LOG NO:	0911	RD.
ACTION:		
FILE NO:		

1989 GEOCHEMICAL REPORT

ON THE

CANAM 2, 3 and 4Fr CLAIMS

GIANT COPPER PROPERTY

New Westminster Mining Division NTS 92H 3

Latitude: 49 degrees 06'N Longitude: 121 degrees 01'E

and from For S 23 Bethlehem Resources Corporation 🕻 860 - 808 West Hastings Street RADIE ANAL Vancouver, B.C. V6C 2X4 Real Parts 创作 -her frag 1 R 5 j (g) by 1.11 Ken Hicks Consulting đ. 115 - 1741 West 10th Avenue Vancouver, B.C. V6J 2A5 🛁 🚍 ت العج Ken Hicks, B.Sc., FGAC 14 1 $\bigcirc \prec$ August 15, 1989

يعيدون ومعادية

SUMMARY

The Giant Copper property is located in southern British Columbia approximately 35 km southeast of Hope. A number of deposit types are hosted within the property boundary. Previous exploration has concentrated are the two main zones, the AM and the Invermay which are breccia hosted copper-gold-silver and silver-lead-zinc-copper occurrences, respectively.

Exploration work conducted by previous operators on the property has outlined reserves on the AM breccia of approximately 2,700,000 tons at 1.35% Cu, 0.529 gms Au/ton and 21.77 gms Ag/ton.

The 1989 exploration program by Bethlehem Resources Corporation consisted of detailed grid soil geochemistry north of the AM Breccia, including the CANAM 1Fr, 2, 3 and 4Fr claims. The purpose of the program was to systematically evaluate a large tract of ground using geochemistry to discover additional mineralized breccias. This technique has worked successfully even in areas of relatively thick glacial overburden, such as the No. 1 Anomaly area near the 10 level portal. Trenching of anomalies in this area has discovered a new mineralized breccia.

The program was successful in discovering a number of rock samples highly anomalous in zinc and weakly anomalous in gold.

Table of Contents

	Page
Title page	. i
Summary	. ii
Table of Contents	 i i i i
Lists of Figures and Illustrations	, <u> </u>
Introduction	, <u>1</u> 11
Incroduccion	
Claima	. 1
	. 1
History	. 4
Geology	. 5
Work Program - 1989	. 7
Geochemistry	7
Introduction	7
Work completed	7
Results	7
Summary and Conclusions	
Statement of Europhikuman	8
Allegation ()	9
Allocation of Assessment Credit	9
Statements of Qualification	10
Appendix I - Claims Information	
Appondig IT Applation Notheday	

Appendix	II	-	Analytical Methods
Appendix	III		Assay Certificates

LIST OF FIGURES

Fig.	1	Location map	2
Fig.	2	Claim map	3
Fig.	3	Regional geology	6

LIST OF ILLUSTRATIONS

Volu	ıme	1		•	
Мар	No	1.	Geochem map	Location	1":500'pocket
Мар	No	2.	11	Au	"pocket
Мар	No	3.	11	Cu	"pocket
Мар	No	4.	11	Ag	"pocket
Мар	No	5.	11	Zn	"pocket
Мар	No	6.	**	As	"pocket
Мар	No	7.		Pb	"pocket

INTRODUCTION

The Giant Copper property is located in southern British Columbia approximately 35 km southeast of Hope. It was acquired by Bethlehem Resources Corporation from Campbell Resources in the spring of 1988 in exchange for a small retained interest in the property.

A number of deposit types are hosted within the property boundary. Previous exploration has concentrated on two main zones, the AM and the Invermay. These zones are breccia hosted copper-gold-silver and silver-lead-zinc-copper shear zone occurrences, respectively.

Published reserves on the AM breccia are approximately 2,700,000 tons at 1.35% Cu, 0.015 oz/ton Au and 0.64 oz/ton Ag. No reserve figures are available for the Invermay zone

The 1989 field season on the CANAM claims extended from June to August, 1989. Work consisted of approximately 291 rock and soil samples taken from a widely spaced east-west grid.

LOCATION and ACCESS

The Giant Copper property lies approximately 35 km southeast of Hope and is bounded on the northeast by Manning Park and to the southwest by the Skagit Valley Recreational Area (fig. 1). Approximately 42 km east of Hope along Highway No. 3 a gravel road branches off toward the center of the property. A locked gate is positioned across the road just past a small bridge crossing the Skagit river. From the highway to the No. 15 level workings is approximately a 15 minutes drive along a good gravel road.

The property lies between elevations 1,310 metres and 1,980 metres above sea level, on the west and southeast slope of Silverdaisy Mountain.

CLAIMS

A total of 159 located claims(161 units) and eight Crown granted claims comprised the property prior to Bethlehem's acquisition. Bethlehem contracted Amex Exploration Services to stake an additional 4 claims (CANAM 1Fr, 2, 3, 4Fr totaling 34 units, fig. 2) to bring the total land position to 163 claims and 195 units. Claim information is contained within Appendix I.

The Skagit Valley Recreational Area covers approximately 2/3 of the total number of claims on the property. Mining and exploration for minerals in these areas are currently restricted but this area has been targeted as possibly being opened within the near future.

All the claims are located within the New Westminster Mining Division.

HONG

HISTORY

The Giant Copper property consists of two main groups of claims, the AM and Invermay, which adjoin but were under separate ownership until 1956.

The AM group located on the east slope of Silverdaisy Mountain was staked in 1930 and the Invermay group on the west slope in 1933. Cominco acquired the AM Group in 1930 and actively explored it until 1938. During this time, the Invermay Group was under the control of the Invermay Annex Mining Company Ltd, who actively explored it until 1938. In the 40's the Invermay Group was held by the Invermay Annex Skagit River Development Company Ltd, who retained it until 1956, at which time it was acquired by Canam Copper Company Ltd who merged it with the AM property.

