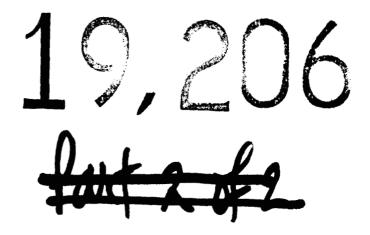
100 NO: 1024	FU	
AMICON		
FILE NO.		
-	SWB-RECORDER RECEIVED	
	QCT 1 8 1989	
	M.R. # \$ VANCOUVER, B.C.	•••••
, 6 , 8	<u></u>	

SPHAL 2, 4, 6, 8

CLAIMS

(4817, 4819, 4821, 4823)


LIARD MINING DIVISION

GEOLOGICAL REPORT

OCTOBER, 1989

FILMED

GEOLOGICAL BRANCH ASSESSMENT REPORT

Paul W. Jones CORONA CORPORATION

Latitude : 57° 03' Longitude: 131° 11'

TABLE OF CONTENTS

CONCLUSIONS	1 ,
RECOMMENDATIONS	1.
INTRODUCTION	2 .
GEOLOGY	
REGIONAL	5,
PROPERTY	6 /
GEOCHEMISTRY	7,
STATEMENT OF COSTS	9 /
STATEMENT OF QUALIFICATIONS	10 /
BIBLIOGRAPHY	12,

APPENDICES

APPENDIX A - GEOCHEMICAL METHODS / APPENDIX B - SAMPLE DESCRIPTIONS / APPENDIX C - ANALYTICAL RESULTS / APPENDIX D - PROSPECTING NOTES /

LIST OF FIGURES

Compilation Map 1 - 1:25,000

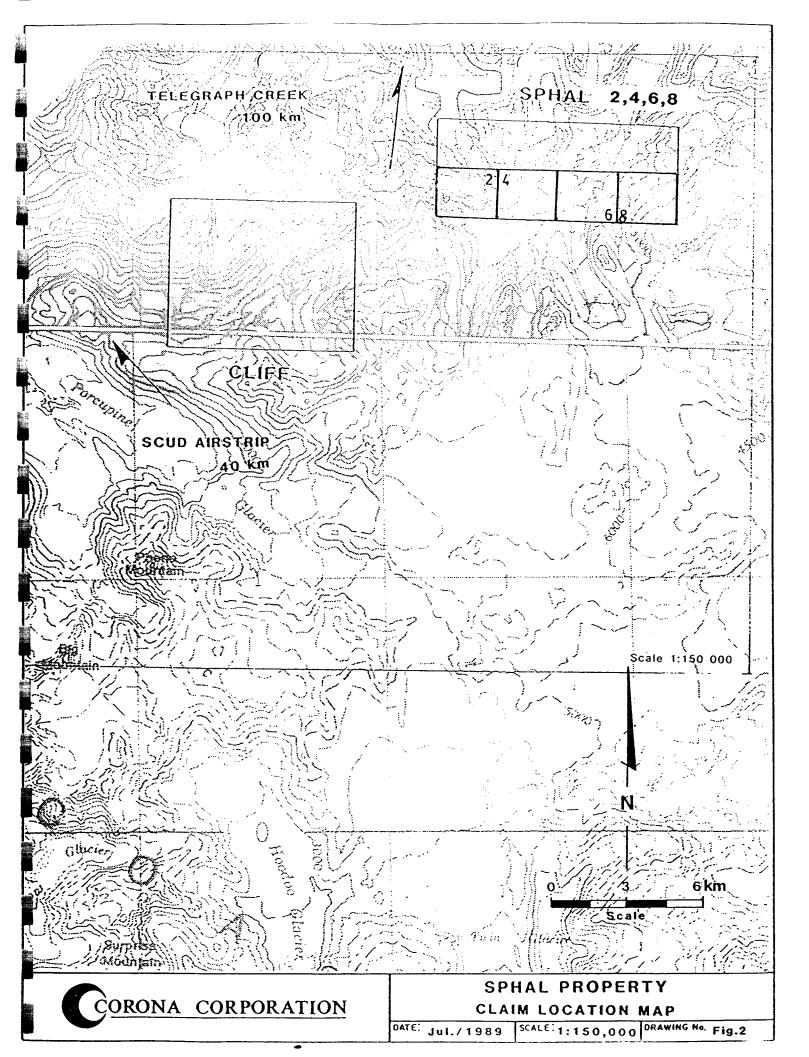
GEOLOGY MAP 1: 10 000

CONCLUSIONS

The SPHAL B claim group is composed of Pre-Permian Stikine Assemblage rocks which include a major limestone unit with lesser agglomeratic volcanics and mixed sediments. Several strong north-south structures cut stratigraphy. Where these cut the limestone on SPHAL 6 minor copper/silver mineralization occurs.

RECOMMENDATIONS

One area on the SPHAL B group may warrant further exploration. Weak copper/silver values contained in the major structure on SPHAL 6 might be tested by a combined programme of geochemistry, geophysics and trenching as warranted. A detailed stream sediment sampling programme over SPHAL B group, using panned concentrates, conventional silts and moss matt samples should be worthwhile.


INTRODUCTION

The SPHAL B claim group includes the four 20 unit SPHAL 2 (4817), SPHAL 4 (4819), SPHAL 6 (4821) and SPHAL 8 (4823) claims. They were staked in July of 1988, and are located at the headwaters of Sphaler Creek. The claims lie within the contact of the Coast Plutonic Complex and the Intermontane Belt. Access is via helicopter from the Scud Airstrip loacted at the confluence of the Scud and Stikine Rivers or the Galore Creek airstrip 15 km to the northwest.

The claims are composed of Permian and Pre-Permian sediments and volcanics. The geology is of the Paleozoic Stikine assemblage volcanics overlain by sediments in a repeating sequence due to a normal NE-SW fault. The extreme western portion of SPHAL 2 has Triassic volcanics in fault contact with the older Permian limestones. The eastern portion of the group starts with Permian volcaniclastics that are both green and purple. Stratigraphically overlying the volcanics is a thick sequence of limestone with lesser amounts of sandstone and siltstone. A NE-SW fault cuts the claims group and places the younger Permian sediments in contact with older phyllic sediments. These phyllic sediments overlie the Permian volcaniclastic unit which is folded and faulted in this section of the claim group.

The programme of geological mapping and sampling described in this report occupied 12 mandays during the period from July 7 to July 21, 1989, yielding 61 rock samples. Work was done from a fly camp established on the SPHAL 5 claim on the south bank of Sphaler Creek, with helicopter support from a base at Galore Creek. Total cost was \$12,310.

REGIONAL GEOLOGY

The claim area lies on the western margin of the Intermontane Belt at its contact with the Coast Plutonic Complex. Paleozoic sediments and Mesozoic sediments and volcanics are cut by intrusive bodies of the main Coast Belt and the satellite Hickman and Yeheniko Plutons. General tectonic fabric of the region trends north-northwesterly.

The oldest rocks exposed in the area are Lower Paleozoic clastics including impure quartzites and limestones, overlain by crystalline schists and gneisses. A thick impure limestone unit caps the Paleozoic oceanic sequence.

The lower contact of Mesozoic units is described by F.A. Kerr, G.S.C. Memoir 246 and J.G. Souther, G.S.C. Paper 71-44, as gradational and in places unconformable. Triassic rocks consist of a thick sedimentary sequence overlain by an island arc volcanic assemblage which is in turn capped by volcanic derived sediments.

The Jurassic layered sequence consists of a thick, near shore sedimantary package and later volcanic (island arc?) rocks. Extensive intrusive activity during this period resulted in the emplacement of the multi phased 'Coast Complex' and related satellite plutons. Alkaline and calc-alkaline members of this suite are directly associated with most of the numerous mineral occurences in the area. Cretaceous rocks consist mainly of marine sediments with a thin basaltic to rhyolitic component.

Cenozoic stratigraphy includes mafic and felsic aerial volcanic units. These rocks are a major component of glacial and fluvial deposits throughout the area. Several active hot springs attest to ongoing geologic activity throughout the general Iskut-Stikine region.

Most of the region has been subjected to Quarternary glaciation, resulting in rugged alpine terrain.

'n

Study of aeromagnetic data published at a scale of 1:250,000 suggests that regional lows may reflect areas of thick ice cover.

PROPERTY GEOLOGY

The SPHAL B claim group encompasses a mixed package of Paleozoic volcanics and sediments and a small area of Mesozoic volcanics. Geology will be described on an individual claim basis, traversing from west to east.

SPHAL 2

The dominant geologic feature of the Sphal 2 claim is a strong N-S trending fault which separates Triassic volcanics from a Paleozoic sedimentary sequence. This fault is marked by a 50m. wide zone of abundant quartz and ankerite. A 200m. section of the fault contains pervasive mariposite. An active hot spring is located where this structure intersects the north bank of Sphaler Creek. Triassic rocks are generally andesitic tuffs which are widely propylitized along the fault trace. Sediments include a buff coloured dolomite with black graphitic argillite beds and lesser quartzite lenses. Splays off the main structure contain ankerite and quartz but only trace amounts of sulphide.

South of Sphaler Creek two parallel N-S structures within Permian limestones contain up to 3% disseminated pyrite and chalcopyrite. Sulphides are concentrated in intensely fractured silicified zones. No precious or base metal values were evident.

SPHAL 4

While much of the southern portion of SPHAL 4 is composed of massive homogeneous limestone, the geology near the northern claim boundary along Sphaler Creek has been complicated by extensive faulting and folding. Rock types include

6

purple and green volcanics, graphitic black argillite and limestone/sandstone interbeds. All units have been foliated, sheared and silicified. The sheared green volcanics within this package contain pods of pyrite and chalcopyrite.

