LOGNO: 0907	RD.
ACTION:	

on the

MAXI CLAIM

Lake Cowichan Area
Victoria Mining Division
(48. 45° N. Lat -9E $124^{\circ} 04^{\prime}$ W. Long.)
for

USS. PLATINUM INC.
1250-800 West Pander Stet
Vancouver, B.C.
V6C 2 V 6 V6C 2V6
(Owner and Operator
$\leftrightarrow 2$
屈

20
by
-2
0 [
GRANT F. CROOKER, B.Sc., FSA.C.,
Geologist
0
()
-

0
August, 1989
6
$0<$

TABLE OF CONTENTS

PAGE
SUMMARY AND RECOMMENDATIONS 1
1.0 INTRODUCTION 3
1.1 General 3
1.2 Location and Access 3
1.3 Physiography 3
1.4 Property and Claim Status 3
1.5 Area and Property History 4
2.0 EXPLORATION PROCEDURE 5
3.0 GEOLOGY AND MINERALIZATION 6
3.1 Regional Geology 6
3.2 Claim Geology 6
3.3 Regional Mineralization 6
4.0 GEOPHYSICS 7
4.1 VLF EM Survey 7
4.1 Magnetometer Survey 7
5.0 CONCLUSIONS AND RECOMMENDATIONS 9
6.0 REFERENCES 11
7.0 CERTIFICATE OF QUALIFICATIONS 12

APPENDICES

Appendix I - Geophysical Equipment Specifications Appendix II - Geophysical Data Appendix III - Cost Statement
FIGUREPAGE

1. Location Map follows page 12. VLF EM Survey, Quadrature \& In-phase3. VLF EM Survey, Fraser Filter4. Magnetometer Survey5. Compilation Mappocketpocket
pocketpocket

SUMMARY AND RECOMMENDATIONS

The Maxi Claim consists of 12 units and is located in the Victoria Mining Division. The property is located 8 kilometers south of Lake Cowichan on southern Vancouver Island.

The property is underlain by Lower Jurassic Bonanza Group volcanic rocks which have been intruded by dykes and irregularily shaped bodies of granodiorite. Mineralization at the Hillcrest and Anomaly Showings is related to skarns occuring along the contact of the volcanic and intrusive rocks. Magnetite, pyrrhotite and chalcopyrite occur within the meta-volcanic actinolite-garnet skarns. Significant copper mineralization is associated with the massive sulphide mineralization.

The magnetite and pyrrhotite mineralization is detectable by both VLF EM and magnetic geophysical methods. It was therefore decided to carry out the geophysical survey in an attempt to locate additional copper mineralization.

Four target area were outlined by the survey.

Target A

Target A consists of a weak to moderate north trending conductor passing through the Hillcrest Showing. Zones of high magnetism occur coincidentally with the conductor in several locations. The coincidental high magnetism and conductor may be indicating extensions of the skarn mineralization. The conductor extends from line 1 s to line 8 N .

Target B

Target B occurs at the Anomaly Showing. It consists of a zone of high magnetism flanked by low magnetism with a weak to moderate conductor occuring coincidentally with the high magnetism. This geophysical feature may be indicating additional skarn mineralization. Approximately 150 meters west of the Anomaly Showing another weak conductor occurs coincidentally with high magnetism.

Target C
Target C occurs along line $4 N$ where no mineralization is exposed. Two zones of very high magnetism, with flanking zones of low magnetism occur coincidentally with moderate to strong conductors.

The geophysical anomalies occuring on the Maxi Claim may be caused by massive sulphide skarn mineralization. Further work is warranted on the property to evaluate these anomalies.

Recommendations are as follows:

1) The magnetometer and VLF EM surveys be completed over the claim.
2) A soil geochemical survey be carried out over the anomalies to check for copper/zinc mineralization.

1.0 INTRODUCTION

1.1 GENERAL

The writer and one field assistant carried out a moderate exploration program on the Maxi Claim from July 31 to August 7, 1989. The program consisted of completing the magnetometer survey on the 1986 grid, and establishing a new grid over the Hillcrest and Anomaly Showings and carrying out magnetometer and VLF EM surveys over the new grid.

1.2 LOCATION AND ACCESS

The property (Figure 1) is located at the headwaters of the Robertson River, eight kilometers south of the town of Lake Cowichan, Vancouver Island. The NTS Coordinates are approximately $48^{\circ} 45^{\prime}$ north latitude and $124^{\circ} 04^{\prime}$ west longitude (NTS 92C-9E).

