

Page No.
CONCLUSIONS 1.
RECOMMENDATIONS 1.
INTRODUCTION 2
GEOLOGY
REGIONAL 6
PROPERTY 7,
GEOCHEMISTRY 8
STATEMENT OF COSTS 10
STATEMENT OF QUALIFICATIONS 11,
BIBLIOGRAPHY
APPENDICES
APPENDIX A - GEOCHEMICAL METHODS,
APPENDIX B - SAMPLE DESCRIPTIONS
APPENDIX C - ANALYTICAL RESULTS1
APPENDIX D - PROSPECTING HOTESLIST OF FIGURES
PROPERTY LOCATION MAP 4
CLAIM LOCATION MAP 5
-REGIONAL GEOLOGY MAP -9
MAPS
Compilation Map $1-1: 25,000$ In BackGEOLOGY MAF 1:10000

CONCLUSIONS

The SPHAL A claim group is composed of Stikine Assemblage rocks which include a major limestone unit with lesser agglomerate volcanics and mixed sediments. Bedrock on 20% of the group is obscured by glacial outwash deposits. A strong north-south structure which cuts massive limestone on SPHAL 5 hosts minor sulphide mineralization.

RECOMMENDATIONS

Two areas on the SPHAL A group may warrant further exploration, especially in light of unsubstantiated reports of a discovery by Cominco on their FOREMORE claims 10 kilometres to the east. Weak copper/silver values contained in the major structure on SPHAL 5 might be tested by a combined program of geochemistry, geophysics and trenching as warranted. Quartz veins at the limestone/phyllite contact near the centre of SPHAL 7 contain anomalous precious metal values and should be followed up.

INTRODUCTION

The SPHAL A claim group includes the four 20 -unit SPHAL 1 (4816), SPHAL 3 (4818), SPHAL 5 (4820) and SPHAL 7 (4822). They were staked from July 3, 1988 to July 6, 1988 by a contractor for Lacana Ex. (1981) Inc., a subsidiary of Corona Corporation. They are located at the headwaters of Sphaler Creek. The claims lie within the contact of the Coast Plutonic Complex and the Intermontane Belt. Access is via helicopter from the Scud Airstrip, located at the confluence of the Scud and Stikine Rivers or the Galore Creek airstrip 15 km to the northwest.

The claims are composed of Permian and Pre-Permian sediments and volcanics. At the extreme western border of SPHAL 1, the Permian volcanics are in fault contact with younger Triassic volcanics. On the SPHAL 7 claim the Paleozoic Stikine assemblage sequence starts with a Mississippian basal fossiliferous calcarenite then phyllite and then limestone. The Mississippian sediments are unconformably overlain with Permian volcaniclastics that are both green and purple. Stratographically overlying the volcanics is a thick sequence of limestone with lesser amounts of sandstone and siltstone. A NE/SW fault cuts the claim group and places the younger Permian sediments in contact with older phyllic sediments. These phyllic sediments underlie the Permian volcaniclastic unit which in turn is capped by the younger Permian sediments.

Mineralization of note on the SPHAL A claim group includes: i) mineralized quartz veins within the Mississippian limestones at the contact with the phyllite unit, (ii) a north south structure cutting the thick Permian limestone unit with copper and silver mineralization, (iii) shear zones and quartz veins within the green and purple volcanoclasic unit, and finally iv) rusty rounded siliceous pyritic boulders up to 10 m across left by the receeding ice.

The geological mapping and sampling performed from July 7 th to July 17 , 1989 included 12 mandays, 45 rock samples at a cost of $\$ 12,310.00 \mathrm{Cdn}$. The work was done out of a fly camp located on the south bank of Sphaler Creek on the SPHAL 5 claim using a helicoper based at Galore Creek.
was done out of a fly camp located on the south bank of Sphaler Creek on the SPHAL 5 claim using a helicoper based at Galore Creek.

REGIONAL GEOLOGY

The claim area lies on the western margin of the Intermontane Belt at its contact with the Coast Plutonic Complex. Paleozoic sediments and Mesozoic sediments and volcanics are cut by intrusive bodies of the main Coast Belt and the satellite Hickman and Yeheniko Plutons. General tectonic fabric of the region trends north-northwesterly.

The oldest rocks exposed in the area are Lower Paleozoic clastics including impure quartzites and limestones, overlain by crystalline schists and gneisses. A thick impure limestone unit caps the Paleozoic oceanic sequence.

The lower contact of Mesozoic units is described by F.A. Kerr, G.S.C. Memoir 246 and J.G. Souther, G.S.C. Paper 71-44, as gradational and in places unconformable. Triassic rocks consist of a thick sedimentary sequence overlain by an island arc volcanic assemblage which is in turn capped by volcanic derived sediments.

The Jurassic layered sequence consists of a thick, near shore sedimentary package and later volcanic island arc rocks. Extensive intrusive activity during this period resulted in the emplacement of the multi phased 'Coast Complex' and related satellite plutons. Alkaline and calc-alkaline members of this suite are directly associated with most of the numerous mineral occurences in the area. Cretaceous rocks consist mainly of marine sediments with a thin basaltic to rhyolitic component.

Cenozoic stratigraphy includes mafic and felsic aerial volcanic units. These rocks are a major component of glacial and fluvial deposits throughout the area. Several active hot springs attest to ongoing geologic activity throughout the general Iskut-Stikine region.

Most of the region has been subjected to Quaternary glaciation, resulting in rugged alpine terrain.

Study of aeromagnetic data published at a scale of $1: 250,000$ suggests that regional lows may reflect areas of thick ice cover.

PROPERTY GEOLOGY

The SPHAL A claim group encompasses a mixed package of Paleozoic volcanics and sediments and a small area of Mesozoic volcanics. Geology will be described on an individual claim basis, traversing from west to east.

SPHAL 1

The dominant geologic feature of the Sphal 1 claim is a strong $N-S$ trending fault with abundant quartz and ankerite which separates Triassic volcanics from a Paleozoic sedimentary sequence. Triassic rocks are generally andesitic tuffs which are widely propylitized along the fault trace. Sediments include a buff coloured dolomite with black graphitic argillite beds and lesser quartzite lenses. Splays off the main structure contain ankerite and quartz but only trace amounts of sulphide.

