LOG NO:	01)	RĐ.
ACTION:		
FILE NO:		

PRELIMINARY GEOCHEMICAL SURVEY ON THE CRUISER 1 CLAIM GROUP Cariboo Mining Division 93 A/2 (Latitude 52° 10', Longitude 120° 45') OWNER: R. Keep and W. Wiggins, 150 Mile House OPERATOR: Gibraltar Mines Limited, McLeese Lake, B.C. G. D. Bysouth October 5, 1989

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

PRELIMINARY GEOCHEMICAL SURVEY

ON THE

CRUISER 1 MINERAL CLAIM GROUP

Cariboo Mining Division 93 A 2

(Latitude 52° 10', Longitude 120° 45')

OWNERS

Richard Keep and William Wiggins 150 Mile House

OPERATOR Gibraltar Mines Limited McLeese Lake, B.C.

Author: G. D. Bysouth

Submitted: October 5, 1989

TABLE OF CONTENTS

1	INTRODUCTION	1
2	MINERAL CLAIMS	1
	2.1 CRUISER GROUP	1
3	TOPOGRAPHY AND GEOLOGY	1
4	GEOCHEMICAL SURVEY	2
	4.1 Field Methods	2
	4.2 Analytical Methods	2
	4.3 Results and Interpretation	3
	4.4 Table 1. Cruiser Group Rock Assays	4
5	STATEMENT OF EXPENDITURES	5
6	CONCLUSIONS	6
LI	ST OF FIGURES	
	Figure 1. Location Map (In Text)	
	Figure 2. Claim Map (In Text)	
	Figure 3. Sample Locations (In Pocket)	
	Figure 4. Copper Concentration (In Pocket)	
	Figure 5. Zn Concentration (In Pocket)	
	Figure 6. Pb Concentration (In Pocket)	
	Figure 7. Ag Concentration (In Pocket)	
	Figure 8. Au Concentration (In Pocket)	
AP	PENDICES	7
	APPENDIX A. Statement of Qualifications	7
	APPENDIX B. Assay Sheets	8

1 INTRODUCTION

The Cruiser Mineral Claim Group is located 50 kilometers southeast of Horsefly, B.C. near Cruiser and Bosk Lakes (see Figure 1). The property can be reached by good gravel roads from either Horsefly or 100-Mile House.

The Cruiser Claims were staked in 1988 by R. Keep and W. Wiggins following the discovery by W. Wiggins of a gold bearing quartz vein system along the mountain spur east of Cruiser Lake. These veins had been extensively explored at least 50 years ago by a series of pits and trenches but to date no record of this work has been found. The purpose of the preliminary geochemical survey was to outline areas within the property of highest mineral potential where more detailed geochemical sampling could be effectively employed.

Field work was done during the period May 29 to June 16, 1989. R. Keep and W. Wiggins were employed on a contract basis to complete the project. A total of 77 soil samples and 14 rock samples were collected and assayed for copper, silver, lead, zinc, molybdenum and gold. Work was done on the Cruiser 1, Cruiser 2 and Cruiser 8 mineral claims.

2 MINERAL CLAIMS

The mineral claims of the Cruiser Group are shown in Figure 2. Claim information is tabulated below:

2.1 CRUISER GROUP

CLAIM NAME	RECORD NO.	<u>NO. OF UNIT</u>	<u>S</u> <u>DATE OF RECORD</u>
Cruiser 1	9245	20	July 21, 1988
Cruiser 2	9287	18	July 22, 1988
Cruiser 5	9347	20	August 27, 1988
Cruiser 8	9448	16	October 10, 1988
New Gold	9449	20	October 15, 1988

The claims are jointly owned by R. Keep and W. Wiggins.

3 TOPOGRAPHY AND GEOLOGY

As shown in Figures 1 and 2, the area of work covers a westerly trending spur formed by the valleys of Basset Creek on the north and Cruiser Creek on the south. The western extremity of this spur is further truncated by the north trending valley occupied by Cruiser and Bosk Lakes. The net effect is an area of overall steep topography having a maximum relief of about 823 m. Virtually all soils collected above the 1220 m. level have been subjected to gravity mass wasting and now consist of various proportions of talus, colluvium and displaced glacial till. Normal soils developed over glacial till and outwash predominate below the 1220 m. elevation.