SPHAL 6

Geology of SPHAL 6 claim is very similar to SPHAL 4. Massive Permian limestone dominates the southern portion of the claim. Along Sphaler Creek rocks include purple volcanics and graphitic argillites which have been extensively faulted and deformed. The massive limestone-dolomite unit dips westerly and is underlain in the southeast corner of the claim by an agglomeratic lapilli tuff unit with minor sediments.

Two parallel N-S structures are found on the SPHAL 6 claim. The westernmost of these cuts massive limestone and contains disseminations and blebs of pyrite, chalcopyrite, tetrahedrite and azurite/malachite stain. The eastern structure follows the massive limestone/volcanic contact. East of the structure a remnant hot spring in an argillite bed within the volcanic package is marked by calcareous sinter, semi-massive pyrite pods and pervasive ankerite alteration.

SPHAL 8

Work on SPHAL 8 concentrated on the area of a north flowing creek. The southern portion of the claim is mainly green and green-purple tuffs and flows underlain by a mixed limestone, argillite, sandstone sequence. Randomly oriented faults and shears exposed in the creek banks contain extensive iron carnbonate and quartz veining with up to 5% pyrite and chalcopyrite.

GEOCHEMISTRY

The 61 rock samples collected during this phase of work were submitted to Acme Analytical Labs of Vancouver for geochemical analysis for copper, lead, zinc, silver and gold. Analytical techniques are described in Appendix A, sample descriptions in Appendix B and the results are given in Appendix C.

Ŧ

STATEMENT OF COSTS

SPHAL 2, 4, 6, 8 - GEOLOGICAL

Prospecting 12 man days @ \$350/man day	\$ 4,200.00
Samples (including shipping) 61 @ \$25/sample	1,525.00
Food @ \$30/man day	360.00
Accommodation, Camp	425.00
Supplies and Equipment	175.00
Mob - De Mob (Aircraft Charter)	1,250.00
Helicopter Support 5 hours @ \$725/hr	3,625.00
Report Preparation	750.00

TOTAL

\$<u>12,310.00</u>

Dates: July 7-17, 1989

STATEMENT OF QUALIFICATIONS

DARREL L. JOHNSON

I, DARREL L. JOHNSON, resident of the District of Copquitlam, B.C. declare that:

- 1. I hold a B.Sc. degree in geology, granted by the University of British Columbia in 1970;
- 2. I have worked as a geologist in all phases of exploration throughout B.C. since 1970;
- 3. I have been employed by Corona Corporation as a Senior Geologist since 1988;
- 4. Work described in this report was conducted by Paul Jones under my overall supervision.
- 5. I have co-authored this report based on published information for the area, extensive discussion with Paul Jones and visits to the area during the programmes described.

Darrel Johnson

DATED THIS	DAY OF December	19 <u>87</u>
AT MANON ICR	BRITISH COLUMBIA.	

STATEMENT OF QUALIFICATIONS

I, **PAUL WILLIAM JONES** of the City if Vancouver, B.C. declare that:

- 1. I have been actively involved in the mining industry in Canada and the United States for 12 years.
- 2. I have personally directed and performed the work enclosed in this report under the supervision of Corona Corporation's Senior Geologist, Darrel Johnson.

- Paul W. Jones	
DATED THIS 11 The DAY OF December 19 89	
AT $\sqrt{CTORADA}$, BRITISH COLUMBIA.	

BIBLIOGRAPHY

- Alldrick, D.J., Drown, T.J., Grove, E.W., Kruchkowski, E.R., Nichols, R.F., 1989 Iskut - Sulphurets Gold; <u>The Northern Miner Magazine</u>, January 1989.
- Allen, D.G., Pantelegev, A., Armstrong, A.T., 1976 Porphyry Copper Deposits of the Alkalic Suite, Galore Creek; <u>C.I.M.</u>, Special Volume 15, Paper 41.
- Barr, D.A., Fox, P.E., Northcote, K.E., Preto, V.A., 1976 Porphyry Copper Deposits of the Alkalic Suite, The Alkaline Suite Porphyry Deposits - A Summary; <u>C.I.M.</u>, Special Volume 15, Paper 36.
- Brown, D., Wojdak, P., 1989 K-Feldspar Connection: Relationship of K -Feldspar Intrusions to Cu Porphyries and Au Veins, Stewart Iskut Belt, B.C.; <u>G.A.C.</u>, Copper-Gold Porphyry Workshop April 1989.
- Buddington, A.F., 1929 Geology of Hyder and Vicinity Southeastern Alaska; <u>U.S.G.S.</u>, Bulletin 807.
- Grove, E.W., 1986 Geology and Mineral Deposits of the Unuk River Salmon River - Anyox Area; <u>B.C. M.E.M.P.R.</u>, Bulletin 63.
- Hodgson, C.J. Recent Advances in the Archean Gold Model, With Implications for Exploration for "Mesothermal-Type" Gold Deposits in the Cordillera; <u>G.A.C.</u>, Cordilleran Section Short Course No. 14.
- Kerr, G.A., 1948 Lower Stikine and Western Iskut River Areas, British Columbia; <u>G.C.S.</u>, Memoir 246.
- Lowell, J.D. 1988 Gold Mineralization in Porphyry Copper Deposits; <u>Society</u> of <u>Mining Engineering</u>, SME Annual Meeting January 1988.
- Lowell, J.D., Guilbert, J.M., 1970 Lateral and Vertical Alteration -Mineralization Zoning in Porphyry Ore Deposits; <u>Economic Geology</u>, Vol. 65, No. 4.
- Souther, J.G., 1972 Telegraph Creek Map-Area, British Columbia; <u>G.S.C.</u>, Paper 71-44.
- Souther, J.G., Brew, D.A., Okulitch, A.V., 1979 Iskut River, British Columbia, Alaska; <u>G.S.C.</u>, Map 14/8A.
- Sutherland Brown, A., 1976 General Aspects of Porphyry Deposits of the Canadian Cordillera; Mosphology and Classification; <u>C.I.M.</u>, Special Volume 15, Paper 6.

APPENDIX A - GEOCHEMICAL METHODS

作用語

1 X

3

換加

•

ŧ

HUME LABS

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

ICP - .5 gram sample is digested with 3 ml 3-1-2 HCl-HN03-H20 at 95 deg.C for one hour and is diluted to 10 ml with water. This leach is Partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K, Al.

Au* - 10 gram samples are ignited at 600 deg.C, digested with aqua regia at 95 deg.C for one hour, 50 ml aliquot is extracted into 10 ml MIBK, analysed by graphite furnace AA. PHONE 980-5814

MIN-EN Laboratories Ltd.

Specialists in Mineral Environments Corner 15th Street and Bewicke 705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA

ANALYTICAL PROCEDURE REPORTS FOR ASSESSMENT WORK

PROCEDURE FOR GOLD GEOCHEMICAL ANALYSIS.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_3 and $HC1O_4$ mixture.

After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

At this stage of the procedure copper, silver and zinc can be analysed from suitable aliquote by Atomic Absorption Spectrophotometric procedure.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 5 ppb.

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK:

PROCEDURE FOR 31 ELEMENT TRACE ICP:

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are proceased by Min-En Laboratories., at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

1.0 gram of the sample is digested for 4 hours with an aqua regia HClO, mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer. APPENDIX B - SAMPLE DESCRIPTIONS

E de la companya de la compa

17.73年1

. ...

30201	float	brecciated siliceous rhyolite with 1% disseminated pyrite with chlorite
30202	chip grab	rusty black argillite with 1-3% disseminated pyrite
30203	lm chip	quartz ankerite zone at contact of volcanic and argillite
30204	float	rusty quartz vein within argillite
30205	talus grab	silicified recrystallized limestone with 5% malachite, azurite, tetrahedrite, pyrite, chalcopyrite
30206	talus grab	silicified recrystalized limestone with 5% malachite, azurite, tetrahedrite, pyrite, chalcopyrite
30207	lm chip	silicified recrystalized limestone with 5% tetrahedrite, malachite, azurite
30208	lm chip	recrystalized limestone with 5% dendritic malachite, azurite, tetrahedrite, chalcopyrite, pyrite
30209	chip grab	siliceous recrystalized limestone
30210	1 m chip	recrystalized limestone with 1% pyrite, chalcopyrite, malachite, hematite, resample of #34
30211	grab	pyrite filled shear within argillite
30212	grab	siliceous pyritic brecciated shear within argillite
30213	chip grab	clastic sediment with massive pyrite lense
30214	1 m chip	recrystalized limestone, silicified breccia with 5% malachite, pyrite, chalcopyrite
30239	float	black argillite with quartz calcite veining and 2cm pyrite blebs
30240	grab	rusty black argillite with quartz veining
30241	1 m chip	calcite quartz brecciated shear zone within a limestone unit
30242	grab	rusty siliceous volcanic pod within limestone unit
30243	grab	rusty siliceous volcanic? chert? within argillite, limestone contact
30244	grab	fault 20cm wide, contact of limey black argillite and banded tuff
30245	float	semi-massive pyrite within siliceous volcanic

