TABLE OF CONTENTS

700 NO.	0915	₽D. ₹
ALTION		
FILE NO:	Page	No

LIST OF FIGURES

Figure 1:	Property Location Map	after page 3
Figure 2:	Claim Location Map	after page 3
Figure 3:	Claim Disposition Map	after page 4
Figure 4:	Diamond Drill Hole Location Map	back pocket
Figure 5:	Geological & Assay Section of S.W. Vein DDH-88-01 & DDH-88-03	back pocket
Figure 6:	Geological & Assay Section of S.W. Vein DDH-88-04 & DDH-88-05	back pocket
Figure 7:	Geological & Assay Section of S.W. Vein DDH-8-06 to DDH-88-09	back pocket
Figure 8:	Geological & Assay Section of S.W. Vein DDH-88-10 to DDH-88-12	back pocket
Figure 9:	Geological & Assay Section of Main and S.W. Veins DDH-88-13 to DDH-88-14	back pocket
Figure 10:	Geological & Assay Section of the Main Vein System DDH-88-15	back pocket
Figure 11:	Longitudinal Section of the Southwest and Bullion Vein	back pocket
Figure 12:	Trench Sampling Map	after page 20
	LIST OF TABLES	
	LIST OF TABLES	
TABLE 1 '	Property Description	page 5
TABLE 2	1988 Diamond Drilling Data	page 15
TABLE 3	Economically Significant Assay Data 1988 Diamond Drill Program	page 16
TABLE 4	Reserves of the Southwest Vein Zone 1	page 22
TABLE 5	Reserves of the Southwest Vein Zone 2	page 23

SUMMARY

The Georgia River property is located approximately 13 kilometers south of Stewart, B.C. on the east side of the Portland Canal. The property lies on the eastern contact of the Coast Range Batholith intruding volcanics and sediments of the Hazelton Group.

Two shear patterns have been developed on the property in a northwest direction and a possibly later extensive cross fracturing and faulting in a northerly direction. Significant gold, silver, lead, zinc with minor copper mineralization within quartz veins appear to be restricted to the zones of later faulting. Marked gold enrichment appears to be associated with areas of vein intersection.

During the period August to October 1988, Avatar Exploration completed an exploration program on the Georgia River Project including trenching, sampling and diamond drilling.

A total of 15 holes were drilled along the southwest vein to further define the limits of mineralized zones discovered during programs in 1979-1981. This 1988 drilling totalled 2628.77 metres (8625 ft) and extended the mineralization to a depth of at least 845 feet. Assay values in the vein structures ranged up to a high of 5.202 opt Au. A summary of holes is as follows:

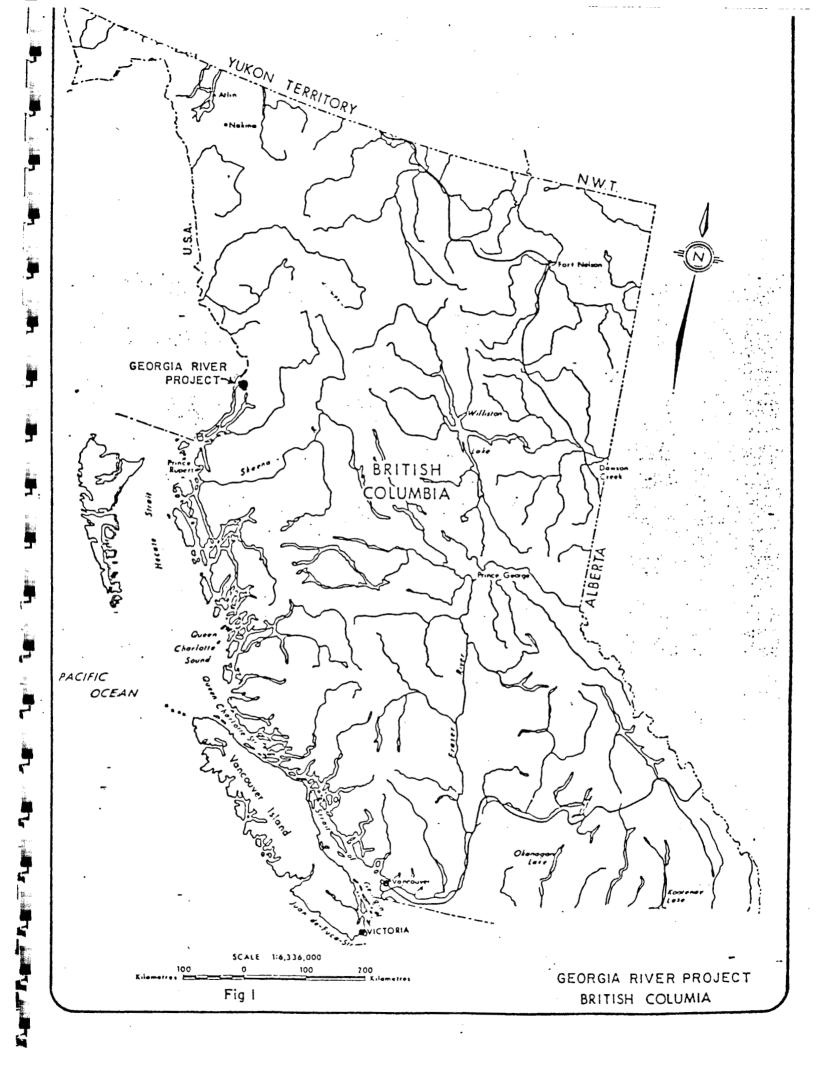
Hole	Intersection	Width <u>Feet</u>	Au (opt)	Ag (opt)
88-01	362.5-365.1	2.6	5.202	4.99
88-02	121.3-124.3	3.0	.235	0.71
88-02	241.5-245.5	4.0	1.925	0.36
88-02	470.5-472.5	2.0	.116	0.05
88-03	539.1-540.1	1.0	.229	0.11
88-03	580 -581.2	1.2	.365	0.51
88-06	855 -858.2	3.2	.456	0.13
88-07	366.7-367.5	.8	1.049	1.72
88-07	377.4-379.9	2.5	1.588	0.96
88-08	455.3-460.7	5.4	.272	0.41
88-10	364.6-367.5	2.9	.547	0.36
88-11	452 -454.2	2.2	2.287	2.23
88-12	221.3-224.5	3.2	.158	0.31
88-12	563.5-565.1	1.6	.467	1.46
88-12	620 -621	1.0	.426	0.26
88-14	473 -475.3	2.3	.110	0.11

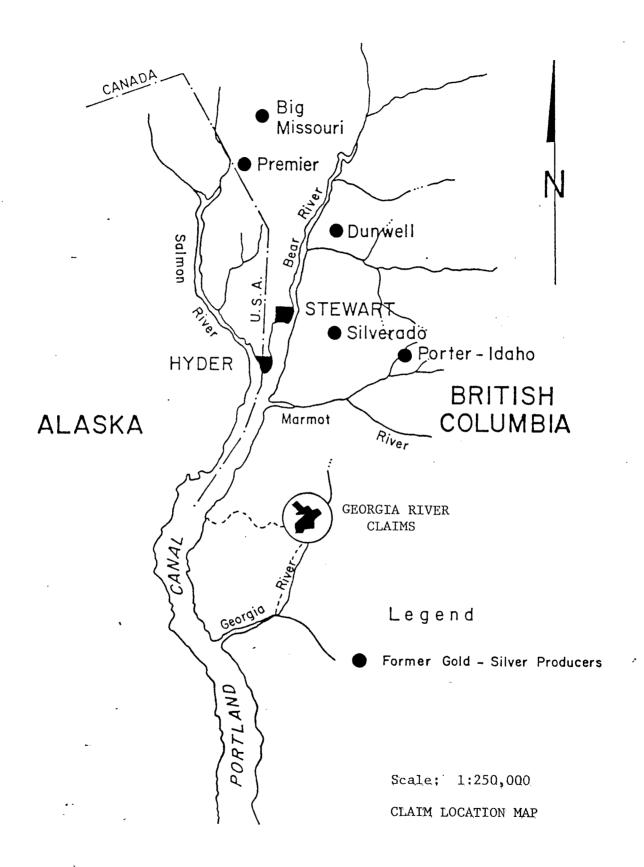
Based on the 1979-1981 work and 1988 drilling, a total of 321,067 tons at a grade of .839 opt Au and .656 opt Ag is calculated in the drill indicated, (108,462 tons) inferred (113,916 tons) and geologically inferred (78,716 tons) categories. These reserves are over a mining width of at least 4 feet and in places extend to 10 feet. These do not include the reserves in the Bullion Vein which totals 6195.2 tons at .122 opt Au and .30 opt Ag.

To date a total of 22 vein systems have been discovered of which seven have gold bearing potential. Out of the identified seven veins, only two, the Southwest and Bullion have been explored to any great extent. The Southwest vein has been traced over 2000 feet of length while the Bullion has been identified over a shorter length.

It is recommended that a \$2,000,000 drill and underground program explore the property.

INTRODUCTION


Auriferous mineralization is associated with sulphide-bearing quartz veins emplaced along north and northeast striking shear zones. The Southwest and Bullion veins are two economically significant structures that have been previously explored of seven encountered on the property.


In 1988, a two phase trenching, sampling and diamond drilling program was designed to further investigate the Southwest Vein structure.

Location and Access

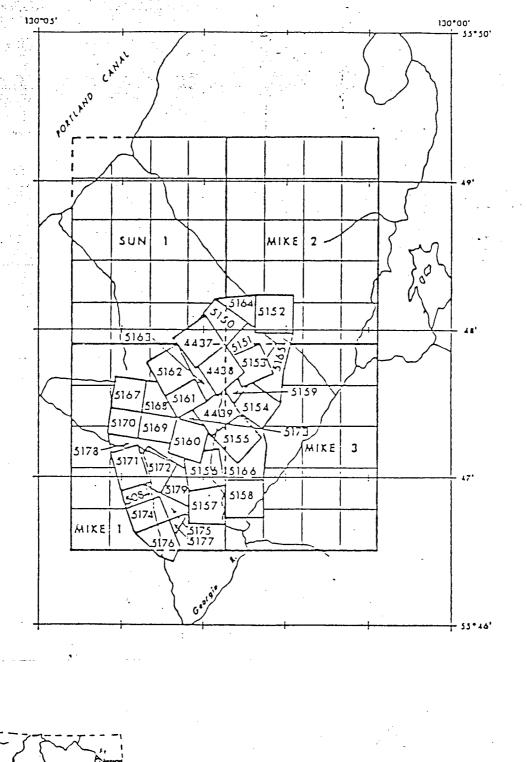
The Georgia River project area is located in the recently revitalized Stewart gold-silver mining camp along the northwest coast of British Columbia. The property is located approximately 13 air-kilometers south of Stewart, within the Skeena Mining Division (NTS 103/16W). The property is centered by latitude 55° 49'N and longitude 103° 08'W. (Figure 1)

The contiguous Georgia River claim block encompasses a tributary of Georgia River, Bullion Creek and the Colling Range on the east side of the Portland Canal (Figure 2). Access is gained via Stewart, B.C. utilizing Bell 206 helicopters based there year round. It is noted that an old wagon trail approximately 13 kilometers in length, built in 1928, accessed the property from the south, leading from the Portland Canal, upstream along Georgia River, to the work site. This wagon trail has since been eroded and grown over by thick tag alder. The Sun claim group is located on the northwest portion of the property bordering on the Portland Canal where water access may be utilized.

Physiography and Topography

The property area is characterized by steep mountainous terrain typical of the Coast Mountain Range of British Columbia. Elevations range from sea level to 1180 meters. The dense douglas fir and cedar forested valley floors change upslope to dwarf alpines with mosses, grasses and lichens above the 1060 meter elevation. Above treeline at higher elvations, the claim area is characterized by gently rolling alpine slopes.

Thick glacial moraine is primarily restricted to lower elevations and valley floors, therefore yielding good outcrop exposure along ridge tops and plateaus. Permanent snow occupies the higher gullies and depressions with streams and small glacial lakes. Maximum rock exposure occurs in early October when most of the snow and ice has melted. The surface exploration season is restricted to late summer and early fall, primarily due to the surface expressions of the vein systems being contained within the snow filled depressions and gullies.


Water is plentiful year round as several streams drain small glacial lakes less than 100 meters in diameter located along the top of Colling Ridge and along mountain passes.

Fog and rain is common throughout the summer months, while the spring, fall and winter seasons bring harsh wind driven snow storms. For exploration to continue throughout the winter months, a permanent camp would be essential.

Property Ownership

The property consists of 34 crown granted claim units and four 20-unit modified grid staked claims owned by Samson Gold Ltd.(Figure 3).

The claim names with appropriate data is listed in the following table:

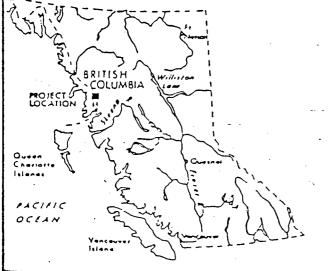


Figure 3

MINERAL DISPOSITION MAP OF PROJECT GEORGIA RIVER GOLD, B.C. (CLAIMS SHOWN ON MAP)

NTS 103-0

SCALE 1: 50,000

TABLE 1 PROPERTY DESCRIPTION

Lot No.	Name	Record No.	Acres	Expiry Date
L5150 L5151 L5165	Gem Gen #1 Gem Fraction	Crown Grant Crown Grant Crown Grant	38.46 23.19 48.80	August 2, 1989 August 2, 1989 August 2, 1989
L5152 L5153 L5154 L5155 L5156 L5157 L5158	Goldfields #1 Goldfields #2 Goldfields #3 Goldfields #4 Goldfields #5 Goldfields #6	1445(8) 1429(8) Crown Grant Crown Grant 1435(8)	52.25 43.68 44.25 47.35 44.90 48.53 51.15	August 2, 1989 August 2, 1989 August 2, 1989 August 2, 1989 August 2, 1989 August 2, 1989 August 2, 1989
L1564	Top Fraction	Crown Grant	26.46	August 2, 1989
L5166	Gold Fraction	Crown Grant	46.46	August 2, 1989
L4437 L4438 L4439	Georgia Georgia #1 Georgia #2	Crown Grant Crown Grant Crown Grant	49.39 46.71 48.58	August 2, 1989 August 2, 1989 August 2, 1989
	Sun #1	1622(8)	1,235.60	August 15, 1989
	Mike #1 Mike #2 Mike #3	1623(8) 1721(9) 1722(9)	1,235.60 1,235.60 1,235.60	August 15, 1989 Sept. 18, 1989 Sept. 18, 1989
L5159	Jitney	Crown Grant	11.68	August 2, 1989
L5084	September Fr.	Crown Grant	19.85	August 2, 1989
L5163	Danny Fractio	n Crown Grant	7.83	August 2, 1989
L5178 L5167 L5168 L5169 L5170 L5171 L5172 L5179 L5174 L5175 L5176 L5177	June Fraction June June #1 June #2 June #3 June #4 June #5 June #6 June #7 June #8 June #9 June #10	1443(8) 1438(8) 1439(8) 1440(8) 1441(8) 1442(8) 1447(8) Crown Grant 1480(8) Crown Grant 1432(8) Crown Grant	41.00 41.43 25.80 35.58 39.03 52.25 34.84 28.93 37.78 12.53 39.08 1.85	August 2, 1989
L5173 L5160 L5161 L5162	Sovereign Fr. Sovereign Sovereign #1 Sovereign #2	1446(8) 1431(8)	8.50 51.60 36.28 51.43	August 2, 1989 August 2, 1989 August 2, 1989 August 2, 1989

Personnel and Operations

E.R. Kruchkowski Consulting Ltd. personnel involved during the Phase I July - September 1988 diamond drilling and trenching program included the following:

Ε.	Kruchkowski	geologist	
Κ.	Konkin	geologist	
Μ.	Jaegar	geological	assistant
С.	Moeling	geological	assistant
J.	Paquette	geological	assistant
	Hoffman	geological	assistant
Τ.	McIndoe	geological	assistant
S.	Weir	camp cook	

Phase I and II diamond drilling equipment and personnel was supplied by D.W. Coates Enterprises Ltd. A modified JKS 300 diamond drill rig was flown to the property from Stewart, B.C. Helicopter service was supplied by Vancouver Island Helicopters' Bell 206 and Bell 205 machines. Phase I included six BDBGM thin wall diamond drill holes totalling 1126.49 meters.

The Phase II September - October 1988 trenching and diamond drill program was completed utilizing the same D.W. Coates diamond drill rig and helicopters supplied by Vancouver Island Helicopters Ltd. Nine diamond drill holes were completed totalling 1502.28 meters.

E.R. Kruchkowski Consulting Ltd. personnel for the Phase II diamond drilling and trenching program included:

E.R. Kruchkowski	geologist	
K. Konkin	geologist	
G. Sinden	geological	technician
T. Devine	geological	assistant
B. Johansson	geological	assistant
D. Sloan	geological	assistant
M. Jaeger	geological	assistant
B. Touzin	geological	assistant
S. Weir	camp cook	

All drill core was logged on site and stored on the property. The whole sample interval was collected as a sample (the core was not split) and the samples were sent to Min-En Laboratories Ltd. in North Vancouver for gold and silver assaying.

All materials and supplies were purchased in Stewart, B.C. and were flown to the camp site. The tent camps were supplied and maintained by E.R. Kruchkowski Consulting Ltd. personnel.

Previous Work

Much of the information on the work history of the property was obtained from B.C. Minister of Mines reports dated 1914 - 1936. Discovery of gold in the Georgia River area dates back to 1910. Prospectors Dan Hume and Jake Jarvis are credited with the find and subsequently located the Georgia River claims.

In 1912, exploration was initiated on the auriferous veins. Although gold and silver values were generally weak along the surface, values of six to eight oz. in gold and 15 to 25 oz. in silver are said to have been reported while sinking a small shaft 17 feet deep.

Driving of, a tunnel along the Bullion vein commenced in 1913. It was designed to intersect below the shaft started in 1912. By the end of the 1914 season, the tunnel was advanced to a distance of 55 feet.

In 1915, the Bullion tunnel was driven to the 245 foot mark and significant surface development included stripping and trenching of the Main vein. A considerable portion of the vein was reported to carry good gold values.

The Bullion tunnel was advanced to 362 feet at the end of 1916. During this year, a winze was driven to a depth of 35 feet. Again good gold values were reported but vein widths varied from 10 inches to 2 feet 6 inches.

In 1917, a construction of a pack horse trail commenced but constant repairs and maintenance hampered completion of the trail until the Department of Mines helped with the construction. The trail was completed by 1922. By the end of 1917 the Bullion tunnel was advanced to 390 feet, and a raise was pushed to the surface for 35 feet from which bonanza ore was taken.

In 1918, the winze was mined for another seven feet extending it to a total of 42 feet down and the Bullion tunnel was extended for another 20 feet when a crosscut was driven west for 35 feet. The bottom of the winze yielded a two foot wide quartz vein with massive pyrrhotite carrying 2.28 oz. per ton gold and 3.74 oz. per ton silver.

Little information is available from 1918 to 1928. In 1928, Georgia River Gold Mines Ltd. undertook wagon trail construction in order to construct a permanent camp to the working site. As soon as the trail was complete, lumber was rushed in for camp construction and supplies were taken in for the winter's operation. Very little work was done on the veins, the focus of the work effort was on the road and camp.

By the end of 1929, compressors and other mine equipment were installed. Bunk houses, residences, assay offices and warehouses were erected for year round occupation.

The majority of underground work was completed between 1928 and 1934. From 1928 to 1929, the No. 1 tunnel, No. 2 tunnel, No. 3 tunnel and Little tunnel were developed along the Southwest vein system. During 1932, a crosscut from the Bullion vein was extended to intersect the Southwest vein. Once on the Southwest vein, drifting commenced for 180 and 130 feet north and south respectively. In 1933, continued drifting along the Southwest vein and 3,050 feet of surface diamond drilling in nine holes was completed.

In 1935, Gold Leasing Ltd. leased the property and during 1936 a mill and mining facilities were erected. By 1937, 500 tons of vein material yielded 329 ounces of gold, 410 ounces of silver and 7,301 pounds of lead for an average grade of 0.658 opt. Au, 0.82 opt. Ag and 0.73% Pb.

There has been no significant work reported from 1938 to 1979. E & B Explorations Ltd., in 1979, completed a diamond drill program totalling 346.9 meters drilling six holes. Two holes tested the Southwest and Main vein intersections, one tested the Southwest and Georgia vein intersection and three holes tested the Southwest vein and the north faulted extension of the Georgia vein. Values of .96 opt. Au and .96 opt. Ag over 1.45 meters was obtained from drill hole GGP-3, intersecting the Southwest vein.

Based on favourable results obtained from the 1979 diamond drill program, E & B Explorations Ltd. continued explortion on the Georgia River property in 1980. The project included: gridding, geological mapping, prospecting, trenching, underground mapping and sampling, diamond drilling and claim staking. Based on the work completed in 1980, measured ore reserves were calculated at 22,206 tons of 0.43 opt. Au and 0.53 opt. Ag and inferred reserves were calculated at 22,815 tons of .46 opt. Au and 0.61 opt. Ag.

In 1981, E & B Explorations Ltd. conducted a 15 diamond drill hole program based on the previous year's results. This program yielded measured, indicated and inferred reserves of 120,037 tons with an average grade of 0.55 opt. Au and 0.68 opt. Ag.

GEOLOGY

Regional Geology

The Georgia River claims lie within the Stewart area along the western boundary of the Bowser Basin intruded by the Coast Plutonic Complex. Rocks in the area belong to the Mesozoic Hazelton Group and have been intruded by plugs of both Cenozoic and Mesozoic age.

At the base of the Hazelton Group is the Lower Jurassic marine (submergent) and non-marine (emergent) volcaniclastic Unuk River Formation. This is overlain at steep disordant angles by a second, lithologically very similar, Middle Jurassic volcanic cycle (the Betty Creek Formation), in turn overlain by Middle and Upper Jurassic non-marine and marine sediments (with minor volcanics) of the Salmon River and Nass Formations.

The oldest rocks in the area belong to the Lower Jurassic Unuk River Formation which forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, volcanic conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.

In the property area the Unuk River Formation is unconformably overlain by Lower and Middle Jurassic rocks from the Betty Creek and Salmon River Formations, respectively. The Betty Creek Formation is another cycle of trough-filling submarine pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, with self erosional conglomerate, sandstone and siltstone, and minor crystal and lithic tuffs, chert, limestone and lava. The overlying Salmon River Formation is a late to post volcanic episode of banded, predominately dark coloured, siltstone, greywacke, sandstone, interrcalated calcarenite, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and minor flows.

According to E.W. Grove, the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcanoes subsequently deposited as overlapping lenticular beds varying laterally to grain size from breccia to siltstone.

There are various intrusives in the area. The granodiorites of the Coast Plutonic Complex largely engulf the Mesozoic volcanic terrain to the west. East of these (in the property area), smaller intrusive plugs range from quartz monzonite to granite to highly felsic; some are, likely, related late phase offshoots of the Coast plutonism, others are synvolcanic or Tertiary. Double plunging, northwesterly-trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate the structural setting of the area. These folds are locally disrupted by small east-overthrusts (Tippy Lake, Knipple Lake) on strikes parallel to the major fold axis, cross-axis, steep wrench faults which locally turn beds, selective tectonization of tuff units, and major northwest faults which turn beds.

Local Geology

The rocks underlying the area consist predominately of an altered andesitic crystalline tuff, tuffaceous sediments, weakly altered andesites and basalts with minor argillitic siltstone. They are foliated into a roof pendant spanning approximately 20 km east-west and 28 km north-south. These rocks belong to the Unuk River Formation of Lower Jurassic ages, and regionally trend 135° between 50 - 75° to the southwest.

The predominately volcanic units have been locally subjected to strong metasomatic alteration and shearing incurred during intrusion of various granodioritic and porphyritic granodiorite plugs and dykes of the Cenozoic Coast Plutonic Complex. Significant silicification of the various crystal and minor lithic andesitic tuffs is evident along contacts with the granitic structures. The alteration appears

to be pervasive as epidote and calcite is often associated with strong silicification and quartz injection throughout the metamorphosed host.

Northwest and north trending shear patterns exist on the property. Along these shears and their intersection points are the zones of primary auriferous, sulphide-bearing quartz vein enrichment.