The Cruiser Group is underlain mainly by the Upper Triassic Black Phyllite Formation which forms the basal member of the Upper Triassic - Lower Jurassic Quesnel Trough.¹ Within the claim area, the phyllites form a northwesterly striking succession, about 3000 meters thick, which dips steeply westward. A distinctive knotted phyllite, characterized by ovoid quartz-ankerite porphyroblasts predominates near the middle of the sequence and is associated with abundant zones of ankerite-mariposite rock. The auriferous quartz veins appear to be associated with the ankerite-mariposite zones, along with abundant pyrite and sparse chalcopyrite and galena.

Along the eastern side of the claim group a chlorite schist and amphibolite formation is exposed which probably belongs to the Mississippian to Permian Crooked Amphibolite unit. Within the claim area these rocks form a sequence about 500 meters thick of similar northwesterly strike and westerly dip as the overlying Black Phyllite Formation. The Crooked Amphibolite defines the base of the Quesnel Terrane and also the approximate position of the Eureka Thrust Fault.² Near the eastern boundary of the claims, the amphibolites are in contact with pelitic schist and micaceous quartzite of the Hadrynian to Paleozoic Snowshoe Group.

- ¹ Campbell, R. B. (1978): Quesnel Lake 93A, Geological Survey of Canada, Open File Map 574.
- ² Struik, L. C. (1986): Canadian Journal of Earth Sciences, Vol. 23, Number 8, pp. 1047 - 1061.
- 4 GEOCHEMICAL SURVEY
- 4.1 Field Methods

Sample locations are shown in Figure 3. In areas of thick logging slash, soil samples were collected at 300 meter intervals along skid trails and roads. In the area of standing timber east of the prospect area, a grid was established in which soils were collected at 300 meter intervals along northwest trending lines spaced 300 meters apart. Control was maintained in all cases by hip chain and compass. Special care was taken to survey in the roads and skid trails using a staff compass. Only B- and C-horizon samples were taken. Sample depth ranged between 6- and 20.0 cm. All soil samples were collected in standard kraft bags.

Grab samples of rock were also collected. Special emphasis was placed on sulfide bearing rock, and particularly sulfide-bearing quartz vein material. Rock descriptions and assays are provided in Table 1.

4.2 Analytical Methods

All samples were analyzed at the Gibraltar Mines Assay Laboratory for molybdenum, copper, lead, zinc, and silver. The following procedure was followed:

- 1. Samples were oven dried and sieved to -20 mesh.
- 2. 5 g. of sample was weighed out and placed in a beaker.
- 3. 30 ml. of concentrated nitric acid containing 5% potassium chlorate was added.

- 4. The sample was digested under heat until all brown fumes disappeared.
- 5. 20 ml. of concentrated hyrdochloric acid was then added and the sample further digested under heat for three minutes.
- 6. 25 ml of 1% aluminum chloride was added and the solution made up to 200 ml. with water, then filtered.
- 7. A 50 ml. sample was taken and the elements were determined using a Perkin-Elmer 3030 atomic absorption spectrometer.

All samples were analyzed at Vangeochem Laboratory in Vancouver, B.C. for gold. The following procedure was followed:

- 1. Samples were oven dried and sieved to -20 mesh.
- 2. 10 g. of sample was weighed out and digested in Aqua Regia.
- 3. The Aqua Regia solution was filtered.
- 4. Gold was extracted from the filtrate using a gold selective solvent.
- 5. Gold values in the solvent were determined using a Techtron AA5 atomic absorption spectrometer.

4.3 Results and Interpretation

The distribution of copper, molybdenum, lead, zinc, silver and gold in both soils and rock is shown in Figures 4 to 9 respectively. Rock sample descriptions and assays are also given in Table 1. Local threshold values for each of the elements have been estimated as follows: copper - 90 ppm, molybdenum - 10 ppm, lead - 45 ppm, zinc - 200 ppm, silver - 3.5 ppm and gold -15 ppb. The principle target for this survey has been a large tonnage gold deposit in the order of at least a million tons. Gold, therefore, is the element of main interest with the other elements serving mainly as pathfinders for gold mineralization.

