```
GEOCHEMISTRY
AND GEOLOGY OF THE
MAX 16 AND 18 CLAIMS, MAX PROPERTY
OMINECA MINING DIVISION NTS 93K/16E
Lat.: \(54^{\circ} 56^{\prime}\) N. Long.: \(124^{\circ} 03^{\prime} \mathrm{W}\). BY
Uwe Schmidt, B.Sc., F.G.A.C.
```

$$
\begin{array}{r}
\text { Part } 2 \text { of } 2 \\
\text { GEOLOGICALBRANCH } \\
\text { ASSESSMENTREPORT }
\end{array}
$$

GEOCHEMISTRY
 AND GEOLOGY OF THE
 MAX 16 AND 18 CLAIMS, MAX PROPERTIY OMINECA MINING DIVISION
 NTS 93K/16E
 Lat.: $54^{\circ} 56^{\prime}$ N. Long.: $124^{\circ} 03^{\circ} \mathrm{W}$.

BY

Uwe Schmidt, B.Sc., F.G.A.C. NORIHWEST GEOLOGICAL CONSULTING LTD.

APRIL 21, 1989

TABLE OF CONTENTS

Page

1. SUMMARY AND RECOMMENDATIONS 1
2. INTRODUCTION 1
3. PROPERTY, LOCATION AND ACCESS 2
4. PHYSIOGRAPHY 4
5. HISTORY 4
6. GEOLOGY 5
7. GEOCHEMISTRY 9
8. CONCLUSIONS 12
9. REFERENCES 13
10. STATEMENT OF EXPENDITURE 14
Appendices
Appendix A Statement of Qualifications Appendix B Geochemical Analyses
List of Illustrations

Fig.	Description	Scale	Following Page
1	Location	1:7,000,000	2
2	Property Map, Inzana Lake Area	as shown	2
3	Claim Map	1:100,000	2
4	Grid Location	1:100,000	2
5	Sample Location	1:5,000	In Pocket
5 a	Cu Geochemistry	1:5,000	In Pocket
5b	Zn Geochemistry	1:5,000	In Pocket
5 c	Mn Geochemistry	1:5,000	In Pocket
5d	Fe Geochemistry	1:5,000	In Pocket
5 e	As Geochemistry	1:5,000	In Pocket
5 f	Au Geochemistry	1:5,000	In Pocket
6	Detail Grid, Geology	1:2,500	In Pocket
6 a	Detail Grid, Sample Location	1:2,500	In Pocket
6b	Detail Grid, Cu Geochemistry	1:2,500	In Pocket
6 c	Detail Grid, Zn Geochemistry	1:2,500	In Pocket
6d	Detail Grid, Mn Geochemistry	1:2,500	In Pocket
6 e	Detail Grid, Fe Geochemistry	1:2,500	In Pocket
6 f	Detail Grid, As Geochemistry	1:2,500	In Pocket
6 g	Detail Grid, Au Geochemistry	1:2,500	In Pocket

1. SUMMARY AND RECOMMENDATIONS

The Max property is located in the Omineca Mining Division, 57 km north of Fort St. James, B.C.

The claims cover a large, complex aeromagnetic anomaly and a geologic setting which is thought to host gold mineralization associated with alkalic porphyry copper deposits.

In July, 1988, a program of reconnaissance grid soil sampling was carried out by Northwest Geological Consulting Ltd. over a selected area of the Max 16 and 18 claims, located in the northern end of the property.

Results of this work indicated a gold exploration target in the centre of the reconnaissance grid. A program of fill-in sampling, at a line and sample spacing of 50 metres and mapping was carried out in October 1988,.

Line-cutting, detail grid soil sampling and mapping were carried out during the period of Oct. 13 to Oct. 26, 1988. A total of 306 soil samples were taken and analyzed during the follow up phase. Base metal and gold anomalies were outlined but no obvious source rocks were detected during the mapping.

Further exploration of this area of the property should includemagnetometer and VLF-EM surveys. These surveys and I.P. were used with success at the Mount Milligan property.

2. INTRODUCTION

In July 1986, a prospecting partnership began staking the Max property north of Ft. St. James, B.C. In July 1987, United Pacific Gold Limited optioned the property and financed an exploration program which was carried out by Northwest Geological Consulting Ltd. This work led to the definition of several gold exploration targets. The reconnaissance grid on Max 16 and 18 is one of these areas.

The claims cover a large, complex, aeromagnetic anomaly which is caused by magnetite and chalcopyrite bearing
intrusions. The impetus for staking this target is a significant gold discovery made by Noranda on a similar aeromagnetic high, located 14 km west of the property, and the Mount Milligan porphyry copper-gold discovery, located 13 km to the north.

During the period from July 14 to 18 1988, Northwest Geological Consulting Ltd. carried out a reconnaissance geochemical soil sampling survey on the Max 16 and 18 claims. In total, 393 soil samples were collected at a grid spacing of 200 metres and a sample interval of 50 metres.

Anomalies outlined from this program were followed up during the period from Oct. 13 to 26,1988 . The follow up work included line-cutting, soil sampling and geological mapping. Soil lines and sample intervals were decreased to 50 metre spacings. Soil samples totalled 306 and three rock samples were sent for analysis.

The field work was carried out by the writer, geologist L. Lindinger and field assistant A. Woolverton. This report presents data from the October program and also presents July 1988 data which has been corrected by subsequent field surveys. For a more detailed discussion of the history, geochemistry and geology of the property, the reader is referred to the writer's Feb., 1988 report on the property.

3. PROPERTY, LOCATION AND ACCESS

The Max property consists of 24 mineral claims totalling 466 units and having an area of 11,650 hectares (28,787 acres). It is located 57 km . north of Ft. St. James, B.C. in the Omineca Mining Division. The property was staked by a prospecting partnership which includes A.A. Halleran, A.D. Halleran and U. Schmidt. The claims are registered in the name of A.D. Halleran of Fort St. James, B.C. and United Pacific Gold Limited. United Pacific Gold has an option to acquire a 100% interest in all the claims.

