LOG NO:	1106	RD.
ACTION:		
FILE NO:	an a	

GEOLOGICAL GEOCHEMICAL, GEOPHYSICAL REPORT

ON THE

HORN PROJECT

LIARD MINING DIVISION

BRITISH COLUMBIA

NTS 1041/5W

58⁰19'N, 129⁰39'E

FOR

EQUITY SILVER MINES LIMITED

#13 - 1155 Melville Street

Vancouver, British Columbia

V6E 4C4

SUB-RECORDER
NOV - 1 1989
VANCOUVER, B.C.

J.F. WETHERILL, B.A. Sc.

October 28, 1989 GEOLOGICAL BRANCH ASSESSMENT REPORT

- i -

TABLE OF CONTENTS

INTRO	DUCTION
1.2 1.3 1.4	Location and Access Physiography, Vegetation and Climate Property History 1989 Exploration Program
GEOLO	DGICAL SURVEY
2.2	Regional Geology Property Geology Property Mineralization/Alteration
GEOCH	HEMICAL SURVEYS
3.1 3	Introduction

GEOLOGICAL S 2.0

1.0

3.0

4.0

COST STATEMENT

REFERENCES

- STATEMENTS OF QUALIFICATIONS
-ii/

PAGE

1

l

3

4

- ii -

APPENDIX Geochemical Results

Appendix I Appendix II Appendix II Appendix IV Appendix V	11 -	Geophysical Report Rock Chip Assay Results Correlation Charts Heavy Mineral Concentrate Data Heavy Mineral Concentrate Assay
Appendix VI	c –	Results Rock Sample Descriptions

