

SCUD 11, 12, 13, 14 CLAIMS
 (4855, 4856, 4857, 4858)

LIARD MINING DIVISION PROSPECTING REPORT

```
OCTOBER, 1989
```

$$
G E 01.0 G B C A R B A N C H
$$

A5SESSMENTMEPTHT

$\begin{array}{ll}\text { Latitude } \\ \text { Longitude } & 56^{\circ} 50^{\circ}-57^{\circ} \times 7^{\prime}\end{array}$

Paul W. Jones CORONA CORPORATION

table of contents

Page No.
CONCLUSIONS $1 /$
RECOMMENDATIONS 1
INTRODUCTION 2
GEOLOGY
REGIONAL 5
PROPERTY 6
PROSPECTING TRAVERSES 8
GEOCHEMISTRY 10
STATEMENT OF COSTS 11
STATEMENT OF QUALIFICATIONS 12
BIBLIOGRAPHY 13
APPENDIX A - GEOCHEMICAL METHODS
APPENDIX B - SAMPLE DESCRIPTIONS
APPENDIX C - ANALYTICAL RESULTS
LIST OF FIGURES
PROPERTY LOCATION MAP 3
CLAIM LOCATION MAP $4 /$
REGIONAL GEOLOGY MAP 7
MAPSIn Back
Compilation Map 1 - 1:25,000

CONCLUSIONS

The SCUD C group has a low priority with respect to the rest of the Scud package. The prospecting in the amphibolite grade metamorphic rocks did not produce any showings of economic interest. This along with the fact that a large portion of the claim group overstakes previous mineral claims suggests that limited follow-up should be planned. Three areas on SCUD 11 can be prospected to determining whether any potential zones remain undiscovered.

RECOMMENDATIONS

The SCUD C group should be kept in good standing with minimal work. If local work on adjoining claims suggest that the claim group has any potential then follow-up exploration may be warranted.

INTRODUCTION

The Scud C claim group includes the four 20 unit Scud 11 (4855), Scud 12 (4856), Scud 13 (4857) and Scud 14 (4858) claims. They were all staked on July 5, 1988 by a contractor for Lacana Ex. (1981) Inc. a subsidiary of Corona Corporation. They are located at the head waters of the Scud River and are to the immediate east of the north south portion of the Scud River where it originates from the Scud glacier. The claims lie on the east of the Coast Plutonic Complex Intermontane Belt contact. Access is via helicopter from the Scud airstrip located at the confluence of the Scud and Stikine Rivers or the Galore Creek airstrip located 20 km to the south west.

The claims are composed of Permian limestones with tuffaceous siltstones of the Stikine assemblage overlain by Triassic Stuhini Group undifferentiated volcanics and sediments. On the eastern border of the volcanic sediment package the middle-late Triassic Hickman batholith dominates. This intrusion has metamorphosed some of the rocks to the west grading from greenschist to amphibolite facies. Upper Triassic Stuhini group rocks are seemingly unaltered by the Hickman Pluton. The later middle Jurassic Yehiniko Pluton and Eocene intrusives are also present.

The claims can be divided into 3 north south lithologies. The eastern strip is the hornblende quartz diorite phase of the Hickman Pluton. The central area is a metamorphosed mafic volcanic package which is in fault contact with the older Permian limestone tuffaceous siltstones of the Stikine assemblage to the west. The original mafic composition of the now metavolcanics and iron-rich sediments explains the pervasive disseminated pyrite throughout the lithologies. Elevated Ni and W results were persistent in shear zones sampled. Limited follow-up of these anomalies is warranted.

A major prospecting program was undertaken during August of 1988. This program was based on the Scud airstrip. During 7.5 mandays, 51 samples were collected. The cost of this exploration amounted to $\$ 11,120.00$ Canadian Dollars. A regional government geochemical survey released in June of 1988 provided limited coverage of the SCUD claim

PROPERTY LOCATION

TELEGRAPH CREEK

SCUD PROPERTY
CLAIM LOCATION MAP

REGIONAL GEOLOGY

The claim area lies on the western margin of the Intermontane Belt at its contact with the Coast Plutonic Complex. Paleozoic sediments and Mesozoic sediments and volcanics are cut by intrusive bodies of the main Coast Belt and the satellite Hickman and Yeheniko plutons. General tectonic fabric of the region trends north-northwesterly.