The AM Group was idle from 1938 until the late 40's when it was acquired by J.W. Hefferman and Associates. This organization did some minor work on the property before turning it over in 1949 to a newly formed company, Canam Mining Corporation Ltd. Following another reorganization a new company was formed, Canam Copper Company Ltd (Canam), who carried on development until 1954 when they optioned the group to the American Metal Company. In 1955, Canam optioned the group to Mogul Mining Company who dropped the option in 1957. During the next two years the property was explored by Cominco. When Cominco withdrew in 1959, Canam undertook an exploration and development program until 1963.

In 1964, GM Resources Limited, then known as Giant Mascot Mines limited, optioned the property and in 1966 purchased all the assets of Canam for slightly under 1.1 million shares.

Since the acquisition of the Giant Copper property by GM Resources several seasons of exploration and development work were carried out up to 1972. No work was done on the property until the fall of 1979 when a limited surface drilling program was carried out by GM Resources Ltd.

In 1980, GM Resources Ltd rehabilitated the No. 10 level Adit and diamond drilled the Invermay Breccia and the Camp Breccia

A summary of the drilling and drifting to 1988 are listed below:

A.M. Breccia

	00010			
	Drifting Raising	4,760 metre 657	s (15,615 (2,156	feet))
	Drilling	11,980	(39,300)
Inverma	y Breccia			
	Drifting	600 metre	s (2,000)
	Drilling	1,525	(5,000)
(other) Drilling	300	(1,000))

Published reserves on the AM breccia are approximately 2,700,000 tons at 1.35% Cu, 0.015 oz/ton Au and 0.64 oz/ton Ag. No reserve figures are available for the Invermay zone.

GEOLOGY

The Giant Copper property lies within the Cascades Mountains, a physiographic feature consisting of a northnorthwest trending intrusive core flanked by belts of sedimentary and volcanic units (Fig. 3). The property itself is underlain by two sedimentary units separated by the Hozameen Fault. The older Hozameen sediments lie to the west of the fault; the younger, Upper Jurassic Dewdney Creek sediments lie to the east of the fault and are host to the Giant Copper mineralization. Both groups have been intruded by stocks of Cretaceous or Tertiary age diorite and quartz diorite.

The property is underlain by argillites and quartzites of the Dewdney Creek Group that have been intruded by the dioritic Invermay stock. The sedimentary units trend northwest and dip steeply east but are disturbed and brecciated near apophyses and irregularities in the intrusive contact. It appears that the brecciation is related to intrusive emplacement, perhaps having been localized by pre-existing faults or zones of weakness.

A synclinal fold pattern striking and plunging 35 degrees to the north has been observed trending through the AM portion of the property. Surface mapping has shown numerous fold and variations of the normally north striking beds around the fold noses.

Small scale rupturing is apparent on the surface of the property whereas the underground workings show large gouge areas and shear structures which cut through the sediments and intrusives. The gouge zones may extend up to six meters in width with , in many cases undetermined movement. The shear zones in the Invermay stock which range in width from three to thirty centimetres are often well mineralized.

Major fault structures recognized through surface and underground mapping are:

- 1) North 20-30 degrees West These are the regional trend structures as depicted by the Hozameen Fault and are pre-ore and pre-intrusive.
- 2) Northeast These are considered pre-ore faults that were ideal conduits for mineral passage. These faults, which are the most prevalent, vary widely in thickness.
- 3) East-west to North 70 degrees West These are possibly the bounding faults within which the breccias were localized and likely were instrumental in the mineral placement.

Mineralization in the AM breccia can consists of an assemblage of pyrite, chalcopyrite, pyrrhotite with minor amounts of molybdenite, scheelite, galena, sphalerite, magnetite and arsenopyrite. The Invermay mineralization includes galena, jamesonite, pyrite, pyrrhotite and chalcopyrite.

The Giant Copper property contains at least six breccia bodies, two of which are known to have significant base and precious metal mineralization. These can be summarized as follows:

CHONG

- i)the AM breccia is a sedimentary hosted breccia which contains an arcuate nose of high grade copper-gold and silver mineralization on the north edge of the breccia. The central and southern extents of the breccia contain some high grade material but have not been tested as extensively as the north nose.
- ii)the Invermay breccia is situated within the Invermay intrusive stock. High silver values occur along a strong northeasterly trending shear zone which also contains lower grade copper mineralization within a brecciated zone.

WORK PROGRAM - 1989

GEOCHEMISTRY

Introduction

Beginning in June 1989 Bethlehem Resources Corporation carried out a widespread program of soil and rock sampling on a large area north of the AM breccia in the vicinity of Silverdaisy Mountain (fig. 2). The purpose of the work was to test an area where previous operators had performed cursory prospecting but not a rigorous program of geochemical exploration.

Work completed

During a four week period in June and July approximately 291 soil and rock samples were collected on a grid of widely spaced lines approximately 600 feet apart running mine grid east-west. Grid lines were laid out using compass and topofil and correcting for slope between stations. Sample stations were 100 feet apart along the lines. Samples were shipped to Vangeochem Lab Ltd where they were analyzed for Cu, Pb, Zn, Ag, Au and As using Atomic Absorption Spectrophotometry. Analytical techniques are described in Appendix II and assay certificates are contained within Appendix III.

RESULTS

The results of the soil samples indicate no obvious anomalous geochemical pattern in the area of coverage. However, a small number of rock samples taken from outcrops in the vicinity of Silverdaisy Mountain returned strongly anomalous zinc values and weakly anomalous gold values. These are plotted on the maps contained at the back of the report.