Access is from the Lake Cowichan-Port Renfrew logging road, turning off on the Hillcrest Main road to the Long Creek area. Numerous logging roads traverse the property giving good access, although at times the roads are washed out and not usable.

1.3 PHYSIOGRAPHY

The claim is located in the southern part of the Vancouver Island Mountains. Elevation varies from 300 to 850 meters above sea level and topography is generally steep.

Most of the area has been logged and slash and second growth timber predominate. Many areas have been thinned making progress on lines extremely slow and tedious.

Vegetation consists mainly of hemlock and balsam trees with some fir. Heavy underbrush covers the open areas.

1.4 PROPERTY AND CLAIM STATUS

The Maxi Claim is owned and operated by U.S. Platinum Inc., 1250-800 West Pender Street, Vancouver B.C., V6C 2V6. The property consists of 12 units and is located in the Victoria Mining Division.

Claim	Units	Mining Division	Record No.	Expiry Date ${ }^{*}$
Maxi	12	Victoria	$275(8)$	Aug. 22, 1992

[^0]
1.5 AREA AND PROPERTY HISTORY

Magnetite, pyrrhotite and chalcopyrite mineralization occurs in volcanic and meta-volcanic actinolite-garnet skarns near the contact of granitic and dioritic intrusives. These mineralized zones have been explored a number of times in the past.

The American Smelting and Refining Co. carried out trenching on the Crown Showing in 1930. The exact location of the work is not known but it is believed to be in the vicinity of the Hillcrest Showing.

The two main showings on the property are the Hillcrest and Anomaly zones (figure 5). These showings had sporadic exploration carried out on them between 1956 and 1968 by W.E. Fraser, Noranda Mines Ltd., Gunnex Ltd. and Albeta Mines Ltd.

The Hillcrest Showing was trenched and sampled by W.E. Fraser in 1956. These samples returned assays as high as 3.8% copper. Seven X-ray diamond drill holes gave results between 0.2\% and 2.6\% copper, with the latter assay over 23 feet (White 1966).

Diamond drilling by Albeta Mines during 1968 gave the following intersections:

Drill Hole	Width (ft)	Copper (\%)
$68-1$	6	1.4
$68-1$	8	2.7
$68-2$	9	0.8

The Anomaly Showing has been trenched and ten X-ray diamond drill holes totalling 500 feet were drilled. These returned assays of between 0.6% and 3.0% copper, with one drill hole returning 4.46\% zinc over 3 feet (McKechie 1962, 1963; White 1966).

In 1956 Noranda Mines Ltd. conducted magnetometer and self-potential surveys around the Hillcrest and Anomaly Showings. These surveys defined geophysical anomalies but they apparently were never tested.

During 1980 and 1981 Strata Energy Corporation (now U.S. Platinum Inc.) carried out geological mapping and sampling over the Maxi Claim, and in 1986 magnetometer and VLF EM surveys were carried out over a portion of the claim. Significant copper values were obtained from sampling on the Hillcrest Showing and a number of magnetic highs and VLF EM conductors were indicated by the geophysical surveys. A recommendation was made to complete the geophysical survey to ascertain the size and strike of the anomalies.

2.0 EXPLORATION PROCEDURE

A grid was established over the northwestern portion of the Maxi Claim and magnetometer and VLF EM surveys were carried out over the grid. The magnetometer survey was also completed over the 1986 grid.

GRID PARAMETERS

-baseline direction north-south
-survey lines perpendicular to baseline
-survey line separation 100 meters
-survey station spacing 25 meters
-survey total - 8.05 line kilometers
-lines 4 N through 8 N
-declination 21.5°

VLF EM SURVEY PARAMETERS

```
-survey line separation }100\mathrm{ meters
-survey station spacing 25 meters
-survey totals - 6.75 line kilometers
-transmitting station - Hawaii - 23.4 KHz.
-direction faced - easterly
-instrument - Geonics EM-16
-in-phase (dip angle) and out-of-phase (quadrature)
-components measured in degrees at each station
```

The VLF EM profiles were plotted on figure 2 and the Fraser Filter values on figure 3 at a scale of 1:2500. The VLF EM readings are listed in Appendix II.