The oldest rocks exposed in the area are Lower Paleozoic clastics including impure quartzites and limestones, overlain by crystalline schists and gneisses. A thick impure limestone unit caps the Paleozoic oceanic sequence.

The lower contact of Mesozoic units is described by F.A. Kerr, G.S.C. Memoir 246 and J.G. Souther, G.S.C. Paper 71-44, as gradational and in places unconformable. Triassic rocks consist of a thick sedimentary sequence overlain by an island arc volcanic assemblage which is in turn capped by volcanic derived sediments.

The Jurassic layered sequence consists largely of a thick, near shore sedimantary package and later volcanic (island arc?) rocks. Extensive intrusive activity during this period resulted in the emplacement of the multi phased 'Coast Complex' and related satellite plutons. Alkaline and calc-alkaline members of this suite are directly associated with most of the numerous mineral occurences in the area. Cretaceous rocks consist mainly of marine sediments with a thin basaltic to rhyolitic component.

Cenozoic stratigraphy includes mafic and felsic aerial volcanic units. These rocks are a major component of glacial and fluvial deposits throughout the area. Several active hot springs attest to ongoing geologic activity throughout the general Iskut-Stikine region.

Most of the region has been subjected to Quaternary glaciation, resulting in rugged alpine terrain.

Study of aeromagnetic data published at a scale of $1: 250,000$ suggests that regional lows may reflect areas of thick ice cover.

PROPERTY GEOLOGY

The SCUD 11, 12, 13, 14 claim group encompasses Paleozoic and Mesozoic metamorphosed, volcanic and sedimentary rocks all intruded by Mesozoic granodiorites.

The Mesozoic rocks correlate with the Stuhini Group and the Paleozoic sequence with the Stikine assemblage. The Stuhini Group is composed of basal maroon and green epiclastic unit overlain by andesite flows, tuffs and volcanic breccia with minor augite phyric basalt sills and/or flows. The sediments that overlie are polymictic conglomerates of augite basalt, volcanics and limestone clasts. The Stikine assemblage as mapped in the area of the Scud Glacier (B.C. MEMPR Open File 1989-7), is divided into Permian and Pre-Permian periods. The basal unit of the Pre-Permian rocks are recystallized limestones overlain by a schist unit that in turn is covered by a mafic facies then a sedimentary siliceous mixed siltstone and rhyolitic volcanic unit. The Permian period starts with a distinctive rusty argillite covered by a limestone unit which is overlain by a mixed sediment and volcanic package and capped with another limestone unit.

The geological units, from west to east include a thick sequence of layered limestones, siltstones and argillites of Permian age. Within these older Paleozoic sediments are grabben blocks of younger middle Triassic sediments. These sediments are graphitic argillites and related conglomertes. The central portion of the claim group is a mafic metavolcanic unit. Variations of amphibolite, biotite schist and pyroxenite have been noted and an elevation of Ni and Cr within the rocks analyzed concurs with the mafic composition.

The predominant geologic features within the claim group are strong N-S structures within the Permian limestones on the western portion and the fault contact of these sediments with the Triassic metavolcanics. These metamorphosed rocks have been affected by the Hickman plutonic rocks that occupy the eastern border of the claim group.

PROSPECTING TRAVERSES

The following traverses are grouped according to the individuals who performed the work with the traverse number correlating to traverses marked on the compilation map.