UNITED PACIFIC GOLD LIMITED			
CIAIM MAP			
MAX PROPERITY			
Northwest Geological Consulting Ltd.			
Scale		Date	NTS
Sig. No.			
$1: 100,000$	Apr. 88	$93 \mathrm{~K} / 16$	3

The details of the claims are as follows:

CLAIM NAME	UNITS	REC. NO.	REC. DATE	GROUP
MAX 1	20	7765	Aug. 13,1986	D
MAX 2	20	7766	Aug. 13,1986	D
MAX 3	20	7767	Aug. 13,1986	D
MAX 4	20	7768	Aug. 13,1986	C
MAX 5	20	7769	Aug. 13,1986	C
MAX 6	20	7770	Aug. 13,1986	C
MAX 7	20	7771	Aug. 13,1986	C
MAX 8	20	7772	Aug. 13,1986	B
MAX 9	20	7773	Aug. 13,1986	B
MAX 10	20	7774	Aug. 13,1986	B
MAX 11	20	7775	Aug. 13,1986	A
MAX 12	20	7776	Aug. 13,1986	B
MAX 13	20	7777	Aug. 13,1986	A
MAX 14	20	7778	Aug. 13,1986	A
MAX 15	20	7779	Aug. 13,1986	A
GRIF 1	20	7904	Sept.15,1986	A
GRIF 2	20	7905	Sept.15,1986	B
FIRE 1	6	7962	Oct. 6,1986	C
MAX 16	20	8680	Aug. 13,1987	F
MAX 17	20	8681	Aug. 13,1987	F
MAX 18	20	8682	Aug. 13,1987	G
MAX 19	20	8683	Aug. 13,1987	G
MAX 20	20	8684	Aug. 13,1987	G
MAX 21	20	8685	Aug. 13,1987	G
Total	466			

The property is located on NTS map sheet $93 \mathrm{k} / 16 \mathrm{E}$ and the geographic coordinates of the approximate centre of the property are $54^{\circ} 56^{\prime} \mathrm{N}$. latitude and $124^{\circ} 03^{\prime} \mathrm{W}$. longitude.

The claim locations are shown on Fig. 3. Two-wheel drive road access to the property is provided via the Germansen road from Fort St. James and two major branch logging roads which pass through the north and south ends of the property. A third road, north of Cripple Lake, extends to within 300 metres of the western property boundary.

Additional fire access roads were constructed in the summer of 1986 in the northern end of the property and recent logging on the west side of $\operatorname{Max} 16$ and 18 has provided four-wheel drive road access to this area.

4. PHYSIOGRAPHY

Glacial ice moved in a northeasterly direction in the vicinity of the property.

Elevations on the property range from 875 to 1370 metres. Bedrock exposure is variable, though outcrop is generally limited to elevations of 1,000 metres or greater, locally outcrop was observed near the centre of the grid.

A typical field season lasts from early June to late October.

5. HISTORY

The earliest record of staking in the area is the Hat claim group, staked in 1968. The 40 claim Hat Group was staked 12 km west of the Max by N.B.C. syndicate over outcrops of basic intrusive rocks and associated pyrite and chalcopyrite mineralization. The mineralization was discovered by prospecting regional aeromagnetic highs,outlined by government survey maps.

No work was recorded in the area until 1981 when Selco Inc. staked a number of small claim groups over magnetic and VLF anomalies. These properties were further explored by ground magnetometer, EM surveys and diamond drilling. All properties in the area have since lapsed.

The earliest significant discovery in the area was made by Noranda Exploration Company Limited on claims staked by A.D. Halleran and A.A. Halleran in 1984. The property, known as the "Tas" property, has been explored intermittently since 1985. The most recent work has concentrated on the detail diamond drilling of at least three gold bearing shear zones.

A second, recently discovered porphyry copper-gold deposit at Mount Milligan is being intensively explored by Continental Gold Corp. and BP Resources Canada Ltd. In 1988, thirty drill
holes outlined 20 million tons grading from $0.3-0.5 \% \mathrm{Cu}$ and 0.02 - 0.04 opt Au. Four diamond drills are currently working on expanding reserves on the property.

The Max property was staked by the writer, in partnership with A.D. and A.A. Halleran during the period from July to October, 1986. The area was chosen because of its similarity to the Tas and Mount Milligan properties.

The Max aeromagnetic anomaly is located 13 km east of the Tas property boundary and 13 km south of the Mount Milligan property.

6. GEOLOGY

The property is underlain by Upper Triassic to Lower Jurassic metasedimentary and volcanic rocks of the Takla Group. These lithologies lie within Quesnel Trough, a sub-division of the Intermontane tectonic belt. This narrow belt of sedimentary and volcanic rocks has been traced southward to beyond the international border. To the south, the lower, Upper Triassic sequences have been assigned to the Nicola Group.

A common exploration target in Quesnel Trough has been the copper-gold association found in the alkalic porphyry copper environment. The Cariboo-Bell Cu-Au deposit near Likely, is an example of this environment.

Propylitic alteration zones around alkalic intrusions also provide gold exploration targets for large tonnage, low to moderate grade disseminated gold deposits. The Q.R. deposit near Quesnel may be one of these.

In Fort St. James area, Noranda's exploration of the Tas property has provided clear evidence that the intrusions in the area have produced a gold mineralizing event which is not limited to the gold porphyry style of mineralization.

The Max property and surrounding area are underlain by the Upper Triassic and later Takla Group (Armstrong, 1948). The

Takla group comprises metasedimentary and volcanic rocks. These are intruded by Upper Jurassic or Lower Cretaceous "Omineca Intrusions." A variety of intrusive types, including: granodiorite, diorite, granite, syenite, gabbro and pyroxenite are grouped into this unit. Elsewhere in Quesnel Trough, syenitic intrusions are assigned a Lower Jurassic age and represent intrusive equivalents of late Takla volcanism.

Reconnaissance and grid mapping on the Max property indicate that aeromagnetic highs outline magnetic intrusive rocks, as is the case elsewhere in the area. Three different sequences of Takla Group rocks were outlined.

The southernmost is a metasediment rich east-west trending vertical sequence of the Takla Group. The metasediments are interbedded with volcanic flows, breccias, lapilli and crystal tuffs and associated cherts. This package of rocks occurs along an east-west trending ridge in the two southernmost claims. The metasediments are pervasively bleached. Sulphides are associated with some of the units and appear to be of primary origin.

Intrusive rocks in the area are rare. Two small stocks of diorite and syenite have been recognized.

The central to northern region of the property is predominantly underlain by volcanics of the Takla Group. Dull green augite porphyry basalt varieties predominate along the north-south trending ridge and east half of the property. On the west side of the property dark blue-green hornblende feldspar porphyries predominate.

The central area is intruded by a medium grained equigranular diorite stock. This unit forms massive blocky, resistant weathering outcrops. Accessory magnetite is common throughout. Epidote alteration is common but concentrations vary widely. Pyrite concentrations are common within the Takla, near the diorite contact. Concentrations range from 5\% to 40% pyrite. In two areas along the ridge, these contact zones have produced brightly colored gossans and vegetation
kill zones.
At the northern end of the group, several small pyritic alteration zones have been exposed by fire and logging roads. Here, a poorly exposed syenitic intrusion has produced an ankerite and quartz alteration zone in the Takla Group volcanics. Disseminated to massive pyrite-pyrrhotite mineralization has been exposed along shear zones elsewhere in the area.

The northwest corner of the Max property is underlain by massive monotonous exposures of coarse trachytic feldspar porphyry. This unit, possibly a subvolcanic intrusion was grouped for mapping purposes with the volcanics of the Takla Group. Pyrite disseminations are common throughout, rare chalcopyrite and fluorite were noted in a few areas.

Detail Grid Geology

Bedrock exposure on the grid is variable. Outcrop was located in the central southern half and northern end of the grid. The occurrence of outcrop appears to be controlled by Pleistocene glacial lacustrene and fluvial deposition. The area was first covered by a blanket of clay rich sediments containing abundant boulder to gravel sized fragments which are matrix supported. These deposits were likely laid down in a glacial lake which filled a major valley to the southwest.

