002		40.000					
		- bleb of pyrrhotite 0.5 cm across - foliations, at 50° to core axis													
		155.5 to 156.6. 157.0 to 157.7 weakly													
		brecciated Andesite dykes													
		- contacts at 30° to 45° to core axis			•										
		160.1													

contact with pale emerald green rhyolite 20⁰ to core axis to 160.3

a state of the sta

*

-

HOLE NO.: CA-89-40 PAGE NO.: 7

										100.17-					
rom	То	Description	Sample No.	From	To	Length	Au ppb	Au oz/t	_Ag_ppm	ASSAYS Ag oz/t	Pb ppm	Cu ppm	Zn ppm	As ppm	Sb ppn
		159.5 - 160.0													
		 intensely altered, oxidized zone (clay calcite alteration) 													
		160.2 - 161.2													
		 microfracturing continues calcite, trace pyrite 													
		- orientation 30° to 50° to core axis 161.2 - 188.8													
		 calcite alteration continues as blebs up to 2 cm across and as minor 													
		microfracture filling													
		 5% calcule alteration rhvolite also altered to pale emerald 													
		green color													
		 original textures almost obliterated 													
		in places - foliations at 20 ⁰ to core axis at													
		182.3													
		- moderately foliated													
		160.3 - 164.7													
		- conditions at 10 to core axis													
		(moderately altered/foliated)													
		- 1% pyrite as fine grained blebs up to													
		1 mm across													
		1/1.0 - 1/2.4 - breccisted andesite dyke in calcite													
		matrix													
		 trace pyrite as disseminations in the andorito 													
		187.2 - 187.8													
		- weakly brecciated andesite dyke													
		- matrix of calcite and pyrite													
		- 3% pyrite, 5% calcite													

and the second second

-1

	Sample				ASSAYS		
From To Description	No.	From To	Length Au ppb	Au oz/t A	g ppm Ag oz/t	Pb ppm	Cu ppm Zn ppm As ppm Sb ppm

190.6

- foliations changes to 40⁰ to core axis 192.5

- back into pale grey rhyolite breccia with calcite alteration
- dendrite microfractures throughout
- calcite veinlets (fracture filling) at 40° to core axis up to 0.5 cm wide
- frequency of 1 per cm
- trace pyrite along a quartz-calcite fracture filling at 195.3 at 20° to core axis
- also pyrite in fracture at 196.6 at 30⁰ to core axis
- blotchy, white yellow alteration of clasts ("speckled")
- from 195.5 to 206.9 (possibly argillic or sericite alteration)
- 197.2
- pale grey green alteration, then to emerald green alteration at 205.5 to 214.8
 calcite veining at 30° to 50° to core axis
- calcite veining at 30° to 50° to core axis frequency of 1 per cm from 200.2 to 208.0
- up to 0.5 cm wide
- slightly brecciated andesite dykes at: 202.3 to 202.6, 203.8 to 203.9, 204.3 to 204.5, 206.5 to 207.0
- trace pyrite in quartz-calcite filled fractures
- slight epidote alteration (moss green color) for up to 5 cm on either side of the dykes
- 209.4 214.8
 - trace to 1% pyrite as occasional blebs up to 0.5 cm wide

a 👗

and the second second

-

From	To	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cu ppm	Zn ppm	As ppm	Sb ppm
		 foliations at 30 to core axis 214.8 - 224.3 grey rhyolite breccia dendritic microfracturing with calcite as filling ranging from 30° to 50° to core axis and increasing in intensity towards the bottom of the breccia trace pyrite as fine blebs and occasional fracture filling associated with calcite 217.2 - 217.3, 221.2 - 221.4, 222.4 - 222.5 "emerald green" alteration most intense at fracture decreasing in intensity with increased distance from fracture 224.3 - 230.7 Rhyolite Ash Tuff pale grey-green altered ash tuff foliations at 15° to core axis quartz-calcite veining (fracture-filling) at 20° to core axis, frequency of 1 per 10 cm adularia fracture filling at 70° to core axis, frequency of 1 per 10 cm 	đ												
23 0.7		END OF HOLE													

.

.

											۱.				
LOCA	FION:	969.451N 708.697E				DRILL	HOLE I	log			HOL	e no.: ca	1-89-41	PAGE	S NO: 1
AZIM. DIP:	: 330 ⁴ -60	^o ELEV.: 99.1 m LENGTH: 224.6 m				'nr	p mrcm				PRO	PERTY: E	lskay Cree	ek.	
STAR COMP PURP CORE	TED: LETEI OSE: RECO	CORE LENGTH: NQ March 18, 1969 D: VERY:			Mete 112 245	rage m - im -	Dip 62 0 60 0	Azimuth 331 343 ^o			CLAI SEC LOG DATI DRIL ASSA	M NO.: FION: 2+ GED BY: ED LOGGH LING CO. YED BY:	50S Christine 5D: Marci .: Fallon Bondar (Swansor h 19, 19 Negg	1 189
From	То	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cu ppm	Zn ppm 1	As ppm	Sb ppn
0	7.6	OVERBURDEN & CASING													
7.6		ANDESITE & ARGILLITES - pillowed andesites													
		- maroon to green with pale green quench	109669	9.0	10.5	1.5		< 0.002		< 0.02					
		rinds (vesicular)	109670	16.0	17.5	1.5		< 0.002		< 0.02					
		occeasional pillow breecias with matrix	109071	22.0	23.5	1.5		0.004		< 0.02					
		or grey calcite, trace chiorite, 1 - 3%	109672	20.0	29.0	1.0		< 0.002		0.03					
		filling of pale vellow green very soft	109674	37.5	39.0	1.5		< 0.002		0.02					
		crystalline. translucent mineral which	109675	39.0	40.5	1.5		< 0.002		0.02					
		fizzes in hydrochloric acid (possibly a	109676	40.05	42.0	1.5		< 0.002		0.03					
		zeolite)	109677	42.0	43.5	1.5		0.002		0.05					
		- calcite fracture filling up to 2 cm wide	109678	43.5	45.0	1.5		< 0.002		0.04					
		at 30° to core axis	109679	45.0	46.5	1.5		0.002		0.03					
		- trequency of 1 per 5 cm	109680	46.5	48.0	1.5		0.002		0.04					
		19.3	1006001	48.0 50.0	49.2 59 5	1.0		0.002		0.05					
		- cauche veni o cm across at 30° to core	100689	00.9 59.5	04.0 51.0	1.0		< 0.002		0.02					
		25.2 - 26.0	109684	54.0	55.5	1.0		< 0.002		< 0.02					
		- 2 calcite veins up to 15 cm across at 30° to core axis slightly oxidized				1.0		- V.VV2		0.02					

ы.