Paul Jones - Prospector - Employee of Corona Corporation, 11 years within the mining industry, the last four years full time.
(27) August 24, 1988

SCUD 11, 13 - 3 rock samples \#20254-20256
This traverse was undertaken along a narrow canyon creek valley. The rocks included banded sediments within a larger limestone unit. The sediments were graphitic in nature and some bands had an abundance of pyrite. Along the gravel bank were the SCUD 11 and 13 Identification Posts ON4W and OS4W respectively.

```
Paul Huel - Contract Prospector, - Resident of Hazelton, B.C. with over 10 years of mineral experience.
```

(13) August 11, 1988

SCUD 10, 12 - 8 Rock Samples, \#1720-1727
This traverse involved a half day on the SCUD 10 claim and a helicopter move to SCUD 12 at noon. The southeast extension of a structure discovered on previous days was investigated on SCUD 10. A zone of quartz veins with chalcopyrite and tetrahedrite was prospected. Following this a move and traverse within the mafic metavolcanic unit was completed.

Bruce Holden - Contract Prospector, a resident of Hazelton, B.C. has been working in the mineral exploration industry for 10 years.
(14) August 11, 1988

SCUD 10, 12 - 6 rock samples,\# 1621-1626
This traverse involved a half day on the SCUD 10 claim and a helicopter move to SCUD 12 at noon. The south east extension of a structure discovered on previous days was investigated on SCUD 10. A zone of quartz veins with chalcopyrite and tetrahedrite was prospected. One quartz zone had erythrite that was also noted north west along the structure 2 km away. Following this a move and traverse within the mafic metavolcanic unit was completed.

Rob Klassen - Company Geologist, working for Corona Corporation for the last two years consecutively.
(11) - August 9, 1988

SCUD 14 - 14 Rock Samples,\# 1912-1925
This traverse was along the south west edge of a glacier flowing into the headwaters of the Scud River. It has been referred to in old assessment reports as Highgrader Glacier. The rocks along this traverse are predominantly mafic metavolcanic that have been intruded with a variety of plugs ranging in composition from diorite to leucocratic granodiorite. Late stage mafic dykes are also quite common.
(19) - August 21, 1988

SCUD 14 - 7 Rock Samples \#1260-1266
This traverse was along the ridge to the west of the route taken along the glacier on August 10. The traverse was limited to the alpine due to steep cliffs. The Hickman diorite intrusive predominates to the south. The remainder of the day was spent in mafic metavolcanics. Near the contact of the metamoriphic rocks and the Hickman Pluton copper mineralization, chalcopyrite, malachite was discovered in both the intrusive and volcanics.
(22)

- August 22, 1988

SCUD 8, 12 - 8 Rock Samples,\# 1275-1285
This day involved two separate traverses. The morning was spent on SCUD 12 along the contact of the diorite Hickman Pluton and the Triassic metavolcanic unit. The metavolcanic rock was very mafic in composition and disseminated pyrite was common. The second half of the day was spent on the north side of a mountain on SCUD 8. This area was completely intrusive in nature.

Karen Sobey - Contract Prospector - Graduate of the BCDM Prospecting Course 1987, 2 years field experience.
(12) - August 10, 1988

SCUD 14 - 8 Rock Samples,\# 1805, 1810-1816
This traverse was done on the western side of a glacier that flows into the headwaters of the Scud River. It has been named in older assessment reports as Highgrader Glacier. This travers was through predominantly mafic metavolcanics. Intruding into these volcanics are gabbroic intrusive plugs and dykes.
(23) - August 22, 1988

SCUD 13 - 8 Rock Samples,\# 1885-1890, 1894, 1895
3 Silt Samples,\# 1891-1893
This traverse was down a ridge that is predominantly Permian limestone. The limestones have quartz ankerite shear zones that are brecciated. The sediments have a high background of $N i$ probably owing in part to the close proximity of the mafic metavolcanic unit and the presence of the mafic Hickman Pluton to the east.

GEOCHEMISTRY

The 51 samples collected during this phase of work were submitted to Min En Labs of Vancouver for geochemical analysis. Analytical techniques are described in Appendix A, sample descriptions in Appendix B and results in Appendix C .

