

TABLE OF CONTENTS

PART A

Summary ----- i Conclusions ----- ii Recommendations ----- iii

PART B

Introduction	1
Property	2
Location and Access	2
Physiography	2
Water and Power	3
History	3
Regional Geology	4
Property Geology	
Lithology and Stratigraphy	5
Structure	5
Alteration	6
Mineral Occurences	
Regional	6
Local	7
Review of Exploration on the Property	
Exploration to 1988	8
1989 Exploration	8
Geochemical Surveys	8
VLF-EM Surveys	9
Reconnaissance Geological Surveys	10
Sampling	10
Recommended Exploration & Development Program	10
References	12
Certificate	13
Statement of Costs	14

APPENDICES

I Assay Certificates II VLF-EM Raw Data Page

LIST OF ILLUSTRATIONS

<u>Figure No.</u>

Following page

1	Location Map	ii
2	Claim Map	1
3	Regional Mineral showings &	
	Mineral Producers	2
4	Regional Geology	3
4A	Regional Geology section showing	-
	Exploration Potential on the Jane	
	Claim Group	4
5	Index Map. Oueen Bess Workings	6
6	Geology of Oueen Bess Prospect Upper Adit -	6
7	Geology of Queen Bess Prospect Pit	6
8	Geology of Queen Bess Prospect Lower Adit -	6
Ğ	VIE-FM survey Augen Bass Flospect Howel Aute -	v
2	Marine Comunication Station 24 6 847)	
	Eracer Filtored	i n
10	VIE-FW Current Oucon Boss Area (Arranolic	T II T II
TO	Waring Communication Chation 21 (War)	ocket
	Marine Communication Station, 21.4 KHZ)	
	Fraser Filtered	
11	Silver Geochemistry, Queen Bess Area	
12	Lead Geochemistry, Queen Bess Area	
13	Zinc Geochemistry, Queen Bess Area	11
14	Copper Geochemistry, Queen Bess Area	11
15	Arsenic Geochemistry, Queen Bess Area	11
16	Compilation Map Showing Generalized	
	Geochemical and Geophysical Anomalies	11

MID-CENTRE RESOURCES INC.

Geophysical & Geochemical

Assessment Report

on the

JANE CLAIM GROUP

<u>Part A</u>

SUMMARY

The Jane Claim Group held by Mid-Centre Resources Inc. covers an area of 1400 hectares in the Queen Bess Ridge area 76 kilometers north of Kamloops, British Columbia. The property adjoins and is surrounded by active and inactive exploration prospects and productives mineral deposits. The inactive Queen Bess workings, enveloped within the northwestern sector of the Jane 1 claim, contain significant mineralization of up to 24.26 oz/ton Ag, 9.08% Pb, 1.88% Zn and 0.02 oz/ton Au.

Four kilometers southeast of the property, the Windpass Mine yielded production of 102,996 tons containing 34,456 ounces of gold, 1,719 ounces of silver and 173,959 pounds of copper from 1916 to 1944. One kilometer southwest of the Windpass Mine is the Gold Hill exploration prospect with reported assays of 0.68 oz/ton Au, 3 oz/ton Ag and 9.2% Pb across 0.12 meters.

Fourty five kilometers to the south, a lead-zinc-copper-gold deposit discovered in 1983, was developed by Minnova Inc. and is scheduled for production for the third quarter of 1989. The deposit is hosted within a sericitic-carbonitic-pyritic altered zone bounded by volcanic and sedimentary rocks.

Exploration on the Jane Claim Group has revealed a 0.4 meter wide lead-zinc-copper-gold zone assaying 8.7% lead, 35.01% zinc and 25.56 oz per ton silver. The geochemical soil survey disclosed anomalous soil values correlating with the Upper Adit workings on the Jane 1 claim in the area of the Queen Bess workings. The exceptional geochem values within the anomalous zone include 54,138 ppm zinc (background of 140 ppm), 2,454 ppm lead (background of 20.0 ppm) and 148.8 ppm silver (background of 0.15 ppm).

The anomalous zone, which possibly indicates the zone of Upper Adit mineralization, is up to 400 meters long (zinc anomaly), 100 meters wide and is open to the west. In addition, parallel sub anomalous east-west trending zones occur adjacent to the south for 250 meters, the limit of the survey area, and extend for 450 meters.

To substantiate the validity of the zone for the potential controlling structures to the mineralization, the VLF-EM results delineated a correlative anomaly to the Upper Adit workings, and indicated a southern east-west structure to extend for 800 meters. Other potentially mineral bearing structures were also indicated.

CONCLUSIONS

The Jane Claim Group is located in a favorable geological environment for the occurence of potentially economic lead-zinc-silver deposits comparable to the Windpass deposit or the near productive Samatosum ore deposit to the south. A substantial lead-zinc-copper zone with correlative anomalous geochemical and geophysical anomalies extending for over 400 meters on the Jane 1 claim, suggests that one such potential economic zone may have been established. Other parallel anomalous zones delineated in the localized exploration program increase the probability of locating associated mineral bearing structures.

RECOMMENDATIONS

A two-stage exploration program of geophysical, geochemical and geological surveys and trenching to investigate the anomalous zones and to determine the degree of surficial and indicated mineralization is recommended. The information obtained from the initial investigation would be utilized in conducting exploratory surveys over the balance of the property. Diamond drilling and underground investigation would be initiated over prime selected localized correlative anomalous areas as the second stage of the program.

Respectfully submitted SOOROC SOLTANTS INC. ROVINC OF ŧf, P.Eng.

August 9, 1989 Vancouver, B.C.

MID-CENTRE RESOURCES INC.

Geophysical & Geochemical

Assessment Report

on the

JANE CLAIM GROUP

PART B

INTRODUCTION

At the request of Mid-Centre Resources Inc. directors, Sookochoff Consultants Inc. was commissioned to assess and report on the geological potential of the Jane Claim Group as to the containment of potentially economic lead-zinc-silver deposits. A specific area on the northwestern portion of the property was selected over which to conduct a preliminary exploration program on which to establish a basis for the assessment because of the known mineral showings within this area of the property.

The purpose of this report is to summarize the exploration results on the property achieved by the previous operators from 1982 to 1984, to relate the results of a localized geochemical and geophysical program on a portion of the Jane 1 claim, to outline the observations and conclusions derived from the results, to determine the exploration and development potential of the Jane Claim Group and to recommend an exploration program to explore for and develop potentially economic zones of mineralization.