-

.

s a s s s s s s

• * • * * •

to core axis slightly oxidized 28.5 - 29.2, 29.5 - 30.4, 31.0 - 31.8 - argillite - layers subparallel to core axis

HOLE NO.: CA-89-41 PAGE NO.: 2

•

From	To	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Cu ppm	Zn ppm	As ppm	Sb ppm
From	To	 Description 35.3 - 49.2, 57.5 - 59.2, 59.8 - 65.5 banded silstone argillite layers at 20° to core axis in 35.3 to 49.2 average of 1 cm width layers denoted by lighter coarser grained layers & darker grey black carbonaceous finer grained layers with occasional crystallites 1 - 3% pyrite as blebs, disseminations & fracture filling associated with calcite trace sphalerite in calcite filled fracture at 41.0 & 59.9 fractures 20° to 50° to core axis no apparent bedding in 57.5 to 59.2 as in 59.8 to 63.5 calcite fracture filling up to 1 cm wide frequency of 1 per 10 cm at 30° to 50° to core axis 59.2 - 50.9 Cave 50.9 - 57.5, 59.2 - 59.8, 63.5 - 64.7 andesite flow breccia fine grained aphanitic with matrix of grey calcite and pyrite argillite matrix in outer 10 cm of breccia 64.7 - 79.3 andesite flows fine grained phaneritic with aphanitic chill margins, no quench rinds 	109685 109686 109687 109688 109689 109691 109692 109693 109694	55.5 57.0 58.5 61.5 63.0 64.5 66.0 75.0 78.1	To 57.0 58.5 60.0 63.0 64.5 66.0 67.5 76.5 79.5	Length 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Au ppb	Au oz/t < 0.002 < 0.002 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	Ag ppm	ASSATS Ag oz/t 0.02 < 0.02 0.03 0.03 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 < 0.02 0.02	Pb ppm	<u>Cu ppm</u>	Zn ppm	<u>As ppm</u>	Sb ppm
- 0.0	.	 1 - 3% pyrite as part of matrix (inclouding grey calcite, trace chlorite) in crackle breccia 													
79.3	84.7	GRAPHITIC ARGILLITE - 1 - 3% pyrite	109695 109696	79.5 81.0	81.0 82.5	1.5 1.5		0.004 0.002		0.06					

5 / 5 / S

.

From	То	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Рь ррш	Cuppm Znppm	As ppm	Sb ppm
		 calcite fracture filling at 15⁰ to core axis up to 0.3 mm wide frequency of 1 per 0.5 m 	109698	94.0	85.5	1.5		< 0.002		< 0.02				
84.7	89.3	 ANDESITE BRECCIA andesite fragments up to 40cm wide in an argillite matrix 40% argillite 85.2 - 85.7, 86.9 - 87.4 argillite, no andesite fragments 3 -5% pyrite as blebs and disseminated in the matrix & rimming 5% of the fragments fragments angular to subangular 59.1 - 89.3 sheared argillite with graphite along shear planes ranging from 30 to 80° to core axis contact with rhyolite at 80° to core axis 	109699 109700 109701	85.5 87.0 88.5	87.0 88.5 90.0	1.5 1.5 1.5		<0.002 <0.002 <0.002		<0.02 <0.02 0.03				
89.3		 RHYOLITE UNIT 89.3 - 96.0 pale grey green dust tuff no discernable fragment size layering at 45° to core axis (foliations also) 1 - 3% pyrite as disseminations & blebs occasional oxidized fractures 90.3 - 90.6 intensely silicified, massive dust tuff 91.6 - 91.7 mud seam at 50° to core axis 93.9 - 94.0 mud seam at 70° to core axis 	109702 109703 109704 109705 109706 109707 109709 109709 109710 109712 109713 109714 109715 109716	90.0 91.5 93.0 94.5 96.0 97.5 99.0 100.5 102.0 103.5 105.0 106.5 108.0 109.5 111.0	91.5 93.0 94.5 96.0 97.5 99.0 100.5 102.0 103.5 105.0 106.5 108.0 109.5 111.0 112.5	$1.5 \\ 1.5 $		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002		<0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <				

-

a construction and a second second

а •

HOLE NO.: CA-89-41 PAGE NO.: 4

" b

.

			Sample		-					ASSAYS				
From	To	Description	No.	From	To	Length	Au ppb	Au oz/t	Ag ppm	Ag oz/t	Pb ppm	Cuppm Zn ppm	As ppm	Sb ppm
		94.5 - 95.1	109717	112.5	114.0	1.5		< 0.002		< 0.02				
		- 60% guartz - 10% calcite flooding	109718	114.0	115.5	1.5		< 0.002		< 0.02				
		96.0 - 125.3 Siliceous	109719	115.5	117.0	1.5		< 0.002		< 0.02				
		- light grey ash tuff units	109720	117.0	118.5	1.5		< 0.002		< 0.02				
		- fragments 2 - 6 cm fining upwards	109721	118.5	120.0	1.5		< 0.002		< 0.02		Α.		
		- intensely fractured, two major fracture	109722	120.0	121.5	1.5		< 0.002		< 0.02				
		sets at 10° to core axis & at 30° to core	109723	121.5	123.0	1.5		< 0.002		< 0.02				
		axis	109724	123.0	124.5	1.5		< 0.002		< 0.02				
		- frequency of 1 per cm	109725	124.5	126.0	1.5		< 0.002		< 0.02				
		- 1 - 3% pyrite as above but also as	109726	126.0	127.5	1.5		< 0.002		< 0.02				
		occassional fracture filling	109727	127.5	129.0	1.5		< 0.002		< 0.02				
		- fractures are mostly oxidized & leached	109728	129.0	130.5	1.5		< 0.002		< 0.02				
		to 1 cm away from fracture from 96.0 -	109729	130.5	135.0	1.5		< 0.002		< 0.02				
		111.1, 117.3 - 117.6	109730	133.5	135.0	1.5		< 0.002		< 0.02				
		- stylolitic fractures from 109.5 - 125.8	109731	133.5	135.0	1.5		< 0.002		< 0.02				
		filled with pyrite, calcite & chlorite	109732	135.0	136.5	1.5		< 0.002		< 0.02				
		- quartz fracture filling (flooding) from	109733	136.5	138.0	1.5		< 0.002		< 0.02				
		111.2 - 114.9 (as well as minor calcite)	109734	138.0	139.5	1.5		< 0.002		< 0.02				
		117.1 - 117.3	109735	139.5	141.0	1.5		< 0.002		< 0.02				
		- mud seam, rubbly	109736	141.0	142.5	1.5		< 0.002		< 0.02				
		125.8 - 142.3	109737	142.5	144.0	1.5		< 0.002		< 0.02			•	
		 rhyolite breccia (auto breccia) 	109738	144.0	145.5	1.5		< 0.002		< 0.02				
		- pale grey	109739	145.5	147.0	1.5		< 0.002		< 0.02				
		 1 - 3% pyrite as blebs and occassioal 	109740	147.0	148.5	1.5		< 0.002		< 0.02				
		fracture filling	109741	148.5	150.0	1.5		< 0.002		< 0.02				
		- foliations (weak) at 40° to core axis	109742	150.0	151.5	1.5		< 0.002		< 0.02				
		 occasional oxidized fractures 	109743	151.5	153.0	1.5		< 0.002		< 0.02				
		- low fracture density 1 per 30 cm	109744	153.0	154.5	1.5		< 0.002		< 0.02				
		142.3 - 142.8 Andesite Dike	109745	154.5	156.0	1.5		< 0.002		< 0.02				
		- pale green	109746	156.0	157.5	1.5		< 0.002		< 0.02				
		- amygdules filled with chlorite & calcite	109747	157.5	159.0	1.5		< 0.002		< 0.02				
		- sericitic? alteration from 141.5 - 142.3 &	109748	159.0	160.5	1.5		< 0.002		< 0.02				
		from 142.8 - 143.7 (halo around dyke)	109749	160.5	162.0	1.5		< 0.002		< 0.02				
		(pale yellow, soft, clayish mineral	109750	162.0	163.5	1.5		< 0.002		< 0.02				
		disseminated flecks)	109751	163.5	165.0	1.5		< 0.002		< 0.02				