SPHAL 3
As prospecting during 1988 had indicated little mineral potential on Sphal 3, no geological work was undertaken in 1989. Previous work indicates the claim to be underlain by Permian andesite-basalt, tuffs and flows.

SPHAL 5

The SPHAL 5 claim covers a major limestone unit with lesser volcanic and mixed sediment outcrops. A large glacial floodplain obscures bedrock under the east central portion of the claim. Volcanic rocks observed are purple agglomerates and green tuffs with local, ankeritic shear zones. The mixed sediment unit includes black crystalline limestones and black argillites with interbeds of sandstone. This unit is cut by a major north south structure. The structure hosts quartz ankerite zones containing disseminations and blebs of pyrite, chalcopyrite and tetrahedrite. Copper values range to near $.3 \%$ over .3 m . Other metals are low.

SPHAL 7
As much of SPHAL 7 is below treeline, bedrock exposure is limited to stream cut gorges. Siliceous chlorite-sericite schist and quartz ankerite rich shears contain pyrite, chalcopyrite and minor barite. Structures are abundant but discontinous.

An area near the centre of SPHAL 7 where 1988 prospecting encountered quartz veins sparsely mineralized with pyrite and chalcopyrite, containing anomalous precious metal values was not investigated by this phase of work.

GEOCHEMISTRY

The 45 rock samples collected during this phase of work were submitted to Acme Analytical Labs of Vancouver for geochemical analysis for copper, lead, zinc, silver and gold. Analytical techniques are described in Appendix A, sample descriptions in Appendix B and the results are given in Appendix C.

STATEMENT OF COSTS

SPHAL 1, 3, 5, 7 - GEOLOGICAL

Geology 12 man days @ $\$ 350 /$ man day	$\$ 4,200.00$
Samples (including shipping) 45 @ $\$ 25 /$ sample	$1,125,00$
Food @ $\$ 30 /$ man day	360.00
Acconmodation, Camp	550.00
Supplies and Equipment	175.00
Mob - De Mob (Aircraft Charter)	$1,525.00$
Helicopter Support 5 hours @ $\$ 725 / \mathrm{hr}$	$3,625.00$
Report Preparation	TOTAL
	$\$ 12,310.00$

Dates: July 7-17, 1988

STATEMENT OF QUALIFICATIONS

DARREL L. JOHNSON

I, DARREL L. JOHNSON, resident of the District of Coquitlam, B.C. declare that:

1. I hold a B.Sc. degree in Geology, granted by the University of British Columbia in 1970;
2. I have worked as a geologist in all phases of exploration work throughout B.C. since 1970;
3. I have been employed by Corona Corporation as a Senior Geologist since 1988;
4. Work described in this report was conducted by Paul Jones under my overall supervision.
5. I co-authorized this report based on published information for the area, extensive discussion with Paul Jones and visits to the area during the programmes described.

DATED THIS \qquad DAY of Ore impure 1989

AT VANCOUVER, BRITISH COLUMBIA.

BIBLIOGRAPHY

Alldrick, D.J., Drown, T.J., Grove, E.W., Kruchkowski, E.R., Nichols, R.F., 1989 Iskut - Sulphurets Gold; The Northern Miner Magazine, January 1989.

Allen, D.G., Pantelegev, A., Armstrong, A.T., 1976 - Porphyry Copper Deposits of the Alkalic Suite, Galore Creek; C.I.M., Special Volume 15, Paper 41.

Barr, D.A., Fox, P.E., Northcote, K.E., Preto, V.A., 1976 - Porphyry Copper Deposits of the Alkalic Suite, The Alkaline Suite Porphyry Deposits - A Sumary; C.I.M., Special Volume 15, Paper 36.

Brown, D., Wojdak, P., 1989 - K-Feldspar Connection: Relationship of K -Feldspar Intrusions to Cu Porphyries and Au Veins, Stewart Iskut Belt, B.C.; G.A.C., Copper-Gold Porphyry Workshop April 1989.

Buddington, A.F., 1929 - Geology of Hyder and Vicinity Southeastern Alaska; U.S.G.S., Bulletin 807.

Grove, E.W., 1986 - Geology and Mineral Deposits of the Unuk River - Salmon River - Anyox Area; B.C.M.E.M.P.R., Bulletin 63.

Hodgson, C.J. - Recent Advances in the Archean Gold Model, With Implications for Exploration for "Mesothermal-Type" Gold Deposits in the Cordillera; G.A.C., Cordilleran Section Short Course No. 14.

Kerr, G.A., 1948 - Lower Stikine and Western Iskut River Areas, British Columbia; G.C.S.r Memoir 246.

Lowell, J.D. 1988 - Gold Mineralization in Porphyry Copper Deposits; Society of Mining Engineering, SME Annual Meeting January 1988.

Lowell, J.D., Guilbert, J.M., 1970 - Lateral and Vertical Alteration Mineralization Zoning in Porphyry Ore Deposits; Economic Geology, Vol. 65, No. 4.

Souther, J.G., 1972 - Telegraph Creek Map-Area, British Columbia; G.S.C., Paper 71-44.

Souther, J.G., Brew, D.A., Okulitch, A.V., 1979 - Iskut River, British Columbia, Alaska; G.S.C.r Map 14/8A.

Sutherland Brown, A.r 1976 - General Aspects of Porphyry Deposits of the Canadian Cordillera; Mosphology and Classification; C.I.M., Special Volume 15, Paper 6.

ACME ANALYTICAL LABORATORIES LTD.