MAGNETOMETER SURVEY PARAMETERS

```
-survey line separation }100\mathrm{ meters
-survey station spacing 25 meters }198
-survey station spacing 15 meters 1986
-survey totals - 11.5 line kilometers
-instrument - Scintrex MP-2 magnetometer
-measured total magnetic field in gammas
-instrument accuracy \pm 1 gamma
```

A base station reading was taken at the beginning and ending of each day. These values were used to obtain standard values for all baseline readings. All loops ran off the baseline were then corrected to these values by the straight line method. The magnetic values were plotted on figure 4 at a scale of 1:2500.

A compilation map (figure 5) was then prepared showing significant conductors and magnetic trends.

3.0 GEOLOGY AND MINERALIZATION

3.1 REGIONAL GEOLOGY

The Maxi Claim is mainly underlain by the Lower Jurassic Bonanza Group Volcanics. This group is composed of lava, tuff and breccia of mainly basaltic and rhyolitic composition. Occasionally it contains intercalated beds and sequences of marine argillite and greywacke.

A stock of Jurassic Island Group Intrusive lies to the southwest of the Maxi Claim.

3.2 CLAIM GEOLOGY

The property is underlain by volcanic rocks of the Bonanza Group. These volcanics are mainly basalts with minor tuffs. In several locations outcrops of limestone and chert were noted.

Several small, irregularly shaped bodies and dykes of a fine grained granodiorite intrude the volcanics.

In several locations the volcanics have been locally metamorphosed to garnet-actinolite skarns by the intrusive.

3.3 MINERALIZATION

Mineralization at the Hillcrest Showing consists of magnetite, pyrrhotite and chalcopyrite occuring along the contact of a basalt flow and a fine grained granodiorite. The area has been trenched and skarn mineralization outcrops at numerous locations within the area. The zone appears to have a northerly strike.

Copper assays from the showing in previous years gave results ranging from 0.005\% over 3.0 meters to 2.18% over one meter. Gold and silver values were negligible.

Mineralization at the Anomaly Showing consists of pyrrhotite and chalcopyrite in a sheared zone with some skarnification. Trenching has exposed mineralization at a number of locations within the area but the exact dimensions are not known.

Copper assays from previous years ranged from 0.23\% over 2.0 meters to 2.46% over 1.3 meters. One sample returned 0.5 ounces per ton silver with negligible gold values. Zinc values have also been reported from this area.

4.0 GEORHYSICS

4.1 VLF EM SURVEY

VLF EM data profiles have in many cases been influenced by topography in the form of a negative bias when the operator faced downhill and a positive bias when the operator faced uphill. In-phase anomaly amplitude ranged from weak to moderate.

A number of weak to moderate VLF EM conductors were indicated by the survey (figure 5). These conductors have a northerly strike and several of them occur coincidentally with zones of high magnetism. The significant conductor systems have been labelled "89-A" through "89-B".

System "89-A" is a weak to moderate conductor occuring over a magnetite, pyrrhotite, chalcopyrite skarn zone at the Hillcrest Showing on line 7 N at $1+25 \mathrm{E}$. This north trending system extends from line 1 S to line 8 N and occurs intermittently with zones of high magnetism.

System "89-B" is a weak to moderate conductor extending from line 1 S to line 5 N and occuring coicidentally with zones of high magnetism. The conductor is strongest on line 4 N at $5+50 \mathrm{E}$, where the magnetism is also quite strong.

System "89-C" is a weak conductor extending from line 2 S to 8 N . Several small zones of high magnetism occur along the length of the conductor.

System "89-D" is a weak to moderate conductor extending from line 6 N to 8 N and occuring within the area of the anomaly showing. A zone of high magnetism also occurs coincidentally with the conductor.

4.2 MAGNETOMETER SURVEY

Magnetic response over the property gave total field magnetic values ranging from 54,214 to 65,830 gammas. Values averaged between 55,000 and 56,000 gammas. Magnetism over some areas of the property (figure 5) is complex with zones of high magnetism flanked by zones of low magnetism. A number of VLF EM conductors occur coincidentally with the zones of high magnetism.

A zone of higher magnetism was found in the vicinity of the Hillcrest Showing. This higher magnetism may be indicating magnetite, pyrrhotite, chalcopyrite skarn mineralization. A weak to moderate conductor also occurs over the showing.

Several zones of high magnetism occur near the Anomaly Showing and the easterly zone is flanked by a zone of low magnetism. Several conductors occur coincidentally with the high magnetism.

Along line 4 N , two narrow zones of high magnetism are flanked by zones of low magnetism. The reading at $6+50 \mathrm{E}$ was the highest of any taken on the property. Conductors also occur coincidentally with the zones of high magnetism.