30246	1 m grab	banded black argillite at fault contact
30247	1 m grab	siliceous green volcanic at fault contact
30248	1 m chip	foliated clay altered sericite schist
30249	grab	pyritic shear within limestone unit
30250	grab	black banded siliceous volcanic with 10% chalcopyrite, malachite, azurite
30251	1.5 m chip	ankerite altered green agglomeratic tuft with disseminated pyrite
30258	grab	rusty ankerite altered tuff with quartz veins and 1% disseminated pyrite
30259	grab	rusty black argillite with quartz veins and 1% pyrite and chalcopyrite
30260	lm chip	rusty black argillite with quartz veins and trace disseminated pyrite
30261	2 m chip	rusty coarse grained black limestone with quartz ankerite stockwork and trace pyrite and chalcopyrite
30262	l m chip	rusty quartz sericite schist with 1% disseminated pyrite
30275	grab	rusty black argillite and chert with 1% disseminated pyrite, bornite
30276	grab	sheared black argillite with ankerite veins and clay gouge
30277	grab	rusty chert with framboids of jarosite and trace - 1% disseminated pyrite
30278	grab	rusty black pyritic argillite with gypsum fractures and l% disseminated pyrite
30279	grab	massive grey limestone with chert clasts and 1% disseminated pyrite
30280	4m grab	brecciated ankerite shear in massive crinoidal limestone with clay gouge
30281	grab	sheared black phyllic argillite with trace - 1% disseminated pyrite
30282	l m chip	rusty green fine grained andesite dykes with trace - 1% pyrite in limestone
30286	1 m chip	sheared cherty argillite

in Maria

is , ,

30287	1 m chip	rusty ankerite altered andesite with quartz stockwork and trace disseminated pyrite
30288	grab	rusty ankerite altered dolostone with trace mariposite, pyrite and chalcopyrite
30301	1/2m grab	ankerite chlorite altered shear in green propylitic altered tuff
30302	2 m grab	ankerite altered shear in fine grained black argillite
30327	1 m chip	buff black dolomite with swarms of quartz veinlets
30328	grab	dolomite with 2-3cm pods of fine grained silver pyrite
30329	grab	brown ankerite altered lapilli tuff at limestone contact
30330	talus	ankerite altered argillite and limestone
30331	grab	ankerite altered dolomite at contact with lamprophyric dyke
30332	l m chip	ankerite altered shear with quartz veins and mariposite
30333	2 m grab	ankerite altered andesite with local shear zones
30340	grab	siliceous limestone with quartz veins and pyrite
30341	2 m chip	ankerite altered limestone with trace mariposite and disseminated pyrite
30342	grab	massive mariposite in ankerite altered limestone
30343	talus	brecciated limestone with trace mariposite and pyrite
30344	grab	ankerite altered limestone with mariposite
30345	grab	siliceous sediment, chert, with chlorite veinlets and trace pyrite
30346	2m grab	ankerite veins in altered dolomite with local quartz veins and disseminated pyrite
30347	float	fine grained massive black argillite with chalcopyrite and pyrite
30348	float	grey ankerite altered limestone with trace pyrite
30349	1/2m chip	pyrite lense within silicified banded metavolcanic
30350	1.5m grab	rusty green siltstone with trace disseminated pyrite
20351	grab	rusty green siltstone with trace disseminated pyrite

ŝ

-

20352	1m chip	rusty siltstone within limestone unit
20353	grab	red iron-rich sludge beside swamp pond

1.1.1. 17

tu. și

APPENDIX C - ANALYTICAL RESULTS

.с. 1410

t and

でない

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUL 20 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED: fr. y . 25/ff.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAH SAHPLE IS DIGESTED WITH 3HL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR HN FE SR CA P LA CR MG BA TI B W AND LIHITED FOR NA K AND AL. AU DETECTION LIHIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROH 10 GM SAMPLE.

CORONA CORPORATION PROJECT 1040 FILE # 89-2312 Page 1

SAMPLE#	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Au*
	rrn	PPM	PPM	PPM	PPB
E 20351	15	2	74	• .1	3
E 20352	- 2	2	11	.1	3
E 20353	24	2	84	.1	4
D 30235	5556	2	822	18.3	2
D 30236	34	4	22	.3	5
D 30237	5902	97	226	2.9	52
D 30238	5732	31	51	6.2	550
D 30239	34	2	29	.3	2
D 30240	62	11	16	.2	1
D 30241	1	2	8	.1	3
D 20242	10	6	<i>c</i> -	-	~
D 30242	13	6	65	.1	5
D 30243	6	8	2	.1	3
D 30244	34	3	85	.1	5
D 30245	38	12	96	.1	1
D 30246	37	- 3	138	1.7	2
D 30247	11	3 ·	59.	.1	3
D 30248	65	4	55	.1	4
D 30249	19	7	39	.1	25
D 30250	11,806	7	66	10.9	20
D 30265	38	11	10	.2	3
D 30266	71	7	25	.3	2
D 30267	9	5	37	.1	6
·D 30268	3459	2.	365	91.7	18
D 30269	241	2	48	7.8	16
D 30270	21	2	26	.8	6
D 20271	600	0			_
D 30271	600	9	30	1.8	6
D 30272	30	17	118	.4	4
D 30273	17	7	70	.1	3
D 30274	21	2	96	.3	4
D 30275	66	2	66	.3	7
D 30276	15	4	12	. 1	2
D 30277	43	28	27	.1	4
D 30278	40	2	186	.1	1
D 30279	4	4	13	.1	4
D 30280	12	2	59	.1	4
•					-
D 30281	55	11	40	ς	2

CORONA CORPORATION PROJECT 1040 FILE # 89-2312 Page 2

Cu	Pb	Zn	Ag	AU*
PPM	PPM	PPM	PPM	PPB
30	5	77	r	3
				2
				1
				1
				1
•	2	50	- 1	T
10	2	13	1	1
				2
	4			136
12	2	15		3
28	12	54		64
13	6	67	.1	1
10	6	49	.1	2
6	2	24	. 1	3
100	7	55	.1	2
41	10	63	.1	3
			.1	4
			.1	1
				8
				2
49	2	108	.1	15
41	15	54	1	1
				2
				2
				3
	6			6
	•			
56	6	30	.1	2
20	3	40	.1	1
64	5	98	.1	3
85	9	104	.1	4
98	4	85	.1	3
240	20	25	e	62
				62
				1
	PPM 32 28 19 26 7 10 107 69 12 28 13 10 6 100 41 19 15 26 4 49 41 65 33 31 84 56 20 64 85	PPM PPM 32 5 28 2 19 2 26 4 7 2 10 2 107 5 69 4 12 2 28 12 13 6 10 6 2 13 10 6 6 2 100 7 41 10 19 4 15 9 26 4 4 2 49 2 41 15 65 607 33 8 31 16 84 6 56 6 20 3 64 5 85 9 98 4 240 28 10 5	PPM PPM PPM 32 5 77 28 2 28 19 2 29 26 4 31 7 2 36 10 2 13 107 5 77 69 4 84 12 2 15 28 12 54 13 6 67 10 6 49 6 2 24 100 7 55 41 10 63 19 4 102 15 9 65 26 4 48 4 2 34 49 2 108 41 15 54 65 607 156 33 8 53 31 16 66 84 6 72	PPM PPM PPM PPM 32 5 77 .1 28 2 28 .1 19 2 29 .1 26 4 31 .1 7 2 36 .1 10 2 13 .1 107 5 77 .1 69 4 84 .1 12 2 15 .1 28 12 54 1.1 13 6 67 .1 10 6 49 .1 13 6 67 .1 10 6 49 .1 13 6 67 .1 10 7 55 .1 41 10 63 .1 14 10 63 .1 49 2 108 .1 49 108 .1

. 47

- ASSAY REQUIRED FOR CORRECT PESULT - ful Cu > 1 / Az > 30 ppm

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: JUL 18 1989 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAH SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 HL WITH WATER. THIS LEACH IS PARTIAL FOR HN FZ SR CA P LA CR HG BA TI B W AND LIMITED FOR HA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPH. SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

SIGNED BY D. TOYE. C. LEONG. J. WANG: CERTIFIED B.C. ASSAYERS

CORONA CORPORATION PROJECT 1040 FILE # 89-2261 Page 1

SAMPLE#	Cu	Рb	Zn	Aq	Au*
. • •	PPM	PPM	PPM	РРМ	PPB
D 30201	6	7	7	.1	1
D 30202	37	25	62	.2	1
D 30203	56	2	56	.1	1
D 30204 .	7	2	48	.1	1
D 30205	2096	2	54	1.8	27
	•				
D 30206	3904	2	235	9.0	36
D 30207	9892	3.	92	2.0	37
D 30208	9921	3	77	2.2	36
D-30209	149	55	29	.3	1
D 30210	989	4	36	.2	31
D 30211	69	9	70	.1	1
D 30212	55	5	38	.1	1
D 30213	74	38	53	.2	3
D 30214	2571	4	62	.1	56
D 30251	106	6	67	.1	i
D 30252	26	9	35	.1	1
D 30253-	15	2	67	.1	2
÷					
D 30254	101	2	68	.1	3
D 30255	10	9	66	.1	1
D 30256	8	6	28	.1	1
D 30257	129	2	32	.1	1
D 30258	31	5	91	.1	1
D 30259	3134	4	329	2.4	2
-STD_C/AU_R_	58	43			-490

٠÷

CORONA CORPORATION PROJECT 1040 FILE # 89-2261 Page 2

SAMPLE#	Cu	Pb	Zn	Ag	AU*
	PPM	PPM	PPM	PPM	PPB
D 30260	17	12	84	.3	1
D 30261	863	4	60	.5	5
D 30262	6	11	71	.3	1
D 30301 D 30302 D 30303 D 30304 D 30305	58 62 28 14 153	12 5 2 2 2	286 77 63 69 85	. 1 . 1 . 2 . 1	1 3 1 1 2
D 30306	16796	7	55	33.1	2
D 30307	52	2	27	.1	1
D 30308	48	5	53	.1	2
D 30309	19	16	81	.1	1
D 30310	14	2	32	.1	2
D 30311 D 30312 D 30313 D 30314 D 30315	37 42 2 12 39	2 5 2 2 2	61 70 22 90 15	.1 .1 .3 .1 .2	1 1 1 3
D 30316	6	3	11	. 2	3
D 30317	308	5	50	. 3	2
STD C/AU-R-	<u>56</u>	3 8	131	7 - 1	5-20-

- ASSAY REQUIRED FOR CORRECT RESULT -

APPENDIX D - PROSPECTING NOTES

20080

SPEC PROJECTING TRAVERSES

The following traverses are grouped according to the individuals who performed the work, with the traverse number correlating to traverses marked on the compilation map.

