

GEOCHEMISTRY REPORT

ON THE

EAGLE PROPERTY (Eagle 1 and Eagle 2 Claims)

REPORT BY: CHRIS RONEY, FIELD GEOLOGIST GORD MAXWELL, PROJECT GEOLOGIST

OCTOBER, 1989

TABLE OF CONTENTS

PAGE

2

.

-

SUMMARY	1
INTRODUCTION: PURPOSE LOCATION & ACCESS PROPERTY REGIONAL GEOLOGY PREVIOUS WORK	2 2 2 3
WORK UNDERTAKEN	4
GEOCHEMISTRY	4 5
RECOMMENDATIONS	5
REFERENCES	5

LIST OF TABLES

|--|

LIST OF APPENDICES

APPENDIX	1.	LIST OF FIELD PERSONNEL	6
APPENDIX	2.	STATEMENT OF COSTS	7
APPENDIX	3.	STATEMENT OF QUALIFICATIONS	8,9
APPENDIX	4.	ANALYSIS REPORTS	10+
APPENDIX	5.	ANALYTICAL METHOD	

LIST OF FIGURES

			SCALE	PAGE
FIG.	1.	LOCATION MAP	1:8,000,000	2a
FIG.	2.	LOCATION MAP	1:50,000	2b
FIG.	3.	CLAIM MAP	1:50,000	2c
FIG.	4.	SOIL GEOCHEMISTRY - AU	1:5,000 in	n pocket
FIG.	5.	SOIL GEOCHEMISTRY - CU	1:5,000 in	n pocket

OCTOBER, 1989

PAGE 1

SUMMARY

The Eagle project is situated in close proximity to several new Cu-Au prospects, including Mount Milligan.

The objective of the Eagle project is to test a large potential Cu-Au porphyry system. The project is located in the south shore of Tchentlo Lake, 210 km northwest of Prince George. Access to the property is by float plane or helicopter. Soil geochem has outlined seven copper anomalies and one gold. The gold anomaly is located along the baseline and associated with a copper anomaly.

Additional grid work, soiling, and geophysics are recommended to develop drill targets.

OCTOBER, 1989

ASSESSMENT REPORT GEOCHEMISTRY REPORT ON THE EAGLE PROPERTY

PAGE 2

INTRODUCTION

PURPOSE

The Eagle property meets all the criteria for an excellent Cu-Au porphyry type deposit similar to Mt. Milligan. The property is situated in the same belt of rocks, 50 km east of the recent discovery. Two showings are known on the property, but little information is available and neither rocks or soils have ever been reportedly run for gold. Grid work was done on the property by Noranda to see if gold is in the system and develop drill targets.

LOCATION & ACCESS

The Eagle property is located in central British Columbia (Figure 1). It lies along the south shore of Tchentlo Lake (Figure 2), approximately 210 km northwest of Prince George.

The area is characterized by a gentle sloping mountain (hill). Elevation ranges from 850 metres on Tchentlo Lake to 1472 metres.

The claims are covered by mature stands of spruce, pine and balsam, with undergrowth mainly small cedar, alder and devil's club at the bottom and with scrub pines more abundant as you go higher up.

Access is presently by fixed wing aircraft to Tchentlo Lake or helicopter. The property is situated 15 km from all weather logging roads.

PROPERTY

The property consists of two claims listed in Table 1. Noranda Exploration holds an option to acquire the claims from the owners, A.D. Halleran, A.A. Halleran, W.H. Halleran, and U. Schmidt. The claims are shown on Figure 3.

TABLE 1.	LIST OF CLAIMS
	EAGLE PROPERTY, OMINECA M.D., N.T.S. 93 N/02W

CLAIM	NAME	RECORD #	UNITS	OWNERS	RECORD DATE
Eagle Eagle	1 2	9577 9578	20 20	A.D. Halleran, A.A. Halleran, W.H. Halleran, U. Schmidt	July 22, 1988 July 22, 1988

.

1

and the state of the second second

OCTOBER, 1989

ASSESSMENT REPORT GEOCHEMISTRY REPORT ON THE EAGLE PROPERTY

PAGE 3

REGIONAL GEOLOGY

The most recent published information on regional geology is by Paterson, I.A., 1974 G.S.C. Paper 74-1, part B and by Garnett, J.A., 1978; Geology and Mineral Occurrences of the Southern Hogem Batholith.