High magnetic response may be indicating magnetic minerals such as magnetite and pyrrhotite.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The geophysical survey indicated a number of geophysical anomalies. These anomalies were indicated by a combination of VLF EM conductors and zones of high magnetism.

The mineralization on the property consists of magnetite, pyrrhotite and chalcopyrite skarn mineralization. This massive sulphide type mineralization is detectable by both VLF EM and magnetic geophysical methods. Four target area were outlined by the survey.

Target A
Target A consists of a weak to moderate north trending conductor passing through the Hillcrest Showing. Zones of high magnetism occur coincidentally with the conductor in several locations. The coincidental high magnetism and conductor may be indicating extensions of the skarn mineralization. The conductor extends from line 1 s to line 8 N .

Target B
Target B occurs at the Anomaly Showing. It consists of a zone of high magnetism flanked by low magnetism with a weak to moderate conductor occuring coincidentally with the high magnetism. This geophysical feature may be indicating additional skarn mineralization. Approximately 150 meters west of the Anomaly Showing another weak conductor occurs coincidentally with high magnetism.

Target C

Target C occurs along line $4 N$ where no mineralization is exposed. Two zones of very high magnetism, with flanking zones of low magnetism occur coincidentally with moderate to strong conductors.

The geophysical anomalies occuring on the Maxi Claim may be caused by massive sulphide skarn mineralization. Further work is warranted on the property to evaluate these anomalies.

Recommendations are as follows:

1) The magnetometer and VLF EM surveys be completed over the claim.
2) A soil geochemical survey be carried out over the anomalies to check for copper/zinc mineralization.

6.0 REFERENCES

Crooker, G.F., Geological Report on the Maxi Claim Group, Cowichan Lake Area, Victoria Mining Division, July 1980.

Geological Report on the Maxi Claim Group, Cowichan Lake Area, Victoria Mining Division, October 1981.
, Geophysical Report on the Maxi Claim, Cowichan Lake Area, Victoria Mining Division, August 1986.

McKechnie, B.C. Minister of Mines and Petroleum Resources Report, 1962., 1963.

Muller, J.E., Geology of Vancouver Island, 1977.

Reamsbottom, Stanley, B., Report on the Maxi Claim, January 1980.

White, L., Report on the Fraser Property, Lake Cowichan, B.C., for Copper Ridge Mines Ltd., Vancouver, B.C., 1966.

7.O CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

1 That I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
3. That I am a member of the Canadian Institute of Mining and Metallurgy.
4. That I am a Fellow of the Geological Association of Canada.
5. That I have no interest in the Maxi Claim.

Dated this /6th day of $A_{\text {u }}$, 1989, at Keremeos, in the Province of British Columbia.

Appendix I

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

Source of Primary Field	VLF transmitting station
Transmitting Stations Used:	Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station.
Operating Frequency Range:	About 15-25 Hz.
Parameters Measured:	1- The vertical in-phase component (tangent of the tilt angle of the polarization ellipsoid). 2- The vertical out-of-phase (quad -rature) component (the short axis of the polarization ellipsoid compared to the long axis).
Method of Reading:	In-phase from a mechanical inclinometer and quadrature from a calibrated dial. Nulling by audio tone
Scale Range:	In-phase $\pm 150 \%$; quadrature $\pm 40 \%$
Readability:	$\pm 1 \%$
Operating Temperature Range:	-40 to $50^{\circ} \mathrm{C}$.
Operating Controls:	ON-OFF switch, battery testing push button, station selector, switch, volume control, quadrature dial $\pm 40 \%$, inclinometer \pm 150\%
Power Supply:	6 size AA alkaline cells $200 \mathrm{hrs}$.
Dimensions:	$42 \times 14 \times 9 \mathrm{~cm}(16 \times 5.5 \times 3.5 \mathrm{in})$
Weight:	$1.6 \mathrm{~kg} .(3.5 \mathrm{lbs})$
Instrument Supplied With:	Monotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional) set of batteries.
Manufacturer:	```Geonics Limited 1745 Meyerside Drive/Unit 8 Mississauga, Ontatio L5T 1C5```