SUMMARY AND CONCLUSIONS

Rock and soil geochemistry has outlined a small number of samples anomalous in zinc and weakly anomalous in gold. These areas should be followed up with detailed sampling to determine the magnitude and extent of the anomalies. <u>Statement</u> of <u>Expenditures</u>

<u>Statement of Expenditures</u>								
Geochemical								
Personnel								
M. Ewanchuk	12 days @ \$120/day	\$1	,440.00					
I. Currie	12 days @ \$ 80/day	\$	960.00					
E. Paris	12 days @ \$ 80/day	\$	960.00					
M. Leduc	12 days @ \$ 80/day	\$	960.00					
H. Von Stefenelli	12 days @ \$ 80/day	\$	960.00					
M. MacKenzie	2 days @ \$ 80/day	\$	160.00					
Accommodation								
62 field man-day	ys @ \$35/man-day	\$	2,170.00					
Food								
62 field man-day	ys @ \$25/man-day	\$	1,550.00					
Truck rental								
12 days (§ \$60/day (all inc.)	\$	720.00					
			207 00					
Consumables (soil ba	ags, flagging, etc.)	\$	387.80					
Freight		\$	75.00					
Drafting		\$	350.00					
Analyses 291 samp	ples @ \$ 15/sample	\$	4,365.00					
Telephone		\$	50.00					
Office supplies		\$	35.22					
Miscellaneous		\$	60.71					

Total Expenditures

\$ 15,203.73

ALLOCATION OF ASSESSMENT CREDIT

Expiry Claim Name	Record No.	d units	Rec Date	Expiry Date	Req' unit	d Valu : Work	e PAC Wdrl	Years Appld	Date
CANAM 2	3464	16	10/01/88	1989	\$100	\$6400	\$1600	5	1994
CANAM 3	3463	16	10/01/88	1989	\$100	\$6400	\$1600	5	1994
CANAM 4 FR	3462	1	10/01/88	1989	\$100	\$400	\$100	5	1994
		33 ur	nits		 \$	513200	\$3300	5	

STATEMENT OF QUALIFICATIONS

- I, Ken Hicks, hereby certify that:
- 1.) I am an independent consulting geologist and sole operator of Ken Hicks Consulting with office at 115-1741 West 10th Avenue, Vancouver, B.C.
- 2.) I am a Fellow of the Geological Association of Canada in good standing.
- 3.) I graduated from the University of British Columbia in May 1982 with a Bachelor of Science degree (Honours) in Geology.
- 4.) I have worked in the field of mineral exploration for the past 10 years.
- 5.) I was engaged as an independent consultant by Bethlehem Resources Corporation of 860 - 808 West Hastings Street, Vancouver, B.C. to design and manage the exploration program outlined in the accompanying report. I have no financial or legal interest in the mineral properties therein described.

Respectfully submitted,

Ken Hicks

Ken Hicks Consulting Geologist

	<u>APPENDIX</u> <u>1</u>	
	CLAIMS INFORMATION	
-		
-		
<u>éi</u>		
-		
-		
247.4.2		

Giant Copper Property Group: -No. of Claims: 4 Newly Acquired Claims, 1988

	CLAIM NAME	<u># OF UNITS</u>	GROUP NAME	<u>AREA</u>	RECORD NO	EXPIRY DAT
	CANAM 1 FR	1	-	25.0	3460	Sep.29/89
	CANAM 2	16	_	400.0	3464	Oct.01/89
	CANAM 3	16	-	400.0	3463	Oct.01/89
	CANAM 4 FR	1	-	25.0	3462	Oct.01/89
ļ						
	$\mathbf{TOTAL} = 4$	34		900 ha	L	

APPENDIX II

ANALYTICAL METHODS

11

MAIN OFFICE AND LABORATORY 1988 Triumph Street 3 Vancouver, S.C. V5L 1K5 (604)251-5656 FAX:254-5717 BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

Oct 26th, 1988

- TO: Ken Hicks BETHLEHEM RESOURCES LTD. 860 - 808 West Hastings St. Vancouver, B.C. V6C 2X4
- FROM: Vangeochem Lab Limited 1988 Triumph Street Vancouver, British Columbia V5L 1K5
- SUBJECT: Analytical procedure used to determine gold by fire assay method and detect by atomic absorption spectrophotometry in geological samples.
- 1. Method of Sample Preparation
 - (a) Geochemical soil, silt or rock samples were received at the laboratory in high wet-strength, 4" x 6", Kraft paper bags. Rock samples would be received in poly ore bags.
 - (b) Dried soil and silt samples were sifted by hand using an 8" diameter, 80-mesh, stainless steel sieve. The plus 80-mesh fraction was rejected. The minus 80-mesh fraction was transferred into a new bag for subsequent analyses.
 - (c) Dried rock samples were crushed using a jaw crusher and pulverized to 100-mesh or finer by using a disc mill. The pulverized samples were then put in a new bag for subsequent analyses.

2. Method of Extraction

- (a) 20.0 to 30.0 grams of the pulp samples were used. Samples were weighed out using a top-loading balance and deposited into individual fusion pots.
- (b) A flux of litharge, soda ash, silica, borax, and, either flour or potassium nitrite is added. The samples are then fused at 1900 degrees Farenhiet to form a lead "button".
- (c) The gold is extracted by cupellation and parted with diluted nitric acid.

MAIN OFFICE AND LABORATORY 1989 Triumph Street Vancouver, B.C. VSL 1K5 (504)251-5656 FAX:254-57:7_ BRANCH OFFICE 1630 PANDORA ST. VANCOUVER, B.C. V5L 1L6 (604) 251-5656

(d) The gold bead is retained for subsequent measurement.