and the second second

HOLE NO.: CA-89-41 PAGE NO.: 5

Passa	T	Denvieting	Sample		-					ASSAYS		_	_		
r rom	10	Description	No.	From	To	Length	Au ppb	Au oz/t	Ag ppm	Ag oz/t	Pb ppm	Cu ppm	Za ppm	As ppm	Sb ppm
		142.8 - 224.6 Rhvolite Ash Tuff	109752	165.0	166 5	15		~ 0 002		~ 0.09					
		- clast size from 2 - 6 cm	109753	166.5	168.0	1.0		< 0.002		~ 0.02					
		- angular to subangular	100754	168.0	160.0	1.5		< 0.002		< 0.02					
		• increase in fracture denisty to 1 per cm	100758	171 0	179 5	1.0		< 0.002		~ 0.02					
		- Do preferred orientation	109757	179.5	174.0	1.0		~ 0.002		< 0.02					
		- nale grey to medium grey	100759	174 0	175.5	1.0		~ 0.002		< 0.02					
		- siliceous	109750	175.5	177 0	1.0		~0.002		< 0.02					
		- 30% fragments are flow bended	100760	177 0	179.5	1.5		< 0.002		~ 0.02					
		- 1% twrite as blebs and occasional	100761	179.5	120.0	1.0		< 0.002		< 0.02					
		fracture filling with calcite	100762	180.0	181 5	1.5		< 0.002		< 0.02					
		159.8 - 162.4	100769	101.5	182.0	1.0		~ 0.002		< 0.02					
		- sericite alteration	109764	183 0	184.5	1.0		~ 0.002		< 0.02					
		- pale vellow flecks as in 1415 to 1423	109765	194.5	186.0	1.5		~ 0.002		< 0.02					
		- occassional zones of fine ash tuff up to	109766	196.0	187.5	1.5		~0.002		< 0.02					
		30 cm wide	100767	197.5	120.0	1.5		~ 0.002		< 0.02					
		1751 - 2186	100769	190 h	100.0	1.5		< 0.002		~ 0.02					
		- 5% sericite (vellow clavey flecks)	100760	100.5	109 0	1.5		< 0.002		< 0.02					
		elteration of clasts	100770	109 0	109 K	1.5		~ 0.002		< 0.02					
		- moderately foliated with foliations at	100771	109.5	105.0	1.0		~ 0.002		~0.02					
		40° to core axis	100772	195.0	108 5	1.5		~ 0.002		< 0.02					
		- pyrite along with calcite as blebs and	100779	106.5	102 0	1.0		~ 0.002		~0.02					
		along dendritic (stylolite-like) fractures	100774	109.0	100.5	1.0		< 0.002		< 0.02					
		throughout	100775	100.5	2001 A	1.5		< 0.002		< 0.02					
		168.8 - 224.6	109776	201.0	909.6	1.5		< 0.002		~ 0.02					
		- calcite filled fractures (tension gashes) 1	109777	202.5	202.0	1.5		< 0.002		~0.02					
		per 2 cm	109778	202.0	205.5	1.5		< 0.002		< 0.02					
		170.6 - 170 7 201.5 - 201.6 Andesite	100770	205.5	207.0	1.5		< 0.002		< 0.02					
		Dykes	109780	207.0	208.5	1.5		< 0.002		< 0.02					
		204.6 - foliations at 30 ⁰ to core aris	109781	208.5	200.0	15		< 0.002		~0.02					
		206.0 - foliations at 25° to core axis	109782	210.0	211.5	15		< 0.002		~ 0.02					
		198.8 - 199.7 - 5% clasts in dust tuff	109783	911 5	213 A	15		~ 0.002		< 0.02					
		clasts have pale vellow alteration rims	109784	213.0	214.5	1.5		< 0.002		< 0.02					
		197.3 - 201.5, 205.1 - 207.7, 2119 -	109785	214.5	216.0	1.5		< 0.002		< 0.02					
		224.6 - emerald green clasts in grey ash	109786	216.0	217.5	1.5		< 0.002		< 0.02					
		matrix	109787	217.5	219.0	1.5		< 0.002		< 0.02					

-

(

а •

HOLE NO.: CA-69-41 PAGE NO.: 6

· ·

From	To	Description	Sample No.	From	То	Length	Au ppb	Au oz/t	Ag ppm	ASSAYS Ag oz/t	Pb ppm	Си ррт	Zn ppm	As ppm	Sb ppm
		224.2 - trace sphalerite	109788 109789 109790 109791	219.0 220.5 222.0 223.5	220.5 222.0 223.5 224.6	1.5 1.5 1.5 1.5		< 0.002 < 0.002 < 0.002 < 0.002		<0.02 <0.02 <0.02 <0.02					

,

a table a table a second a se

224.6 END OF HOLE

.