MP-2 PROTON PRECESSION MAGNETOMETER

Resolution:	1 gamma
Total Field Accuracy:	\pm gamma over full operating range
Range :	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Program:	A reading appears 1.5 seconds after depression of Operate Switch \& remains displayed for 2.2 secs. Recycling feature permits automatic repetitive readings at 3.7 sec. intervals.
External Trigger:	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display:	5 digit LED readout displaying total magnetic field in gammas or normalized battery voltage.
Data Output:	Multiplied precession frequency and gate time outputs for base station recording using interfacing optionally available from scintrex.
Gradient Tolerance:	Up to 5,000 gammas/meter.
Power Source:	8 size D cells $\approx 25,000$ readings at $25^{\circ} \mathrm{C}$ under reasonable conditions.
Sensor:	Omnidirectional, shielded, noisecancelling dual coil, optimized for high gradient tolerance.
Harness:	Complete for operation with staff or back pack sensor.
Operating Temperature Range:	-35 to $+60^{\circ} \mathrm{C}$.
Size:	Console, $8 \times 16 \times 25 \mathrm{~cm} ;$ Sensor, $8 \times 15 \mathrm{~cm} ;$ Staff $30 \times 66 \mathrm{~cm}$;
Weights:	Console, 1.8 kg ; Sensor, 1.3 kg ; Staff, 0.6 kg ;
Manufacturer:	Scintrex 222 Snidercroft Road Concord, Ontario

Appendix II

GEOPHYSICAL DATA

Grant Crooker Data Listin Area: Maxi Claim Grid: Main			Line \& Station + = northing/easting	
				Name: n
Date: August 9, 1989				
Instrument Type: Details				
Geonics EM-16 Facing easterly Hawaii				
Scintrex MP-2 proton magnetometer				
Data Types				
\#1	VLF-EM In-	e Va	, H	aii
\#2	VLF-EM Qua	ure,	awaii	
\#3	Magnetic v	s,	mas	
Line	\# Station	\# 1.	\# 2.	\# 3.
line	400			
400	000	-38	-24	55841
400	025	-29	-12	55982
400	050	-23	-7	55628
400	075	-33	-13	55687
400	100	-26	-6	55716
400	125	-26	-10	55733
400	150	-27	-11	55762
400	175	-24	-10	55757
400	200	-23	-11	55740
400	225	-22	-10	55737
400	250	-30	-17	55739
400	275	-28	-18	55777
400	300	-23	-14	55735
400	325	-17	-13	55728
400	350	-16	-13	55828
400	375	-15	-18	55802
400	400	-22	-22	55734
400	425	-15	-12	55722
400	450	-6	-8	55639
400	475	3	-4	55567
400	500	15	6	55425
400	525	7	-5	55513
400	550	1	- 6	57514
400	575	-1	-14	58602
400	600	2	-14	54092
400	625	18	-13	61173
400	650	44	-12	65830
400	675	17	-10	54930
400	700	18	4	55471
400	725	28	5	55695
400	750	32	6	55767
400	775	15	-2	55589
400	800	14	-1	55788
400	825	15	-1	55754
400	850	16	1	55683
400	875	13	3	55603
400	900	18	4	55645
400	925	16	2	55645
400	950	19	2	55576
400	975	19	3	55627

400	1000	25	8	55657
400	1025	24	14	55655
400	1050	23	13	55772
400	1075	21	11	55696
400	1100	22	14	55813
400	1125	23	17	55778
400	1150	19	18	55766
400	1175	16	19	55705
400	1200	18	22	55726
400	1225	19	21	55663
400	1250	17	24	55530
400	1275	17	24	55570
400	1300	16	22	55420
400	1325	19	26	55575
400	1350	20	27	55734
$1 i n e$	500			
500	000	-20	-4	55889
500	025	-20	-16	55826
500	050	-23	-8	55837
500	075	-38	-14	55781
500	100	-33	-10	55780
500	125	-30	-11	55693
500	150	-28	-8	55646
500	175	-30	-13	55705
500	200	-28	-18	55668
500	225	-29	-19	55751
500	250	-30	-14	55663
500	275	-25	-15	55738
500	300	-18	-13	55710
500	325	-22	-14	55689
500	350	-19	-20	55698
500	375	-18	-18	55800
500	400	-20	-12	55778
500	425	-19	-17	55702
500	450	-16	-19	55641
500	475	-10	-15	55660
500	500	-8	-11	55652
500	525	-4	-9	55547
500	550	2	-10	55482
500	575	2	-8	56590
500	600	-2	-6	55490
500	625	-10	-7	55417
500	650	-1	-7	55478
500	675	0	-8	55588
500	700	-3	-13	55648
500	725	-4	-20	55551
500	750	-2	-18	555166
500	775	7	-15	55509
500	800	10	-15	55472
500	825	8	-13	55608
500	850	21	-12	55500
500	875	10	-14	55537
500	900	20	-13	55512
500	925	26	-8	55545