- 3. Method of Detection
 - (a) The gold bead is dissolved by boiling with aqua regia solution, then diluted with deionized water to 10 mls volume.
 - (b) The detection of gold was performed with a Techtron model AAS Atomic Absorption Spectrophotometer with a gold hollow cathode lamp. The results were read out on a strip chart recorder. The gold values, in parts per billion, were calculated by comparing them with a set of known gold standards.
- 4. Analysts

The analyses were supervised or determined by Mr. Conway Chun or Mr. David Chiu and his laboratory staff.

David Chiu VANGEOCHEM LAB LIMITED

APPENDIX III

_

- -

ASSAY CERTIFICATES

.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH C PASADENA BATHURS MISSISSAUC RENO, NEVA

I

-	REPORT NUMBER: 890300 GA	JOB NUMBER: 890300		300	BETHLEHEM RESOURCES			PAGE		
	SANPLE #	Cu	ዖዕ	Zn	Ag	Au	As			
		ppm	ppa	ppm	pp ព	opb	ppa			
134E 226N	800E 100N	17	28	72	.1	10	6			
141E 226N	810E 100N	55	36	105	.1	25	15			
143E 226N	820E 100N	21	225	114	.2	5	6			
INSE ZZGN	830E 100N	21	42	87	.3	10	4			
147E 226N	840E 100N	23	34	87	.1	15	9			
149E 226N	850E 100N	13	24	46	.1	15	2			
151E 226N	860E 100N	16	26	113	.1	20	2			
153E 226N	870E 100N	37	29	98	.2	20	8			
155E 226N	880E 100N	19	28	97	.3	15	6			
159E ZEBZOBN	900E 70N	17	26	84	.1	10	nd			
159E 200N	900E 72N	26	31	78	.2	5	9			
159E 218N	900E 76N	23	30	88	.1	nd	4			
159E 214N	900E 80N	14	26	63	.1	10	2			
ISAE SINN	900E 84N	14	26	58	.1	5	1			
159E 218N	900E 88N	25	28	81	.5	nd	2			
159E 220N	900E 90N	20	28	71	.1	10	3			
159E 222N	900E 92N	30	31	133	.1	10	15			
159E 224	900E 96N	46	43	188	.3	10	26			
159E 226E	900E 100N	19	30	89	.1	20	4			
159E 228N	900E 102N	22	29	88	.2	10	3			
2274										
159E 230N	900E 104N	30	37	138	.5	25	6			
159E 232N	900E 108N	30	36	145	.2	25	7			
159E 234N	900E 110N	64	43	194	.1	20	5			
159E 236N	<u>900E 116N</u>	19	32	121	.3	20	7			
159E 238N	900E 120N	24	29	94	.2	10	4			
161E 226N	910E 100N	47 [.]	41	146	.2	10	24			
163E 226N	920E 100N	13	26	65	.1	15	nd			
145E 226N	930 100N	30	38	102	.2	25	14			
167E 226N	<u>940 100N</u>	38	41	121	.3	15	17			
169E 226N	<u>950; 100N</u>	19	32	79	.4	nď	2			
	, (-									
170E ZZGN	955 100N	55	41	138	.3	20	26			
171E 226N	960 100N	22	35	132	.2	5	6			
173E 226N	970 100N	28	33	129	.2	15	8			
175E 226N	980 100N	68	42	107	.6	15	23			
179E 226N	990 100N	35	35	190	.4	15	15			

•

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OF PASADENA, BATHURST, MISSISSAUG/ RENO, NEVAD/

1

	REPORT NUMBER: 890301 GA	JOB NUMBER: 890301			BETHLEHEN RESOURCES			PAGE	1
	SAMPLE #	Cu	የъ	Zn	Ag	Au	As		
		ppm	ppm	ppm	ppa	ppb	ppa		
155E 226N	880E 100N	48.	43	94	.2	nd	13		

DETECTION LIMIT1210.152nd = none detected-- = not analysedis = insufficient sample

• •

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICE PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ON RENO, NEVADA, U.S

I

			REPORT NUMBER: 890312 GA	J09 NU	MBER: 890	312	BETHLEH	EH RESOUR	CES	PASE 3	OF
i i			SANPLE #	Ce	26	Zn	Ag	Áu	As		
	115			005	bbw	ppa	ppa	ççò	ppa		
		204N	<u>700E 190N</u>	4. 4.	20	37	.2	nd	3		
·	119 2	202 N	700E 200N	24	16	52	.1	5	nd		
		200 N	<u>700E 220N</u>	15	12	28	.1	5	nd		
	INFE	198,N	<u>7005 230N</u>	14	16	25	.1	nd	ad		
i	116F E	196JN	<u>7005 240N</u>	26	25	36	.3	nd	nd		
_	ISTE	194N	700E 250N	19	24	34	.3	5	ŧ		
	INFE	193 N	700E 250N	16	22	47	.2	oď	nd		
	山北京	190	7005 270N	:3	20	65	1	:0	2		
_	IIS E	188	700E 280N	33	27	94	.2	10	5		
	INFE	186	70CE 250N	31	28	85	.3	10	3		
	()降日	184 N	7605 000N	70	00	+ 1 E	2		c		
	120F	202N	7305 0008	22	20	126	.:	10	7		
	120E	188.	7307 280N	<u></u>	30 77	109		5	•		
	12.0E	184N	7205 300N			69		a d	i ba		
			7455 190N	29 29	31	108	.6	5	1		
			9_0	9 0	65	120		10	54		
			<u></u>	22	7 <u>-</u> 67	721		••	22		
			0_C	-c 95	0- 00	0/	.2	v =	25		
L —			0_7	20	38 26	54 52	. 3 C	5			
			2-9	20	24	4:	.5	5	-		
			2.0	10	~ ~ ~	06	<u>,</u>				
				.2	29	20	ن. ح		nc .		
					ji Do	57	.5	12	50		
					30	50	. 4	:	2		
i			<u> </u>	31 00	34	53	.÷		29		
			14	23	20	51	• *	-	مر م م		
			2.15	29	21	100	.6	15	5		
				23	24	58	.3	-:			
, -			<u>-20A</u>		65	152	.:	nd	12		
.			<u> </u>	30	90	163	.3	5	5. 5.		
- 1			<u>9-22A</u>	90	192	498-	1.2	:)	150		
			<u></u>	23	44	29	• •	Ę	. C		