The Eagle claims lie in a broad northwest trending package of rocks known as the Quesnel trough. These include Upper Triassic to Lower Jurassic volcanics and sediments (Takla Group), which have been intruded by the Hogem Batholith and numerous other felsic to mafic stocks, ranging in age from Triassic to Cretaceous.

The volcanic rocks include massive to porphyritic andesite and basaltic flows. The sedimentary package includes argillites, greywackes and conglomerates.

The property is located in close proximity to the Hogem Batholith and this has probably caused major deformation in the area. The Takla Group and Hogem Batholith are bounded to the west by the Pinchi Fault. This fault system seems to have produced numerous parallel splays.

PREVIOUS WORK

No description of any known showings on the property has been noted in assessment reports. Government reports note disseminated Cu mineralization in a northwest trending shear zone. West Coast Mining and Exploration completed a small IP survey over the Nighthawk zone in 1966. In 1967, the same company completed further IP and a soil geochemistry survey over most of the known zone. Boronda Exploration Corp. then acquired the property in 1971 and conducted an extensive exploration program over a much larger area. The program included soil geochemistry, geologic mapping, EM-16 survey, magnetic survey, an IP survey, and several diamond drillholes.

OCTOBER, 1989

PAGE 4

WORK UNDERTAKEN

Six men spent 3 days (June 5-7, 1989) gridding and soil sampling the claims. A helicopter was used for access each day. The grid was started at the center of Eagle 1 (40,000mE/40,800N) and a baseline was run for 1.0 km at 143 degrees. The baseline was cut with a chainsaw. Three side-lines (40,800N, 40,400N, 40,000N) were run at 400 metre intervals for 1.0 km northeast and southwest of the baseline. As well, 5 sidelines were put in at 100 m intervals between 40,300N and 39,800N and run 250 m northeast and southwest of the baseline (Figure 4).

308 B-horizon soil samples were collected. The soils were collected at 25 m intervals with grub hoes, from a depth of 10 to 70 cm in mineral soils, below the organic rich upper horizon. Samples were dried in kraft paper bags and sent to Noranda's Geochemical Laboratory in Vancouver (Appendix 5) and analyzed for Cu and Au geochemically.

RESULTS

GEOCHEMISTRY - (Soils)

308 B-horizon soils were collected from the Eagle grid to the 7th of June, 1989. All samples were analyzed for copper and gold (Appendix 4).

Gold values on the grid range from 5 - 4700 ppb. Values greater than 10 ppb are considered to be anomalous. Twenty three stations were anomalous. Eleven of them are associated with an anomaly along the northeast side of the baseline (Figure 4); which is associated with a copper anomaly. The rest are scattered throughout the grid (Figure 4), some are associated with other copper anomalies.

Copper values on the grid range from 8 to 7000 ppm. Values greater than or equal to 100 ppm are considered to be anomalous. One hundred forty one stations were anomalous. A series of seven anomalies is seen over the grid (Figure 5). They are at 40,900E, 40,400E, 40,100E, 30,850E, 30,600E, 30,350E and 30,250E and extend 1.0 km north-south. The largest one is centered around the baseline and has gold anomalies associated with it. ASSESSMENT REPORT GEOCHEMISTRY REPORT ON THE EAGLE PROPERTY

OCTOBER, 1989

PAGE 5

CONCLUSIONS

The property is situated in the same belt of rocks, 50 km east of the Mt. Milligan discovery and meets all the criteria for an excellent Cu-Au porphyry type prospect.

From the work done this year, there appears to be numerous copper anomalies on the property with gold associated, with the main one along the baseline.

RECOMMENDATIONS

To extend the grid to cover more of the property and to soil sample it. Map and prospect the entire property. Conduct a magnetometer and I.P. survey over the property.

REFERENCES

- JEMMETT, J. P., VEERMAN, H. (1966): Geophysical Report, Induced Polarization Survey, Night Hawk Group of Claims, B.C. Assessment Report No. 851.
- McFALL, C. C., SAWYER, J. B. P. (1971): Nation Copper Project, Geophysical, Geochemical and Geological Surveys, B.C. Assessment Report No. 3337.
- MOURITSEN, S. A., MOURITSEN, G. A. (1967): Geophysical Report on Induced Polarization Survey for West Coast Mining and Exploration on the Nation Copper and Alexander Lake Properties, B.C. Assessment Report No. 1056.
- SCHMIDT, U., (1989): Summary Report on the Eagle Property, Omineca Mining Division.