STATEMENT OF COSTS

SCUD 11, 12, 13, 14 - PROSPECTING	
Prospecting 7.5 man days @ $\$ 250 /$ man day	$\$ 1,875.00$
Samples (including shipping) 51 @ $\$ 25 /$ sample	$1,275.00$
Food @ $\$ 30 /$ man day	225.00
Supplies and Equipment	175.00
Contract Base Camp	$1,570.00$
Mob-demob (Aircraft Charter)	750.00
Helicopter Support 7.2 hrs @ $\$ 625 / \mathrm{hr}$	$4,500.00$
Report Preparation	750.00
	TOTAL

Dates: August 10, 11, 21, 22, 24, 1988

STATEMENT OF QUALIFICATIONS

I, PAUL WILLIAM JONES of the City of Vancouver, B.C. declare that:

1. I have been actively involved in the mining industry in Canada and the United States for 12 years.
2. I have personally directed and performed the work enclosed in this report under the supervision of Corona Corporation's Senior Geologist, Darrel Johnson.

AT \qquad , BRITISH COLUMBIA.

BIBLIOGRAPHY

Alldrick, D.J., Drown, T.J., Grove, E.W., Kruchkowski, E.R., Nichols, R.F., 1989 Iskut - Sulphurets Gold; The Northern Miner Magazine, January 1989.

Allen, D.G., Pantelegev, A., Armstrong, A.T., 1976 - Porphyry Copper Deposits of the Alkalic Suite, Galore Creek; C.I.M., Special Volume 15, Paper 41.

Barr, D.A., Fox, P.E., Northcote, K.E., Preto, V.A., 1976 - Porphyry Copper Deposits of the Alkalic Suite, The Alkaline Suite Porphyry Deposits - A Summary; C.I.M., Special Volume 15, Paper 36.

Brown, D., Wojdak, P., 1989 - K-Feldspar Connection: Relationship of K-Feldspar Intrusions to Cu Porphyries and Au Veins, Stewart Iskut Belt, B.C.; G.A.C., Copper-Gold Porphyry Workshop April 1989.

Buddington, A.F., 1929 - Geology of Hyder and Vicinity Southeastern Alaska; U.S.G.S., Bulletin 807.

Grove, E.W., 1986 - Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area; B.C. M.E.M.P.R., Bulletin 63.

Hodgson, C.J. - Recent Advances in the Archean Gold Model, With Implications for Exploration for "Mesothermal-Type" Gold Deposits in the Cordillera; G.A.C., Cordilleran Section Short Course No. 14.

Kerr, G.A., 1948 - Lower Stikine and Western Iskut River Areas, British Columbia; G.C.S., Memoir 246.

Lowell, J.D. 1988 - Gold Mineralization in Porphyry Copper Deposits; Society of Mining Engineering, SME Annual Meeting January 1988.

Lowell, J.D., Guilbert, J.M., 1970 - Lateral and Vertical Alteration Mineralization Zoning in Porphyry Ore Deposits; Economic Geology, Vol. 65, No. 4.

Souther, J.G., 1972 - Telegraph Creek Map-Area, British Columbia; G.S.C., Paper 71-44.

Souther, J.G., Brew, D.A., Okulitch, A.V., 1979 - Iskut River, British Columbia, Alaska; G.S.C., Map 14/8A.

Sutherland Brown, A., 1976 - General Aspects of Porphyry Deposits of the Canadian Cordillera; Mosphology and Classification; C.I.M., Special Volume 15, Paper 6.

APPENDIX A

GEOCHEMICAL METHODS

MIN-EN Laboratories Ltd.
Speciallsts in Mineral Envinonments
Corner 15th Sireet and Bowicke 705 WEST 15th STREET NORTH VANCOUVER, B.C.
canada

ANALYTICAL PROCEDURE REPORTS FOR ASSESSMENT WORK

PROCEDURE FOR GOLD GEOCHEMICAL ANALYSIS.
Geochemical samples for Gold processed by Min-En Labaratories Ltd., at 705 W .15 th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at $95^{\circ} \mathrm{C}$ soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_{3} and HClO_{4} mixture.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

At this stage of the procedure copper, silver and zinc can be analysed from auitable aliquote by Atomic Absorption Spectrophotometric procedure.