.

...,

MAIN OFFICE. 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICE PASADENA, NFLD BATHURST, N.B. MISSISSAUGA, ON RENO, NEVADA, U.S

ł

		REPORT NUMBER: 890330 GA	JOB N	IUMBER: 890	330	BETHLEHEN RESOURCES			PA	iE 3	OF
		SAMPLE #	Cu	Pb	Za	Ag	Au	As			
			ppm	ppa	ppe	pps	ppb	pp#			
IJIE	222N	960E 120N	6		83	.1	nd	nđ			
171E	<i>4055</i>	960E 130N	11	25	17	.1	15	3			
17IE	ZIBN	960E 140N	48	30	95	.5	15	17			
IJIE	216 N	960E 150N	18	31	30	.1	nd	14			
171E	ZIYN	960E 160N	17	37	24	.3	15	18			
171 E	212N	960E 170N	5	15	4	.1	nd	2			

DETECTION LIMIT 1 2 1 0.1 5 2 nd = none detected -- = not analysed is = insufficient sample

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICE PASADENA, NFLC BATHURST, N.B. MISSISSAUGA, ON RENO, NEVADA, U.S

			REPORT NUMBER: 890330 6	GA JOB NUM	IBER: 890	330	BETHLEH	en resour	æs	PAGE	2	OF
			SAMPLE #	Cu	ዖъ	Zn	Ag	Au	As			
				ppe	ppm	ppa	ppe	ppb	ppa			
	1412	208N	810E 190N	23	30	60	.3	5	9			
	141 E	206 N	B10E 200N	24	30	75	.3	10	8			
	141 E	204N	810E 210N	23	31	107	.4	10	10			
••••	147E	23610	840E 50N	27	39	123	.1	nd	17			
	147 E	232 N	840E 70N	20	27	68	.2	nd	5			
	147E	230 N	_840E 80N	20	26	97	.2	nd	nd			
	147 E	228N	840E_90N	16	23	63	.1	nd	3			
	147 E	22410	840E 110N	14	24	46	.2	nđ	4			
	147 E	222 N	840E 120N	33	31	83	.4	5	12			
	147E	220N	840E 130N	23	32	61	.2	10	11			
	147E	218 N	840E 140N	16	29	60	.2	10	6			
	L47E	2160	840E 150N	31	30	59	.5	5	10			
i	147E	ZIYN	840E 160N	9	16	34	.1	nd	nđ			
	1476	212N	B40E 170N	27	31	71	.4	nd	13			
	147 E	2100	840E 180N	21	28	63	.3	5	7			
	, 147E	2080		21	32	61	.4	5	8			
Ŧ	147 E	206 N	840E 200N	29	29	96	.1	5	6			
	153E	ZZHN	870E 110N	21	28	100	.4	10	5			
	153E	2.2.2N	870E 120N	27	31	113	.6	15	8			
	1536	220 N	870E 130N	17	24	67	.1	nd	4			
L.	153	2180	870E 140N	37	38	125	.4	nd	11			
	153	216 N	870E 150N	22	31	116	.2	nd	9			
	153	2140	870E 160N	25	30	81	.3	5	9			
i	153	21210	870E 170N	19	29	54	.4	nď	9			
	IGSE	232 N	930E 70N	22	23	59	.2	10	9			
	165E	230N	930E BON	15	24	70	.2	5	5			
	165 E	2284	930E 90N	29	34	82	.2	10	31			
	165E	22 4N	930E 110N	13	20	49	.2	nd	3			
	145E	222N	_930E 120N	10	23	67	.2	10	4			
L.	145E	220 N	.930E 130N	24	26	95	.2	5	10			
	ILSE	ZIBN	930E 140N	29	30	103	.1	nd	12			
	165E	219N	930E 145N	52	40	151	.3	5	20			
	145E	216N	930E 150N	77	48	166	.9	5	27			
	165E	2142	930E 160N	21	27	81	.3	nd	5			
ň	IGSE	212~	930E 170N	34	31	113	.2	nd	11			
	1716	2320	960E 70N	14	24	74	.2	10	9			
	1716	230N	960E 80N	20	23	81	.2	10	7			
i	171E	22.B N	960E 90N	48	44	106	.1	nd	17			
	171E	224N	960E 110N	15	26	94	.1	nd	8			
			DETECTION LIMIT	i	2	1	0.1	5	2			
			nd = none detected	= not ana	alysed	is = in	sufficien	it sample				

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 (604) 251-5656 FAX (604) 254-5717 BRANCH OFFIC: PASADENA, NFLi BATHURST, N B MISSISSAUGA, O! RENO, NEVADA U