Lake level changes are indicated by several bands of beach slope deposits of sandy gravels. These deposits were recognized at three elevations but probably have a greater elevation range.

Abandoned drainage channels were also recognized on the grid. These large features now contain swamps and small seeps. These areas now drain to the southwest but are thought to have previously drained to the northeast. In this area outcrop is common and occurs in rugged cliffs. Narrow channels between outcrops deepen towards the northeast. The above features are interpreted to indicate a northward draining of the glacial
lake. The absence of all sediment cover in the northeast corner of the grid suggests a catastrophic breach of the lake reservoir and high water discharge toward the northeast.

The bedrock geology is a complex mixture of volcanic rocks of the Upper Triassic Takla Group. They are predominantly black to dark green, massive to fine grained. Intrusive and extrusive varieties mapped on fig. 5 are divided primarily on texture and field relationships. It appears likely that all the rocks are related to each other and were deposited in an evolving volcanic depositional environment.

The Takla Group is represented by fine grained to massive augite porphyry, hornblende feldspar porphyries and brecciated varieties of these rocks. Brecciated varieties are divisible into monolithic and heterolithic varieties. A distinctive heterolithic variety,with very large angular fragments,is interpreted as a vent breccia.

Intrusive rocks are divided into diorite and feldspar porphyries. The diorite is a dark grey, fine grained, equigranular, hornblende diorite. Contacts between diorite and volcanics appear to be gradational. Feldspar porphyries in the intrusive suite are leucocratic, crowded and trachytic feldspar porphyries. They occur in narrow dikes at the north end of the property.

Alteration and mineralization occurs only locally Accessory pyrite is common in the volcanic rocks in concentrations of 2 to 5\%. Epidote alteration was observed only locally along narrow structures.

Rock samples were taken and geochemicallyanalyzed from three locations. Two of these were bedrock occurrences of pyrite in fine grained diorite occurring in concentrations of less than 5\%. The third was a boulder of quartz-carbonatemarioposite altered mafic rock containing abundant pyrite. It is unlikely that this boulder has a local source.

All three samples returned anomalous but low concentrations of gold in the range of 16 to 21 ppb Au .

Arsenic analyses ranged from 42 to 78 ppm As in bedrock, and 716 ppm As in float.

Analyses are as follows:

ELEMENT	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au					
SAMPLES	PPM	$\%$	PPM	PPB	$\begin{array}{lllllllllllll}\text {-quartz-carbonate-marioposite } & \text { alteration in mafic boulder } & \\ 881020-1 & 1 & 106 & 3 & 73 & 0.2 & 601 & 46 & 1333 & 4.15 & 716 & 21\end{array}$	-pyrite										
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---	:---						
$881022-1$	1	182	4	63	0.2	100	26	677	5.01	78	$-\approx 2 \%$ disseminated pyrite in fine grained diorite $\begin{array}{llllllllllll}881022-2 & 1 & 205 & 3 & 49 & 0.3 & 22 & 16 & 451 & 4.43 & 42 & 16\end{array}$					

7. GEOCHEMISTRY

In July 1988, a reconnaissance grid soil sampling program was carried out on Max 16 and 18 claims. This work outlined a gold and base metal anomaly which was resampled in more detail in October 1988. The earlier sampling was carried out at a line spacing of 200 metres and a sample interval of 50 metres. Results were reported in an earlier assessment report by the writer, dated November, 1988.

This report covers the follow-up sampling which was carried out in October, 1988 at a line and sample spacing of 50 metres. The earlier sampling is presented again in this report because the sample line locations of the earlier sampling have been corrected by a field survey and the analyses have been recoded to conform with the interpretation of the follow-up survey.

The detail grid is 900 x 1200 metres in dimensions, with grid lines and sample intervals spaced 50 metres apart. Station $176+00 \mathrm{~N}-126+00 \mathrm{E}$ of the reconnaissance grid was used as the origin for the new grid. Clear cut picketed base-lines were cut along $126+00 \mathrm{E}$ and $133+00 \mathrm{E}$. A tie-line was cut along $176+00 \mathrm{~N}$ to provide survey control for the two base lines. The field relationships of the detail sampling and previous
sampling are shown on figure 5.
All sample lines are marked with flagging tape. Sample stations are identified with flagging tape and sample number and grid coordinates, marked on "Tivek" tags.

A total of 306 soil and 3 rock samples were collected and analyzed. Samples of B horizon soils were collected whenever possible. In a few locations samples could not be taken because of outcrop or swampy conditions.

Samples were analyzed by Acme Analytical Laboratories Ltd. of Vancouver. The analysis included $\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Ni}$, Co, Mn, Fe, As and Au. The first 10 elements were analyzed by Inductively Coupled Argon Plasma (ICP) methods and are reported in ppm (Fe in \%). Gold was analyzed by Atomic Absorption using a 10 gm sample. Gold results are reported in ppb and have a detection limit of 1 ppb. Sample certificates are appended to this report.

Analyses are presented at a scale of 1:2,500 on figures 6b to 6f. Six elements were plotted because these produced useful anomaly patterns elsewhere on the property. Geochemical data is coded by symbols to indicate relative anomaly magnitudes at each site. Thresholds were chosen by the writer from past experience. Contouring was not attempted because of the wide variety sediment types encountered.

Higher sample densities did not improve the contiguity of the target gold anomaly. The gold anomaly now occurs in four groups, lying along a northwest trend, over a distance of 1100 metres. Analyses range up to $295 \mathrm{ppb} A u$ and cluster in groups of 3 or 4 sample sites. Isolated analyses of up to 380 ppb occur to the southwest of the anomaly trend.

Arsenic anomalies group in the south, west and north limits of the grid. Most of the anomalous sites at the north end occur along one line and therefore suggests possible analytical error. On the west side and south end of the grid, the arsenic anomalies lie up-ice and down slope from two gold anomalies.

Iron anomalies form a trend which lies down slope and is parallel to the gold trend.

Copper, zinc and manganese anomalies do not form clear patterns. The anomalies of these elements occur in a broad arc below the 3800 foot elevation contour.

In addition to the new sample lines, anomalous sample sites were resampled to check the reproducibility of the earlier analyses. The following analyses compare the original sample data with the resampled analyses. The resampled analyses have an R suffix. The data show a strong correlation in base metals, especially where concentrations are well above analytical detection limits. There is however a poor correlation among gold analyses. This may be caused by the particulate occurrence of gold in the soil.