The shear zones appear to be directly related to the disruptive intrusive events that formed the roof pendant. Along these shear zones fissure filling, metaliferous hydrothermal fluids are emplaced associated with late stage plutonism.

The wall rocks vary from a relatively unaltered, medium green-brown, massive andesite-basalt to an altered, pale-dark, mottled, grey-green-marron andesitic crystalline tuff or altered andesite tuff. This unit is usually very well silicified and exhibits strong epidote and calcite alteration association with silicification and quartz intrusion. Metasomatic alteration has also silicified the feldspar phenocrysts commonly found in the altered andesitic crystal tuff. Minor black argillaceous siltstone is also encountered and is generally massive and only weakly altered.

Narrow felsic dykes encountered are aphanitic equivalents to the coarse-grained granodiorite and porphyritic granodiorites intruding the volcanic and sedimentary hosts. The granodioritic plugs are generally equigranular and coarse-grained with minor porphyritic phases. In the porphyritic phases, feldspar phenocrysts are generally 2 - 5 mm long and are abundant.

Mineralization

The gold and silver values encountered on the Georgia River property are associated with late stage sulphide-bearing hydrothermal fluids intruding faulted and sheared planes. Several vein systems occur on the property, usually encountered along stream beds and gullies. Seven auriferous vein systems have been identified, yet only two, the Southwest and Bullion veins, have been significantly explored. The Bullion and Southwest veins vary in width from 0.1 to 1.8 meters in width, dip sub-vertically and trend in a northerly direction.

Mineralization has also been noted in the Summit and Camp vein systems which also trend north. The previously mentioned Bullion, Southwest, Summit and Camp veins trend in a northerly direction while other gold bearing vein systems, the Main, Georgia and Gem veins trend north $40^{\rm O}$ west. Little work has been completed on the Summit camp, Main, Georgia and Gem veins, therefore very little data is available.

The 1988 trenching and diamond drill program focused on developing the Southwest vein, much preliminary work had previously been completed on the Bullion and Southwest veins including extensive underground drifting, surface diamond drilling and surface trenching. The mineralogical assemblage of the Southwest vein is relatively simple, yet at this point an ore microscopy study has not been undertaken, therefore suggesting a complete paragenitic sequence would be presumptuous. Sulphides encountered in order of decreasing abundance are: pyrite, pyrrhotite, sphalerite, galena and arsenopyrite, minor amounts of tetrahedrite and chalcopyrite are also noted.

Pyrite is commonly encountered as fine-grained to coarse-grained euhedral crystals pervasively disseminated throughout the host rocks and vein material. It also forms fine fracture filling veinlets and

is commonly associated with pyrrhotite and sphalerite in semi-massive to massive clusters within the Southwest vein.

Pyrrhotite is commonly associated with pyrite in fine to coarse-grained disseminations and fine fracture filling veinlets. Pyrrhotite also occurs as massive clusters and aggregates. Sphalerite is associated with pyrite and pyrrhotite in semi-massive to massive clusters within the Southwestern vein system. Pyrrhotite and sphalerite with minor pyrite often form narrow 5 - 20 cm wide massive stringers and veins, unfortunately low gold values are associated with these features. Also, narrow quartz-calcite stringers and veins carrying minor pyrite-sphalerite-pyrrhotite with epidote yield low gold and silver values.

High gold and silver values are associated with semi-massive to massive brecciated sphalerite-pyrrhotite-pyrite containing fine to coarse-grained disseminated crystals and fine veinlets of galena. Also, laths of arsenopyrite crystals are also evident within the Southwest vein polymetallic assemblage. Rarely, chalcopyrite and tetrahedrite have also been noted as minor disseminations.

Electrum has been noted in one of the 1981 drill holes, the 1987 bulk sampling and in DDH 88-12. It occurs as fine leaflets and fracture fillings generally forming blebs up to 1 centimetre across. The electrum is pale to bright yellow in colour and is usually in close proximity to the sulphides.

DIAMOND DRILLING

A total of 2628.77 metres (8625 feet) of BDB size diamond drill core was cut from 15 drill holes using a modified JKS-300 diamond drill rig supplied by D.W. Coates Enterprises Ltd. From July to September, 1988, six diamond drill holes were completed. Based upon favorable results obtained from the summer diamond drilling and trenching program, a phase II diamond drilling and trenching program was initiated during late September and completed during late October, 1988. Drill core recovery was excellent, in excess of 95%, and all the core was stored on the property. Figure 4 illustrates the 1988 diamond drill hole locations with respect to previous diamond drilling and Table 2 summarizes the diamond drill hole data.

TABLE 2 1988 DIAMOND DRILL DATA

-					
DDH	Azimuth	Dip	Depth(m)	Drill Pad #	Panel #
88-01	114	-55	121.30	I	
88-02	114	-65	156.05	I	1
88-03	114	-70	188.36	I	7
88-04	146	-60	160.01	I	2
88-05	146	-65	196.59	I	2
88-06	114	-72	304.18	ΙΙ	3
88-07	114	-45	141.12	ΙΙ	3
88-08	114	-57	167.63	ΙΙ	3
88-09	114	-66	228.28	ΙΙ	3
88-10	101	-45	136.54	ΙΙ	4
88-11	101	-57	167.33	ΙΙ	4
88-12	101	-66	224.93	ΙΙ	4
88-13	270	-45	133.50	III	5
88-14	270	-52	163.98	III	5
88-15	250	-45	138.98	III	6

Table 3 summarizes the economically significant (greater than .100 opt) gold and associated silver values obtained from the 1988 diamond drill program.

TABLE 3

ECONOMICALLY SIGNIFICANT ASSAY DATA

1988 DIAMOND DRILL HOLE PROGRAM

		Au		Ag	
DDH Intersection(m)	Width(m)	g/tonne	Au opt	g/tonne	Ag opt
88-01 110.79 - 111.28	0.49	178.35	5.202	171.0	4.99
88-02 36.97 - 37.88	0.91	8.05	.235	24.3	.71
88-02 73.61 - 74.82	1.21	66.00	1.925	12.3	.36
88-02 143.40 - 144.01	0.61	3.99	.116	1.7	.05
88.03 164.31 - 164.61	0.30	7.85	.228	3.7	.11
88-03 176.78 - 177.14	0.36	12.50	.365	17.6	.51
88-06 260.59 - 261.57	0.98	15.65	.456	4.3	.13
88-07 111.76 - 112.01	0.25	35.95	1.049	58.8	1.72
88-07 113.53 - 114.08	0.55	4.33	.126	8.0	.23
88-07 115.03 - 115.79	0.76	54.45	1.588	33.0	.96
88-08 138.77 - 140.41	1.64	9.33	.272	14.0	.41
88-10 111.12 - 112.01	0.89	18.75	.547	12.3	.36
88-11 137.76 - 138.43	0.67	78.40	2.287	76.5	2.23
88-12 67.45 - 68.42	0.97	5.41	.158	10.7	.31
88-12 171.75 - 172.23	0.48	16.00	.467	50.2	1.46
88-12 188.97 - 189.27	0.30	14.60	.426	9.8	.29
88-14 144.16 - 144.86	0.70	3.78	.110	3.9	.11

The appropriate diamond drill sections are plotted with geology and assay data in figures 5 to 10 located in the back pocket of this report. The drill holes were designed to intersect the Southwest vein system at depth and to fill-in zones previously drilled in the Southwest vein.

Two panels were drilled from drill pad site I, including DDH 88-01 to DDH 88-03 along 114° azimuth and DDH 88-04 and DDH 88-05 were drilled along a 146° azimuth.

The Southwest vein was intersected in DDH 88-01 at 107.62 - 108.29 m and 110.79 - 111.28 m. Although low gold and silver values (.84 g/tonne Au, 13.9 g/tonne Ag) were associated with a weak quartz stockwork containing 5-7% sphalerite and 3-5% pyrite at 107.62 - 108.29 m, high gold and silver assays (178.35 g/tonne Au, 171.0 g/tonne Ag) were encountered in a strong quartz vein with 10-15% interstitial pyrrhotite, 1-2% disseminated galena and 7-10% semi-massive pyrite at 110.79 - 111.28 m.

Surprising gold-silver assays resulted from DDH 88-02. Pyrite, pyrrhotite and sphalerite mineralization in brecciated quartz-calcite veining and weak stockwork, unrelated to the Southwest vein system, was encountered at 36.97 - 37.88, 42.67 - 43.28, 59.19 - 59.64 and 73.61 - 74.82 m carrying gold-silver values ranging from .80 g/tonne Au, 1.1 g/tonne Ag to 66.00 g/tonne Au, 12.3 g/tonne Ag. The Southwest vein system was intersected at 142.40 - 144.01 m with 2-3% disseminated arsenopyrite, pyrite and pyrrhotite yielding 2.06 g/tonne Au and 4.25 g/tonne Ag.

DDH 88-03 encountered the Southwest vein system at 164.31 - 164.61 m and 176.78 - 178.45 m with quartz veins and weak quartz stockwork containing 2-3% disseminated pyrite, pyrrhotite, sphalerite and trace chalcopyrite. Gold-silver assays yielded 7.85 g/tonne Au, 3.7 g/tonne Ag and 3.87 g/tonne Au and 9.26 g/tonne Ag respectively. As in DDH 88-02, DDH 88-03 interesected anomalous gold-silver values unrelated to the Southwest vein, but rather to a quartz stockwork along a shear zone with 1-2% disseminated pyrite at 48.26 - 48.77 m yielding 1.2 g/tonne Au and 1.2 g/tonne Ag (Figure 5).

DDH 88-04 and DDH 88-05 were drilled along a 146° azimuth. Although the Southwest vein was encountered in both holes at 152.70 - 153.73 m and 190.67 - 191.41 m respectively, low gold-silver values were obtained in weak to moderate quartz stringer-stockwork containing disseminated pyrite, veinlet sphalerite and disseminated pyrrhotite (Figure 6).

DDH 88-06 to DDH 88-09 were drilled along a 114° azimuth at drill pad II while DDH 88-10 to DDH 88-12 were drilled along a 101° azimuth from the same drill set up.

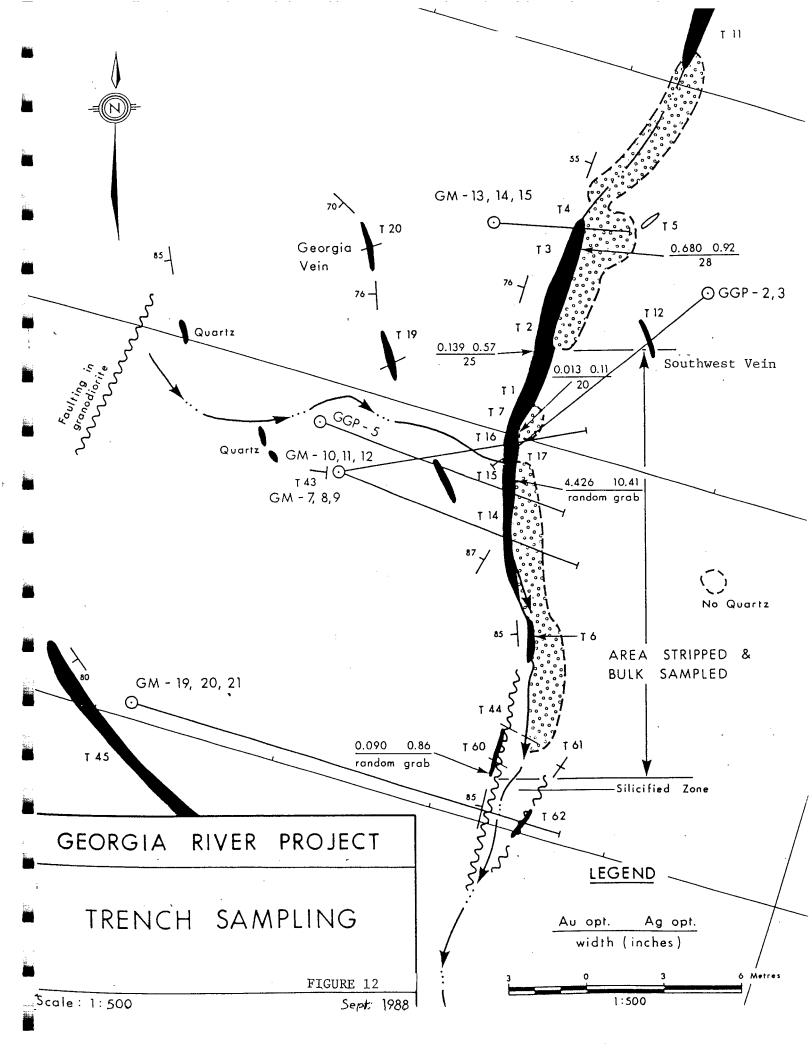
A narrow, parallel, quartz vein-stockwork system was encountered in DDH 88-09 and DDH 88-06 at 107.65 - 107.88 m and 160.38 - 160.93 m respectively. Mineralization included 2-3% disseminated pyrite and pyrrhotite yielding anomalous gold-silver values of 1.18 g/tonne Au, 0.2 g/tonne Ag in DDH 88-09 and 0.78 g/tonne Au, 1.0 g/tonne Ag in

DDH 88-06. The Southwest vein was intersected in DDH 88-06 to DDH 88-09 (Figure 7). The Southwest vein yielded 15.65 g/tonne Au and 4.3 g/tonne Ag at 260.59 - 261.57 m in DDH 88-06 while sample intervals from DDH 88-07 yielded assay values of 35.95 g/tonne Au and 58.8 g/tonne Ag at 111.76 - 112.01 m and 54.45 g/tonne Au and 33.0 g/tonne Ag at 115.03 - 115.79 m. The samples contained 2-3% disseminated pyrite and pyrrhotite in DDH 88-06 and 3-5% disseminated galena and sphalerite with up to 5-7% disseminated pyrite and pyrrhotite in DDH 88-07. DDH 88-08 contained 3-5% tetrahedrite with chalcopyrite, 2-3% sphalerite, 1-2% pyrite and trace - 1% galena with arsenopyrite at 138.77 - 140.41 yielding 9.33 g/tonne Au and 14.0 g/tonne Ag. The Southwest vein indicated anomalous gold-silver values in DDH 88-09 at 182.87 - 184.40 m along a shear zone with 15-20% quartz stockwork and 1-2% disseminated pyrite and pyrrhotite yielding 2.12 g/tonne Au and 1.6 g/tonne Ag.

The fourth panel of drill holes, DDH 88-10 to DDH 88-12, was drilled from drill pad II, along a 101° azimuth (Figure 8). Values as high as 18.75 g/tonne Au and 12.3 g/tonne Ag were encountered in DDH 88-10 at 111.12 - 112.01 m carrying 3-5% arsenopyrite with 2-3% sphalerite and 2-3% pyrite. DDH 88-11 yielded 7-10% interstitial pyrite, 3-5% galena and 1-2% sphalerite at 137.76 - 138.43 m with values of 78.40 g/tonne Au and 76.5 g/tonne Ag. In DDH 88-12, values on the Southwest vein were as high as 16.00 g/tonne Au, 50.2 g/tonne Ag and 14.60 g/tonne Au, 9.8 g/tonne Ag at 171.75 - 172.23 m and 188.97 - 189.29 m respectively. Mineralization includes 10-15% interstitial pyrrhotite, 3-5% disseminated sphalerite and galena and 2-3% disseminated pyrite and pyrrhotite, trace fine-grained visible gold is also noted at 188.97 - 189.29 m.

Drill pad III hosted DDH 88-13 and DDH 88-14, drilled on a 270° azimuth and DDH 88-15 drilled on a 250° azimuth. The purpose of these drill holes was to test the southern extension of the Southwest vein and to assess whether the vein system, if present, carried any

anomalous gold or silver values. The drill holes intersected a predominately barren, wide (up to 5 metres), laminated quartz stockwork with an associated narrow quartz vein-stockwork (Figure 9). This wide barren zone is believed to be the Main vein system. Drill holes DDH 88-13 and DDH 88-14 yielded anomalous gold-silver values of 0.90 g/tonne Au, 2.4 g/tonne Ag and 1.02 g/tonne Au, 10.5 g/tonne Ag respectively. These values were associated to the narrow quartz vein (approximately .3 m wide) with 2-3% disseminated pyrite and pyrrhotite. DDH 88-15 failed to intersect any anomalous gold or silver values.


The Southwest vein was intersected by DDH 88-13 and DDH 88-14, both in two places, as the Southwest vein appears to split into two parallel narrow veins. Values obtained from DDH 88-13 yielded 2.00 g/tonne Au, 2.4 g/tonne Ag at 115.88 - 116.55 m and 1.95 g/tonne Au, 4.3 g/tonne Ag at 120.61 - 121.24 m. Values obtained from DDH 88-14 yielded 3.78 g/tonne Au, 3.9 g/tonne Ag at 144.16 - 144.86 m and 0.99 g/tonne Au, 10.6 g/tonne Ag at 148.16 - 149.01 m. Mineralization included 1-2% pyrite and pyrrhotite, 1-2% galena, 3-5% sphalerite. DDH 88-15 failed to intersect any significant gold-silver values, making correlation or positive identification of the Southwest vein from the various other quartz veins intersected impossible.(Figure 10).

TRENCHING - BULK SAMPLING

During the 1988 field season, continued trenching of the Southwest vein was undertaken as follow-up to the 1987 trenching program. In 1987, a field crew excavated a continuous trench along the Southwest vein at its intersection with the Georgia vein. The 1980 work indicated that all quartz bearing material in this zone averaged 2.31 opt Au for 13 sample intervals on 2 different quartz stringers in 9 trenches.

The 1987 work was conducted using a XAS 50 compressor and Cobra drill to move overburden and break rock and in 1988 a cobra drill was employed. All quartz bearing material was placed in 45 gallon drums for shipment to a custom lab. Five large samples were collected from the tops of 40 drums to yield an average of 2.10 opt Au and 3.91 opt Ag. This value corresponds very well with the average of the trenching above. In addition, numerous small pockets of fractured controlled pale yellow gold (electrum) were indicated during the trenching program. Except for one drill hole, native gold had not been identified until the 1987 program.

In the course of stripping, chip sampling was conducted over areas of bulk sampling. Figure 12 shows the area of sampling. Values for this sampling varied from 0.013 - 4.426 opt Au and 0.11 - 10.41 opt Ag over widths up to 28 inches(Appendix 2). Additional trenching was conducted along strike approximately 100 metres to the north of the last outcropping of the Southwest vein. The attempt was hindered by excessive snow and water draining a small lake north of the trench site. The Southwest vein was not encountered during the trenching effort.

ORE RESERVES

Ore reserves for the Georgia River project have been calculated using information obtained from 35 previously completed drill holes, underground sampling, surface trenching and the 1988 diamond drilling (Appendix 1-3). The data enables mineral reserves to be "blocked out" in the following categories: drill indicated, drill inferred and geologically inferred. This is demonstated in Figure 11, Longitudinal Section of the Southwest and Bullion Veins.

The methods and criteria used in the reserve calculations are outlined below.

Using all the information gained from drill hole intersections, underground and surface trench programs, the areas of influence were assigned a grade. Each vein intersection was recalculated to its true vein width as opposed to its intersected width and, where necessary, calculated to a minimum mining width of 1.22 metres. All mineralized values were recalculated against these widths. Veins intersected by drifts and crosscuts and surface trenches were weighted according to their true width or adjusted to a minimum mining width of 1.22 meters. The true vein length, as measured from underground mapping and surface trenching was used. Grades of these veins were derived from chip samples taken across the strike of the vein on the backs of the drifts and across the face of trench cuts. Intermediate intersections on a particular vein were projected halfway to the next intersection.

The reserves have been classified using the USGS and GSC classification and are identified as indicated and inferred ore. Appendix 4 contains the definitions for the different reserve categories.

Each "block" was weighted according to the projected length and true width. By summing this product for each "block" and dividing by a volume factor of 11 cubic feet per ton a total tonnage was arrived at for each "block". The tonnage factor is based on approximately 10% sulphides including sphalerite, galena, pyrrhotite and pyrite each 25%. The weight of the gold and silver are not incorporated in calculating the tonnage factor. Total ounces of gold and silver were calculated for each "block". Adding all the tonnage factors and total ounces yields the total number of tons, the total ounces and ultimately the average grade for ore category.

Tables 4 and 5 give the indicated and inferred tonnages for the various blocks in Zone 1 and Zone 2 of the Southwest vein.

		٦	ΓABLE 4			
RESERVES	0F	THE	SOUTHWEST	VEIN	ZONE	7
Indicated						

			Indicat		
	Block	Grade(minimum	1.22 m wid	th) Ound	ces
	(tons)	Au opt	Ag opt	Au	Ag
1.	2083.42	.040	2.32	83.34	$48\overline{33.53}$
2.	1268.85	.266	.36	337.51	456.79
3.	1762.29	.729	.86	1284.71	1515.57
4.	959.99	.35	.29	336.00	278.40
5.	834.15	.216	.11	180.17	91.76
6.	744.08	.216	.11	160.72	81.85
7.	1425.24	.336	.35	478.88	498.83
8.	1065.20	.515	.97	548.58	1033.24
9.	3841.79	.788	.94	3027.33	3611.28
10.	1312.90	.03	.03	39.39	39.39
11.	391.62	.810	.810	317.21	317.21
12.	2108.87	1.51	2.3	3184.39	4850.40
13.	7383.71	2.05	1.28	15136.61	9451.15
14.	5717.65	.727	.586	4156.74	3350.54
15.	4386.14	.778	.496	3412.42	2175.53
16.	886.76	.330	.266	292.63	235.88
17.	5642.27	1.336	1.414	7538.07	7978.17
18.	3741.93	.218	.327	815.74	1223.61
19.	5799.89	.742	.724	4303.52	4199.12
20.	6044.65	.037	.076	223.65	459.39
21.	5639.33	.147	.256	885.37	1443.67
22.	5869.40	.035	.026	205.43	152.60
23.	4542.79	.079	.148	358.88	672.33
24.	2584.69	.154	.360	398.04	930.49
•	76037.61	.627	.656	47705.33	49880.73

Drill Inferred

Α	57321.42	(See Figure	11)
В	3710.60	(See Figure	11)
С	52884.37	(See Figure	11)
	113916.39		Geologically Inferred
D	58743	(See Figure	11) Geologically Inferred

TABLE 5

RESERVES OF THE SOUTHWEST VEIN ZONE 2

Indicated

Block	Grade(minimum	1.22 m width)	Our	nces
(tons)	Au opt	Ag opt	Au	Ag
$25. \overline{4254.9}5$.303	.433	$12\overline{89.25}$	$184\overline{2.39}$
26. 2715.88	.067	.050	181.96	135.79
27. 6013.33	7.292	2.14	43849.20	12868.53
28. 8488.36	.097	.34	823.37	2886.04
29. 4636.78	.040	.05	185.47	231.84
30. 3558.28	1.091	.78	3882.08	2775.45
31. 2757.00	.219	.19	603.78	423.83
32424.58	1.567	.656	50815.11	21263.87

Drill Inferred

E 19972.62 (See Figure 11)

Geologically Inferred

F 19972.62 (See Figure 11)

In summary, the Southwest vein Zone 1 mineral inventory is calculated at:

Indicated	76037.61						
Drill Inferred	113916.39						
Geologically Inferred	58743.00						
TOTAL	248697.00	tons	of	.627	opt	Au	and
1				.656	opt	Αg	

The Southwest vein Zone 2 mineral inventory is calculated at:

Indicated	32424.58						
Drill Inferred	19972.62						
Geologically Inferred	19972.62						
3	72369.82	tons	of	1.567	opt	Au	and
				.656	opt	Αq	

Therefore, the weighted average between Zone 1 and Zone 2 of the Southwest vein, yields 321,067 tons of .839 opt Au and .656 opt Ag. Note that the gold values differ significantly between the Zone 1 and Zone 2 at .627 opt and 1.567 opt respectively yet the silver values were identical at .656 opt for both zones within the Southwest vein.

Previous drilling conservatively indicates the Bullion vein yields 6195.2 tons of .122 opt Au and .30 opt Ag. Since this vein is considerably lower in grade, it was not included in the tonnage calculation with the Southwest zones.