I			REPORT NUMBER: B90332 EA	JOB NUMBER: 890332			BETHLEHEN RESOURCES			PAGE 1 OF			
			SAMPLE #	Cu	Pb	Zn	Ag	Au	As	· · · · · · · · · · · · · · · · · · ·			
				ppa	ppa	ppa	pps	ppb	ppm				
Í.			124E 155N	57	36	105	.4	30	104 *				
			124E 156N	87	38	82	.1	30	49				
			124E 162N	64	63	135	.2	10	17				
1			124E 172N	68	24	94	.2	10	21				
-			128E 181N	52	24	116	.2	10	13				
			12BE 182N	49	24	85	.1	20	9				
			128E 183N	65	176	184	.1	30	15				
			128E 185N	45	65	135	.2	10	4				
			174131241	61	25	87	.3	10	7				
Ì	9 DE	ZIYN	\$50E 140N	15	24	63	.2	5	19				
	90 E	198~	550E 220N	10	24	54	.1	5	18				
	90E	186 N	550E 280N	38	25	60	.1	5	21				
•	90E	184N	550E 290N	35	77	23	.6	5	52				
	96E	IBEN	580E 280N	52	607	2391 •	2.7	20	5				
	95E	184 W	580E 290N	38	91	276	.1	10	32				
	96E	182 N	580E 300N	27	63	144	.5	5	9				
	153E	230 N	870E 80N	38	22	97	.1	5	7				
-													

DETECTION LIMIT 1 2 1 0.1 5 2 nd = none detected -- = not analysed is = insufficient sample

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.#

l

			REPORT NUMBER: 890311 8	SA JOB NUN	1BER: 890	311	BETHLEH	EM RESOURC	ES	PASE	1 01	F 2
			SAMPLE #	C:	PH	7 -	Ån	Å 11	4 5			
				506	. 4 5 5 6	938	-19 88	anh	57 6			
- 1.4870.	129E	228N	7505 908	64 64	27	209	Q Q	γρ5 5	29			
	95F	214.5	50AE 17AN	98 2	20	00	• • • 5	प्	5			
	918F	779 -1	SONE TANK	24	15	200		J Ę				
	095	226.0	550E 1000	75	22	101	.0	Е	62			
	70F	CCGN	SOOF 100H	13	23	101	.u S	с	5			
	7₩₽	224 N	JJUE 120N	70	23	57		ن.	5			
	9 8 E	222 0	590E 130N	79	23	105	.6	5	20			
	9 8 E	220 N	590E 140N	45	17	139	.6	10	26			
	98E	218 N	590E 150N	54	20	165	.9	5	33			
	9 8 E	216 N	590E 160N	53	:8	33	.8	20	23			
	9 8 E	ZIYN	590E_170N	46	21	93	.9	5	27			
	103E	2164	640E 140N	35	10	62	.6	10	103			
	IOZ E	ZIZN	540E 180N	50	50	87	.3	5	56			
	102 E	2104	640E 190N	62	15	34	.6	5	29			
	IOZE	ZOBN	640E 200N	30	24	95	.3	. 5	45			
	102 F	ZOGN	640F 210N	54	25	::4	.9	20	ត៤			
		•										
	JOSE	2002	640E 24 <u>0</u> N	22	14	43	.9	5	28			
	IDZE	1880	640E 250X	47	10	30	.9	5.	10			
	102E	1960	640E 260N	36	**	30	.5	10	3			
	IOZE	194N	640E_270N	32	22	54	.9	10	<u>50</u>			
	IPYE	212N	650E_160N	59	11	54	.8	5	24			
	IDEE	212N	660F 160N	59	19	82	.5	5	23			
	108 5	2244	670F 170N	35	15	49	.5	5	35			
•	108 6	2251	670E 175N	75	26	SE	.9	5	56			
	108 E	2042	670F 240N	73	21	52	.9	10	30			
	108 -	1900	ETOF ASON	49	. 19	69	3.	20	38			
							••					
			700E 150N	97	2:	92	.7	10	39			
	120 E	<u> 198 m</u>	<u>730E 240N</u>	82	18	243	5	10	22			
	IZOE	198N	<u>730E_250N</u>	75	21	51	.7	5	54			
	IZOE	1942	<u>730E 260N</u>	ε:	ΞĒ	76	.9	5	24			
	120 E	186 N	730E 290N	62	2:	75	.6	5	42			
	123 E	2260	745E 160N	77	17	95	.7	20	32			
álana.	123 E	224N	745E 170N	30	20	204	.5	5	29			
	123 E	ZIZN	745E 210N	77	18	58	.7	10	38			
	123 E	208~	745E 220N	113	39	155	.9	10	:9			
22.2	123 F	ZOYN	745E 230K	61	:3	60	.9	5	29			
				54	A4	107	r	4.6	60			
			8-1	30	24	197	.5	10	50 50			
19			K-Z	25	5/ or	720 •	 	5	32			
			X-4	49	25	118	1.0	5	133			
			K-12	46	22	106	.9	10	41			
			DETECTION LIMIT	1	2	1	0.1	5	2			
-			nd = none detected	= not and	alysed	is = in	sufficien	t sample				