Assaying \& Trace Analysis
852 E. Hastings St., Vancouver, B.C. V6A if6
Telephone : 253-3158
ICP - -5 gram sample is digested with $3 \mathrm{ml} 3-1-2$ HC1-HNO3-H2O at 95 deg.C for one hour ard is diluted to 10 ml with water. This leach is Partial for Mn, Fe, Sry Ca, P, La, Cr, Mg, Ba, Ti, B, W and 1 imited for Na, K, Al.
Au* - 10 gram samples are ignited at 600 deg. C , digested with aqua regia at 95 deg. C for one hour, 50 ml aliquat is extracted into 10 ml MIBK, analysed by graphite furnace AA.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR 31 ELEMENT TRACE ICP:

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, $\mathrm{Mg}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Sb}$, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories., at 705 West l5th Street, North Vancouver, employing the following procedures.

After drying the samples at $95^{\circ} \mathrm{C}$ soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.
1.0 gram of the sample is digested for 4 hours with an aqua regia HClO_{4} mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

MIN-EN Laboratories Ltd.
 Speciallsts in Mineral Environments Corner 15th Streat and Bewicke 705 WEST 15th STREET NORTH VANCOUVER, B.C. canada

ANALYTICAL PROCEDURE REPORTS FOR ASSESSMENT WORK

 PROCEDURE FOR GOLD GEOCHEMICAL ANALYSIS.Geochemical samples for Gold processed by Min-En Labaratories Ltd., at 705 W . 15 th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at $95^{\circ} \mathrm{C}$ soil and stream sediment samples are screened by 80 mesh aieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are prem treated with HNO_{3} and HClO_{4} mixture.

After pretreatments the samples are digested with Agua Regia solution, and after digestion the samples are taken up with 25% HCi to suitable volume.

At this stage of the procedure copper, ailver and zinc can be analysed from auitable aliquote by Atomic Absorption Spectrophotometric procedure.

Further oxidation and treatment of at least 75\% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-butyl Retone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 5 ppb.

Sample	Type	Description
30235	grab	10 cm wide quartz vein with 5% pyrite, chalcopyrite, tetrahedrite
30236	1 m chip	across quartz vein and quartz flooded zone, 5% pyite, chalcopyrite, tetrahedrite
30237	float	rounded massive sulphide boulder within siliceous volcanic
30238	grab	quartz vein, zone with 5% pyrite, chalcopyrite, tetrahedrite
30252	grab	coarse grey black limestone with ankerite stockwork
30253	grab	ankerite stockwork up to 2 cm wide in grey coarse grained limestone
30254	grab	rusty fine grained grey ankerite limestone with trace disseminated pyrite
30255	grab	rusty grey siliceous sericite schist with trace disseminated pyrite
30256	2 m chip	rusty grey siliceous sericite schist with trace disseminated pyrite
30257	2 m chip	rusty grey siliceous sericite schist with trace disseminated pyrite
30265	$\ldots 1 / 2 \mathrm{~m}$ chip	black sheared and brecciated purple agglomeratic volcanic with ankerite
30266	2 m chip	ankerite quartz shear within purple agglomeratic volcanic
30267	20 cm chip	ankerite quartz shear within purple agglomeratic volcanic
30268	30 cm chip	rusty ankerite zone within limestone with trace - 1\% chalcopyrite, malachite
30269	2 m chip	rusty ankerite zone within limestone with trace - 1\% chalcopyrite, malachite
30270	grab	rusty ankerite altered dolostone with trace disseminated pyrite

	30271	grab	rusty ankerite altered dolostone with quartz stockwork and trace chalcopyrite
	30272	grab	rusty black argillite with quartz ankerite stockwork and pyrite blebs
	30273	grab	rusty black argillite with quartz and ankerite veining and trace pyrite
	30274	grab	rusty black argillite, sheared with quartz veins and trace disseminated pyrite.
	30283	2 m chip	rusty ankerite altered brecciated shear in silicified agglomerate? with mariposite, pyrite
	30284	2 m chip	rusty ankerite altered brecciated shear in silicified agglomerate? with mariposite, pyrite
4	30285	2 m chip	rusty ankerite altered brecciated shear in silicified agglomerate? with mariposite, pyrite
	30303	grab	rusty ankerite altered shear within foliated sediments
	30304	talus	limey quartz vein within black argillite
	30305	grab	ankerite altered shear zone
	30306	2.5 mg grab	black limey graphitic sheared clastic sediments with malachite, chalcopyrite
	30307	grab	ankerite and quartz flooded zones within shear in creek cut
	30308	grab	highly fractured and sheared argillite with talc zones
	30309	grab	rusty ankerite altered shear within lapilli agglomerate tuff
	30310	1 mgrab	ankerite quartz shear within green lapilli tuff
	30311	talus	ankerite altered agglomerate with veinlets of quartz and ankerite

Sample	Type	Description
30312	grab	pervasive ankerite altered shear
30313	grab	rusty ankerite altered limestone with siltstone interbeds
30314	grab	brown ankerite altered lapilli tuff
30315	1.5 m grab	ankerite altered lapilli tuff with occasional quartz veinlets
30316	40 cm grab	shear zone in lapilli tuff
30317	grab	ankerite altered zone with quartz veins
30326	3 m grab	ankerite shear with quartz veins within limestone? basalt??
30334	4 m chip	green chlorite altered rusty andesite with limestone lenses
30335	2 m chip	rusty black graphitic argillite with shear zones
30336	grab	ankerite altered rusty sediments with trace quartz veins
30337	30 cm chip	brecciated limestone with fine grained disseminated pyrite
30338	3/4 m chip	black limey argillite with quartz veins
30339	talus	rusty buff limestone with minor pyrite blebs

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUL 201989 852 E. HASTINGS ST. VANCOUVER B.C. VGA IR 6 PHONE (604)253-3158 FAX (604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANAIXSXS CERTXEXCAXE

 - sample type: rock aux analysis by acid labch/ar from 10 gl sample.
 CORONA CORPORATION PROJECT 1040 EILE \# 89-2312 Page 1

