106 NO:	1106	UU.
ATICN:	an san da sa da san da sa	and magnification array of the same state of the same
THE LUE	an a	

REPORT ON GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL WORK ON THE CAT CLAIMS OF L.G. MORRISON ET. AL. KASLO, B.C. AREA SLOCAN MINING DIVISION NTS 82F/14E

GEOLOGICAL BRANCH ASSESSMENT REPORT

NO)

October, 1989

:

L.G. Morrison

INDEX

	PAGE
INTRODUCTION	1
LOCATION AND MEANS OF ACCESS	2
PHYSICAL FEATURES OF THE AREA	
PROPERTY AND OWNERSHIP	2 3
MINING HISTORY OF THE AREA	3
DISTRICT GEOLOGY	
Rock Types	4
Structure	5
Mineralization	5
PROPERTY GEOLOGY	
Rock Types	6
Structure	8
Mineralization	9
EXPLORATION CONCEPT	9
GEOCHEMISTRY	
Overburden	10
Soil Sampling and Analytical Procedures	10
Data Treatment and Interpretation	10
MAGNETOMETER SURVEY	12
DISCUSSION OF EXPLORATION TECHNIQUES	13
CONCLUSIONS	14
RECOMMENDATIONS	15
COST ESTIMATES	19

APPENDIX

1. CERTIFICATE OF QUALIFICATIONS 2. STATEMENT OF COSTS 3. MAGNETOMETER SPECIFICATIONS 4. SAMPLE PREPARATION AND ANALYSIS PROCEDURES 5. CERTIFICATES OF ASSAY (15) 6. REFERENCES

ILLUSTRATIONS

Frontispiece LOCATION MAP ABANDONED WORKINGS, KEEN CREEK AREA Facing page 9 PROPOSED HOLES, SECTION 12+00E Page 17 IN POCKET COMPOSITE PLAN, GEOLOGY & GEOCHEMISTRY (1:5,000) Plate 1 COMPOSITE PLAN, 13E SHOWING AREA (1:2,500) Plate 2 SOIL GEOCHEMISTRY (1:5,000) Ag IN SOIL Plate 3 Pb IN SOIL Plate 4 Zn IN SOIL Plate 5

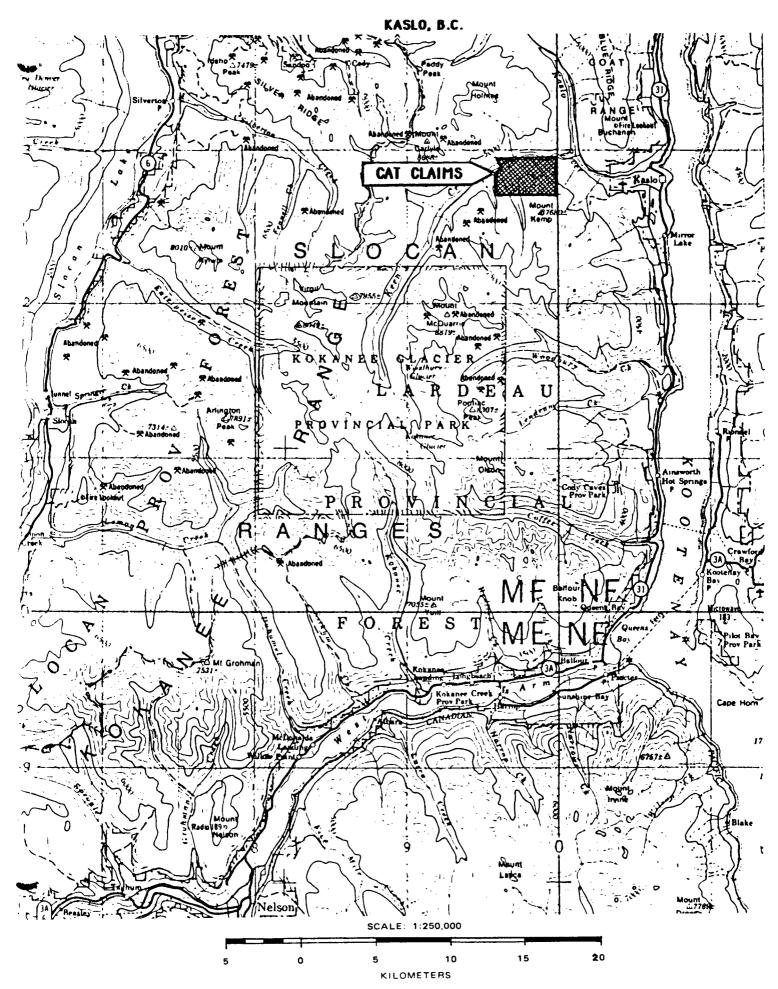

Plate 6

Plate 7

CU IN SOIL MAGNETOMETER SURVEY, 13E SHOWING AREA

LOCATION MAP

CAT PROPERTY

REPORT ON THE CAT CLAIMS KASLO AREA SLOCAN MINING DISTRICT, BRITISH COLUMBIA

INTRODUCTION

The Cat claims, west of Kaslo, British Columbia were staked in August, 1986 to cover the strike extension of some old workings southwest of the property and for proximity to others. The claims are mostly blanketed by deep overburden.

Geological mapping and soil sampling were done on the property each summer from 1986 to 1989.

In July and August, 1989, geological mapping and prospecting were done on the north half of Cat 1 and the east half of Cat 2. In 13 field days, the writer and an assistant mapped about 130 hectares at a scale of 1:5,000 and 45 hectares (Plate 2) at a scale of 1:2,500.

Concurrent with the 1989 mapping, 352 soil samples were taken, 200 of them at intervals of 50 meters along lines 200 meters apart, and most of the balance at intervals of 25 and 50 meters along lines 100 meters apart in the area mapped at 1:2,500. Samples were analysed for silver, lead, zinc and copper, and the results were presented on plans at a scale of 1:5,000.

A composite plan (Plate 1) was prepared incorporating all geological and geochemical data collected by the writer since 1986.

Within the area mapped at 1:2,500, 1,100 meters of magnetometer traversing was done, with station intervals of 12.5 meters.

A mineralized quartz lens at 13E, 16N (the 13E showing) is surrounded by a geochemically anomalous halo with a radius of about 100 meters.

Twenty meters from the 13E showing, its strike projects under overburden into a band of tightly folded crystalline limestone 200 meters wide. This type of limestone is considered to be a very favourable host for silver-lead-zinc deposits in the Slocan district. From 50 to 100 meters southwest of the 13E showing, in a flat, overburden-covered area assumed to be underlain by crystalline limestone, a small, sharply defined magnetic anomaly suggests the presence of pyrrhotite or magnetite, neither of which was observed on nearby outcrops.

A broad geochemical anomaly in soil on lines 16E to 20E is centred about 800 meters S 75°W of the I.P. (the NE corner) of Cat 2. An anomalous area straddling a small creek between lines 30E and 36E is centred about 1,200 meters S 60°E of the I.P. (the NW corner) of Cat 1.

Geophysical evaluation of the two geochemically anomalous areas and shallow diamond drilling with a light machine in the 13E showing area are recommended in this report. The proposed budget is \$95,000.

LOCATION AND MEANS OF ACCESS

The centre of the property is eight kilometers west of the town of Kalso, British Columbia.

Motor vehicle access from Kaslo is six kilometers west on Highway 31A to Keen Creek, and then 4.8 kilometers west on a dirt road to an abandoned logging road which climbs southeast on the Cat 2 claim. It extends to within 150 meters of the 13E showing.

A branch logging road follows the west side of Deer Creek almost to the south end of the property. It is heavily overgrown, but aside from brush clearing and the repair of a bridge across Deer Creek, it would require very little work to make it passable to four-wheel-drive vehicles.

PHYSICAL FEATURES OF THE AREA

The property lies mostly on a steep north slope traversed by small north-flowing creeks in V-shaped valleys. The north boundary is along Keen Creek, at an elevation of about 850 meters. The maximum elevation at the south edge of the claims is 2,000 meters. Slopes steeper than 30 degrees are common and, in the south end of the property, there are many cliffs from 10 to 30 meters high.

About ten percent of the property was logged about 25 years ago. Most of the remainder is well timbered with fir, spruce, hemlock and cedars from

20 centimeters to more than 50 centimeters in diameter, but access to most of it would be difficult. Part of the south boundary is more or less at the timber line.

There are a few small springs on the north slope, including one rising from an old trench at geochemical survey grid co-ordinates 16N, 14+70E.

Bedrock outcrops are rare and are confined to road cuts, creek beds, cliff faces and very steep banks.

PROPERTY AND OWNERSHIP

The property consists of two claims, Cat 1 (Record No. 5062) and Cat 2 (Record No. 5063), with a combined net area of about 970 hectares.

The claims were recorded August 26, 1986. The registered owners are Lee Morrison of Robsart, Saskatchewan with an interest of 56.66 percent, Jack Wild and A.H. Pfeffer of Calgary, Alberta, each with an interest of 16.67 percent and Barrie Dargie of Calgary with an interest of 10 percent.

MINING HISTORY OF THE AREA

Silver was discovered in the Slocan district in about 1890. The first shipments of high-grade ore were taken out by packhorse in 1891. By 1895, several mines were in operation, and two railways had been built into the district. Mining activity peaked during World War I, declined sharply in the 1930's, revived during World War II and has continued on a modest scale to the present.

At least 250 properties have yielded some ore, and a few mines each produced more than 200,000 tonnes. Total metal production from the area to date has been in the order of 2,650 tonnes of silver, 527,000 tonnes of lead, 443,000 tonnes of zinc, 1,270 tonnes of cadmium and 625 kilograms of gold.

There were two significant producers southeast of Keen Creek. The Cork-Province, about one kilometer west of Cat 2, operated during the periods 1900–1929, 1950–1953 and 1964–1966. Total production was about 191,000 tonnes containing 86 grams of silver per tonne, 3.1% lead, 4.7% zinc and 400 grams of cadmium per tonne. The Bismark mine, two kilometers southwest of Cat 2, was a small high-grade shipper during the period 1900–1924. It produced 966 tonnes of sorted ore containing 3.5 kilograms of silver

per ton with lead values reported as 15% by Alcock (1930) and 87.5% by Cairns (1935). The former figure seems more probable.

North of Keen Creek, near the northwest corner of Cat 2, the Black Bear prospect produced about two kilograms of silver from five tonnes of sorted ore. The Last Chance, 600 meters west of Cat 2, shipped about 1,800 tonnes in 1979-80, with a reported mill-head grade of about 70 grams Ag/tonne, 0.34 grams Au/tonne, 0.8 kg Cd/tonne, 1% Pb and 19% Zn.

DISTRICT GEOLOGY

Rock Types

The mining district is mostly underlain by Triassic metasediments of the Slocan group. The metasediments are intruded by the Nelson batholith and related dykes, sills and stocks. Within the mineralized belt the Nelson intrusive rocks are mostly porphyritic granite.

The Slocan group comprises predominately argillaceous sediments intercalated with limestone and quartzite. There are minor conglomerate beds and rare tuffaceous material.

The dominant metasediments are platey or fissile argillites locally known as "slates". They are distinguished from massive argillites only by their fissility. Slates and argillites are grey, green or black and carbonaceous. They vary compositionally from limy to quartzitic. They are very fine grained and contain microscopic sericite and biotite. Some argillaceous members are highly metamorphosed to hornfels and schists containing staurolite, garnet and/or andalusite.

Limestone occurs as well defined beds mostly less than 15 meters wide. The beds vary compositionally from nearly pure limestone to calcareous argillite and calcareous quartzite.

White, grey, brown or black quartzite is mostly thinly interbedded with argillite, but there are some thick beds with no noticeable stratification.

Conglomerate, composed of greenstone fragments in an argillaceous matrix, occurs as a narrow band at the base of the Slocan group. Minor conglomerate lenses containing small granite pebbles have been reported higher in the section. Rare tuffs are grey to brown massive rocks indistinguishable in the field from quartzites and calcareous argillites.

Structure

The major structure in the area is the north to northwest-trending Slocan syncline with its core of Slocan group metasediments. Within the syncline there are numerous folds which, because of monotonous stratigraphy, are difficult to define. Dips are steep and predominately towards the southwest.