500	950	33	-2	55621
500	975	32	0	55545
500	1000	25	-1	55647
500	1025	33	1	55871
500	1050	31	1	55572
500	1075	24	0	55632
500	1100	23	0	55672
500	1125	20	-1	55652
500	1150	19	1	55619
500	1175	16	1	55622
500	1200	16	4	55889
500	1225	20	10	55548
500	1250	18	10	55579
500	1275	12	10	55579
500	1300	10	15	55557
500	1325	14	14	55578
500	1350	10	11	55583
$1 i n e$	600			
600	000	-28	-11	55759
600	025	-30	-13	55838
600	050	-36	-13	56012
600	075	-30	-6	56350
600	100	-40	-15	56312
600	125	-38	-7	56760
600	150	-40	-8	55423
600	175	-38	-11	55471
600	200	-38	-14	55453
600	225	-38	-14	55736
600	250	-32	-13	55718
600	275	-29	-12	55719
600	300	-27	-11	55807
600	325	-30	-14	55977
600	350	-27	-21	55941
600	375	-27	-17	55732
600	400	-25	-20	55708
600	425	-32	-22	55755
600	450	-29	-21	55702
600	475	-28	-18	55652
600	500	-27	-13	55638
600	525	-22	-14	55638
600	550	-23	-15	55562
600	575	-20	-16	55571
600	600	-10	-16	55554
600	625	2	-16	55564
600	650	2	-12	555333
600	675	-3	-8	55620
600	700	2	-11	55616
600	725	-3	-17	55605
600	750	-3	-16	55582
600	775	-2	-12	55537
600	800	5	-11	55539
600	825	7	-5	55586
600	850	2	-10	55641
600	875	5	-10	56121

600	900	1	-15	55950
600	925	-2	-15	56344
600	950	2	-17	55729
600	975	7	-16	56034
600	1000	10	-12	55609
600	1025	10	-13	56440
600	1050	17	-11	56088
600	1075	18	-10	55626
600	1100	19	-9	55696
600	1125	21	-6	55922
600	1150	22	-4	55452
600	1175	17	-5	55469
600	1200	17	-4	55468
600	1225	20	-3	55632
600	1250	20	-1	55722
600	1275	20	5	55544
600	1300	20	7	55620
600	1325	18	4	55527
600	1350	12	9	55601
$1 i n e$	700			
700	000	-21	-4	55929
700	025	-22	-8	55924
700	050	-23	-6	56005
700	075	-24	-5	55921
700	100	-28	-4	55780
700	125	-25	-7	55698
700	150	-37	-16	55653
700	175	-31	-11	55720
700	200	-27	-8	55790
700	225	-28	-8	55829
700	250	-28	-8	55739
700	275	-23	-7	55772
700	300	-25	-8	55780
700	325	-24	-11	55765
700	350	-24	-11	55788
700	375	-28	-13	55765
700	400	-27	-12	55782
700	425	-24	-13	55801
700	450	-20	-9	55815
700	475	-20	-11	55879
700	500	-21	-8	55648
700	525	-15	-9	55512
700	550	-18	-14	55484
700	575	-20	-14	57068
700	600	-20	-16	55100
700	625	18	-13	55805
700	650	17	-12	55543
700	675	-15	-13	55530
700	700	-4	-12	55833
700	725	-10	-11	56004
700	750	-12	-12	55903
700	775	-14	-10	55645
700	800	-10	-14	55642
700	825	-11	-12	55687
700				
00				