The level of gold enrichment in both the soils and rocks collected has been disappointing. The highest value obtained in soils was 25 ppb. which occurred in three widely separated localities. The highest gold value in rocks was only 20 ppb. even though these samples were mainly of sulfide-bearing quartz vein material. However, a clustering of anomalous soil samples does occur along the western edge of the sampling area, and defines a weak gold anomaly extending northerly from the area of the main prospect. (See Figure 9.)

The other elements show a similar distribution in soils as gold, which involves a clustering of anomalous values along the western edge of the sampled area and a seemingly random distribution elsewhere. Molybdenum may be a special case in that it also forms a broad low grade anomaly extending southeast from the main prospect area as shown in Figure 5. Most of the anomalous distribution of the other elements however, lies north of the main prospect and overlaps the gold anomaly. As shown in Figure 7, zinc forms a broad anomaly which encloses the smaller and more erratic anomalies of the other elements. Collectively, all the elements, including gold, form a definite north trending zone of trace metal enrichment which can be extended to

include the main prospect zone, and possibly also the molybdenum anomaly to the southeast. Field observations, supported to some extent by the rock analysis, (see Table 1.) indicate the general area of soil enrichment is underlain by the Knotted Black Phyllite unit which includes numerous quartz-ankerite-mariposite zones and complex quartz-vein systems, accompanied in places by abundant disseminated pyrite and sparse vein-hosted pyrite and galena.

In general, the results of this survey have been discouraging. Most of the soils collected had been developed over talus or colluvium and would be expected to reflect the trace metal constitution of the local bedrock. The low gold values obtained therefore, greatly diminish the probability of any large tonnage, near surface gold ore body being present within the sampled area. But there does appear to be a mineralized system present which has been outlined by the soil sampling and which probably includes the auriferous quartz vein system exposed at the main prospect. The geochemical trends are definitely northerly, but at this point it is not known whether this is a function of primary or secondary dispersion, or simply a function of sample distribution.

4.4 Table 1. Cruiser Group Rock Assays

Sample No.	Sample Description	Cu	Мо	Pb	Zn	Ag	Au	
•••••		ppm	ppm	ppm	ppm	ppm	ppb	
5951	quartz-pyrite vein	800	9	16	66	3.0	15	
5952	quartz-pyrite (galena) vein	75	4	235	109	2.0	10	
5953	quartz-pyrite (galena) vein	69	4	45	40	1.6	10	
5954	quartz vein	41	5	55	60	1.4	nd	
5956	quartz (pyrite) (galena) vein	28	4	1,600	60	14.0	5	
5962	quartz-ankerite vein	26	100	3,851	137	3.0	nd	
5966	quartz (galena) vein	54	10	26,600	24	7.6	5	
5967	quartz-ankerite (pyrite) vein	46	<10	154	89	1.2	5	
20553	quartz-ankerite-pyrite vein	77	20	51	180	1.6	nd	
20554	pyritiferous black phyllite	25	70	73	180	1.6	10	
20555	vuggy quartz pyrite vein	22	10	20	85	1.1	20	
20556	quartz-sericite-ankerite zone	64	90	277	200	1.4	nd	
20557	quartz-mariposite-ankerite zone	80	40	93	101	1.4	20	
20558	quartz-pyrite zone	28	20	53	71	1.1	nd	

Note: All samples are from the Black Phyllite Formation except 5951 which is from the Amphibolite Formation.

5 STATEMENT OF EXPENDITURES								
Geochemical Survey - Cruiser 1 Claim Group 1989								
<pre>1. Field Work</pre>	\$1,479.75							
W. Wiggings (prosecting contractor) May 29 to June 16, 1989	1,479.75	\$2,959.50						
2. Report Preparation G. Bysouth 12, 13, 14 and 19 of July 1989 21 hrs. @ \$35.00/hr.		735.00						
3. Assay Costs 91 samples assayed for Cu, MoS ₂ , Pb, Zn, Ag @ Gibraltar Lab. @ \$7.00/sample	\$637.00							
91 samples assayed for Au at VanGeochem Lab @ \$5.50/sample	500.50	. 1137.50						
TOTAL		\$4,832.00						

6 CONCLUSIONS

The area covered by this preliminary geochemical survey has only a very low probability for ore discovery. There is, however, a strong possibility that a significant mineralized system occurs along the western edge of the sampled area and includes the auriferous quartz veins of the main prospect. The strike of this system is not known. Accordingly, a grid soil survey should be implemented along the lower slopes of the mountain west, northwest, and north of the main prospect to cover the possible strike extension of the mineralized system.