-- **b**

CALPINE RESOURCES INCORPORATED - ESKAY CREEK PROPERTY, B.C.

DRILL HOLE LOG Hole Number

۲

-

· · ·

•

.

1

. -

•

Azimuth:	150	Elevation:	99.12	metres
Dip: Core Size:	-45 NO		325.2	feet
	~	Length:	154.4 506.6	metres feet
Started:	March 7, 1989 March 10, 1989	Line:	2+41S	1+14W
compressed.		Location:	969.45 708.70	Northing Easting

CA89-38

•

.

A second sec second sec

Drilling Company:	Falcon Drilling
Logged by:	G.F. McArthur
Assayed by:	Bondar-Clegg

.

ENTERED MAR 3 1 1989

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. N° h Vancouver, B.C. V 1RS ##44) 985-0681 Telex 04-352667

٢.

,

Certificate of Analysis

REFORT: V89-010	18.4			PROJEC	T: UNUK		PAGE 1
SAMPLE NUMBER	ELEMENT AU UNITS OPT	Ag OP T	SATIFLE NUNBER	EL	EMENT A	u Ag T OPT	
			D2 109.	386		ວ 0.02 ວ 0.07	
			D2 107	1387	0.00	3 U.US	
			DZ 107.	300	0.00	0 D.19 0 D.40	
	(0.000		UZ 107	367	0.00	0 U.IU D 4 75	
D2 109350	<u.uuz< td=""><td><0.0Z</td><td>DZ 107</td><td>370</td><td>0.01</td><td>J 1.75</td><td></td></u.uuz<>	<0.0Z	DZ 107	370	0.01	J 1.75	
D2 109351	<0.002	<0.D2	D2 109	391	0.00	6 0.11	
D2 109352	<0.902	<0.02	D2 109	392	0.003	3 0.06	
D2 109353	<0.002	<0.02	D2 109	393	Q.DD;	6 0.13 [.]	
D2 109354	<0.002	<0.02	D2 109	394	0.00	2 0.19	
D2 109355	<0.002	<0.02	D2 109	395	0.00	3 D.11 [.]	
D2 109356	<0.002	<11.02	D2 109	396	0.00	4 0.06	·····
D2 109357	<0.002	<0.02	02 1.09	397	0.00	2 0.02	
02 109358	<0.002	<0.02	D2 109	398	20.00	2 0.06.	
02 107350 02 109359	<0.002	1 02	02 109	.,, ⊂A		2 8.23	
D2 109360	<0.002	0.03	D2 1094	400 .	0.00	2 0.16	
							· · · · · · · · · · · · · · · · · · ·
D2 109361	2-37 <0.002	<0.02	02 1094	401	<0.00	2 0.23	
D2 109362 🔾	<0.002	<0.02	D2 1094	402	0.003	2 0.06	
D2 109363	0.002	<0.02	D2 1094	403	0.00	2 0.17	
D2 109364	0.002	<0.02	D2 1094	404	0.005	5 .0.69	
D2 109365	<0.002	<0.02	D2 109	405	0.01	5 0.76	
D2 109366	0.004	0.08	D2 1094	406	0.002	2 0.08	
D2 109367	<0.002	<0.02	D2 1094	407	0.001	3 0.09	
D2 109368	<0.002	<0.02	D2 1094	408	0.008	B D.73	
D2 109369	<0.002	<0.02	D2 1094	409	0.003	9 0.03	
D2 109370	<0.002	<0.02	D2 1094	410	0.002	2 0.02	
(02 109274	(0.002	20.03		(11	<u></u>	> 0.02	
02 107371 87 188272	20.002	20.02	ער 107 הס להסל	(12	N 003	- 0.02 0.02	
D2 107372	0.002	NU,UZ 20 02	02 1074 D2 4004	413	28.002 28.002	20.03	
02 10/3/3 V7 20/3/3		<0.02 20.02	D2 1074		20,002	. 0.03 Г П П Я	
D2 107374	<0.002	<0.02	D2 1094	(15	<0.002	2 0.04	
				}			
D2 109376	<0.002	<0.02	D2 1094	16	<0.002	· U.03	
D2 109377	<0.002	<0.02	, D2 1094	417	<0.002	U.02	
, DZ 109378	<0.082	<0.0Z	DZ 1094	18	<0.002	U UZ	
DZ 109379	<0.00Z	<u.02< td=""><td>D2 1094</td><td>17</td><td>0.002</td><td>ζ U,UJ</td><td></td></u.02<>	D2 1094	17	0.002	ζ U,UJ	
	<0.002	<0.02	DZ 1094	120	U.U02	0.03	
D2 109381	<0.002	<0.02	D2 1094	21	0.002	0.03	
, D2 109382	0.002	0.04	D2 1094	22	0.002	0.02	
D2 109383	\<0.002	0.02	D2 1094	423 \	0.003	8 0.03	
D2 109384	Ƴ <0.002	0.034	D2 1094	24	¥ 0.002	0.04	
D2 109385	0.004	0.05	D2 1094	125	<0.002	0.02	
			······		11	VA ?	
					19	UC_	

ond, Clegg & Company Ltd. O Peribertion Ave. onb.Mancouver, B.C. 1915 (54) (5-0681 Telex (4-352657)

. • •

٠,

ENTERED MAR 3 1 1989 Certificate of Analysis

<u> </u>	KEF'ORT: V89-81018.4				PROJECT: UNUK		FIAGE 2			
-	SAMPLE NUMBER	ELEMENT UN11S	Au OPT	Ag OPT	 SAAPLE NUASER	ELEMENT URITS	й 190	64 170		
, ,	D2 109426 U2 109427 D2 109428 D2 109429 D2 109430	CA-38	<0.002 <0.002 0.002 0.002 0.002 0.002	0.02 0.03 0.02 0.02 0.02 0.02						
	D2 109431 D2 109432		<0.002 <0.002	0.02						

		TSL	LABOR DRV BURGENER TE	RATORIES CHNICAL ENTERPRISES LIMITED
			2 - SASKA	302 - 45th STREET, EAST TOON, SASKATCHEWAN STK 644
			306) 931-1	033 FAX: (305) 242-4717
	CERTIFICATE	OF ANALYSIS		
SAMPLE(S) FROM Prime 10th F Vancou .V6C 22	Exploration Ltd. Floor-Box 10, 808 Ever, B.C.	West Hastings	st.	REPORT No. S6457
SAMPLE(S) OF Pulps			INVOICE P.O.: B	#: 11157 ondar-Clegg
				Recheck
Keewat	in Engineering			
	Au ozt		Ag ozt	
1.09360 .09375 109390 CA-38 .109405 .09420	<.001 <.001 .013 .019 .001		<.05 <.05 1.56 .69 <.05	

ENTERED AFR 2 4 1989

CALPINE RESOURCES INCORPORATED - ESKAY CREEK PROPERTY, B.C.