Numerous relatively small faults are mostly parallel or sub-parallel to the bedding. There are no positively identified major faults, but the district is bounded on the west and east by Slocan Lake and Kootenay Lake, both of which may reflect north-striking fault zones.

Tension fractures and minor breccia bands striking northeast and dipping mostly southeast are the principal depositional sites for ore in the Slocan district.

<u>Mineralization</u>

Silver-lead-zinc orebodies in the Slocan district occur as simple fissure fillings and as chimneys and lenticular masses in brecciated zones. The principal ore minerals are sphalerite and argentiferous galena. Rare but economically important minerals include pyrargyrite, native silver and argentiferous tetrahedrite. Common gangue constituents, listed in decreasing order of abundance, are calcite, siderite, quartz and pyrite. Metal contents are commonly in the order of 350 grams of silver per tonne, 12% combined lead and zinc, 250 grams of cadmium per tonne and a trace of recoverable gold. Many small shipments of sorted ore containing abundant crystalline galena yielded from 3.5 to 10 kilograms of silver per tonne.

Veins are from a few centimeters to more than 15 meters wide, but widths of one to two meters are the norm. Individual ore shoots rarely contain more than a few thousand tons, but they are sufficiently abundant that, with intensive underground exploration, several small mines in the district produced more than 100,000 tonnes, and one produced 680,000 tonnes.

Ore has been found in all facies of the Slocan metasediments, in dykes and sills and (with somewhat different mineralogy) in the Nelson batholith. Veins are sharply defined, and wallrocks other than limestone are almost never mineralized.

The most useful rules to guide exploration in the area are that veins strike mostly northeast and that ore is rare in shear zones containing abundant gouge. High-grade shoots tend to be localized where the strike or dip of a vein changes sharply, at vein intersections and where fissure veins cross limestone.

PROPERTY GEOLOGY

Rock Types

The dominant rock types on the north half of the property are Slocan argillites and phyllites. They are mostly calcareous and are locally interbedded with nearly pure limestone. Their relative ages are unknown, and contacts between them are not clearly defined.

In the southwest corner of Cat 2 the degree of metamorphism in markedly higher than along Keen Creek. The dominant rock types are quartzite, staurolite-bearing hornfels and schist, mica schist and nodular schist.

East of Deer Creek, in the south half of Cat 2, there is abundant cliffforming limestone intruded by small lenticular felsic bodies believed to be mostly granodiorite.

Staurolite hornfels and staurolite schist contain abundant (5-20% each) porphyroblasts of staurolite and biotite in an intermediate grey, very fine grained matrix varying in composition from siliceous argillite to impure quartzite. Brownish grey euhedral to subhedral staurolite metacrysts 0.5 mm to 3 mm long are mostly randomly oriented. Cruciform twins are common. Resistance of the staurolite to weathering yields a distinctive "knobby" weathered surface. Ragged biotite flakes less than 1.0 mm in diameter display random to mostly parallel orientation and occasionally impart true schistosity to the rock. Rare accessory minerals are andalusite, 0.5 mm to 1.0 mm crystals of pink garnet and lenticular blebs of a pearly grey scaly mineral believed to be stilbite.

Quartzite occurs along a northwest trending cliff on the west side of Deer Creek, mostly south of the property. It is light grey to brownish grey, fine grained (0.1 mm) equigranular, massive to faintly bedded. Accessory minerals are biotite, sericite and rare pink garnet. *Impure quartzite* is slightly coarser grained. It contains more than 10% biotite or, less commonly, sericite. Impure quarzite grades into *siliceous phyllite* which contains more than 20% megascopic biotite and probably has a significant feldspar content.

Meta-siltstone is tan to intermediate grey, very fine grained, very finely bedded material of intermediate hardness. A single thin sectioned sample contained approximately 65% quartz, 30% plagioclase and 6% mica and chlorite. More micaceous and felsic varieties are equivalent to phyllitic argillite which is abundant at the north end of the property.

Phyllitic argillite is intermediate grey, very fine grained and very thinly bedded. It is commonly micaceous and fissile. Rare interbeds of white quartzite and quartz-sericite schist are mostly less than one centimeter wide.

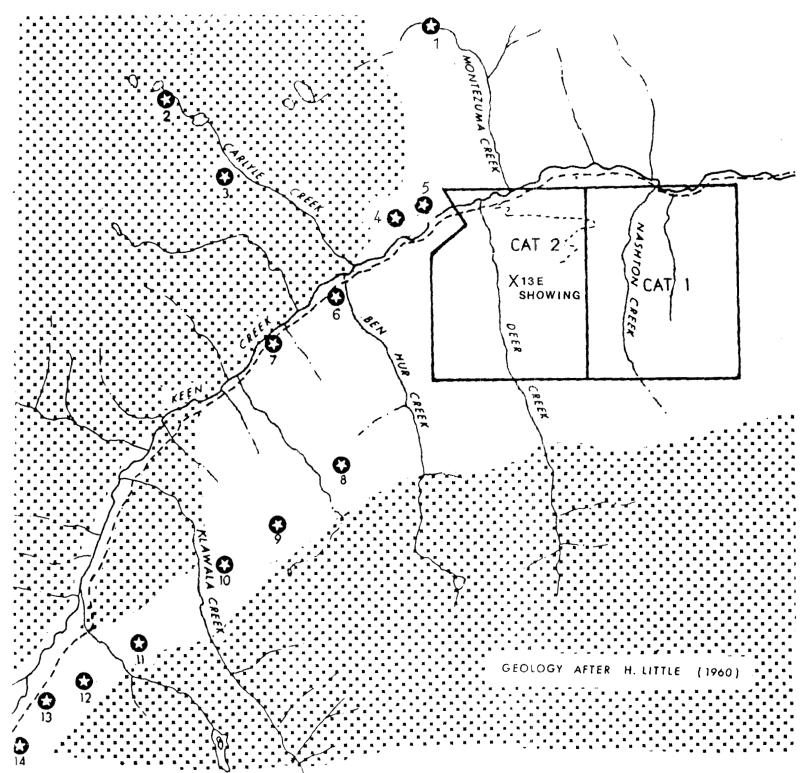
Crinkled phyllite occurs marginal to phyllitic argillite and is probably a more intensely metamorphosed facies of the same rock. It is intermediate grey, very fine grained, micaceous and weakly foliated. Fracture planes and clean weathered surfaces have a shiny lustre and a peculiar "crinkled" appearance caused by closely spaced irregular ridges about 1mm wide.

Mica schist occurs as narrow bands within all of the high-grade metamorphic rocks on the property and is the dominant rock type along line 9E from 11N to 14N. It is light to intermediate grey, fine grained and fissile, with pearly cleavage surfaces. Mica content, with muscovite more abundant than biotite, is commonly about 30%, but may be as low as 10% in thin, hard quartzitic to silty interbeds. The more siliceous material contains up to 10% pink euhedral garnets. Pearly, fissile material contains rare minute grains of staurolite.

Nodular schist occurs mostly as narrow bands within metasiltstone and impure quartzite in the southwest quarter of the property. It is probably intensely metamorphosed argillite. An intermediate grey, very fine grained matrix of quartz, feldspar and biotite contains lenticular nodules, up to 5 mm long, composed mainly of a pearly grey soft, tabular mineral tentatively identified as stilbite.

Calcareous argillite and *argillaceous limestone* are the most abundant rocks on the property. They are light grey to black, very fine grained and are from 20% to 80% soluble in hydrochloric acid. Some beds are thinly laminated, micaceous and fissile with slatey cleavage. Rare beds, mostly less than 1cm thick, are sufficiently carbonaceous to soil the fingers.

Limestone members are mostly less than 10 meters thick, but a band about 200 meters wide is well exposed on a series of cliff faces which cross line 16N on the east side of Deer Creek. The rock is mostly very light grey to white, medium grained, thinly bedded and almost completely acid-soluble. It is composed of densely packed but weakly cemented 0.5 mm to 1 mm angular calcite grains and is commonly sandy-weathering. Freshly broken surfaces have a strong fetid odor of H_2S . The rock may be a calcarenite with peripherally recrystallized grains. Minor, discontinuous, dark grey strata mostly less than 1 cm thick are nearly pure limestone with acid solubilities of more than 90 percent.


Felsic intrusive rocks occur as narrow lenticular dykes and sills throughout the mapped area. They are buff, grey or pink, very fine grained equigranular to coarsely porphyritic. The most abundant facies contains 10–20% white, subhedral, corroded 2 mm to 4 mm feldspar phenocrysts in a fine grained matrix composed of feldspar, quartz and less than 5% biotite. A thin sectioned sample had a granodiorite composition.

Structure

Bedding along Keen Creek strikes mostly north-northwest and dips steeply northeast. In the high-grade metamorphics west of Deer Creek bedding strikes mostly N 40°E and dips 70°NW to vertical.

In the limestone cliff area east of Deer Creek, peripheral to a felsic intrusion more than 200 meters wide, bedding strikes vary between N 30°W and N 75°E with dips ranging from 40°NE to 40°SE. Bedding attitudes indicate small recumbent folds with axial planes striking N 70°W. The absence of stratigraphic markers within the limestone precludes accurate definition of these folds, but amplitudes appear to be about 100 meters. The folds probably plunge steeply northwest, away from the intrusion. Minor tight folds with amplitudes of less than one meter are common in the limestone.

The valley of Deer Creek is sharply linear, V-shaped, and bounded at higher elevations by cliffs 10 to 30 meters high. In spite of the creek's steep gradient, outcrops in the stream bed are almost non-existent. Topographic evidence and generally lower metamorphic grades east of the creek suggest a north-striking fault. There is, however, no evidence of significant horizontal displacement.

	RECORDE	D PRODUCTION	2	SCALE: 1:5	0,000	
 Montezuma Flint Martin Last Chance Black Bear Cork-Province Black Fox Bismark Gold Cure Gibson-Daybreak BNA Silver Bear Silver Bell Index 	RECOHDH <u>Tons Ore</u> 3,362 316 59 2,000 5 210,996 1,227 1,063 20 571 78 193 499	ED PRODUCTION <u>Ounces Silver</u> 44,976 10,874 3,268 4,000 60 523,348 2,200 ± 108,109 2,000 ± 27,000 ± 11,359 25,000 ± 72,301	SOO NELSON SLOCAN ABANDO KEEN SLOO	BATHOLIT GROUP MI	2000 H ETASEDIME NE WOR EK AI	KINGS REA

Mineralization

Lenticular quartz veins a few centimeters to more than two meters wide are common, mostly within or peripheral to felsic intrusions. West of Deer Creek the veins are all barren, but east of the creek, at 13E,16N quartz in granodiorite(?) porphyry intruding granulose limestone contains minor concentrations of highly argentiferous galena.

The principal quartz lens at the 13E showing is 50 cm to 2 m wide and about 10 m long. It strikes N 70°E and dips 25° to 40° SE. A trench across the lens and an inclined pit about 5 meters deep are probably about 75 years old. A 5 kg sample of mineralized chips taken from the dump in 1988 contained only 1.5% Pb but nevertheless assayed 266 g Ag/t (7.76 oz/st). A chip sample with a true width of 1.7 m assayed 0.24% Pb and 58 g Ag/t. The average silver : lead ratio of 185 grams Ag per percent Pb is comparable to ore from the Bismark, Silver Bell, Gibson-Daybreak and other former producers along the Bismark-Index trend. Samples of quartz with no visible galena assayed from 1.5 to 12.5 g Ag/t.

About 50 m east of the pit, at a contact between limestone and felsic intrusive rock, a quartz lens 10 cm wide assayed 0.13% Pb and 26 g Ag/t.

EXPLORATION CONCEPT

The Cat claims were staked for proximity to the Cork-Province and Last Chance mines and to cover the strike extension of seven abandoned workings along the N 50°E Bismark-Index trend (cf. facing page). The strike of the Bismark veins is N 55°E.