CONCLUSIONS

- 1. Work completed to date has indicated that significant gold and silver values are associated with sulphide-bearing quartz veins emplaced along northerly and northwesterly trending shear patterns.
- 2. Two of seven known auriferous vein systems have only been signficantly explored. They are the Bullion and Southwest veins.
- 3. With support from previous underground development, surface diamond drilling and trenching, the 1988 diamond drill program outlined 321,067 tons of material grading .839 opt gold and .656 opt silver.
- 4. The property has excellent potential for developing further ore reserves with added exploration efforts.
- 5. An extensive underground and surface exploration program is strongly recommended. The program would include rehabilitation of existing underground workings as well as continued underground drifting, stope testing and underground diamond drilling. A rigorous surface diamond drilling program is recommended for the other auriferous quartz vein systems as well as completing fill-in drilling on the Southwest and Bullion veins. Continued trenching of the Southwest vein as well as other anomalous, gold-bearing, quartz systems is also recommended. This intensive geological exploration program would cost approximately \$2,000,000.

RECOMMENDATIONS

A three month long underground and surface exploration program is recommended including trenching, surface diamond drilling, underground diamond drilling and underground development and rehabilitation.

Total cost for the 90 day program follows:

Personnel - Geologist @ \$400/day - 8 Assistants @ \$150/day	36,000 108,000
Equipment Rentals	16,000
Mobilization/Demobilization	10,000
Camp - 15 men @ \$25/man/day	33,750
Subsistence - 15 men \$25/man/day	33,750
Consumables: fuel, dynamite, lumber, etc.	10,000
Assays	20,000
Freight	7,000
Helicopter Bell 206 - 100 hrs. @ \$600/hr Bell 204 - 25 hrs. @ \$1620/hr	60,000 40,500
Diamond Drilling - Surface 35,000 ft. @ \$25/ft	875,000
Underground 10,000 ft.@ \$30/ft	300,000
Underground Development and Rehabilitation (includes drifting and test stoping)	350,000
SUB TOTAL	1,900,000
CONTINGENCY	100,000
TOTAL	2,000,000

STATEMENT OF EXPENDITURES August - October, 1988

Mob/Demob (crew a	12,500.00					
Helicopter	94,518.82					
Diamond Drilling	244,243,03					
Assays				6,847.76		
Camp - \$25/manday	(523 man	days)		13,075.00		
Fuel, lumber, etc	•			4,503.37		
Generator - \$20/da	ay (48 day	/s)		960.00		
Consumables - \$7/r	manday (52	23 mandays)		3,661.00		
Communications - :	\$10/day (4	48 days)		480.00		
Food - \$23/manday	(523 man	days)		12,029.00		
Cobra Drill - \$50,	/day (48 d	days)		2,400.00		
Explosives (pro-ra	ated)			750.00		
Lumber & Hardware		1,000.00				
Expediting	4,756.15					
Freight	42.03					
Map reproduction	60.24					
Personnel - October 1 - 24						
E. Kruchkowski		geologist	5,600.00			
K. Konkin						
G. Sinden	\$200/day	geological/	4,800.00			
T. Devine	\$150/day	technician geological/ assistant	3,600.00			
B. Johansson						
D. Sloan						
M. Jaegar						
B. Touzin						
S. Weir						
				38,000.00		

OUR FILE: GEORGIASTATE

Statement of Expenditures ~ cont'd

Personnel - August program

K. KonkinE. KruchkowskiM. JaegerC. MoehlingJ. PaquetteA. HoffmanT. McIndoe	10 20 15 22 13	days days days days days	0 0 0 0	\$250/day \$300/day \$150/day \$160/day \$150/day \$150/day \$150/day	6,000 3,000 3,000 2,400 3,300 1,950	
S. Weir	14	days	9	\$150/day	2,100	22 700 00
						23,700.00
Report Writing						7,000.00
Drafting						2,500.00
TOTAL						\$473,026.40

REFERENCES

British Columbia Report of the Minister of Mines,

Annual Reports:

1914 - K153-154

1915 - K71

1916 - K-85

1917 - F-66

1918 - K-075-76

1922 - N65-66

1929 - C91-92

1932 - A57

1936 - B5-10

British Columbia Minister of Mines, Bulletin No. 1, 1932

DEARIN, C.D. 1980 E & B Exploration Ltd. inter-office memo Trip to Georgia River Mines Project September 26 to October 9, 1980

Progress Report #2 on the Georgia Gold Mine, Stewart Area, Skeena Mining Division, B.C.

GROVE, E.W., 1971
Geology and Mineral Deposits of the Stewart Area, B.C.
British Columbia Department of Mines and Petroleum
Resources, Bulletin No. 58.

HEMSWORTH, F.J., 1972

Report on the Georgia Gold Mine, Stewart, B.C.

KRUCHKOWSKI, E.R., 1980

Drill Report, Georgia 1 Crown Granted Claim,
Stewart. B.C., Skeena M.D., NTS 103-0/16W

KRUCHKOWSKI, E.R., 1981
Exploration Summary, Georgia River Project,
Stewart, B.C., Skeena M.D., NTS 103-0/16W

KRUCHKOWSKI, E.R., 1983
Report on Georgia River Project
Stewart, B.C., Skeena M.D., NTS 103-16W

KRUCHKOWSKI, E.R., 1988
Report on 1987 Work, Georgia River Project
Stewart, B.C., Skeena M.D., NTS 103-16W

WYDER, J.E., 1981
Preliminary Report on 1981 Exploration Program
Conducted on the Georgia River Project.

CERTIFICATE

I, KENNETH J. KONKIN, Geologist, residing at 4117 Burkeridge Place, in the City of West Vancouver, in the province of British Columbia, hereby certify that:

- 1. I received a Bachelor of Science degree in Geology from the University of British Columbia in 1985.
- 2. I have been practising my profession continuously since graduation.
- 3. I am a consulting geologist working on behalf of Avatar Resources Ltd.
- 4. This report is based on a review of reports, documents, maps and other technical data, and field work carried out by myself from July October, 1988 and on my experience and knowledge of the area.
- 5. I hold no direct interest in the Georgia River Claims.

Jun 18/89

DATE

K.J. KONKIN, B.Sc.

CERTIFICATE

I, EDWARD R. KRUCHKOWSKI, Geologist, residing at 23 Templeside Bay N.E., in the City of Calgary, in the province of Alberta, hereby certify that:

- I received a Bachelor of Science degree in Geology from the University of Alberta in 1972.
- I have been practising my profession continuously since graduation.
- I am a member of the Association of Professional Engineers,
 Geologists and Geophysicists of Alberta.
- 4. I am a consulting geologist on behalf of Avatar Resources Ltd.
- 5. This report is based on a review of reports, documents, maps and other technical data on the property area and on my experience and knowledge of the area.

DATE

E.R. KRUCHKOWSKI, B.Sc.

APPENDIX I
1988 Diamond Drill Logs

PROPER'	γ <u>Georgia Rive</u>	er		DATE August 16, 1988 AZIMUTH 114° LOGGED BY		
DRILL H	IOLE <u>88-01</u>			DEPTH 121.30 m DIP	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonn
	0 - 2.13			Casing; overburden, fractured o/c		
	2.13 - 24.08			Porphyritic granodiorite; 20-25% 1-3 mm plagioclase + chloritized		
				biotite + hornblende phenocrysts, in a weakly silicified		<u> </u>
				and leached matrix, excellent recovery, trace fine-grained		-
				disseminated pyrite and pyrrhotite, weak limonitic oxide		ļ
				along fracture planes.		
				-chloritic/clay fault gouge 12.28 - 12.44 m		
				-intense silicification, silica replacement @ 20.02 - 21.27 m		
				no visible sulphides.		
	24.08 - 63.40			Altered andesite tuff, pale grey-green mottled with dark maroon-grey,		
				10-15% obscured remnant phenocrysts and lithic fragments (chloritized),	
				patches of epidote alteration 5-7%, weakly foliated 50° to C.A.,		<u> </u>
				locally well leached & silicified, minor trace - 1% fine-grained		ļ
				to coarse-grained disseminated pyrite and pyrrhotite, minor 3-5%		
				quartz <u>+</u> calcite stringer <u>+</u> pyrite <u>+</u> pyrrhotite		<u> </u>
				· · · · · · · · · · · · · · · · · · ·		
44001		42.94 - 43.98	1.04	-intensely silicified with quartz stockwork 15-20% with 3-5%	.03	1.6

PROPER"	TYGeorgia F	River		DATE August 16, 1988 AZIMUTH 114° LOGGED BY		
DRILL H	IOLE			DEPTH 121.30 m DIP	AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αu	Ag g/tonne
				calcite, 1-2% coarse-grained disseminated pyrrhotite		
44002						
44002		45.93 - 46.63	.7	- intensely silicified, strong epidote alteration, 5-7% pyrrhotite	, 37	1,1
				veinlets + dissemination		
44003		46.63 - 47.33	.70	- intensely silicified, 20-25% quartz stockwork with 3-5% epidote,	.01	1.2
				1-2% coarse-grained disseminated pyrrhotite		
44004		49.16 - 50.29	1.13	- intensely silicified with 15-20% quarts stockwork with 2-3%	.01	0.9
				epidote, 1-2% coarse-grained disseminated pyrrhotite		
44005		51.54 - 52.88	1.34	- intensely silicified with 20-25% quartz stockwork with 2-3%	. 04	1.0
				epidote, 2-3% coarse-grained disseminated pyrrhotite + veinlet		
44006		54.80 - 55.26	.46	- intensely silicified with 30-35% quartz stockwork with 2-3%	.18	1.0
	Tours and the second se			epidote + calcite, 3-5% pyrrhotite + pyrite		
44007		58.43 - 59.04	.61	- intensely silicified with 15-20% quartz stockwork with 2-3%	.07	0.7
				pyrite and pyrrhotite disseminated + veinlet		
				,		

PROPER	γ <u>Georgia Ri</u>	ver		DATE August 16, 1988 AZIMUTH 114° LOGGED BY	<u>_</u>	
DRILL H	IOLE <u>88-01</u>			DEPTH 121.30 m DIP	AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION		Ag
	63.40 - 64.07			Andesite; weakly altered, medium green, intercolated with		
				brown, foliated 45° to C.A., 7-10% calcite veinlets + sweats,		
			-	weakly porphyritic		
	64.07 - 65.77			Quartz vein/stockwork, milky white quartz 55-60% in silicified		
				volcanic host, 2-3% disseminated + veinlet pyrite, 5-7% disseminated		
				+ veinlet pyrrhotite		
44008		64.07 - 65.13	1.06	- quartz stockwork, 30-35%, 3-5% disseminated + veinlet pyrite	.43	1.4
				+ pyrrhotite		
44009		65.13 - 65.77	.64	quartz vein with 7-10% pyrrhotite, 3-5% pyrite	.15	1.7_
	65.77 - 110.48			Andesite; as 63.40 - 64.07 m		
				- fault at 96.46 - 96.56 m		
	· · · · · · · · · · · · · · · · · · ·					
44010		97.23 - 97.84	.61	- quartz veins 3 and 10 cm wide, 55° to C.A., barren	.01	1.8
44011		107.62 - 108.29	.67	- intensely leached + silicified, 10-15% quartz stockwork,	.84	13.9

PROPERT	Georgia Ri	ver		DATE August 16, 1988 AZIMUTH 114° LOGGED BY		
DRILL H	OLE88-01			DEPTH DIP	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag
				5-7% sphalerite, 3-5% pyrite		
				- intensely leached volcanics @ 108.99 - 110.48 m		
44012		110.79 - 111.28	.49	- quartz vein, white quartz with 10-15% interstitial pyrrhotite,	178.35	171.
				1-2% fine-grained disseminated galena, semi-massive, 7-10% pyrite		
	111.28 - 120.09			Andesite; as 63.40 - 64.07 m		
	120.09 - 121.30			Altered andesitic tuff; silicified + porphyritic, as 24.08 - 63.40 m		
	121.30 m			E.O.H.		
						<u> </u>

PROPER	88-02	<u> </u>		DATE	AZIMUTH _	114 ^o	LOGGED BY		
DRILL F	IOLE			DEPTH 150.05 III	DIP	-03		ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH		DESCRIPTION			Au g/tonne	Ag g/tonne
	0 - 2.13			Casing; overburden, fract	ured o/c				
	2.13 - 26.52			Porphyritic granodiorite;	20-25% 1-3 mm	n plagioclase	+ chloritized		
	2.13 20.32			biotite + hornblende phend					
		<u> </u>		grained equigranular stro	ngly leached m	atrix, excel	lent recovery		
				trace fine-grained dissem	inated pyrite	+ pyrrhotite	weak		<u> </u>
		******		limonitic oxide along fra	cture planes,	locally stro	ng clay		
				alteration, minor altered	andesite tuff	near contac	t		
· · · · · · · · · · · · · · · · · · ·									
				- chloritic/clay gouge @	14.93 - 15.03	m			
				3-5 cm semi-massive pyrito	e + disseminat	ed pyrrhotit	e @ 23.96 m		
	26.52 - 65.99			Altered andesite tuff; pa	le-dark grey-g	green mottled	with dark brown-		
				maroon-grey, 10-15% obscu	red remnant ph	enocrysts +	lithic fragements		
				(chloritized), patches of	epidote alter	cation 5-7%,	weakly foliated		ļ
· · · · · · · · · · · · · · · · · · ·				65° to C.A., locally well	silicified ar	nd leached, m	inor quartz <u>+</u>		ļ
				calcite stringers + pyrite	e + pyrrhotite	trace - 2%	sulphides)		
				- well silicified @ 34.75	- 35.05	· · · · · · · · · · · · · · · · · · ·			
!									

PROPERT	γ Georgia River			DATE August 18, 1988 AZIMUTH 114° LOGGED BY		
DRILL H	OLE <u>88-02</u>			DEPTH 156.05 m DIP -65°	Δς	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αu	Ag g/tonne
44013		36.97 - 37.88	.91	- 10-15% quartz + calcite stockwork, 10-15% semi-massive sphalerite	8.05	24.3
				7-10% disseminated pyrite + pyrrhotite		
44014		42.67 - 43.28	.61	- 20-25% quartz stockwork, gouge at 42.67 - 42.73, 3-5% pyrite +	1.37	2.1
				pyrrhotite, 1-2% sphalerite		
44015		44.32 - 45.60	1.28	- 10-15% quartz stockwork, 3-5% epidote, 2-3% pyrite + pyrrhotite	.20	1.2
44016		46.24 - 46.51	.27	-20 cm quartz vein with 3-5% epidote, 2-3% pyrite + pyrrhotite	.18	1.0
		·		weak stringers 1-3 cm wide (barren quartz ± calcite) @ 47.24 - 65.99	m	
44017		59.19 - 59.65	.46	~25 cm quartz + calcite vein with 2-3% disseminated pyrite + pyrrho-	.80	1.1
				tite		
	65.99 - 67.33			Andesite; medium green intercolated with medium-dark brown andesite,		
				well altered, locally silicified and leached laminated 55° to C.A.,		
	•			5-7% quartz + calcite veinlet + stringers, up to 3-5% disseminated		
				pyrite <u>+</u> pyrrhotite generally only 1-2% disseminated sulphides		
44018	67.33 - 68.15	67.33 - 68.15	.82	Quartz vein; brecciated vein + quartz-calcite stockwork, 85%	. 35	1.9

PROPER1		/er		DATE August 18, 1988 AZIMUTH 114° LOGGED BY		
DRILL H	OLE			DEPTH 156.05 m. DIP -65°	AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
				quartz, 15% calcite, minor andesite host, 5-7% veinlet pyrite		
	68.15 - 75.59			Andesite; as 65.99 - 67.33 m		
44019		68.76 - 69.09	.33	- 35-40% quartz stockwork, 3-5% disseminated pyrite	.09	2.2
44020		71.62 - 72.69	1.07	- brecciated and silicified with 15-20% quartz + calcite stockwork 3-5% disseminated pyrite	.48	4.1
44021		72.69 - 73.61	.92	- silicified with 10-15% quartz + calcite stockwork, 3-5% dissemin-	.51	1.8
				ated pyrite		
44022		73.61 - 74.82	1.21	- brecciated & silicified with 10-15% quartz + calcite stringers,	66.0	12.3
				2-3% disseminated pyrite		
44023		74.82 - 75.59	.77	- 10-15% 1-10 cm quartz + calcite stringers, 2-3% disseminated pyrite	.23	2.0
44024	75.59 - 76.50	75.59 - 76.50	.91	Quartz + calcite vein; predominately barren with minor 15-20%	.40	2.4
				sericite alteration andesite host, 3-5% disseminated blebs		
				pyrite + pyrrhotite		

PROPERT		rer	_	DATE August 18, 1988 AZIMUTH 114° LOGGED BY		
DRILL P	10LE <u>88-02</u>			DEPTH 156.05 m DIP -65°	AS!	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αu	Ag g/tonne
	76.50 - 124.5			Andesite; as 65.99 - 67.33 m, intense calcite veinleting @		
				92.96 - 93.26, 95.09 - 97.84 generally 15-20% calcite veinlets		
				-gouge @ 118.10 - 118.50		
44025	124.50 - 125.27	7 124.50 - 125.27	.77	Quartz vein; milky white predominately barren 1-2% disseminated	.01	0.9
				pyrite <u>+</u> pyrrhotite, 30-35% sericite alteration andesite host,	<u> </u>	
			<u> </u>	contact 30° to C.A.		
	125.27 - 143.40			Altered andesite tuff; as 26.52 - 65.99 m		
			-	meeted discours again, and an again, and again, a		
44026		125.27 - 126.03	.76	- very well silicified vein contact	.01	1.7
				- strong silicification @ 132.28 - 133.04 with 5-7% epidote,		
				trace - 1% pyrite dissemination, 5 cm barren quartz stringer @ 135.17	, m 	
44027		142.40 - 143.40	1.00	- pale green well silicified altered andesite tuff, contact	.89	5.8
				to quartz vein		
//028	7/2/0 1// 01	3 7/2 /0 1// 01	61	2 day	3.99	1.7
44028	143.40 - 144.01	143.40 - 144.01	.61	Quartz vein, milky whtie with 2-3% dissemination, blebs arsenopyrite +pyrite + pyrrhotite, contact 25° to C.A.	13.22	1.,
	144.01 - 156.05			Altered andesite tuff; dark grey-blue mottled with dark		

PROPERTORILL H	ILL HOLE 88-02			DATE August 18, 1988 DEPTH 156.05 m	AZIMUTH114	LOGGED BY		SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH		DESCRIPTION		Au g/tonne	Ag
				maroon-brown, porphyritic,	15-20% 1-3 mm pla	agioclase phenocrysts,		<u> </u>
				minor lithic fragments, wel	l silicified, tra	ace - 2% disseminated		ļ
				pyrite, pyrrhotite, minor l	eached zones, 2-	3% 1-5 mm calcite +		
				quartz veinlets, 3-5% epido	te			
				- well leached and weakly s	ilicified, pale	green, @ 148.58 - 151.97	nı .	
	156.05			Е.О.Н.				
	<u></u>							
								
							 	
							-	
							-	-

PROPERT		er		DATE August 20, 1988 AZIMUTH 114° LOGGED BY		
DRILL H	OLE			DEPTH DIP	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Aυ	Ag g/tonne
	0 - 2.13			Casing, overburden, fractured o/c		
	2.13 - 22.71			Porphyritic expedients 20 25% 1 2 mm placiales to blanking 1		
-	2.13 - 22.71			Porphyritic granodiorite, 20-25% 1-3 mm plagioclase + chloritized biotite + hornblende phenocrysts in a weakly silicified, fine-grained		
				equigranular - strongly leached matrix, excellent recovery, trace fir	e-	
				grained disseminated pyrite + pyrrhotite, weak limonitic oxide along		
				fracture planes, local strong clay altered, minor alteration,		
				andesite tuff near contact		
				- fractured core, fault zone @ 12.50 - 13.11 m		
				- clay/chlorite gouge 6 cm wide @ 16.15 m		
	22.71 - 55.93			Altered andesite tuff; pale-dark grey green mottled with dark		
				brown-maroon-gray, 10-15% obscured remnant phenocrysts + lithic		
				fragments (chloritized), patches of epidote + veinlets 5-7%,	· •	
				weakly foliated 30° to C.A., locally well silicified & leached, minor		
				quartz <u>+</u> calcite stringers <u>+</u> pyrite <u>+</u> pyrrhotite (trace - 2% sulphide	s)	
				dissemination		
				- sheared, fault zones @ 25.45 - 26.21 m		

PROPER	TYGeorgia Ri	.ver		DATE August 20, 1988 AZIMUTH 114° LOGGED BY		
DRILL H	IOLE <u>88-03</u>			DEPTH 188.36 m DIP	AS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
44029		35.51 - 36.09	.58	- well silicified with 15-20% quartz stringers, 3-5% disseminated	.01	1.1
				pyrrhotite, trace - 1% sphalerite + pyrite		
44030		48.28 - 48.77	.49	- quartz vein/stockwork with shear zone @ 48.37 - 48.40, shear	1.2	1.2
				zone/vein 60° to C.A., 1-2% disseminated pyrite		
		``			<u> </u>	
	55.93 - 63.52			- Silicified altered andesitic volcanic tuff with quartz stockwork/		
				stringers with minor calcite veinleting		
44031		55.93 - 56.99	1.06	- 15-20% quartz stockwork, 2-3% epidote veinlets, 3-5%	.02	1.0
				disseminated pyrite + pyrrhotite		
44032		56.99 - 57.88	.89	- 15-20% quartz stockwork, 3-5% disseminated pyrite	.01	1.1
44033		57.88 - 58.67	.79	- 20-25% quartz + calcite stockwork/stringers, 2-3% disseminated	.01	0.9
				pyrite		
44034		60.41 - 61.41	1.00	- 7-10% quartz stringers, 2-3% disseminated pyrite	.57	1.9
44035		61.41 - 62.02	.61	- 30-35% quartz + calcite stockwork, 1-2% pyrite and pyrrhotite	.01	1.6
44036		63.24 - 63.52	.28	- 20-25% quartz stringers, 1-2% disseminated pyrite	.15	1.4
	63.52 - 67.66			Altered andesite tuff as 22.55 - 55.93		
·	67.66 - 76.35			Andesite, medium green intercolated with medium-dark brown	1	

PROPER		er		DATE August 20, 1988 AZIMUTH 114° LOGGED BY		
DRILL H	IOLE <u>88-03</u>			DEPTH $\frac{188.36 \text{ m}}{}$ DIP $\frac{-70^{\circ}}{}$	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
	•] [andesite, well altered; locally silicified and leached,		
			•	laminated 35-40 $^{\circ}$ to C.A., 5-7% barren quartz + calcite veinlets +		
	·			stringers, up to 3-5% disseminated pyrite <u>+</u> pyrrhotite generally		
			,	only 1-2% disseminated sulphides		
44037	71.65 - 72.30		.65	- 15-20% quartz + calcite stringer/stockwork, 3-5% disseminated pyrito	≥.18	2.7
44038	75.74 - 76.35		.61	- 15-20% quartz + calcite stringer/stockwork, 3-5% disseminated	.29	1.9
				pyrite		
	76.35 - 77.84			Brecciated quartz calcite vein, 5-10% sericite altered		
	·			andesitic host, 1-2% disseminated pyrite + pyrrhotite		,
44039		76.35 - 77.11	.76	as above	.04	1.8
44040		77.11 - 77.84	.73	as above	.08	2.0
	77.84 - 125.88			Andesite, as 67.66 - 76.35 m		
				- 20-25% calcite (barren) veinleting @ 101.49 - 103.93		
44041		121.76 - 122.13	.37	- 30-35% quartz stringers, 2-3% disseminated pyrite	.01	1.9
44042	,	125.18 - 125.88	.70	- 30-35% quartz stringers/stockwork, 2-3% disseminated pyrite	.09	1.0