- 2 -

PROPERTY

The Jane Claim group consists of a contiguously located claim block of seven 18 unit claims. Two enclosed Crown granted claims which are not part of the property, are located within the northwest corner of the property. Particulars of the claims are as follows:

<u>Claim</u>	<u>Units</u>	Record No.	E <u>xpiry Date</u> *
Jane	18	7890	July 13, 1990
Jane 1	18	7889	July 13, 1990
Jane 2	18	8551	May 20, 1990
Jane 3	18	7885	July 07, 1990
Jane 4	18	7886	July 07, 1990
Jane 5	18	7887	July 07, 1990
Jane 6	18	7888	July 07, 1990

The property area is approximately 1400 hectares.

* Upon the approval of one years assessment work applied July 6, 1989 which this report forms a part thereof.

LOCATION AND ACCESS

The property is located 300 kilometers northeast of Vancouver, British Columbia and 76 kilometers north of Kamloops, the fourth largest city in British Columbia with a population of 500,000. Kamloops or Clearwater, 16 kilometers north of the property, would serve as a centre for food and industrial supplies.

The infrastructure is ideal in that the property is proximal to rail and major highway routes to port facilities at Vancouver, or smelter facilities at Trail, 300 kilometers to the southeast.

The Samatosum deposit, a lead-zinc-copper-gold deposit under development by Minnova Inc., is located 45 kilometers south of the Jane Claim Group.

PHYSIOGRAPHY

The property is situated in the Western Shuswap Highlands region on the east side of the North Thompson River. Elevations range between 400 and 1100 meters above sea level with a relief of 700 meters. A broad crest of the Queen Bess Ridge and its rolling plateau to the northeast constitute the eastern half of the claim area. The western half of the property covers a westward dipping slope of the Queen Bess Ridge on the east slope of the Thompson River Valley.

McCarthy Lake is located in the plateau area near the middle of the Jane claim. Intermittent drainage is northerly flowing around the north end of the Queen Bess Ridge into the North Thompson River.

North Alex Creek flows across the southern sector of the Jane Claim and drains south into Hallmore Lake in the southeast corner of the Jane 4 claim. The south Alex Creek originates from Hallmore Lake to the south to join the westerly flowing Joseph Creek, which in turn flows into the Thompson River. Some areas of the property contain dwellings and small fields.

The climate in the area is typical of the British Columbia Interior Dry Belt with low summer precipitation and moderate winter snowfalls. Annual precipitation is approximately 40 cm. The regional temperature ranges from -40 to +40 °C.

WATER AND POWER

Sufficient water for all phases of exploration, mining and development would be available from the main water courses of Alex Creek or McCarthy and Hallmore Lakes.

Diesel-electric power would be required in the initial phases of exploration and development. In the production stage, hydro-electric power would be available from the British Columbia Hydro substation at Clearwater.

HISTORY

The history of mining in the North Thompson River area dates back to the early 19th century with the discovery of quartz fissure veins containing silver-lead-zinc on Queen Bess Ridge.

In 1919, the Queen Bess Mine Camp was developed, followed by construction of a tramway and a 50 ton per day concentrator. About 720 tons of ore was transported to the mill, resulting in the following reported production of concentrates:

Concentrate			Grade	<u>1</u>
	Tons	<u>% Lead</u>	<u>oz/ton Silver</u>	<u>% Zinc</u>
Lead	27	40 to 50	48	12
Zinc	78	7 to 8	14	48

Mine development at the Queen Bess has been intermittent from 1920 to the recent years.

In the 1920's, significant base metal deposits carrying precious metals were discovered in the regional area of the Jane Claim Group including the Windpass Mine, Gold Hill, and numerous other mineral showings (Fig.3).

- 3 -

At the Windpass, a total of 102,996 tons of ore were processed from 1914 to 1944 which yielding 34,456 ounces of gold, 1,719 ounces of silver and 173,959 lbs of copper. The mine was dormant until the 1980's. Since the 1980's and prior to the aquisition of the ground by Mid-Centre Resources, electromagnetic and geochemical surveys over the property and surrounding area indicated positive and encouraging responses over portions of the ground presently covered by the Jane Claim Group.

4

The Samatosum deposit was discovered from the original location of massive sulphides along a fresh road cut exposure in 1983 and was developed to a viable economic stage with production scheduled for the third quarter of 1989.

REGIONAL GEOLOGY

To the south of the Jane Claim Group and in the area of the Samatosum deposit, is a structurally complex sequence of Palaeozoic metavolcanic and metasedimentary rocks on the western margin of the Omenica Crystalline Belt between high grade metamorphic rocks of the Shuswap Metamorphic Complex to the east and rocks of the Intermontane Belt to the west. It consists of mafic to felsic pyroclastics interbedded with limestone, chert, greywacke, argillite and conglomerate, intruded by granodiorite and quartz monzonite and is locally overlain by Tertiary volcanics and sediments.

The Samatosum deposit lies within a mixed volcanic/sedimentary sequence at or close to a significant break between a volcanic dominated and a sediment dominated depositional environment. Although sediments form the structural footwall and volcanics the structural hangingwall to the mineralized horizon, structural evidence indicates the sequence is inverted and the deposit is on an overturned limb of a recumbant syncline.

In the immediate area of the deposit, the prolith of the host alteration by rock is often obscured intense and mineralization. The rocks of the stratigraphic sequence of pyroclastics, epiclastics and sediments, all consists varying degrees. Hydrothermal alteration is altered to generally restricted to a stratiform band at the top of, and as much as 30 m down into the basalts. It consists almost entirely of sericite with minor amounts of carbonate. Strong sericitic alteration makes sediments difficult to distinguish The altered rocks contain up to 20% pyrite while from tuffs. unaltered rocks rarely contain more than 1%.

Graphitic argillite constitutes a small portion of the sediment volumetrically but is significant because it provides marker horizons which can be traced by geophysics across the large areas of thick overburden. Quartzose grit, which grades into a fine quartz pebble conglomerate, locally provides a good marker for drill hole correlation.

L

LEGEND

• 5 -

PROPERTY GEOLOGY

Lithology and Stratigraphy

As indicated on a Geological Survey Map of Canada, the regional geology of the property area indicates the claim group as covering rocks of the Mississippian Fennell Formation. This Formation consists of rocks of massive greenstone, pillow lava, narrow bands of argillite, chert, limestone, phyllite and breccia.

Cretaceous intrusive rocks consisting mainly of biotite quartz monzonite, granodiorite, quartz monzonite, quartz diorite and minor pegmatite and aplite intrude the Fennell Formation. The entire rock assemblage is highly altered and fractured.

Allen gives detailed lithologic descriptions as follows:

"The greenstone is very fine grained and includes minute brown hornblende crystals, epidote, zoisite grains, zeolites and possibly leucoxene, along with undetermined specks of opaque white and black minerals. The greenstone also has minute veinlets and irregular patches of carbonate.