Spued

SAMPLE ${ }_{\text {- }}$	Cu	Pb	2 n	Ag	$A U^{*}$
	PPM	PPM	PPM	PPM	PPB
/					
D 30282	32	5	77	. 1	3
/D 30283	28	2	28	. 1	2
\checkmark D 30284	19	2	29	. 1	1
\checkmark D 30285	26	4	31	. 1	1
LD 30286	7	2	36	. 1	1
4D 30287	10	2	13	. 1	1
D 30288	107	5	77	. 1	2
万D 30326	69	4	84	. 1	136
CD 30327	12	2	15	. 1	3
(D) 30328	28	12	54	1.1	64
\checkmark D 30329	13	6	67	. 1	1
VD 30330	10	6	49	. 1	2
UD 30331	6	2	24	. 1	3
-D 30332	100	7	55	. 1	2
थD 30333	41	10	63	. 1	3
/D 30334	19	4	102	. 1	4
\checkmark D 30335	15	9	65	. 1	1
UD 30336	26	4	48	. 1	8
\checkmark D 30337	4	2	34	. 1	2
\checkmark D 30338	49	2	108	. 1	15
\checkmark D 30339	41	15	54	. 1	1
CD 30340	65	607	156	1.2	2
\checkmark D 30341	33	8	53	. 1	2
\checkmark D 30342	31	16	66	. 1	3
D 30343	84	6	72	. 4	6
\checkmark D 30344	56	6	30	. 1	2
\checkmark D 30345	20	3	40	. 1	1
\checkmark D 30346	64	5	98	. 1	3
\checkmark D 30347	85	9	104	. 1	4
\checkmark D 30348	98	4	85	. 1	3
UD 30349	240	28	25	. 5	62
t6 30350	10	5	66	- 1	1
	56	42	122		

- assay required for cobneot ==sult fur $\mathrm{Cu}>1 \%$

$$
\operatorname{Ag}>30 \mathrm{ppon}
$$

```
acme analytical laboratories ltd.
DATE RECEIVED: JUL 181989
``` 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE (604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

\section*{foly. \(26 / 87\)}

GEOCXEMICAX ANAXXSIS CERXXEICAXE

 sahfle type: rock ant analysis by hcid lahch/aa frou 10 gh sahpla.

CORONA CORPORATION PROJECT 1040 EILE \(89-2261\) Page 2
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{SAMPLE\#} & Cu & Pb & Zn & Ag & \(A U^{*}\) \\
\hline & PPM & PPM & PPM & PPM & PPB \\
\hline \(\checkmark\) J 30260 & 17 & 12 & 84 & . 3 & 1 \\
\hline dD 30261 & 863 & A & 60 & . 5 & 5 \\
\hline /D 30262 & 6 & 11 & 71 & - 3 & I \\
\hline \(\checkmark\) D 30301 & 58 & 12 & 286 & . 1 & 1 \\
\hline \(\checkmark\) D 30302 & 62 & 5 & 77 & . 1 & 3 \\
\hline UD 30303 & 28 & 2 & 63 & . 1 & 1 \\
\hline D 30304 & 14 & 2 & 69 & . 2 & 1 \\
\hline \(\checkmark\) - 30305 & 153 & 2 & 85 & . 1 & 2 \\
\hline \(\checkmark\) D 30306 & 16796 & 7 & 55 & 33.1 & 2 \\
\hline -D 30307 & 52 & 2 & 27 & . 1 & 1 \\
\hline -1 30308 & 48 & 5 & 53 & . 1 & 2 \\
\hline -D 30309 & 19 & 16 & 81 & . 1 & 1 \\
\hline \(\checkmark\) D 30310 & 14 & 2 & 32 & . 1 & 2 \\
\hline Jo 30311 & 37 & 2 & 61 & . 1 & 1 \\
\hline D 30312 & 42 & 5 & 70 & . 1 & 1 \\
\hline \(\sqrt{ }\) D 30313 & 2 & 2 & 22 & . 3 & 1 \\
\hline \(\checkmark\) D 30314 & 12 & 2 & 90 & - 1 & 1 \\
\hline DD 30315 & 39 & 2 & 15 & . 2 & 3 \\
\hline Jo 30316 & 6 & 3 & 11 & . 2 & 3 \\
\hline \(\checkmark\) D 30317 & 308 & 5 & 50 & . 3 & 2 \\
\hline STDMCAUTR & 66 & 38 & 31 & 7 & \(5-20\) \\
\hline
\end{tabular}

\section*{PROJECTING TRAVERSES}

The following traverses are grouped according to the individuals who performed the work, with the traverse number correlating to traverses marked on the compilation map.

Paul Jones - Prospector - Employee of Corona Corporation, 11 years in the mining industry, the last four full time.
(5) August 9, 1988

SPHAL 7, 8 - 6 rock samples, \#1406-1408, 1410-1412
6 silt samples, \#1401-1405, 1409
This traverse was down the slope on the south side of Sphaler Creek, starting at the toe of a glacier. It ended on the extensive mud flats at the headwaters of Sphaler Creek. The geology includes many variations of andesite volcanic ash to agglomeratic tuffs and flows. Locally the volcanics are chlorite altered, foliated, silicified and sheared. The increase in foliation occurs near and within structurally-controlled creek ravines. At the end of the traverse the contact between the volcanic and limestone phyllite unit was prospected. The phyllite unit near the triple contact has narrow quartz veins with pyrite and arsenopyrite mineralization. A small outcrop of ultramafic pyroxene-rich volcanic is found along the edge of the mud flats.
(7) August 10, 1988

SPHAL 7, 8 - 9 rock samples, \# 1413, 1415-1418, 142101424
3 silt samples, \#1414, 1419, 1420
This traverse was from east to west, just below the glaciers on the south side of Sphaler Creek, and above the tree line. The start of the day was at the contact of the andesite volcanics and a crinoidal limestone and phyllite unit. The structural complexity of the area has resulted in an irregular contact. Horst and graben
block faulting juxtaposes the volcanics and sediments. The sediments are primarily a fossiliferous limestone with lesser amounts of medium-grained grey limestone and foliated siltstone, phyllite. The later part of the traverse was in a mixed lapilli to agglomeratic tuff. These tuffs are green and purple with interfingering green flows. Shear zones periodically cut the volcanics. These shear zones are from \(1 / 2 \mathrm{~m}\). to 10 m . wide and comprise ankerite and quartz. Iron staining is common, but mineralization is limited to trace amounts of disseminated pyrite. The only other mineralization of note is small \(1-2 \mathrm{~m} . \mathrm{x} 1 / 2 \mathrm{~m}\). sulphide, pyrite lenses within a green rusty andesite tuff.
(23) August 23, 1988

SPHAL 5 - No samples
Half a day was spent here around a small pond up above a limestone bluff. The rocks prospected during this helicoptersupported traverse were mixed bedded limestones and fractured sandstones and siltstones. No mineralization was observed.