ELEMENT	Mo	Cu	Pb	2 n	Ag	Ni	Co	Mn	Fe	As	Au
SAMPLES	PPM	8	PPM	PPB							
8100	1	32	6	79	0.2	20	8	407	3.31	6	72
8100R	1	35	7	89	0.3	20	9	449	3.43	6	1
8104	2	58	10	74	0.5	22	10	326	3.52	4	190
8104R	1	56	7	66	0.4	22	10	302	3.09	2	1
8108	1	17	9	62	0.3	11	4	188	2.11	2	12
8108R	1	18	9	58	0.4	13	5	217	2.40	4	1
8109	1	19	7	67	0.2	14	5	195	2.85	5	260
8109R	1	16	5	60	0.2	12	5	170	2.50	3	2
8298	1	18	6	45	0.1	17	5	241	3.46	5	51
8298R	1	17	7	43	0.2	18	6	187	3.30	11	8
8461	1	32	4	142	0.2	20	9	316	5.77	3	11
8461 R	1	31	4	125	0.3	16	8	281	5.60	8	1
8462	1	34	2	77	0.2	24	9	669	3.57	5	295
8462R	1	30	6	75	0.5	20	14	1265	3.42	8	1
8463	1	24	5	53	0.3	12	5	146	2.43	5	12
8463R	1	30	9	47	0.4	15	5	168	2.36	6	2

8. CONCLUSIONS

Soil sampling on the follow up grid sampled a complex variety of glacial sediments which may have been reworked or locally redeposited. This creates interpretation problems.

The geochemical data on the grid has outlined clusters of anomalous gold values. Base metal anomalies were also detected but are rarely coincident with the gold. Base metal anomalies occur either as small groups of values, located down slope and in an up-ice direction or as a broad halo, also occurring down slope from the gold anomalies. This pattern is suggestive of a glacially transported anomaly with a source lying to the southwest.

No obvious source rocks were detected during the mapping. Although geochemical concentrations of gold are associated with pyrite in intrusive rocks, the gold content is geochemically anomalous but not of economic interest.

Resampling of anomalous sites indicates that an extreme nugget or particulate effect is evident in the gold data. Eight anomalous samples ranging from 11 to 295 ppb Au returned values in the range of 1 to $8 \mathrm{ppb} A u$. The good correlation observed in base metal analysis suggests that the poor gold analysis are not laboratory error.

9. REFERENCES

ARMSTRONG, J.E. (1948): Map 907a, Fort St. James, 1 in. to 6 miles, G.S.C.

BACON, W.R. (1969): Geophysical Report on the Hat \#1 Claim Group. B.C.M.M. Assessment Report \#1933.
B.C. MINISTRY OF MINES: Assessment Report Index Map 93 K

CAMPBELL,R.B. AND TIPPER, H.W. (1970): Geology and Mineral Exploration Potential of Quesnel Trough, B.C. CIM Bulletin Vol 63 pp 785-790.

HODGSEN, C.J. BAILES, R.J., VERZOSA, R.S. (1976): Cariboo-Bell in CIM Special Volume No.15, Porphyry Deposits of the Canadian Cordillera.

REES, C.J. (1981): Western Margin of the Omineca Belt at Quesnel Lake, B.C. in G.S.C. Paper 81-1A p.223-226.

SALEKEN,L.W. and SIMPSON,R.G.(1984): Cariboo-Quesnel Gold Belt: A geological overview, Western Miner, April, 1984

SCHMIDT, U. (1988) Report on Geology and Geochemistry of the Max Property, Assessment Report
---------- (1988) Report on Geochemistry of the Max 16-21 claims Assessment Report

STRUIK, L.C.(1981): A re-examination of the type area of the Devono-Mississippian Cariboo Orogeny, central B.C., Can. Jour. Earth Sci. vol. 18 no. 12.

WARNER, L. (1985): Report on Soil Geochemical Survey, TAS 1, Assessment Report No. 13,979

WARNER, L. (1986): Summary Report, Tas Property, Noranda Exploration Co. Ltd., Unpublished Report

10. Statement of Expenditure

MAX 16-21 claims

I) FIELD COSTS

1) MOBE/DEMOBE. $\$ 2,702.18$
2) LABOUR (FIELD)
U. Schmidt (Project Manager) Oct.14-25 12 days @ $\$ 300.00 /$ day.................... $\$ 3,600.00$
L. Lindinger (Geologist) Oct. 14-25 12 days at $\$ 250 /$ day....................... $\$ 3,000.00$
A. Woolverton (Sr. Field Assistant) Oct. 14-25 12 days at $\$ 175 /$ day..................... $\$ 2,100.00$
$\$ 8,700.00$
$\$ 8,700.00$
3) TRANSPORTATION

1 Chevrolet Suburban 4×4
12 days @ $\$ 55 /$ day........................ $\$ 660.00$
Fuel....................................... $\$ 350.28$
$\$ 1,010.28$
4) EQUIPMENT RENTAL. $\$ 144.00$
5) ROOM AND BOARD

6) CONSUMABLES AND FIELD SUPPLIES......................... 279.10
7) GEOCHEMICAL ANALYSIS AND ASSAY

306 soil geochem @ $\$ 10.85 \ldots$.
3 rock samples @ \$13.00.................\$ 39.00

II. OFFICE COSTS

1) Data interpretation, plotting and report writing
U. Schmidt (Project Manager) Oct. 28, Nov. $8,9,10(1 / 2), 1988$

Feb. 20, 22, 27, 28, 1989
$71 / 2$ days at $\$ 300 /$ day...............
L. Lindinger (Geologist) Dec. 13 1 day at $\$ 250 /$ day....................... $\$ 250.00$

$$
\$ 2,500.00
$$

2) Drafting.. $\$ 2,450.00$
3) Map Reproduction, Photocopying \& Communication.... \$ 576.00 TOTAL $\$ 23,040.66$

APPENDIX A

STATEMENT OF QUALIFICATIONS

I, Uwe Schmidt ,of 656 Foresthill Place, Port Moody, B.C. do hereby declare:
(1) I am a consulting geologist and controlling shareholder of Northwest Geological Consulting Ltd.
(2) I am a 1971 graduate of the University of British Columbia with a B.Sc. degree in Geology.
(3) I am a Fellow of the Geological Association of Canada.
(4) I have practised my profession continuously since graduation.
(5) I have managed various mineral exploration projects in the Yukon Territory, B.C., and Ontario over the past 17 years.
(6) This report is based on my field examination of the property, and a study of available published and unpublished reports.