DRILL HOLE LOG Hole Number CA89-39

e

.

Azimuth:	150	Elevation:	99.12	metres
Dip:	-77		325.2	feet
Core Size:	NQ			
		Length:	203.3	metres
		-	667.0	feet
Started:	March 10, 1989 March 14, 1989	Line:	2+415	1+14W
compressar	naron 14, 1909	Location:	969.45	Northing
			708.70	Easting

A grant a second s

Drilling Company:	Falcon Drilling
Logged by:	Christine Swanson
Assayed by:	Bondar-Clegg

-

ENTERED MAR 3 1 1989 Certificate of Analysis

. . . .

Bondar-Clegg & Company Ltd. 130⁻⁻emberton Ave. Nc - i Vancouver, B.C. V/7 2R5) 985-0681 Telex 04-352667

. .

.

	REPORT: V89-	01018.4					PROJECT:	UNUK	F	AGE 2
	SAMPLE NUMBER	ELEMENT UNITS	Au OPT	Ag DF1	S	iample Unber	ELEN Un	ENT AU ITS OPT	Ag Opt	
						2 109484 2 109485 2 109486 2 109486 2 109487 2 109488		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	
	D2 109451 D2 109452 D2 109453	1	<0.002 <0.002 <0.002	<0.02 <0.02 <0.02		2 109489 2 109490 2 109491 2 109492 2 109493		<0.002 <0.002 <0.002 <0.002 <0.002 0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	
	D2 109454 D2 109455 D2 109456 D2 109456 D2 109457 D2 109458		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 0.05-	[[[[[[2 109494 2 109495 2 109496 2 109497 2 109497 2 109498	cA-	<0.002 <0.002 <0.002 <0.002 <1.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	
- -	D2 109459 D2 109460 D2 109461 D2 109462 D2 109462 D2 109463	CA-39	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.02 <0.02 <0.02 <0.02 <0.02 <0.02	1 () () () () () () () () () (2 109499 2 109500 2 109501 2 109502 2 109503		<0.002 <0.002 <0.002 0.003 <0.003 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	
	D2 109464 02 109465 D2 109466 D2 109466 D2 109467 D2 109468		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02		2 109504 2 109505 2 109506 2 109506 2 109507 2 109508		0.002 0.004 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	
	D2 109469 D2 109470 D2 109471 D2 109471 D2 109472 D2 109473		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.02 <0.02 <0.02 <0.02 <0.02 <0.02	[[[[[2 109509 2 109510 2 109511 2 109511 2 109512 2 109513		0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.02 <0.02 <0.02 <0.02 <0.02 <0.02	
 、 、	D2 109474 D2 109475 D2 109476 D2 109476 D2 109477 D2 109478		<0.002 <0.002 <0.002 0.003 <0.003 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	, [2 109514 2 109515		<0.002 <0.002	<0.02 <0.02	
	D2 109479 D2 109480 D2 109481 D2 109481 D2 109482 D2 109483		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 0.02 <0.02	•			-24	7	

 Boildiar-Clegg & Company Ltd.

 130 Pemberion Ave.

 No⁺⁺ Vancouver, B.C.

 VT₁ = R5

 1603 985-0681 Telex 04-352667

÷

Certificate of Analysis

•

ENTERED Apr7/89

;	REPORT: V89-	01062.4					PROJECT: UNUK		F'AGE	1
,	SARPLE NURBER	ELENENT UNITS	ÂU TRC	Ag លោក		Sample Ngaser	ELE#ENT UN11S	ลัน 01/1	Ag 01''1	
	02 109516 02 109517 02 109518 02 109519 02 109520	1	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02						
	D2 109521 D2 109522 D2 109523 D2 109523 D2 109524 D2 109525		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02						
	D2 109526 D2 109527 D2 109528 D2 109529 D2 109530		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.02 <0.02 <0.02 <0.02 <0.02 <0.02			• .		2-	
	D2 109531 D2 109532 D2 109533 D2 109533 D2 109534 D2 109535	CA-39	<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	· · · · · · · · · · · · · · · · · · ·					
	D2 109536 D2 109537 D2 109538 D2 109538 D2 109539 D2 109540		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.62 <0.62 <0.62 <0.62	• •				ı	
	D2 109541 D2 109542 D2 109543 D2 109544 D2 109544 D2 109545		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 0.02 <0.02 <0.02 <0.02 <0.02						
	D2 109546 D2 109547 D2 109548		<0.002 <0.002 <0 <u>.002</u>	<0.02 0.03 <0.02	, ,					

ENTERED APR 2 4 1999

TSL LABORATORIES

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 45th STREET, EAST SASKATOON, SASKATCHEWAN S7K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

SAMPLE(S) OF Pulps

OM Prime Exploration Ltd. 10th Floor-Box 10, 808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 11157 P.O.: Bondar-Clegg

Recheck

Keewatin Engineering

		ozt	ozt
		· · · ·	
100453		< 001	
109468		.007/<.001	<.05
109483	(A-39)	.001	<.05
109498		<.001	<.05
109513		<.001	<.05

COPIES	то:	C. Idziszek, J. Foster
INVOICE	TO:	Keewatin Engineering-Vancouver

Mar 23/89

Bernie Du SIGNED .

For enquiries on this report, please contact Customer Service Department. Samples, Pulps and Rejects discarded two months from the date of this report,

Page 1 of 1

٠

RECHECK

ENTERED AFR 2 4 1989

TSL LABORATORIES

Bondar-Clegg

	Au ozt		Ag ozt
v89-01062.4-109530	<.001	CA-39	<.05
v89-01062.4-109545	<.001/.001		<.05

CALPINE RESOURCES INCORPORATED - ESKAY CREEK PROPERTY, B.C.

DRILL HOLE LOG Hole Number CA89-40

1.