ASSESSMENT REPORT	OCTO	DBER, 1989	
EAGLE PROPERTY	T ON THE		PAGE 6
APPENDIX 1. LIST (EAGLE	OF FIELD PERSONNEL PROPERTY - 1989		
NAME/ADDRESS	POSITION	DATES WORKED	MAN DAYS
Greg Bronson Edmonton, Alberta	Geologist	5-7 June 89	3
Brian Pelletier Saskatoon, Sask	Geological Assistant	5-7 June 89	3
Denis Grace Edmonton, Alberta	Geological Assistant	5-7 June 89	3
Bruce Beler Telkwa, B.C.	Field Assistant	5-7 June 89	3
Ron Ramsay Prince George, B.C	Field Assistant •	5-7 June 89	3
Brent Case Prince George, B.C	Geological Assistant •	5-7 June 89	3

TOTAL MAN DAYS: 18

ASSESSMENT REPORT GEOCHEMISTRY REPORT ON THE	OCTOBER, 1989
EAGLE PROPERTY	PAGE 7
APPENDIX 2. STATEMENT OF COSTS EAGLE PROPERTY Work completed 5 June to 7 June, 1989	
FIELD PERSONNEL: 18 man days at \$120	\$ 2,160.00
CONSULTANT:	
FOOD & ACCOMMODATION: 18 man days at \$50	\$ 900.00
MOB/DEMOB WITHIN B.C.:	
TRUCK RENTALS:	\$ 100.00
HELICOPTER SUPPORT:	\$ 2,143.00
EQUIPMENT & SUPPLIES: 18 man days at \$20	\$ 360.00
LABORATORY ANALYSIS: 308 soil samples at \$8.00	\$ 2,464.00
CONTRACTORS:	
REPORT PREPARATION: Author Drafting Typing	\$ 150.00 \$ 100.00 \$ 50.00
TOTAL COSTS	5: \$ 8,427.00

APPENDIX 3

STATEMENT OF QUALIFICATIONS

C. T. RONEY, FIELD GEOLOGIST GORD MAXWELL, PROJECT GEOLOGIST

APPENDIX III

STATEMENT OF QUALIFICATIONS

RELEVANT TRAINING:

B.Sc. (1986) Brandon University Brandon, Manitoba Geology

.

RELEVANT EXPERIENCE:

1984-1986	Geological Assistant Falconbridge Ltd., Winnipeg, Man. Manitoba Energy & Mines, Winnipeg, Man.
1987	Exploration Geologist Falconbridge Ltd. Winnipeg, Man.
1987-1989	Exploration & Mine Geologist Granges Exploration Ltd. Flin Flon, Man. & Timmons, Ont.
1989 -	Exploration Geologist Noranda Exploration Company, Limited Prince George, B. C.

Chris T. Roney

Geologist September, 1989

APPENDIX III

STATEMENT OF QUALIFICATIONS

I, Gordon Maxwell of Prince George, Province of British Columbia, do hereby certify that:

- 1. I am a Geologist residing at 5905 Rideau Street, Prince George, British Columbia.
- 2. I am a graduate of the University of Manitoba with an Hons. B. Sc. (geology).
- 3. I am a member in good standing of the Canadian Institute of Mining and the Prospector's and Developer's Association.
- 4. I presently hold the position of Project Geologist with Noranda Exploration Company, Limited and have been in their employ since 1980.

Maxwell /

APPENDIX 4

-

ANALYSIS REPORTS

(in chronological order)