Further oxidation and treatment of ac least 75\% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Retone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instrumenta. The obtained detection 1 imit is 5 ppb .

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:
PROCEDURE FOR 31 ELEMENT TRACE ICP:

Ag, A1, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Sb}$, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are procesised by Min-En Laboratories., at 705 West loth Street, North Vancouver, employing the following procedures.

After drying the samples at $95^{\circ} \mathrm{C}$ soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.
1.0 gram of the sample is digested for 4 hours with an aqua tegia HClO_{4} mixture.

After cooling samples are diluted to standard volume.

- The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled plasma Spectrometers. Reports areformatted and printed using a dot-matrix printer.

APPENDIX B

SAMPLE DESCRIPTIONS
Sample
No.

SCUO 11
20254 grab
20255 grab
20256 grab
SCUD 12
1267 grab

1268
grab

SCuO 12 cont.

1269	grab	contact between feldspar porphory and mafic volcanic
1270	grab	brown orange weathered mafic volcanic with disseminated pyrite at contact with feldspar porphory
1271	grab	gossanous rock with Fe-staining, possibly intrusive
1272	grab	intermediate dyke within gossanous intrusive
1273	grab	rusty syenite with abundant epidote and quartz veining
1626	float	rusty siliceous mica schist talus
1727	float	quartz carbonate barite vein talus
1924	grab	dark orange weathered intermediate volcanic with chalcopyrite crystals and calcite veinlets
1925	grab	green schistose mafic biotite volcanic at contact with intermediate volcanic

SCUD 13

1885	float rusty quartz carbonate ankerite zone within volcanics, talus	
1886	grab	brecciated limestone unit
1887	float gossanous brecciated limestone with quartz carbonate zones,	
1888	grab	trace disseminated pyrite, talus
1884	grab wide quartz ankerite zone	
1890	grab sediment (siltstone) with $10 m$ wide gossanous ankerite zone	
		flesh colour gossan (volcanic?) with fine grained disseminated pyrite

Sample No.	$\begin{aligned} & \text { Sample } \\ & \text { lype } \end{aligned}$	Descriplion
. .	-a	
1893	silt	
1894	9ram	within creek, medium volcanic
1895	g(ab)	brecciated limestone
SCUD 14		
1260	grab	tan being weathered mixed felsic intrusive and coarse grained diorite with hornblende and pink and green feldspars
1261	grab	rusty brown weathered fine grained relsic dark green volcanic with disseminated pyrite

SCUO 14 cont..

1262	grab	rusty orange weathered fine grained dark grey felsic volcanic with disseminated pyrite
1263	grab	feldspar porphory, fine grained grey intermediate with disseminated pyrite
1264	grab	mafic volcanic with quartz veins with disseminated pyrite, chalcopyrite, malachite and molybdenite
1265 \ddots	grab	green weathered copper stained very siliceous coarse grained intrusive
1266	grab	mafic volcanic with silicified zone with malachite and azurite
1912	grab	felsic coarse grained granodiorite biotite and hornblende and pink and green feldspars
1913	grab	tan weathered siliceous fine grained volcanic..with biotite
1914	grab	tan weathered siliceous fine grained volcanic with biotite
1915	grab	rusty weathered coarse grained diorite with chlorite alteration
1916	grab	dark grey fine grained mafic volcanic with carbonate veinlets
1917	grab	rusty weathered contact of granitic intrusion into mafic volcanic, contact very siliceous
1918	grab	dark green to dark grey mafic volcanic with carbonate veinlets, epidote, blebs of chalcopyrite and quartz veins
1919	grab	dark green fine grained mafic volcanic with disseminated pyrite

Sample
Sample 1ype

SCUO 14 cont.
1805
gra!