The pillows are closely spaced ellipsoidal basalt with a hard dark green shell and a ringed interior of amygdules. These are closely packed in fine-grained chert, chalcedonic quartz and coarse-grained calcite. The banded argillte and phyllite are interlayered and intruded by greenstone. The principal constituents are very fine-grained quartz, white mica and carbonaceous material."

White, buff and grey-green chert beds and lenses are composed of extremely fine-grained quartz with lesser white mica. The limestone and dolomite occur in thin beds and narrow lenses, sparsely interlayered throughout the greenstone. The breccia is composed of angular and semi-angular greenstone fragments in a fine to medium-grained matrix of greenstone, chert and argillite.

Structure

Allen (1982) suggests the volcanic and sedimentary units on the property exhibit a synclinal structure.

The Geological Survey of Canada Map 1278A indicates that the Fennell Formation has been faulted against younger Jurassic and Pennsylvanian Formations on the west side of the North Thompson River, whereas on the east and north, it has been intruded by extensive granitic batholiths. Numerous hornblende-biotite granite and granodiorite dykes also intrude the Fennell Formation. It is apparent that the entire area of the Fennell Formation has been faulted and intruded at depth by the granitic intrusives (Figs. 4 and 4A).

- 6 -

<u>Alteration</u>

Within the greenstone there are sizeable irregular and elongated masses of buff-colored siliceous ferrodolomite, resulting from strong alteration and carbonitization. Similar alteration occurs along distance fissures, some of which contain quartz, sphalerite, galena and tetrahedrite in a gangue of ferrodolomite, ankerite and crushed wall rock.

MINERAL OCCURENCES

<u>Regional</u>

At least 14 mineralized showings (Fig. 3), most of which are under active exploration and development in recent years, are officially recorded by the Geological Survey of Canada and the British Columbia Department of Mines and Petroleum Resources (Open File No. 290). Selected mineral occurences in the area of the property are briefly described:

- Windpass Mine: Shear zone in Fennell Formation cut by the Cretaceous Baldy Batholith. Production 1916 to 1944; 102,996 tons; 34,456 ounces gold, 1,719 ounces silver and 173,959 pounds of copper. The mine has been reportedly rejuvenated into active exploration and development in recent years.
- Gold Hill: Shear zone in Fennell Formation. A 1929 Minister of Mines Report states the presence of free gold associated with galena and quartz veinlets. Much invisible gold is scattered through the quartz veinlets and also in the ferrodolomite of the Fennell Formation. Over 3,000 feet of tunnelling has been achieved in the form of crosscuts, drifts, raises and shafts. The best sample officially recorded would be 0.68 oz/ton Au, 3.0 oz/ton Ag and 9.2% Pb across 20 inches.
- <u>Rexpar</u>: Hydrothermal replacement hosted by the Fennell Formation. Reserves (1970):1,500,000 tons fluorite materials which can be concentrated to metallurgical grade; 1,700,000 tons at 1.86 lb U308/ton. Adit and extensive drilling over extended periods including 2020 feet drilled in 1873. The main commodity: CaF2, SrS04 and U308.

Foghorn: Vein and replacement carrying lead and silver. Recorded 81 tons yielding 2,841 ounces silver and 57,277 lbs lead.

At the Samatosum deposit ore grade sulphides take one or more of the following forms:

7

- 1) Massive sulphide bands, generally associated with strongly brecciated bull quatrz. The sulphides can be massive tetrahedrite, sphalerite, galena or chalcopyrite or almost any combination of them.
- Pyrite "muddy tuff" cut by zones of silica flooding and fine quartz veinlets containing tetrahedrite and sphalerite.
- 3) Finely disseminated tetrahedrite with or without minor sphalerite in units of high primary permeability and porosity such as quartzose wackes.

Massive sulphide ore is prevalent in the near surface parts of the orebody where tetrahedrite is the dominant sulphide, assays of up to 35,000g silver per tonne (3.5% or 1,000 oz per ton) and 35g gold per tonne (one oz per tonne) have been returned.

The Samatosum deposit contains reserves of 634,984 tonnes grading 1.035 g silver per tonne, 1.9 g gold per tonne, 1.2% copper, 3.6% zinc and 1.7% lead.

Local

The old Queen Bess Mine workings are enveloped by the Jane 1 claim (Figure 3). The workings explore fissure veins hosting sphalerite, galena and minor tetrahedrite within greenstone and pillow lava of the Fennell Formation. The veins were mined to shallow depths with the respective mine production confined to two veins - the Cameron and Bigelow - which averaged about 0.4 m in true width.

Fig. 5 shows the general location of the old exploration sites, most of which sloughed in and caved requiring rehabilitation before access is safely possible. However, some shallow pits accessible by rope were examined by the writer and the respective maps are presented by Figs. 6-8.

The exploration data compiled to date indicates that the Jane Claim Group and its adjacent areas contain two types of mineralization. The first is represented by fissure (shear) fillings and replacement veins hosting base metal or precious metal mineralization. The second is typified by the Rexpar fluorite-uranium mine occuring as a hydrothermal replacement. The host rocks in the vicinity of the showings are commonly bleached, argillized, silicified and ankeritized.

- 8 -

REVIEW OF EXPLORATION ON THE PROPERTY

Exploration to 1988

From 1981 to 1983, exploration work on the property (then Rudy and Walter claims or Fran Claim Group) had been continued by Allen Geological Engineering Ltd. of which major work was confined to a reconnaissance geological mapping and sampling in the vicinity of the old Queen Bess Workings. In 1984 an independent exploration consultant carried out a limited geophysical (VLF-EM) program over an area of 500 m X 500 m which is presently covered by the Jane 1 claim. Two significant VLF-EM conductors were delineated from this survey.

1989 Exploration

Reece and detailed geochemical with VLF-EM surveys were carried out over a 700 m X 700 m on the northeast corner of the Jane 1 claim by Mid-Centre Resources Inc. A brief description is given in the following:

<u>Geochemical Surveys</u> (Figures 11-15)

A localized geochemical survey consisting of eight north-south lines within the northwest portion of the property were established to cover the known mineralized workings and the indicated easterly extension thereof .

Samples were taken at 20 meter stations along the grid lines spaced at 100 meter intervals. The samples were taken from the "B" horizon of the brown forest soil at a depth of 12 to 18 centimeters. The soil was placed in wet-strength bags with the appropriate grid station marked thereon. Red flagging with the grid station was placed at the field station. A total of 245 samples were taken.

The samples were sent to Acme Analytical Laboratories Ltd. of Vancouver where a 30 element ICP test was completed. The ICP test involved the digestion of .500 grams of the soil sample with 3 ml 3-2-1 HCl-H2O at 95 deg. C for one hour and diluted to 10 ml with water. The samples were then analyzed for five elements: copper, zinc silver, arsenic and lead.