The 1989 field program was mostly designed to investigate the strike projections of the Bismark mine and the 13E showing from 9E to 36E. A previously identified geochemically anomalous area south of Keen Creek, from 25N to 29N, between 16E and 20E was also examined. Emphasis was on traditional geological mapping and prospecting. In conjunction with the mapping, reconnaissance soil sampling was done along traverse lines perpendicular to the Bismark-Index trend.

The Bismark orebody was hosted by limestone in proximity to a sill of quartz-porphyry. The prospecting objective on the Cat property has been silver-lead mineralization in a similar environment.

GEOCHEMISTRY

Overburden

Overburden on the property consists mostly of colluvium and soil derived from colluvial material. Most soil profiles are relatively mature with well defined yellow to reddish brown "B" horizons 2 to 20 centimeters thick. However, on the steepest slopes the humic "A" horizon rests directly on weathered parent material.

Soil Sampling and Analytical Procedures

In 1989, two hundred samples were collected at 50 meter intervals, along topofil lines bearing N 30°W and spaced 200 meters apart. Slope-chained distances were corrected for plotting with reference to aerial photographs, topographic maps and existing road surveys. One hundred and forty-five samples were collected in the 13E showing area, at intervals of 25 to 50 meters, along lines 9E to 15E spaced 100 meters apart. Seven samples were taken to confirm a zinc anomaly at 1E, 15N.

Most samples were taken from the "B" horizon, but where it was absent the "C" horizon was sampled. Sample depths varied from 10 to 40 centimeters depending upon the maturity of the profile.

The minus 80 mesh fractions of the soils were analysed for silver, lead, copper and zinc by standard AAS methods (Appendix 4) by Loring Laboratories Ltd. in Calgary. Lead analyses in 1989 included a deuterium correction for matrix interference and were therefore incompatible with lead values obtained from the property in 1987 and 1988.

Data Treatment and Interpretation

To increase the sample population for statistical analysis, values from 120 samples collected on the property in 1987 and 144 samples collected in 1988 were combined with results from 345 samples collected in 1989. Because 1989 values for lead were deuterium-corrected, and those in the 244 previous samples were not, 30 of the 1989 samples were run both with and without the correction. It was determined that the corrected values were consistently about 9 ppm lower than uncorrected values, regardless of the absolute values of the analyses. Therefore, before combining the three sets of samples, 9 ppm was subtracted from each of the lead values reported in 1987 and 1988. Mean values for each metal were then calculated and, in order to eliminate scatter effect at the end of normal distribution curves, values greater than six times the mean and less than one sixth of the mean were omitted from the calculation of adjusted means (m') and standard deviations.

Upper threshold values (t_{2S}) at two standard deviations above the adjusted means and lower threshold values (t_S) at one standard deviation above the adjusted means were calculated for each metal.

m (ppm) m'(ppm) t_{2S} (ppm) t_{S} (ppm) Aq 0.64 0.64 17 1.1 Pb 12.5 12.1 28 20 Zn 201 200 452 326 Cu 21.1 20.9 40 30

Mean and threshold values are tabulated below:

There are two distinct copper populations. Calculation of copper thresholds based on all analyses from 1987, 1988 and 1989 resulted in many apparently anomalous values from the 1988 samples west of Deer Creek. It is clear that soils overlying high grade metamorphic rocks in the area have higher background copper contents than soils overlying limestones and calcareous argillites. Therefore, it is inferred that an apparent copper anomaly indicated by 1989 sampling along lines 9E, 10E and 11E (Plate 6) is probably derived from a narrow band of mica schist (Plate 2) and is of no economic significance.

Within a 100 meter radius of the 13E showing, more than half of the soil samples collected were anomalous in at least one metal. Anomalous values north of the16N baseline may be due to surface drainage and/or fly rock from old trenches on the vein. However, anomalous samples south of the baseline were collected up slope from the showing and are suggestive of unexposed mineralization. It is, moreover, unlikely that the up slope area was contaminated by trenching since fly rock, especially from the inclined pit, would have tended to travel northwest. High silver and lead values on line 13E from 14+75N to 16N are especially encouraging.

A previously located anomalous area near the north end of Cat 2 was re-confirmed by samples on lines 16E, 18E and 20E. The most important values are clustered around two small, boggy springs on line 16E (24+50N to 26N) and near the north end of line 20E.

Ten anomalous samples were collected between 11N and 16N along lines 30E to 36E. Previous sampling along three east-west lines in the area indicated a strong four-metal anomaly on both sides of a small north-flowing creek, but 1989 results were less impressive. The source of metal values is unknown.

A sample taken in 1988 at 1E, 15N contained 1,500 ppm Zn. In 1989, seven samples collected within an area of 400 m² around the original point contained an average of 880 ppm Zn and 37 ppm Cu but only background Pb and Ag values. Outcrops of staurolite hornfels and rusty siliceous argillite within the sampled area contain up to 5% pyrrhotite, mostly along foliation planes in the argillite. A sample of very rusty argillite contained 15 ppm Pb, 0.3 ppm Ag and 392 ppm Zn. High zinc values in the soil are therefore probably derived from the argillite.

MAGNETOMETER SURVEY

Magnetometer profiles were run from 14N to 17N across the 13E showing area on lines 12E, 13E, 14E and two short intermediate lines (Plate 7). A GeoMetrics G-816 proton precession instrument mounted on a 2.2 meter aluminium staff was used. Sensitivity and accuracy in the staff mounted mode are \pm 1 gamma.

Readings were taken at station intervals of 12.5 meters, with extra readings at half-station intervals wherever gradients between stations were greater than about 10 gammas.

Diuranal variations were measured by frequently doubling back and re-reading stations at the ends of traverse lines and on the baseline. Corrections were made from a manually plotted curve.

Results were plotted at a scale of 1:1,250 and manually contoured.

The magnetometer survey was performed, as an experiment, in an unsuccessful attempt to define contacts between limestone and felsic intrusive rocks. It was found that magnetic gradients over both rock types are commonly less than one gamma per meter in the 57,600 gamma range. The unanticipated result of the survey was the discovery of a small, sharply defined magnetic anomaly at the the southwest end of the 13E showing. Magnetic intensities relative to local background values range from -70 to +340 gammas. The anomaly is coincident with a tightly folded zone in the wide band of crystalline limestone (cf. page 8)

The magnetic signature of the anomaly is characteristic of low concentrations of pyrrhotite or magnetite, neither of which was observed on outcrops in the area.

Magnetic minerals are uncommon in the ores of the Slocan district, but at the Whitewater mine there was sufficient pyrrhotite and magnetite that some mineralization was classified as "magnetic ore". Minor pyrrhotite has also been observed at the Silvana mine.

DISCUSSION OF EXPLORATION TECHNIQUES

All old workings in the Keen Creek area are either close to creeks or on high spurs, where mineralized outcrops or floats were found at the turn of the century by conventional prospecting.

Orebodies in the Slocan district, although often of great value, tend to be relatively small. They are only moderately conductive. Exploring for such deposits on steep, overburden-covered slopes presents a difficult problem.

The fastest and most economical exploration technique applicable to the property is soil sampling with geophysical confirmation of geochemical anomalies. Because of the steepness of the terrain, geochemical anomalies will be both mechanically and chemically displaced, and geophysical followup must be planned accordingly.

Interpretation of electromagnetic survey results on very steep terrain is an imperfect science, regardless of the type of equipment used. However, in the writer's opinion, "Shootback" EM is one of the better systems for use in the mountains. It has the added advantages of speed and simplicity of operation, and it does not require high quality traverse lines.

The self-potential (SP) method is also applicable. Sulphides of lead and zinc are not detectable by the SP method, but most Slocan district ores contain pyrite and should therefore give an SP response. The major advantage of the method is that, unlike EM, it does not provide spurious anomalies due to shear zones, ionized clay or overburden-filled valleys. It is possible that SP would fail to detect an orebody with a low pyrite content, but conversely, any significant SP anomaly on the property would be an automatic target for diamond drilling.

CONCLUSIONS

Based on fieldwork performed in 1987, 1988 and 1989, in conjunction with reviews of published geological and historical data, the following conclusions have been reached:

- 1. The geological environment on the property is favourable for mineral deposits of the Slocan type;
- 2. Because of its pervasive blanket of overburden, the property cannot have been effectively prospected in the past;
- 3. Soil geochemistry is an effective prospecting tool on the property, and previously reported geochemical anomalies have been confirmed;
- Silver-lead mineralization (the 13E showing) exists on the property, on strike from seven abandoned workings along the Bismark - Index trend;
- 5. The 13E showing, although of no direct economic importance is, especially in view of its high silver : lead ratio, a promising discovery and a useful guide to further exploration;
- 6. Twenty meters southwest (on strike) from the 13E showing, there is an exceptionally wide band of a type of limestone considered to be a very favourable host for silver-lead-zinc deposits in the Slocan district;
- 7. The economic significance, if any, of sharply defined magnetic highs and lows together with tight, small scale folding in the limestone on strike from the 13E showing is unknown, but the structural and magnetic conditions are clearly anomalous;
- 8. The signature of the magnetic anomaly southwest of the 13E showing is diagnostic of low concentrations of pyrrhotite and/or magnetite;
- A geochemically anomalous halo in soil around the 13E showing is partly up slope from the trenched vein and may be indicative of hidden mineralization;

- 10. The most cost effective initial method of exploring the limestone horizon in the 13E area would be shallow drilling with a Winkie or similar small, easily portable diamond drill;
- 11. An existing logging road extends to within 150 meters of the 13E showing;
- 12. A spring rising from an old trench near the end of the logging road would be a convenient source of water for drilling from early June until mid-August;
- 13. Geochemical anomalies near the north ends of traverse lines 16E to 20E and between 11N and 16N on lines 30E to 36E require further investigation;
- 14. Electromagnetic methods are applicable on the property, but topography will make both surveying and interpretation difficult;
- 15. If silver-lead-zinc ore contains significant amounts of pyrite, it will give a self-potential response. S.P. surveying should therefore be tried as a follow-up technique over geochemically anomalous areas.

RECOMMENDATIONS

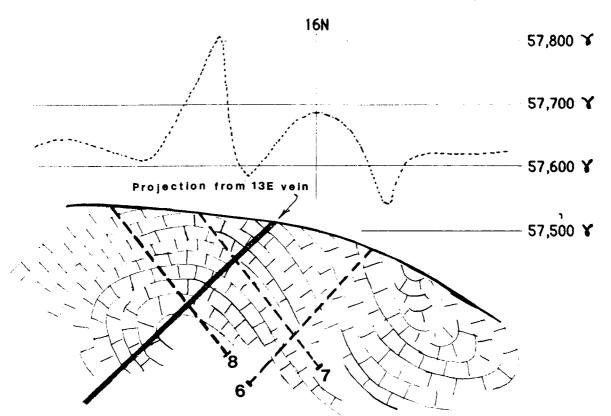
The following program is proposed:

<u>Access</u>

- 1. Improve the existing road on Cat 2 to provide easy truck access to the 13E showing;
- 2. Clear a walking trail from the road at 22E, 17N to the upper end of proposed survey area #1.