Peter Neelands -Geology student - Summer employee of Corona Corporation. Five years in field work, the last two full time.

\section*{(2) August 1988}

SPHAL 7, 8 -11 rock samples, \#28-38
This traverse was along a bench above the south side of Sphaler Creek on Sphal 7 and 8. The geology started in sediments and ended in volcanics. The sediments include sandstones, chlorite schists, arkoses and limestones. The sediments have ankerite shear zones and quartz veins at the contacts between sedimentary layers. No mineralization was noted in the sediments. The andesite volcanic unit also have ankerite-filled shear zones and quartz veins, but only trace amounts of pyrite. Alteration of the volcanic rocks include various degrees of chlorite and epidote.
(6) August 9, 1988

SPHAL 1 - 15 rock samples, \#1301-1315
This traverse was on the north side of Sphaler Creek, high up by the ridgetop glaciers. The alpine and glacial-scraped terrain is an andesite volcanic unit. These volcanics have mafic variations and are pervasively chlorite and epidote altered. Zones of quartz flooding and quartz stockwork with trace amounts of pyrite and chalcopyrite were sampled. At the contact of the volcanics and the lower sediments are a number of porphyritic intrusive plugs. The sediments were briefly transversed and are limey sandstones, quartzites and limestones.
(8) August 10, 1988

SPHAL 1, 3, 4 - Rock samples, \#1316-1333
This traverse was a continuation along the slope below the glaciers on the north side of Sphaler Creek. The route started in the alpine and followed a vegetation-free path, eventually ending along the creek a difference of 3000 feet lower than the start. The geology at the beginning of the day was a banded and bedded sedimentary unit which included laminated quartzites and black siltstones. These sediments have a north/south strike and near vertical dip. Prospecting east, the sediments are underlain by a green chloritic andesite volcanic unit. This andesite unit is massive and included tuffs and flows. Quartz veins, veinlets and ankerite zones with trace amounts of disseminated pyrite were sampled. Lenses of a limestone and black sandstone, siltstone horizon were mapped within the volcanics and are probably of the overlying sedimentary package. The lower extent of the volcanics are composed of green and purple volcanic flows. Below this is an older sedimentary package which includes siliceous limestones, black dolomites to limey argillites and a red mudstone unit. The sedimentary volcanic contact is brecciated and chlorite-altered. No mineralization or alteration of significance was encountered.
(10) August 11, 1988

SPHAL 5-15 rock samples, \#1334-1348
This traverse was from north to south along a steep creek valley that may be structurally controlled. The rocks within this gully are all of a sedimentary nature. The most predominant sediment is a limestone that occurs in both a ferruginous and a clean state. The presence of this extensive limestone leaves the rest of the sediments with a calcarenite composition. A more intensely fractured zone within the limestone was prospected. The fracture surfaces have apparent copper staining, malachite and the fractures themselves are filled with barite, iron-carbonate, and quartz veining. The zone also has brecciated segments. Rounded silicified pyritic boulders with up to 30 per cent pyrite were noted.
(14) August 12, 1988

SPHAL 5, 6 - 4 rock samples, \#1349-1352
This traverse was on the north bank of Sphaler Creek and was through the extensive limestone unit. The limestone has brecciated segments and quartz ankerite shears. The structures are iron oxidized, but no sulphides were observed.

Karen Sobey - Contract Prospector - Graduate of BCDM Prospecting Course, 1987. Two years of field experience.
(1) August 7, 1988

SPHAL 7, 8 - No samples collected
This traverse was along a bench above the south side of Sphaler Creek on Sphal 7 and 8. The geology started in sediments and ended in volcanics. The sediments include sandstones, chlorite schists, arkoses and limestones. The andesite volcanics have ankerite shear zones. No mineralization of any note was
prospected.

\section*{GEOCHEMISTRY}

The 74 samples collected during this phase of work were submitted to both Min - En and Acme Analytical Labs of Vancouver for geochemical analysis. Analytical techniques are described in Appendix \(A\), sample descriptions in Appendix \(B\) and results in Appendix \(C\).
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
No.
\end{tabular} & \begin{tabular}{l}
Sample \\
Type
\end{tabular} & Description \\
\hline SPMAL 1 & & \\
\hline 1301 & grat & siliceious medium volcanic with both epidote and quartz stockwork veinlets \\
\hline 1302 & grab & siliceous medium volcanic, bleached with abundant epidote \\
\hline 1303 & grab & crystalline quartz vein with trace chalcopyrite \\
\hline 1304 & grab & pink purple fine grained volcanic \\
\hline 1305 & grab & felsic volcanic with Fe carbonate, ankerite alteration zone \\
\hline 1306 & grab & limy meta sediment with white quartz veins at top of rusty sequence \\
\hline 1307 & grab & contact zone, upper limy meta sediment with lower mafic biotite rich unit \\
\hline 1308 & grab & Fe-stained gossanous siliceous sediment unit \\
\hline 1309 & grab & rusty tan brown volcanic with dyke in shear zone \\
\hline 1310 & grab & intrusive porphory unit, highly altered \\
\hline 1311 & grab & chlorite altered porphoritic intrusive with kaolanite \\
\hline 1312 & grab & gossanous limy rock \\
\hline 1313 & grab & sediment unit, quartzite with 1\% disseminated pyrite \\
\hline 1314 & grab & gossan, Fe-stained limy meta sediment rock \\
\hline 1315 & grab & sediment unit, coarse limestone with Fe carbonate, sidesite \\
\hline 1316 & grab & finely laminated sediment, mixed quartzite and siltstone, differential weathering \\
\hline 1317 & grab & parallel quartz veins within siltstone with Fe-stain and trace pyrite \\
\hline
\end{tabular}