Paul Jones - Prospector - Employee of Corona Corporation, 11 years in the mining industry, the last four full time.

(5) August 9, 1988

SPHAL 7, 8 - 6 rock samples, #1406-1408, 1410-1412
6 silt samples, #1401-1405, 1409

This traverse was down the slope on the south side of Sphaler Creek, starting at the toe of a glacier. It ended on the extensive mud flats at the headwaters of Sphaler Creek . The geology includes many variations of andesite volcanic ash to agglomeratic tuffs and flows. Locally the volcanics are chlorite altered, foliated, silicified and sheared. The increase in foliation occurs near and within structurally-controlled creek ravines. At the end of the traverse the contact between the volcanic and limestone phyllite unit was prospected. The phyllite unit near the triple contact has narrow quartz veins with pyrite and arseno/pyrite mineralization. A small outcrop of ultramafic pyroxene-rich volcanic is found along the edge of the mud flats.

(7) August 10, 1988

SPHAL 7, 8 - 9 rock samples, # 1413, 1415-1418, 1421-1424 3 silt samples, #1414, 1419, 1420

This traverse was from east to west, just below the glaciers on the south side of Sphaler Creek, and above the tree line. The start of the day was at the contact of the andesite volcanics and a crinoidal limestone and phyllite unit. The structural complexity of the area has resulted in an irregular contact. Horst and graben block faulting juxtaposes the volcanics and sediments. The sediments are primarily a fossiliferous limestone with lesser amounts of mediumgrained grey limestone and foliated siltstone, phyllite. The later part of the traverse was in a mixed lapilli to agglomeratic tuff. These tuffs are green and purple with interfingering green flows. Shear zones periodically cut the volcanics. These shear zones are from 1/2 m. to 10 m. wide and comprise ankerite and quartz. Iron staining is common, but mineralization is limited to trace amounts of disseminated pyrite. The only other mineralization of note is small 1-2m. x 1/2m. sulphide, pyrite lenses within a green rusty andesite tuff.

(9) August 11, 1988

SPHAL 6, 8 - 8 rock samples, #1425-1434

This traverse started on a ridge high above and to the south of the Sphal 6 claim. The rocks at the beginning of the day are green basalt agglomerate to lapilli tuff. The volcanic composition varies from basalt to andesite, with minor chlorite and epidote alteration. This volcanic unit is in contact with a grey dirty limestone unit. At the contact, but within the limestone, are pods of marron limey ash tuff. Shear zones also cut the limestone unit. These andesite shears are ferruginous and have trace to one per cent disseminated pyrite and hematite stain. At the end of the traverse quartz float with pyrite, chalcopyrite and bornite was found.

(11) August 12, 1988

SPHAL 6, 8 - 9 rock samples, # 1435-1438, 1440-1444 1 silt sample, #1439

This venture started where traverse #9 ended on the previous day. It continued to the east to cover the ground west of where traverse #7 ended. The geology of the day was primarily an agglomeratic volcanic unit. Sections of limestone and brecciated limestone are mixed in with the andesite volcanics due to block faulting near the sedimentary volcanic contact at the eastern portion of the traverse. Ankerite zones were sampled in the limestones but the only mineralization of note was trace amounts of pyrite and chalcopyrite.

(17) August 15, 1988

SPHAL 2 - 6 rock samples, #1445-1450, 1501

This traverse started off the claims to the west on a knoll between two arms of the glaciers. Prospecting down the ridge through a green to grey basalt to andesite tuff and flow volcanic unit uncovered a sulphide system. An andesite shear has associated parallel veinlets of pyrite and pyrrhotite. The volcanic unit is mafic in composition and has chlorite and epidote alteration. A porphyritic altered quartz monzonite plug intrudes a felsic rhyolite volcanic unit within a creek that drains a series of small lakes. The rhyolite unit is brecciated and has numerous calcite veinlets throughout. The rocks around the small lakes are porphyritic amygdaloidal andesites and basalts.

(21) August 16, 1988

SPHAL 2 - 2 rock samples, #1502, 1504

1 silt sample, #1503

This traverse was a continuation of the previous day's traverse. The start was in the felsic volcanic unit, a sugary quartz eye rhyolite. The contact with the major sediment limestone unit occurs to the east of the small lakes and trends N/S. The sediment sequence includes schisty argillites, banded siltstones, sandstones and felsic phyllites. An aphantic foliated quartz eye porphory unit with quartz veinlets and pyrite-covered fractures was sampled in a steep creek cut. This proved to be the only significant mineralization during the day.

(22) August 17, 1988

SPHAL 2, 4 - 10 rock samples, #1505-1510, 1512-1515

1 silt sample, #1511

The first stop this day was to sample the quaternary hot spring which is located on the north bank of Sphaler Creek . This included grey sinter and calcarous tuff. Continuing on with the helicopter a traverse was undertaken through the forest on the south side of Sphaler Creek on the Sphal 4 claim. This day was spent in a mixed sedimentary package which included limestones, silty graphitic shales, volcanic derived conglomerates, argillites and siltstones. A rusty aphanitic argillite unit had up to five per cent disseminated pyrite. A series of sulphide, pyrite, skarn sweats within the limestone unit were sampled. Numerous rusty yellow-stained siliceous boulders with 10-15 per cent pyrite were prospected. These boulders are rounded and no source was located. Peter Neelands - Geology Student - Summer employee of Corona Corporation. Five years in field work, the last two full time.

(2) August 1988

SPHAL 7, 8 -11 rock samples

This traverse was along a bench above the south side of Sphaler Creek on Sphal 7 and 8. The geology started in sediments and ended in volcanics. The sediments include sandstones, chlorite schists, arkoses and limestones. The sediments have ankerite shear zones and quartz veins at the contacts between sedimentary layers. No mineralization was noted in the sediments. The andesite volcanic unit also have ankerite-filled shear zones and quartz veins, but these structures have trace amounts of pyrite. Alteration of the volcanic rocks include various degrees of chlorite and epidote.

(8) August 10, 1988

SPHAL 1, 3, 4 - Rock samples, #1316-1333

This traverse was a continuation along the slope below the glaciers on the north side of Sphaler Creek . The route started in the alpine and followed a vegetation-free path, eventually ending along the creek a difference of 3000 feet lower than the start. The geology at the beginning of the day was a banded and bedded sedimentary unit which included laminated quartzites and black siltstones. These sediments have a north/south strike and near vertical dip. Prospecting east, the sediments are underlain by a green chloritic andesite This andesite unit is massive and included tuffs and flows. volcanic unit. Quartz veins, veinlets and ankerite zones with trace amounts of disseminated Lenses of a limestone and black sandstone, siltstone pyrite were sampled. horizon were mapped within the volcanics and are probably of the overlying sedimentary package. The lower extent of the volcanics are composed of green and purple volcanic flows. Below this is an older sedimentary package which includes siliceous limestones, black dolomites to limey argillites and a red mudstone unit. The sedimentary volcanic contact is brecciated and chloritealtered. No mineralization or alteration of significance was encountered.

(14) August 12, 1988

SPHAL 5, 6 - 4 rock samples, #1349-1352

This traverse was on the north bank of Sphaler Creek and was through the extensive limestone unit. The limestone has brecciated segments and quartz ankerite shears. The structures are iron oxidized, but no sulphides were observed.

(18) August 15, 1988

SPHAL 2, 4 - 15 rock samples, #1353-1367

This traverse was along the steep water-eroded banks of the swift-flowing Sphaler Creek . This east-to-west survey crossed a variety of geologic units, Extensive faulting and folding has including sediments and volcanics. complicated the stratigraphy. The structural action has created many shears and The first half of the day was within bedded limestones and brecciated zones. guartzites with brecciated host rocks and ankerite zones. Quartz stockwork was noted in these zones, but no sulphides were found. The lower sediments are composed of siliceous limestones, black dolomites and limey argillites. In fault contact with this lower sediment unit are felsic dykes and plugs, which have trace amounts of pyrite and chalcopyrite. This intrusive segment separates the volcanics and sediments. The volcanic sequence includes rusty andesite flows and tuffs and strongly foliated chlorite schists. These volcanics have trace to one per cent disseminated pyrite. The volcanics are in contact with the dark limey sediments to the west.

(24) August 24, 1988

SPHAL 6 - 7 rock samples, #20588-20594

The purpose of this day was to investigate rusty zones at the base of some cliffs on the south bank of Sphaler Creek . Copper-stained fault structures had been prospected in the vicinity. The geology is a massive limestone unit. This limestone is extensively brecciated and has numerous ankerite zones cross-cutting it. Quartz veins and ankerite zones were sampled, but no sulphides were noted. Paul Huel - Contract Prospector - Resident of Hazelton, B.C. with over 10 years of mineral exploration experience.

(3) August 7, 1988

SPHAL 6 - 9 rock samples, #19-27

This traverse started on the south claim line above the tree line down the slope to Sphaler Creek . Creek structures were the primary target. The geology started in a green and red volcanic flow and tuff unit and crossed into a massive limestone sediment sequence. Ankerite shear zones with quartz veins with trace amounts of pyrite were sampled in the volcanics. The limestone unit has interbeds of sandstone that are cut by quartz ankerite shears. These shears have trace amounts of pyrite. At the end of the day a N/S structure was found to have talus blocks with malachite, pyrite, chalcopyrite and tetrahedrite mineralization.

(15) August 12, 1988

SPHAL 6 - 7 rock samples, #1728-1734

This traverse was along the west side of a glacier flowing south into Sphaler Creek . The traverse was along the base of the cliffs and talus was the main source of the samples. The rocks are primarily medium-grained limestone with limey and black siltstones and sandstones. These sediments are both conformatibly overlain and in fault contact with the limestone. The only mineralization noted was trace amounts of disseminated pyrite.