TABLES

Table 1	Property Data	2
Table 2	Rock Sample Descriptions	Appendix IV

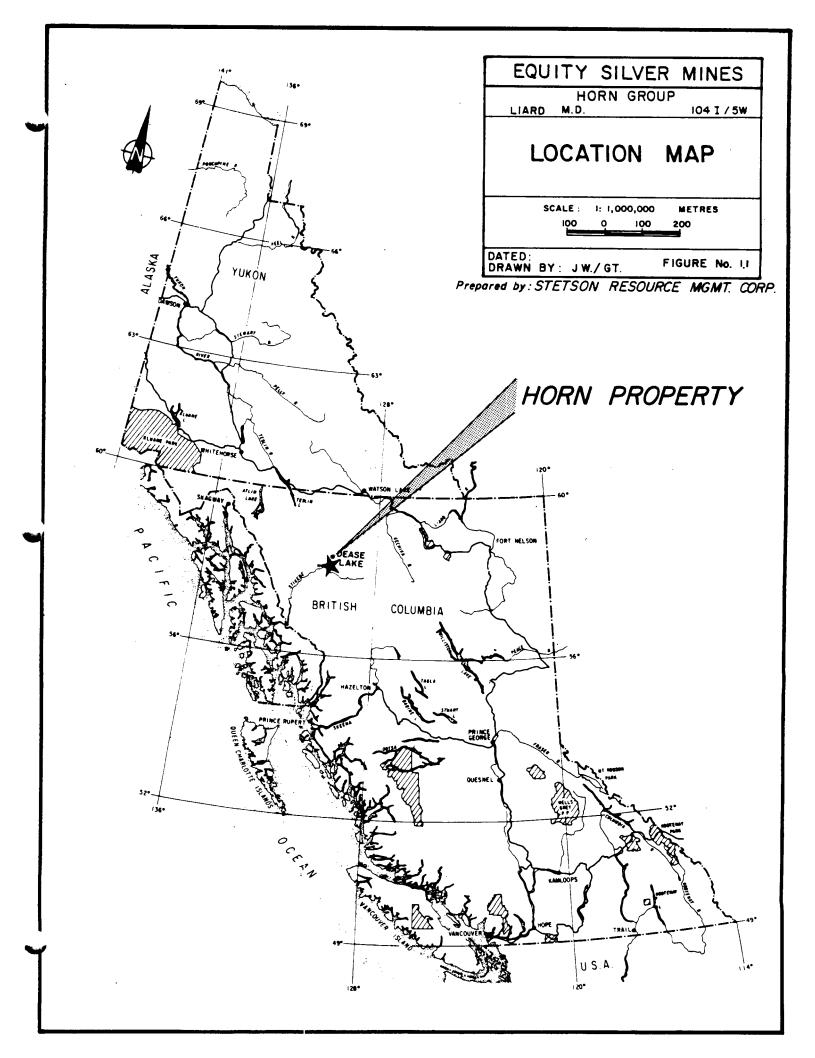
LIST OF FIGURES

Figure 1.1:	Location Map (1:1,000,000)	Following	
Figure 1.2:	Claim Map (1:50,000)	Following	3
Figure 2.0:	Regional Geology (1:250,000)	Following	2
Figure 2.1:	Geology and Sample Map		
	(1:10,000)	Following	5
Figure 2.1.1:	Shear Creek Geology and		
	Rock Sample Locations		
	(1:250)	In Pocket	
		IN POCKEL	
Figure 2.1.2:	L32 Creek Geology and		
	Rock Sample Locations		
	(1:500)	In Pocket	
Figure 2.1.3:	Old Cabin Creek Geology		
2	Rock Sample Locations		
	(1:500)	In Pocket	
Figure 2 1 4		IN POCKEL	
rigure 2.1.4	Gopher Zone Geology and		
	Rock Sample Locations	Following	7
Figure 2.1.5:	North Grid Geology and		
	Rock Sample Locations		
	(1:2,500)	In Pocket	
Figure 3.1:	HMC Talus Sample Locations	111 100/00	
119410 5.1.		T	
	(1:10,000)	In Pocket	
Figure 3 1 1.	Regional HMC Sample Locations		
rigure Joint:	regional nec sample Locations		

1.0 INTRODUCTION

This report presents the results of an exploration program carried out on the Horn group of claims owned by Equity Silver Mines Limited. The program was completed by Stetson Resource Management Corp., under the direction of the writer during July 1989, and consisted of geological, geochemical and geophysical surveys.

1.1 Location and Access


The Horn property claim is situated in the Liard mining division, approximately 32 kilometers southeast of Dease Lake. The property covers 2500 hectares centered at latitude 58 39'W longitude 129 39'W on mapsheet 104I/5W (Fig. 1.1).

Access to the property is via helicopter from Dease Lake airport or from Upper Gnat Lake on the Cassiar Stewart highway which extends from Dease Lake to Stewart. Alternative access is provided by a 20 kilometer cat trail which extends from the Cassiar-Stewart highway to Snowdrift creek.

Groceries, fuel, lumber and general supplies are available to a limited extent in Dease Lake. The remainder may be trucked from Smithers to Dease Lake.

1.2 Physiography, Vegetation and Climate

The Horn property is located in the Cassiar mountain range near the northwestern edge of the Spatzizi Plateau. The region has a relatively dry climate, and snow cover in winter is moderate. The property covers alpine terrain and is above treeline. Elevations, range from 1200 meters along the main property drainage to a maximum of 1300 meters.