Port Moody, B.C
\square

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 GEOCFEMICAI, ANAIYSIS CERTIEICATE

 NORTHWEST GEOLOGICAL PROJECT 126 File $=88-5497$ Page 1

SAMPLE\#	Mo PPM	Cu PPM	Pb $P \mathrm{PM}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { Mn } \\ \text { PPM } \end{array}$	Fe	$\begin{array}{r} \text { As } \\ \text { PPM } \end{array}$	$\begin{aligned} & \mathrm{Au} \\ & \mathrm{PPB} \end{aligned}$
	PPM	\%	PPM	PPB							
MA 12001	1	39	4	64	. 2	23	7	298	2.63	2	1
MA 12002	1	29	9	54	. 1	18	6	289	2.40	2	1
MA 12003	1	22	9	49	. 2	15	5	201	2.24	2	1
MA 12004	1	27	8	49	. 1	17	7	303	2.02	2	2
MA 12005	1	16	7	39	. 1	10	4	129	1.88	3	9
MA 12006	1	21	6	41	. 1	17	5	232	2.27	3	2
MA 12007	1	18	4	41	. 2	13	5	196	1.80	2	1
MA 12008	1	56	10	55	. 5	24	9	774	2.86	2	1
MA 12009	1	25	6	56	. 2	22	8	294	2.80	4	3
MA 12010	1	107	12	68	. 5	40	13	652	3.67	7	4
MA 12011	1	40	8	46	. 2	22	8	508	2.43	3	1
MA 12012	1	57	13	69	. 2	30	10	590	3.06	2	1
MA 12013	1	22	5	50	. 1	16	6	234	2.05	2	1
MA 12014	1	53	7	76	. 1	26	12	710	3.16	2	2
MA 12015	1	43	8	83	. 3	23	13	878	3.13	4	1
MA 12016	1	96	9	91	. 6	37	18	755	4.20	2	1
MA 12017	1	20	8	39	. 2	9	4	196	2.59	2	1
MA 12018	1	8	4	26	. 3	5	2	99	1.14	3	15
MA 12019	1	22	7	32	. 3	15	5	183	2.56	3	1
MA 12020	1	34	6	57	. 2	24	7	286	2.64	2	1
MA 12021	1	33	11	91	. 4	16	11	1005	3.52	3	1
MA 12022	1	23	6	67	. 2	19	7	248	2.42	3	1
MA 12023	1	16	10	59	. 1	14	6	185	2.99	3	1
MA 12024	1	25	6	72	. 1	20	9	295	3.28	6	320
MA 12025	1	26	9	50	. 1	15	6	245	2.06	2	1
MA 12026	1	24	11	52	. 1	24	10	271	4.23	4	157
MA 12027	1	37	12	47	. 1	23	9	223	3.55	5	9
MA 12028	1	60	11	68	. 3	18	9	250	4.19	3	1
MA 12029	1	96	9	90	. 3	16	10	253	5.06	2	1
MA 12030	1	26	13	108	. 4	16	8	213	4.57	2	1
MA 12031	1	31	12	55	. 2	25	9	228	2.86	9	1
MA 12032	1	31	8	61	. 1	20	8	494	2.50	2	1
MA 12033	1	25	7	47	. 2	19	7	316	2.20	2	51
MA 12034	1	26	9	50	. 2	18	6	262	2.10	3	3
MA 22035	1	37	5	57	. 3	21	9	435	2.42	4	78
MA 12036	1	25	9	54	. 2	15	7	428	2.18	2	36
STD C/AU-S	19	62	42	132	6.9	70	30	1031	4.26	42	47

NORTHWEST GEOLOGICAL PROJECT 126 FILE \#88-5497

SAMPLE\#	$\begin{array}{r} \text { MO } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} 2 n \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{PPM} \end{array}$	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	$\begin{array}{r} \text { As } \\ \text { PPM } \end{array}$	$\begin{aligned} & A u^{*} \\ & \text { PPE } \end{aligned}$
MA 12037	1	31	3	54	. 1	21	7	236	2.62	2	4
MA 12038	1	65	7	48	. 1	22	11	254	4.01	7	1
MA 12039	1	29	7	47	. 1	18	6	302	2.06	3	17
MA 12040	1	18	5	44	. 1	13	5	314	2.04	3	1
MA 12041	1	20	8	46	. 1	13	4	178	2.22	4	12
MA 12042	1	14	8	36	. 1	9	3	119	1.49	2	5
MA 12043	1	23	7	49	. 1	15	5	173	2.00	2	1
MA 12044	1	56	8	51	. 1	26	8	365	2.52	9	1
MA 12045	1	12	4	66	. 1	13	5	201	2.09	5	1
MA 12046	1	44	7	46	. 5	17	9	792	2.12	2	2
MA 12047	1	24	10	72	. 1	18	10	738	2.62	5	18
MA 12048	1	30	8	45	. 1	22	7	228	2.44	5	1
MA 12049	1	25	5	56	. 2	16	7	404	2.32	2	1
MA 12050	1	28	7	43	. 1	16	9	409	2.06	2	1
MA 12051	1	20	6	62	. 2	15	8	544	2.19	5	1
MA 12052	1	108	12	97	. 6	44	13	408	3.90	7	2
MA 12053	1	66	10	74	. 2	31	11	425	2.99	6	1
MA 12054	1	56	6	83	. 2	23	9	391	2.60	2	1
MA 12055	1	58	16	76	. 5	31	9	284	4.11	9	1
MA 12056	1	62	12	81	. 3	24	20	2533	3.60	5	1
MA 12057	1	48	10	68	. 1	24	13	1227	3.03	5	1
MA 12058	1	32	8	54	. 2	21	8	276	2.37	6	3
MA 12059	1	30	6	65	. 4	22	7	256	2.76	7	1
MA 12060	1	18	9	40	. 2	13	5	186	1.74	3	1
MA 12061	1	21	5	63	. 4	16	6	190	3.03	8	1
MA 12062	1	11	7	29	. 1	9	3	108	1.58	2	1
MA 12063	1	20	6	33	. 1	14	6	248	1.71	5	2
MA 12064	1	13	8	32	. 2	11	4	129	1.98	4	2
MA 12065	1	24	5	55	. 3	16	7	214	3.80	10	1
MA 12066	2	246	23	77	1.6	47	20	1529	5.28	21	1
MA 12067	1	51	14	121	. 3	16	10	380	2.81	6	1
MA 12068	1	83	12	75	. 3	35	13	797	3.17	12	1
MA 12069	1	11	9	52	. 1	8	5	185	2.14	4	1
MA 12070	1	46	7	63	. 3	23	8	297	2.49	5	1
MA 12071	1	23	7	53	. 1	16	6	223	2.03	4	1
MA 12072	1	32	4	64	. 3	20	10	442	2.62	2	1
STD C/AU-S	18	62	44	132	7.1	71	30	1023	4.15	42	47