(19) August 15, 1988

SPHAL 8 - 14 rock samples, #1735-1748

This traverse was within a creek gorge that flowed N/S into Sphaler Creek from the south. Sampling of the structurally-controlled creek was the prime objective. The geology down the cut was within a moderately-to-strongly foliated sediment package. The rocks are sheared, strongly foliated calcerous sediments of probable limestone, sandstone and siltstone origin. This unit is extensively sheared and numerous quartz ankerite zones with pyrite and chalcopyrite were sampled. An increase in mineralization was noted in areas of quartz flooding and barite veins. Bruce Holden - Contract Prospector - Resident of Hazelton, B.C., with over seven years of mineral exploration experience.

(4) August 7, 1988

SPHAL 6 - 6 rock samples, #39-44

1 silt sample, #17

This traverse started on the south claim line above the tree line down the slope to Sphaler Creek . Creek structures were the primary target. The geology started in a green and red volcanic flow and tuff unit, and crossed into a massive limestone sediment sequence. Ankerite shear zones with quartz veins with trace amounts of pyrite were sampled in the volcanics. The limestone unit has interbeds of sandstone that are cut by quartz ankerite shears. These shears have trace amounts of disseminated pyrite. The traverse ended in calcareous sediment.

(16) August 12, 1988

SPHAL 4, 6 - 8 rock samples, #1627-1634

This traverse was along the west side of a glacier flowing south into Sphaler Creek . The traverse was along the base of the cliffs and talus was the main source of the samples. The rocks are primarily medium-grained limestone with limey and black siltstones and sandstones. These sediments are both conformatibly overlain and in fault contact with the limestone. On the mud flats adjacent to Sphaler Creek large 5m. rounded boulders of silicified volcanic with up to 30 per cent disseminated pyrite were noted.

(20) August 15, 1988

SPHAL 8 - 11 rock samples, #163501645

This traverse was within a creek gorge that flowed N/S into Sphaler Creek from the south. Sampling of the structurally-controlled creek was the prime objective. The geology down the cut was within a moderatly to strongly-foliated sediment package. The rocks are sheared, strongly foliated calcareous sediments of probable limestone, sandstone and siltstone origin. Sampling of quartzflooded, fractured, mineralized shear zones was the order of the day. Sulphides included pyrite and chalcopyrite. Rob Klassen - Geologist - Employee working for Corona Corporation for the last two years consecutively.

(12) August 12, 1988

SPHAL 2 - 3 rock samples, #1942-1944

This traverse started on the west side of a glacier that flows down into Sphaler Creek on the south side. The geology is a mix of sediments and volcanics. The sediments include dark, fine-grained limestones and rusty black carbonate sediments. Ankerite zones with quartz veins were sampled in the sediment unit. The volcanics comprise the lesser of the assemblage. These volcanics are of a mafic nature with a graphitic texture. No mineralization of interest was noted.

Karen Sobey - Contract Prospector - Graduate of BCDM Prospecting Course, 1987. Two years of field experience.

(1) August 7, 1988

SPHAL 7, 8 - No samples collected

This traverse was along a bench above the south side of Sphaler Creek on Sphal 7 and 8. The geology started in sediments and ended in volcanics. The sediments include sandstones, chlorite schists, arkoses and limestones. The andesite volcanics have ankerite shear zones. No mineralization of any note was prospected.

(13) August 12, 1988

SPHAL 2 - 3 rock samples, #1822-1824

This traverse was on the west side of a glacier that flows down into Sphaler Creek on the south side. The geology is a mix of sediments and volcanics. The sediments include a siliceous limestone (dolomite) and a black graphitic rusty siltstone-sandstone. One rusty dolomite horizon has trace amounts of pyrite.

GEOCHEMISTRY

The 138 samples collected during this phase of work were submitted to both Min - En and Acme Analytical Labs of Vancouver for geochemical analysis. Analytical techniques are described in Appendix A, sample descriptions in Appendix B and results in Appendix C.

SPHAL B - CLAIM GROUP

544 B

1.2.2

Sample No.	Sample Type	Description
SPHAL 2		
1445	grab	black fine grained pyritic basalt
1446	grab	argillaceous aphanitic dark basalt with trace pyrite
1447	1m chip	andesite volcanic with pyrite and pyrrhotite veining
1448	1m chip	andesite volcanic with pyrite and pyrrhotite veining
1449	grab	siliceous felsic intrusion, ankerite weathered with grey green sericite quartz core
1450	grab	felsic rhyolite dyke with Fe carbonate, ankerite core
1501	grab	brecciated calcareous quartz ankerite vein
1502	grab	felsic porphoritic intrusive with ankerite and maraposite
1503	silt	Fe stained silt
1504	grab	aphanitic sediment unit within limestone with blebs and disseminated pyrite and possibly arsenopyrite 60%
1505	grab	sulphuric munge from hot spring; grey black goo
1506	grab	sulphur stained aphanitic grey siltstone rock from hot spring
1507	grab	sulphuric munge from hot spring, grey black goo
1942	grab	tan to black limestone, fine grained with swirlled layers, quartz carbonate veinlets
1943	grab	rusty orange red weathered quartz ankerite veining, within limy sediment
1944	grab	dark orange brown mafic volcanic with graphitic shear zones and quartz carbonate veins
1822	grab	siliceous grey volcanic? dolomite?
1823	, grab	mixed mafic volcanic and rhyolite tuff with fine grained disseminated pyrite
1366	grab	10cm quartz vein within foliated volcanic unit
1367	grab	rusty black siltstone with blebs of pyrite

Sample No.	Sample Type	Description
SPHAL 4		
1329	grab	siliceous brecciated volcanic with ankerite veinlets, andesite
1330	grab	siliceous limestone with quartz ankerite veinlets
1331	grab	mixed blank quartzite and carbonate rock with brecciated quartz ankerite veins
1332	grab	deep red mudstone unit
1333	grab	light and dark banded migmatite within limestone, massive grey blue
1353	grab	strongly altered limestone with fault zone with quartz ankerite veinlets
1354	grab	siliceous altered limestone with quartz ankerite veinlets
1355	grab	siliceous grey quartzite with ankerite veinlets
1356	float	blank slate, non calcareous, strong foliation, talus
1357	grab	light green mafic volcanic ash tuff with disseminated chalcopyrite, trace
1358	grab	very fine grained mafic volcanic or black siltstone, with brecciated ankerite in filling
1359	grab	shear zone with quartz ankerite calcite veining, chlorite alteration
1360	float	intrusive dyke with trace coarse grained chalcopyrite, talus
1361	float	intrusive dyke with trace coarse grained chalcopyrite, talus
1362	grab	gossaneous medium volcanic, rusty weathered surface
1363	grab	medium volcanic, strongly foliated, sheared and chlorite altered
1364	grab	rusty weathered medium volcanic with pyritic zones
1365	float	well banded siltstone, talus
1508	grab	quartz ankerite zone within limestone unit
1509	grab	disseminated pyrite 1% within siliceous sediment zone

Sample No.	Sample Type	Description			
<u>SPHAL 4</u>	cont				
1510	grab	rusty weathered banded siliceous sediment with 1–5% disseminated pyrite			
1511	silt	near rsediment volcanic contact			
1512	float	rusty aphanitic grey white siliceous volcanic sediment with 10% disseminated pyrite			
1513	grab	contact zone with Fe carbonate ankerite veins and skarr sweats			
1514	grab	pyrite lenses within coarse grained limestone unit			
1515	flaot	arsenopyrite stined boulders with 10–15% blebs and disseminated pyrite			
1634	grab	dark siliceous limestone with pyritic ankerite zone			
<u>SPHAL 6</u>					
20588	grab	brecciated limestone			
20589	grab	brecciated limestone with Fe- carbonate, siderite			
20590	grab	quartz siderite vein within limestone			
20591	grab	brecciated limestone			
20592	grab	limestone			
20593	grab	limestone with calcite veining			
20594	grab	quartz vein, barren white within limestone			
1627	float	pyritic siliceous limey sediment			
1628	grab	bedded limestone, quartzite sediments with chalcopyrite			
1629	grab	bedded limestone and shale sediment unit			
1630	grab	bedded limestone and sediment unit with pyritic clay zone			
1631	float	boulder, train of siliceous pyritic material, at corner pos			
1632	float	boulder train or siliceous pyritic material			
1633	float	large quartz boulders with disseminated pyrite			
1728	float	pyritic limestone			

	Sample No.	Sample Type	Description
	SPHAL 6	Cont'd.	
	1729	grab	pyritic limestone
	1730	grab	limestone unit with trace pyrite and chalcopyrite
	1731	float	limestone with trace pyrite
	1732	grab	limestone and carbonate sediment with trace pyrite
	1733	float	quartz veins with pyritic fractures
	1734	float	quartz carbonate cemented limestone breccia
	1425	grab	quartz ankerite zone within ignembrite zone with specular hematite
	1426	grab	intermediate volcanic, green and purple with amygdules and Fe carbonate zones
	1427	grab	limey purple contact unit, volcanic?
	1428	grab	orange rusty weathered ankerite zone within limestone
	1429	grab	quartz epidote hematite zone within volcanic unit
í	1430	grab	quartz with minor ankerite zone with orange weathering
	1431	float	rusty weathered ruggy ankerite zone at contact of limestone and purple volcanics
l.	1432	grab	quartz ankerite zone
	1433	grab	ankerite siderite shear zone with trace pyrite
•	1434	float	quartz vein with chalcopyrite, pyrite and bornite
	1435	grab	Fe-carbonate zone with a shear within volcanic unit
	39	float	1/2m wide quartz carbonate vein with pyrite and chalcopyrite
	40	grab	red lapilli tuff with pyritic shear, talc alteration
· .	41	float	mixed limy tuff and limestone with disseminated pyrite
	42	grab	mixed limy tuff and limestone with disseminated pyrite
	43	float	quartz carbonate vein with grey mineral