1.3 Property

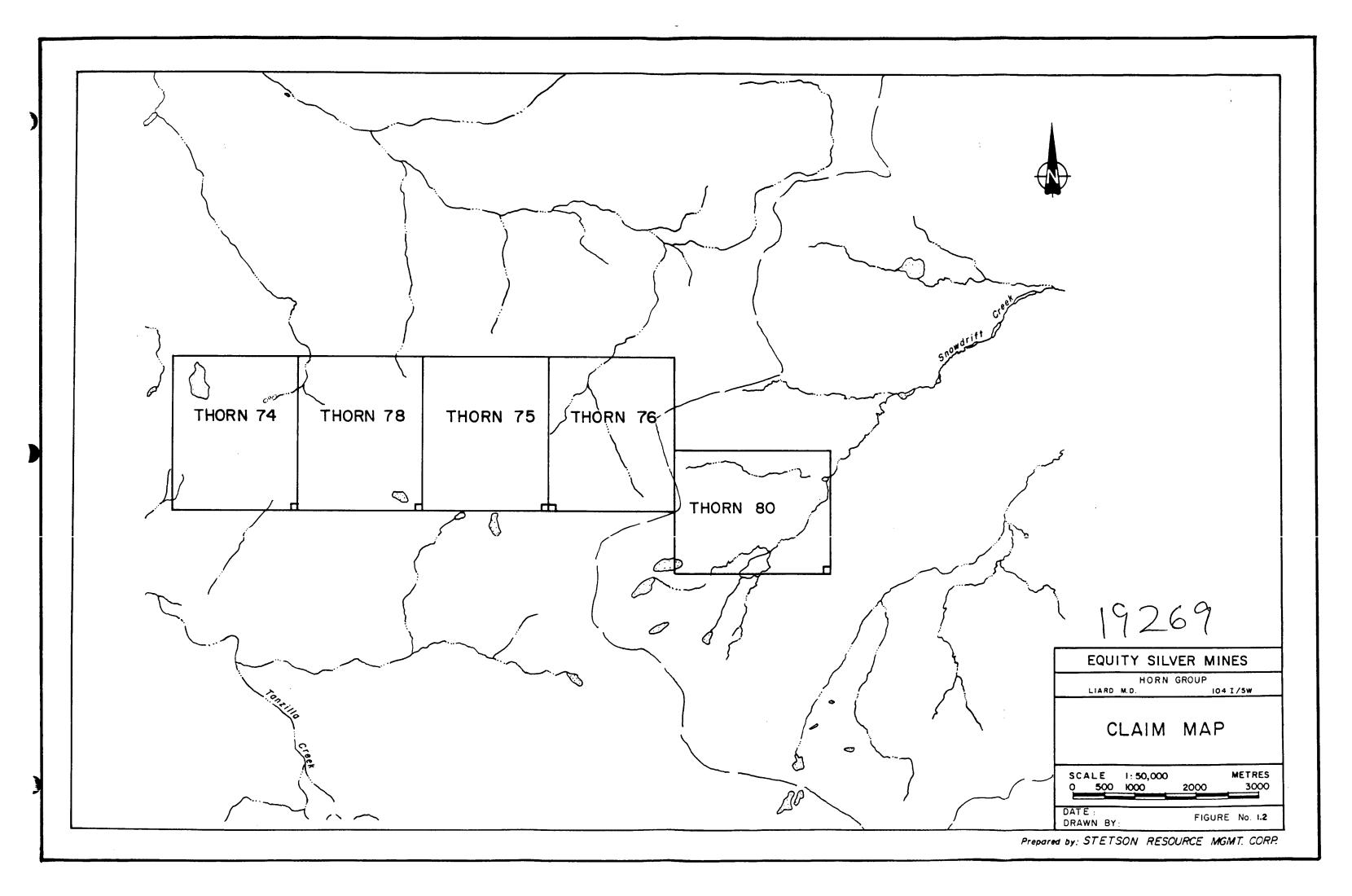
The property is covered by 5 "Modified Grid" mineral claims, as per Table 1.

TABLE 1

<u>Claim</u>		<u>Units</u>	Record No.	Expiry Date
T-Horn	74	20	4990	August 3, 1990
T-Horn	75	20	4991	August 3, 1990
T-Horn	76	20	4992	August 3, 1990
T-Horn	78	20	4993	August 3, 1990
T-Horn	80	20	4995	August 3, 1990

1.4 <u>History</u>

The property was explored by Union Mineral Explorations from 1970 to 1973 for its molybdenum potential (Assess. Report # 4644). Kennco Explorations Ltd. explored the eastern portion of the property in 1973 (Asses. Report #3538), and in 1975, Utah Mines Ltd. explored the central portion of the property. Seranna Resources Ltd. explored the eastern portion of the property in 1982 (Asses. Report #10,923). These programs included soil and stream sediment sampling, geological mapping. IP geophysical surveys, and diamond drilling.


1.5 <u>1989 EXPLORATION PROGRAM</u>

In 1989, an exploration program was undertaken by a geological field crew of 8 men employed by Stetson Resource Management Corp., under the direction of the writer. Geological, geochemical, and geophysical surveys carried out between July 24 and July 31, 1989.