G. D. Bysouth Senior Geologist

GIBRALTAR MINES LIMITED

APPENDIX A. Statement of Qualifications

I, Garry D. Bysouth, of Gibraltar Mines Limited, McLeese Lake, British Columbia, do certify that:

- 1. I am a geologist.
- 2. I am a graduate of the University of British Columbia, with a B.Sc. degree in Geology in 1966.
- 3. From 1966 to the present I have been engaged in mining and exploration geology in British Columbia.
- 4. I personally provided over-all supervision for this project and participated in the field work.

San D. Bymant

Garry D. Bysouth

APPENDIX B. Assay Sheets

VANGEOCHEM LAB LIMITED

.

~

_VGC

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

ł

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

ç

	REPORT NUMBER: 890264	GA JOB NUMBER: 89	0264 GIBRALTAR NINES L	.TD.	PAGE 1 OF 3
	SAMPLE #	Au			
		ppb			
	89-1	nd			
	89-2	nd			
	89-3	nd			
	89-4	5			
	89-5	5			
	89-6	15			
	89-7	10			
	89-8	5			
	89-9	nd			
	89-10	10			
	89-11	nd			
$\mathcal{A}^{(1)}$	89-12	25			
- 	89-13	nd			
N.	89-14 -	5			
	89-15 —	5			
$- \sum \Gamma$	89-16	10			
	99-17	5			
, i	09-10	25			
1	89-19	5			
	89-20	10			
,	U 7 LV				
	89-21	10			
	89-22	10			
	89-73	nđ			
	89-24	20			
· .	89-25	10			
	89-26	10			
	89-27	5			
	89-28	20			
	89-29	15			
	89-30	nd			
	89-31	10			
	89-318 0~	5			
	89-33	5			
	89-34	nd			
	89-35	nd			
	89-36	5			
	89-37	nd			
	89-38	nd			
	89-39	nd			
	DETECTION LINIT	5			
	nd = none detected	= not analysed	is = insufficient sample		

VGC VANGEOCHEM LAB LIMITED

.

٠.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

÷

I

	REPORT NUMBER: 890264 GA	JOB NUMBER:	890264	GIBRALTAR MINES LTD.	PA	6E	2	OF	3
	SAMPLE #	Au							
		ppb							
	89-40	25							
	89-41	15							
	89-42	20							
	89-43	10							
	89-44	10							
	89-45	25							
	89-46	nd							
	89-47	10							
	89-48#	nd							
,	89-48 49	5							
· .	89-49 B	nd							
	89-50	10							
	89-51	25							
	89-52	10							
1	89-53	20							
le l	89-54	nd							
*	89-55	5							
i	89-56	10							
ì	89-57	nd							
	89-58	10	4						-
	89-59	15							
, N	89-60	5							
	45976 —	bn							
	45977	nd /							
	45978	10 (
	45979-	15 Jan	ck.						
	45980 —	nd							
	45981	nd							
	45982	2							
	45983	bu /	Nos?						
	45984	nd \	• •						
	45985-	nd							
	5951	15							
	5952	10							
	5953	10							
	5954	nd							
	5955								
·	5956	5							
	_5957	20							
	DETECTION LINIT	5							
	nd * none detected	= not analyse	d is = ins	ufficient sample					

GC VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 • (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B.

BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

1

	REPORT NUMBER: 890264 GA	JOB NUMBER: 890264	GIBRALTAR MINES LTD.	PAGE	3	OF	3
	SAMPLE #	Au					
. :		ppb					
	5958	5					
	5959	nd					
(5960	nd					
1							
< No. 100							

DETECTION LIMIT 5 nd = none detected -- = not analysed is = insufficient sample Ċ,

VANGEOCHEM LAB LIMITED -

.