The background, sub anomalous and anomalous values were determined utilizing a program developed for an IBM PC computer. These results were plotted on individual maps with a composite or compilation of results on a separate map. The statistical parameters are as follows:

- 9

	Background	Sub Anomalous	Anomalous
Copper	25	45	70
Silver	0.15	0.35	0.50
Zinc	140	160	300
Arsenic	3	6	10
Lead	20	30	65

All values are in ppm.

The geochemical survey disclosed four prime areas of intermittent correlative geochemical anomalies ranging in strike length from 150 meters to 400 meters. One anomaly at 26+00 N and 6+50 W reflects the known mineralization of the old Queen Bess workings; the other three could reflect unknown bedrock or overburden-covered mineralization.

VLF-EM Surveys (Figures 9-10)

An extensive portion of the survey grid area to the east is covered by moderately thick overburden or talus in which the soil cover may mask bedrock mineralization. Thus, geophysical surveys were completed to locate potential mineral controlling structures and to aid in the interpretation of the geochemical data.

The survey covered the geochem survey area, limited extensions thereof and included coverage of most of the old workings in the western portion of the survey area. Readings were taken at 20 meter intervals along the north-south grid lines for a total of 6.0 line kilometers of survey completed.

A Sabre model 27 VLF-EM receiver instrument manufactured by Sabre Electronics of Vancouver was utilized for the survey with Seattle and Annapolis, broadcasting at a frequency of 24.8 KHz and 21.4 respectively, utilized as the transmitting stations.

The VLF-EM receiver measures the amount of distortion produced in a primary transmitted magnetic field and a secondary magnetic field which may be induced by a conductive mass such as a sulphide body. The VLF-EM unit, due to its relatively high frequency, can detect low conductive zones such as fault or shear zones, carbonized sediments or lithological contacts. The major disadvantage of the VLF method, however is that the high frequency results in a multitude of anomalies from unwanted sources such as swamp edges, creek and topographical highs.

The results of the VLF-EM survey were plotted for the Fraser Filtered data and the raw data seperately.

Six prime electromagnetic conductive zones striking generally east west were defined. A VLF-EM conductor at 26+00 N and 6+50 N may represent a continuous mineralized structure to the Queen Bess upper workings. Several strong VLF-EM conductors in overburden covered areas without geochem anomalies may represent potential structural controlling sub surface mineralization.

Reconnaissance Geological Surveys (Figures 4-8)

The results of recce and geological mapping in a limited portion of the claims are commented on under the Geological section of this report.

Sampling

Samples were taken from the mineralized zone on the Queen Bess workings and from the Upper Adit Zone. The Upper Adit Zone is a northeasterly extension of the mineralized zone of the Queen Bess workings and is located proximal to the Jane 1 claim boundary.

The sample results are as follows:

Sample	Figure	Location	Location A		
<u>No</u> .	<u>Ref</u> .		<u>%Pb</u>	<u>%Zn</u>	oz/ton Ag
14767	5,7	Queen Bess	10.17	18.61	16.22
14768	5,8	Queen Bess	9.08	1.88	24.26
14769	5,6	Upper Adit			
		Jane 1	8.70	35.01	23.56

RECOMMENDED EXPLORATION & DEVELOPMENT PROGRAM

The exploration and development program on the Jane Claim Group should be designed to initially determine prime exploration targets followed by the testing of the targets for mineralization.

To achieve these results, the following two stage program program is recommended.

- 10 -

- 11 -
<u>Stage I</u>
 Examination of the anomalous areas to determine the most productive exploration for the balance of the property.
2. Reconnaissance mapping and fracture studies to detect favourable alteration and structural zones, along with detailed prospecting in the entire claim area.
3. Reconnaissance geophysical survey at 50 m spacing, 200 m apart in the entire claim area.
 Selection of target exploration sites to refine geochemical and geophysical surveys and geological compilation. The geophysics may include VLF-EM, magnetometer, self-potential and induced polarization surveys.
5. Trenching of areas found through the above work to be geologically favorable on I.P. or other correlative geochem and geophysical anomalies.
Stage II
On the completion of and analysis of the results of the first stage of the recommended program, a test diamond drilling program is recommended to detect downward extensions of the known or newly discovered mineral zones.
Respectively applitted souther applitted souther applitted of thurence southoff BRITISH
GINEF Barger
August 9, 1989 Vancouver, B.C.

12 REFERENCES Allen, A.W. (1982) - The Queen Bess Property Geology Report (1982) - Prospecting Report Rudy and Walter Claims 88 11 (1983) - Assessment Report Rudy and Walter Claims Campbell, R.B. and Tipper, H.W. - G.S.C. (Geological Survey of Canada) Memoir 363 pp. 14-18 & 85 Evrett, C.C. (1983) - Geological and Geophysical Report on Fuggy F Group (Joseph 19 & Joseph 20 Mineral Claims) Operator: Esso Resources Canada Ltd. Kregosky, R. (1984) - Geophysical Report on the Fran Claim Group N.T.S. 92P/9 (Assessment Report) Pirie, I. - The Samatosum Deposit, The Northern Miner Magazine June 1989, pp 15-18. Sookochoff, L. et al - Report on the Jane Claim Group for Mid-Centre Resources Inc., July 31, 1989 Uglow, W.C. (1921) - G.S.C. Summary Report pp 77A,78A,102A,103A Walker, J.F. (1930) - G.S.C. Summary Report pp 125A,140A-143R B.C. Minister of Mines Reports - 1895, P. 665 1917, PP. 236 & 450 1918, PP. 234 & 246 1919, P. 179 1920, P. 188 1922, P. 145 1924, P. 153 1927, PP. 191 & 403 1933, P. 195 1934, PP. D26 & D27 Geological Survey of Canada & B.C. Department of Energy, Mines & Petroleum Resources - Open File #290

13 CERTIFICATE I, Laurence Sookochoff, of the city of Vancouver, in the Province of British Columbia, do hereby certify: That I am a Consulting Geologist with offices at 602-510 West Hastings St., Vancouver, V6B 1L8 I further certify that: I am a graduate of the University of British Columbia 1. (1966) and hold a B.Sc. degree in Geology. I have been practising my profession for the past 2. twenty-three years. I am registered with the Association of Professional 3. Engineers of British Columbia. accompanying report was obtained 4. Information for the cine ESSIO References and from the from sources as the explois surveys reported on supervision of herein. URENCE SOOKOO DRITISH Noff, P.Eng. La **So**logist Consu August 9, 1989 Vancouver, B.C. Sookochoff Consultants Inc. -

14 -Mid-Centre Resources Inc. Jane Claim Group Statement of Costs The work on the Jane claim group was carried out from May 10, to July 6, 1989 to the value of the following: Pat Crook, Mike Van Es May 16, - July 6, 1989 \$ 4,000.00 16 man days @ \$250. 1,200.00 Truck rental: 12 days @ \$ 100. Room, board, gas, & 1,455.00 field supplies 1,916.80 Assays Instrument rentals: 11 days @ \$100. 1,100.00 1,720.00 Draughting, xerox & printing Hun Kim, F.G.A.C.: May 12,- 14, 1989 1,200.00 3 days @ 400.00 373.50 Associated expenses Engineering & supervision 900.00 L. Sookochoff, 2 days @ \$450. 1,750.00 Report \$ 15,715.30 ==========

Appendix I

ASSAY CERTIFICATES

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 16 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: ROCK AU** AND AG** BY FIRE ASSAY FROM 1/2 A.T.