PRD	PERTY/LOCATION	ISTUART Au (TCH	TENTLOLA, Eagl	L CODE	: 8907-028
Pro Mat	ject No. erial	:283 :308 SOILS	-	Sheet:1 of 6 Geol.:G.B.	Date Date	e rec'd:JUL.06 e compl:JUL.21
Rem	arks	2		Values in PPM,	except	where noted.
==== 7 7			===			
No.	No.		Cu	Au		
2	39800N-39750E		40	10		
3	39775	i	48	5		
4	39800	•	40	5		10 HH 2 C 1000
5	39825	r	30	5		
6	39850		54	5		
7	39873	2 1 20	Б О. 	ວ ຮ		
8	33300	. 70	78			·····
10	39950	, p	50	65	1994 - A.	
11	39975	. 2	20	15		r de te
12	40000	- <u>-</u> - 1	20	5		A Forma
13	40025	i	36	5	1.	le " the
14	40050	}	30	5	NON	fr pm
15	40075	i	88	5	100/	V
16	40100) 1	30	15	-	
17	40125	i 2	60	5	(my to sord
18	40150	9	20	5	9	
19	40175	7	10	5		
20	40200	ۍ (ج	50	ວ ະ		
21	40220 - 700000 - 402505	د . •				
ತನ ೨೯	39800N-40230E	. 1	70	ರ ೧೯		
23	40050	·	42	5		
25	40075		68	5		
26	40100	, 1	44	- 5		
27	40125	1	86	10		
28	40150	•	62	5		
23	40175	2	37	20		
30	40200	। उ	20	5.		
31	39900N-40250E	1	10	5		
32	40000N-39000E	•	76	5		
33	39025	-	40	5		
34	39050	2	60	5		
చార నార	39075	i I	04 7.	5		
30	33100	•	04 05	5		
38	35123 79150	. 1	00 64	J		
39	 20100		70	ರ ಕ,		
40	39250) 1	76	5		
41	39275		80	5		
42	39300	1	46	5		
43	39325	- -	94	5		
44	39350	1	38	5		
45	39375	1	46	5		
46	39400	k	82	5		
47	39450	· · 1	24	5		
48	39475	i	72	5		

28

· · · · · ·

^

- -

-Na state a state a state st

, . , .

•	•			

т . т.	SAMPLE		PPB	8907-028
10.	No.	Cu	Au	Pg. 2 of 6
50	40000N-39525E		5	
51	39550	178	5	
52	39600	66	5	
53	39625	30	5	
54	39650	220	5	
55	39675	88	5	
56	39700	50 ·	5	
57	39725	36	5	
58	39750	40	5	
59	39775	82	5	
60	39800	144	5	
61	39825	54	5	
62	39850	56	5	· ·
63	39875	300	5	
64	39900	40	5	
65	39925	145	5	
66	39950	46	5	
67	39975	120	5	
68	40000	1700	510	
69	40025	370	35	
70	40050	30	10	·
71	40075	246	5	
72	40100	132	45	
73	40150	68	10	
74	40175	84	35	
75	40200	76	5	
76	40225	56	5	
77	40250	26	5	
78	40275	60	5	
79	40300	210	5	
80	40350	150	5	
81	40375	124	5	
82	40400	34	5	
83	40425	650	5	
84	40450	230	5	
85	40475	310	5	
86	40500	160	15	
87	40525	270	5	
88	40550	198	10	
89	40600	78	5	
90	40625	46	5	
91	40650	100	5	
92	40675	92	5	
93	40700	66	45	
54	40725	40	5	
95	40750	54	5	
96	40825	104	10	
97	40850	196	5	
98	40875	122	5	
99	40900	50	5	
100	CHECK NL-6	50	_	
101	40925	132	10	
102	40950	52	10	
103	40975	28	5	
104	40000N-41000E	60	5	
105	40100N-39750E	72	5	
106	40100N-39775E	74	5	

• . . • •

ľ

. T.	SAMPLE	PPE PPE	8907-028
G.,	No.	Cu Au	Pg. 3 of 6
	س جال الحد الحد الجار الحد الحد الجار الحد الحد الحد الحد الحد الحد الحد الحد	و جویا میں بیٹ بیٹ ہیں کی خان خان ہوت ہوت ہوت ہوت ہیں ہیں جان خان ہوت خان ہوت ہوت ہیں ہیں ہیں ہیں ہیں ہے۔	ین اسار هی جدید هی هی هید های هی هی هی هی هی اور کر ها این این این هی هی این هی هی این هی هی هی هی هی هی هی هی هی بین این این این وی ا
07	40100N-39800E	76 5	j
	39825	36 5	5
	39850	22 5	j.
•0	79875	34 5	5
10	39870	136	-
11	33300	100 T	5
12	39923		
13	39950		,
14	39975	చ్ .	J -
15	40000	46) -
.16	40025	54 20) -
17	40075	92	5
18	40100	280 4700)
.19	40125	154 10)
.20	40150	200 1	5
.21	40175	154 100)
:22	40200	98 11	0
.23	40225	28	5
24	40100N-40250E	50	5
25	40200N-39750E	42	5
25	39775	62	5
27	39800	22	5
	39825	32	5
	79850	40	5
.23	00997	320	
.30	79975	50	5
.31	40000	78	5
: 32	40000	530	
.33	40025	830	
.34	40050	80	
.35	40075	84	
:36	40100	102 1	
137	40125	206	
:38	40150	230	
139	40175	164	
140	40200	122	
141	40225	122	
142	40200N-40250E	118. 1	5
143	40300N-39750E	50	5
144	39775	76	5
145	39800	46	5
146	39825	28	5
147	39850	62	5
148	39875	360	5
149	39900	104	5
2	39925	18	5
3	39950	114	5
4	39975	44	5
5	40000	8	5
6	40025	40	5
7	40050	196	5
, A	40075	206	5
5 2	40100	100	5
ر ۲۰	40100	1.30	5
10	-0160	104	5
		60 9	-
- 12	+V1/3 50000		0
13	40200	110 1	¥
14	40225		
15	40300N-40250E	U4 U	