<u>_</u>VG

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5

• (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES

PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

2

ł

	REPORT NUMBER: 890362	GA JOB NUNBER: 890	362 BIDMALTAR HINES LTD.	PAGE 1 OF 2
	SAMPLE #	Au		
		aab		
,	89-61	nd		
	89-62	nd		
	89-63	nd		
	89-64	nd		
	89-65	né		
	89-66	ha		
	89-67	od		
	89-68	nd		
	89-69	nd		
	89-70	nđ		
1	89-32 71	né		
	89-13 72	nd		
ł	89-74-73	ne		
ł	89-25-74	5		
+	89-25 75	10		
XE				
- Ń	89-77 -76	10		
i	89-78 -17	nd		
۱.	89-794 28	nd		
ľ	89-798	กย์		
	89-80	กต่		
	89-81	nđ		
	89-82	nd		•
-	89-83	กต์		
1	89-84	5		
	89-85	5		
	89-86	ndi		
	89-87	nđ		
	89-88 ~	nd		
	89-89	nđ		
	89-90	nđ		
l L	89-91	5		
, ,	89-92	nd		
	89-93	5		
``	89-94	nd		
·. ·	5933 63	55 —		
	5962	nd		
	5964	nd		
5	5965	10		
	5966	5		
	DETECTION LINIT	5		
	nd = none detected	= not analysed	is = insufficient sample	

VANGEOCHEM LAB LIMITED

1.23.48

.

.

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 (604) 251-5656 • FAX (604) 254-5717

BRANCH OFFICES

PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A.

ŝę

	REPORT NUMBER: 890362 6A	JOB NUMBER: 890362	GIDRALTAR HINES LTD.	PAGE 2 OF 2
	SAMPLE #	Au		
		ppb		
	5967	5		
	20553	nd		
	20554	10		
1.1	20555	20		
л	20556	nd		
	20557	20		
	20558	nd		
į	20851 551	10		
Ì	20852 552	65 🦟		
	NO TAG	15		

DETECTION LINIT 5 nd = none detected -- = not analysed is = insufficient sample Form. No. Mill - 1

GIBRALTAR MINES LIMITED

()	Soil	54		Mo	Date	~ 4	, <u>19</u> 89
•		Au	lpm	PPM	ppm	Ppm	PPM
Sar	nple No.	PPD % Cx. Cu.	Total Cu.	·	As	PЬ	Zn
(8'	9-01	nd	(196) -	10	5.0 -	41 -	216 -
	02	nd	(110)-	62	Z.D -	40 -	(780) -
	03	nd	96 -	10	3.0	17 -	260 -
	04	5	50 -	9	Til -	22-	660 -
	05	5	82-	7	2,0 -	16.	147 -
	06	15	85 -	15	(5.2)	20	530 -
\	67	10	120-	15	33-	18.	355 -
	08	5	41 -	7	2.3 -	20 -	213)-
KAW	69	nd	BC -	10	2,8 -	30 -	(266)-
Cruiser	1)	nd	83 -	9	1.0 -	34-	162 -
sails	12:	25	97-	4	2.0 -	20-	. BO -
	13	nd	(497)-	5	1.0 -	12/	102-
	14	5	53	3	2.0	25	55
r	15	5	40	4	1,4	50	86
	16	10	52	2	1.7	(166)	7B
	17	.5	34	13	1.3	240	78
	18	25	207	25	2,1	(113)	350
	19	5	(353)	32	B.J-	(50)-	(680)-
	25	10	62	7	11	35	170
	21	10	60,	7	D_	(80)	163-
	22	10	87-	10	2,2	75	194-
	23	nd	70_	8	Z,3-	45-	132-
						/	1
(50	<u>15)</u>	15	(BO)	9	(7.8)	16-	,60-
	52	10	- 75	4	2.0-	235	109-
	57	10	69 -	4	1.6	45 -	40-
KEW)	54	nd	41 -	5	1.94-	<u> </u>	60 -
Cruiser	56	5	-85	4	(14.0-	(600 -	66 -
Rx	51	20	16	249	5-3	11 200	7
	58	5	67	>1000	I4.I	16000	
	57	nd	29	5/	2,0	1200	30
	60	nd	20	169	7.0	1900	()

cc: Assay Lab.

.

Assayer

. -.

GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

PLORATION

ſ	Sample No.	%-сх. си .Ац	Total Cu.	M0 % M0S2	РЬ	Zn	Aq
Ī		PPb	79m	PPMPPM	ppm	PPm	ppm
	89-10	10	221 -	38 63 -	(83)-	(477) -	(7.9 -
	89-24	20	46 -	9 15 -	25 -	286	5.8
	25	10	163	32 54 -	32 -	482	2.2
	26	10	194 -	5 9 -	26 -	217 -	4.6
	27	5		9 15 -	23 -	302	1.8
	28	20		8 13 -	28	325	2.7
	29	15	72	7 12 -	26 -	208	
	30	nd	69 -	7 11 -	25 -	191	1.6
	31 🎓	10	72 -	3 5 -	25	198 -	4
Ļ	# 5T 3 32	5	26 -	2 4 -	13	86	0.7 -
-	33	5	24	4 7 -	11		0.7 -
Ļ	34	nd	59	1 2 -	11	83	0.8
r	35	nd	86	8 13 -	22	202	1.6 -
P	36	5		4 6 -	13	<u> </u>	0.7 -
ŀ	37	nd	60-	3 5 -	11	7i	- 8.0
ŀ		nd	61 -	19 32 -	35	170	
	J / _ 39	nd	58 -	3 5 -	17 .	123 -	1.3
K	t <u>√ 40</u>	25	92-	6 10 -	(72) .	284)~	55
C		15		4 6 -	36	124	22
<u> </u>	42	20	92 -	74 123 -	30	(460) -	3.5 -
-	43	10	30 -	8 14 -	17	93	0.8
-	44	10	29 -	10 16	13	75 -	0.8
+	45	25	298.	8 14	(116)	368	3.8
-	46	nd		12 20	19	182	0.9 -
-	47	10	<u> </u>	15 25			
-	48 40	nd	69	23 39	26	350	1.8
	412 16 49	5	125	5 9	32	297-	2.0
	49 \$ B	nd	77 '	14 24		423/-	3.0/
ł	<u> </u>	10	50 -	5 8	20 -	161	2.1
ł	<u> </u>	25	45		14	113	2.7
•	52	10	3	T 6	16		1.2
L	53	20	22		115	40	(.0)

cc: Assay Lab.

.

C

GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

CAPLORATION

	Sample No.	% Gx. Gu .Au	Total Cu.	Mo % Mosz	РЬ	Zn	Aq	
		PPb	PPm	PPM PPM	PPm	PPM	PPM	
	89-54	nd	49 -	6 10 -	14 -	32 -	(A.9) -	
	55	5	49	5 8 -	21 -	1.39 -	3.0	
	56	10	51	4 6 -	22	174 -	2.2	
Δ	57	nd	52 -	24-	- 21		1.5 -	
Ŭ.	115 58	10	56	6 10 -	23 -	104	1.1 -	
	59	15	67 -	3 5 -	28	105	2.7	
	60	5	33	6 10 -	22 -	74 -	1.2 -	
				1				
			- Fil					
			<u> </u>					
						<u></u>		
*								
			u					
	· · · · · · · · · · · · · · · · · · ·							
			·					

cc: Assay Lab.

ŝ

Assayer ... D. A. W.

Form. No. Mill - 1

Ċ

.....

GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

Assayer ...

/

-

~ -

> ~ ~

V Exploration				1989			
			7pm	PPM	pp M	PPM	
Sample No.	% ~СхСи.	Total Cu.	Mo & Mosz	PL PL	Zn	Ag	
89 - 61		47 -	1220 -	26 -	133 -	1.4 -	
62		38 -	18 30 -	20 -	143 -	1.0 -	
63		43 -	12 20 -	20 -	180	2.1 -	
64		28 -	18 30 -	30 -	190 -	l.b -	
65		31 -	6 10 -	18.	11 -	1.2 -	
66		29 -	6 10 -	2B -	130 -	1.3 -	
67		27-	6 10 -	20 -	92 -	1.0	
68		30 -	6 10 -	20 -	72-	1.8 -	
69		37 -	6 10 -	11 -	81 -	1.4-	
70		58 -	610-	20 -	121-	1.2	
72.	. 06	55 -	12 20 -	24 -	217>	1.4 _	
71		71 -	12 20-	20 -	164-	1.6	
		· · · · ·					
5966	14-11-11-11-11-11-11-11-11-11-11-11-11-1	54 -	6 10 0	26600	24 -	(1.6)	
67		46 -	6 410 1	154 -	89 /	1.2	
		·					
		· · · · · · · · · · · · · · · · · · ·					
	·					· · · ·	
				<u> </u>		<u> </u>	
			+				

cc: Assay Lab.