SAMPLE $=$	$\begin{aligned} & \text { MO } \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} 2 n \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{PPM} \end{array}$	$\underset{\mathrm{PPM}}{\mathrm{Ni}}$	$\begin{array}{r} \mathrm{CO} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} M n \\ P P M \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{array}{r} \text { AS } \\ \text { PPM } \end{array}$	$\begin{aligned} & \mathrm{Au} \\ & \mathrm{P} P \mathrm{~B} \end{aligned}$
MA 12073	2	41	11	83	. 9	22	9	373	3.19	2	12
MA 12074	1	54	12	99	1.5	21	17	586	3.58	2	1
MA 12075	1	30	9	55	. 6	13	8	305	2.35	2	4
MA 12076	1	70	7	75	. 3	30	10	296	3.85	6	8
MA 12077	1	19	6	51	. 5	15	5	219	1.96	2	95
MA 12078	1	12	7	57	. 4	12	4	185	1.81	2	2
MA 12079	1	13	3	58	. 2	11	5	155	2.68	4	2
MA 12080	1	22	9	66	. 3	21	8	215	2.79	4	2
MA 12081	1	28	6	62	. 3	20	8	438	2.83	6	1
MA 12082	1	22	6	74	. 4	14	7	248	3.52	3	1
MA 12083	1	37	9	62	. 3	19	8	227	3.63	6	1
MA 12084	1	41	5	105	. 3	17	9	305	3.60	2	1
MA 12085	1	23	6	47	. 4	10	5	405	2.85	3	1
MA 12086	1	38	8	74	. 4	23	8	282	3.83	6	1
MA 12087	1	10	4	35	. 3	10	4	133	1.82	2	3
MA. 12088	1	19	6	60	. 3	16	7	390	1.99	3	1
MA 12089	1	18	6	78	. 5	12	5	341	1.94	2	1
MA 12090	1	34	7	61	. 3	20	8	800	2.32	4	2
MA 12091	1	31	7	58	. 3	23	9	507	2.72	2	4
MA 12092	1	25	7	56	. 4	17	8	335	2.32	3	1
MA 12093	1	64	8	71	. 5	26	11	723	3.00	3	3
MA 12094	1	15	7	35	. 4	10	3	141	1.62	5	81
MA 12095	1	16	2	48	. 2	11	5	153	2.79	2	2
MA 12096	1	18	5	43	. 2	10	5	157	2.98	2	1
MA 12097	1	23	4	55	. 3	17	6	230	3.08	3	1
MA 12098	1	106	10	78	. 4	30	13	1348	3.63	4	4
MA 12099	1	31	14	67	. 4	23	7	285	3.29	5	5
MA 12100	1	21	5	56	. 5	17	7	392	2.46	6	1
MA 12101	1	36	8	62	. 3	28	8	335	3.01	9	5
MA 12102	1	33	9	75	. 4	22	8	296	2.73	8	4
MA 12103	1	57	9	71	. 2	27	13	745	3.14	6	1
MA 12104	1	20	11	44	. 1	15	5	164	2.36	5	1
MA 12105	3	96	23	187	. 4	59	39	2095	6.99	6	1
MA 12106	1	25	11	78	. 2	17	8	325	4.69	7	1
MA 12107	1	52	7	68	. 2	22	9	250	4.77	8	1
MA 12108	1	40	7	105	. 4	14	11	431	2.66	2	1
STD C/AU-S	21	62	44	135	7.5	76	31	1058	4.26	41	53

NORTHWEST GEOLOGICAL PROJECT 126 FILE $=88-5497$

SAMPLE \#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	AS	Au*
	PPM	\%	PPM	PPB							
MA 12109	1	106	7	91	. 3	19	11	318	5.27	2	1
MA 12110	1	92	9	113	. 6	17	11	260	5.18	3	1
MA 12111	1	38	13	51	. 2	24	8	223	2.97	2	1
MA 12112	1	22	8	84	. 3	20	8	261	3.06	2	1
MA 12113	1	22	11	59	. 3	18	6	270	2.59	5	5
MA 12114	1	28	11	64	. 8	16	7	302	2.36	2	2
MA 12115	1	37	8	67	. 4	21	8	291	2.46	2	1
MA 12116	1	36	11	62	. 2	28	8	323	3.08	3	4
MA 12117	1	35	11	55	. 3	19	10	599	2.61	4	2
MA 12118	1	52	12	66	. 5	13	7	265	3.64	3	1
MA 12119	1	51	7	92	. 3	11	9	342	4.70	2	1
MA 12120	1	30	14	71	. 3	16	8	226	3.83	3	1
MA 12121	1	38	11	62	. 2	12	8	233	5.08	2	2
MA 12122	1	53	10	82	. 3	12	8	812	4.57	3	4
MA 12123	1	60	10	60	. 2	8	9	1369	4.12	4	1
MA 12124	1	16	2	31	. 1	10	3	118	2.23	2	9
MA 12125	1	32	12	55	. 1	20	7	236	3.05	6	7
MA 12126	1	33	10	83	. 1	21	11	908	2.74	2	3
MA 12127	1	38	7	75	. 3	24	7	313	2.80	3	2
MA 12128	1	32	12	69	. 5	25	8	277	3.55	6	4
MA 12129	1	40	12	63	. 3	20	10	462	2.70	2	2
MA 12130	1	10	6	34	. 1	9	3	215	1.49	3	1
MA 12131	1	19	5	51	. 2	17	6	256	2.88	4	20
MA 12132	1	19	6	56	. 2	16	6	254	3.18	5	2
MA 12133	1	38	7	57	. 2	22	9	251	3.93	2	18
MA 12134	1	37	9	78	. 2	23	8	251	4.55	2	1
MA 12135	1	30	11	73	. 2	23	8	281	5.36	5	1
MA 12136	1	19	7	61	. 1	12	5	190	2.95	2	6
MA 12137	1	14	14	67	. 3	12	5	285	2.52	3	1
MA 12138	1	17	6	70	. 4	12	6	190	4.11	2	1
MA 12139	1	54	12	61	. 9	24	8	288	3.05	2	1
MA 12140	1	22	4	50	. 1	16	5	228	2.46	3	1
MA 12141	1	18	12	54	. 2	13	5	267	2.46	2	1
MA 12142	1	38	7	55	. 1	22	8	284	3.28	3	2
MA 12143	1	13	12	47	. 3	9	3	285	1.88	4	3
MA 12144	1	27	9	46	. 1	13	5	179	3.07	2	250
STD C/AU-S	19	63	40	132	7.2	72	31	1033	4.32	44	48