SAMPLE#	Pb %	Zn %	Ag** OZ/T	Au** OZ/T
14767	10.17	18.61	16.22	.002
14768	9.08	1.88	24.26	.002
14769	8.70	35.01	23.56	.001

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 31 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: $\frac{5}{5}$.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1 SOIL P2 ROCK

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

SAMPLE#	Cu	Pb	Zn	Ag	As
	PPM	PPM	PP M	PPM	PPM
L100W 2760N	21	18	77	.1	2
L100W 2740N	13	17	97	.1	9
L100W 2720N	13	48	192	.3	6
L100W 2700N	8	13	112	. 1	4
L100W 2680N	21	58	188	. 1	2
L100W 2660N L100W 2640N L100W 2620N L100W 2600N L100W 2580N	23 13 21 15 14	12 22 17 23 19	87 128 109 134 124	.1 .1 .3 .1 .2	6 3 2 2
L100W 2560N L100W 2540N L100W 2520N L100W 2500N L100W 2480N	15 24 30 25 21	15 20 12 14 15	141 184 108 111 123	. 1 . 3 . 1 . 2 . 3	4 2 2 3
L100W 2460N L100W 2440N L100W 2420N L100W 2400N JS 289	26 20 18 25 59	11 12 14 15 21	106 116 96 119 128	.1 .3 .1 .2 .2	2 3 2 7
JS 389	74	39	121	.4	4
JS 489 500N	41	14	113	.5	3
STD C	62	39	132	7.2	36

.

SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
			1		
L200W 2640N	618	8196	36470'	93.7/	52
JS 189	154	90	367	1.6	11
JS 189 110MW	16	87	168	.1 ,	2
FROM SLID BOX	395	16922 🗸	356524	55.61	122

- ASSAY REQUIRED FOR CORRECT RESULT -

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: MAY 20 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh

SAMPLE#	Cu	Pb	Zn	Ag	AS
	PPM	PPM	PPM	PPM	PPM
L735W 2500N L700W 3000N L700W 2960N L700W 2940N ROCK L700W 2920N	137 17 37 378 17	85 18 19 6 5	382 202 132 202 72	1.7 .1 .2 .1	24 3 5 3 3
L700W 2880N	18	14	191	. 1	6
L700W 2840N	17	16	127	. 1	2
L700W 2800N	27	11	177	. 1	5
L700W 2800N (2)	34	17	173	. 1	5
L700W 2780N	24	20	262	. 1	6
L700W 2760N	12	10	225	.1	2
L700W 2740N	28	16	262	.1	4
L700W 2720N	49	31	214	.2	10
L700W 2700N	96	1068	2626	7.1	84
L700W 2680N	54	106	442	.4	28
L700W 2660N	24	136	591	.4	8
L700W 2620N	20	24	235	.2	3
L700W 2600N	22	42	382	.3	7
L700W 2580N	18	22	233	.2	6
L700W 2560N	35	3608	2712	5.0	23
L700W 2540N	75	283	384	.6	14
L700W 2520N	47	33	275	.4	9
L700W 2500N	85	35	158	.3	23
L700W 2480N	32	25	153	.4	8
L700W 2460N	46	50	307	.2	12
L700W 2450N	17	22	359	.2	7
L700W 2440N	46	37	189	.4	54
L700W 2420N	35	102	531	.3	10
L700W 2400N	44	93	821	.3	13
L600W 3000N	18	8	171	.1	8
L600W 2970N L600W 2960N L600W 2920N L600W 2880N L600W 2840N	16 12 21 32 21	9 11 11 11 7	135 149 154 72 81	.1 .2 .2 .2 .1	6 5 9 5
L600W 2800N	15	14	116	.3	11
STD C	63	42	132	7.1	42

SAMPL	E #	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
L600W L600W L600W L600W	2760N 2700N 2680N 2620N 2600N	25 24 32 49 49	8 13 17 13 51	128 120 100 121 137	. 1 . 1 . 1 . 1 . 1	3 2 2 2 7
L600W	2580N	21	20	112	. 1	7
L600W	2560N	21	21	170	. 2	6
L600W	2540N	34	20	263	. 1	9
L600W	2520N	39	14	173	. 1	3
L600W	2480N	48	15	125	. 1	2
L600W	2440N	34	24	217	. 1	9
L600W	2400N	70	12	112	. 2	16
L500W	3000N	17	17	106	. 1	2
L500W	2980N	14	12	124	. 3	4
L500W	2960N	74	13	85	. 1	5
L500W	2940N	13	12	107	. 1	2
L500W	2920N	11	12	76	. 1	2
L500W	2900N	34	17	88	. 2	5
L500W	2880N	19	13	104	. 1	3
L500W	2860N	17	20	128	. 4	6
L500W	2840N	24	14	69	. 1	2
L500W	2820N	21	10	113	. 1	2
L500W	2800N	30	9	131	. 1	2
L500W	2780N	35	15	136	. 1	2
L500W	2760N	16	11	79	. 1	2
L500W	2740N	56	17	110	. 1	5
L500W	2720N	61	13	162	. 1	2
L500W	2700N	37	13	79	. 2	2
L500W	2680N	25	13	93	. 1	2
L500W	2660N	20	18	98	. 1	6
L500W L500W L500W L500W L500W	2620N 2600N 2580N 2560N 2540N	26 27 30 14 21	15 18 14 12 12	217 125 125 133 128	. 1 . 1 . 1 . 2	22 3 3 2 2
L500W	2520N	29	26	159	.3	5
STD C		61	40	132	7.0	41