PROPER1		ver		DATE <u>August 20, 1988</u> AZIMUTH <u>114°</u> LOGGED BY DEPTH <u>188.36 m</u> DIP			
DRILL H	OLE <u>88-03</u>			DEPTH 188.36 m DIP	ASSAYS		
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne	
	125:88 - 188.36			Altered andesite tuff; dark mottled blue-grey as 22.55 - 55.93			
				- fault gouge @ 137.76 - 138.37 m	<u> </u>		
				- intesnely leached (rhyolite dyke?) @ 149.71 - 162.76, minor 10-15%			
				altered andesite tuff	ļ		
44043	,	162.76 - 163.67	.91	- 15-20% quartz stringers/stockwork, 1-2% disseminated pyrite	.21	0.8	
44044		163.67 - 164.31	.64	- 5-10% quartz stringers, 1-2% disseminated pyrite, rhyolite	.38	1.8	
				dyke @ 164.13 - 164.31 m			
44045		164.31 - 164.61	.30	-15 cm quartz vein $45-50^{\circ}$ to C.A. with 5-7% pyrrhotite, 1-2% pyrite	7.85	3.7	
				1-2% sphalterite			
44046		176.78 - 177.14	.36	- Quartz vein with 2-3% disseminated pyrite, 1-2% pyrrhotite +	12.50	17.6	
				sphalerite	ļ		
44047		<u> 177.14 - 177.84</u>	.70	- 10-15% quartz stringers, 2-3% disseminated pyrite	1.46	2.4	
44048		177.84 - 178.45	.61	- 15-20% quartz stringers, 2-3% disseminated pyrite, trace	1.55	12.2	
				chalcopyrite			
·	188.36			Е.О.Н.			
	·						

PROPER		ver		DATE August 24, 1988 AZIMUTH 146° LOGGED BY DEPTH 160.01 m DIP			
DRILL H	10LE 88-04			DEPTH 160.01 m DIP -60°	ASSAYS		
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne	
	0 - 2.13			Casing; overburden, fractured o/c			
	2.13 - 40.20		-	Porphyritic granodiorite, 20-25% 1-3 mm plagioclase + chloritized			
				biotite + hornblende phenocrysts in a silicified fine-grained to			
				medium-grained equigranular matrix, strongly leached, trace fine-grain	led	ļ	
	·			disseminated pyrite \pm pyrrhotite, weak limonitic oxide along fractured			
				planes, local strong clay altered, minor altered andesite tuff near			
				contact, 2-3% quartz + calcite barren veinlets + stringers			
			<u> </u>				
				- gouge zone @ 7.86 - 7.92 m		ļ	
			ļ	- shear zone @ 20.85 - 20.97 m			
						·	
	40.20 - 81.23		ļ	Altered andesite tuff; very fine-grained, mottled pale-dark		ļ	
				grey green with medium-dark maroon-brown, weakly porphyritic,			
				5-7% remnant plagioclase phenocrysts 1-3 mm, very well silicified			
				leached and altered, minor remnant, 3-5% volcanic rock fragments,			
				2-3% epidote, 5-7% barren quartz <u>+</u> calcite stringers and veinlets,			
				1-2% disseminated pyrite <u>+</u> pyrrhotite			
			<u> </u>				
44049	·	47.36 - 47.79	.43	- 8 mm quartz stringer with 7-10% pyrite + pyrrhotite	.34	1.8	

PROPER		r		DATE August 24, 1988 AZIMUTH 146° LOGGED BY		
DRILL F	10LE			DEPTH DIP	AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
				moderately silicified @ 64.31 - 64.77, trace - 1% disseminated pyrite		
·						
	81.23 - 92.96			Andesite; medium green intercolated with minor brown altered		
			·	andesite, very fine-grained, massive, trace - 1% disseminated		
		`		pyrite <u>+</u> pyrrhotite, weakly altered, 1-2% barren calcite + quartz		
	·			veinlets, foliated 30° to C.A.		
44050	92.96 - 93.51	92.96 - 93.51	.55	Quartz vein/stockwork; 15-20% altered andesite tuff	.02	0.6
				host, 3-5% epidote, 1-2% disseminated pyrite + pyrrhotite		
	93.51 - 117.34			Altered andesite tuff; as 40.20 - 81.23 m		
					ļ	
44041		96.92 - 97.84	.92	- well silicified with 20-25% quartz stockwork, 3-5% epidote,	.01	0.9
				1-2% pyrrhotite dissemination		
44052	٠.,	103.23 - 103.78	.55	- 25-30% quartz stockwork, 2-3% epidote, 1-2% pyrrhotite + pyrite	.04	1.4
44053		105.46 - 106.37	.91	- sheared &leached, gouge @ 105.46 - 105.91, 2-3% pyrite	.01	1.2
44054		109.88 - 110.48	.60	- 35-40% quartz stockwork, 2-3% epidote, trace pyrite	.01	0.8
44055		115.57 - 116.28	.71	- 35-40% quartz + calcite stockwork, 3-5% epidote, 1-2%	.52	2.0
		<u> </u>		disseminated pyrrhotite		
		the state of the s				

PROPER		r		DATE August 24, 1988 AZIMUTH 146° LOGGED BY DEPTH 160.01 m DIP			
DRILL H	IOLE 88-04			DEPTH 160.01 m	DIP	AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH		DESCRIPTION	Au g/tonne	Ag g/tonne
	117.34 - 132.76			Felsic dyke; contact 35-40°	to C.A., pale grey-green, porphyritic		
			•	10-15% 1-2 mm "quartz-eyes"	in vein aphanitic matrix,		
				well leached and silicified	(possible equivalent to porphyritic		
				granodiorite?) 5-7% barren	quartz stringers, 3-5% epidote, 1-2%		
	·			disseminated pyrite + pyrrh	otite, 10% minor andesite and altered	_	
				andesite tuff host.			
44056		123.22 - 123.90	.68	- 15-20% quartz stringers,	very well silicified, no obvious	.08	1.0
				sulphides			
44057		123.90 - 124.96	1.06	- Quartz vein, 10% host ver	y well silicified, 3-5% disseminated	.10	0.2
				pyrite	-		
44058		127.70 - 128.80	1.10	- Quartz vein/stockwork, 15	-20% silicified host, 3-5% disseminated	.07	0.4
				pyrite			
	132.76 - 160.01			Altered andesite tuff, as 4	0.20 - 81.23 with minor laminated		
				andesite @ 148.89 - 151.78,	granitized andesite tuff		
		:					
44059		148.43 - 148.89	.46	- Quartz vein/stockwork, 20	-25% silicified host, 3-5% epidote,	.12	0.2
				trace disseminated pyrite			
44060		151-17 - 151-78	.61	- 15-20% quartz stockwork,	5-7% disseminated pyrite	.47	2.2

PROPER		iver		DATE August 24, 1988 AZIMUTH 146°	LOGGED BY		
DRILL H	IOLE 88-04			DEPTH 160.01 m DIP -60°		ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION		Au g/tonne	Ag
44061	,	152.70 - 153.73	1.03	- 15-20% quartz stockwork, 7-10% disseminated pyr	ite, 5-7%	1.67	16.5
				veinlet sphalerite			
					·		
	160.01		·	Е.О.Н.			
		·					
	1				-	ļ	
						-	
	·					 	
		,					

PROPER		ver		DATE August 29, 1988 DEPTH 196.59 m	AZIMUTH _	146° -65°	_ LOGGED BY		
DRILL F	IOLE 88-05			DEPTH 190.39 III	DIP			ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH		DESCRIPTION			Au g/tonne	Ag g/tonne
	02.13			Casing, overburden, fract	ured o/c				
	2.13 - 41.60			Porphyritic granodiorite;	20-25% 1-3 mm	plagioclase +	- chloritized		
				hornblende + biotite phen	ocrysts in an	equigranular,	silicified		
				fine-grained to medium-gr	ained, strongl	y leached matr	ix,		
				trace fine-grained dissem	inated pyrite	+ pyrrhotite,	weak		
	:			limonitic oxide along fra	cture planes,	locally strong	g clay alteration	•	
	41.60 - 163.67			Altered andesite tuff, pa	le-dark grey-g	reen-blue mott	led		
				with dark maroon-brown al	tered andesite	, porphyritic	5-7%		
	·			1-5 mm feldspar phenocrys	sts, 7-10% epid	ote + calcite	+ quartz		-
				stringers + veinlets, alt	ered host rock	, well silicif	ied & leached		
				locally, trace - 2% fine-	grained to coa	rse-grained di	sseminated		
				pyrite + pyrrhotite		·			
				- medium green andesite d	yke @ 58.06.59	.28 m		:	
44062		67.66 - 68.73	1.07	- 15-20% quartz stockwork	., 3-5% dissemi	nated pyrrhoti	te, 2-3%	.04	0.6
				disseminated pyrite					
44063		99.66 - 100.12	.46	- 15-20% quartz stockwork	., 3-5% dissemi	nated pyrrhoti	te, 2-3%	.33	0.2

AZIMUTH __146° **DATE** August 29, 1988 Georgia River PROPERTY_ LOGGED BY ____ DEPTH 196.59 m 88-05 DRILL HOLE_ DIP ____ **ASSAYS** SAMPLE GEOLOGICAL SAMPLE WIDTH DESCRIPTION INTERVAL INTERVAL g/tonne g/tonne NUMBER disseminated pyrite 44064 100.12 - 100.73- Quartz vein, 3-5% epidote, 2-3% disseminated pyrite + pyrrhotite .17 0.2 .61 - 10-15% quartz stockwork, 3-5% disseminated pyrite + pyrrhotite . 2 44065 100.73 - 101.52.05 .79 44066 106.37 - 107.28 - 15-20% quartz stockwork, 2-3% epidote, 2-3% pyrrhotite + pyrite .18 8.0 - Quartz vein, 2-3% disseminated pyrrhotite 44067 107.28 - 107.59 .31.63 .5 - 20-25% quartz stockwork, 5-7% epidote, 1-2% disseminated 44068 109.88 - 111.09 1.21 .06 . 2 pyrite + pyrrhotite 113.59 - 114.45 .86 - 35-40% quartz stockwork, well leached host, 2-3% disseminated 44069 .01 1.5 pyrite 114.45 - 115.21 .76 - 10-15% quartz stringers, 2-3% disseminated pyrite + pyrrhotite 44070 .18 . 2 120.24 - 122.07 1.83 - Very well leached & silicified, 2-3% disseminated pyrite 44071 .01 . 6 122.07 - 123.86 1.79 - 15-20% quartz stockwork, 3-5% disseminated pyrite, 1-2% 44072 .01 blebs sphalerite 44073 .02 .5 124.72 - 125.18 .46 - 15-20% quartz stockwork, 7-10% epidote, 2-3% disseminated pyrrhotite - well granitized @ 129.23 - 139.38 m 44074 - 15-20% quartz stringers, 3-5% disseminated pyrrhotite, pyrite + 134.56 - 135.63 1.07 .06 .4 sphalerite 44075 135.63 - 136.54 .91 - 10-15% quartz stringers, well leached & granitized, 3-5% .01 2.2

disseminated sphalerite, 1-2% pyrite + pyrrhotite

PROPERT	00.05	ver		DATE August 29, 1988 AZIMUTH 146° LOGGED BY		
DRILL H	OLE 88-05		-	DEPTH 196.59 m DIP	AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αυ	Ag g/tonne
44076	,	145.69 - 146.08	.39	- 15-20% quartz stockwork, 3-5% epidote, trace pyrite	.03	1.0
44077		150.26 - 150.69	.43	- 15-20% quartz stockwork, 3-5% epidote, 3-5% pyrrhotite,	.07	.4
				1-2% pyrite		
	163.67 - 184.09			Andesite, medium-dark maroon-brown-green massive andesite with		
				7-10% quartz + calcite stringers + veinlets, minor porphyritic		
				(feldspar phenocrysts up to 15-20%) zones		
44078		167.17 - 167.81	6/1	- 20-25% quartz + calcite stockwork, barren	.01	2.0
44078	,	182.87 - 183.15		- 10 cm band of semi-massive pyrrhotite, 30-35° to C.A.	.28	2.1
	184.09 - 196.59			Altered andesite tuff, as 41.60 - 163.67 m		
// 000	· ·	107.60 100.05	, ,	The state of the s	.32	.8
44080		187.60 - 188.05	.43	- Very well silicified, 5-7% disseminated pyrite, 3-5% disseminated pyrrhotite	.32	.0
44081		189.27 - 190.03	.76	- Very well silicified and leached	.41	.7
44082		190.03 - 190.67	.64	- Quartz vein, predominantly barren with 1-2% disseminated	.53	.5
				pyrite + pyrrhotite, contact 25-30° to C.A.		
44083		190.67 - 191.41	.74	- Very well silicified, 7-10% quartz stringer, 1-2% pyrite +	.85	2.0
			-	pyrrhotite		

PROPERT	88_05	ver		DATE August 29, 1988 AZIMUTH 146° LOGGED BY DEPTH		
DRILL H	OLE	· · · · · · · · · · · · · · · · · · ·		DEPTH DIP	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αu	Ag g/tonne
44084		191.41 - 192.93	1.52	- Very well silicified, 7-10% quartz stringer, 1-2% pyrite +	.53	.5
				pyrrhotite	_	
44085		192.93 - 194.73	1.80	- Very well silicified, 15-20% quartz stringer, 1-2% pyrite +	.28	1.6
44086		195.98 - 196.59		pyrrhotite - Shear zone @ 195.98 - 196.59, 5-7% quartz stringers	.23	2.0
	196.59			E.O.H.		
					-	
				·		·
	· · · · · · · · · · · · · · · · · · ·					
,	,					

PROPER		ver		DATE		
SAMPLE	IOLE 88-06 GEOLOGICAL	SAMPLE	 s		Αυ	SAYS Ag
NUMBER	INTERVAL	INTERVAL	WIDTH	DESCRIPTION	g/tonne	g/tonne
	0 4.88			Casing, overburden, fractured o/c		ļ
	4.88 - 33.22			Granodiorite, coarse-grained equigranular, minor porphyritic		
	4.00 - 33.22			zones (plagioclase + biotite hornblende phenocrysts) well		
		,		,	<u> </u>	
				<pre>leached and medium - well silicified locally, strong chlorite + clay alteration, minor 3-5% quartz + calcite stringers,</pre>		
			ļ	veinlets, trace - 2% disseminated pyrite + pyrrhotite, weak		
				limonitic oxide along fracture planes		
						-
44087		4.88 - 5.94	1.06	- Shear zone with 15-20% quartz stockwork, 1-2% disseminated pyrite	.06	1.7
				-Shear zone @ 23.93 - 24.54		
44088	:	29.50 - 30.33	.83	- Shear zone with 5-7% barren quartz stringers	.02	.5
44089		31.39 - 32.31	.92	- 10-15% quartz stringers (barren)	.04	.2
	33.22 - 177.54			Altered andesite tuff, pale - dark grey-green-brown mottled,		
				foliated 40-45° to C.A., minor porphyritic zones (feldspar		
				phenocrysts), 7-10% quartz + calcite + epidote veinlets +		
				stringers + blebs, well silicified + leached locally,		
				trace - 2% disseminated pyrite + pyrrhotite		

PROPERT	Y Georgia Rive	er		DATE August 31, 1988 AZIMUTH 114° LOGGED BY		
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	width	DESCRIPTION	Αu	AYS Ag g/tonne
44090		35.05 - 36.27	1.22	- 10-15% quartz stringers, barren, vuggy, terminated quartz	.01	9.6
				veinlets	.18	.6
44091		85.71 - 86.01	.30	- 12 cm quartz vein 50° to C.A., 1-2% disseminated pyrrhotite + pyrit	e	
				- medium - dark green andesite dyke @ $91.31 - 92.20$ contacts 60° to		
				C.A. and 94.18 - 97.23 m		
44092		101.20 - 101.80	.52	- 10-15% quartz stringers, 5-7% epidote + chlorite, trace - 1%	.03	.4
				pyrrhotite		
				- Leached and sheared @ 103.32 - 103.93		
44093		108.72 - 110.03	1.31	- 15-20% quartz + calcite stockwork, 1-2% disseminated pyrite +	.02	1.5
				pyrrhotite		
44094	<u>i</u>	110.03 - 110.94	.91	- 7-10% quartz + calcite + epidote stringers, 1% disseminated	.10	.3
				pyrite + pyrrhotite		
44095		110.94 - 112.07	1.13	- 7-10% quartz + calcite + epidote stringers, 1% disseminated	.13	.3
				pyrite + pyrrhotite		
44096		112.07 - 113.01	. 94	- 35-40% quartz + calcite stockwork, 2-3% disseminated pyrrhotite	.11	.2
				+ pyrite		
44097	,	113.01 - 113.99	.98	- 10-15% quartz + calcite + epidote stringers, 1-2% disseminated	.32	.5
				pyrite + pyrrhotite		
44098		113.99 - 115.9	1.98	- 15-20% quartz + calcite + epidote stringers/stockwork,	.01	.5

PROPER	Georgia River		_	DATE August 31, 1988 AZIMUTH 114° LOGGED BY	<u> </u>	
DRILL H	OLE88-06		····	DEPTH 304.18 m DIP -72°	AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
	,			2-3% disseminated pyrite + pyrrhotite		
44099		117.04 - 117.49	•45	- 10-15% quartz + calcite + epidote stringers, 1-2% disseminated	.10	.2
				pyrite + pyrrhotite		
			ļ <u></u>	- Andesite dyke, medium green unaltered @ 131.41 - 134.72, contact		
				85-90° to C.A.	·	
				- 50% core recovery @ 149.04 - 156.05 m		
44100		156.05 - 157.12	1.07	- 30-35% quartz stockwork, 2-3% disseminated pyrrhotite	.01	.3
44101		160.38 - 160.93	.55	- Quartz vein, 1-2% disseminated pyrite + pyrrhotite, 20-25%	.78	1.0
				silicified host		
44102		162.60 - 163.00	.40	- 8" quartz vein with 1-2% disseminated pyrite	.03	.2
44103		163.18 - 164.28	1.10	- Quartz vein, 10-15% calcite, 10-15% silicified host, trace - 1%	.09	.4
				pyrrhotite		
	177.54 - 197.20			Porphyritic granodiorite, medium-dark grey, 20-25% 1-25 mm		
				plagioclase phenocrysts, 5-7% biotite + hornblende, 1-3 mm pheno-		
				crysts, trace disseminated pyrite, minor epidote (Skarn?) altered,		
				$1-2\%$ $1-3$ mm wide quartz + calcite veinlets, foliated 45° to C.A.		
	·					
	197.20 - 219.90			Altered andesite tuff, as 33.22 - 177.54, altered by intrusive,		
				oranitized		

PROPER'	TY Georgia Rive	r		DATE August 31, 1988 AZIMUTH 114° LOGGED BY DEPTH 304.18 m DIP -72°		
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	 width	DESCRIPTION	ASS Au g/tonne	SAYS Ag g/tonne
	219.90 - 275.98			Siltstone/lithic-crystal tuff, predominantly black - dark brown		
				very fine-grained, layered (70-90° to C.A.) siltstone with		
				minor intercolated lithic crystal tuff (dark brown, weakly		
			·	porphyritic) 3-5% quartz stringers, 5-7% calcite sweats and		
				veinlets, trace fine-grained disseminated pyrite		
44104		236.09 - 236.48	.39	- 15-20% quartz + calcite stockwork, 2-3% disseminated pyrrhotite	1.90	2.0
44105		246.02 - 246.42	.40	- 15-20% quartz + calcite stockwork, 2-3% disseminated pyrrhotite	.19	4.0
44106		248.19 - 249.47	1.28	- 15-20% quartz + calcite stockwork, 2-3% disseminated pyrrhotite	1.28	4.2
44107		250.38 - 250.84	.46	- 15-20% quartz + calcite stringers, trace fine-grained disseminated	.84	3.7
				pyrite		
44108		260.59 - 261.57	.98	- 20-25% quartz + calcite stockwork, 2-3% disseminated pyrite +	15.65	4.3
				pyrrhotite		
	275.98 - 295.64			Andesite tuff, medium grey-green fine-grained crystal tuff,		
				7-10% 1-2 mm feldspar phenocrysts, weakly altered, foliated		
				25-30° to C.A., 5-7% 1-5 mm wide calcite veinlets + sweats,		
				1-2% 1-3 cm wide barren quartz stringers, trace - 1% disseminated		
				pyrite.		

PROPER	TY Georgia River			DATEAugust 31, 1988	AZIMUTH 114° DIP	_ LOGGED BY		
DRILL H	10LE			DEPTH	DIP	_	ASSAYS	
SAMPLE NUMBER	GEOLOGICAL	SAMPLE INTERVAL	WIDTH	I	DESCRIPTION		Au g/tonne	Ag
	295.64 - 298.78			Porphyritic granodiorite, as	177.54 ~ 197.20 m			
			· · · · · ·					
	298.78 - 304.18			Andesite tuff, as 275.98 - 2	95.64			
	20/. 19	· · · · · · · · · · · · · · · · · · ·		E O H		7		
	304.18			E.O.H.				
	,							
	•						1	
						-		
·								

PROPER		er		DATE October 5, 1988 AZIMUTH 114° LOGGED BY DEPTH		
DRILL HOLE 88-07				DEPTH DIP	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
	0 - ^2.44 m			Casing; overburden		
	2.44 - 3.96			Alt. andesite tuff; severely leached & granitized, pale grey, sheared		
				intense clay alter., weak 1-2 cm wide quartz stringers (5-7%),		
				generally barren of mineralization.		
46001		3.05 - 3.96	.91	Well sheared, massive py with 3-5% SL @ 3.35 - 3.51 m, 5-7% 1-2 cm	.20	.40
				qtz stringers.		
			 			
	3.96 - 25.60		_	Granodiorite, well leached, pale grey-green, generally c.g.		
				equigranular with minor porphyritic phases, minor andesite tuff host,		
				1-2 mm 2-3% qtz + cal veinlets, strong clay alt, tr-2% diss PØ + Py		
				Sheared at 17.40 - 17.46 m		
	25.60 - 53.49	-		Alt andesite tuff; med-dk maroon to pale grey green mottled, silicifi	ed.	
				& granitized by granodiorite, mod-strong chl + ep alt, minor 1-2%		
				barren qtz <u>+</u> cal stringers, tr - 1% diss Py + PØ + CP		
46002		33.89 - 35 51	1.62	7-10% qtz stringers with 2-3% SL, 1-2% PØ, 3-5% epidote		

PROPER DRILL H	Georgia Ri OLE 88-07	ver		DATE October 5, 1988 AZIMUTH 114° LOGGED BY DEPTH141.14 m DIP45°		SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αu	Ag g/tonne
				Granitization is very weak to non-existant beyond 39 m predominately		
				pale-dk green mottled with strong chl alt, foliated 55° to C.A.		
46003		51.30 - 52.03	.73	Semi massive SL, dk maroon 25-30%, 3-5% PØ, 1-2% CP + Py	.07	38.0
46004		52.03 - 53.49	1.46	" " 7-10%, " " " "	.08	19.2
	53.49 - 58.52			Granodiorite; pale grey, very coarse-grained, weakly-moderately leached	d,	
				equigranular, tr-1% diss PØ + PY		
					·	
	58.52 - 141.12			Alt andesite tuff as 25.60 - 53.49		
46005		70.74 - 71.62	.88	Well leached; silicified with 15-20% qtz stringers 2-3% Py, PØ, SL	.43	1.0
46006		80.01 - 80.31	.30	- 12 cm:qtz vein 60° to C.A., 3-5% Py	.51	. 2
46007		88.05 - 88.36	.31	- 25-30% qtz stwk, 3-5% ep, 1-2% PØ + Py	.04	.3
				- leached & weakly sheared zone 92.0 - 92.96		
46008		109.7 - 110.94	1.24	- 15-20% qtz stwk, 3-5% Py + PØ, 1-2% SL + GL	2.62	6.7
46009		110.94 - 111.76	.82	- very well leached & silicified alt. andesite tuff	.22	. 4
46010		111.76 - 112.01	.25	- qtz vein 55° to C.A., 3-5% SL + GL, 2-3% Py + PØ	35.95	58.8

PROPER	Georgia Ri OLE 88-07	ver		DATE October 5, 1988 AZIMUTH 114° LOGGED BY DEPTH		
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	 WIDTH	1	Αu	AYS Ag g/tonne
46011	,	<u> </u>	1.52	- 35-40% qtz stwk, 1-2% Py + PØ diss	.29	.2
46012		113.53 - 114.01		-4 cm qtz vein 55° to C.A. with $10-15\%$ GL, $5-7\%$ Py		8.0
46013		115.03 - 115.79	.76	- qtz vein 50° to C.A. with 5-7% interstitial PØ + Py	54.45	
				3-5% interstitial GL, 2-3% spec. hem.		
46014		115.79 - 116.5	.73	- well leached alt andesite tuff, 3 cm qtz vein - 3-5% PØ diss.	.71	2.4
46015		120.88 - 121.91	1.03		.02	. 4
46016		121.91 - 122.98	1.07	- 20-25% " " " " "	.01	.2
46017		121.24 - 132.25	1.01	- 20-25% qtz stwk, 3-5% diss PØ + Py, 1-2% SL	.01	. 2
46018		132.25 - 133.13	.88	- 10-15% qtz stwk, 1-2% diss PØ + Py	.01	. 4
	141.12			E.O.H.		
				·		

PROPERTY Georgia River DRILL HOLE 88-08				DATE AZIMUTHLOGGED BY DEPTH DIP	ASSAYS		
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αu	AYS Ag g/tonne	
	02.44			Casing; overburden			
	2.44 - 39.16			Granodiorite; well alt & leached, well silicified, pale grey-green,			
				c.g. & equigranular with porphyritic phases, intense clay alt, 1-2% 1-2 cm qtz + cal. stringers & veinlets, tr - 1% diss PØ + Py, minor			
				alt andesite tuff host			
				- Sheared at 2.44 - 3.35 and 26.06 - 26.18			
	39.16 - 167.63			Altered andesite tuff; mottled pale grey-green, with dark maroon			
	: 			massive dark green with brown zones, porphyritic, alt plag phen 3-10 mm, large silicified plag phen 5-10 mm 5-7%, strong epidote			
				alt ass with silicification, tr-1% diss P \emptyset intensely granitized,			
				foliated 40° to C.A., 2-3% 1-2 cm wide qtz veinlets		,	
46019		82.44 - 83.82	1.38	- 10-15% qtz stwk, 2-3% patches of SL, 2-3% diss PØ + Py	.01	2.3	
				- well leached and weakly sheared zone @ 102.71 - 106.98			
46020		116.12 - 117.10	,98	- well silicified, 7-10% qtz stringers, tr-1% Py + PØ diss	.01	1.0	
46021		112.10 - 118.07	.97	- 40-45% qtz stwk, 2-3% epidote, 1-2% Py + PØ diss	.02	. 2	

PROPERT	88_08	er		DATE AZIMUTHLOGGED BY DEPTH DIP		
SAMPLE	GEOLOGICAL	SAMPLE	— WIDTH	DEPTH DESCRIPTION	Αu	AYS Ag
NUMBER	INTERVAL	INTERVAL	ļ		g/tonne	
46022		118.0/ - 119.17	1.10	- 25-30% qtz stwk, 5-7% epidote, 1-2% Py + P 0 diss	.04	.3
46023	Annual Control of the	119.93 - 120.94	1.01	- 15-20% " " , 3-5% diss Py + P∅	.01	.2
46024		123.35 - 123.62	.27	- 20-25% " " , 1-2% SL, tr-1% PØ, Py	.01	2.1
46025		134.11 - 134.41	.30	- 8 cm qtz vein 40° to C.A., 2-3% PY	1.16	.3
46026		137.15 - 137.85	.70	- 40-45% qtz stwk, 2-3% diss PY, PØ	1.17	.2
46027		137.85 - 138.77	.92	- 7-10% qtz stringers, 1-2% diss PY, P∅	.52	.2
46028		138.77 - 140.11	1.64	- 80-90% qtz vein $35-40^{\circ}$ to C.A., $3-5\%$ tet + CP, $2-3\%$ SL,	9.33	14.0
				1-2% PY + PØ , tr - 1% GL + AS		
46029		148.34 - 150.11	1.77	- 80-85% qtz vein with 1-2% PY, 2-3% ep	.01	1.0
				- well leached @ 150.11 - 155.59		·
	167.63			Е.О.Н.		