SPHAL 3
\begin{tabular}{lll}
1318 & grab & Fe-stained banded siltstone with pyrite blebs \\
1319 & grab & choritic volcanic rock \\
1320 & grab & medium volcanic with Fe-carbonate enrichment zone
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
No.
\end{tabular} & Sample Type & Description \\
\hline \multicolumn{3}{|l|}{SPHAL 3 cont..} \\
\hline 1321 & grab & medium volcanic unit, calcareous, with quartz ankerite vein \\
\hline 1322 & grab & medium grained siliceous gritty quartzite with trace disseminated pyrite \\
\hline 1323 & grab & medium purple and green banded volcanic with carbonate, chloride alteration \\
\hline 1324 & gral) & black banded siltstone with brecciated limestone unit with ankerite veinlets \\
\hline 1325 & grab & medium volcanic with \(1-2 \mathrm{~mm}\) pyritic seams \\
\hline 1326 & grab & bleached weakly foliated felsic unit within purple and green medium volcanic \\
\hline 1327 & grab & banded siliceous sediment with pyritic zones \\
\hline 1328 & grab & felsic ash tuff, strongly foliated, weak Fe carbonate alteration \\
\hline
\end{tabular}

SPHAL 5
\begin{tabular}{|c|c|c|}
\hline 1334 & grab & very siliceous light grey felsic ash tuff with fine grained disseminated pyrite \\
\hline 1335 & grab & rusty weathered greywacke and limey sediment with brecciated ankerite zone with trace pyrite and chalcopyrite \\
\hline 1336 & grab & limey sediment with quartz carbonate veinlets and trace chalcopyrite, pyrite \\
\hline 1337 & grab & Fe-stained calcareous siliceous sediment with ankerite zones and quartz veinlets \\
\hline 1338 & grab & dark blue brecciated ankerite veinlets with chalcopyrite within sediment \\
\hline 1339 & grab & dark blue brecciated ankerite veinlets with chalcopyrite within sediment \\
\hline 1340 & grab & agglomeratic limestone with copper staining and barite blebs \\
\hline 1341 & grab & brecciated agglomeratic limestone with barite and
chalcopyrite \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
No.
\end{tabular} & \begin{tabular}{l}
Sample \\
Type
\end{tabular} & Description \\
\hline SPMAL S & ont. . & \\
\hline 1342 & grab & green siliceous quartzite with ankerite zones and barite and chalcopyrite \\
\hline 1343 & grab & unoxidized sediment with barite and chalcopyrite \\
\hline 1344 & grab & quartzite with remnant carbonate veinlets \\
\hline 1345 & grab & brecciated limestone with quartz ankerite veinlets \\
\hline 1346 & grab & limestone with quartz ankerite veinlets \\
\hline 1347 & grab & altered limey sediment with copper staining \\
\hline 1348 & float & siliceous sediment, rusty weathered with 30\% blebs pyrite \\
\hline 1349 & grab & brecciated siliceous limestone with quartz ankerite veins and trace disseminated pyrite \\
\hline 1350 & grab & quartz ankerite veins within brecciated limestone \\
\hline 1351 & grab & parallel quartz ankerite veins within brecciated limestone \\
\hline 1352 & float & quartz ankerite zone within a felsic intrusive dyke within limestone \\
\hline SPHAL 7 & & \\
\hline 28 & grab & rusty brown weathered siliceous carbonate dyke \\
\hline 29 & grab & limestone with shear zone \\
\hline 30 & grab & chlorite schist with weak carbonate alteration \\
\hline 31 & grab & contact zone tan brown stained ackose and limestone with quartz Fe-carbonate veining \\
\hline 32 & grab & low grade schist, valcanic, with Fe-carbonate staining and ankerite \\
\hline 33 & grab & medium volcanic, rusty weathered and strongly sheared \\
\hline 34 & grab & 10 cm wide quartz vein \\
\hline 35 & grab & quartz epidote altered zone with trace pyrite, 20 cm wide \\
\hline 36 & grab & light cream coloured fault shear system within altered volcanic \\
\hline 37
-
38 & grab
grab & fault controlled pyrite seam, 1 cm wide, green host rock boundinage quartz pods barren \\
\hline
\end{tabular}

What 1
\begin{tabular}{|c|c|c|}
\hline & 49 & Al \\
\hline 1301 & 7 & 34170 \\
\hline 130? & 1.6 & 34410 \\
\hline 1303 & 2 & 142\% \\
\hline 1.304 & 1 & 43370 \\
\hline 1303 & 1.1 & 840 \\
\hline 1306 & 0.5 & 630 \\
\hline 1301 & 1.8 & 26550 \\
\hline 1300 & 0.9 & 6780 \\
\hline 1309 & 0.5 & 000 \\
\hline 1310 & 1.1 & 1600 \\
\hline 1311 & 1.2 & 5470 \\
\hline 1312 & 0.7 & 41.0 \\
\hline 1313 & 1.1 & 4970 \\
\hline 1314 & 0.6 & 430 \\
\hline 1315 & 0.5 & 360 \\
\hline 1316 & 0.1 & 11970 \\
\hline 1317 & 0.3 & 25210 \\
\hline
\end{tabular}
\(A S\)
11
20
31
1
28
1
18
18
18
1
86
18
16
55
1
1
1
15 \(\begin{array}{cc} & 8 \\ 11 & 17 \\ 0 & 15 \\ 3 & 11 \\ 1 & 11 \\ 28 & 1 \\ 1 & 1 \\ 18 & 5 \\ 14 & 1 \\ 1 & 1 \\ 86 & 1 \\ 18 & 1 \\ 16 & 1 \\ 55 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 3 \\ 15 & 6\end{array}\) 44
13
31
11
42
17
1
2157
129
21
276
1117
66
216
1
2
45