NORTHWEST GEOLOGICAL PROJECT 126 FILE $\# 88-5497$

SAMPLE ${ }^{\text {\# }}$	$\begin{array}{r} \text { MO } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { CO } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Fe} \\ \% \end{array}$	$\begin{array}{r} \text { As } \\ \text { PPM } \end{array}$	$\begin{aligned} & \mathrm{Au*} \\ & \mathrm{PPB} \end{aligned}$
MA 12145	1	21	7	38	. 4	14	6	221	2.53	4	3
MA 12146	1	27	9	48	. 1	12	5	327	2.21	3	1
MA 12147	1	25	5	50	. 1	16	5	218	2.31	2	1
MA 12148	1	147	14	110	. 9	43	16	590	4.37	9	1
MA 12149	1	22	5	57	. 1	15	6	196	2.50	4	1
MA 12150	1	33	7	60	. 1	20	9	430	2.46	2	2
MA 12151	1	33	11	108	. 1	20	12	440	4.58	9	1
MA 12152	1	22	15	76	. 2	16	6	231	3.61	4	2
MA 12153	1	39	8	62	. 1	27	9	273	3.58	9	3
MA 12154	1	86	11	99	. 3	42	13	1618	3.86	11	2
MA 12155	1	77	7	58	. 1	31	12	438	3.37	8	2
MA 12156	3	141	20	119	. 4	44	24	2058	8.50	29	1
MA 12157	1	34	6	63	. 2	17	8	562	2.90	2	1
MA 12158	1	25	12	41	. 4	7	5	187	2.97	2	1
MA 12159	1	38	8	77	. 2	13	9	281	4.01	4	1
MA 12160	1	24	12	153	. 4	16	9	945	4.98	7	3
MA 12161	1	23	5	81	. 1	12	7	300	4.57	2	1
MA 12162	1	21	11	39	. 3	13	6	222	1.73	2	11
MA 12163	1	76	12	117	. 8	33	18	776	3.82	5	3
MA 12164	1	25	5	51	. 1	14	6	352	1.93	3	1
MA 12165	1	36	6	60	. 2	18	8	306	2.57	3	2
MA 12166	1	43	5	73	. 8	19	8	283	2.58	2	1
MA 12167	1	28	9	55	. 3	17	6	240	2.71	4	1
MA 12168	1	38	6	68	. 1	18	8	283	4.13	5	2
MA 12169	1	32	3	59	. 1	13	9	733	2.39	3	1
MA 12170	1	29	10	63	. 3	17	7	245	2.84	5	3
MA 12171	1	25	4	54	. 2	16	7	207	2.42	2	1
MA 12172	1	22	9	49	. 4	13	6	165	3.52	7	1
MA 12173	1	18	4	39	. 1	10	4	169	1.99	2	1
MA 12174	1	46	5	35	. 2	12	4	112	1.40	2	2
MA 12175	1	36	10	36	. 5	10	4	152	1.30	3	2
MA 12176	1	21	6	58	. 1	16	6	175	3.29	7	1
MA 12177	1	21	8	47	. 5	13	6	209	2.29	5	2
MA 12178	1	44	7	89	. 5	23	14	854	4.62	7	5
MA 12179	1	26	8	58	. 3	15	7	295	4.49	8	3
MA 12180	1	33	8	43	. 3	27	10	266	2.74	6	3
STD C/AU-S	18	62	41	132	7.1	70	31	1030	4.06	42	51

SAMPLE $\#$	NORTHWEST GEOLOGICAL PROJECT 126 FILE \# 88-5497										
	$\begin{array}{r} \mathrm{MO} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} 2 \mathrm{n} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{CO} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{PPM} \end{array}$	Fe $\%$	$\begin{array}{r} \text { AS } \\ \text { PPM } \end{array}$	$\begin{aligned} & \mathrm{A} \mathrm{u}^{\star} \\ & \mathrm{PPPB} \end{aligned}$
MA 12181	1	25	4	50	. 2	17	6	227	2.67	2	43
MA 12182	1	25	6	39	. 2	9	6	379	1.61	3	1
MA 12183	1	25	6	59	. 2	10	6	197	3.28	2	2
MA 12184	1	55	4	88	. 2	29	11	584	3.64	9	1
MA 12185	1	25	7	54	. 1	17	7	242	2.56	3	9
MA 12186	1	35	6	74	. 3	23	8	381	3.30	7	6
MA 12187	1	8	5	27	. 1	8	3	116	1.12	2	2
MA 12188	1	39	4	91	. 1	23	9	331	4.57	5	15
MA 12189	1	16	7	33	. 2	6	3	144	1.97	2	1
MA 12190	1	54	9	44	. 2	11	7	186	4.42	2	3
MA 12191	1	33	9	25	. 1	5	6	58	1.87	3	4
MA 12192	1	14	5	31	. 1	13	5	138	2.61	3	2
MA 12193	1	31	6	73	. 1	22	7	248	3.40	6	1
MA 12194	1	7	14	30	. 3	7	3	111	1.34	3	7
MA 12195	1	29	6	69	. 2	15	7	262	4.04	4	2
MA 12196	1	35	10	69	. 3	23	9	305	4.59	3	3
MA 12197	1	25	9	70	. 3	13	6	280	5.25	7	1
MA 12198	1	22	8	48	. 2	10	5	371	3.04	4	79
MA 12199	1	22	7	54	. 1	11	7	259	2.90	2	1
MA 12200	1	61	5	108	. 4	19	10	270	6.21	3	1
MA 12201	1	49	8	76	. 2	28	9	357	3.34	2	3
MA 12202	1	42	9	68	. 8	22	8	359	2.94	5	1
MA 12203	1	30	8	61	. 5	18	7	250	3.57	5	2
MA 12204	1	35	5	96	. 3	18	11	823	5.17	6	1
MA 12205	1	30	4	121	. 2	17	9	1003	4.20	2	1
MA 12206	1	80	7	88	. 1	31	18	1721	4.31	4	1
MA 12207	1	29	8	71	. 1	16	7	249	2.34	5	3
MA 12208	1	37	11	91	. 5	13	9	445	4.62	4	1
MA 12209	1	39	8	60	. 3	22	8	235	3.72	8	8
MA 12210	1	20	7	43	. 3	15	6	211	3.06	3	1
MA 12211	1	85	9	88	. 2	12	7	353	3.73	2	1
MA 12212	1	70	12	74	. 4	30	11	299	4.94	11	20
MA 12213	1	38	5	52	. 4	21	7	242	3.35	4	1
MA 12214	1	34	15	82	. 5	20	8	296	4.88	6	1
MA 12215	1	18	13	62	. 3	10	5	184	2.89	4	3
MA 12216	1	27	5	46	. 2	14	6	206	4.02	6	1
STD C/AU-S	19	63	40	132	7.2	69	31	1033	4.31	42	48

NORTHWEST GEOLOGICAL PROJECT 126 FILE $\# 88-5497$

SAMPLE =	$\begin{array}{r} \text { MO } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} 2 \mathrm{n} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathrm{CO} \\ \mathrm{P} P \mathrm{M} \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{PPM} \end{array}$	$\begin{aligned} & F e \\ & \% \end{aligned}$	$\begin{array}{r} \text { As } \\ \text { PPM } \end{array}$	$\begin{aligned} & A u^{\star} \\ & \text { PPB } \end{aligned}$
MA 12217	2	101	11	77	. 9	25	9	234	3.61	2	3
MA 12218	1	23	10	60	. 3	13	7	180	4.29	2	1
MA 12219	1	27	19	96	. 1	22	10	323	4.02	2	1
MA 12220	1	32	10	91	. 3	22	10	343	3.89	2	1
MA 12221	1	42	12	66	. 4	30	9	282	4.04	5	1
MA 12222	1	25	12	52	. 1	17	6	227	2.67	2	1
MA 12223	1	40	12	60	. 2	25	8	287	2.81	3	1
MA 12224	1	31	11	69	5	24	8	251	3.26	4	1
MA 12225	1	36	21	90	. 1	26	9	320	4.42	7	1
MA 12226	1	63	22	77	. 3	26	9	292	3.89	3	1
MA 12227	1	85	12	105	. 1	13	13	1912	4.81	2	1
MA 12228	1	48	9	61	. 2	23	9	288	3.90	3	380
MA 12229	1	25	11	63	. 1	18	8	291	3.07	2	1
MA 12230	2	74	4	89	. 5	24	± 3	338	4.86	2	1
MA 12231	1	43	10	80	. 3	19	10	264	4.92	2	2
MA 12232	1	29	15	75	. 2	17	8	269	6.34	6	1
MA 12233	1	27	11	48	. 3	25	8	375	3.62	3	36
MA 12234	1	16	11	27	. 3	6	3	161	1.19	2	3
MA 12235	1	16	5	41	. 1	14	6	189	2.44	2	1
MA 12236	1	20	9	47	. 1	13	5	224	3.09	2	1
MA 12237	1	35	8	58	. 4	21	8	291	2.68	2	1
MA 12238	1	26	11	44	. 3	15	5	204	2.14	3	1
MA 12239	1	23	8	52	. 2	15	6	222	2.68	2	1
MA 12240	1	16	14	58	. 2	13	7	296	3.81	6	1
MA 12241	1	22	14	59	. 2	17	7	231	4.48	3	1
MA 12242	1	24	10	45	. 2	17	6	246	2.63	4	4
MA 12243	1	24	7	58	. 2	18	7	226	2.64	2	1
MA 12244	1	25	10	52	. 3	16	6	247	2.65	3	1
MA 12245	1	17	15	48	. 6	10	5	240	2.71	3	1
MA 12246	1	57	11	80	. 4	30	12	437	4.76	2	1
MA 12247	1	29	9	56	. 3	15	7	244	2.77	3	1
MA 12248	1	31	6	58	. 2	17	7	384	3.47	4	1
MA 12249	1	38	14	67	. 3	22	9	346	3.64	5	3
MA 12250	1	19	11	44	. 3	12	5	173	2.35	2	1
MA 12251	1	42	8	70	. 2	16	8	221	3.85	5	1
MA 12252	1	9	8	23	. 2	6	3	102	. 94	2	1
STD C/AU-S	19	63	43	132	7.1	68	31	1030	4.24	42	53