1805

Description
grat rusty weathered diorite plug with feldspat phenocrysts, minor chlorite and quartz veinlets
grab ultramafic volcanic strongly chloritized minor epidote with serpentine along fractures
grab green felsic volcanic lense with homblend cryslals and carbonate veinlets
rusty weathered granitic intrusion with pink and green feldspar crystals and secondary quartz veinlels within hosl mafic volcanic
grab dark coarse grained intrusive (gabbro) with calcite filled fractures
float fine grained medium to dark volcanic with finely disseminated pyrite, talus
grab very fine grained mafic volcanic with finely disseminated pyrite
float below shear zone, sheared mafic volcanic
grab siliceous fine grained volcanic with finely disseminated pyrite
grab shear zone within micaceous schist with minor disseminated pyrite
float medium to fine grained medium grey volcanic with
float flesh coloured weathered siliceous calcareous fracture zone

APPENDIX C
ANALYTICAL RESULTS
chroma comp.
isalit river resuris ahg. tyer
[valiacs If PPat]

$\begin{gathered} \text { sctari } \\ 1 \end{gathered}$	AG	Al	is	B	RA	Af	81	CA	[0	C0	(11	$f 1$	1	11	nc	H*	m	Ni	$N 1$	F	1	¢	¢:	:		\because	is	92	5 m	-	${ }^{(P)}$	4:1-fP?
20254	1.1	13774	1	6	$1 \leqslant 15$	0.9	6	20.41	3. .	3.	113	34i6	$2: 13$	13	36,4	531	28	534	(s)	110::	1.	:	4	:		1.1.:	184	i	1	1	148	s
aces:	0.4	1335	10	8	317	0.8	1	2usi	1.k	3 SO	14	4670	\therefore a	\%	8340	35,	13	54	574	5%	S	;	\therefore			-4.1	1.3	1	\%	!	7	is
2025%	1.7	1405\%	13	15	(1)	0.6	10	36\%	1.7	14	10	344\%	2?s	18	10391	209	4	739	is	20.3	i:	:	i4			14.	\because	?	7	-	7	15
54612																																
1	45	$5!$	fis	B	84	$9[$	81	th	(0)	0	cu	11	1	11	ni	${ }^{16}$	n3	N4	k	r	P	\%	:	!		!	? ${ }^{\text {a }}$	85	St	*	CF	20.prs
$126]$	1.2	2,335	1	;	197	1.1	9	12737	1.8	5	140\%	27\%1	2i4s	4	$135 \% 3$	550	12	3953	4	1'ic	$1:$	J	\because			10.	164	1	?	1	11:	10
12:8	1	$414 a \dot{d}$	\therefore	3.3	18	1.3	10	4626:	0.7	26	17	$3{ }^{29} 96$	ibot	t	112.2	430	7	(H)	11	106	i	1	\therefore	,	;	! 36.2	17	1	?	3	101	!
1369	0.4	34400	+	19	is	3	11	36074	2.5	39	287	5siat	113:	3	11500	489	9	74	12	S1\%	$1:$,	1:	1		Sus.	d)	1	3	?	$\%$	3
1770	0.4	t5988	14	19	18	1.4	8	53541	0.5	34	606	3 sin 4	1538	S	5310	213	10	3 H	3	119	13	1	1			i3.0	4	1	-	1	14	5
1271	2	10707	is	-	9	1.6	8	21904	3.2	24	119	39172	? 697	4	8025	48	8	71	13	2160	2	:	\therefore		!	6.7	\therefore	?	i	!	93	5
1972	2.3	11201	is	3	81	1.9	8	33999	3.8	20	119	216s.	3 ai	d	735	621	8	885	15	17	15	,	i:	;		31.4	4	7	1	i	1.3	13
1273	1.9	1126?	1	1	33	1.7	8	75691	3.2	2	io	3236	2193	4	9817	729	9	7ns	13	23:9	15	1	;	:	!	68.4	S?	:	1	1	69	5