PROPER		ver		DATE LOGGED BY			
DRILL HOLE88-09				DEPTH DIP	ASSAYS		
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αυ g/tonne	Ag g/tonne	
	03.96			Casing; overburden			
	3.96 - 30.02			Granodiorite; well altered & leached, well silicified, pale grey-			
			·	green, c.g. & equigranular with porphyritic phases, intense clay alt.			
			ļ	1-2% 1-2 cm qtz \pm cal stringers & veinlets, trace - 1% diss PØ + PY,			
				minor alt andesite tuff host		<u> </u>	
46030		3.96 - 5.33	1.37	- sheared well with 7-10% qtz stringers, 2-3% diss PY	.01	2.0	
				- 4 cm fault gouge @ 21.96 m			
	30.02 - 134.11			Alt andesite tuff; mottled pale grey green with dark maroon, massive			
				dark green with brown phases, porphyritic, alt plag phen 3-10 mm,			
				large silicified 5-7% 5-10 mm pag phen, strong ep alt associated			
				with silification, trace - 1% diss PØ , intensely granitized, foliate	d 		
			ļ	$50-55^{\circ}$ to C.A., $2-3\%$ $1-2$ mm wide qtz veinlets			
46031		54.04 - 54.86	.82	- 10-15% qtz + cal stringers, 2-3% SL, 1-2% PØ, + PY	.44	2.2	
46032		57.57 - 58.52	.95	- 25-30% qtz + cal stwk, 3-5% ep, 1-2% PØ + PY	.02	.2	
46033		63.49 - 64.55	1.06	- 10-15% qtz stringers, 2-3% diss PY	.21	.3	
46034	, 	67.81 - 68.91	1.10	- very well silicified, 3-5% diss PY, PØ, 3-5% cal	.01	1.0	

PROPER		River	_	DATE AZIMUTH114° LOGGED BY		
DRILL F	10LE <u>88-09</u>			DEPTH 228.28 m DIP	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
46035	,	84.43 - 85.13	.70	- 25-30% qtz stwk, 2-3% SL, $_{1-2\%}$ PØ	.01	2.0
46036		93.87 - 94.18	.31	- 25-30% qtz stwk, trace - 1% diss PØ	.01	.3
46037		107.65 - 107.99	.34	- 15-20% qtz stwk, 2-3% diss PY, 102% diss PØ	1.18	.2
46038		112.25 - 113.20	.95	- 10-15% qtz stringers, 1-2% diss PY + PØ	.21	.2
46039		113.20 - 114.60	1.40	- 15-20% qtz stwk, 1-2% diss PY + PØ	.01	.3
				- brecciated @ 128.92 - 133.59, fault gouge @ 128.92 - 129.22,		
				whole section well leached		
				Qtz-felsic dyke, 134.11 - 146.91 m with no significant mineralization		
				moderately brecciated and well granitized felsic-qtz dyke/brecciated		
				qtz vein, obviously drilled down dip of a barren, brecciated qtz rich v	ein/	
				dyke trending perpendicular to S.W. vein, 15° contact to C.A. with		
				volcanic host @ 146.91 m		
46040		153.46 - 154.07	.61	- predominately barren qtz vein with 10% ser alt host, no significant	.01	2.0
				mineralization visible		
	1					
	146.91 - 164.77			Alt andesite tuff, as 30.02 - 134.11 m		
	164.77 - 175.40			Silicified & granitized, felsic-qtz brecciated dyke/vein with pale		

PROPERTYGeorgia River				DATE AZIMUTHLOGGED BY DEPTH DIP		
DRILL H	10LE88-09			DEPTH DIP		SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	1	Αu	Ag g/tonne
	·			green alteration mineral (mariposite?), very similar section as		
				134.11 - 146.91, contact 15° to C.A. @ 540.6, 25% barren milky		
				white qtz, 50% brecciated, granitized host, 20% felsic flooding,		
				5% mariposite or chlorite alt associated with ser, no significant		
				visible min		
	175.40 - 179.34			Alt andesite tuff, as 30.02 - 134.11		
	179.34 - 228.28			Alt andesite/basalt, black-dark brown with zones of 10-15% alt		<u> </u>
				1-3 mm plag phen, 3-5% barren qtz \pm cal stringers & veinlets,		
				trace - 2% diss PY + PØ		
						ļ
46041		181.53 - 182.87	1.34	- 20-25% qtz stwk, trace - 1% f.g. diss PY + PØ	.02	.2
46042		182.87 - 184.40	1.53	- 15-20% qtz stringers, trace - 1% f.g. diss PY + P∅	2.12	1.6
	·			- fault @ 184.40 - 184.49		
46043		187.20 - 187.47	.27	- 20 cm qtz vein 40° to C.A., 1-2% PY + PØ	.01	1.0
46044		189.92 - 191.10	1.18	- predominately barren qtz + cal vein with 3-5% ser	.01	2.0
46045		191.10 - 192.26	1.16	- predominately barren 20-25% qtz + cal stwk with 3-5% ser, tr PY	.08	1.4
46046		200.85 - 201.77	.92	- 40-45% barren qtz stwk	.04	2.2
46047		202.37 - 203.23	.86	- 35-40% barren qtz stwk	.01	.3

I .		ver		DATE AZIMUTH	114°	LOGGED BY		
DRILL H	IOLE <u>88-09</u>			DEPTH 228.28 m DIP	-66 ⁰		ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTIO)N		Au g/tonne	Ag g/tonne
46048		204.02 - 205.73	1.71	- 20-25% barren qtz + cal stwk			.03	2.4
46049		205.73 - 206.95	1.22	- 15-20% barren qtz stringers with cal	cite		.21	2.0
46050		206.95 - 207.50	.55	- barren qtz vein with 10-15% host, tr	ace diss PY		.02	.4
46051		218.44 - 219.17	.73	- qtz vein wtih 50° contact to C.A., 3	-5% PY + AS		.02	2.1
46052		219.17 - 220.18	1.01	- 35-40% barren gtz stwk			.01	1.2
46053		220.18 - 221.40	1.22	- 15-20% barren qtz stwk			.01	2.0
46054		221.40 - 222.25	.85	- 15-20% barren qtz stwk			.01	. 4
				- mislatch @ 210.00 - 213.04, 60% reco	very			
	228.28			E.O.H.				
					•			
	v							
							1	

PROPER		ver		DATE AZIMUTHLOGGED BY		·····
DRILL H	IOLE 88-10			DEPTH 136.54 m DIP -45°	ASS	AYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
	03.05			Casing; overburden		
			<u> </u>			
	3.05 - 22.86			Granodiorite, pale grey-green, very well leached, strong clay-chl		ļ
				alt, generally c.g. and equigranular with porphyritic phases, mod -		
				well silicified, 5-7% qtz stringers + veinlets, trace - 1% diss $P\emptyset$ +	PΥ	
				- sheared @ 3.05 - 3.81 with 20.51 - 20.87 m		
	22.86 - 41.45			Alt andesite tuff; mottled maroon-black-dark green-dark brown with		
				pale grey green-pale blue, intensely alt & deformed yet very well		
			-	silicified & granitized, minor alt granodiorite dykes, intense ep		
		ļ		alt associated with silicification, porphyritic zones are common,		
<u> </u>				trace - 2% diss PY + PØ, foliated 30° to C.A.		
				Alt granodiorite @ 24.23 - 25.60 m		
				Alt granodiorite & 24.23 - 25.00 m		
46055		30.45 - 31.21	.76	- milky white qtz vein with 5-7% black SL	.01	.2
46056		39.38 - 39.96	.58	- well silicified, 3-5% blebs PØ, 1-2% PY, 2-3% SL	.02	.2
				\sim 1 cm SL + qtz veinlet 80° to C.A. @ 38.16 m		
						<u> </u>

PROPER		River		DATE AZIMUTHO LOGGED BY		
DRILL H	IOLE88-10			DEPTH 136.54 m DIP -45°	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
	41.45 - 48.86			Granodiorite; as 3.05 - 22.86 m		
	48.86 - 88.11			Alt andesite tuff; as 22.86 - 41.45 m		
46057		48.86 - 49.86	1.00	- well silicified, 7-10% PØ, 2-3% PY, 1-2% CP, tr tet + SL	.01	.3
46058		50.66 - 51.60	.94	- 7-10% qtz stringers + 3-5% ep, 3-5% SL, 2-3% PØ + PY	.03	2.2
				- 1 cm P \emptyset , SL + PY veinlet 45-50 $^{\circ}$ to C.A. @ 64.04 m		
46059		81.71 - 82.29	.58	- 25-30% qtz _ cal + ep stwk, 3-5% PY, 1-2% PØ	.01	2.0
46060		87.08 - 88.11	1.03	- 10-15% qtz stringers, 2-3% diss PØ, 1-2% PY	.01	. 2
	88.11 - 125.33			Andesite; massive-finely laminated, dark green with med brown		
				5-7% calcite veinlets & sweats ± qtz stringers, & veinlets, tr f.g.		
				diss PØ + PY, weak ep alt		
				- leached to pale grey green & brecciated with barren calcite \pm		
				minor qtz @ 96.76 - 101.19 m		
46061		103.93 - 104.82	.89	- 3-5% PY & 3-5% SL, associated with calcite stringers	.59	13.9

PROPER	88-10	ver		DATE AZIMUTH LOGGED BY DEPTH DIP	· · · · · · · · · · · · · · · · · · ·	
SAMPLE	GEOLOGICAL	SAMPLE	WIDTH		Αυ	AYS Ag
NUMBER	INTERVAL	INTERVAL			 	g/tonne
46062		110.24 - 111.12	.88	- very well leached, 5-7% qtz stringers, 2-3% diss PY	1.75	4.2
46063		111.12 - 112.01	. 8,9	- Qtz vein contacts 35° to C.A., 3-5% AS, 2-3% SL, 2-3% PY	18.75	12.3
46064		113.08 - 113.44	.36	- well silicified & 3-5% AS seam	.20	1.8
46065		120.76 - 121.79	1.03	- 5-7% layers 1-4 cm thick of SL + PY	.75	8.2
46066		121.79 - 122.74	.95	- 5-7% layers 1-4 cm thick of SL + PY associated with calcite	.67	11.5
46067		122.74 - 124.44	1.70	- 20-25% barren qtz + cal stringers	.01	1.7
46068		124.69 - 125.33	.64	- 20-25% qtz stwk, 3-5% diss PY, 1-2% PO	.02	2.1
	125.33 - 136.54			Alt andesite tuff, (xtl tuff), med-dark grey-blue with 1-15 mm epidotized plag phen, well silicified, 7-10% barren qtz ± cal veinlet	is.	
				& stringers, trace - 1% diss PØ + PY		
	136.54			Е.О.Н.		
				·		
	·					
					·	

PROPERT	ΤΥ Georgia Riy	yer		DATE October 10, 1988 AZIMUTH 101° LOGGED BY		
DRILL F	HOLE <u>88-11</u>			DEPTH 167.33 m DIP -57°	AS!	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αu	Ag g/tonne
	0 - 3.05		-	Casing; overburden		
	3.05 - 26.82			Granodiorite; intensely deformed @ 10-15, generally very well		
				leached, pale grey green, equigranular, c.g. with porphyritic		
				phases, strong clay alt, 3-5% barren qtz veinlets + stringers, locally well silicified, trace - 1% diss f.g. PY + PØ, minor		
				granitized host		
				- fault @ 26.64 - 26.70 m		-
	26.82 - 47.97			Alt andesite tuff; mottled dark green-black-brown with pale grey-		
				green, laminated 30° to C.A., locally well granitized & well silicifie	eď	
				with ep alt, 3-5% qtz \pm cal veinlets + stringers, trace - 1% diss PY +	PØ	
				- very well leached, granitized & silicified @ 36.57 - 43.28		
46069		39.32 - 39.62	.30	- qtz vein with 2-3% SL + PY	.01	.2
-	47.97 - 49.74			Granodiorite; as 3.05 - 26.82 m		
	49.74 - 96.16			Alt andesite tuff; as 26.82 - 47.97 m		

PROPER	TYGeorgia Ri	ver		DATE October 10, 1988 AZIMUTH 101° LOGGED BY		
DRILL H	IOLE88-11			DEPTH 167.33 m DIP	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH		Au g/tonne	Ag
46070	,	56.99 - 57.33	.34	20 $cmqtz$ vein 45° to C.A., 3-5% PY + SL	.01	1.9
46071		61.57 - 61.96	.39	- calcite vein $45-50^{\circ}$ to C.A. with 3-5% PY diss	.05	2.0
46072	·	62.94 - 63.79	.85	- 20-25% qtz + cal stwk, 3-5% PY + SL	.37	1.8
46073		64.40 - 65.01	.61	- 7-10% qtz stringers, 3-5% PY + SL	.01	.3
46074	tuas	65.59 - 66.23	.64	- 7-10% SL + 3-5% PY associated with calcite sweats	1.51	3.8
	96.16 - 142.79			Andesite; massive-finely laminated dark green-brown-black, 5-7%		
				calcite veinlets & sweats, 3-5% qtz veinelts + stringers, trace - 1%		
				diss f.g. PY + P \emptyset , very weak ep alt, minor porphyritic zone		
46075		106.10 - 106.98	.88	- 5-7% SL + 5-7% PY with trace - 1% CP associated with calcite sweats and diss in andesitic host	.87	16.4
				-brecciated & leached @ 117.34 - 119.48 m		
46076		131.88 - 132.95	1.07	- 15-20% qtz stringers, 1-2% f.g. diss PY + PØ	.01	.2
46077		135.72 - 136.08	.36	- 20-25% qtz stwk, predominately barren	.34	.3
	72			- well leached @ 136.08 - 141.88 m		

PROPER DRILL H	TY <u>Georgia R</u> HOLE <u>88-11</u>			DATE October 10, 1988 AZIMUTH 101° LOGGED BY DEPTH 167.33 m DIP -57°		SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αυ g/tonne	Ag
46078		137.76 - 138.43	.67	- 65-70% qtz stwk, 7-10% interstitial PY, 3-5% GL, 1-2% SL	78.40	76.5
46079		141.88 - 142.79	.91	- 45-50% qtz stwk, 1-2% diss PY, 10-15% chlorite + ep	.16	.4
	142.79 - 167.33			Alt andesite/basalt; (crystal tuff) porphyritic & amygdaloidal		
				dark greey-blue-black with 15-20% 1-20 mm wide feld + alt feld		
				(silicified + epidotized) phen + amygdyles, 3-5% qtz + cal veinlets		
				+ stringers, trace - 2% diss PY + PØ		
			1			
	167.33	,		Е.О.Н.		
						<u> </u>
				,		
777						
						
						

PROPER	TY Georgia Riv	ver		DATE		101°	LOGGED BY _		
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	1	DESCRIPTION		_	Αυ	SAYS Ag g/tonne
	03.05			Casing; overburden					
	3.05 - 28.50			Alt granodiorite; sheared	l with 5–10% bar	ren qtz strir	ngers @ ,		
		,		3.05 - 4.57, generally we		,			
				c.g. with porphyritic photostructure veinlets + stringers, lo					
				f.g. PY + PØ, minor gran					
	28.50 - 124.44			Alt andesite tuff; mottle	ed dark green, b	lack, brown,	with pale		
				grey-green, laminated 30	to C.A., local	ly well grani	itized & well		
				silicified with ep alt,	3-5% qtz <u>+</u> cal v	einlets + st	ringers,		<u> </u>
				trace – 1% diss PY + PØ					·
46080		48.92 - 49.22	.30	- well silicified with 1	5-20% qtz stwk,	2-3% ep, 1-2%	% PY + PØ	.01	.3
46081		66.60 - 67.45	.85	- 25-30% qtz stwk, 1-2%	liss PY + PØ			.01	.8
46082		67.45 - 68.42	. 97	- 10-15% qtz stringers,	7-10% c.g. semi-	massive PY,	3-5% SL	5.41	10.7
46083		70.86 - 71.32	.46	- well silicified, 15-20	% qtz stringers,	1-2% diss PY	Y	.01	.4
46084		104.39 - 105.70	1.31	- milky white qtz vein w	ith 7-10% chl, 2	-3% PØ blebs,	, 1-2% diss PY	.37	.2
46085		105.70 - 106.64	. 94	- 15-20% qtz stringers,	2-3% diss PY + P	0		.06	.6
46086		106.64 - 107.44	.80	- 20-25% gtz stwk, 5-7%	ep, 3-5% diss PY	+ PØ		.69	3.5

PROPER DRILL H	TY <u>Georgia Ri</u> HOLE ⁸⁸⁻¹²	ver		DATE AZIMUTH LOGGED BY DEPTH DIP F66°	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αυ g/tonne	Ag g/tonne
	124.44 - 154.37			Crystal tuff; porphyritic, dark green-dark steel blue grey-black,		
}				15-20% 1-25 mm feld phen in andesitic matrix, moderate - well		
				granitized, 2-3% qtz veinlets + stringers, trace - 2% diss PY + PØ,		
				minor leached zones, moderate ep alt with silicified feld phen		
				- fault @ 146.69 m 30° to C.A.		
				- well leached @ 146.60 - 149.28 m		
	154.37 - 160.01			Andesite; massive-finely laminated, medium-dark green wtih brown-maro	n,	
				weakly alt		
	160.01 - 161.23			- Porphyritic dyke; dark brown-black andesitic matrix, 15-20% silicif	ed	
				feld phen 1-5 mm dia, 2-3% barren qtz veinlets		·
	161.23 - 166.11			Andesite; as 154.37 - 160.01 m; grades into a crystal tuff as		
	,			124.44 - 154.37 @ 166.11 - 166.41 m		
	166.11 - 173.18	i		Crystal tuff; as 124.44 - 154.37 m appears to be an intrusive,		
				lower contact with andesite		
46087		171.75 - 172.23	.48	- qtz vein, 45° contact to C.A., $10-15\%$ interstitial PØ,	16.00	50.2

PROPERT		ver		DATE	_ AZIMUTH	101° -66°	_ LOGGED BY		
DRILL H	IOLE			DEPTH		-66	-	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	·	DESCRIPTION			Au g/tonne	Ag
	,			3-5% diss blebs SL + GL					
	173.18 - 175.86		,	Andesite; as 154.37 - 160.0	17				
	1/3.10 - 1/3.80		<u> </u>	AlideSite, as 134.37 - 100.0	/1		,		
	175.86 - 177.23			Crystal tuff; shallow intru	sive?, as 124	.44 - 154.37 v	with minor		
				andesite /basalt					
	177.23 - 188.97			Basalt; massive finely lami	nated, (silts	tone appearanc	ce) dark		
				brown-black, 3-5% cal + qtz	veinlets + s	weats, trace -	- 1% diss f.g.		
				PY + PØ					
	188.97 - 196.77			Crystal tuff; porphyritic,	shallow intru	sive? as 124.	44 - 154.37 m		
46088		188.97 - 189.27	.30	- qtz vein 25° to C.A., 2-3	% diss PY <u>+</u> P(Ø, 1-2% diss 1	blebs SL,	14.60	9.8
				trace visible gold					
						,	·		
	196.77 - 224.93			Basalt; as 177.23 - 188.97	m				
46089		201.43 - 202.35	.92	- 45% qtz stwk in shear zon	e with 3-5% d	iss PY, 1-2% o	diss SL + GL	2.09	5.3
46090		202.35 - 203.14	.79	- shear zone with 3-5% qtz	stringers, 1-2	2% diss PY		.55	2.4

PROPER	TY Georgia Riv	er		DATE	AZIMUTH101° DIP66°.	LOGGED BY		
DRILL I	HOLE 88-12			DEPTH 224.93 m	DIP		AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	1			Αu	Ag g/tonne
	224.93			Е.О.Н.				
						the state of the s		
						-		
								
		· · · · · · · · · · · · · · · · · · ·						
						·		
							-	-
			1			***************************************		
							1.	