Geophysics

- In proposed survey area #1 (Plate 1), do SP and Shootback EM surveys along eleven 600 meter traverse lines spaced 70 meters apart and bearing N 50°W;
- 2. In proposed survey area #2, do SP and Shootback EM surveys from the main forestry road to the southeast edge of the area indicated on Plate 1, along eleven lines spaced 60 meters apart, bearing N 40*W


Diamond Drilling

In the 13E showing area, complete the following twelve short holes with a light portable drill (cf. Plate 2):

1. Location Bearing Inclination Depth <u>Objectives</u> a. Dip projection of the b. Felsic intrusion - lim	
2. Location Bearing Inclination Depth <u>Objective</u> Dip projection of the	13+00E, 15+50N Grid North -60° 50 m 13E vein
3. Location Bearing Inclination Depth <u>Objectives</u> a. Strike projection o b. Limestone near the	12+75E, 15+85N Grid North -50° 30 m f the 13E vein felsic intrusive contact
4. Location Bearing Inclination Depth <u>Objectives</u> a. Strike projection of t b. Felsic intrusion - lim c. Magnetic low	
5. Location Bearing Inclination Depth <u>Objectives</u> Same as hole #4	12+50E, 15+45N Grid North -50° 50 m

- 6. Location12+05E, 16+15NBearingTrue SouthInclination-50°Depth50 mObjectives
- a. Magnetic high
- b. Cross section perpendicular to the axial plane at the nose of a tight 100 m anticline in crystalline limestone
- 7. Location12+00E, 15+70NBearingGrid NorthInclination-50°Depth50 mObjectives
- a. Strike projection of the 13E vein
- b. Magnetic high
- 8. Location 12+00E, 15+45N Bearing Grid North Inclination -50° Depth 50 m <u>Objectives</u> Same as hole *****7

PROPOSED HOLES, SECTION 12+00E SCALE 1:1,000

- 13+00E, 14+70N 9. Location S 85*W Bearing -50* Inclination Depth 50 m <u>Objective</u> Section perpendicular to the projected felsic intrusion - limestone contact up slope from a strong Ag anomaly in soil 10. Location 12+75E, 14+80N S 85*W Bearing Inclination -50° 50 m Depth Objective The felsic intrusion - limestone contact on a section up slope from a strong Ag anomaly in soil 12+90E, 15+30N 11. Location S 85*W Bearing -50* Inclination 50 m Depth Objective The felsic intrusion - limestone contact 12. Location 12+60E, 15+40N S 85'W Bearing -50* Inclination Depth 50 m **Objectives**
- a. Strike and dip projections of a weakly mineralized quartz stringer on a felsic intrusion - limestone contact
- b. The edge of a magnetic high

COST ESTIMATES

The cost of the foregoing program is estimated as follows:

Field geologist, 5 weeks @ \$2,400	\$12,000
Field assistant, 5 weeks @ \$550	2,750
Food & lodging, 70 man days @ \$45	3,150
Roads and trails	
Tractor, 16 hours @ \$75 \$1,200	
Local labour, 8 man days @ \$85 <u>680</u>	1,880
Grid layout, 14 man days @ \$85	1,190
EM & SP surveying (12.5 km), including mobilization	-
& crew maintenance	18,000
Diamond drilling (incl. mob. & demob.), 580 m @ \$72 Vehicle	41,760
Rental, 5 weeks @ \$200 \$1,000	
Mileage & fuel, 1,500 @ \$0.40 600	1.600
Sub-total	\$82,330
Contingency of 15%	12,350
	\$94,680
Deserved by dest	

Proposed budget

\$95,000

Respectfully submitted, Lee Morrison, P. Eng. October 20, 1989

Appendix 1

CERTIFICATE OF QUALIFICATIONS

I, LEE G. MORRISON, of the Village of Robsart, in the Province of Saskatchewan

HEREBY CERTIFY:

- 1. THAT, I am a registered Professional Engineer in the provinces of Alberta and British Columbia;
- 2. THAT, I am a graduate of the University of Saskatchewan with Bachelor's degrees in Arts (1956) and Geological Engineering (1957)
- 3. THAT, I am a Consulting Mining Geologist;
- 4. THAT, I have practiced my profession continuously for more than thirty years;
- 5. THAT, I am familiar with the geology and ore deposits of the Slocan mining district;
- 6. THAT, I personally performed the field work which is the basis for this report;
- 7. THAT, I am the registered owner of a working interest of 56.66% in the Cat claims.

Lee G. Morrison, P. Eng

Appendix 2

STATEMENT OF COSTS

Field Personnel (including payroll burden)

L.G. Morrison, Consulting Geologist July 16 - August 3, 1989 (13 days @ \$400)	\$5,200.00	
Shawn Handley, Field Assistant & Sampler July 19-26, 1989 (8 days @ \$70 + 20% burden)	672.00	
Adrian Kremler, Field Assistant & Sampler July 25-29, 1989 (5 days @ \$60 + 20% burden)	<u>360.00</u>	\$6,232.00
Food and Accommodations L. Morrison, 18 days Kaslo @\$40		720.00
<u>Vehicle</u> 3/4 ton 4x4 , 18 days @ \$ 40		720.00
Sample Preparations & Analyses 352 soil geochemical (Ag, Pb, Cu, Zn) @ \$6.15 11 rock geochemical preparations @ \$2.75 7 rock geochemical (Ag, Pb,Zn) @ \$4.25 4 rock geochemical (Au, Ag) @ \$9.25	2,164.80 30.25 29.75 <u>37.00</u>	2,261.80
Supplies (topofil thread, flagging & envelopes)		122.34
Equipment Rental Magnetometer (1 day) JD450 tractor with operator (9 hrs. @ \$50)	50.00 <u>450.00</u>	500.00
Data Interpretion & Report Preparation L. Morrison , 6 days @ \$400 Draughting (44 hrs @ \$20) Typing & reproduction	2,400.00 880.00 	3,388.50
Total		\$13,944.64

"Hands-free" Back Pack Sensor

Based upon the principle of nuclear precession (proton) the G-816 offers absolute drift-free measurements of the total field directly in gammas. (The proton precession method is the officially recognized standard for measurement of the earth's magnetic field.) Operation is worldwide with one gamma sensitivity and repeatability maintained throughout the range. There is no temperature drift, no set-up or leveling required, and no adjustment for orientation, field polarity, or arbitrary reference levels. Operation is very simple with no prior training required. Only 6 seconds are required to obtain a measurement which is always correct to one gamma, regardless of operator experience. Only the Proton Magnetometer offers such repeatability-an important consideration even for 10 gamma survey resolution.

	4				
The Model G-816 comes	complete,	ready	for	portable	field
operation and consists of:					

Complete Field Portable System

- 1. Electronics console with internally mounted and easily replaced "D" cell battery pack.
- 2. Proton sensor and signal cable for attachment to carrying harness or staff.
- 3. Adjustable carrying harness.
- 4. 8 foot collapsible aluminum staff.
- 5. Instruction manual, complete set of spare batteries, applications manual, and rugged field suitcase.

Price and lease rates on the G-816 magnetometer are available upon request.

APPENDIX 3

S	P	E	C	I	F	l	C	A	T	0	ľ	I	S	

Sensitivity:	±1 gamma throughout range
Range:	20,000 to 90,000 gammas (worldwide)
Tuning:	Multi-position switch with signal amplitude indi- cator light on display
Gradient Tolerance:	Exceeds 300 gammas/ft (increased gradient tol- erance to 800 gammas/ft upon request)
Sampling Rate:	Manual push-button, one reading each 6 seconds
Output:	5 digit numeric display with readout directly in gammas
Power Requirements:	Twelve self-contained 1.5 volt "D" cell, univer- sally available flashlight-type batteries. Charge state or replacement signified by flashing indi- cator light on display.
	Battery TypeNumber of ReadingsAlkalineover10,000Premium Carbon Zincover4,000Standard Flashlightover1,500NOTE:Battery life decreases with low temper- ature operation.10000
Temperature Range:	Console and sensor: -40° to +85°C Battery Pack: 0° to +50°C (limited use to -15°C; lower tempera- ture battery belt opera- tion—optional)
Accuracy (Total Field):	± 1 gamma through 0° to +50°C temperature range
Sensor:	High signal, noise cancelling, interchangeably mounted on separate staff or attached to carry- ing harness
Size:	Console: 3.5 x 7 x 10.5 inches (9 x 18 x 27 cm) Sensor: 4.5 x 6 inches (11 x 15 cm) Staff: 1 inch diameter x 8 ft lenght (3 cm x 2.44 m)
Weight:	Lbs.Kgs.Console (w/batteries):5.52.4Sensor & signal cable:41.8Aluminum staff:20.9Total:11.55.1

All magnetometers and parts are covered by a one year warranty beginning with the date of receipt but not to exceed fifteen months from the shipping date.

WORLD-WIDE

APPENDIX 4

Preparation Procedures for Geochemical Samples

- 1 Soil And Silts:
 - a) The soil sample bags are placed in dryer to dry at 105°C.
 - b) Each sample is passed through an 80 mesh nylon seive. The +80 mesh material is discarded.
 - c) The -80 mesh sample is placed into a coin envelope and delivered to the laboratory for analysis.
- 2 Lake Sediments:
 - a) The sediment sample bags are placed into the dryer at 105°c until dry.
 - b) The dried material is transferred to a ring and puck pulverizer and ground to -200 mesh.
 - c) The -200 mesh pulp is then rolled for mixing, placed into a coin envelope, and taken to the laboratory for analysis.

3 - Rocks and Cores:

- a) The samples are dried in aluminum disposable pans at 105°C.
- b) They are then crushed to 1/8" in jaw crusher.
- c) the 1/8" material is mixed and split to sample pulp size.
- d) The sample is then pulverized to 100 mesh, using a ring and puck pulverizer.
- e) The -100 mesh material is rolled on rolling mat and transferred to sample bag. The sample is then sent to the laboratory for analysis.

METHODS OF ANALYSIS FOR GEOCHEMS

1. COPPER, LEAD, ZINC, NICKEL, COBALT, SILVER

500 milligrams of -80 mesh material are weighed into coor cups, placed in muffle at 500 C to remove organics. The oxidized samples are then transferred to test tubes, aqua regia added and digested in water bath at 100 C for three hours.

The test tubes are then bulked to the 10 ml. level, mixed and allowed to settle overnite.

The samples are then put through the atomic absorption with appropriate standards and reported in PPM.

APPENDIX 5

To: MR. LEE MORRISON,	
Box 105,	
Robsart, Sask.	
SON 2CO	-

File No. <u>32688</u>	
Date <u>August 28,</u>	1989
Samples <u>Soil</u>	

		Pa	ge # 1		
SAMPLE	NO.	PPM Ag	PPM Cu	PPM Pb	PPM Zn
			<u> </u>		
Ceochemical	Analysis				
A-1		0.3	29	16	191
A-2		0.4	51	12	189
B-1		0.3	30	14	1000
B-2		0.3	29	11	381
B-3		0.3	39	14	1000
B-4		0.3	32	13	1000
B-5		0.3	46	18	874
B-6		0.3	35	13	789
B-7		0.4	43	12	1100
9E 11 +		0.3	41	7	170
12 +	00 N	0.4	39	12	184
13 +		0.3	58	29	183
13 +	50 N	0.3	35	17	286
	75 N	0.3	40	13	144
14 +	25 N	0.3	40	10	267
14 +	75 N	0.4	31	8	364
15 +	25 N	0.5	31	9	492
15 +	50 N	0.5	34	10	322
15 +		0.5	27	10	394
10E 11 +		0.2	16	10	187
12 +	00 N	0.4	21	13	268
	50 N	1.0	32	12	181
	00 N	0.2	35	10	312
	00 N	0.4	34	9	199
	50 N	0.5	36	4	250
	75 N	0.2	36	19	283
	00 N	0.4	41	15	306
	25 N	0.2	37	14	176
	50 N	0.2	37	11	187
15 +	75 N	0.3	31	6	188

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

To: MR. LEE MORRISON,	
Box 105,	
Robsart, Sask.	
SON 2CO	

File	No.	<u>326</u>	<u>588</u>		
Date	Augu	ıst	28,	1989	
Samp]	es S	Soil			

		Pa	ge # 2		
SAMPLE	NO.	PPM Ag	PPM Cu	РРМ РЬ	PPM Zn
10E 16 +	00 N	0.2	69	23	299
11E 7 +	00 N	0.3	14	5	162
7 +	50 N	0.6	15	5	244
8 +	00 N	0.2	24	7	326
8+	50 N	0.6	28	3	188
9+	00 N	0.3	26	NIL	151
9 +	50 N	0.9	17	14	233
10 +	00 N	0.6	23	9	340
10 +	50 N	0.4	25	9	187
11 +	00 N	0.4	17	12	239
11 +	50 N	0.9	17	21	203
12 +	00 N	1.8	28	7	315
12 +	50 N	0.5	22	9	296
12 +	75 N	0.7	20	6	211
13 +	00 N	0.4	32	7	219
13 +	25 N	0.5	16	8	271
13 +	50 N	1.3	18	10	265
13 +	75 N	0.3	41	8	268
14 +	00 N	0.3	42	4	296
14 +	25 N	0.4	33	7	290
14 +	50 N	0.6	30	6	240
14 +	75 N	2.4	25	42	291
15 +	75 N	0.5	24	8	232
15 +	50 N	0.2	20	8	227
12E 7 +	00 N	0.2	12	5	155
7 +	50 N	0.6	15	15	160
8 +	00 N	0.3	14	9	195
	50 N	0.2	19	4	153
. 9+	00 N	0.4	12	5	97
9 +	50 N	0.6	13	7	161
10 +	00 N	0.4	12	6	186
10 +	50 N	0.5	24	4	178
	тп				