-

• •

Ť

Ŷ

.т.	SAMPLE		PPB	8907-028
	No.	Cu	Au	Pg. 4 of 6
16	40400N-39000E	36	5	
17	39025	22	5	
18	39050	15	5	
19	39075	50	5	
20	39100	40	5	
21	39150	116	5	
22	39175	156	5	
23	39200	88	5	
24	39225	60	5	
25	39250	70	5	
26	39275	82	10	
27	39300	72	5	
28	39325	60	5	
29	39350	56	15	
30	39375	38	5	
31	39400	4 4	5	
32	39425	196	5	
33	39450	104	5	
34	39475	48	5	
35	39500	78	5	
36	39525	64	5	
37	39550	58	5	
38	39575	580	5	
39	39600	66	10	
40	39625	56	ວັ	
41	39650	82	5	
42	39675	102	45	
¥ 43	39700	76	10	
44	39725	132	ភ	
45	39750	150	5	
46	39775	44	5	
47	39800	660	25	
48	39825	78	5	
43	39850	80	5	
50	39875	430	5	
51	39900	94	5	
52	39925	90	5	
53	39950	212	5	
54	39975	52	5	
55	40000	38	5	
56	40025	140	5	
57	40050	90	5	
58	40075	' 1 6	5	
59	40100	44	10	
60	40125	640	5	
61	40150	1/34.	3	
62	40175	106	5	
63	40200	ь в	5	
64	40225	46	5	
65	40250	64	3	
66	40275	80	5	
67	40300	50	5	
68	40325	340	5	
- 69	40350	52	5	
70	40375	<u>حم</u>	コー	
71	40400	190	ວ ຮ	
72	40400N-40425E	134	3	

•

·			000		8907-028
Τ.Τ.	, SAMPLE	C.v.	244 0.1		Ps. 5 of 6
NC.	NG.			·	
73	40400N-40475E	96	5		
74	40500	64	5		
75	40525	48	5		
76	40550	82	5		
77	40575	68	5		
78	40600	70	5		
79	40625	84	5		
80	40675	84	5		
81	40700	80	5		
82	40725	46	5		
83	40750	44	5		
84	40775	52	5		
85	40800	60	5		
86	40825	72	5		
87	40875	34	5		
88	40900	100	5		
89	40925	122	ວ ະ		
90	40950	252	ວ ະ		
91	40400N-41000E	90			
92	40800N-39000E	50			
93	39025	140	3		
94	39100	360	10		
95	39125	38 700			
96	39175	380			
97	39200	280	10		
98	37223 72254	330	10 5		
99	29230 DUEOU N. C	50			
100	CHELK NL-6	790	- -,		
101	39273	230			
102	333000	E30, 54	5 5		
103	23250	510	5		
104	33330	410	5		
103	33373	26	5		
1007	39450	152	5		
108	39475	48	5		
109	39500	42	5		
110	39525	156	5		
111	39550	244	5		
112	39575	222	5		
113	39675	44	5		
114	39700	104	5		
115	39725	880	5		
116	39750	1090	5		
117	39775	134	5		
118	39800	74	5		
119	39825	14	บ		
120	39850	122	5		
121	39875	148	5		
122	39900	40	5		
123	39925	120	5		
124	39950	260	5		
_125	39975	590	5		
126	40000	148	5		
127	40025	250	5		
128	40050	186	5		
129	40800N-40075E	126	5		

. -

.....