Form. No. Mill - 1

GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

Exploration

PPM

Date 198)

	Sample No.	% Ox. Cu.	Total Cu.	Nos Mos	25	Zn	Ag
	89-73		34	9 15	20	39	1.0
	74		58	12 20	25	176	1.2
	75		<u> </u>	12 20	26	85	1.6
	76		36	4 7	22	36	·9 [04]
	77		31	3 5	23	31	1.1 700
	, 78		31	3 5	21	25	· (
¥	79		33	3 5	46	145	1.2
	80		60	6 10	(133)	103	1.6
Ċ	<u>14</u> 81		63	24	34	B4	.8
	P 82		(1)	7 11 -	45-	73 -	1.5 -
	83		56-	11 18 -	32	99 -	1.4
	84		42	46-	26-	49 -	1.3 -
	85		42-	5 9 -	29-	70-	1.4 -
Í.	86		34 -	5 8 -	21-	57-	1.1 /
	87		51	8 13	27	78	1.7
	88		50	7 1	26	74	1.5
	89		4.2	59	<u></u>	56	1.3
	90		- 30 -	3 5-	(6	- 17 -	1.0
	94		- 12 -	7 12-	25	<u>70</u> -	2.0
	92		(194)-	3 5 -	30 -	<u> 70 -</u>	2.1
	<u> </u>		43	4 1 -	21-	101	.9
	24		4:2	6 10 -	.200	127	1.0 -
						Š	
				 			
:							
	<u> </u>						
				1			

cc: Assay Lab.

93)

j,

Assayer ..

.

GIBRALTAR MINES LIMITED

EXPLORATION

				Au			l			•
		Sample No		~ % Gx. Gu .	Total Cu.	Mo	% MoS2	РЬ	Zn	Ag
		<u> </u>		PPD	0.00m	ppm	opm	ppm	pom	<u> </u>
					ri				<u> </u>	
Civ.	Nev	5967	ĸw		26 -	60	100 -	3851	137	3.0
	Rx	20551	P.AF.		68	1920	8200	8740	25	4.2
		20552	1242		9,	463	771	78600	14	272
de L					·					• 10 ⁻¹
							1			
							<u></u>			
-	-									
Sec.										<u></u>
· · ·										<u> </u>
							<u></u>			
						_				
			<u> </u>							
			<u>, , , , , , , , , , , , , , , , , , , </u>							
										+
		<u></u>								
		<u> </u>								
										<u> </u>
							<u></u>			<u></u>
	(T						<u></u>			<u></u>
										<u> </u>

cc: Assay Lab.

Assayer . I. A.W.

1

.

Ř.

GIBRALTAR MINES LIMITED

ASSAY CERTIFICATE

Exploration				Dateๆรมเร, 19.89					
·	_PP) M	PPM		ppm				
Sample No.	2/0	X. Cu.	Anne l Cu.	% MoS2	Ag	Mo	MoSz		
	Pb	Zn			0	ppm	ppm		
80553	51 -	180-	- 77 -	.002	1.6	12	20 -		
54	73-	180 -	25 -		1.6 -	42)0 -		
55 51.01 -1.	20 -	85 -	22 -		1.1 -	6	10 -		
54 Marin Sta	271-	200-	64 -	, 009	1.4 -	54	90 -		
57	93-	101-	80 -		1.4 -	24	40 -		
58	53-	71-	28 -	.002	1.1 -	12	20'		
5961 ?? 10 TAG Duck ??	55	2700	2100	.001	2,8	6	10		
	-			· ·					
5963 4.1	5700	20	(nd)	. 235	2.4	1410	2350		
64 (1)	216	13	16	.055	1.5	330	550		
65 +	4140	68	(155)	.181	1,8	1086	1810		
:		l							
	ļ								
							·		
	<u> </u>								
	ļ			····					
				······································					
			·····	·					
				<u></u>					
	ļ								
·									

cc: Assay Lab.