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

To: MR. LEE MORRISON,	
Box 105,	
Robsart, Sask.	
SON 2CO	

File No. <u>32688</u>	
Date <u>August 28,</u>	1989
Samples <u>Soil</u>	

	Pa	ge # 3		
SAMPLE NO.	PPM Ag	PPM Cu	РРМ РЬ	PPM Zn
12E 11 + 00 N	0.3	28	7	196
11 + 50 N	0.1	39	5	146
12 + 00 N	0.4	12	7	258
12 + 50 N	0.6	9	10	180
12 + 75 N	0.8	14	11	210
13 + 00 N	0.5	9	12	172
13 + 25 N	0.6	12	14	270
13 + 50 N	0.4	11	13	168
14 + 00 N	0.2	8	6	324
14 + 25 N	0.8	18	8	283
14 + 50 N	0.4	12	5	252
14 + 75 N	0.4	19	4	297
15 + 00 N	0.5	30	5	231
15 + 25 N	0.8	15	7	252
15 + 50 N	0.9	20	6	228
18 + 00 N	0.6	23	37	483
13E 7 + 00 N	0.2	4	2	19
7 + 50 N	0.3	12	11	142
8 + 00 N	0.2	17	10	197
8 + 50 N	0.3	14	10	103
9 + 00 N	1.3	18	10	113
9 + 50 N	0.5	19	7	130
10 + 00 N	0.3	18	10	170
10 + 50 N	0.5	18	5	206
11 + 00 N	2.2	8	2	111
11 + 50 N	2.2	16	11	169
12 + 00 N	0.4	17	7	172
12 + 25 N	0.3	20	10	252
12 + 50 N	0.7	18	10	453
12 + 75 N	0.6	33	12	421
13 + 00 N	0.3	11	18	204
13 + 25 N	0.4	15	17	202

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Long

To: MR. LEE MORRISON,
Box 105,
Robsart, Sask,
SON 2CO

File	No.	<u>32</u> (<u>688</u>		
Date	Aug	ust	28,	1989	
Sampl	es	<u>Soi</u>	L		

Page # 4				
SAMPLE NO.	PPM Ag	PPM Cu	PPM Pb	PPM
· · · · · · · · · · · · · · · · · · ·	<u></u>	<u> </u>	10	Zn
13E 13 + 50 N	0.7	16	15	212
13 + 75 N	1.1	15	10	217
14 + 00 N	0.6	17	11	141
14 + 25 N	1.0	29	11	310
14 + 50 N	0.6	17	10	252
14 + 75 N	1.5	15	9	202
15 + 00 N	2.0	15	13	124
15 + 25 N	1.9	18	14	153
15 + 50 N	0.9	11	28	101
15 + 75 N	0.9	6	16	56
16 + 75 N	0.7	21	12	250
17 + 00 N	0.9	19	10	136
17 + 50 N	1.2	19	39	384
18 + 00 N	0.5	24	21	212
13 + 50E 15 + 50N	1.4	18	67	277
14E 12 + 50 N	0.5	18	9	143
12 + 75 N	1.2	21	11	171
13 + 00 N	0.6	12	14	165
13 + 25 N	0.4	12	11	94
13 + 50 N	0.9	19	4	95
13 + 75 N	0.7	19	5	137
14 + 00 N	0.9	18	8	116
14 + 25 N	0.7	11	7	123
14 + 50 N	0.4	22	6	156
14 + 75 N	0.8	17	10	362
15 + 00 N	1.2	16	8	226
15 + 25 N	1.0	17	9	275
15 + 50 N	0.6	32	12	350
17 + 00 N	0.4	10	11	169
17 + 50 N	0.6	30	15	280
18 + 00 N	1.1	11	11	159
15E 8 + 00 N	0.3	10	12	74

I HEREDY CERTITY that the above results are those assays made by me upon the herein described samples....

То: М	IR. LEE MORRISON,
<u>Box 1</u>	.05,
<u>Robsa</u>	art, Sask.
<u>son 2</u>	200
et	

File No. <u>32688</u>	
Date <u>August 28</u> ,	1989
Samples <u>Soil</u>	· · · · ·

SAMPLE	NO	РРМ	ge # 5 PPM	DDM	РРМ
SAMPLE	NU.	Ag	Cu	PPM Pb	Zn
15E 8 +	50 N	0.3	12	7	91
	00 N	0.6	8	8	41
	50 N	0.5	15	6	57
10 +		1.7	13	20	69
10 +		0.9	10	10	69
11 +		0.8	18	6	76
11 +		0.7	17	4	71
12 +		0.4	8	7	74
12 +		0.5	12	10	72
13 +		0.3	13	9	92
	50 N	0.6	11	9	100
14 +		0.4	11	8	69
14 +		0.3	23	3	100
14 +	50 N	0.5	16	5	80
14 +	75 N	0.1	27	NIL	71
		0.6	20	19	166
	25 N	1.1	17	10	141
15 +		0.7	25	11	177
15 +		0.3	16	9	218
	00 N	0.7	20	7	131
	25 N	1.0	19	15	207
16 +		0.4	18	14	257
16 +		0.5	19	22	211
17 +		1.0	16	18	219
17 +	50 N	0.6	16	9	162
18 +	00 N	0.3	23	10	336
6E 8 +	00 N	0.2	5	6	21
8 +	50 N	0.1	8	5	87
9 +	00 N	0.4	11	8	109
9 +	50 N	0.4	11	5	91
10 +	00 N	0.6	12	10	142
10 +	50 N	0.7	20	9	134
	I Here	y Certify that made by me upon	the above rea	lta ore these	

To: MR. LEE MORRISON,	_ <u></u>
Box 105,	
Robsart, Sask.	
SON 2CO	

File	No. <u>32688</u>
Date	<u>August 28, 1989</u>
Samp]	les <u>Soil</u>

SAMPLE NO.	PPM	PPM	PPM	PPM
·····	Ag	Cu	Pb	Zn
16E 11 + 00 N	0.4	27	7	103
11 + 50 N	0.4	14	7	84
12 + 00 N	0.4	11	5	76
12 + 50 N	0.6	13	6	71
13 + 00 N	0.7	16	5	52
13 + 50 N	0.5	8	5	85
14 + 00 N	0.4	18	6	87
14 + 50 N	0.6	15	6	92
15 + 00 N	0.7	18	4	119
15 + 50 N	0.9	11	7	96
16 + 00 N	1.2	14	10	105
16 + 50 N	0.5	14	5	110
17 + 00 N	1.1	17	7	118
17 + 50 N	1.1	17	12	70
18 + 00 N	0.9	9	6	45
18 + 50 N	0.9	22	9	183
19 + 00 N	1.2	18	9	166
19 + 50 N	0.5	16	7	136
20 + 00 N	1.0	16	9	118
20 + 50 N	1.9	14	9	126
21 + 00 N	0.4	16	9	173
21 + 50 N	0.8	14	8	145
22 + 00 N	0.3	18	7	261
22 + 50 N	0.4	9	10	139
23 + 00 N	0.3	17	9	174
23 + 50 N	0.3	15	10	150
24 + 00 N	0.6	20	11	234
24 + 50 N	0.3	18	9	394
25 + 00 N	0.4	19	9	327
25 + 50 N	0.8	22	15	485
26 + 00 N	1.1	32	15	454
26 + 50 N	0.4	24	10	407

assays made by me upon the herein described samples....

Long for

To:	MR. LEE MORRISON,
Box	105,
Robs	sart, Sask.
<u>son</u>	200

File	No.	<u>32</u>	<u>688</u>		
Date	Aug	ust	28,	1989	
Samp]	les	<u>Soi</u>]	L		

Page # 7					
SAMPLE	NO.	PPM Ag	PPM Cu	PPM Pb	PPM Zn
16E 27 +		0.5	20	11	266
27 +	50 N	0.7	27	10	327
28 +	00 N	0.5	16	11	378
.8E 9 +	00 N	0.5	5	6	47
9+	50 N	0.4	7	5	74
10 +	00 N	0.2	15	5	53
10 +	50 N	0.7	11	4	68
11 +	00 N	0.8	8	8	70
11 +	50 N	0.3	7	4	63
12 +	00 N	0.4	22	3	116
12 +	50 N	0.4	11	5	94
13 +	00 N	0.6	12	5	130
	50 N	0.9	17	7	131
14 +	00 N	0.3	7	6	40
14 +	50 N	0.4	10	5	149
15 +	00 N	0.4	10	4	73
	50 N	0.4	6	2	47
16 +	00 N	1.3	13	10	81
16 +	50 N	0.7	15	8	102
17 +	00 N	0.8	21	9	91
17 +	50 N	0.4	12	6	148
18 +	00 N	0.7	14	8	139
18 +	50 N	0.7	12	7	149
19 +	00 N	0.7	12	5	134
19 +	50 N	0.8	13	6	133
20 +	00 N	0.3	6	5	73
20 +	50 N	0.3	15	4	141
21 +	00 N	0.4	17	8	112
21 +	50 N	0.5	15	6	169
22 +	00 N	0.8	19	5	126
	50 N	0.2	14	4	89
	00 N	0.5	13	4	133
	I Hereb	y Certify that made by me upon	the above res	ults are those	
	assays	made by me upon	n the herein de	escribed sample	es

wale Sango

To: MR. LEE MORRISON,	
Box 105,	
Robsart, Sask.	
SON 2CO	

File	No.	<u>326</u>	588		
Date	Augu	st	28,	1989	
Samp]	les S	oi]	L		

SAMPLE NO.	PPM	PPM	PPM	Р РМ
· · · · · · · · · · · · · · · · · · ·	Ag	Cu	Pb	Zn
18E 23 + 50 N	0.6	12	7	145
24 + 00 N	0.4	16	7	234
24 + 50 N 24 + 50 N	0.6	14	9	107
25 + 00 N	0.3	13		
25 + 50 N	0.8	13	8	143
26 + 00 N	0.9	17	6	197
26 + 50 N 26 + 50 N	0.4	16	8	404
27 + 00 N	0.4		5	216
27 + 50 N 27 + 50 N	0.4	19	9	176
27 + 50 N 28 + 00 N	0.5	15	9	224
28 + 50 N 28 + 50 N		16	15	304
23 + 50 N 29 + 00 N	0.5	17	10	253
23 + 00 N 20E + 00 N	0.6	33	10	366
9 + 50 N	0.3	12	7	74
	0.9	14	7	83
10 + 00 N	0.8	11	6	81
10 + 50 N	0.4	13	7	84
11 + 00 N	0.8	12	11	91
11 + 50 N	0.6	10	8	100
12 + 00 N	0.3	15	9	168
12 + 50 N	0.3	19	15	369
13 + 00 N	1.9	13	12	244
13 + 50 N	1.9	11	11	106
14 + 00 N	1.0	13	5	72
14 + 50 N	0.4	10	10	84
15 + 00 N	0.5	10	9	77
15 + 50 N	0.3	18	5	97
16 + 00 N	0.5	9	13	88
16 + 50 N	0.4	14	10	124
17 + 00 N	0.2	12	11	140
17 + 50 N	0.4	12	8	196
18 + 00 N	0.3	16	9	186
18 + 50 N	0.4	9	7	174

assays made by me upon the herein described samples....