PROPER	TYGeorgia R	iver	-	DATE AZIMUTH LOGGED BY		
DRILL H	HOLE 88-13			DEPTH 133.50 m DIP -45°	AS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
	0 - 2.44		<u> </u>	Casing; overburden		
	2.44 - 33.28		,	Andesite/basalt; massive-finely laminated dark grey-green-black-dark		
	`			brown, 2-3% qtz + cal veinlets, minor leached zones, minor porphyrition	4	
				(plag phen) phases, trace - 1% f.g. diss PY <u>+</u> PØ		-
46091		33.01 - 33.28	.27	- barren qtz + cal vein	.02	1.8
	33.28 - 76.77			Alt andesite/basalt tuff; (crystal tuff), well foliated parallel to		
		<u> </u>		C.A., medium-dark grey-brown, speckled, 2-3% qtz cal veinlets		
				trace - 1% f.g. diss PY, 3-5% cal sweats, f.g m.g. volcanic	ļ	
				extrusive or shallow intrusive, weakly porphyritic 5-7% 1-10 mm		
				feld phen		
	,		<u> </u>			
46092		68.85 - 69.49	.64	- 25-30% cal + qtz barren stwk, trace - 1% PØ	.01	1.7
46093		69.49 - 70.56	1.71	- 45-50% qtz + cal stwk with 1-2% diss PY + PØ	.01	1.3
46094		75.43 - 75.77	.34	- qtz vein wtih 2-3% diss PY + PØ	.90	2.4
	75.77 - 83.51			Andesite/basalt, as 2.44 - 33.28 m		

PROPER	TY Georgia River			DATE AZIMUTH LOGGED BY		
DRILL I	IOLE		<u></u>	DEPTH DIP	AS:	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
	83.51 - 96.31			Silicified zone; 60% brecciated qtz stwk, 10-20° to C.A., with 35%		
				leached ser alt host, pale green, 2-3% diss PY + PØ with trace - 1%		
				mariposite		
				- wavey laminated texture		
46095		83.51 - 84.73	1.22	- 3-5% PY + PØ	.05	3.7
46096		84.73 - 86.25	1.52	- 3-5% PY + PØ	.12	2.1
46097		86.25 - 87.78	1.53	- 3-5% PY + PØ	.02	2.6
46098		87.78 - 89.30	1.52	- 3-5% PY + PØ, 1% AS	.04	1.8
46099		89.30 - 90.83	1.53	- 3-5% PY + PØ	.05	2.3
46100		90.83 - 92.35	1.52	- 3-5% PY + PØ	.10	1.7
46101		92.35 - 93.87	1.52	- 3~5% PY + PØ	.02	.8
46102		93.87 - 94.79	.92	- 7-10% PY + PØ	.01	1.9
46103		94.79 - 96.31	1.52	- 3-5% diss PY + PØ	.01	2.7
	96.31 - 133.50			Andesite/basalt with 5-7% cal veinlets + sweats as 2.44 - 33.28 m		
46104		97.34 - 99.21	1.87	- well silicified, wormy texture of qtz brecciation, 3:5% PY + PØ	-01	. 6
				5-10% cal		
46105	`	115.88 - 116.55	.67	- 20-25% qtz stwk, trace - 1% diss PØ	2.00	2.4

PROPERT	88_13	River		DATE	AZIMUTH270° DIP	LOGGED BY		
DRILL H SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	— WIDTH	1	DESCRIPTION		Αu	AYS Ag g/tonne
46106		 	.63	- qtz vein, barren with 2	20-25% host, trace - 1% PY	+ PØ	1.95	
	133.50		<u> </u>	Е.О.Н.		<u> </u>		
	1							
						<u> </u>	-	
	· · · · · · · · · · · · · · · · · · ·							
					•			
	,						-	
							-	
				**************************************	<u> </u>			

PROPER	TY <u>Georgia Ri</u> HOLE 88-14	ver		DATE AZIMUTH LOGGED BY DEPTH DIP		AYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag
	0 - 2.44			Casing; overburden		
	2.44 - 72.84			Andesite/basalt; massive-finely laminated dark grey-green, black-		
			·	dark brown, 2-3% qtz + cal veinlets, minor leached zones, minor		
				Porphyritic (plag phen) phases, trace - 1% f.g. diss PY ± PØ		
46107		64.31 - 64.61	.30	- 8 cm qtz + cal stringer 15° to C.A., 2-3% diss PØ + PY	.12	3.2
	72.84 - 82.60			Alt andesite/basalt tuff; (crystal tuff), well foliated parallel -		
				10° to C.A., medium - dark grey-brown, speckled, 2-3% qtz + cal		
				veinlets, trace - 1% f.g. diss PY, 3-5% cal sweats, f.g m.g.		
				volcanic extrusive or shallow intrusive, weakly porphyritic		·
				5-7% l-10 mm feld phen		
	82.60 - 101.83			Andesite/basalt, as 2.44 - 72.84 m		
		· ·				
46108		91.34 - 91.62	.28	- qtz vein 20° to C.A. with 2-3% diss PY + PØ	1.02	10.5
46109		97.53 - 97.68	.15	- qtz + cal vein with 1-2% diss PY + PØ	.01	1.0
46110		99.06 - 100.24	1.18	- 35-40% cal + qtz stwk with 1-2% diss PY + PØ	.01	2.1
46111		101.22 - 101.83	.61	- 40-45% cal + qtz stwk with trace - 1% diss PY + PØ	.02	1.8

PROPERT		iver		DATE AZIMUTH LOGGED BY DEPTH DIP		
DRILL H	IOLE	-		DEPTH DIP	AS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag g/tonne
	101.83 - 136.09			Alt andesite/basalt tuff, crystal tuff; (shallow alt intrusive?)		
				as alt andesite tuff encountered in holes 88-01 to 88-12 but		
	,			lacking ep alt; porphyritic as 72.84 - 82.60 m		
46112		103 8/ _ 10/ 85	. 1 01	- 20-25% qtz + cal stwk, trace PY + PØ	.01	.5
40112		103.04 - 104.03	1.01	- 20-25% qt2 - car stwk, trace rr - rp		
				- leached pale grey-brown @ 119.78 - 121.46 m		
	136.09 - 145.93			Basalt; black, massive-finely laminated, 7-10% cal veinlets +		
				stringers, trace - 1% diss PY + PØ		
46113	1	136.09 - 136.76	.67	- qtz + cal vein 45° to C.A., 1-2% diss PØ + PY	.01	1.7
46114		144.16 - 144.86	.70	-37 cm qtz vein 55° to C.A., trace - 1% diss PY + PØ + GL	3.78	3.9
	1/5 00 156 66			A1		
	145.93 - 156.66			Alt andesite tuff, crystal tuff; maroon, porphyritic, 25-30% 1-5 mm feld phen		
46115		148.16 - 149.01	.85	- 15-20% qtz stringers with 5-7% PØ + SL	.99	10.6
46116	1	151.51 - 152.39	.88	- 20-25% qtz stwk, with 1-2% diss PØ	.04	• 4
46117		152.39 - 153.31	.93	- qtz + cal vein 45° to C.A., trace PØ, 2-3% chl	.01	3.5

PROPER'	00.1/	ver		DATE AZIMUTH LOGGED	BY	
DRILL H	OLE88-14	 		DEPTH 163.97 m DIP	AS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Αu	Ag g/tonne
46118		154.07 - 154.68	.61	- 30-35% qtz stwk, trace PØ	.01	.2
46119		154.68 - 155.56	.88	- qtz + cal vein, trace - 1% diss PØ	.01	.3
46120		155.56 - 156.32	.76	- 30-35% qtz + cal stwk, brecciated, trace - 1% diss PØ	.02	.4
	146.66 - 163.97			Andesite/basalt tuff; dark brown-black, 3-5% cal veinlets + swe	ats,	
				massive - finely laminated, f.g.		
46121		157.23 - 158.18	.95	- 35-40% cal + qtz stwk, trace PØ + PY	.01	.4
	163.97			E.O.H.		
	<u> </u>					
				· · ·		
						1

PROPER	00 15	iver		DATE AZIMUTH 250° LOGGED BY		
DRILL H	OLE88-15			DEPTH DIP	ASS	SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	DESCRIPTION	Au g/tonne	Ag
	0 -, 2.44			Casing; overburden		
	2.44 - 23.32			Andesite/basalt tuff; dark grey-black with weak calcite speckles		
	2.44 - 23.32		 	the state of the s		
				(calcite sweats), 3-5% cal \pm qtz veinlets, massive - finely laminated		
				with inter-layered calcite sweats, lamination is 20-35° to C.A.		
	23.32 - 45.32			Porphyritic andesite tuff, crystal tuff; 7-10% 1-5 mm feld phen,		
				maroon-dark grey 3-5% cal <u>+</u> qtz veinlets		
46122		32.22 - 32.92	.70	- qtz + cal vein, 1-2% diss P \emptyset + PY	.01	.2
46123	1	34.50 - 35.36	.86	- 35-40% qtz + cal stwk, 1-2% diss PY + PØ, 3-5% chl	.01	.5
46124		37.18 - 38.10	.92	- 10-15% cal + qtz stringers, 1-2% diss PY + P ϕ	.01	.6
46125		38.10 - 38.56	.46	- 30-35% qtz + cal stwk, 3-5% chl, trace - 1% PØ + PY	.01	.2
	45.32 - 48.16			Andesite/basalt tuff; laminated with 5-7% 1-2 mm thick layered		
				calcite sweats, as 2.44 - 23.32 m		
	48.16 - 52.27			Silicified zone; wavey, laminated 40° to C.A., 65-70% qtz with		
				ser alt host, 1% mariposite, 15-20% qtz stringers 2-3% diss PY + PØ		

PROPERT	Georgia R	iver		DATE	AZIMUTH250°	LOGGED BY		
DRILL H	00 15			DEPTH138.98 m	DIP			SAYS
SAMPLE NUMBER	GEOLOGICAL INTERVAL	SAMPLE INTERVAL	WIDTH	1	DESCRIPTION		Αu	Ag g/tonne
46126		48.16 - 49.07	.91	- 3-5% diss PY + PØ			.02	2.1
46127		49.07 - 49.74	.67	- 3-5% diss PY + PØ			.01	2.0
46128		49.74 - 50.66	.92	- 2-3% diss PY + PØ		,	.01	.6
46129		50.66 - 51.51	.85	- 2-3% diss PY + PØ			.01	2.3
46130		51.51 - 52.27	.76	- 3-5% diss PY + PØ			.01	3.8
	42.27 - 138.98			Andesite/basalt tuff; a	s 45.32 - 48.16 m			
46131		67.05 - 68.12	1.07	- 20-25% qtz stwk, trac	e - 1% diss SL + PY		.01	.2
46132		68.12 - 69.19	1.07	- 15-20% qtz stwk, trac	e PY, 2-3% chl		.01	.7
			ļ	- well leached @ 71.01	- 77.11 m	· · · · · · · · · · · · · · · · · · ·	<u> </u>	ļ
46133		77.54 - 78.18	.64	- 20-25% qtz + cal stwk	, 1-2% diss PY		.01	.4
46134		78.18 - 79.24	1.06	- 45-50% qtz + cal stwk	, trace - 1% diss PY + PØ		.01	2.0
46135		88.48 - 89.24	.76	- cal + qtz vein, 15% h	ost, trace − 1% diss PY + PØ		.01	1.8
				5-8 cm barren qtz + cal	stringers @ 100.88, 101.80	and 103.63 m		
_								
				- 10-15% cal sweats alo	ng lamination @ 100.58 - 138	.98		
	138.98	<u> </u>		Е.О.Н.				

APPENDIX 2
1988 Diamond Drill and
Trenching Assays

MIN • EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867

TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company:ED KRUCHKOWSKI

Project:

Attention:ED KRUCHKOWSKI

File:81-115/P1 Date:SEPT.3/88

Type:ROCK ASSAY

ie hereby certify the following results for samples submitted.

nse nuk <u>u</u>	mple nh <i>e</i> r		AG G/TONNE	AG OZ/TON	AU G/TONNE	AU OZ/TON
44	001		16	0.05	. o3	0.001
44	002		1.1	0.03	. 37	0.011
4.4	003		1.2	0.04	.01	0.001
4 4	004		0.9	O.O3	. 01	O.OOt
	005		1.0	0.03	.04	0.001
-	006		1.0	0.03	. 18	0.005
44	007		0.7		. 07	0.002
4.4	008		1.4	0.04	.43	0.013
4	009		1.7		. 15	0.004
44	010		1.8	0.05	"Ol	0.001
4	011		13.9	0.41	.84	0.025
	012		171.0	4,99	178.35	5.202
44	013		24.3	0.71	8.05	0.235
4	014		2.1	0.06	1.37	0.040
	015		1.2	0.04	, 2(j	0.006
44	016		1.O	0.03	. 1.8	0.005
4 44	017		1.1	0.03	.80	0.023
44	018		1.9	0.06	.35	0.010
	019				. 09	0.003
4	020		* 4 j	0.12	.48	0.014
44	021		1.8	0.05	.51	0.015
	022		12.3	0.36	66.00	1.925
	023		2.0		. 23	0.007
	024			0.07	.40	0.012
	025		0.9	0.03	" O 1	0.001
44	026		1.7	0.05	"O1	0.001
	027			0.17	. 89	0.026
	028		1.7		3.99	0.116
_	029	•	1.1	0.03	.01	0.001
	030		1.2	0,04	1.20	0.035
	rest teent teet					

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET

NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD

P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Assay

Company: ED KRUCHKOWSKI

Project:

Attention:ED KRUCHKOWSKI

File:81-115/P2 Date: SEPT. 3/88

Type: ROCK ASSAY

Ye hereby certify the following results for samples submitted.

Sample	AG	A6	AU	AU
iduper =	G/TONNE		G/TONNE	OZ/TON
44 O31		0.03	.02	0.001
14 032	1.1		.01	0.001
4 033	0.9			0.001
44 034	1.9		.57	0.017
14 035 1	1.6	0.05	.01	0.001
44 036	1.4	0.04	.15	0.004
44 037	2.7	0.08	.18	0.005
<u>*</u> }4 038	1.9	0.06	. 29	0.008
4 039	1.8	0.05	. 04	0.001
44 040	2.0	0.06	.08	0.002
4 14 041	1.9	0.06	. 01	0.001
44 042	1 . O	0.03	, O9	0.003
.44 043	0.8	0.02	.21	0.006
4 044	1.8	0.05	.38	0.011
44 045	3.7	0.11	7.85	0.229
2.14 O46	17.6	0.51	12.50	0.365
4 047	2.4		1.46	
44 048			1.55	0.045
14 049		0.05	.34	0.010
4 050	• 0.6	0.02	.02	0.001
44 051	0.9	0.03	,01	0.001
· 14 052				0.001
4 053		0.04	.01	0.001
44 054			.01	
FOR BULK 1	73.8		40.20	1,173
GR BULK 2	253.0	7.38	112.00	3.267
"GR BULK 3	289.0	8.43	148.25	4.324
BR BULK 4	30.2	0.88	36.90	1.076
GR BULK 5	23.8		22.25	0.649
CR T1	31.7	0.92	23.30	0.680

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS - ABY ARETH - ANALYSIN - GEOLULIANSIT

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7

TELEPHONE: (705) 264-9996

Certificate Of ASSAY

Company: ED KRACHKOWSKI CONSULTING LTD.

Troject:

File:81-115/P3 Date:SEPT 3/88

∤ttention:ED KRACHOWSKI Type:ROCK ASSAY We hereby certify the following results for samples submitted. Sample AG \triangle (5) AL AU Lumber **G/TONNE** OZ/TON G/TONNE OZ/TON 4.79 CR T2 19.6 0.57 0.139 TR 73 3.7 0.11... 4.4. 0.013 R T4 357.0 10.41 151.75 4.426 CR TS 29.4 0.86 3.09 0.090

Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS • GEOCHEMISTS

VANCOUVER OFFICE:

705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company: ED KRUCHKOWSKI CONSULTING LTD.

?roject:

ttention:ED KRUCHKOWSKI

File:81-124/P1 Date:SEPT 10/88

Type:ROCK ASSAY

<u>We hereby certify</u> the following results for samples submitted.

Sample Number	AG G/TONNE		AU G/TONNE	AU OZ/TON
440 55 140 56 440 57 440 58	2.0 1.0 .2 .4	0.03 0.01 0.01	.52 .08 .10	0.015 0.002 0.003 0.002 0.004
¥40 62 ¥40 63	2.2 16.5 .6 .2	0.48 0.02 0.01	.47 1.67 .04	0.014 0.049 0.001 0.010
440 64 \$40 65 \$40 66 \$440 67 \$440 68	. II	0.01 0.23 0.01	.05 .18 .63 .04	0.005 0.00i 0.005 0.018 0.002 0.001
140 70 440 71 440 72 140 73	. 2 . 6 . 2 . 5	0.01 0.02 0.01 0.01 0.01	.01 .02	0.005 0.001 0.001 0.001 0.002
.440 75 k.440 76 440 77 440 78 k.440 79	1.0	0.03 0.01	.07	0.001 0.001 0.002 0.001 0.008
440 80 140 81 140 82 440 83 440 84	.8 .7 .5 2.0 .5	0.02 0.02 0.01 0.06 0.01	.53 .85	0.009 0.015 0.015 0.025 0.015

Certified by

EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD

P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company:ED KRUCHKOWSKI CONSULTING LTD. Project:

_attention:ED KRUCHKOWSKI

File:81-124/P2 Date:SEPT 10/88 Type:ROCK ASSAY

We hereby certify the following results for samples submitted.

Sample Tumber			AU G/TONNE	
440 85 440 86 440 87 40 88 440 89		0.06 0.05 0.01	.28 .23 .04 .02	0.007 0.002 0.001
►40 90 440 91 440 92 40 93 440 94	. 6 . 4 1.5	0.02 0.01 0.04	.01 .18 .03 .02 .10	0.005 0.001 0.001
40 95 40 96 440 97 40 98 40 99		0.01 0.01 0.01	.13 .11 .32 .01	0.003 0.007 0.001
^41 00 _41 01 #41 02 441 03 _41 04	10 .2 .4	0.03 0.01 0.01	.01 .78 .03 .09	0.023 0.001 0.003
441 05 -41 06 -41 07 441 08	4.2 3.7	0.12 0.11	.19 1.28 .84 15.65	0.037 0.025

Sertified by

EN LABORATORIES LTD. RECEIVED MOV 0 9 1988

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VAINCUVER OFFICE.
705 WEST 15TH STREET
NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5514 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company: E.R. KRUCHKOWSKI CONSULTING

roject:

ttention:E.R.KRUCHKOWSKI

File:81-174/P1 Date:NOV 3/88 Type:ROCK ASSAY

"<u>e hereby certify</u> the following results for samples submitted.

	mple mber	A G/TO	AG AG ONNE OZ/TO	AU N G/TONNE		
46	001		0 0.12			
	002	tt		.01		
Ó	003		0 1.11			
46	004	19.	2 0.56	, O8	0.002	
46	005	<u>.</u>	0.03	. 43	0.013	
4 6	006	u	2 0.01	. 51		
46	007	tt	3 0.01	.04	0.001	
· (5)	008	⇔ a		2.62	0.076	
* 6	009	::	4 0.01	. 22	0.006	
46	010	59.	8 1.72	35.95	1.049	
16	011		2 0.01	: 29	0.008	
46	012	8.		4.33		
46	013			54.45		
. · 6	014	in a	4 0.07	.71	0.021	
	015	ıı	4 0.01	. 02	0.001	
	016		2 0.01	. O 1	0.001	
	017			" O 1		
_	018		4 0,01			
	019		3 0.07			
	020		0 0.03		0.001	
46	021		2 0.01	.02	0.001	
	022	=		.04	0.001	
45	023	n.	2 0.01	. 01	0.001	
	024		1 0.06	.04 .01 .01	0.001	
· ćs	025		3 0.01	1.16	0.034	
_	 026		2 0.01		0.034	
	027		2 0.01		0.015	
	028		0 0.41			
Maria Cara	029		0 0.03		0.001	
	030	at a ma att a			0.001	
" (* L. .)	THE PLANE SHE	, sin. si	na n	n sac di	run a harbar da	

Certified by_

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

ASSAY Certificate o f

Company: E.R. KRUCHKOWSKI CONSULTING

Project:

ttention:E.R.KRUCHKOWSKI

File:81-174/F2 Date: NOV 3/88 Type:ROCK ASSAY

 $W_{\underline{e}\ bereby\ certify}$ the following results for samples submitted.

Sample umber	AG G/TONNE		AU G/TONNE	AU OZ/TON	
46 031		0.06	. 44		
~6 032	. Z	0.01	.02	0.001	
46 033			.21		
76 O34			. O 1		
46 035	2.0	0.06	.01	0.001	
6 036	. 3	0.01	, () <u>†</u>	0.001	
46 037	a all	0.01	1.18	0.034	
6 038	n dil	0.01	. 21 . 01 . 01	0.006	
6 039	to the second	0.01	. O i	0.001	
46 040 	2.1	0.06	.01	0.001	
	2	0.01	.02	0.001	
46 042	1.6	0.05	2.12	0.062	
46 043	1.0	0.03	. O 1	0.001	
6 044	2 . O	0.06	. 01	0.001	
3 6 045	1.4	0.04	. 08	0.002	
¹ 6 046			. 04		
<u>6</u> 047			.01		
46 048			"OB		
46 049			.21		
ეგ 050 1	. A	0.01	.02	0.001	
46 O51	2.1	0.06	.02	0.001	
·6 052	1.2	0.04	.01 .01	0.001 0.001	
6 053	2.0	0.06	. O 1	0.001	
46 054			. O l	0.001	
~6 055	2	0.01	. O 1	0.001	
46 056	ery aa	0.01	.02	0.001	
46 057			. () 1		
₍ 6 058		0.06	.03	0.001	
1 6 059	2.0		.01	0.001	
46 060		O.Oi	.01	0.001	

Certified by_

LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2
TELEPHONE (604) 980-5814 OR (604) 988-4524
TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company: E.R. KRUCHKOWSKI CONSULTING

roject:

ttention:E.R.KRUCHKOWSKI

File:81-174/P3 Date: NOV 3/88 Type: ROCK ASSAY

ue hereby certify the following results for samples submitted.

uu	ople ober	AG G/TONNE	AG OZ/TON	AU G/TONNE	AU OZ/TON	
6 46	061 062 · 063 064 065	13.9 4.2 12.3 1.8 8.2	0.41 0.12 0.36 0.05 0.24	.59 1.75 18.75 .20 .75	0.017 0.051 0.547 0.006 0.022	
46	066 067 068 069 070	11.5 1.7 2.1 .2 1.9	0.34 0.05 0.06 0.01 0.06	.67 .01 .02 .01 .01	0.020 0.001 0.001 0.001 0.001	
46 46	071 072 073 074 075	2.0 1.8 .3 3.8 16.4	0.06 0.05 0.01 0.11 0.48	.05 .37 .01 1.51 .87	0.001 0.011 0.001 0.044 0.025	
46 46	076 077 078 079 080	.2 .3 76.5 .4	0.01 0.01 2.23 0.01 0.01	.01 .34 78.40 .16	0.001 0.010 2.287 0.005 0.001	
6 46	081 082 083 084 085	.8 10.7 .4 .2	0.02 0.31 0.01 0.01 0.02	.01 5.41 .01 .37	0.001 0.158 0.001 0.011 0.002	-
46 46	086 087 088 089 090	3.5 50.2 9.8 5.3 2.4	0.10 1.46 0.29 0.15 0.07	.69 16.00 14.60 2.09	0.020 0.467 0.426 0.061 0.016	

Certified by_

• EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of Assay

Company:E.R.KRUCHKOWSKI CONSULTING Project: ottention:E.R.KRUCHKOWSKI

File:81-174/P4 Date:NOV 3/88 Type:ROCK ASSAY

He hereby certify the following results for samples submitted.

Sample	AG	AG	AU	AU	
Tumber	G/TONNE		G/TONNE	OZ/TON	
in the second se					
46 091	1.8	0.05	02	o.coi	
46 092	1.7	0.05	. O 1	0.001	
_. 6 093	13	0.04	. O 1	0.001	
= 6 094	2.4	0.07	" AO	0.026	
46 095	3.7	0.11	. OS	0.001	
4 6 096	2.1	0.06	.12	0.004	
46 097	2.6	0,08	.02	0.001	
46 098	1.8	0.05	. OA	0.001	
<u>.</u> 6 099	2.5	0.07	.05	0.001	
₹ 6 100	1.7	0.05	. 10	0.003	
<u> </u>	. 0	0.02	.02	0.001	
1 6 102	1.9	0.06	.01	0.001	
46 103	2.7	0.08	, O ±	0.001	
76 104	. 6	0.02	.01	0.001	
<u> </u>	2.4	0.07		0.058	
46 106	4.3	0.13	1.95	0.057	
6 107	3.2	0.09	.12	0.004	
4 4 108	10.5	0.31	1.02	0.030	
46 109	1.0	0.03	.01	0.001	
6 110	2.1	0.06	.01	0.001	
46 111	1.8		.02	0.001	
⁴ 6 112	, E.		. O 1		
<u>~</u> 6 113				0.001	
46 114			3.78	0.110	
46 115	10.6		. 99	0.029	
4 5 116		0.01	. 04	0.001	
46 117	3.5	0.10	.01	0.001	
6 118	. Z	0.01	01	O.OOi	
6 119	. 3	O.Oi	. O 1	0.001	
46 120	" <i>4</i>	O.Oi	.02	0.001	

Certified by_

PIIN PEN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS
CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX: VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE:

33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Certificate of ASSAY

Company:E.KRACHKOWSKI Project: Lttention:E.KRACHKOWSKI File:81-174/P5 Date:NOV.3/88 Type:ROCK ASSAY

Me hereby certify the following results for samples submitted.