SAMPLE	34	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
L500W L500W L500W L480W L435W	2500N 2480N 2460N 2460N 3000N	28 47 49 15 20	19 26 17 45 10	165 104 155 1064 182	. 1 . 2 . 1 . 1 . 1	2 5 8 8 4
L400W L400W L400W L400W L400W	3050N 3020N 3000N 2980N 2960N	13 40 17 16 29	17 10 11 11 12	92 68 125 131 82	. 1 . 1 . 1 . 1 . 1	6 8 4 2 2
L400W L400W L400W L400W L400W	2940N 2920N 2910N 2900N 2890N	33 95 30 22 23	13 14 11 12 11	135 116 110 116 104	.1 .2 .1 .1	5 6 7 3 4
L400W L400W L400W L400W L400W	2880N 2860N 2840N 2820N 2800N	28 25 20 33 28	6 12 11 15 12	83 107 98 91 103	.1 .1 .2 .1	8 2 5 6 8
L400W L400W L400W L400W L400W	2780N 2760N 2740N 2720N 2700N	40 53 31 38 28	7 9 8 14 15	106 107 87 97 126	.1 .1 .1 .1	4 6 3 4 7
L400W L400W L400W L400W L400W	2680N 2660N 2620N 2600N 2580N	37 29 30 24 41	5 12 20 17 16	80 102 160 133 236	.1 .1 .3 .3	7 6 4 6 11
L400W L400W L400W L400W L400W	2560N 2540N 2520N 2500N 2480N	42 17 15 34 35	13 15 10 38 19	82 98 120 161 132	.1 .3 .5 .2	2 2 9 5
L400W STD C	2460N	34 63	13 40	120 132	.3 7.1	7 40

SAMPLI	E #	Cu PPM	I Pb I PPM	Zn PPM	Ag PPM	As PPM
L300W L300W L300W L300W L300W	3240N 3220N 3200N 3180N 3160N	12 18 9 11	2 10 3 17 9 13 13 9 12	51 58 104 105 202	. 1 . 2 . 1 . 1 . 1	2 4 2 5
L300W L300W L300W L300W L300W	3140N 3120N 3100N 3080N 3060N	12 5 10 10	2 15 5 8 0 11 0 15 0 17	135 119 96 77 83	.1 .1 .1 .1	4 3 2 2 2
L300W L300W L300W L300W L300W	3040N 3020N 3000N 2980N 2960N	13 13 13 29 18	3 11 3 14 3 10 9 12 3 5	92 66 108 115 98	. 1 . 1 . 3 . 2	2 2 6 2
L300W L300W L300W L300W L300W	2940N 2920N 2900N 2880N 2860N	36 22 32 20 23	5 12 2 12 9 9 6 11	83 72 70 88 92	. 2 . 2 . 1 . 1 . 2	6 2 2 4 2
L300W L300W L300W L300W L300W	2840N 2820N 2800N 2780N 2760N	34 31 29 48 46	11 18 16 10 5 10	129 88 89 113 95	. 2 . 2 . 4 . 2 . 3	2 2 3 2 2
L300W L300W L300W L300W L300W	2740N 2720N 2700N 2690N 2680N	31 20 20 39 76	. 7) 11) 6) 13 ; 16	77 95 127 108 86	.1 .2 .1 .3 .3	2 2 2 2 3
L300W L300W L300W L300W L300W	2680N 2660N 2640N 2620N 2600N	A 35 20 163 46 25	5 13 15 12 5 10 5 14	79 103 94 115 97	.3 .1 .6 .1 .3	2 2 2 2 2
L300W STD C	2580N	17 62	2 15 2 39	104 132	.2 7.1	2 39

SAMPL	E #	Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
L300W	2560N	20	13	92	. 1	2
L300W	2560N A	54	14	80	. 1	4
L300W	2540N	18	13	108	. 1	2
L300W	2530N	17	13	76	. 1	5
L300W	2520N	37	17	78	. 1	6
L300W	2500N	23	19	116	. 1	4
L300W	2480N	31	25	119	. 2	4
L300W	2460N	19	130	325	. 2	7
L300W	2440N	26	54	332	. 1	4
L300W	2420N	13	13	217	. 2	4
L300W	2400N	8	7	100	. 1	6
L200W	3240N	10	13	102	. 1	3
L200W	3200N	8	10	170	. 1	5
L200W	3160N	12	7	146	. 1	2
L200W	3120N	10	10	78	. 1	2
L200W	3100N	129	14	107	.9	5
L200W	3060N	16	9	73	.2	7
L200W	3020N	10	9	120	.1	3
L200W	3000N	21	12	91	.1	7
L200W	2980N	7	8	113	.1	3
L200W L200W L200W L200W L200W	2960N 2920N 2900N 2880N 2840N	10 18 31 23 14	8 2 13 12 9	138 88 92 109 142	.1 .1 .1 .1	2 2 2 10 2
L200W L200W L200W L200W L200W	2810N 2800N 2760N 2720N 2680N	49 24 30 24 21	10 6 10 7 6	115 121 106 97 119	.3 .1 .3 .1	2 5 2 5 2
L200W L200W L200W L200W L200W	2600N 2520N 2510N 2480N 2440N	27 11 17 36 37	9 7 12 3 10	118 128 122 110 98	.1 .1 .3 .1	3 2 2 5 4
L200W	2420N	29	11	97	.1	2
STD C		61	36	1 31	7.1	4 3

а. **К**

SAMPLE#	Cu	Pb	Zn	Ag	As
	PPM	PPM	PPM	PPM	PPM
L100W 3160N L100W 3140N L100W 3120N L100W 3100N L100W 3080N	7 9 9 5 5	11 7 5 12 11	136 64 62 78 103	.1 .1 .1 .1	2 2 2 2 2
L100W 3060N L100W 3040N L100W 3020N L100W 3000N L100W 2980N	9 9 10 5 8	12 16 6 12 20	137 132 107 63 64	.1 .2 .1 .1	2 2 4 2 2
L100W 2960N	4	12	168	. 2	3
L100W 2940N	10	11	79	. 1	2
L100W 2920N	9	10	77	. 1	2
L100W 2900N	5	9	84	. 2	5
L100W 2880N	7	9	88	. 2	2
L100W 2860N	7	10	104	.2	4
L100W 2840N	11	9	78	.1	3
L100W 2820N	9	12	130	.2	3
L100W 2800N	16	14	79	.3	3
L100W 2780N	8	10	97	.2	3
L100W 2760N	11	11	76	.1	2
L100W 2740N	16	9	89	.2	2
L100W 2720N	10	9	120	.1	3
L100W 2700N	25	9	95	.1	4
L100W 2680N	9	13	111	.3	2
L100W 2660N	11	6	111	. 1	2
L00 3160N	6	9	79	. 1	2
L00 3120N	18	6	66	. 3	3
L00 3080N	12	4	118	. 3	2
L00 3040N	6	1 4	86	. 4	2
L00 3000N	24	10	54	. 2	2
L00 2960N	33	8	104	. 6	4
L00 2920N	18	13	71	. 4	2
L00 2850N	8	8	121	. 2	2
L00 2840N	11	13	119	. 2	2
L00 2800N	17	10	76	.3	5
STD C	62	43	132	7.1	39