To: MR. LEE MORRISON,
Box 105,
Robsart, Sask.
SON 2CO

File	No.	<u>32</u> (<u>588</u>		
Date	Augu	ust	28,	1989	
Sampl	les g	Soil	L		<u></u>

Page # 9						
SAMPLE	NO	•	PPM Ag	PPM Cu	PPM Pb	PPM Zn
20E 19 +	00	N	0.3	11	6	141
19 +			0.9	13	5	185
20 +			0.2	12	3	87
20 +			0.3	30	5	240
21 +	00	Ν	0.2	7	5	177
21 +	50	Ν	0.3	19	4	92
22 +	00	N	0.3	13	6	176
22 +	50	Ν	0.2	13	5	119
23 +	00	N	0.3	15	6	118
23 +	50	N	0.3	11	7	157
24 +	00	N	0.4	13	8	173
24 +	50	Ν	0.3	19	8	190
25 +	00	Ν	0.3	23	8	143
25 +	50	Ν	0.3	10	8	147
26 +	00	N	0.4	26	7	149
26 +	50	Ν	0.5	12	6	308
27 +	00	N	0.7	9	12	459
27 +			3.0	23	24	507
28 +	50	N	0.2	18	8	142
22E 8 +	00		0.2	18	23	212
8+			0.7	13	9	106
9+			0.2	15	5	84
10 +			0.2	10	6	97
10 +			0.2	10	7	83
11 +			0.9	22	6	297
11 +			0.6	17	7	220
12 +			0.4	9	6	111
12 +			0.5	11	7	95
13 +			0.3	11	5	64
13 +			0.4	7	6	74
14 +			0.8	11	10	108
14 +			0.9	21	9	94
		I Hereb)y Certify that made by me upon	the above resu	ilts are those	
		assays	made by me upor	the herein de	escribed sample	es

To:	MR. LEE MORRISON,
<u>Box</u>	105,
Robs	sart, Sask.
<u>son</u>	200
-	

File	No.	<u>32</u>	<u>588</u>		
Date	Augu	ist	28,	1989	
Sampl	es <u>s</u>	<u>Soi</u>	L		

	ľa	ge # 10		
SAMPLE NO.	PPM Ag	PPM Cu	PPM Pb	PPM Zn
	• • • • • • • • • • • • • • • • •		<u> </u>	
22E 15 + 00 N	0.4	12	9	88
15 + 50 N	0.2	14	7	119
16 + 00 N	0.2	7	6	145
24E 9 + 50 N	0.6	17	16	263
10 + 00 N	0.2	12	8	179
10 + 50 N	0.2	9	11	140
12 + 50 N	0.3	20	6	91
13 + 00 N	1.4	14	6	91
13 + 50 N	0.9	15	5	92
14 + 00 N	0.3	7	7	113
14 + 50 N	0.4	11	8	90
15 + 00 N	0.2	15	32	192
15 + 50 N	0.2	17	12	154
16 + 00 N	0.5	18	12	143
30E 11 + 50 N	0.3	30	21	284
12 + 00 N	0.2	26	23	193
12 + 50 N	2.2	25	9	297
13 + 00 N	0.3	23	8	445
13 + 50 N	0.3	18	7	296
13 + 85 N	0.8	18	7	157
14 + 50 N	0.3	22	17	161
15 + 00 N	0.5	30	12	196
15 + 50 N	0.3	22	8	170
16 + 00 N	0.8	14	12	216
16 + 50 N	0.3	19	7	224
17 + 00 N	0.3	15	8	119
32E 11 + 50 N	0.7	34	9	121
12 + 00 N	0.4	28	10	171
13 + 00 N	0.5	17	13	238
13 + 50 N	0.2	21	11	315
14 + 00 N	2.6	29	8	210
14 + 50 N	0.5	24	8	321

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

To: MR. LEE MORRISON,
Box 105,
Robsart, Sask.
SON 2CO

File	No. <u>32</u>	688		
Date	August	28,	1989	
Sampl	es <u>Soi</u>	1		

SAMPLE NO.	PPM	PPM	PPM	PPM
· · · · · · · · · · · · · · · · · · ·	Ag	Cu	РЬ	Zn
32E 15 + 00 N	0.6	45	7	100
15 + 50 N	0.8	45 10	9	192
				154
4E 8 + 00 N	0.6	12	13	87
8 + 50 N	0.4	23	15	91
9 + 00 N	0.9	19	12	92
9 + 50 N	0.6	11	13	84
10 + 00 N	0.8	21	17	83
10 + 50 N	0.3	19	20	222
11 + 00 N	0.2	17	11	272
11 + 50 N	0.3	27	11	109
13 + 00 N	0.2	16	9	168
13 + 50 N	0.2	10	8	92
14 + 00 N	0.2	24	10	129
14 + 50 N	0.5	24	11	181
15 + 00 N	7.2	67	9	154
15 + 50 N	0.9	31	12	210
16 + 00 N	0.3	15	9	176
6E 8 + 00 N	0.2	8	9	46
8 + 50 N	0.3	16	8	187
9 + 00 N	0.1	8	7	75
9 + 50 N	0.4	11	8	115
10 + 00 N	0.2	10	7	104
10 + 50 N	0.1	22	11	98
11 + 00 N	0.1	29	11	373
11 + 50 N	0.1	16	10	149
12 + 00 N	0.3	21	12	165
12 + 50 N	0.3	18	9	114
13 + 00 N	0.2	15	8	175
13 + 50 N	0.2	14	9	216
14 + 00 N	0.2	14	8	159
14 + 50 N	0.2	29	8	167
15 + 00 N	0.4	16	8	135

assays made by me upon the herein described samples....

Henry Jualy

To: MR. LEE MORRISON,	
Box 105,	
Robsart, Sask.	
<u>SON 2CO</u>	

File	No.	320	688		
Date	Aug	ust	28,	1989	
Sampl	es	<u>Soi</u>	L		

Page # 12					
SAMPLE NO.	PPM Ag	PPM Cu	PPM Pb	PPM Zn	
36E 15 + 50 N 16 + 00 N	0.2 0.8	20 39	7 8	197 201	

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

To:	MR. LEE MORRISON,
<u>Box</u>	105,
Rob	sart, Sask.
SON	200

/	<u>[TD.</u>	7

File	No.	<u>32</u>	688		
Date	Aug	ust	28,	1989	
Sampl	es	Rocl	κ		

		Page # 13			
SAMPLE NO.	PPB Au	PPM Ag	PPM Cu	PPM Pb	PPM Zn
eochemical Analysis					
"Rock Samples"					
R 1E 14 + 90 N	-	0.3	-	15	392
R11E 14 + 10 N	-	0.8	-	5	122
R13E 9 + 00 N	NIL	0.1	-	-	
R13E 12 + 75 N	NIL	0.1		-	-
R14E 13 + 00 N	NIL	0.3	-	-	_
R16E 18 + 15 N	_	0.1		7	44
R30E 11 + 50 N	-	0.1		32	57
R33+50E 18 + 00 N	_	0.2	23	6	142
R16E 15 + 30 N	NIL	0.1	-	8	46
R15N 0 + 95 E	-	0.3	41	10	215
				21	197

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Hanghaley?

To: MR. LEE MORRISON,
Box 105,
Robsart, Saskatchewan
SON 200

File	No.	326	38		
Date	<u>Octo</u>	ber	6,	1989	
Samp	les				

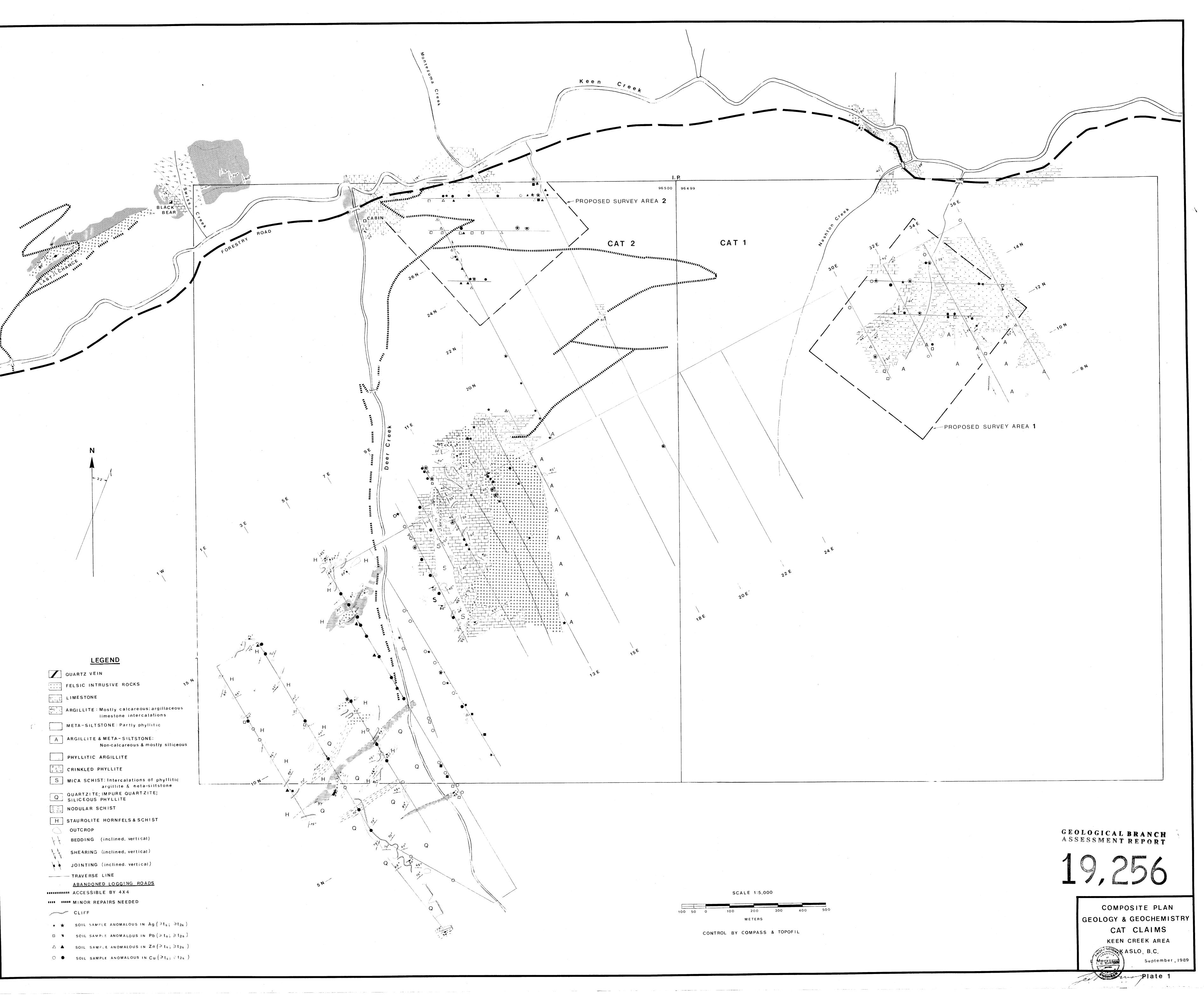
	Page # 1	
SAMPLE NO.	Pb Uncorrected	Pb Corrected
Ceochemical Analysis		
A-1	21	13
A-2	22	12
B-3	24	15
B-7	22	11
9E-13+00N	34	22
14+25N	25	14
11E- 7+00N	20	13
9+00N	12	2
14+75N	47	38
12E- 8+00N	20	12
9+00N	16	7
11+00N	20	12
15+00N	19	9
18+00N	49	37
13E- 7+00N	14	7
13+00N	26	17
16E-12+00N	15	6
20+00N	19	10
18E-10+00N	12	7
19+00N	16	7
29+00N	21	12
20E-10+00N	14	8
22+00N	17	9
27+50N	31	23
22E-10+00N	16	8
14+00N	18	12
24E-10+00N	16	11
30E-17+00N	18	10
32E-15+00N	18	12
36E-11+00N	25	15
	1 * 0	