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICI PASADENA, NFL(BATHURST, N.B MISSISSAUGA, ON RENO, NEVADA, U.:

i		REPORT NUMBER: 890212 BA	IDB NUMBER: 890312			BETHLEHEM RESOURCES			P46E :		
		SAMPLE #	Cu	Pb	Zo	Ac	Âu	As			
			pa	ppa	ppa	220	ppb	ppn			
l .	228N 117 E	<u>908 6905</u>	64	27	131	.1	nć	3			
	2284 119 E	90N 700E	35	24	88	.1	nd	nd			
	27.80 ISI E	90N 720E	40	25	102	.1	25	nd			
	228N 123 E	<u>90N 730E</u>	32	28	91	.1	5	ពថ			
	228N 125 E	<u>90N.740E</u>	142	36	174	.3	15	nd			
	2264 119E	100N 700E	39	21	60	.:	5	nđ			
	2264 121 E	100N 710H	28	25	106	.1	20	né			
	226 N 123 E	100N 720N	53	30	112	.:	20	83			
	2260 125 E	100N 730N	52	33	186	.3	5	nd			
	226N 127E	<u> 100N 740¥</u>	103	33	:11	• -	25	nd			
	226N 129E	<u>: 108 7508</u>	51	27	72	.2	Ę	nć			
	226N 131E	<u> 1908 7600</u>	33	29	130	.2	22	nd			
	226 - 133 E	100N_770K	35	27	104	.2	10	nd			
	226 N 135 E	100N 780K	42	37	132	.1	5	nd			
	2260 137E	100% 790K	45 25	12	52	.1	<u>.</u>	nd			
۶	(134.6N 125.8E	35	505	797	10.5	:5	31			
	5	134.6N 126E	28	:96	633	1.8	nd	. 4			
u Teffel Indiana da tur		134.6N 125.2E	22	239	625	1.3	Ę	7			
		134.8N 125.6E	24	45	171	.3	25	nć			
	{	134.8N 125.9E	33	68	356	:.5	10	Ą			
		134.8N 126E	87	382	915	5.9	5	17			
	1	124.8N 126.2E	32	325	794	3.8	ad	15			
	1	124.8% 126.4E	21	295	768		10				
		125N 125.6E	24	50	136	.=	35	9			
		135N 125.8E	53	. 99	268	.7	Ξ	- C			
		135X 125E	26	- 55	155		12	3			
		135N 126.2E	55 25	5	494	.4	Ξ	:0			
		135N 126.4E	22	153	490	.5	10	£			
		135.2N 125.6E	55	8 E	222	.:	ć	23			
		125.2% 125.92	30	70	154		Ē	10			
		125.2N 126E	29	66	:79	, ć	:0	2			
		135.2N 126.2E	33	118	427	.2	5	::			
	(·	135.2N 126.4E	38	122	445	1.0	nc	٢			
		135.4% 125.8E	23	74	184	.3	nd	7			
	\backslash	135.4N 126.2E	29	73	161	.5	Ę	5			
	226A HIZE	ICAN COAT	==	95	100		4.6	- 1			
-	2264 114E	ISON TODAS	30 90	33	102	•-	10	- <u>c</u>			
-	226W 116E	150N 700 14F	20 99	22	00 24	• 2	12	nc			
-	226N LIBE	150% 700.2AF	20	20 28	59 29	• 2	 	30 Dđ			
-		AFAN IVELOL	J.	20	66	• •	Ċ	n.			
		DETECTION LINIT	1	2	1	0.1	5	2			
		nc = none cetectec	· = not ana	LYSEC	15 = <u>in</u>	sufficient	Sanple				

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFIC PASADENA, NFI BATHURST, N. MISSISSAUGA, C RENO, NEVADA, L

RE	REPORT NUMBER: 890311 GA		JDB NUMBER: 890311			EN RESOUR	CES	PAGE	2 85
SA	NPLE #	Ca	Pb	Zn	Ag	Âŭ	As		
		ppa	ppa	ppa	ppa	ppb	ppm		
R-	134	212	110	1738 •	.9	50	42		
	13	79	24	101	.7	5	50		
R	.17	41	71	209	1.4	5	31		
RR-	-18	26	58	1944.	1.5	5	43		
<u>R</u>	-19	28	50	131	.7	5	24		
R	-20	28	27	144	.6	5	24		
	-21	16	29	345	.4	5	5		
R·	-23	40	46	120	1.0	5	35		
	-24	36	24	53	.7	10	g		
R·	-25	41	339	191 •	1.4	5	16		
R	-26.	35	171	1007 .	.9	10	32		

50

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFIC PASADENA, NFL BATHURST, N.E MISSISSAUGA, OI RENO, NEVADA, U

			REPORT NUMBER: 890312 BA	JOB NUMBER: 890312			BETHLEHEN RESOURCES			PAGE	2 OF
			SANDLE #	Cu	P5	Zn	Ac	Áa	As		
				306	0D@	000	008	and	000		
	226 N	120E	160N 700.3AE [/]	39	30	79	.3	5	97		
	·		2405 630N	27	26	59	.3	5	nd		
	95E	ZIIN	SBOE 160N	19	16	61	.1	10	45		
	95E	209 N	580E 190N	29	28	54	.3	5	4		
	95E	2064	580E 200N	38	25	78	.3	15	nd		
	95E	203 N	580E 210N	12	13	33	.1	10	nd		
u .	95 E	2005	5205 220N	28	29	61	.4	5	29		
	95 E	198N	5805 220N	25	29	67	.4	10	1		
	95 E	196N	580E 240N	15	23	58	.1	10	7		
	95 E	192N	580E 250N	5	9	20	.1	10	ad		
	95 E	190N	580F 250N	22	26	73	.3	ç	£.		
	95 E	189 2	580E 265N	15	35	25	.4	10	nrí		
i .	95E	187N	580F 275N	32	27	69	1	5	37		
-	102E	224 N	540F 110N	20	22	45	.2	nd.	1		
	IOSE	222 N	540E 120N	40	34	105	.3	25	nć		
i i	JOZE	4055	540F 130N	32	25	69	.3	10	3-		
Ŧ	IOZE	216.	6405 1505	22	24	48	.2	10			
	IOZE	ZIJN	540F 150N	12	13	21	.2	10	· -		
	102E	LION	5405 170N	60	29	102	.2	15	10		
anter en la compañía de la compañía Compañía de la compañía	IDZE	200~	540E 220%	45	33	69	.4	20			
	IOBE	ZZGN	670F 160N	20	50	77	3	Ę	nć		
	IOBE	2:2/2	570E 180N	50	20	90		د ج	nd		
	108 E	2/8~	1747 1984	20	-7	75	 ç	nť	5		
	108E	2150		00	-0	FQ		20	<u>د</u>		
	108E	2124	670E 2:0X	28		157	.1	10			
	108E	209~	6765 C20X	25		94		Ę			
	108E		6705 0705	26	25	FO		10	-		
	108E	200 N	570F 250N	15	23	25	.1	10	-		
	108E	198N	670E 260N	50	76	73	.3	5	7		
	108E	194 N	573E 270%	22	25	73	.1	5	nć		
	108E	186 N	<u>6705-2908</u>	24	24	40	.3	10	ŧŤ		
	108E	1B4N	570E 300V	44	23	120	.1	nć			
	109E :	ZZGN	680F 160N-	24	25	61		nd	50		
	109E	NEIS	590E 2:0N	42	25	70	.4	10	10		
	109E	1840	690E 300N	29	32	94	.3	nc	• - -		
			.700E 140N -	33	24	101	. 1	nd	hc		
•			700E 160N	48	25	59	.1				
			700E 170N	32	26	57	3	 5	nd		
			700E 180X	67	25	78	.1	25	nč		
			DETECTION LIMIT	<u>1</u>	2	1	0.1	Ę	2		