■ Sample	AG	A6	ΔH	AU
umber	G/TONNE		GZTONNE	OZZTON
9 6 121	0.4	0.01	.01	0.001
^6 122	0.2	0.01	.01	0.001
4 123	0.5	0.01	.Oi	0.001
7 6 124	O. 6	0.02	.O1	0.001
96 125	0.2	0.01	" () <u>1</u>	0.001
2 6 126	2.1	0.06	.02	0.001
96 127	2.0	0.06	.01	0.001
5 1 28	0.6	0.02	" () į	0.001
6 129	2.3	0.07	, () <u>1</u>	0.001
96 130	3.8	0.11	"() <u>j</u>	0.001
	0.2	0.01	"() <u>)</u>	0,001
9 6 132	0.7	0.02	. Ol	0.001
96 133	0.4	0.01	.Oj	0.001
6 134	2.0	0.06	" () <u>1</u>	0.001
6 135	1.8	0.05	.Oi	0.001

Certified by___

APPENDIX 3

Assay Data For

Previous Ore Grade Calculations

ORE RESERVES BASED ON DRILLING AND TRENCHING ALONG THE SOUTHWEST VEIN

TABLE I

BIOCK NO.	INFLUENCE (DDN, Trench)	INTE ozAu/ton	RSECTION AS		TRUE WIDTH (meters)	MINING WIDTH (meters)	INDIC Tons	ATED ORE RE OZAU	eserves ozag	INFERI Ions	RED ORE RES Ozau	ERVES ozAg
	T 4	0.336	0.35	1.85	1.85	1.85	_237.0	79.61	79.61	190.0	63.85	66.50
7	CM-13	0.438	0.54	0.35	.29	1.22	106.9	11.12	13.72	75.1	7.81	9.61
8	GM-14	3.31	6.23	0.31	.19	1, 22	601.6	309.80	583.70	313.3 29.5	161.34 15.21	303.90 28.62
9	QM-15	0. 898	1.07	2.97	1.07	1.22	909.1	716.35	853 .14	454.2 595.1 181.7	357.92 469.00 143.17	426.04 558.20 170.43
	Т 1,7,17	0.82	0.91	.34	.34	1,22	319.4	73.14	79.85	11.2	2.57	2.80
5,6	GM-10	0.659	0.35	0.61	.4	1.22	591.9	126.08	71.03	141.6	30.15	1.42
10	GM-11	0.088	0.10	0.69	.4	1,22	498.5	14.46	14.96	153.1 235.0	4.44 6.81	4.59 7.05
14	GM-12	1.365	1.10	1.67	. 65	1.22	971.3	706.14	573.07	501.4 485.6	364.52 353.04	295.83 286.50
	Т 14,15	5.148	6.46	.17	.17	1.22	213.8	153.28	192.46	30.5	21.87	27.45
4	G4-7	0.35	0.29	2.13	1.45	1.45	670.2	234.59	194.36	125.8 68.4	44.04 23.93	36.48 19.84

- 2 -

					T	ABLE I						
BITOCK NO.	INFLUENCE (DDH, Trench)	INTERSECTION ASSAY ozAu/ton ozAq/ton width(m)		TRUE WIDTH (meters)	MINING WIDTH (meters)	INDIC Tons	ATED ORE RI OZAU	eserves ozag	INFEI Ions	ORE RES	SERVES Ozaq	
•	(DDI) Treneny	omia, con	02.1g/ to	wadyn(m)	(1110 2020)	(20112	22.14				
12	GM-8	2.02	3.08	1.53	.91	1.22	749.5	1129.55	1723.85	454.2	684.50	1044.66
										410.6	618.71	944.38
11	GGP-3	0.96	0.96	1.45	1.03	1.22	336.1	272.57	272.57	,		
1	T 60	0.224	12.85	0.22	0.22	1.22	429.8	17.19	997.14			
					•				•	391.6 504.3	15.66 20.17	908.51 1169.98
	1							•	•	78.3	3.13	181.66
13	GM-20	2.05	1.28	2.44	1.3	1.3	1001.5	2053.12	1281.92	500.0	1026 56	641 02
										500.8 534.1	1026.56 1095.00	641.02 683.65
					; ;					500.8	1026.56	641.02
15	CM-21	1.02	3.22	0.45	0.2	1.22	1002.5	167.43	531.33	503 3	02 70	045 40
	••									501.3 501.3	83.72 83.72	265.69 265.69
										501.3	83.72	265.69
	т 3	0.582	0.39	0.24	0.24	1.22	95 .3	10.87	7.62		•	
	т 2	0.20	0.56	1.6	1.6	1.6	254.9	50.97	142.74			
3	T 6	2.966	3.50	0.30	0.3	1.22	440.7	321.29	379.00	156.6	114.20	134.68
_										156.6	114.20	134.00
2	Т 44	0.675	0.92	0.48 .	0.48	1.22	375.9	99.99	135.32	174.3	46.36	62.75
					•	TOTAL	9805.9	6549.32	8130.43	8801.0	6971.68	9643.44
						GIVADE		.66802Au	.830zAg	•	.792ozAu	1.10oZAg
						•		/ton	/ton		/ton	/ton

ORE RESERVES BASED ON SAMPLING UNDERGROUND ALONG THE SOUTHWEST VEIN

TABLE I

BLOCK NO.	INFLUENCE	INTERSECTION ASSAY"			TRUE WIDTH MINING WIDTH		INDIC	ATED ORE RE	SERVES	INFERRED ONE RESERVES		
Dixel Her	(underground)	ozAu/ton	ozAg/ton		(meters)	(meters)	lons	OZAU	ozAg	Tons	ozAu	oz A g
21	(#2 level) CD-26 CD-3 CD-22 CD-23	.292 .630 .222	.83 .69 .34	.55 .57 .44	.55 .57 .44	1.22	2005.1	393.00	521.3			
	L ,									1002.5 1002.5	196.50 196.50	260.65 260.65
31	CD-15	.469	.40	.57	.57	1.22	1002.5	219.56	190.5	501.3 501.3 282.0 106.5	109.78 109.78 61.75 23.33	95.2 95.2 53.58 20.2
30	CD-10 CD-12	.188 2.444	.15 1.95	.54 .36	.54 .36	1.22	1441.2	1572.31	1124.14	112.8 43.9 720.6 720.6	123.05 47.85 786.15 786.15	87.98 34.24 562.07 562.07
29	CD-48 CD-49 CD-50 CD-52 CD-55	.200 .250 .364 .082	.32 .19 .35 .19	.47 .13 .16 .10	.47 .13 .16 .10	1.22	2299.6	91.98	114.98	43.9 1149.8 1149.8	1.75 45.99 45.99	2.19 57.49 57.49
26	(#1 level) CD-32 CD-33 CD-34	.168 .226 .688	.31 .21 .45	.10 .17 .28	.10 .17 .28	1.22	1159.2	77.67	58.0	579.6 579.6	38.83 38.83	28.98 28.98
25	CD-37 CD-38 CD-39 CD-40 CD-41 CD-42	.296 1.230 2.208 2.432 .472 .624	1.14 1.10 2.29 2.45 .86 1.29	.61 .58 .26 .08 .69	.61 .58 .26 .08 .69	1.22	2036.4	615.00	875.65	, 849.8 1018.2 411.2	256.64 307.50 124.18	365.41 437.83 176.82
	(00 12		****	130	, ,	TOTAL (stopud area)	9944.0 - 500.0 9444.0	2969.52 - 300.00 2669.52	2884.57 .29ozAg /ton	10775.9	3300.55 .306ozAu /ton	3187.03 .30ozAg /ton

- 2 -

ORC RESERVES PASED OF SAMPLING UNDERGROUND ALONG THE SOUTHWEST VEIN NUD 1981 DINIOUD DRILLING

BLOCK ID.	INFLUE (CE	INTER	SECTION ASS	AY	TRUE WIDTH	MINING WIDTH	MEAS	URED ORE RE	SERVES	INDICATED ORE RESERVES		
22,72,1	(underground) trenches)	ozAu/ton	oz/kg/ton		(meters)	(meters)	Tons	ozλu	ozNg	Tons	02Au	ozAg
	CD-37 CD-38	.296 1.230	1.14	.61 .58	.61 .58	1.22	1938.1	587.20	839.20			
	CI≻39	2.208	2.29	.26	.26					849.3	257,40	363.00
	CD-40	2.432	2.45	.08	.03					551.9	167.20	239.00
	CD-41	.472	.86	.69	.69							
	CD-42	.624	1.29	. 36	.36					411.2	124.18	176.82
27	CM-32	*27.800	8.17	.70	.32	1.22	909.1	2384.50	1948.20			
										101.4	266.00	217.00
										454.2	1191.40	972.00
										454.2	1191.40	972.00
			•							476.4	1249.60	1019.50
28	C11-33	0.369	1.28	•50	.32	1.22	909.1	88.00	305.20			
							•			89.4	3.70	30.40
			,							454.2	44.10	154.40
										454.2	44.10	154.40
										101.4	9.30	34.50
		·				TOTAL	11663.9	5414.20	5101.50	12895.0	7165.11	6544.99
						STOPED	(500.0)	(300.00)				
							11113.9	51.14.20				
2.2 P					λı	VERAGE GRADE	oz/ton	.460zAu	.460z/y		.50ozAu ∕ton	.5lozAg
***								/ton	/ton		7 (01)	/ton

^{*} Cut to In oz.

ORE RESERVES BASED ON SAMPLING UNDERGROUND ALONG THE BUILLION VEIN

TABLE I

BLOCK NO.	INFLUENCE	INTERSECTION ASSAY			TRUE WIDTH	MINING WIDTH	INDIC	ATED ORE RES	SERVES	INFERRED ORE RESERVES		
	(underground) trenches)	ozAu/Lon	ozAg/ton		(meters)	(meters)	Tons	ozAu	o2Ag	Tons	ozAu	ozAg
	т 36	.858	3.78	.22	.22	1.22	438.6	67.99	298.3	438.6 407.3	67.99 63.13	298.3 277.0
	Т 34	.250	1.05	.18	.18	1.22	469.9	17.39	72.83	107.7 469.9	3.98 17.39	16.69 72.83
	т 31 т 32	6.44 .272	10.72 1.31	.27 .35	.27 .35	1.22	246.7	185.53	337.99	13.7 117.5	10.31 88.35	18.77 160.98
	CD-4	.614	1.94	.15	.15	1.22	516.8	38.76	12.40	344.6 219.3 39.2	25.85 16.45 2.94	8.27 5.26 .94
	CD-5 CD-6	.458 .100	.8 .84	.08 .57	.08 .57	1.22	1284.5	50.10	154,10	125.3 313.3 642.3	4.89 12.22 25.03	15.0 37.60 77.08
			•			JAIOF	2956.5	359.77	875.62	3238.7	338.53	988.72
			•			GIVADE		.122ozAu /ton	.30ozAg /ton		.105ozau /ton	.31ozAg /ton

APPENDIX 4

USGS and ESC

Ore Category Definitions

To serve these planning purposes Total Resoures are classified both in terms of economic feasibility and of the degree of geologic assurance. The factors involved are incorporated in figure 1 to provide a graphic classification of Total Resources.

General guides for the use of this classification system are as follows:

- 1. Resource categories and definitions in the classification, as specified in the glossary, should be applicable to all naturally occurring concentrations of metals, nonmetals, and fossil fuels. The categories may be subdivided for special purposes.
- 2. Definitions may be amplified, where necessary, to make them more precise and conformable with accepted usage for particular commodities or types of resource evaluations.
- 3. Quantities and qualities may be expressed in a variety of terms and units to suit different purposes, but must be clearly stated and defined.

GLOSSARY OF RESOURCE TERMS

Resource.—A concentration of naturally occurring solid, liquid, or gaseous materials in or on the Earth's crust in such form

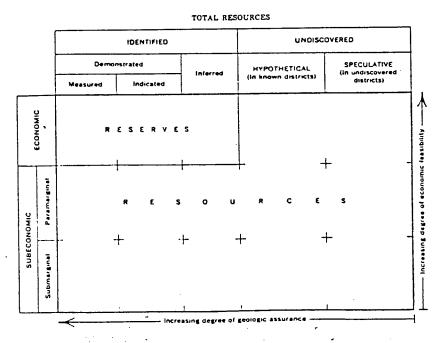


FIGURE 1.—Classification of mineral resources.

that economic extraction of a commodity is currently or potentially feasible.

- Identified resources.—Specific bodies of mineral-bearing material whose location, quality, and quantity are known from geologic evidence supported by engineering measurements with respect to the demonstrated category.
- Undiscovered resources.—Unspecified bodies of mineral-bearing material surmised to exist on the basis of broad geologic knowledge and theory.
- Reserve.—That portion of the identified resource from which a usable mineral and energy commodity can be economically and legally extracted at the time of determination. The term *ore* is used for reserves of some minerals.

The following definitions for measured, indicated, and inferred are applicable to both the Reserve and Identified-Subeconomic resource components.

- Measured.—Reserves or resources for which tonnage is computed from dimensions revealed in outcrops, trenches, workings, and drill holes and for which the grade is computed from the results of detailed sampling. The sites for inspection, sampling, and measurement are spaced so closely and the geologic character is so well defined that size, shape, and mineral content are well established. The computed tonnage and grade are judged to be accurate within limits which are stated, and no such limit is judged to be different from the computed tonnage or grade by more than 20 percent.
- Indicated.—Reserves or resources for which tonnage and grade, are computed partly from specific measurements, samples, or production data and partly from projection for a reasonable distance on geologic evidence. The sites available for inspection, measurement, and sampling are too widely or otherwise inappropriately spaced to permit the mineral bodies to be outlined completely or the grade established throughout.
- Demonstrated.—A collective term for the sum of measured and indicated reserves or resources.
- Inferred.—Reserves or resources for which quantitative estimates are based largely on broad knowledge of the geologic charac-

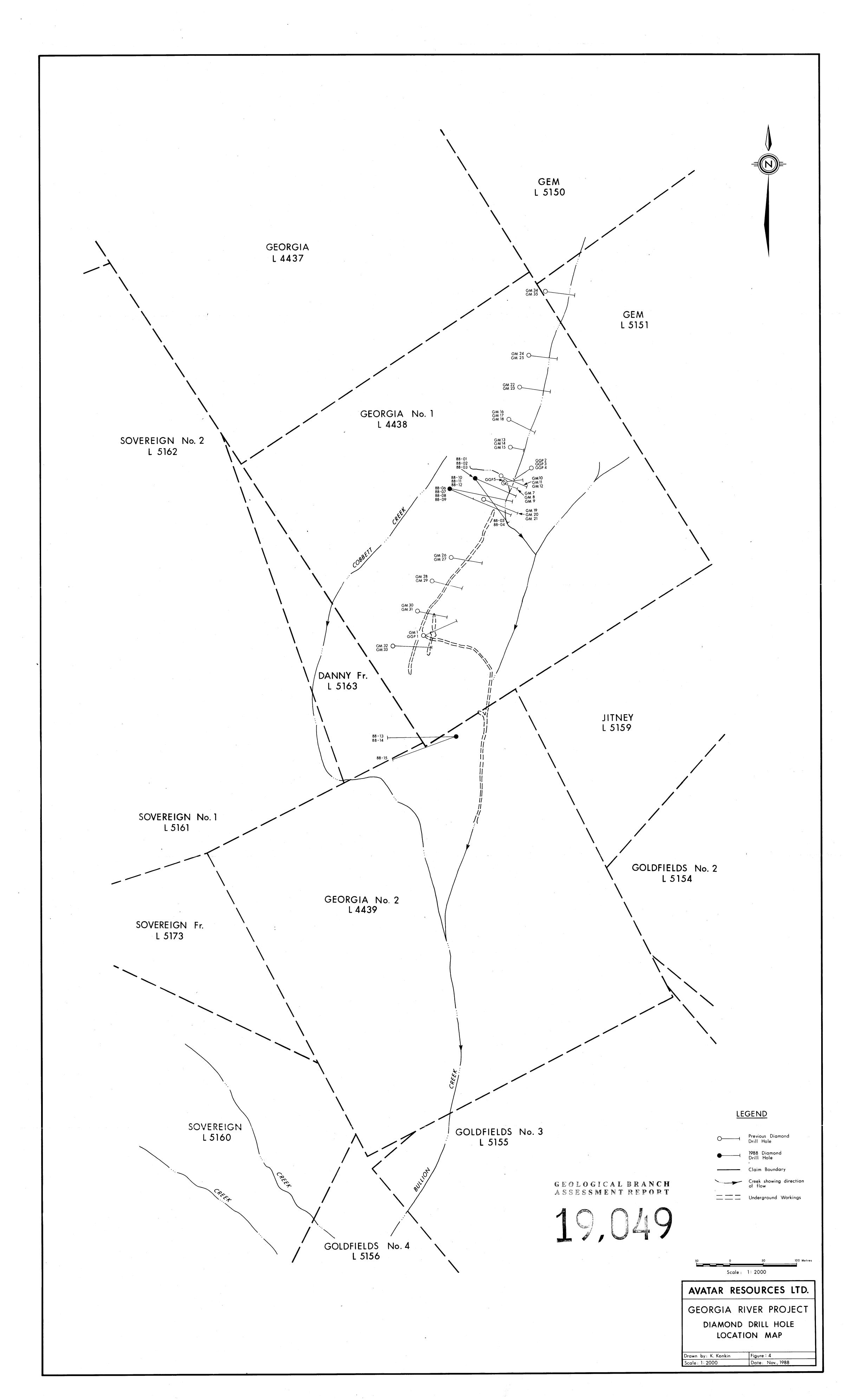
The terms proved, probable, and possible (used by the industry and economic evaluations of ore in specific deposits or districts) commonly have been used lossely and interchangeably with the terms measured, indicated, or inferred (used by the Department of the Interior mainly for regional or national estimates). The terms "proved" and "measured are essentially synonymous. The terms "probable" and "possible," however, are not synonymous with "indicated" and "inferred." "Probable" and "possible," describe estimates of partly sampled deposits—in some definitions, for example, "probable" is used to describe deposits sampled on two or three sides, and "possible" for deposite sampled only on one side; in the Bureau-Survey definitions, both would be described by the term "indicated."

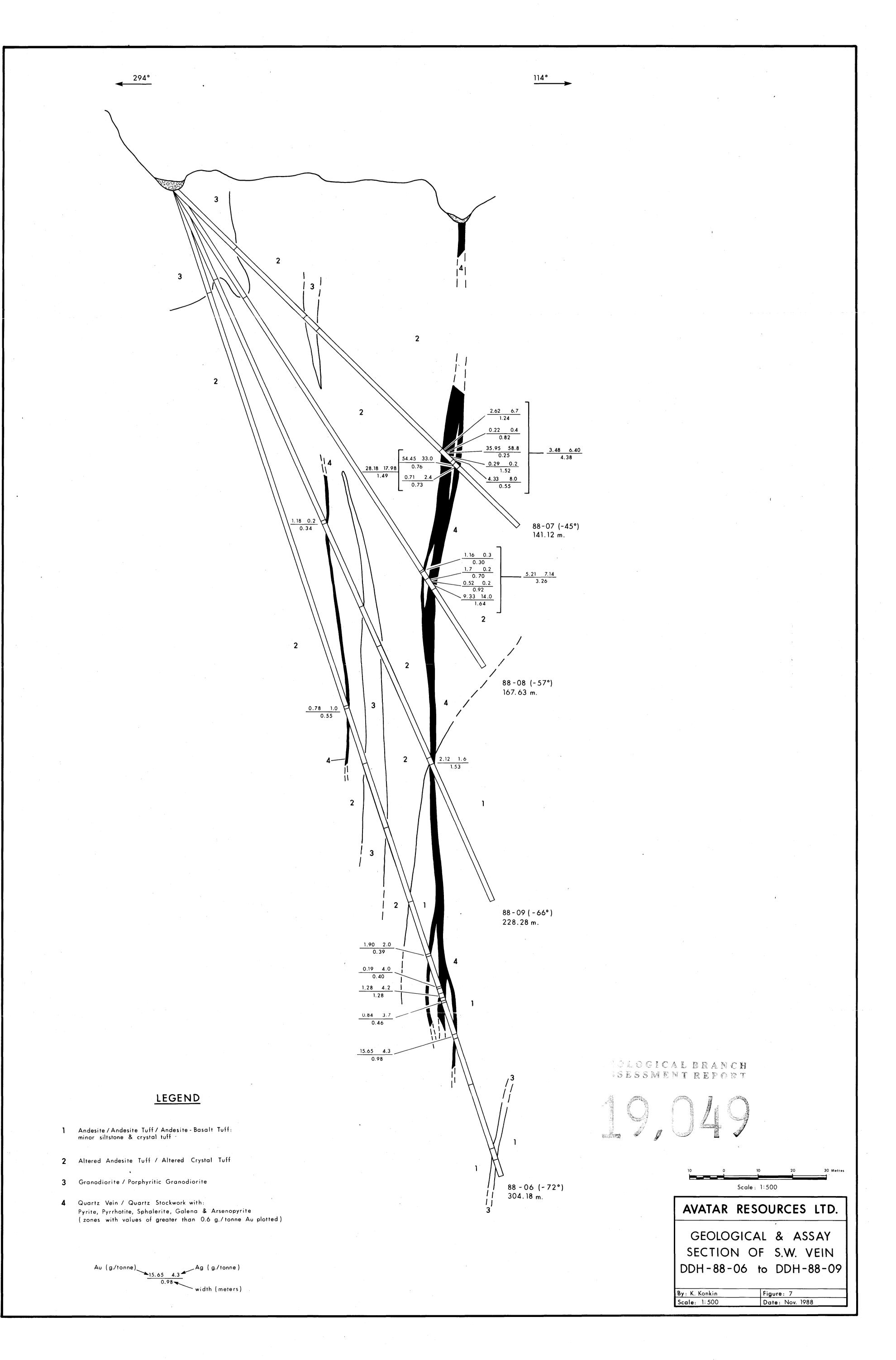
ter of the deposit and for which there are few, if any, samples or measurements. The estimates are based on an assumed continuity or repetition, of which there is geologic evidence; this evidence may include comparison with deposits of similar type. Bodies that are completely concealed may be included if there is specific geologic evidence of their presence. Estimates of inferred reserves or resources should include a statement of the specific limits within which the inferred material may lie.