1.5.1 <u>Grid Establishments</u>

A total of 24.1 line kilometers in two grids was established on the T-Horn 76 claim in 1989 using sight line and hip-chain and compass methods. The baseline connecting the grids is oriented N45 W, and has a total length of 3.0 kilometers (Fig. 2.1).

Gridlines are established at 100 meter intervals along the baseline, from L0+005 to L10+005, and from L22+005 tp L30+005, and are oriented N45°E. Stations on the

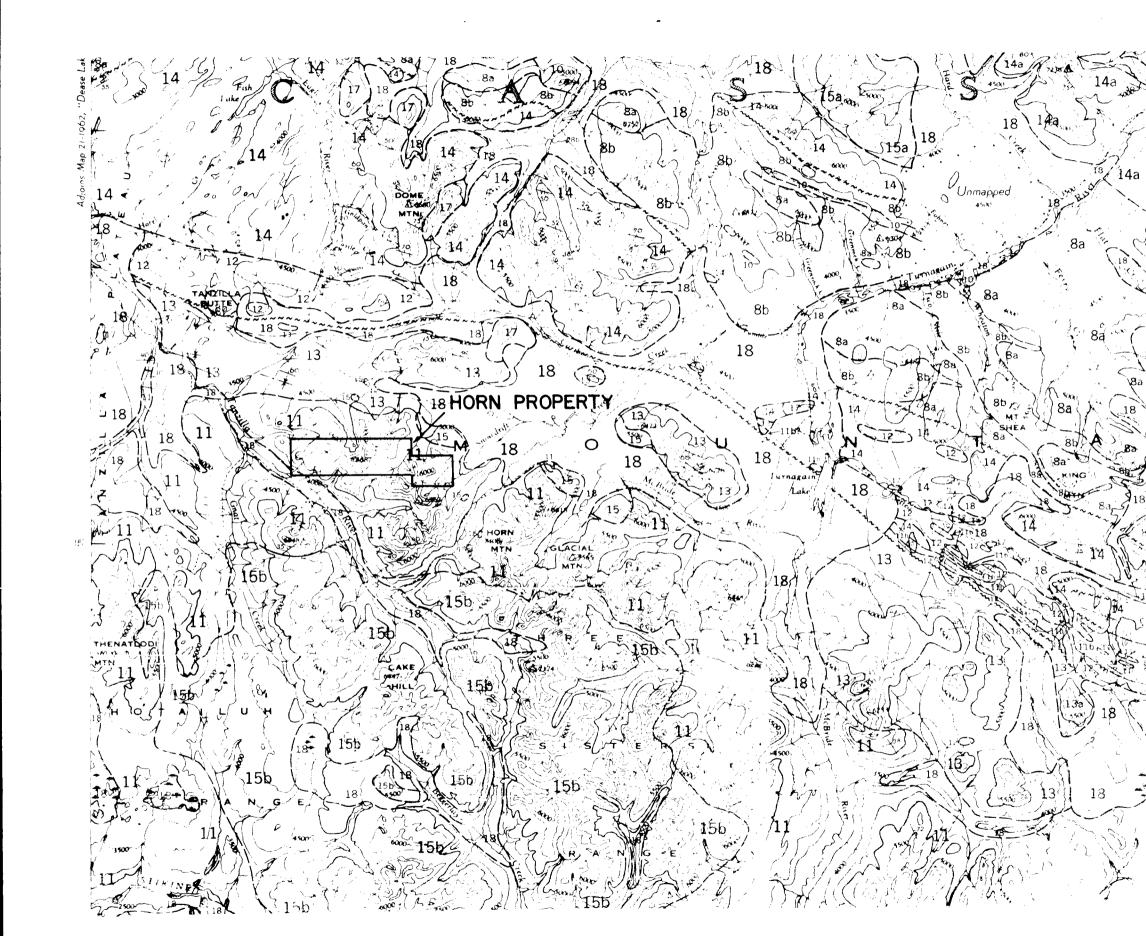
gridlines are established at 25 meter intervals. All stations are slope corrected and marked by pickets, aluminium tags, and fluorescent pink flagging.