700	850	-13	-16	55733
700	875	-16	-16	55964
700	900	-16	-18	56566
700	925	-11	-16	56138
700	950	-10	-18	55934
700	975	-12	-14	55826
700	1000	-12	-18	55489
700	1025	-11	-16	55173
700	1050	-7	-15	55326
700	1075	-8	-14	55463
700	1100	-8	-13	55458
700	1125	-3	-12	55377
700	1150	-5	-13	55387
700	1175	-3	-15	55431
700	1200	-1	-11	55457
700	1225	1	-10	55420
700	1250	2	-10	55483
700	1275	2	-8	55544
700	1300	1	-6	55704
700	1325	0	-8	55494
700	1350	1	-6	55527
$1 i n e$	800			
800	000	-19	-4	55829
800	025	-19	-3	56038
800	050	-18	-2	56073
800	075	-19	-2	56003
800	100	-22	-2	55912
800	125	-23	-1	55968
800	150	-26	-3	55975
800	175	-26	-3	56244
800	200	-22	-4	56693
800	225	-23	-6	57642
800	250	-19	-11	57214
800	275	-18	-2	55519
800	300	-20	-2	55870
800	325	-20	6	56039
800	350	-8	5	56441
800	375	-9	10	55614
800	400	-10	0	55650
800	425	-15	-2	55854
800	450	-19	-9	55653
800	475	-20	-6	55670
800	500	-24	-9	55725
800	525	-21	-10	55700
800	550	-21	-10	55626
800	575	-21	-11	55676
800	600	-20	-10	55770
800	625	-27	-10	55773
800	650	-20	-9	55844
800	675	-17	-8	56840
800	700	-18	-7	55906
800	725	-23	-4	56113
800	750	-14	-7	56238
800	775	-13	-6	56748

800	800	-17	-6	57024
800	825	-14	-5	56061
800	850	-13	-10	55862
800	875	-23	-9	55922
800	900	-23	-10	55839
800	925	-22	-11	55516
800	950	-22	-12	55219
800	975	-21	-13	56776
800	1000	-24	-13	56490
800	1025	-20	-12	55467
800	1050	-14	-10	55642
800	1075	-18	-10	55861
800	1100	-17	-11	56002
800	1125	-19	-12	55365
800	1150	-17	-14	55923
800	1175	-18	-12	55326
800	1200	-17	-13	57158
800	1225	-18	-11	56123
800	1250	-18	-11	55484
800	1275	-20	-12	55611
800	1300	-17	-10	55572
800	1325	-18	-9	55528
800	1350	-15	-11	55455
line 300				
300	000			56335
300	015			56660
300	030			56739
300	045			56317
300	060			56118
300	075			56933
300	090			55812
300	105			55721
300	120			56068
300	135			55586
300	150			55702
300	165			55571
300	180			55659
300	195			55506
300	210			55498
300	225			55635
300	240			55627
300	255			55627
300	270			55733
300	285			55750
300	300			55659
300	315			55619
300	330			55595
300	345			55657
300	360			55577
300	375			55739
300	390			55749
300	405			55518
300	420			55624
300	435			55650

-	300	450	55651
	300	465	55504
	300	480	55437
	300	495	55740
-	300	510	55653
	300	525	55543
	300	540	55427
-	300	555	55610
	300	570	55601
	300	585	55573
\cdots	300	600	55669
	300	615	55739
	300	630	55818
	300	645	55790
-	300	660	55796
	300	675	55818
	300	690	55900
t	300	705	55891
	300	720	55743
	300	735	55587
\square	300	750	55570
	300	765	55680
	300	780	55715
	300	795	55706
\cdots	300	810	55657
	300	825	55704
	300	840	55669
\pm	300	855	55705
	300	870	55764
	300	885	55718
-	300	900	55836
	300	915	55636
	300	930	55637
	300	945	55648
-	300	960	55603
	300	975	55627
	300	990	55572
\pm	300	1005	55630
	line 100		
	100	000	56014
-	100	015 c	56075
	100	015 b	55847
	100	015 a	55606
	100	015	55589
\cdots	100	030	55660
	100	045	55632
	100	060	55675
-	100	075	55733
	100	090	55804
	100	105	55833
	100	120	55855
-	100	135	55850
	100	150	55635
	100	165	55763

100	180	55780
100	195	55804
100	210	55731
100	225	55755
100	240	55739
100	255	55378
100	270	55530
100	285	55235
100	300	55317
100	315	55475
100	330	55443
100	345	55416
100	360	55325
100	375	55521
100	390	55458
100	405	55799
100	420	55867
line		
-100	000	55645
-100	015	55582
-100	030	55596
-100	045	55670
-100	060	55623
-100	075	55700
-100	090	55636
-100	105	55750
-100	120	55749
-100	135	55892
-100	150	55984
-100	165	55950
-100	180	55934
-100	195	55931
-100	210	55794
-100	225	55768
-100	240	55698
-100	255	55932
-100	270	56202
-100	285	56194
-100	300	55973
-100	315	55730
-100	330	55644
-100	345	55910
-100	360	55743
-100	375	56052
-100	390	55855
-100	405	55611
-100	420	55686
-100	435	55905
-100	450	56313
-100	465	56207
-100	480	56194
-100	495	56094
-100	510	55956
-100	525	55864