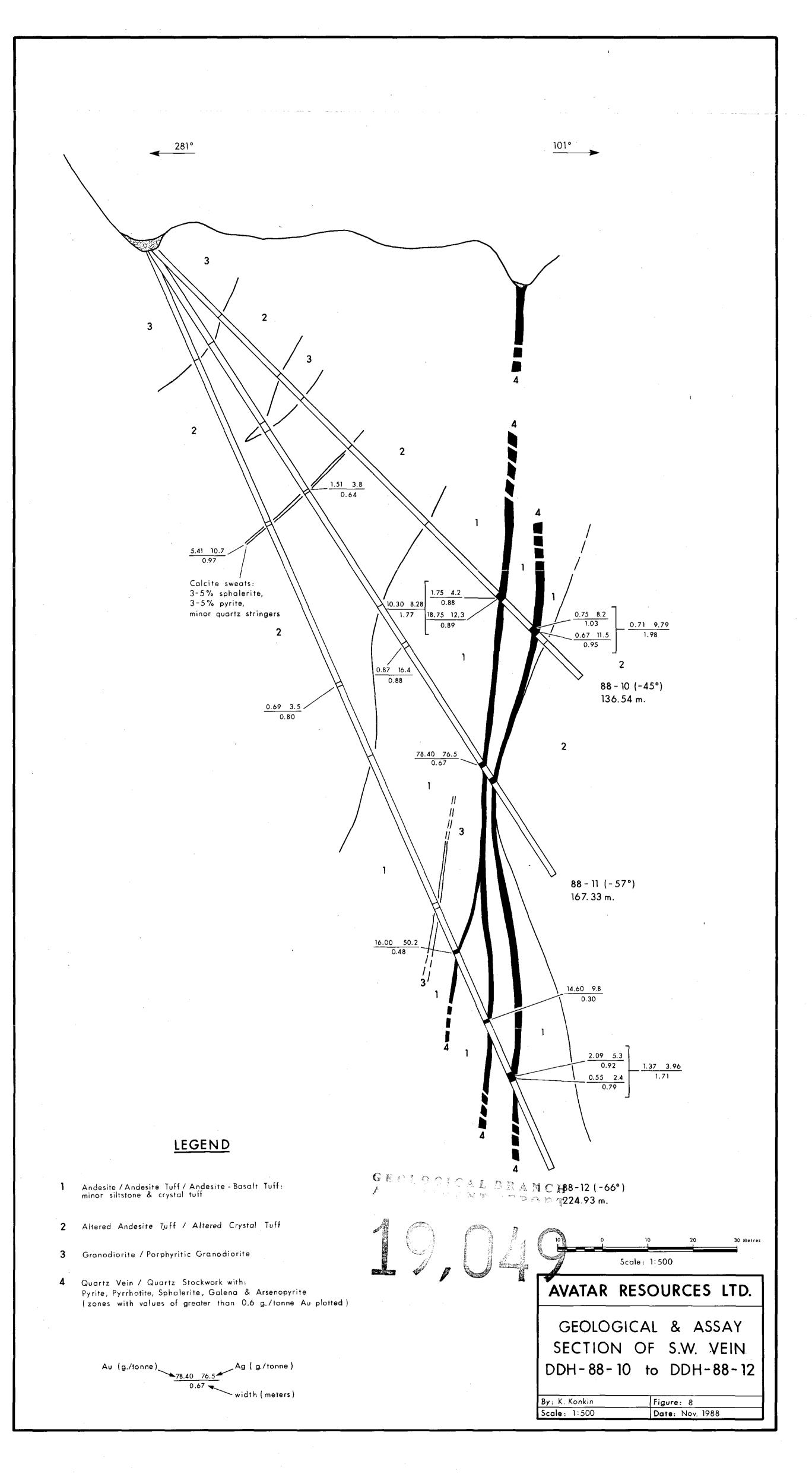
- Identified-Subeconomic.—Resources that are not Reserves, but may become so as a result of changes in economic and legal conditions.
- Paramarginal.—The portion of Subeconomic Resources that (1) borders on being economically producible or (2) is not commercially available solely because of legal or political circumstances.
- Submarginal.—The portion of Subeconomic Resources which would require a substantially higher price (more than 1.5 times the price at the time of determination) or a major cost-reducing advance in technology.
- Hypothetical resources.—Undiscovered resources that may reasonably be expected to exist in a known mining district under known geologic conditions. Exploration that confirms their existence and reveals quantity and quality will permit their reclassification as a Reserve or Identified-Subeconomic resource.
- Speculative resources.—Undisovered resources that may occur either in known types of deposits in a favorable geologic setting where no discoveries have been made, or in as yet unknown types of deposits that remain to be recognized. Exploration that confirms their existence and reveals quantity and quality will permit their reclassification as Reserves or Identified-Subeconomic resources.

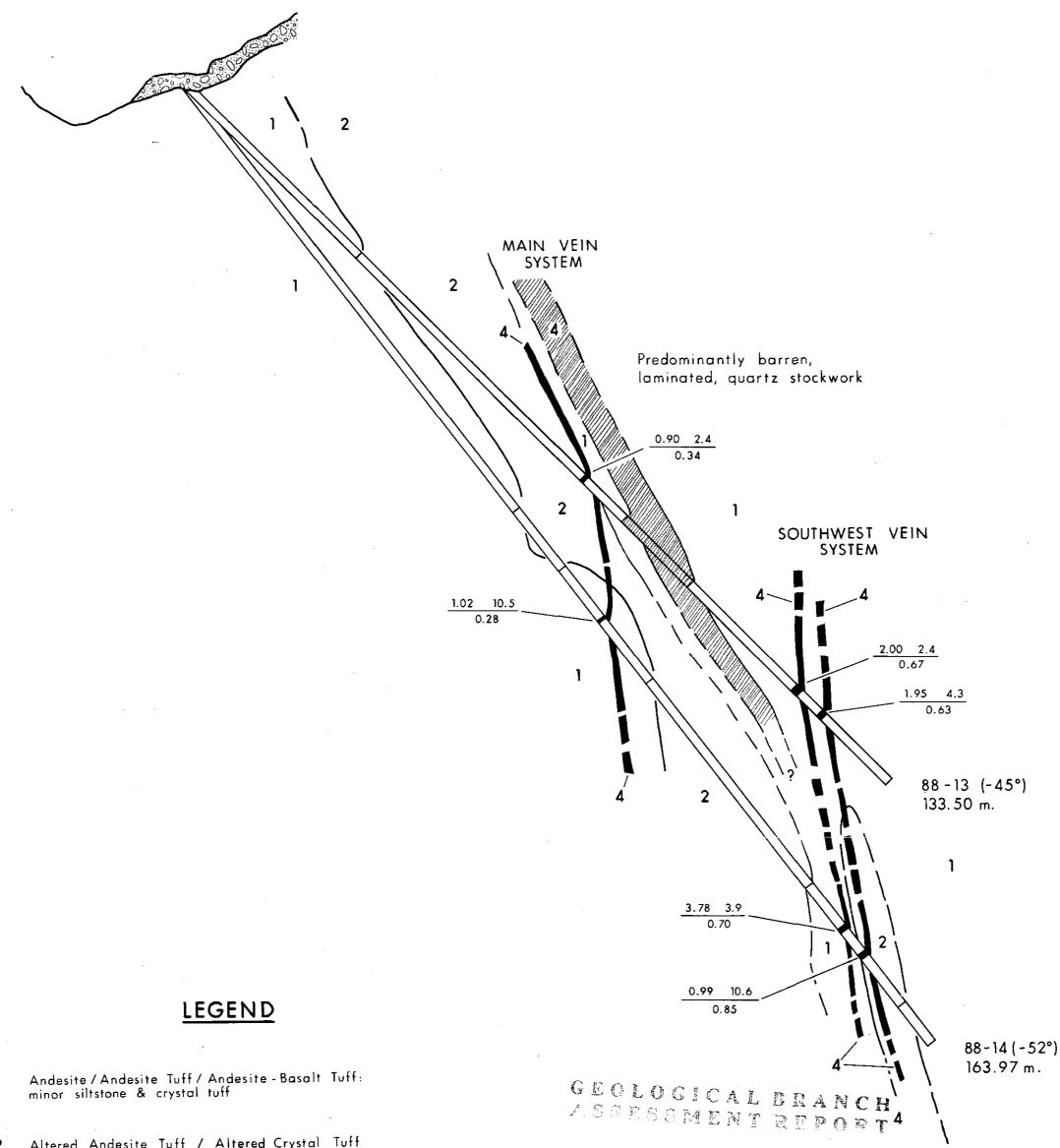
AREAS OF RESPONSIBILITY AND OPERATIONAL PROCEDURES

U.S. Bureau of Mines.—The Bureau appraises, analyzes, and publishes reserve estimates from base data supplied by the mineral and energy materials industry, the U.S. Geological Survey, and other governmental agencies. The Bureau judges commodity recoverability on existing economic and legal factors.

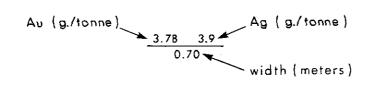

MINERAL RESOURCE DEFINITIONS


 \underline{Ore} is a natural mineral-bearing substance that can be recovered by mining and from which one or more commodities can be extracted economically under conditions specified at the time of the appraisal.

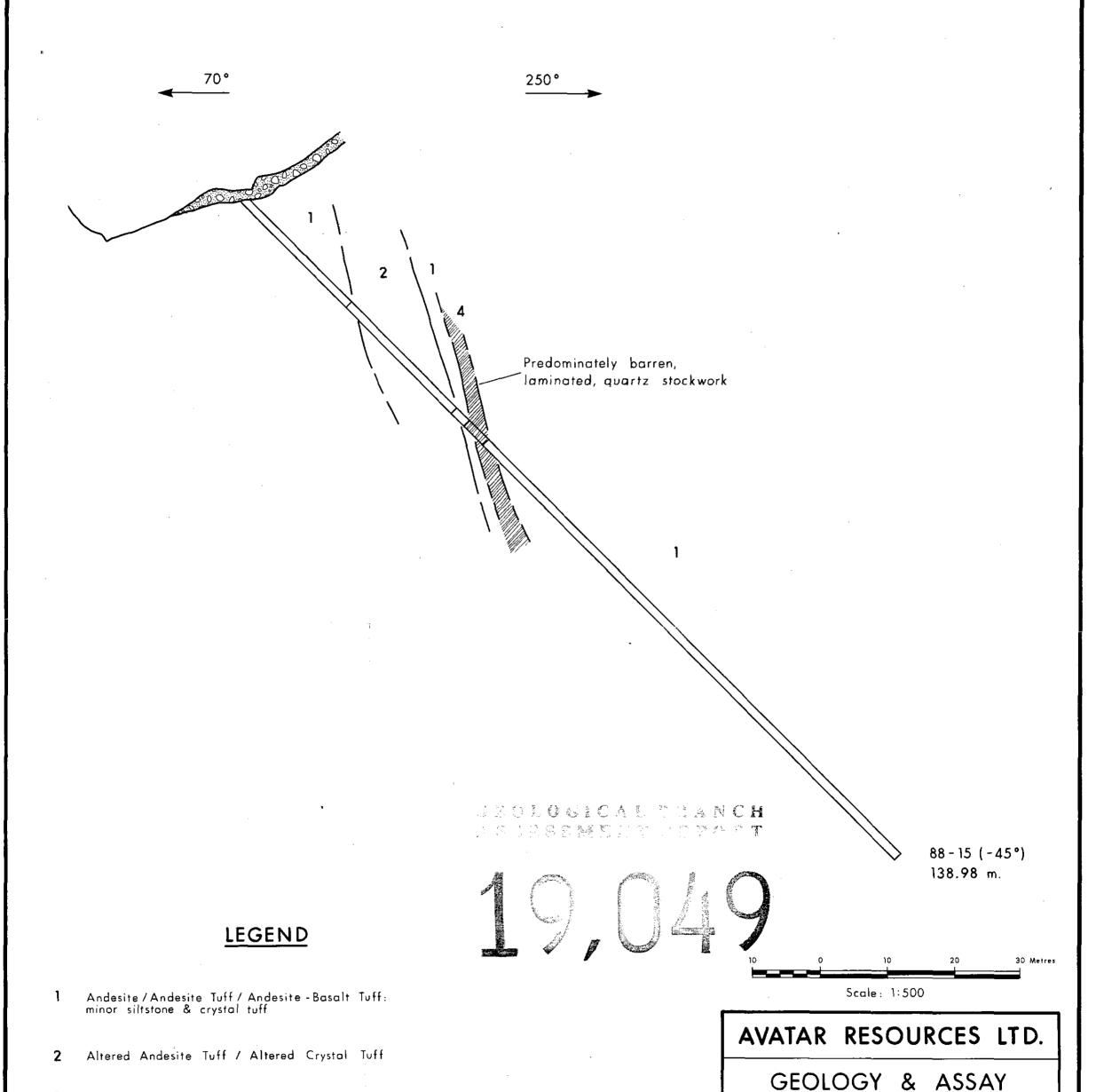

Measured Ore refers to ore for which tonnage is computed from dimensions revealed in outcrops, trenches, workings or drill holes, and for which grade is computed from adequate sampling. The sites for inspection, sampling and measurement are so closely spaced and the geological character is so well defined that the size, shape and mineral content are well established. The tonnage and grade should refer to ore recoverable by mining with due regard for dilution.


<u>Indicated Ore</u> refers to ore for which tonnage and grade are computed partly from specific measurements, samples, or production data and partly from projection for a reasonable distance on geological evidence. The openings or exposures available for inspection, measurement and sampling are too widely or inappropriately spaced to outline the ore completely or to establish its grade throughout.

Inferred Ore refers to ore for which quantitative estimates are based largely on broad knowledge of the geological character of the deposit and for which there are few, if any, samples or measurements. Estimates are based on assumed continuity or repetition for which there is geological evidence; this evidence may include comparison with deposits of similar types. Bodies that are completely concealed but for which there is some geological evidence may be included. Estimates of inferred ore should include a statement of the specific limits within which the inferred material may lie. These limits vary depending upon the characteristics and knowledge of the orebodies.



- Altered Andesite Tuff / Altered Crystal Tuff
- Granodiorite / Porphyritic Granodiorite 3
- Quartz Vein / Quartz Stockwork with: Pyrite, Pyrrhotite, Sphalerite, Galena & Arsenopyrite (zones with values of greater than 0.6 g./tonne Au plotted)



30 Metres Scale: 1:500

AVATAR RESOURCES LTD.

GEOLOGICAL & ASSAY SECTION OF THE MAIN AND S.W. VEINS DDH-88-13 & DDH-88-14

By: K. Konkin	Figure: 9
Scale: 1:500	Date: Nov. 1988

SECTION OF THE MAIN

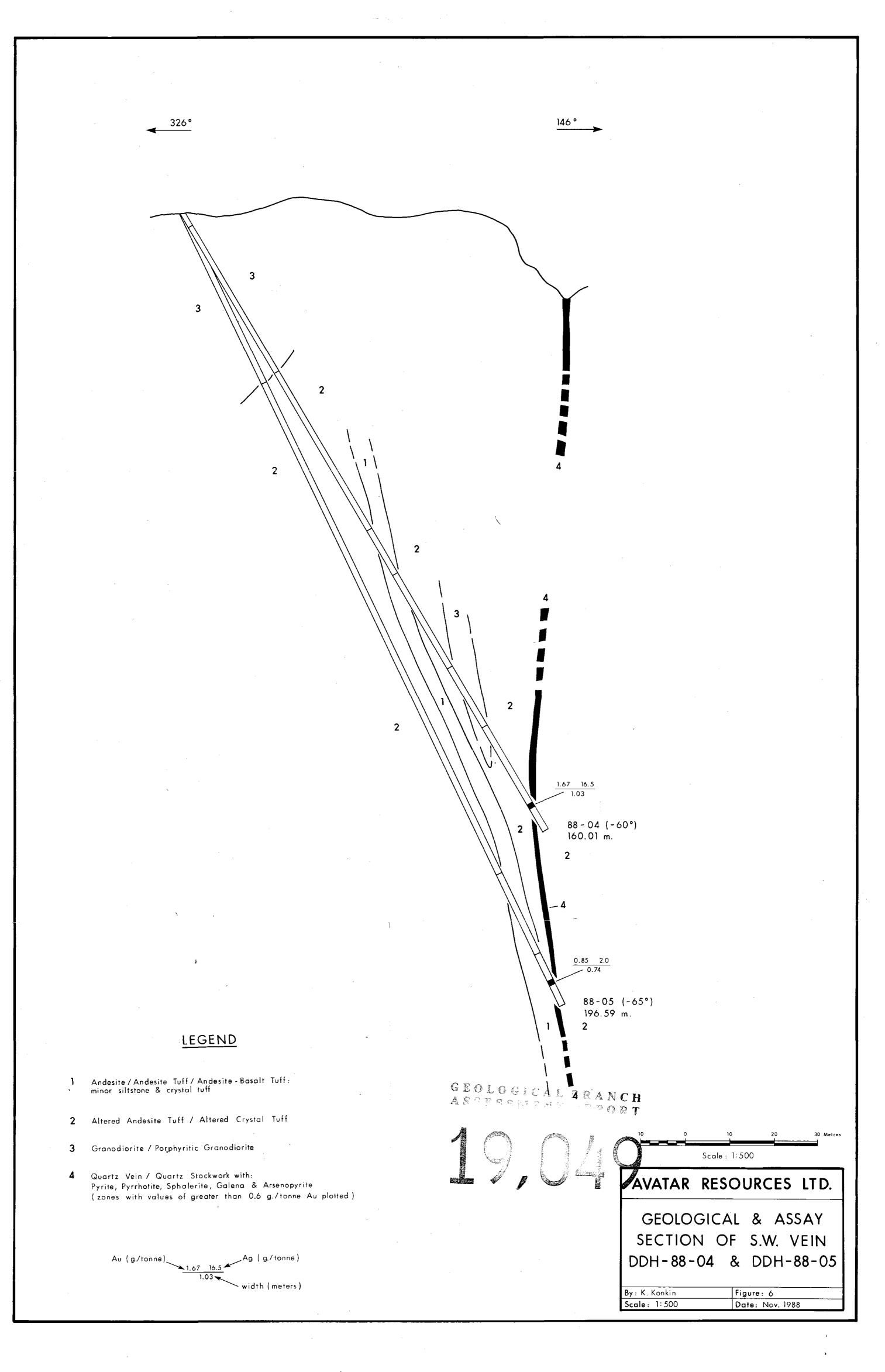
VEIN SYSTEM

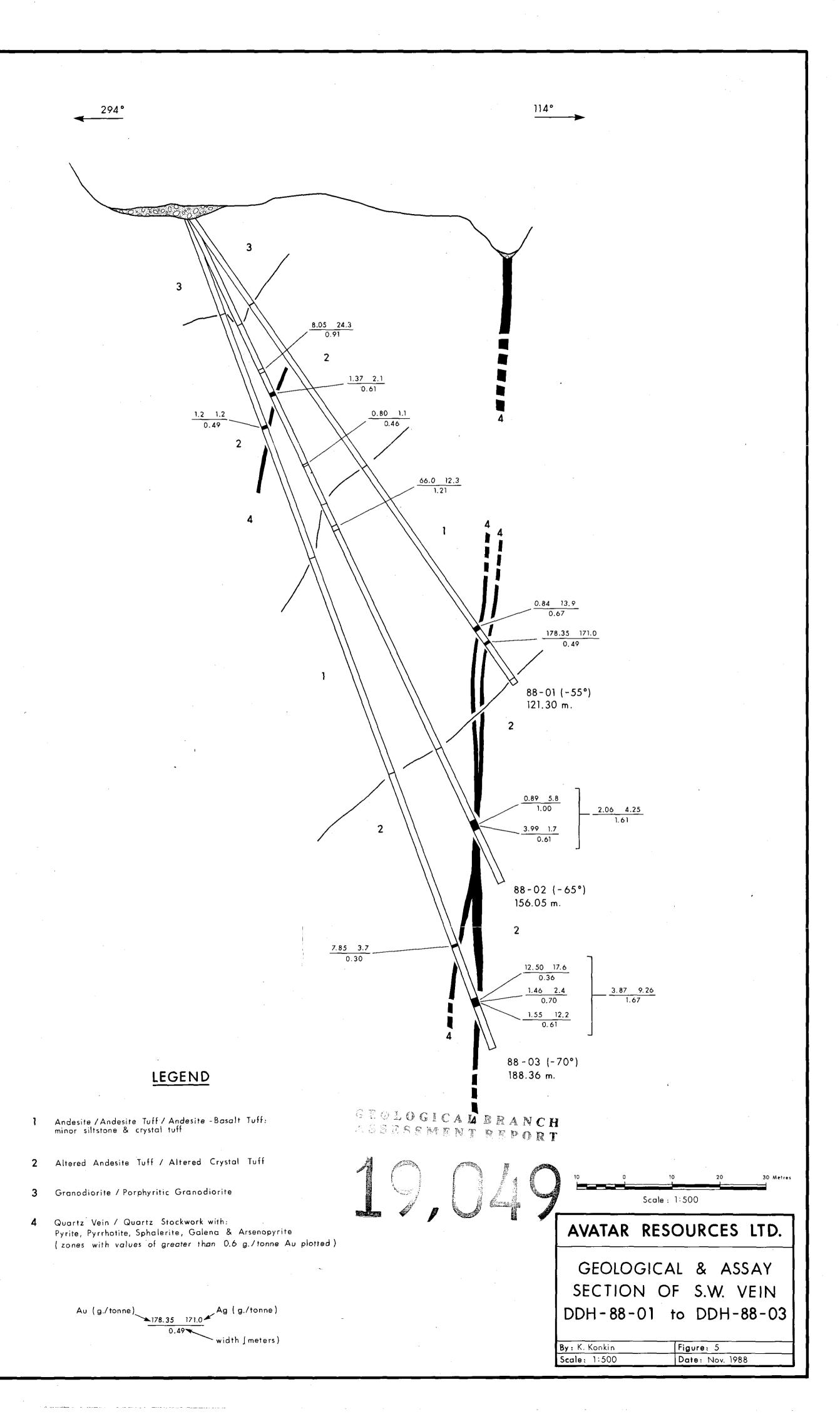
DDH - 88 - 15

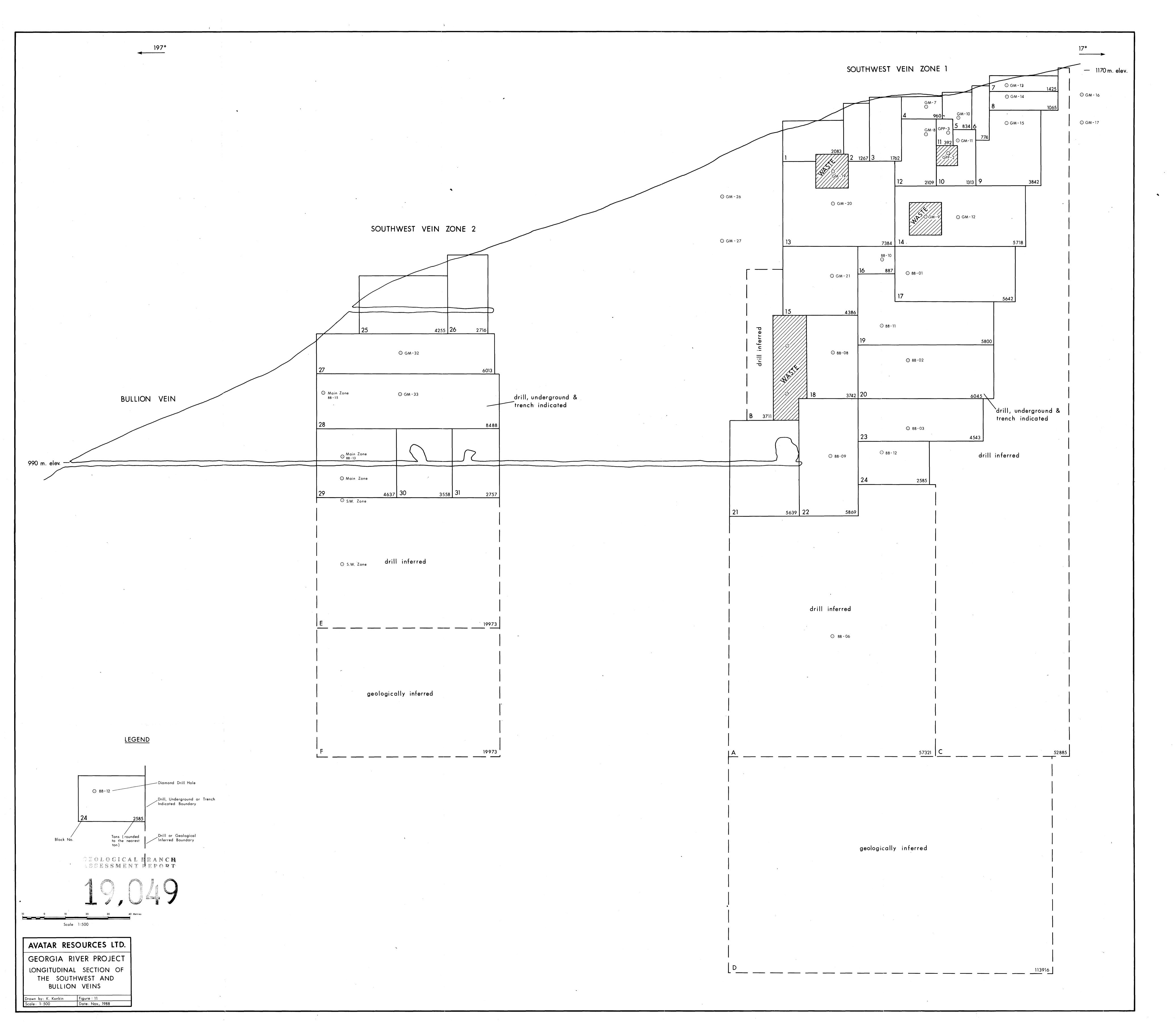
Figure: 10

Date: Nov. 1988

By: K. Konkin


Scale: 1:500


Granodiorite / Porphyritic Granodiorite


Quartz Vein / Quartz Stockwork with:

Pyrite, Pyrrhotite, Sphalerite, Galena & Arsenopyrite

(zones with values of greater than 0.6 g./tonne Au plotted)