$\begin{gathered} \text { situ } 13 \\ i \end{gathered}$	25_{1}	4	as	8	Bf	㫙	el	Ch	co	co	${ }^{\circ}$	fk	\%.	11	nir	H\%	Mis	Wh	N1	\uparrow	Pt	S	Sr	i-i	:	\checkmark	's	50	5.	:	(R)	and Prom
1285	0.3	ISis	1	1	10	1.3		122722	7.1	26	S	323s:	1179	37	Sebct	736	5	119	94	217	11	1	i	;		35.6	$\therefore 1$	i	1	;	52	s
1886	0.4	609	37	1	1	0.5		261017	4.8	15	as	2211	:1i75	3 A	1758	105	8	110	18	351	:3	10	6	;		12.4	$1:$	d	1	?	40	5
188)	3	7537	39	1	305	0.9	11	7809	4.5	18	30	23884	ifos	49	88.0	82	11	651	20	3ii	?	10	,	-	:	34.9	4	;	2	E	12\%	5
1298	0.7	3976	4.6	11	638	2.6	6	37932	1.9	60	12	45467	264	3	62148	812	6	463	152	14	12	is	91	;	;	\$6.	3 F	i	1	1	191	10
1889	2.8	12833	53	3	127	1.2	10	1088	3.4	16	17	37891	238	48	12290	78	14	659	21	Sis	22	10	13	i	;	8.7	85	3	?	5	108	5
1890	0.3	36314	34	4	174	1.8	8	2548	1.2	56	88	43137	155s	53	58034	711	6	487	360	503	16	i	8	!	;	87.4	36	1	:	3i	757	is
1891	0.7	12s76	32	4	186	1.3	9	8705	2.8	36	53	44384	isel	30	18456	761	12	594	205	1627	17	1	17	\%	-	59.7	112	:	;	3	168	s
1892	0.4	24e34	17	8	114	1.2	7	10636	0.9	62	35	73:3?	ciss	49	75353	484	2	61:	613	$45:$	11	1	3	1	1	131.6	14	:	1	1	361	10
1893	0.9	12578	17	1	124	1.2	8	8809	3.2	40	53	16:99	1550	50	33209	625	13	584	283	135?	E	1	14	i	1	9 9 .3	27	?	2	1	214	5
1894	1.1	18308	1	14	60	1.7	8	1997	0.6	78	s	42775	1348	< 1	101136	674	3	511	843	135	7	1	12	:	i	65.1	2	i	1	$!$	412	5
1895	0.3	682	39	1	1	0.5	6	268807	4.6	16	24	168:	[193	37	\$211	9	8	399	29	353	7	10	-	;	1	\%.i	14	,	1	1	46	\$
591014																																
1	*	HL	AS	0	8 8	${ }_{6}$	81	CA	CD	CO	cu	fE	k	11	W	\%	N0	H	MI	P	P9	58	SR	If	*	*	is	64	SH	*	CR	AU-PP9
1260	2.5	17561	26	3	24	1.7	13	17762	3	22	160	25338	1758	46	7092	392	1	940	14	2350	is	2	11	1	1	82.2	11	2	2	1	11	5
1261	3.3	13151	36	3	13	0.9	13	15975	2.3	26	225	18296	1382	4	3618	107	11	761	38	1394	16	5	12	,	1	\$4.1	24	,		3	82	5
1262	2.9	12568	23	3	21	1.2	13	15791	2.1	31	. 140	31327	1438	14	3282	85	12	880	19	1313	13	1	13	1	1	\$5. 6	23	2	2	2	67	5
1263	2.1	16789	31	2	235	1.3	*	16913	3.1	27	47	30381	1975	to	1776	576	2	1034	49	901	17	1	21	1	1	79.5	35	2	$?$	-	148	5
124	1.2	62935	8	7	3	1.7		101496	0.6	23	64	22429	1295	4	6561	360	6	45	15	396	153	4	2	1	1	81.9	21	I	2	1	75	5
1265	2.7	13011	32	1	53	1.3	4	14845	5.1	25	5981	29099	2470	47	7928	518	10	1085	14	2193	3	1	19	1	1	74.1	81	,	2	1	11	5