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Anna yor

To: MR. LEE MORRISON,
Box 105,
Robsart, Saskatchewan
SON 2G0

File	No.	<u>3268</u>	38		
Date	<u>Oct</u>	ber	6,	1989	
Samp	lea				

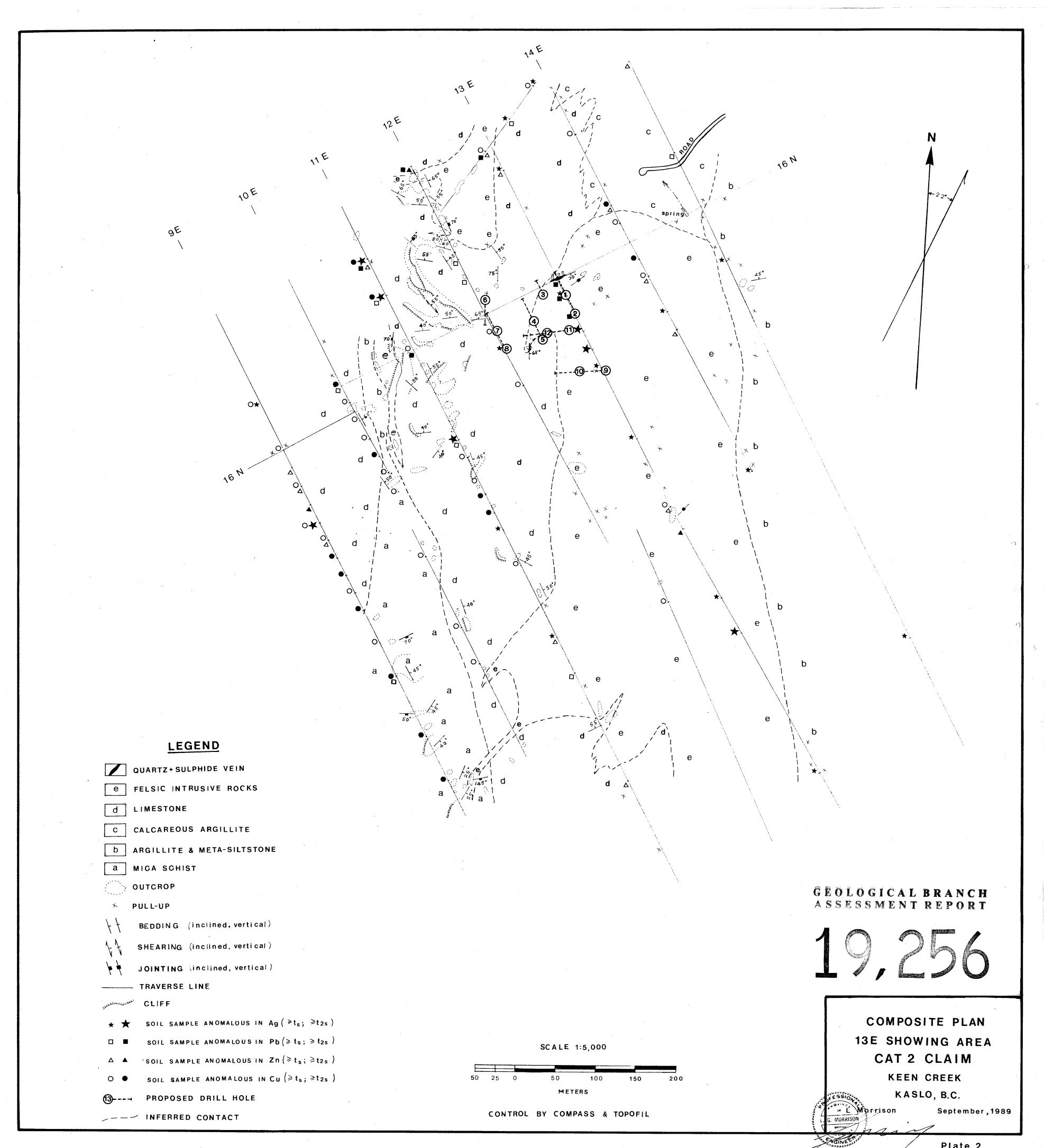
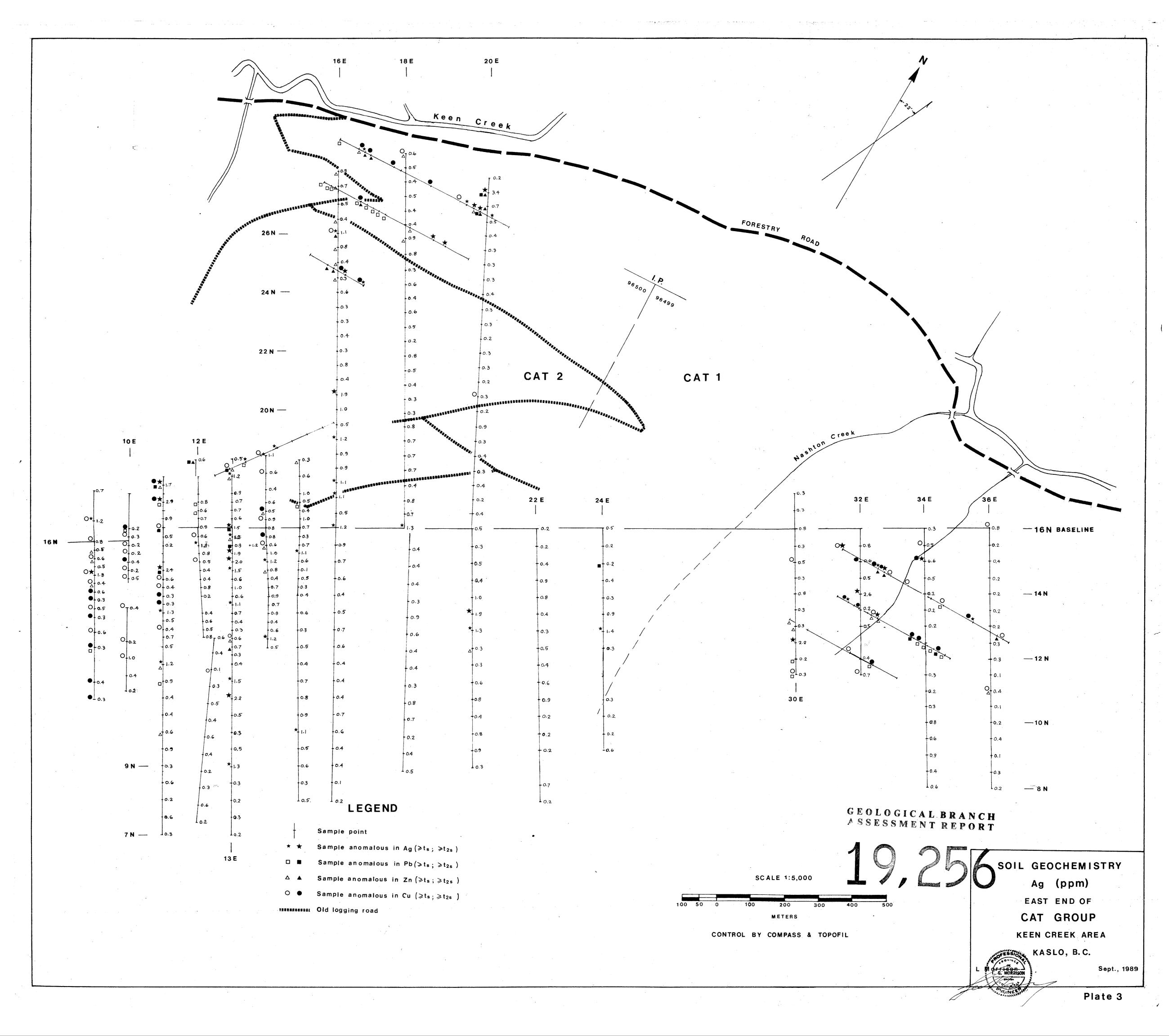
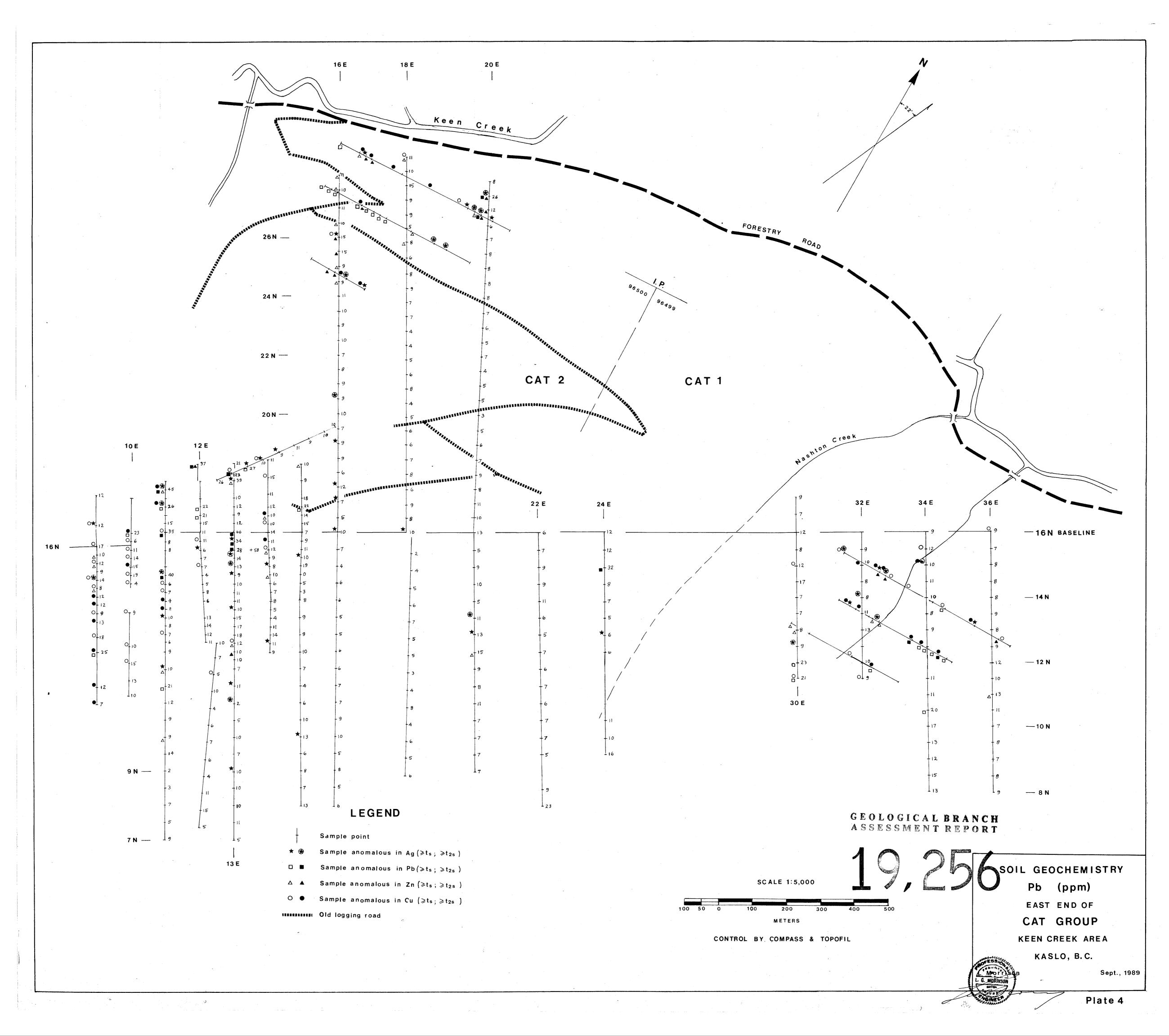
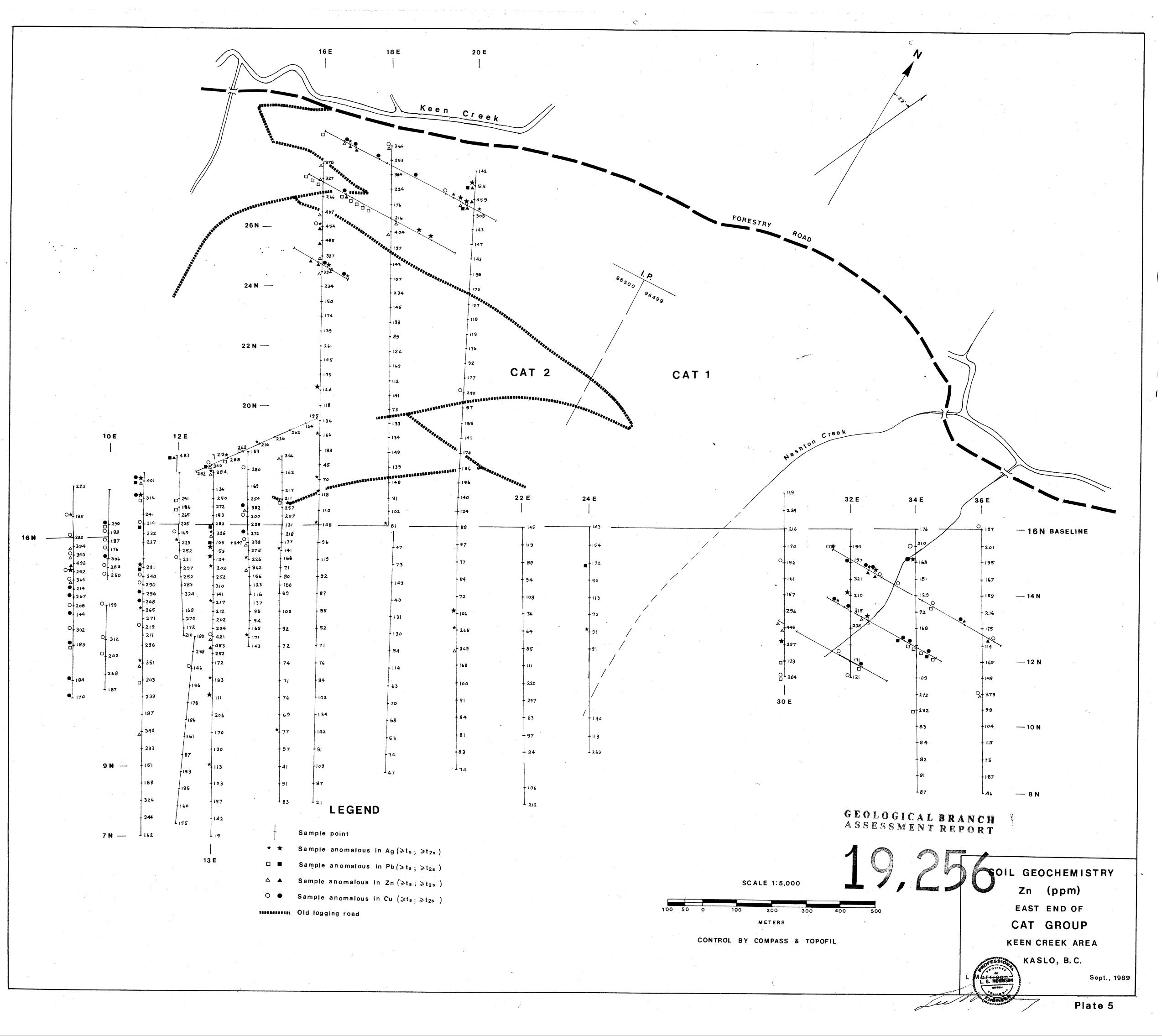
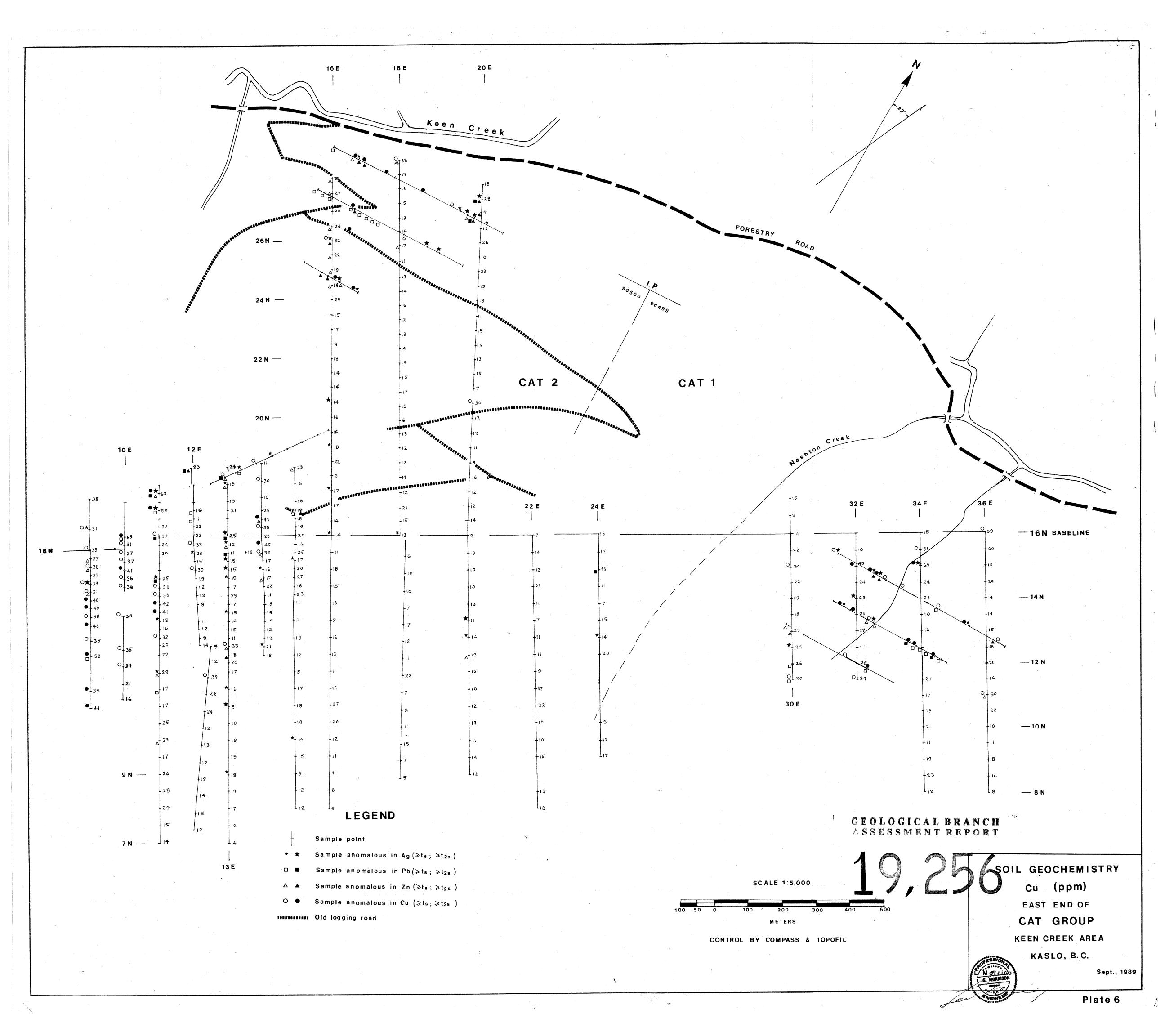