 \(\begin{array}{cc}3 & 30510 \\ 18 & 2696 \\ 11 & 366 \\ 17 & 2964 \\ 1 & 1419 \\ 3 & 15982 \\ 15 & 3351 \\ 8 & 3170 \\ 5 & 11055 \\ 7 & 2644 \\ 7 & 2662 \\ 6 & 813 \\ 7 & 289 \\ 3 & 1594 \\ 3 & 1342 \\ 10 & 12 \\ 7 & 10\end{array}\)
 \(\begin{array}{ll}10 & \\ 2.1 & 1 \\ 2.1 & \\ 3.1 \\ 2.1 & \\ 2.2 & \\ 7.6 \\ 3.6 & \\ 3.8 & \\ 3.8 & \\ 3.5 & \\ 3.2 & \\ 3.1 \\ 3.7 \\ 6.7 \\ 6.6 \\ 1.6\end{array}\) \(c \theta\)
11
71
23
31
16
9
28
21
12
13
13
17
21
9
11
12
21 \(c 1\)
151
11
1297
10
1138
10
53
12
15
5
5
35
11
15
12
17
36 16
35260
37620
24410
60240
26240
2060
31050
37500
16720
23210
25320
26880
32850
1900
9220
21900
36990 1
1190
1560
7240
1274
1740
790
0050
3230
970
2790
3000
1720
2250
810
740
1620
1170 11
53
50
4
4
3
3
3
3
3
3
3
3
4
4
3
3 116
22480
16300
11030
27010
4300
70500
21830
70700
69270
1120
1490
36980
15740
69560
73250
10470
19030 104
1053
1119
640
1062
940
70
466
129
389
916
524
479
508
145
283
385
728 \(\begin{array}{cc}n 0 & N \\ S & 650 \\ 3 & 68 \\ 1 & 32 \\ 1 & 3 \\ 5 & 60 \\ 2 & \\ 5 & 12 \\ 5 & \\ 5 & \\ 6 & \\ 5 & \\ 6 & 3 \\ 6 & 69 \\ 3 & 3 \\ 3 & 3 \\ 6 & 100 \\ 5 & 50\end{array}\) \(N A\)
650
680
320
3200
680
390
12180
740
370
590
680
360
690
320
320
190
570
 \(p\)
1090
\(6 \div 0\)
710
880
610
100
3960
3190
380
1350
1470
1420
1310
160
160
220明
12
14
18
10
14
3
20
16
13
23
16
11
18
1
2
15
13 \(\begin{array}{cc}S H & \\ 1 & 3 \\ 1 & \\ 1 & \\ 1 & \\ N 0 & 5 \\ 2 & \\ 2 & 1 \\ 9 & 2 \\ 8 & \\ i & \\ 7 & \\ 21 & 1 \\ 14 & \\ 4 & \\ 3 & \\ 1 & \\ 1 & \end{array}\)

 Somed \(\begin{array}{rrr}3 & & \\ 1318 & 2.4 & 10230 \\ 1319 & 0.2 & 12010 \\ 1320 & 0.6 & 19980 \\ 1321 & 0.6 & 1290 \\ 1322 & 0.5 & 18430 \\ 1323 & 6.7 & 37110 \\ 1324 & 1.4 & 2940 \\ 1325 & 1.7 & 5190 \\ 1326 & 1.1 & 10680 \\ 1327 & 1.3 & 32780 \\ 1328 & 1.2 & 18130\end{array}\)

817
617
53
114
1
75
1770
91
151
95
193
324
 \(\begin{array}{rr}m 9 & W 1 \\ 450 & 17 \\ 550 & 55 \\ 300 & 39 \\ 340 & 4 \\ 10 & 7 \\ 300 & 64 \\ 390 & 17 \\ 410 & 31 \\ 730 & 9 \\ 730 & 13 \\ 440 & 29\end{array}\) \(P\)
250
3070
1500
480
1250
120
360
1510
510
960
300 \(\begin{array}{rr}P & P 8 \\ 250 & 22 \\ 3070 & 12 \\ 500 & 9 \\ 480 & 3 \\ 250 & 11 \\ 120 & 8 \\ 360 & 14 \\ 1510 & 13 \\ 510 & 9 \\ 960 & 15 \\ 300 & 16\end{array}\) 96
22
12
9
3
11
8
14
13
9
15
16 58
11
18
62
16
11
38
11
62
20
6
7
\(\begin{array}{ccccccc}4 & I N & 6 A & S N & 1 & C R & 44 \cdot P: T \\ 3 & 15 & 6 & 1 & 1 & 92 & 5 \\ 6 & 71 & 6 & 1 & 1 & 126 & 6 \\ 9 & \$ 6 & 8 & 1 & 2 & 72 & 5 \\ 6 & 27 & 1 & 1 & 1 & 34 & 5 \\ 5 & 47 & 3 & 2 & 1 & 15 & 5 \\ 5 & 93 & 1 & 1 & 3 & 67 & 5 \\ 1 & 22 & 4 & 2 & 6 & 144 & 5 \\ 2 & 18 & 4 & 1 & 1 & 150 & 5 \\ 1 & 30 & 6 & 1 & 1 & 85 & 5 \\ 6 & 83 & 1 & 3 & 1 & 80 & 5 \\ 2 & 46 & 6 & 2 & 1 & 69 & 5\end{array}\)
spuat
\begin{tabular}{llr}
1 & & \\
1334 & 0.6 & 16120 \\
1335 & 1.6 & 590 \\
133 & 38.5 & 610 \\
1337 & 0.6 & 330 \\
1339 & 1.7 & 290 \\
1339 & 0.3 & 300 \\
1346 & 8.9 & 410 \\
131 & 112.3 & 320 \\
132 & 0.6 & 2400 \\
133 & 6.5 & 2030 \\
134 & 6.4 & 370 \\
1345 & 0.3 & 330 \\
1346 & 0.6 & 430 \\
131 & 0.6 & 420 \\
1348 & 2.4 & 5710 \\
139 & 0.3 & 720 \\
1350 & 0.6 & 520 \\
131 & 0.5 & 300 \\
1352 & 1.5 & 400
\end{tabular}
\begin{tabular}{rr}
\(A S\) & \(B\) \\
24 & 10 \\
1 & 5 \\
24 & 3 \\
6 & 2 \\
9 & 2 \\
11 & 3 \\
35 & 1 \\
331 & 1 \\
1 & 6 \\
6 & 5 \\
6 & 2 \\
9 & 2 \\
11 & 2 \\
7 & 1 \\
17 & 5 \\
1 & 3 \\
4 & 1 \\
4 & \\
1 &
\end{tabular} \(\begin{array}{rr}8 & 8 A \\ 10 & 140 \\ 5 & 81 \\ 3 & 2 \\ 2 & 1 \\ 2 & 51 \\ 3 & 2 \\ 1 & 1511 \\ 1 & 793 \\ 6 & 1115 \\ 5 & 1055 \\ 2 & 169 \\ 2 & 22 \\ 2 & 7 \\ 1 & 1 \\ 5 & 43 \\ 3 & 1 \\ 1 & 1 \\ 1 & 1\end{array}\)
 60
24
8
11
9
10
9
12
9
32
16
9
8
8
8
10
11
6
8
1 \(c 1\)
56
11
1324
58
121
5
98
1951
26
10
14
21
2
313
3
3
13
14
16