1.5.2 <u>Geological Survey</u>

The Property was mapped by J. Wetherill and B. Dynes at a scale of 1:10,000. Geological areas of interest defined by this mapping were then covered on a 1:2,500 scale. Mineralized and altered zones were mapped in detail at scales of 1:250 and 1:500.

Both grids were traversed and mapped with outcrop locations surveyed to the grid coordinates.

1.5.3. <u>Geochemical Surveys</u>


A total of 72 talus and 2 soil bulk heavy mineral concentrate samples were collected from four contour lines crossing the two grids. The samples were analyzed for gold and 29 elements by fire assay and geochemical techniques.

130 rock chip samples of all major lithologies were collected and analyzed for Au and 29 elements. Five of these samples were also analyzed for Hg.

All rock samples were analyzed by geochemical and fire assay techniques. Samples with greater than 50 ppm Ag or greater than 2000 ppm Cu were re-analyzed by one ton fire assay techniques. All geochemical analyses are appendixed.

2.1 <u>Regional Geology</u>

The Horn property is situated to the northwest of the Spatzizi Plateau, in the Cassiar Mountain Range of the Intermontaine Belt. The region is characterized by a sequence of Pre-Cretaceous rocks (described by Gabrielse 1962, 1978) that comprise:

	QUATERNARY PLEISTICCENE AND RECENT
. MA	U IB Fluviatile gravel, sand, and silt; glacial outwash; till and alpine moraine TERTIARY AND QUATERNARY TERTIARY AND QUATERNARY
158	LATE TERTIARY AND PLEISTOCENE Basall, olivine basalt; 17a, rhyplite, pisolitic siliceous luff, chaleedonic rhyplite breecia
	CRETACEOUS AND TEIRTIARY UPPER CRETACEOUS AND PALEOCENE Conglumerate: sandatone: shale; 16a, conglomerate, may be younger
** -=(N)=-	JURASSIC AND/OR CRETACEOUS Undifferentiated granitic rocks, monity quartz monzonite;
ý I	15. CASSIAR INTHOLITH: mainly biolite quartz monzonite; and granekientic, commonly gneissic and maile-rich near contacts with 8 and 83, 13b, mainly hornblende quartz monzonite and granodiorite
in the second se	JURASSIC LOWER JURASSIC 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 5
	14 14a, includes minor limestone; mainly motamorphosed, age uncertain Well hedded greywacke, sandstone, siltstone, shale,
12	13 conclumerate; 13a, includes volcanic rocks, may be in part older
14	UPPER TRIASSIC
8	UPPER TRIASSIC AND(?) EARLIER Andesite, basalt, tuff, breecia, volcanic sandstone and conglomerate, minor greywacke, arguilite and shale; many
Bb Bt	small stocks, sills, and dives of porphyritic andesite and basalt, mainly Upper Triassic; Ha, greenstone; Hb, chert, slate, greenstone, phylite; He, serpentinized peridotite; Hb and He may be pre-Upper Triassic and post-Permian, or.
l	may be equivalent to 8a and 8b PERMIAN 10 Well berified to massive, crystalling, foramuniferal limestone
	10 Well bedded to massive, crystalline, foraminiferal limestone MISSISSIPPIAN LOWER AND MIDDLE MISSISSIPPIAN
A Contraction of the contraction	9 Limestone, cherty limestone; minor dolomite and greywacke DEVONIAN AND MISSISSIPPIAN
18.	UPPER DEVONIAN AND LOWER MISSISSIPPIAN Chert, argilite, argiliacenus quartzite, greenstone, diorite, meta-diorite, conglomerate, lineatione, Ba, may be in part or
	emitrely younger; 8b. serpetinized periodotte, locally includes meta-andesite and meta-diorite; 8c. biotite-muscovite-quartz schist and guess, feldspar-quartz guess, quartz-biolite schist, amphibolite; 8d. greenstone, age uncertain
	SILURIAN AND DEVONIAN SILURIAN, LOWER(?) AND MIDDLE DEVONIAN Grapholitic silitatione, Silurian; well bedded, laminated dolomite, sandy dolomite, dolomitic sandstone; well bedded limestone, leid dolomite, Middle Devonian
	SILURIAN
214	CAMBRIAN AND ORDOVICIAN MIDDLE AND UPPER CAMBRIAN. LOWER AND MIDDLE ORDOVICIAN 5 Thin-berdied shale, limestone calcareous shale, arguilaceous umestone, graptibilite shale, includes minor bodies of greenstone
	CAMURIAN LOWER CAMDRIAN
NT IN	4 Limestone, dotomite, nolitic limestone; minor shale 3 Quartzite, shale, siltstone, pebble conglomerate
	EQUITY SILVER MINES
total .	HORN GROUP
, , , , , , , , , , , , , , , , , , ,	REGIONAL GEOLOGY
	ILCIONAL OLOLOUI
•	SCALE 1: 250,000
	DATED: October 1989 FIGURE No 1.3 DRAWN BY /GT.