	Page # 2		
SAMPLE NO.	Pb Uncorrected	` Pb Corrected	
36E-16+00N	18	10	
R30E-11+50N	51	41	
R15N- 0+95E	21	10	

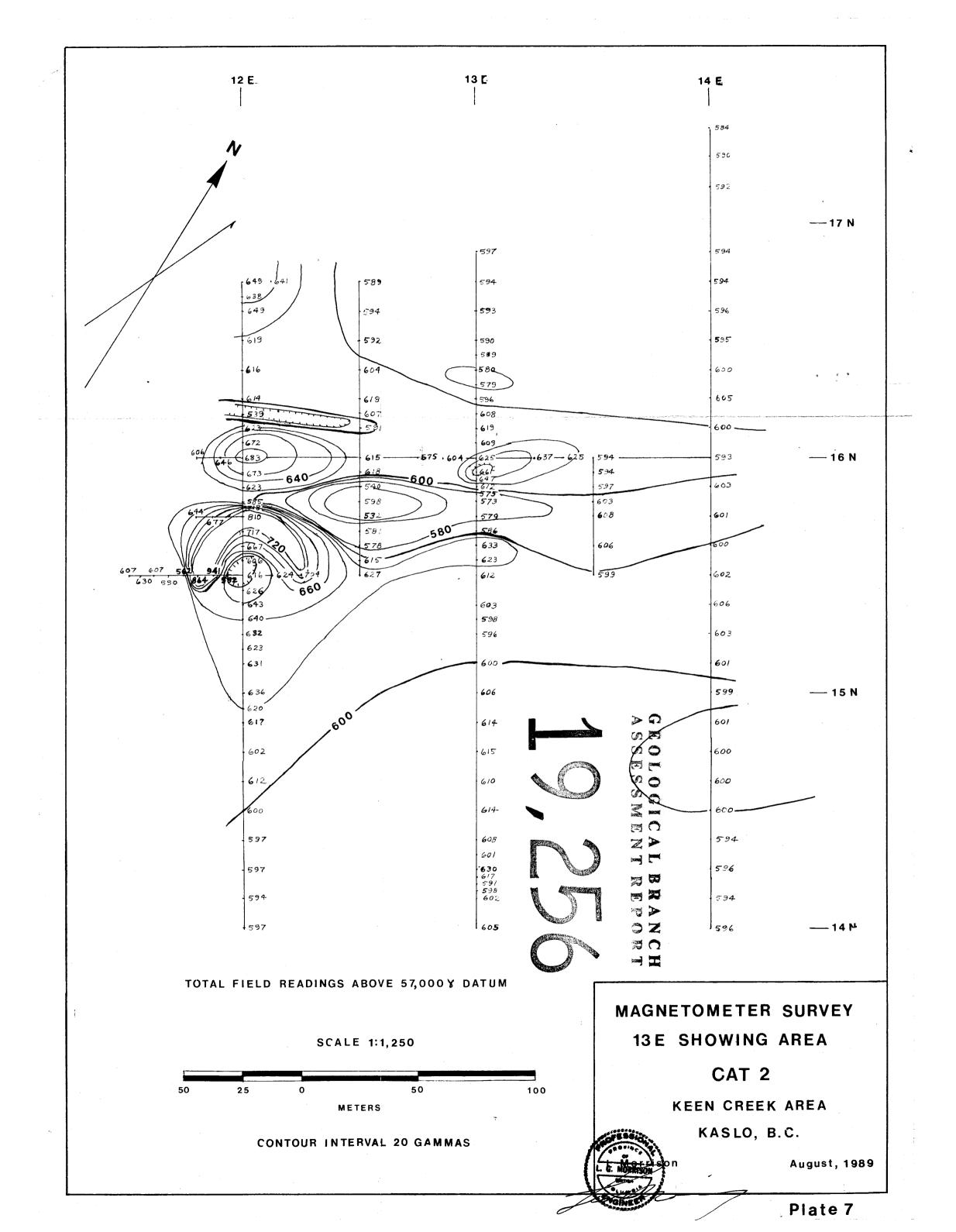
I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Appendix 6

REFERENCES

- Alcock, F.J. (1930): Zinc and Lead Deposits of Canada, Geological Survey of Canada, Economic Geology Series No. 8
- Cairns, C.E. (1935): Description of Properties, Slocan Mining Camp, British Columibia, Geological Survey of Canada, Memoir 184
- Hedley, M.S. (1945): *Geology of Whitewater and Lucky Jim Mine Areas,* British Columbia Department of Mines, Bulletin No. 22
- _____ (1952): Geology and Ore Deposits of the Sandon Area, Slocan Mining Camp, British Columbia, British Columbia Department of Mines, Bulletin No. 29
- Little, H.W. (1960): Nelson Map Area, West Half, Geological Survey of Canada, Memoir 308 (includes Maps 1090A and 1091A)
- Minister of Mines, British Columbia (1900-1964): Annual Reports
- Morrison, L.G. (1987): Report on Geological & Geochemical Studies, Cat-1 & Cat-2 Claims, B.C. Assessment Report No. 87-757-16556
- _____(1988): Report on Geological and Geochemical Studies on the Cat Claims, B.C. Assessment Report No. 88-17954
- Ross, J.V. and Kellerhals, P(1968): *Evolution of the Slocan Syncline*, Canadian Journal of Earth Sciences, v.5, p. 851-864


Plate 2