• • • • •

· . T.	SAMPLE		PPB	8907-028
ю.	No.	Cu	Au	Fg. 6 of 6
	40800N-40100E	122		
-31	40125	290	5	
32	40150	230	5	
33	40175	142	10	
34	40200	140	5	
35	40225	128	5	
36	40250	122	5	
.37	40275	214	5	
74	40300	46	5	
.30	40325	1.32	10	
.35	40350	144	5	
.40	40375	164	10	
42	00400	80	5	
-7C	40425	260	5	
40	40450	114	ŝ	
145	40475	170	10	
46	40500	990	5	
:47	40525	102	10	
48	40550	32	5	
÷ Δ'3	40575	24	5	
50	CHECK NI -6	50	_	
:51	40600	19	5	
52	40525	154	5	
153	40650	36	5	
154	40675	62	5	
155	40700	206	5	
156	40725	90	5	·
57	40750	40	5	
158	40500	26	5	
159	40825	54	5	
160	40875	48	5	
161	40900	16	5	
162	40925	32	5	
163	40975	154	5	· ·
164	40800N-41000E	12	5	

APPENDIX 5.

ANALYTICAL METHOD

DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

The methods listed are presently applies to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver. (March, 1984).

Preparation of Samples

Sediments and soils are dried at approximately 80° C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). <u>Heavy</u> <u>mineral fractions (panned samples) are analysed in its entirety</u>, when it is to be determined for gold without further sample preparation. See addendum.

Analysis of Samples

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.2 g or less depending on the matrix of the rock, and twice as much acid is used for decomposition than that is used for silt or soil.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn (all from the group A elements of the fee schedule) can be determined directly from the digest (dissolution) with an atomic absorption spectrometer (AA). A Varian-Techtron Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Elements Requiring Specific Decomposition Method

Antimony - Sb: 0.2 g sample is attached with 3.3 mL of 6% tartaric acid, 1.5 mL conc. hydrochloric acid and 0.5 mL of conc. nitric acid, then heated in a water bath for 3 hours at 95°C. Sb is determined directly from the acid solution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.4 g sample is digested with 1.5 mL of 70% perchloric acid and 0.5 mL of conc. nitric acid. A Varian AA-475 equipped with an As-EDL measures the arsenic concentration of the digest.

Barium - Ba: 0.1 g sample is decomposed with conc. perchloric, nitric and hydrofluoric acid. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 g - 0.3 g is digested with 2.0 mL of perchloric 70% and 1.0 mL of conc. nitric acid. Bismuth is determined directly from the digest into the flame of the AA instrument c/w EDL.

Gold - Au: 10.0 g sample (Pan-concentrates see below) is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with Methyl iso-Butyl ketone (MIBK) from the aqueous solution. Gold is determined from the MIBK solution with flame AA.

Magnesium - Mg: 0.05 g - 0.10 g sample is digested with 4 mL perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot, taken from a perchloric-nitric (3:1) decomposition, usually from the multi-element digestion, is diluted with water and a phosphate buffer. This solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

LOWEST VALUES REPORTED IN PPM

Ag		0.2	Mn		20	Zn	-	1	A	u -	0.1	(10	ppb)
Cd	~	0.2	Mo	-	1	Sb	-	1	W		2		
Co		1	Ni	-	1	As	-	1	U	-	0.1		
Cu		1	Рb	-	1	Ba	-	10					
Fe	~	100	v	-	10	Bi	-	1					

GEOLOGICAL BRANCH ASSESSMENT REPORT 10,239 100ma 50ma 0ma 100ma 200ma EAGLE (TCHENTLO LAKE) SOIL GEOCHEMICAL SURVEY PPB Au PROJECT: STUART GOLD PROJECT # : 283 BASELINE AZIMUTH : 325 Deg. SCALE = 1: 5000 DATE : 7/ 6/89 SURVEY BY : G MAXWELL NTS : FILE: C283EAG NORANDA EXPLORATION

FIG. 4

GEOLOGICAL BRANCH ASSESSMENT REPORT 10,230 100m 50m 0m 100m 200m EAGLE (TCHENTLO LAKE) SOIL GEOCHEMICAL SURVEY PPM Cu PROJECT: STUART GOLD PROJECT # : 283 BASELINE AZIMUTH : 325 Deg.

SCALE = 1: 5000 DATE : 7/ 6/89 SURVEY BY : G MAXWELL NTS : FILE: C283EAG NORANDA EXPLORATION

FIG. 5