Sample Sample No. Type		Description		
SPHAL 6	cont			
44 grab		limey sediment with malachite and chalcopyrite		
17	silt	1/2m wide stream in shear gully		
19	float	quartz carbonate vein with chalcopyrite bornite and pyrite, on Sphal 6 claim line		
20	float	quartz vein with chalcocite and malachite		
21	grab	shear gully with quartz carbonate vein with black-grey mineral		
2 2	grab	rusty weathered propylitic green sheared tuff with pyrite		
23	float	large boulders of rusty pyritic altered tuff,		
24	float	limey carbonate rock with chalcocite, malachite and pyrite		
25 grab		shear zone in limey carbonate with chalcorite and pyrite, talus		
2 6.	float	limey carbonate with malachite chalcorite and pyrite, talus		
27	float	white limey chyolite with calcite stringers and chalcopyrite		
SPHAL 8				
1401	silt			
1402	silt			
1418	1m chip	purple agglomerate lense within felsic ankerite zone within limestone		
1419	silt	north east glacier creek		
1420	silt	east glacier creek		
1421	float	quartz ankerite zone with 5% sulphide lenses, pyrite		
1422	float	quartz ankerite zone with 5% sulphides lenses, pyrite		
1423	grab	rusty green agglomeratic tuff with ankerite zones		
1424	grab	quartz ankerite shear zone with possible chromite		
1436	grab	quartz ankerite vein within shear zone within volcanics		
1437	grab	quartz ankerite vein within shear zone at contact of limestone and volcanic units purple contact zone		

Sample No.	Sample Type	Description
SPHAL 8	cont	
1438	grab	quartz ankerite zone within black banded sediment and/ volcanic tuff?
1439	silt	
1440	float	rusty weathered intermidiate volcanic tuff with amygduk and disseminated pyrite arsenopyrite zones
1441	grab	quartz rich ankerite shear zone within volcanic unit
1442	grab	mixed volcanic and limestone brecciat with disseminat chalcopyrite
1443	1m chip	yellow weathered quartz ankerite zone in shear with volcanic
1444	1m chip	quartz ankerite shear zone within volcanic unit
1735	grab	sheared schistose sediment unit with quartz and pyrite
1736	grab	sediment unit with quartz shear zones with trace pyrrite
1737	grab	siliceous sediment with pyrite
1738	grab	siliceous quartz flooded sediment with trace chalcopyri and pyrite
1739	float	quartz cemented brecciated sediment with quartz carbona zone with chalcopyrite pyrite and malachite, talus
1740	float	large boulders of quartz carbonate rock with chalcopyrit malachite and pyrite
1741	grab	quartz carbonate zone with 1% chalcopyrite
1742	grab	quartz ankerite zone with barite and malachite
1743	grab	quartz ankerite zone with barite and trace chalcopyrite a pyrite
1744	grab	schistose sediment with pyrite with quartz carbonate
1745	grab	quartz ankerite sediment unit with chalcopyrite and pyrite
1746	grab	quartz vein, grey with pyrite blebs
1757	grab	rusty weathered schistose zone with quartz and black miner
1635	grab	rusty pyritic shear zone, calcareous and schistose

—

1913.**8**

Sample No.	Sample Type	Description
SPHAL 8	cont	
1636	grab	quartz ankerite vein with pyrite
1637	grab	quartz ankerite zone with pyrite
1638	grab	sheared quartz carbonate zone with barite and chalcopyrite
1639	grab	sheared quartz carbonate zone with barite and chalcopyrite
1640	grab	sheared quartz carbonate zone with barite and chalcopyrite
1641	grab	sheared quartz carbonate zone with barite and chalcopyrite
1642	grab	bedded sediment with pyrite seams and quartz carbonate zones
1643	grab	bedded sediment with pyrite seams and quartz carbonate zones
1644	grab	schistose bleached quartz carbonate zone intersection of faults
1645	grab	schistose clay altered quartz carbonate zone with chalcedomy

.

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ros e 440 13 150 15 100 5 440 18 240 11 1700 4 3740 14 240 14 1700 4 3740 24 1400 14 171 7 1740 74 11400 14 171 7 1810 7 2700 41 1640 7 8100 7 1220 27 170 7 350 9 470 46 170 7 350 9 470 46 170 7 350 9 470 46 1750 7 400 14 310 15 1755 7 400 14 310 15 1758 9 500 320 21 330 1758 9 500 320 21 330 170 18		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
SPHEL 4 8 - 19 - 4L - 85 1329 - 1.2 - 540 - 14 1330 - 0.6 - 480 - 1 1331 - 0.3 - 360 - 1 1332 - 0.7 - 160:0 - 1 1333 - 0.3 - 440 - 4 1353 - 0.3 - 740 - 8 1355 - 3 - 250 - 29 1356 - 0.1 - 890 - 8 1355 - 0.3 - 27470 - 27 1356 - 0.3 - 15290 - 6 1357 - 0.3 - 27470 - 27 1358 - 0.3 - 15290 - 6 1359 - 0.1 - 1729 - 8 1360 - 0.4 - 24670 - 19 1362 - 0.2 - 27586 - 16 1363 - 0.3 - 24670 - 19 1363 - 0.3 - 24670 - 19 1364 - 1.1 - 37640 - 19 1365 - 0.4 - 1020 - 7 1510 - 0.4 - 14320 - 10 1510 - 0.4 - 14320 - 10 1510 - 0.4 - 14320 - 10 1510 - 0.4 - 14320 - 7 1511 - 1.4 - 4750 - 48 1515 - 1.5 - 4476 - 5 1634 - 3.4 - 170 - 30	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CD CO CU FE 3.4 10 70 14730 6.6 8 18 3510 5.2 9 4 27050 1 24 5 7840 6.5 9 17 4260 7.3 10 4 26720 4.8 14 6 21200 3.2 11 21 3940 1.1 15 19 25840 2.1 41 83 43120 2.4 13 41 593 3.4 24 2106 31990 0.5 35 4 4190 0.1 49 5 5120 1.4 59 33 7210 2.7 28 30230 1.7 1.7 42 3 7940 3 327 14 49869 2.2 21 97 17220	910 45 9790 61. 920 43 59.70 30 920 43 3970 12. 3130 52 780 58 800 37 47380 18 1230 33 60570 164 1200 35 60610 135 1140 32 10360 17 2410 45 11530 58 1200 53 30580 88 1200 40 40460 4 1200 52 24550 86 1200 52 24550 86 1420 42 14200 84 1200 52 24550 86 1480 49 1440 44 1420 52 24550 86 2170 54 2130 76 980 22 24750 104 2470 38 25200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 5 1 6 1 1 1 4 40 3 1	V 2H GA SH H C.R. AU-PPE 12.5 10 S 2 14 252 S 4.8 1 1 1 1 4 S 12.4 4 1 1 4 252 S 4.8 1 1 4 252 S 12.4 4 1 1 4 2 12.4 4 1 1 4 2 10 9.7 3 5 1 2 109 S 10.6 6 1 1 1 38 S 14.2 44 1 2 3 113 10 152.4 5 2 1 11 133 S 44.2 44 1 1 127 15 12.4 73 5 6 3 55 5 13.2 73
SPHAL 6 4 4g 6L 455 17 1.3 16240 17 E Ho Cu Pho PPRI PPRI PPRI PPRI 19 1 2297 11 70 1 854 2 21 1 34 2 22 35 206 20 23 13 20 14 24 1 2162 4 25 1 1324 5 26 1 744 2 27 1 163 2 29 1 137 3 40 25 85 22 41 22 1 3 42 1 1 2 43 1 547 8 44 1 733 4	3 40 0.6 8 4640 2 69 Hi Co Ba 197 Prin Prin Prin Prin 197 3.5 6 6 2968 2 0.6 1 1 2979 21 0.1 0 12 4642 44 0.2 21 37 1260 19 0.1 64 4 4273 27 9.3 7 5.7003 24 6.2 4 3376 13 6.1 1 1 507 13 6.1 1 5003 24 6.2 4 4 3760 15 9.1 2 1649 127 0.4 26 63 1564 77 12 1.4 105 127 0.4 26 63 1564 77 17 5.38 77 0.2 7 7	CD CU CU FE 1.7 22 24 42940 Fe As 8 Ar 5 FPH FPE PE 4 314 5 0 8.38 4 5 1 7.47 6 5 0 4.67 35 5 0 5.31 30 5 0 4.67 55 3 0 5.12 92 5 0 4.7 92 5 0 4.7 92 5 0 1.12 92 5 0 1.23 14 5 0 14.73 25 6 1 1.52 61 5 0 1.53 2 5 0 1.52 6 5 0 1.53 6 5 0 4.53 2 5	430 41 10750 43 1% Sr Cd S PPN PPN PPN PPN 2 44 1 22 3 43 1 - 2 180 1 - 2 180 1 - 4 16 1 - 2 25 1 - 1 47 1 91 2 38 1 26 1 47 1 91 2 38 1 26 1 71 1 21 2 117 1 1 2 119 1 1 3 22 1 1 3 35 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S8 S2 H H H 4 7 1 3 Cr ng 0a Ti PPC 3 PPC 1 10 5.45 8 0.01 2 0.02 6 0.01 2 3.44 1468 0.01 1 0.63 11 0.01 1 7.16 7 0.01 3 4.73 3 0.01 2 2.71 11 0.01 5 2.71 11 0.01 5 2.71 11 0.01 5 2.71 11 0.01 5 2.71 11 0.01 10.04 5 0.01 2 2 4.3 13 0.61 1 0.64 5 0.01 2 4.3 15 6.01 2 4.3 15 6.01	tr ZH GA SH H CR AU-PPB 21.3 57 1 1 1 35 10 8 4.1 4.4 K 8 6.0 PPE1 1 1 35 10 8 6.1 4.4 K 8 6.0 PPE1 1 1 25 10 1 1 12 0.42 0.03 4 27 1 1 1 1 1 14 0.47 0.42 0.03 1 1 1 1 1 2 0.43 0.43 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CD C4 C4 FE 3.5 16 56 71170 3.7 16 14 52848 1.4 25 16 325270 4.5 9 10 25270 4.5 9 13 28450 5.3 9 10 25270 4.5 9 13 28450 5.3 9 10 25270 4.5 13 28450 53 5.3 9 14 2307 6.1 7 4 30740 5.7 9 11 18740 4 12 10 24780 2.1 7 72 14230 3 11 25 4140 3 11 25 4140 3 13 23 122 2.7 7 33 7340 7 4 23 7344	840- 42 30640 366 1570 42 37660 197. 840 46 1776 107. 900 42 43170 158. 840 46 42 43170 158. 840 42 43170 152. 156. 840 42 43170 158. 133. 1010 38 21550 164. 133. 1010 38 21550 164. 137. 1010 38 21550 164. 137. 1010 38 21550 164. 137. 1010 42 33500 255. 134. 1010 43 27410 148. 137. 1020 46 7420 61.40 724. 1030 47 2350 137. 156. 46 35250 137. 156. 46. 35250 137. 1030 47	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t $2H$ 6_{42} SH t CR $4JJ-FFE$ 20.5 11 1 1 1 32 5 27.5 24 6_{-} 1 4 38 10 20.8 24 18 1 1 52 5 6.1 7 1 1 1 27 5 6.1 7 1 1 1 28 5 6.1 7 1 1 1 28 5 6.1 7 1 1 1 28 5 7.6 6 3 1 4 44 10 10 14 1 1 372 60 27.9 15 5 1 372 60 27.9 15 5 1 1 26 15 53.2 26 3 1 476 10