	SAMPLE#		Cu PPM	Pb PPM	Zn PPM	Ag PPM	As PPM
	L00 276	0N	10	12	125	. 1	6
	L00 2720	0N	10	12	99	. 1	3
	L00 268	0N	12	9	71	. 2	7
	L00 2640	0N	12	7	96	. 1	6
	BL 189	680W	24	29	2 4 8	. 2	3
	BL 189 6	560W	765	21112	54130	148.8	225
	BL 189 6	640W	31	432	1077	1.6	4
	BL 189 6	520W	41	88	402	.3	5
	BL 189 6	500W	51	2454	3678	13.2	8
	BL 189 5	560W	25	50	120	.1	5
	BL 189 9	520W	14	19	127	. 1	4
	BL 189 9	500W	25	17	113	. 1	6
	BL 189 4	480W	26	12	123	. 1	5
	BL 189 4	140W	25	10	100	. 1	3
	BL 189 4	400W	61	12	111	. 1	3
	BL 189 3	360W	28	7	112	. 1	5
	BL 189 3	350W	60	11	189	. 1	2
	BL 189 3	320W	26	8	109	. 1	2
	BL 189 3	300W	21	7	97	. 1	2
	BL 189 3	280W	39	10	146	. 1	6
	BL 189 2	240W	11	10	98	. 2	4
	BL 189 2	200W	63	7	109	. 1	5
	BL 189 1	160W	27	6	135	. 2	3
	BL 189 1	120W	13	5	91	. 1	2
	BL 189 1	110W	21	16	90	. 4	5
Ø	BL 189 1 BL 189 8 BL 189 4 BL 189 0 STD C	100W 30W 10W 00	18 10 13 17 61	6 10 4 11 36	75 104 92 106 131	.1 .1 .2 7.1	13 4 2 4 42

2641

00 = 648/ m E . 1 ad t

TELI - 8.9

(

Appendix II

VLF-EM RAW DATA

		SEATTLE	ANNAPOLIS
W	N	Dip	Dip
-750	2620	17	2
-750	2630	17	5
-750	2640	16	-1
-750	2650	16	0
-750	2660	18	1
-750	2670	18	3
-750	2680	18	2
-750	2690	17	-2
-750	2700	15	-4
-750	2710	15	-6
-750	2720	15	-2
-750	2730	16	-5
-750	2740	16	-3
-600	2400	16	-4
-600	2420	17	-3
-600	2440	15	0
-600	2460	18	-3
-600	2480	17	-1
-600	2500	15	-1
-600	2520	16	2
-600	2530	15	1
-600	2540	14	1
-600	2550	14	Ō
-600	2560	13	2
-600	2570	13	2
-600	2580	17	- 3
-600	2590	12	3
-600	2600	12	3
-600	2610	14	Õ
-600	2620	12	1
-600	2630	15	1
-600	2640	13	-1
-600	2660	10	-1
-600	2670	13	-13
-600	2680	12	-2
-600	2690	10	-1
-600	2700	11	-1
-600	2710	13	-3
-600	2720	12	-2
-600	2730	10	-1
-600	2740	15	-3
-600	2750	14	-8
-600	2760	13	-6
-600	2770	13	-2
-600	2780	11	-2
-600	2790	12	-3
-600	2800	11	-3
-600	2810	12	0
-600	2820	14	-3
-600	2840	10	-2
-600	2860	11	-4
-600	2000		-6
-600	2000	5	- 4
-000	2300	5	-4

		SEATTLE	ANNAPOLIS
W	N	Dip	Dip
-700	2400	20	-2
-700	2410	16	-3
-700	2420	16	-4
-700	2430	15	-5
-700	2440	15	-1
-700	2450	14	-4
-700	2400	15	-3
-700	2470	17	-2
-700	2490	13	-1
-700	2500	14	-2
-700	2520	11	1
-700	2540	12	1
-700	2550	11	2
-700	2560	9	3
-700	2570	11	5
-700	2580	0 11	9
-700	2590	11	2
-700	2620	11	1
-700	2630	9	1
-700	2650	9	1
-700	2660	10	0
-700	2670	11	-3
-700	2680	9	-5
-700	2690	9	-1
-700	2700	11	-3
-700	2710	7	
-700	2730	, 5	6
-700	2740	13	-2
-700	2750	13	-1
-700	2760	11	0
-700	2780	12	3
-700	2800	14	2
-700	2820	13	3
-700	2840	14	6
-700	2880	17	-1
-700	2900	15	1 3
-700	2920	14	5
-700	2940	15	-1
-700	2960	15	-4
-700	2980	17	-9
-700	3000	18	-7
-750	2540	6	-3
-750	2550	8	-1
-750	2560	8	U
-750	2570	10	2
-750	2590	11	י ג
-750	2600	15	4
-750	2610	16	4

		SEATTLE	ANNAPOLIS
W	N	Dip	Dip
-600	2920	2	-5
-600	2940	-2	-5
-600	2960	-7	-6
-600	2980	-9	-4
-600	3000	1	-8
-500	2460	- 8	-4
-500	2480	ğ	-3
-500	2500	á	-1
-500	2520	12	<u> </u>
-500	2540	11	-2
-500	2540	10	_3
-500	2500	10	-3
-500	2500	9	-1
-500	2600	9	-1
-500	2620	11	-4
-500	2640	10	-3
-500	2660	13	-2
-500	2670	12	-1
-500	2680	11	-3
-500	2690	11	-4
-500	2700	12	-5
-500	2710	11	-3
-500	2720	11	-2
-500	2730	11	-4
-500	2740	10	-4
-500	2750	10	-2
-500	2760	11	-6
-500	2770	11	-4
-500	2780	11	-7
-500	2790	11	-5
-500	2800	11	-7
-500	2810	10	-6
-500	2820	11	-7
-500	2830	11	-9
-500	2840	12	-9
-500	2860	11	-11
-500	2880	10	-11
-500	2900	10	-8
-500	2920	8	-8
-500	2940	6	-8
-500	2960	4	-6
-500	2980	3	-6
-500	3000	3	-10
-400	2460	-3	-1
-400	2480	2	-3
-400	2500	1	-3
-400	2520	2	0
-400	2540	0	0
-400	2560	-5	2
-400	2580	-2	-1
-400	2600	1	-5
-400	2620	2	-1
-400	2640	2	-4
-400	2660	2	-3