-	-100	540	55842
	-100	555	55860
	-100	570	55804
\pm	-100	585	55772
	-100	600	55783
	-100	615	55708
	-100	630	55735
-	-100	645	55749
	-100	660	55642
	-100	675	55575
\pm	-100	690	55563
	-100	705	55550
	-100	720	55432
-	-100	735	55393
	-100	750	55430
	-100	765	55391
-	-100	780	55452
\square	-100	795	55465
	-100	810	55296
	-100	825	55280
\square	-100	840	55136
	-100	855	54963
	-100	870	54214
\square	-100	885	55420
-	-100	900	55559
	-100	915	55926
	-100	930	55749
-	-100	945	55315
	-100	960	55555
	-100	975	56431
\square	-100	990	54971
	-100	1005	55309
	line -200		
-	-200	000	55810
-	-200	075	55848
	-200	090	55881
	-200	105	55830
-	-200	120	55825
	-200	135	58803
	-200	150	55866
-	-200	165	55829
	-200	180	55895
	-200	195	55936
	-200	210	55877
\square	-200	225	55877
	-200	240	55810
	-200	255	55885
-	-200	270	55679
	-200	285	55798
	-200	300	55918
\cdots	-200	315	55983
	-200	330	56009
	-200	345	56009
	-200	360	56197

-200	375	56062
-200	390	56177
-200	405	56127
-200	420	56519
-200	435	56151
-200	450	56008
-200	465	55939
-200	480	55930
-200	495	55833
-200	510	55834
-200	525	55714
-200	540	55758
-200	555	55753
-200	570	55673
-200	585	55661
-200	600	55672
-200	615	55634
-200	630	55570
-200	645	55550
-200	660	55581
-200	675	55466
-200	690	55472
-200	705	55416
-200	720	55424
-200	735	55896
-200	750	55377
-200	765	55255
-200	780	55227
-200	795	55215
-200	810	55009
-200	825	54874
-200	840	54780
-200	855	55772
-200	870	56575
-200	885	56263
-200	900	55957
-200	915	55732
-200	930	55605
-200	945	55109
-200	960	55630
-200	975	55526
-200	990	55586
-200	1005	55720
bl		
bl	800	55829
bl	775	55940
bl	750	56001
bl	725	55965
bl	700	55929
bl	675	56142
bl	650	55833
bl	625	55826
bl	600	55759
bl	575	55763

bl	550	55811
bl	525	55813
bl	500	55874
bl	475	55855
bl	450	55940
bl	425	55929
bl	400	55848
bl	375	55976
bl	350	56556
bl	325	56719
bl	300	56355
bl	275	
bl	250	55842
bl	225	55910
bl	200	55841
bl	175	56150
bl	150	56014
bl	125	56002
bl	100	56189
bl	075	55735
bl	050	55857
bl	025	55753
bl	000	55841
bl	-025	55862
bl	-050	55782
bl	-075	55686
bl	-100	55645
bl	-125	55729
bl	-150	55720
bl	-175	55886
b1	-200	55810

Appendix III

COST STATEMENT

- Grant Crooker, Geologist July 31, Aug 1-10, 1989 11 days $\$ 350.00$ per day $\$ 3.850 .00$
- Lee Mollison, Field Assistant July 31, Aug 1-7, 1989 8 days $\$ 175.00$ per day $\quad 1,400.00$

MEALS AND ACCOMMODATION

- Grant Crooker - 8 days $\$ 60.00 /$ day 480.00
- Lee Mollison - 8 days \$ 60.00/day 480.00

TRANSPORTATION

- Vehicle Rental (Ford 3/4 ton 4x4)

July 31, Aug 1-7, 1989
8 days $\$ 60.00$ per day 480.00

- Gasoline 185.25
- Ferry

EQUIPMENT RENTAL

- VLF EM Geonics EM 16 July 31, Aug 1-7, 1989
8 days $\$ 25.00$ per day 200.00
- Magnetometer MP-2

July 31, Aug 1-7, 1989
8 days $\$ 25.00$ per day 200.00
SUPPLIES

- Hip chain thread, flagging etc.

DRAUGHTING
250.00

PREPARATION OF REPORT

- Secretarial, reproduction, telephone, etc.
400.00

Total
\$ 8,018.25

[^0]: * Upon acceptance of this report.