nd = none detected

-- = not analysed is = insufficient sample

......

MAIN OFFICE 1968 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717 BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.F

REPORT	NUMBER: 890330 GA JOB	NUMBER: 89	0330	BETHLEH	en resourc	ES	PAGE	1	OF	3
SANPLE	t Cu	የዕ	Zn	Ag	Au	As				
	ppe	ppa	ppa	ppm	ppb	ppm				
R-27A	10	23	28	.2	5	6				
R-29A	- 13	30	56	.1	5	18				
R-30	11	20	17	.3	10	2				
R-31	24	37	96	.3	5	17				
R-32	17	32	24	.2	5	12				
R-33	13	41	115	.1	5	45				
R-34	15	34	44	.2	5	33				
R-35	16	27	22	.2	5	6				
R-36	33	35	95	.1	10	15				
R-37	21	38	55	.1	5	14				
R-38	24	36	59	.2	10	13				
R-39	13	23	28	.4	5	5				
R-40	14	20	30	.5	5	3				
R-41	19	29	34	.6	nd	13				
R-42	22	36	54	.7	nđ	18				
R-43A	14	21	26	.2	10	3				
139E .N 800E 5	ON 50	38	147	.1	10	16				
139E N 800E 6	ON 56	40	244	.1	5	14				
139E N 800E 7	ON 62	34	454	.1	nd	7				
1375 230N 800E 8	ON 46	57	174	.3	nđ	18				
139E 228 N 800E 9	ON 31	33	93	.1	nd	14				
1378 224 N 800E1	10N 17	26	70	.1	5	9				
139E 222 N 800E 1	20N 19	30	76	.2	5	11				
139 E 212 N 800E 1	70N 24	34	70	.2	5	7				
139E 208 N_800E 1	90N 28	. 41	79	.4	nd	24				
139E 206N 800E 2	25	32	63	.5	10	14				
141 E 236N 810E 5	ion 22	21	65	.1	5	1				
141 E 234N 810E 6	ion 54	26	86	.2	10	6				
141 E 232N 810E 7	'ON 34	34	136	.3	5	13				
141 E 230N 810E 8	ION 1B	24	69	.1	5	10				
141E 228N 810E 9	II II	16	36	-1	5	1				
141 E 224N 810E 1	10N 19	27	72	.1	5	2				
141E 2220 810E 1	20N 17	29	58	.2	5	7				
141E 220N 810E 1	I30N 15	25	65	.2	nd	6				
141E 218 N 810E 1	140N 18	20	36	.1	nd	7				
141E 216N 810E 1	150N 12	22	46	.1	5	5				
141E 214N 810E 1	11 IGON	16	29	.3	10	nd				
141E 212N 810E 1	170N 23	37	.89	.2	10	14				
141E 210N 810E 1	180N 25	33	83	.2	5	13				
DETECT	FION LINIT 1	2	1	0.1	5	2				
nd = n	none detected = not	analysed	is = i	nsufficien	t sample					

....

ŧ

and a second of the start of the second s

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

HERE AND AND AND AND A

BRANCH OFFI PASADENA, NF BATHURST, N MISSISSAUGA (RENO, NEVADA, 3

		REPORT NUMBER: 890327	GA JOB NU	NBER: 89(327	BETHLEN	en resour	CEB	PAGE	1	Øř
đ		SAMPLE #	Cu	የቴ	Zn	Ag	Ae	As			
			ppe	ppa	ppe	ppe	ppb	0 DE			
		8028	15	54	1034	1.3	80	28			
		660E 160N	56	39	81	.2	10	13			
139E	220 N	_BOOE 130N	57	34	88	.3	10	18			
139 F	218 N	BOOE 140N	57	44	95	.1	5	14			
139 E	216 N	BOOE 150#	76	41	330	.2	40	15			
139 E	2142	BOOE 160%	84	46	135	.3	40	26			
139 E	210 4	800F 180N	51	40	99	.2	30	14			
139 E	1042	BOOE 210N	41	34	75	.3	30	13			
141 E	1020	810E 220N	68	38	110	.1	20	15			
147 E	234 N	B40E GON	33	30	68	.2	10	9			

. .