5. B.R.

3. 200A

No.15

5174-22 8 81 9 9
 CU
 11.

 18
 32386

 25
 33890

 53
 21180

 30
 41640

 23
 43400

 177
 164530

 5
 46860

 10
 164530

 5
 46860

 10
 164530

 5
 36430

 14
 36680

 14
 36460

 26
 4790

 25
 63700

 16
 16010

 26
 37300

 16
 16010

 26
 37300

 16
 16010

 26
 31400

 10309
 6055

 38
 92200

 24
 26870

 6015
 54876

 163
 59870

 34
 98416

 16
 17710

 72
 37144

 321
 40179

 547
 60478

 2075
 53300
 .
 ag
 44

 1.8
 11516

 1.9
 11450

 0.5
 7110

 0.4
 21796

 0.5
 25200

 6.4
 1030

 6.4
 1030

 6.4
 1070

 0.5
 25200

 0.4
 1770

 0.5
 2150

 0.7
 10300

 0.3
 2260

 0.3
 3580

 0.3
 1460

 0.4
 1020

 0.3
 2260

 0.3
 2260

 0.3
 2260

 0.3
 2260

 0.3
 2260

 0.3
 2260

 0.3
 2260

 0.4
 1200

 0.4
 1240

 0.4
 2400

 0.5
 2180

 0.5
 21460

 0.5
 21460

 0.5
 3000

 0.5
 3460

 0.7
 1240
 457224157457121210121515313111141151111115454121481 BA 2044 1188 4377 2700 488 1448 1458 1448 1458 1448 1458 1448 1458 14788 1478 1478 1478 1478 1478 14 CA 18540 $\begin{array}{c} c_0\\ \textbf{3.1}\\ \textbf{3.2.4}\\ \textbf{0.3}\\ \textbf{3.2.4}\\ \textbf{0.4}\\ \textbf{0.3}\\ \textbf{0.6}\\ \textbf{1.6}\\ \textbf{0.7}\\ \textbf{3.4}\\ \textbf{1.3}\\ \textbf{0.3}\\ \textbf{2.4}\\ \textbf{4.7}\\ \textbf{3.4}\\ \textbf{1.3}\\ \textbf{0.7}\\ \textbf{3.4}\\ \textbf{1.3}\\ \textbf{0.7}\\ \textbf{3.4}\\ \textbf{1.3}\\ \textbf{0.7}\\ \textbf{3.4}\\ \textbf{1.3}\\ \textbf{0.7}\\ \textbf{3.4}\\ \textbf{3.4}\\ \textbf{1.3}\\ \textbf{0.7}\\ \textbf{3.4}\\ \textbf{3.5}\\ \textbf{4.5}\\ \textbf{3.4}\\ \textbf{3.5}\\ \textbf{4.5}\\ \textbf{4.5}$ Collection
 I.I.
 nG

 42
 12340

 44
 12460

 45
 17260

 43
 19370

 43
 193700

 44
 1240

 40
 14530

 59
 17760

 40
 14720

 40
 14720

 42
 30630

 43
 19370

 42
 43500

 54
 12430

 55
 12770

 43
 48690

 47
 2166

 48
 18710

 47
 6140

 38
 35200

 59
 19800

 42
 45720

 43
 33130

 44
 25450

 33310
 43

 33310
 44

 343
 33130

 43
 4310

 43
 45201

 44
 3260

 45
 45700

 42
 30700

 10 5 5 5 5 5 5 4 4 4 6 5 7 6 5 5 5 8 5 7 5 6 6 4 7 5 9 7 10 7 9 16 7 4 5 8 8 8 8 4 4 7 р 740 58 4 6 1 3 1 v /1 6422112101173310132712241414731113226161832441 544 - 4 - 1 u 68 411-000 NE 12 6 10 11 5 1 2 18 13 17 10 10 7 51 18 25 7 SR 14 14 19 34 21 3 2 16 1 1 1 U 4 4 1 1 5 11.7 10.2 17.3 10.2 12.6 1 441332344224223334722433264233324232433883348124412441 1 1401 1401 1402 1418 1419 19730 40040 23230 1010 4/0 11000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 2000 1000 200 2000 2 1 2 2 27580 2 27580 1 165310 6 25210 1 14590 2 117790 1420 1421 1422 1423 1424 1436 1437 1438 1439 1440 1 1 2 1 4 : 4 t 1. 1 92050 81840 27110 i 1 512113715413154126493411661910171067413922313 1 9 1 1 10 6 27110 1 7830 1 1610 1 137690 1 121340 10 2160 1 64256 7 62330 1 144300 2 166230 12221212 5 1 5 1 7 1 2 1 1 1 4 1441 1442 1443 1444 1635 1636 1637 1636 1637 1636 1647 1647 1647 1643 1642 1643 1735 1736 1737 1738 1739 1740 1741 1 16 1 2 1 1 د ع 2 2 32 1 144300 2 154070 5 115340 2 125310 1 87850 1 125170 1 86490 8 31250 1 99480 1111112112091211132121 1 3 1 7 1 5 77 1 10 4 1 3 4 1 3 1 1 1 3 12 14 7 4 14 13 13 4 5 12 14 13 15 7 3 3 1 1 2 1 2 1 99480 2 82000 13 370 10 28230 1 124990 1 108630 2 8 1 4 2 3 1 1 1 117170 L 4 72010 2 120840 4 6610 1 80610 2 133430 216 1 31 5 5 10 1 1 1 2422 493 1422 196 453 27 52 52 5 212 1744 1745 1746 1 120730 4 208920