 41
55
41
41
40
4
39
47
43
43
4
42
41
41
41
47
41
42
42
43

 11
1
2
10
2
17
1
27
9
238
131
9
1
2
1
14
3
4
1 311
270
110
60
120
70
110
140
300
200
150
110
110
110
1520
100
120
120
200 \(\begin{array}{rr}28 & 58 \\ 7 & 1 \\ 4 & 1 \\ 7 & 34 \\ 5 & 14 \\ 12 & 4 \\ 6 & 1 \\ 14 & 27 \\ 4 & 531 \\ 7 & 1 \\ 3 & 1 \\ 1 & 1 \\ 5 & 6 \\ 1 & 1 \\ 6 & 125 \\ 17 & 4 \\ 7 & 1 \\ 7 & 5 \\ 6 & 7 \\ 3 & 11\end{array}\) 58
1
2
3
2
1
1
200
205
57
41
3
3
1
1
9
2
1
1
4

\begin{tabular}{|c|c|c|c|c|}
\hline 6A & 54 & \# & CR & All-PPi \\
\hline 5 & 1 & 1 & 39 & 5 \\
\hline 5 & 1 & 1 & 30 & 5 \\
\hline 1 & 1 & 1 & 53 & 15 \\
\hline 1 & 1 & 1 & 41 & 3 \\
\hline 1 & 1 & 8 & 130 & 10 \\
\hline 9 & 1 & 1 & 38 & 10 \\
\hline 18 & 1 & 1 & 38 & 5 \\
\hline 1 & 1 & 1 & 15 & is \\
\hline 1 & 1 & 1 & 117 & 10 \\
\hline 1 & 1 & 2 & 22 & S \\
\hline 1 & 1 & 1 & 36 & 5 \\
\hline 1 & 1 & 1 & 37 & S \\
\hline 4 & 1 & 1 & 37 & 5 \\
\hline 2 & 1 & 1 & 36 & 10 \\
\hline 9 & 1 & 1 & 38 & 5 \\
\hline 8 & 1 & 2 & 31 & 5 \\
\hline 1 & 1 & 1 & 26 & 5 \\
\hline 3 & 2 & 2 & 21 & 3 \\
\hline - & 2 & 3 & 22 & \(s\) \\
\hline
\end{tabular}

Spu:
\begin{tabular}{crr}
1 & No & Cu \\
& PPR & PPFI \\
26 & 1 & 10 \\
29 & 1 & 5 \\
30 & 1 & 10 \\
31 & 1 & 9 \\
32 & 1 & 40 \\
33 & 1 & 5 \\
34 & 1 & 8 \\
33 & 1 & 33 \\
36 & 1 & 5 \\
37 & 1 & 16 \\
38 & 1 & 1
\end{tabular}
\begin{tabular}{llr}
1 & 49 & AL \\
1403 & 1.5 & 10860 \\
104 & 1.4 & 2400 \\
1405 & 1.5 & 9490 \\
1406 & 0.3 & 4660 \\
1407 & 0.5 & 13150 \\
1406 & 1.1 & 35920 \\
1409 & 1.4 & 15700 \\
1410 & 1.7 & 700 \\
1111 & 7 & 760 \\
1112 & 7.2 & 120 \\
1143 & 0.4 & 820 \\
114 & 0.3 & 12400 \\
1415 & 0.3 & 13820 \\
1416 & 0.4 & 4020 \\
1417 & 3 & 1180 \\
1748 & 0.5 & 3360
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Prospecting 7.5 man days \(5250 / \mathrm{man}\) day & § & 1,875.00 \\
\hline Samples (Including Shipping) 74 @ \(\$ 25 /\) sample & & 1,850.00 \\
\hline Food @ \$30/man day & & 225.00 \\
\hline Supplies and Equipment & & 175.00 \\
\hline Contract Base Camp & & 1,705.00 \\
\hline Mob - De Mob (Aircraft Charter) & & 750.00 \\
\hline Helicopter Support 6.9 hours @ \(\$ 625 / \mathrm{hr}\) & & 4,310.00 \\
\hline Report Preparation & & 750.00 \\
\hline TOTAL & \$ & 11,640.00 \\
\hline
\end{tabular}

Dates: August 7, 9, 10, 11, 12, 23; 1988

\section*{STATEMENT OF QUALIFICATIONS}

I, PAUL WILLIAM JONES of the City if Vancouver, B. C. declare that:
1. I have been actively involved in the mining industry in Canada and the United States for 12 years.
2. I have personally directed and performed the work enclosed in this report under the supervision of corona corporation's Senior Geologist, Darrel Johnson.

DATED THIS

DAY OF Dec 1989
\(\qquad\) , BRITISH COLUMBIA.

```