		SEATTLE	ANNAPOLIS
W	N	Dip	Dip
-400	2680	3	-5
-400	2700	3	-7
-400	2720	3	-6
-400	2740	3	-6
-400	2760	3	-7
-400	2780	3	-4
-400	2790	3	-5
-400	2800	4	-4
-400	2810	3	-10
-400	2820	3	-8
-400	2830	4	-9
-400	2840	4	-9
-400	2850	3	-10
-400	2860	2	-9
-400	2870	2	-11
-400	2880	1	-13
-400	2890	2	-9
-400	2900	1	-13
-400	2910	0	-17
-400	2920	-1	-12
-400	2930	-2	-12
-400	2940	-2	-8
-400	2950	-4	-11
-400	2960	-5	-11
-400	2970	-4	-11
-400	2980	-1	-12
-400	2990	1	-14
-400	3000	2	-16
-400	3010	3	-14
-400	3020	2	-15
-400	3040	2	-13
-400	3050	J 1	-10
-400	2400	-2	-10
-300	2400	-2	-1
-300	2420	_1	-4
-300	2440	1	_1
-300	2480	-2	-5
-300	2500	-1	-3
-300	2520	-2	-6
-300	2540	-2	-4
-300	2560	-1	-3
-300	2580	-4	-4
-300	2600	-3	-2
-300	2620	-6	-4
-300	2640	-6	-4
-300	2660	-9	-2
-300	2680	-12	-3
-300	2690	-15	0
-300	2700	-12	-3
-300	2720	-9	-1
-300	2740	-13	0
-300	2760	-13	-3

		SEATTLE	ANNAPOLIS
W	N	Dip	Dip
-300	2780	-6	-4
-300	2800	-4	-12
-300	2820	-4	-12
-300	2840	-3	-18
-300	2860	-2	-14
-300	2880	-3	-13
-300	2900	-2	-11
-300	2920	-2	-11
-300	2940	-3	-10
-300	2960	-1	-7
-300	2980	_1	-10
-300	3000	-3	-2
-300	3020	-0	-2
-300	3020	-2	-0
-300	3040	-2	-10
-300	3050	0	-9
-300	3060	-1	-14
-300	3070	-1	-13
-300	3080	-2	-15
-300	3090	-2	-11
-300	3100	1	-16
-300	3110	3	-17
-300	3120	4	-15
-300	3130	4	-18
-300	3140	6	-17
-300	3150	5	-17
-300	3160	6	-14
-300	3170	5	-11
-300	3180	5	-11
-300	3190	5	-12
-300	3200	3	-5
-300	3210	3	-7
-300	3220	4	-2
-300	3230	6	-4
-300	3240	3	-4
-200	2400	-4	1
-200	2420	-1	-6
-200	2440	0	-6
-200	2460	-3	-4
-200	2480	-5	-4
-200	2500	-5	-3
-200	2520	-2	-6
-200	2540	-1	-6
-200	2560	0	-6
-200	2580	Õ	-4
-200	2600	-1	-5
-200	2620	-2	-6
-200	2640	-6	– 1
-200	2640	-2	л Т
-200	2680	ے 1	-6
-200	2000		-0
-200	2700	-2	-5
-200	2720	-Z _c	- /
-200	2140	-0 	-0
-200	2/00	-5	-2

		SEATTLE	ANNAPOLIS
W	N	Dip	Dip
-200	2780	-6	-1
-200	2800	-5	-6
-200	2820	-1	-10
-200	2840	-7	-3
-200	2860	-6	-8
-200	2880	-3	-6
-200	2900	~1	-8
-200	2920	2	-4
-200	2940	3	-1
-200	2900	-3	-2
-200	3000	-3	-2
-200	3020	, 1	-10
-200	3040	3	-10
-200	3060	6	-7
-200	3080	7	-9
-200	3100	10	-8
-200	3120	15	-9
-200	3140	10	-7
-200	3160	11	-6
-200	3180	6	-3
-200	3200	7	-2
-200	3220	4	-1
-200	240	0	-7
-100	2400	-2	-6
-100	2440	-4	-5
-100	2460	-7	-3
-100	2480	-6	-3
-100	2500	-3	-5
-100	2520	-2	-7
-100	2540	0	-6
-100	2560	0	-4
-100	2580	-1	-6
-100	2600	-4	-5
-100	2620	-3	-1
-100	2660	-2	-8
-100	2680	15	-1
-100	2700	14	-6
-100	2720	2	-3
-100	2740	8	-6
-100	2760	5	-7
-100	2780	3	-12
-100	2800	2	-11
-100	2820	4	-12
-100	2840	4	-9
-100	2800	3	-8
-100	2000	C 2	-/
-100	2900	4 1	-6
-100	2940	4 4	-3
-100	2960	3	-4
		-	

		SEATTLE	ANNAPOLIS
W	N	Dip	Dip
-100	2980	1	-7
-100	3000	1	-8
-100	3020	2	-6
-100	3040	5	-4
-100	3060	5	-3
-100	3080	1	-4
-100	2120	4	-7
-100	3140	23	-0
-100	3160	4	1
100	2400	-2	-5
õ	2420	-5	-4
Ō	2440	-9	-5
0	2460	-7	-3
0	2480	-7	-4
0	2500	-5	-5
0	2520	-4	-7
0	2540	-1	-5
0	2560	-1	-5
0	2580	-3	-6
0	2600	-5	-2
0	2620	-3	-2
0	2640	-1	
0	2680		-8
Ő	2700	ĩ	-9
õ	2720	2	-7
Ō	2740	0	-7
0	2760	2	-5
0	2780	2	-7
0	2800	1	-9
0	2820	3	-8
0	2840	3	-6
0	2860	4	-4
0	2880	5	-4
0	2900	ר ב	-4
0	2920	ך ב	-4
0	2960	5	-4
Ő	2980	7	-11
õ	3000	9	
Ō	3020	6	2
0	3040	9	1
0	3060	10	3
0	3080	11	1
0	3100	5	3
0	3120	15	6
0	3140	16	7
0	3160	17	9
-20	2640	-3	-9
-20	2040	-1	-10
-40	2040	0	-0 -4
	2070	2	7

. . .

		SEATTLE	ANNAPOLIS
W	N	Dip	Dip
-80	2640	2	-5
-100	2640	1	-4
-120	2640	6	-5
-140	2640	11	-9
-160	2640	5	-7
-180	2640	1	-9
-200	2640	-1	-9
-220	2640	-4	-4
-240	2640	-5	-6
-260	2640	-3	-4
-280	2640	5	-4
-300	2640	-8	-4
-320	2640	-9	-4
-340	2640	-11	-1
-360	2640	-5	1
-380	2640	-1	-1
-400	2640	3	0
-420	2640	3	-2
-440	2640	7	-1
-460	2640	8	-1
-480	2640	10	-1
-500	2640	10	-3
-520	2640	12	-3
-540	2640	13	-2
-560	2640	13	-1
-580	2640	13	0
-600	2640	15	-1
-620	2640	14	1
-640	2640	12	3
-660	2640	10	1