. ~

STATEMENT OF COSTS

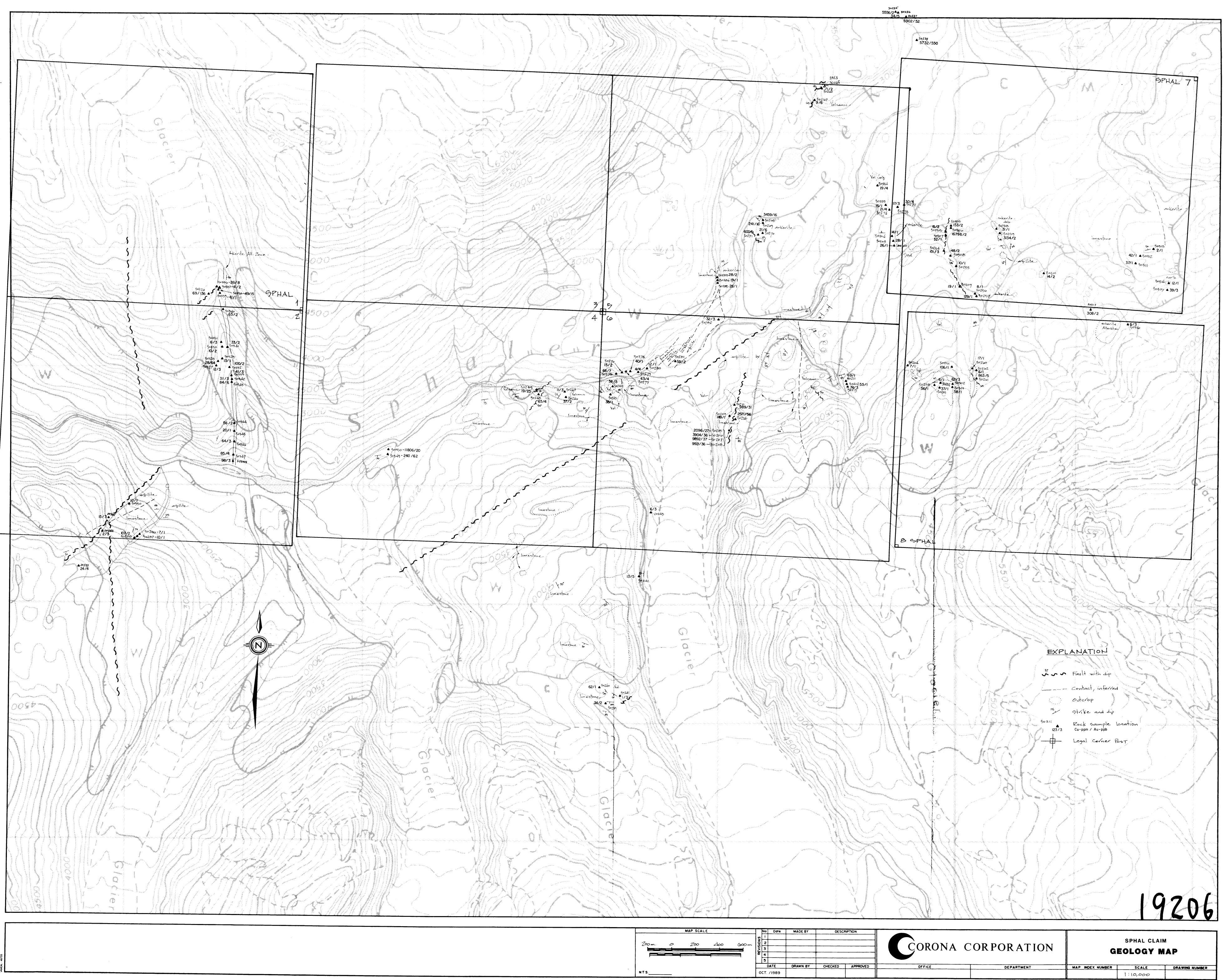
SPHAL 2, 4, 6, 8 - PROSPECTING

<u>8.</u>]

Prospecting 16 man days @ \$250/ma	an day	\$ 4,000.00
Samples (including shipping) 138	@ \$25/sample	3,450.00
Food @ \$30/man day		480.00
Supplies and Equipment		175.00
Contract Base Camp		3,637.00
Mob - De Mob (Aircraft Charter)		750.00
Helicopter Support 16 hours @ \$6	25/hr	10,000.00
Report Preparation		750.00
TO	TAL	\$ <u>23,242.00</u>

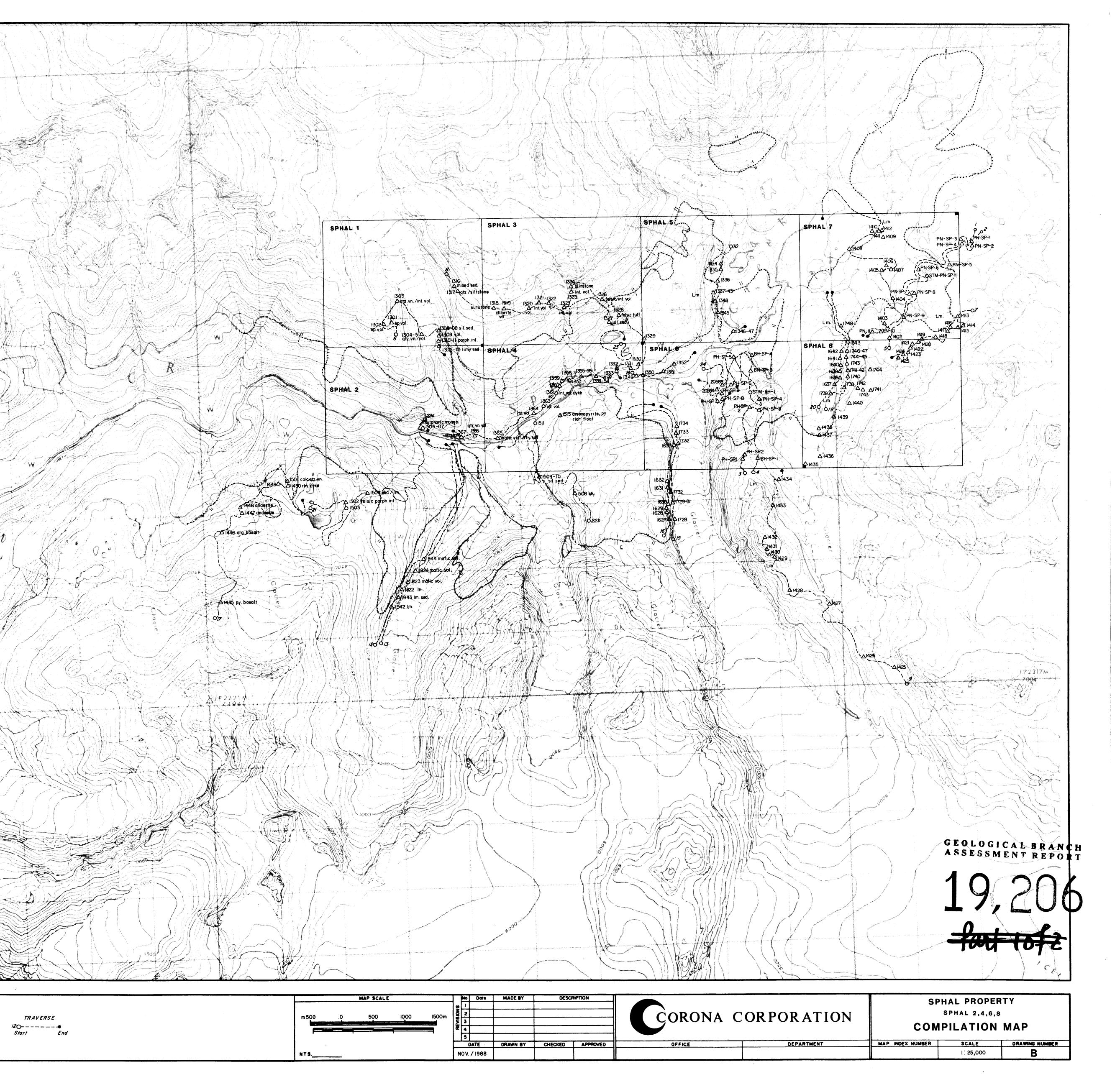
Dates: July 7, 9, 10, 11, 12, 15, 16, 17; 1988

STATEMENT OF QUALIFICATIONS


I, **PAUL WILLIAM JONES** of the City if Vancouver, B.C. declare that:

1. I have been actively involved in the mining industry in Canada and the United States for 12 years.

2. I have personally directed and performed the work enclosed in this report under the supervision of Corona Corporation's Senior Geologist, Darrel Johnson.


Paul WA Jones

DATED	THIS	11th	DAY OF	Dec	19 39	
AT	<u>Vı</u>	CTORIA,	BRITISH	COLUMBIA.		

			Marine e septembre e service de la servic			
1543 0.5 950 8 1 2 0.7 6 190180 3,4 1944 0.4 29250 5 8 73 1,4 2 44060 0,6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
SFHAL 4 # Ag AL AS S EA EE BI CA CD 1329 1.2 540 14 1 12 0.6 5 23990 3.4 1330 0.2 440 1 1 0.6 5 23990 3.4 1330 0.3 360 1 2 1 1.1 5 158410 6.6 1331 0.3 360 1 2 1 1 4 73680 5.2 1332 0.7 1500 1 10 98 1.5 3 8450 1 1353 0.3 790 6 3 64 1 14 4 75630 6.3 1355 3 250 27 1 5 0.5 10 60130 3.2 1355 0.3 15970 6 3 1.1 10 0.4 10 30 2.4 <th>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</th> <th>5 2 1 1 38.4 48 1 1 1 44 5 4 17 1 1 1.4 41 15 1 52 5 6 5 5 1 29.1 86 8 1 2 46 5 6 4 1 13.8 29 6 1 1 94 5 5 4 1 1 13.2 29 4 1 1 97 10</th> <th></th>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 2 1 1 38.4 48 1 1 1 44 5 4 17 1 1 1.4 41 15 1 52 5 6 5 5 1 29.1 86 8 1 2 46 5 6 4 1 13.8 29 6 1 1 94 5 5 4 1 1 13.2 29 4 1 1 97 10				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	22 28 42940 830 41 10750 633 4 350 13 1510 12 As B Au Th Sr Cd Sb Ei V Ca P La BCH PPH PPH	4 9 1 3 71.3 52 1 1 1 35 10 Gr Hg Ea Ti E Al Na Na				
SFHAL 8 Ag AL AS E BA EE EI CA CD 1401 1.5 11510 71 1 206 0.6 9 19730 3.2 1418 0.5 9110 6 3 1418 0.9 9 19730 3.2 1418 0.5 9110 6 3 1418 0.9 9 19730 3.2 1418 0.5 9110 6 3 1418 0.9 9 19730 3.2 14120 0.5 25200 7 7 270 1.4 2 27500 0.3 1422 0.4 17750 17 4 144 2 27500 0.3 1422 0.4 1750 17 4 171 1 2 117790 4.7 1436 0.2 10320 15 7 5 1.1 1 7830 1.3 <		10 2 1 1 9.5 12 7 1 1 24 5 SB SR IH 0 V 2N 6A SN W CR AU-PPB 4 16 1 4 51.7 45 2 4 1 46 5 6 14 1 4 58.2 40 2 1 1 33 5 1 19 1 56.3 19 1 1 1 64 5 3 34 1 79.3 54 1 1 1 64 5 1 21 1 95.2 52 2 2 2 60 10 1 2 1 1 16.7 30 10 1 1 36 10 1 2 1 1 12.6 26 5 1 1 87 5 1 2 1 11 15.6 26 1 1 88				
ABBREVIATIONS						

	ABBREV	ATIONS	
ep	– epidote	porph. — porphyry	🛆 Rock Sample
and	1. – andesite	qtz. – quartz	O Silt Sample
arg	. – argillite	sed. – sediments	i < 5 % Outcrop
int	– intrussive	sil silicified	ii ≥80% Outcrop
Lm. Ir	n. — limestone	vol. — volcanics vn. — vein	