- 1. Upper Triassic and Lower Jurassic porphyritic (feldspar) andesite, agglomerate, breccia, tuff, and small dikes, sills, and stocks of porphyritic andesite.
- 2. Upper Triassic Stuhini Group augite and coarse-bladed plagioclase porphyry breccia and flows; local basal conglomerate, siltstone, and greywacke.

These rocks are intruded by younger dioritic and granodioritic phases of the Holtailuh Batholith of Jurassic age. Extensive erosion preceded deposition of Takwahoni Formation sedimentary rocks which include basal conglomerate, and greywacke and shale. Remnants of Neogene basalt, olivene basalt, and intercalated tuff believed to be a stratovolcano assemblage cover several valleys in the region.

The most prominent structural features in the region are the major west-northwest trending thrust faults which cross the Cry Lake map sheet. The northern Nahlin Fault forms the northern boundary of the Atlin Horst, separating Pre-Upper Triassic sedimentary rocks to the north, from volcanic and sedimentary Stuhini Group rocks to the south. A minimum of 6,100 meters of vertical displacement is estimated since Middle Jurassic time.

South and subparallel to the Nahlin Fault, the King Salmon thrust fault crosses the Cry Lake map sheet. The fault is Middle to Upper Jurassic in age and thrusts Upper Triassic Sinwa Formation units southward over Lower Jurassic Takwahoni rocks.

2.0 GEOLOGY

2.2 Property Geology

Outcrop exposure on the Horn Mountain property is generally good at higher elevations and along ridges, however relationships between various lithological units are ambiguous due to masking alteration scree covering most slopes. Lower elevations are covered by thick overburden, with sparse outcrop exposures in deeper cut creek channels.

Geological mapping carried out in 1989 is plotted on figure 2.1 at a scale of 1:10,000. Several detailed maps are keyed to figure 2.1 which show areas mapped at smaller scale. Descriptions of the rock units mapped on the property are listed below.

(TJa) Porphyritic Andesite

Most of the property is underlain by massive to grey-green porphyritic (feldspar) agglomeratic andesite. White plagioclase phenocrysts range from 0.5 to 2.0mm, and are sub-angular to lath shaped. 1-2% pyrite is observed as fine dissemminations. The best The color index is commonly 30 to 40. unaltered exposures of andesite, outcrops along the northeast ridge and is covered by gridlines L3+00S, L4+005 and L5+005. Orientation of these volcanics are not readily discernable, but a general trend of N45W with a shallow dip to the south is observed at The andesite is in contact with distance. а granodiorite (mJgd) to the north of the north grid, but the contact itself is masked by scree. Outcrops are lightly to moderately weathered, generally competent, with only occasional sheaving.

(TJma) Megaphyric Basalt

Light grey weathering, megaphyric (feldspar) basalt flows from a broad knoll to the south of the south The basalt is quite fresh, with only a thin grid. of kaolinized feldspars. White, fresh rind plagioclase megacrysts, 1 to 3 cm in length are subangular and lath-shaped, and lie in a black to dark green basaltic matrix. Round vugs in the matrix are partially to completely quartz-filled. These basalts overlie the porphyritic andesites and probably represent late small scale (Tja), activity.