NORTHWEST GEOLOGICAL PROJECT 126 FILE $\# 88-5497$

SAMPLE 4	Mo	Cu	Pb	2n	Ag	Ni	Co	Mn	Fe	As	Au*
	PPM	\%	PPM	PPB							
MA 12253	1	28	10	55	. 3	18	7	191	3.13	2	1
MA 12254	1	18	6	50	. 4	9	4	156	3.26	2	1
MA 12255	1	44	7	62	. 7	13	6	212	4.04	6	1
MA 12256	1	40	7	110	. 1	20	8	267	3.46	2	1
MA 12257	1	24	4	124	. 3	24	9	301	3.17	7	5
MA 12258	1	19	8	41	. 2	11	4	148	2.18	2	13
MA 12259	1	22	7	117	. 3	21	8	268	3.11	6	1
MA 12260	1	16	10	39	. 1	13	4	164	2.24	2	4
MA 12261	1	27	6	51	. 2	21	8	230	4.50	3	2
MA 12262	1	20	7	62	. 3	17	7	311	2.63	2	1
MA 12263	1	28	8	64	. 3	20	8	315	2.69	5	1
MA 12264	1	23	8	60	. 3	17	7	406	2.45	2	4
MA 12265	1	50	6	73	. 3	24	10	489	3.04	3	9
MA 12266	1	28	10	61	. 2	19	6	224	2.95	5	1
MA 12267	1	15	8	39	. 2	11	4	137	2.12	3	5
MA 12268	1	16	5	58	. 3	15	6	215	2.68	2	1
MA 12269	1	35	10	78	. 5	24	10	422	3.73	4	2
MA 22270	1	34	11	50	. 3	17	8	340	3.37	7	5
MA 12271	1	30	12	45	. 3	12	7	472	1.77	2	3
MA. 12272	1	48	9	91	. 4	20	12	437	4.45	12	41
MA 12273	2	123	9	108	1.2	30	13	745	4.87	4	3
MA 12274	1	138	13	52	. 6	10	6	132	3.24	3	1
MA 12275	1	90	14	74	. 8	31	15	1036	3.60	3	1
MA 12276	1	26	8	64	. 4	16	7	360	2.54	3	1
MA 12277	1	25	8	59	. 4	19	8	427	3.04	4	1
MA 12278	1	28	9	103	. 2	17	9	631	4.86	6	3
MA 12279	1	40	9	54	. 1	10	6	230	2.80	2	1
MA 12280	1	24	7	61	. 2	15	7	304	3.40	2	1
MA 12281	1	22	2	56	. 2	14	6	244	2.77	3	2
MA 12282	1	93	11	127	. 7	45	20	1212	4.87	8	1
MA 12283	1	46	6	62	. 6	18	11	577	2.58	4	1
MA 12284	1	35	9	66	. 4	22	9	403	2.79	5	1
MA 12285	1	36	6	55	. 6	21	8	256	2.68	3	2
MA 12286	1	27	9	62	. 3	15	6	280	2.24	2	5
MA 12287	1	32	11	55	. 6	16	7	226	2.64	5	1
MA 12288	1	23	9	58	. 2	13	7	517	3.40	4	1
STD C/AU-S	18	62	38	132	7.0	69	31	1032	4.30	43	47

NORTHWEST GEOLOGICAL PROJECT 126 FILE $=88-5497$

SAMPLE\#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Au*
	PPM	\%	PPM	PPB							
MA 22289	1	39	10	67	. 3	18	8	221	3.70	7	3
MA 12290	1	53	10	67	. 1	20	9	413	2.89	5	1
MA 12291	1	34	7	55	. 1	24	8	281	2.49	5	2
MA 12292	1	30	7	47	. 1	15	5	187	2.05	4	1
MA 12293	1	28	8	56	. 2	16	6	256	2.10	2	1
MA 12294	1	19	9	42	. 1	13	6	261	1.69	3	9
MA 12295	1	20	11	53	. 1	12	5	260	3.52	6	93
MA 12296	1	53	11	59	. 1	18	9	233	4.87	12	1
MA 12297	1	44	12	61	. 2	15	8	379	3.89	7	1
MA 12298	1	31	5	93	. 3	15	9	282	4.08	4	2
MA 8100	1	35	7	89	. 3	20	9	449	3.43	6	1
MA 8104	1	56	7	66	. 4	22	10	302	3.09	2	1
MA 8108	1	18	9	58	. 4	13	5	217	2.40	4	1
MA 8109	1	16	5	60	. 2	12	5	170	2.50	3	2
MA 8298	1	17	7	43	. 2	18	6	187	3.30	11	8
MA 8461	1	31	4	125	. 3	16	8	281	5.60	8	1
MA 8462	1	30	6	75	. 5	20	14	1265	3.42	8	1
MA 8463	1	30	9	47	. 4	15	5	168	2.36	6	2
STD C/AU-S	17	60	41	132	6.9	67	30	1010	4.02	39	52

NORTHWEST GEOLOGICAL PROJECT 126 FILE $=88-5497$

Mo	Cu	Pb	2 n	Ag	Ni	Co	Mn	Fe	As	Au*
PPM	\%	PPM	PPB							
1	106	3	73	. 2	601	46	1333	4.15	716	21
1	182	4	63	. 2	100	26	677	5.01	78	19
1	205	3	49	. 3	22	16	451	4.43	42	16

18,988

$$
18,988
$$

\qquad

Part 2 of 2
18,988