•

Azimuth:	330	Elevation:	99.12	metres
Dip:	-78		325.2	feet
Core Size:	NO			
	~ ~	Length:	230.7	metres
			757.0	feet
Started:	March 14. 19	Line:	2+41S	1+14W
Completed:	March 17, 19			
<u>F</u> =		Location:	969.45	Northing
			708.70	Easting

.

-

Drilling Company:	Falcon Drilling
Logged by:	Christine Swanson
Assayed by:	Bondar-Clegg

-

andar-Clegg & Company Ltd. OPembenon Ave. orth Incouver, B.C. "P 2 4 (a) \$55.0681 Telex 04-352667

Certificate of Analysis

.

ENTERED APR 8 7 1959

1

EKIERED

REPORT: V82-01062.4				L INV	JELTE GROK	1 - SE 1	
GASELE NUCSER	ELERENT UNITS	តំប ភូរៈ។	Ag Ciril	SACPLE NUMBER	ELECENT AU UNITS OFT	≎o >∺1	
				62 169556	et <0.552	<0.02	
				52 109557	<0.992	<0.62	
	-			h2 109558	<0.002	0.82	
				02 109559	<8,502	0,83	
				02 109560	<0.002	<0.02	
				 D2_109561	<0.502	<0.02	
				02 109562	<0,002	0.02	
				D2 109563	<0.002	0.03	
				02 109564	<0.602	9.03	
				02 109565	<0.862	0.02	
				02 109566	<0.002	0.02	
	• •	•		52 10556 57 109567	<0.002	<0.02	
				02 105568	<0.002	0.02	
			•	D2 109549 C	A-40 <0.002	<0.92	
				02 109570	0.003	<0.92	
			_		<n 052<="" td=""><td>< 1. 92</td></n>	< 1. 92	
				JZ JU73/1 20 406579	9,002	0.05	
				02 107012 02 107012	0.062	0.05	
				52 107070 53 109578	n.062	0.64	
				02 107014	0.002	0.03	
• •							
				D2 109576	<0.002	<0.62	
				D2 109577	<0.002	<0.02	
				D2 109578	<0.002	<0.02	
				D2 109579	<0.002	0.03	
		• •		D2 109580	<0.002	0.02	
				D2 109581	<0.002	<0.02	
				02 109582	<1.062	<0.02	
				D2 109563	<d.6r2< td=""><td><0.02</td></d.6r2<>	<0.02	
				D2 109584	<0.002	<0.02	
				D2 109585	<0.052	<0.82	
				D2 109586	<0.002	<0.02	
		•		D2 109587	<0.002	<0.02	
				D2 109588	<0.002	<0.82	
D3 100510		20 002	(0.92		<0.002	<0.02	
DZ 109547 DZ 109550		<9.882	<0.02	02 109590	1<0.362	<0.62	
				D2 109591		<0.02	
DZ 189551		KULUUZ KOLEDD	50.0Z 0.50	02 109592	<0.002	<0.02	
6Z 18755Z	CA-40	10.002 20.002	0.07 0.06	D2 109593	<0.632	<0.32	
172 337555 No constr		10.062 20.062	0.04	52 109594	<0.902	<0.02	
88 387004 59 40666		.0.002 ∠8 102	<0.02	02 109595	¥ <0.002	.12	
08 JUNUU						100	

...........

Bondur-Clogg & Company Ltd. 30 Rembertion Ave. Nord - Vencouver, B.C. VTP, 15 64/2 985-0681 Teles 04-352667

2

ENTERED APR 0 7 1989

1

NEPONT: VE9-51842.4						PROJECT: PVUK		F26E 2	
	SATPLE I NUESER	ELEDENT AU ONITS OFT	¢g (7-1		oadpi e Nucser	ELEDENT ONITS	ूज जन्म	20 301	
	07 109596	A <0.002	<0.02		02 109636	\wedge	<0.002 <8.002	<0.12 <0.02	
	02 109597	- S0.002 √n.000	<0.02 20.02		02 107027		<0.002	<0.62	
	07 109598	<0.00Z	<0.02 20.02		92 109639	j	<0.002	<0.52	
	02 109599	<0.00Z	<0.0Z		n2 109640		<0.002	<0.02	
	DZ 109600	<0.00Z	<0.0Z		DE JUNCAU				
	ng (00254	<9,362	<0.02		D2 109641		<0.002	<0.02	
	02 107001	<0.502	<9.02		D2 109642		<0.0[2	<0.02	
	D2 109602 D2 109663	<0.002	<0.02		D2 109643		<0.002	< 9.52	
	02 107000 02 109606	<0.002	<0.02		02 109644		<0.002	<9.02	
	92 109605	<0.062	<0.02		02 109645		<0.002	<[1,02	
	D2 109606	<0.002	<0.02		D2 109646		<0.00Z	<u.52< td=""><td></td></u.52<>	
	02 109607	<0.002	<0.02		D2 109647	Į	<0.00Z	KU.0Z	
	02 109608	<0.002	<0.02		D2 109648		<0.09Z	KU.EZ	
	07 109609	<0.002	<0.02		02 109649	1	<0.002	<0.0Z	
	D2 109610	<0.002	<0.02		02 109650		<0.002	<0.62	
						<u>.</u>			
	52 (19611 -	<0.002	<0.82		02 109651	(A-40	<0.09Z	<[1.1.2 (0.02	
	02 109612	l <0.002	<0.02		D2 109652		<0.00Z	<0.02 (0.02	
	D2 109613	<0.002	<0.02		02 109653		<0.002	<0.02	
	DZ 139614 CA-	- ңо _{<0.002}	<0.02		D2 109654	1	<0.09Z	<0.5Z	
	DZ 109415	<0.002	<0.02		02 109655		<0.902	<0.62	
	· ····································						/0.002		
	DZ 109616	0.002	<0.02		DZ 109656		<0.002	\u02 \u02 \u03 \u03	
	92 109617	<0.002	<0.02		DZ 109657		<0.002	NU-52 1 20.02	
	D2 109618	<0.002	<0.02		92 10561-6		<0.002	NU.UC 20 07	
	DZ 109619	<0.882	0.03		DZ 109659		<0.00Z	<υ.uz η μά	
	D2 109620	<0.002	<0.02		92 109660		COLUCZ	U.IE	
_					D0 400//4		(0.902	<0.02	
	02 109621	<0.002	<0.5Z		DZ 107001		<0.002 <0.002	<0.02	
	D2 109622	<0.002	<0.02		02 107662 Ng 10667/9		20.002	<11.12	
	U2 109623	<0.002	<9.02		92 107663 D2 107663	ļ	20.002	<0.02	
	D2 109624	<0.002	<0.62		VZ 107664	1	28 992	<0.02	
	D2 109625	<0.062	<0.02	<u> </u>	UZ 167665		19.252	- U + U + U + U + U + U + U + U + U + U	
		(0.000	/0.02		02 189666		<0.002	<d.82< td=""><td></td></d.82<>	
	DZ 107626	<0.06Z	KU.UZ	•	D2 109667	<u>ال</u>	<0.002	<0.62	
	02 1119627	<0.00Z	<0.02 20.02		D2 109648	¥	<0.002	<d.02< td=""><td></td></d.02<>	
	9Z 109628	<pre>\$0.002 >0.002</pre>	NU.UZ 20.03	-					
	. DZ 109629	<0.00Z	<0.02 20.02						
	DZ 109630	KU.UUZ	NULUZ						
	ng 109254	<0.0€ 2	(1.52	*					
	06 107001 N2 106700	20 UD2	(0.02		: 1 1				
	175 10202 192 406755	עם. שני אין אין אין אין אין אין אין אין אין אי	29.52						
-	02 107633	191092 20.055	20.02 20.02						
	DZ 107604	າມ,ນນ2 ນີ້ ບໍລິດກາ	ND.02 20.02						
	DZ 167635	r ku,uuz	<u.uz< td=""><td></td><td>]</td><td></td><td></td><td></td><td></td></u.uz<>]				
LINE MARLE AND