1268	2.6	25336	22	5	4	1.1	3	12935	3.3	41	7420	32056	1963	50	11488	779	1	1080	14	1146	24	2	11	i	1	\%.l	67	1	2	1	52	5
1805	1.2	21800	15	5	39	0.0	10	15890	3	31	3	35860	1370	51	20170	573	5	960	61	600	12	2	e	1	2	114.7	37	1	1	2	103	5
1810	0.1	18800	6	7	57	1	2	16300	1	15	194	57430	1130	52	15460	453	25	2550	58	2090	1	2	24	1	1	116.8	137	3	1	1	122	5
1811	0.5	9640	16	40	14	1.3	2	7350	3.5	56	91	42050	1070	51	40270	453	3	1120	195	650	7	,	8	1	1	S5. 7	48	1	,	1	270	5
1812	0.3	16000	10	6	4	0.8	3	9050	10.9	33	75	33170	1510	52	10200	319	52	1260	60	1100	14	3	8	1	1	23.6	137	2	2	1	168	10
K_{1}	0.2	3410	10	3	35	0.9	4	10600	2.9	14	-	23650	2060	4	7200	75s	6	690	-	730	10	1	is		1	4	21	1	,	1	71	5
1814	0.3	16340	14	7	500	1	3	4950	2.7	12	\%	31470	stue	4	11270	368	6	2140	354	370	S	3	20	3	1	62.3	21	1	1	33	475	5
1815	0.1	15030	21	3	37	1.5	6	15530	1	30	391	32050	1178	${ }^{1}$	8280	204	6	130	36	1570	8	3	2	1	,	56.2	1s	1	1	1	6	S
1116	0.4	23910	26	9	15	1.6	1	34940	3	4	61	43440	1190	78	88440	599	2	420	851	250	12	7	32	1	1	88	13		1	38	1033	5
1912	0.6	15810	21	7	34	1.3	5	16850	1.2	22	17	33120	1970	39	10970	522	7	1010	-	2690	11	1	25	1	1	109.1	50	1	2	1	7	5
1913	0.3	9010	12	4	50	9.8	4	785	1.4	20	204	31250	1760	S	7110	338	8	1810	11	2700	4	1	10	1	1	116.3	4	3	2	1	116	5
1914	2.1	5070	26	8	146	0.1	0	10330	3.7	11	31	7500	280	50	1670	502	8	730	10	480	6	6	43	1	1	14.1	131	11	1	1	0	10
1915	0.6	14740	1	7	4	1.3	7	19310	1.4	21	168	44960	140	58	13010	tsi	6	1330	11	3170	12	1	11	,	1	135.1	68	6	1	1	41	5
1916	0.9	47900	10	30	21	1.7	1	10679	0.1	12	40	4760	10%	61	21350	1067	1	700	1	1280	13	7	1	$?$	1	20.3	58	1	2	1	52	3
1917	0.6	12410	4	3	2	-.	2	35120	1.7	21	45	33270	1330	35	11220	647	7	330	9	2050	10	3	1	1	1	108.1	15	1	1	1	37	5
1918	0.5	25380	35	7	1	1.6	1	40710	0.9	10	381	61120	970	70	22590	1122	5	810	4	1150	7	3	1	,	1	23	76	1	3	1	52	5
1919	0.5	37340	21	26	34	1.7	3	30150	0.5	4	31	4470	1260	76	21810	1126	4	730	3	1270	8	,	1	3	1	256.1	4	s	3	1	48	10
1920	0.7	7080	16	1	353	1.3	2	21460	1.1	18	159	33310	2450	3	1770	840	6	100	6	2580	12	2	31	1	,	4.8	57	1	1	1	so	5
1921	0.4	11100	10	5	0	1.2	4	17400	1.6	17	6	22210	250	\$1	4720	414	6	900	7	170	15	1	39	,	1	4.7	41	1	1	1	48	3
1922	0.7	12990	32	24	11	1.1	1	3800	5.4	72	15	406\%	2010	51	26350	37	3	710	927	290	1	,	10	1	1	4.1	13	1	1	3	481	10
1923	0.6	24230	28	1	14	1.2	3	10010	2.6	52	20	42010	120	41	57510	116	4	390	41	420	11	5	2	1	1	112.1	28	1	,	51	1142	5