P.O.:

ENTERED AFR 2 1 1999

TSL LABORATORIES

2 - 302 - 45th STREET, EAST SASKATOON, SASKATCHEWAN 57K 6A4 (306) 931-1033 FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM	Prime Exploration Ltd. 10th Floor-Box 10, 808 West Hastings St. Vancouver, B.C.	RE \$6	PORT No. 542
	INVOICE	⊆ ≤ #:	11253

SAMPLE(S) OF Pulps

RECHECK

Bondar-Clegg

	Au		Ag
	ozt		ozt
V89-01062.4-109560	<.001		<.05
V89-01062.4-109575	<.001		<.05
V89-01062.4-109590	.004		<.05
V89-01062.4-109605	<.001	CA-40	<.05
V89-01062.4-109620	<.001		<.05
V89-01062.4-109635	<.001		<.05
V89-01062.4-109650	<.001		<.05
V89-01062.4-109665	<.001		<.05

CALPINE RESOURCES INCORPORATED - ESKAY CREEK PROPERTY, B.C.

•

.

-

 $\mathbf{x} = \begin{bmatrix} 1 & \cdots & \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1 & \cdots & \mathbf{x} \end{bmatrix}$

· DRILL HOLE LOG Hole Number CA89-41

Azimuth:	330	Elevation:	99.12	metres
Dip: Core Size:	-60 NQ		325.2	feet
	-	Length:	224.6 737.0	metres feet
Started: Completed:	March 18, 1989 March 22, 1989	Line:	2+41S	1+14W
	···· ·· · · · · · · · · · · · · · · ·	Location:	969.45 708.70	Northing Easting

Drilling Company:	Falcon Drilling
Logged by:	Christine Swanson
Assayed by:	Bondar-Clegg

~

.

 Bondar-Clegg & Company Ltd. 30 Pemberion Ave.
North Varcouver, B.C.
V7P 2R5
50-0 985-0681 Telex 04-352667

4

Certificate of Analysis

. .

v

ENTERED

REPORT: V39	-01062.4			PROJECT	: UNUK	PAGE 2	2
SAMPLE NUMBER	ELENENT UNITS	Au CPT	Ag GPT	SAMPLE ELE NUMBER U	MENT AU NITS OF T	Ag OPT	
			· 1	D2 109669	<0.002	<0.02	_
				02 109670	<0.002	<0.02	
				D2 109671	0.004	<0.02	
				02 109672 CA-4	\ <0.00 2	0.03	
				D2 109673	<0.002	<0.02	
				D2 109674	<0.002	0.02	
				D2 109675	<0.002	0.02	
		-		<u>1999</u>	14	Kg -	

Registered Asszyer, Province of British Columbia

Bondar-Clegg & Company Ltd. TD Pemberton Ave. with Vancouver, B.C. N/P 2R5 T 504) 985-0581 Telex 04-352667

,

.

Certificate of Analysis

Apr. 7185

	REPORT: V89-	-01062.4				PROJECT: UNUK	P'AGE 3
	SAMPLE NUMBER	ELEMENT UNITS	Au OPT	Ag OP T	SARPLE NURBER	ELEMENT AU UNITS OF	i Ag I OPT
	D2 109676 D2 109677 D2 109678		<d.002 D.002 <0.002</d.002 	0.03 0.05 0.04	02 1097 02 1097 02 1097	16 <0.002 17 <0.002 18 <0.002	? <0.02 2 <0.02 ? <0.02
	D2 109679 D2 109680		0.002 0.002	0.03 0.04	02 1097 02 1097	19 <0.00 20 <0.00	2 <0.02 2 <0.02
	D2 109681 D2 109682		0.002 <0.002	0.05 0.02	D2 1097 D2 1097	21 <0.00 22 <0.00	2 <0.02 2 <0.02
	D2 109683 D2 109684 D2 109685		<0.002 <0.002 <0.902	<0.02 0.02 0.02	D2 1097 D2 1097 D2 1097	23 <0.00. 24 <0.001 25 <0.002	2 <0.02 2 <0.02 2 <0.02
	D2 109686	· · · · · · · · · · · · · · · · · · ·	<0.002	<0.02	D2 1097	26 <0.000	2 <0.02
	D2 109689 D2 109688 D2 109689		0.002 <0.002	0.03	D2 1097 D2 1097 D2 1097	28 <0.00 29 <0.00	2 <0.02 2 <0.02 2 <0.02
<u> </u>	D2 109690		<0.002	<0.02	D2 1097	30 (0.00)	2 <0.02
•	02 109692 D2 109693 D2 109694	СА-ЦІ	<0.002 <0.002 <0.002	<0.02 <0.02 0.02	D2 1097 D2 1097 D2 1097	32 <0.003 33 CA-41 <0.003 34 <0.003	2 <0.02 2 <0.02 2 <0.02
	D2 109695	<u>.</u>	0.004	0.06	D2 1097	35 <0.00	2 <0.02
	D2 109696 D2 109697 D2 109698 D2 109698 D2 109699		0.002 0.002 <0.002 <0.002	0.02 0.02 <0.02 <0.02	D2 1097 D2 1097 D2 1097 D2 1097 D2 1097	36 (0.00) 37 (0.00) 38 (0.00) 39 (0.00)	2 <0.02 2 <0.02 2 <0.02 2 <0.02 2 <0.02
	D2 109700		<0.002	<0.02	D2 1097		<0.02
	D2 109701 D2 109702 D2 109703 D2 109704 D2 109705		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	0.03 <0.02 <0.02 <0.02 <0.02 <0.02	D2 1097 D2 1097 D2 1097 D2 1097 D2 1097 D2 1097	41 (0.00) 42 (0.00) 43 (0.00) 44 (0.00) 45 (0.00)	2 <0.02 2 <0.02 2 <0.02 2 <0.02 2 <0.02 2 <0.02
, , ,	D2 109706 D2 109707 D2 109707 D2 109708 D2 109709 D2 109710		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	D2 1097 D2 1097 D2 1097 D2 1097 D2 1097 D2 1097	46 <0.00) 47 <0.00 48 <0.00 49 <0.00 50 <0.00	2 <0.02 2 <0.02 2 <0.02 2 <0.02 2 <0.02 2 <0.02 2 <0.02
· · ·	D2 109711 D2 109712 O2 109713 D2 109714 D2 109715		<0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.02 <0.02 <0.02 <0.02 <0.02 <0.02	- D2 1097 D2 1097 D2 1097 D2 1097 D2 1097 D2 1097	51 <0.00	2 <0.02 2 <0.02 2 <0.02 2 <0.02 2 <0.02 2 <0.02

NP1

Bondar-Clegg & Company Ltd. ¹⁷⁷ Pemberton Ave. N th Vancouver, B.C. V/P 2R5 104) 985-0681 Telex 04-352667

Certificate of Analysis

> ENTERED Apr. 7187

	0ED001- 000 0			·····]]	PROJECT: UNUK		PAGE	4
_	NEFUKI: V67-0								
	SAMPLE	ELEMENT	ភ័ម	Ĥg	SAMPLE	ELEMENT	Au Apt	Ag DC: T	
	NOMBER	UNITS	0F'T	OF T	NURBER	CITUD			
	02 109756	<u></u>	<0.002	<0.02					
	D2 109757	-	<0.002	<0.92					
	D2 109758		<0.082	<0.02					
	D2 109759		<0.002	<0.02					
_	D2 109760		<0.002	<0.02					
	02 1007/1	<u> </u>	<u></u>	<0.02					
	07 107701 D2 100772		<0.002 <0.002	<n.n2< td=""><td></td><td></td><td></td><td></td><td></td></n.n2<>					
	DZ 10770Z		<0.002 <0.002	<0.02					
	D2 107703		20.002	Π Ω2·	(A-41				
	UZ 107/64		<n 002<="" td=""><td><0.02</td><td>01 11</td><td></td><td></td><td></td><td></td></n>	<0.02	01 11				
	DZ 107753								
,	D2 109766		<0.002	<0.02					
	D2 109767		<0,802	<0.02					
	D2 109768		<0.002	<0.02					
	D2 109769		<0.002	<0.02					
	D2_10977D		<0.002	<0.02					· · · · · ·
	n2 109771		<0.002	<0.02					
	D2 107772		<11.002	<0.02					
	D2 107772		<0.002	<0.02					
	D2 109776		<1.002	<0.B2					
	D2 107714		<0.002	<0.02	-				
	D2 109776		<0.002	<0.02				L	
	02 109777		<0.002	<0.02					
	D2 109778		<0.002	<0.02					
	D2 109779		<0.002	<0.02					
	D2 109780		<0,002	<0.02					
	02 109781	t	<0.002	<0.02					
	D2 109782		<0.002	<0.02					
	D2 109783		<0.002	<0.02					
	D2 109784		<0.002	<0.02					
	D2 109785		<0.002	<0.02		<u></u>			
								<u></u>	
í	D2 109786		<0.002	<u.d2< td=""><td></td><td></td><td></td><td></td><td></td></u.d2<>					
	D2 109787		<0.002	<u.uz< td=""><td></td><td></td><td></td><td></td><td></td></u.uz<>					
	D2 109768		<0.002	<u.uz< td=""><td></td><td></td><td></td><td></td><td></td></u.uz<>					
'	02 109789		<0.00Z	<u.uz< td=""><td></td><td></td><td></td><td></td><td></td></u.uz<>					
	D2 109790		<0.002	<0.02		· · · · · · · · · · · · · · · · · · ·			
	02 109791		<0.082	<0.02	•				
,									
· _									

ENTERED	AFR 2	4	1989
---------	-------	---	------

TSL LABORATORIES

DIV BURGENER TECHNICAL ENTERPRISES LIMITED

2 - 302 - 4615 STREET, EAST SASKATOON, SASKATCHEWAN 57K ¢A4 30(306) 931-1033 - FAX: (306) 242-4717

CERTIFICATE OF ANALYSIS

SAMPLE(S) FROM

SAMPLE(S) OF Pulps

Prime Exploration Ltd. 10th Floor-Box 10, 808 West Hastings St. Vancouver, B.C. V6C 2X6

INVOICE #: 11253 P.O.:

Recheck

Bondar-Clegg

Au ozt Ag ozt

V89-01062.4-109680	<.001	CA-41	<.05
V89-01062.4-109695	.004/.005		.08
V89-01062.4-109710	<.001		<.05
V89-01062.4-109725	<.001		<.05
V89-01062.4-109740	<.001		<.05
V89-01062.4-109755	<.001		<.05
V89-01062.4-109770	<.001		<.05
V89-01062.4-109785	<.001		<.05

APPENDIX V

Statement of Expenditures

APPENDIX V

Statement of Expenditures

March 5 to 25, 1989

Personnel

B.W. Downing, geologist, 5 days @ \$300/day G. McArthur, geologist, 5 days @ \$300/day C. Swanson, geologist, 5 days @ \$200/day	\$1500 1500 <u>1000</u> \$ 4,000.00
Drilling	
2667.3 feet (813 metres) NQ core @ \$23.80/foot	62,681.55
Assays	
452 samples for Au, Ag assay sample preparation @ \$16.50/sample	7,458.00
тота	L \$74,139.55