(TJt) Crystal Lithic Tuff

Within the andesite are small beds of fine-grained, black to dark grey crystal lithic ash tuff with welded textures. Rough composition is estimated in hand specimen to be 60% glass shards, 15% andesite fragments, and 35% crystals and crystal fragments. Exposures of the tuff were observed along the northeast ridge of the north grid, and along L32 drains the south grid. Areas of creek which alteration or silica dyke silicic intense intrusions are found proximal to the tuff on the property.

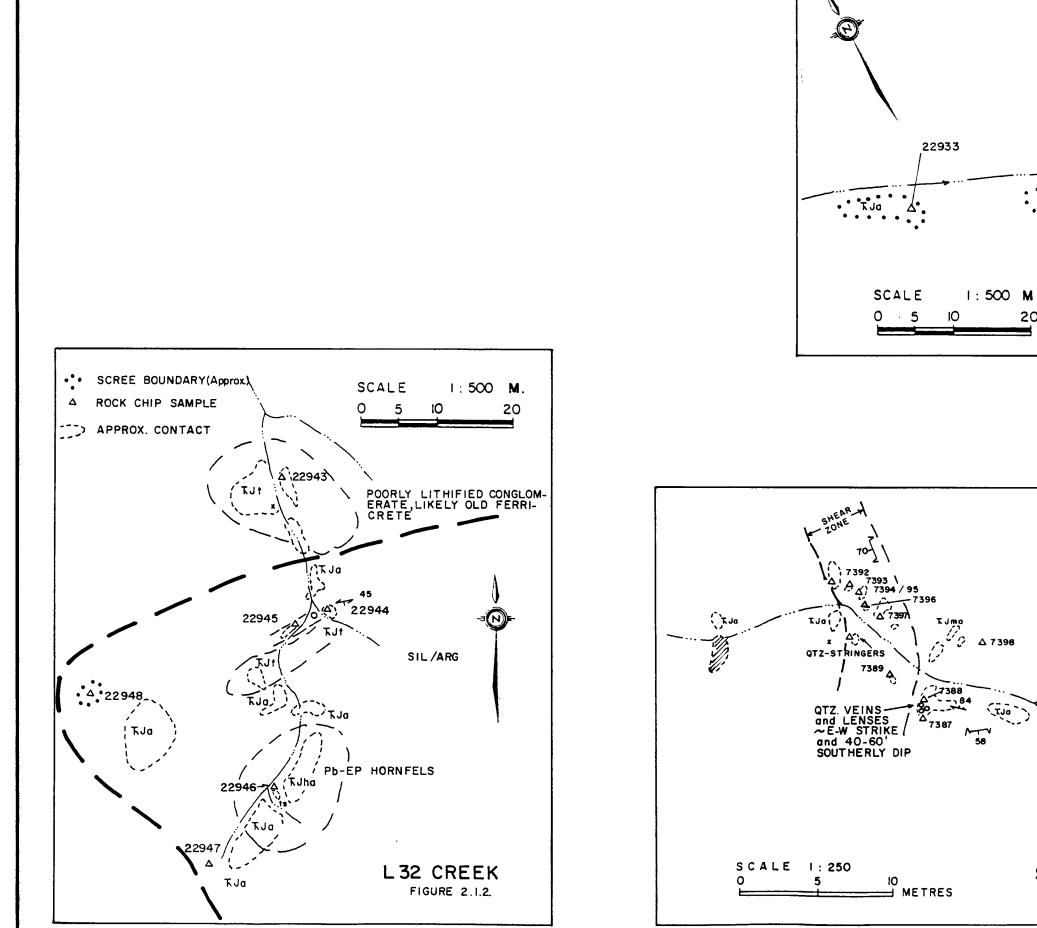
(TJad) Mafic dykes

Small outcrops of andesitic dyke are exposed along the ridge running northwest across the northern grid. The dyke rock is find-grained, massive, light grey to green, and lightly weathered. White plagioclase crystals are unaltered and mafics are only weakly chloritized. Fracture surfaces are calcite coated and the matrix exhibits weak carbonitization. Color index ranges from 20 to 40. The dykes are post silicification and argillization and may or may not be related to he porphyritic andesite (TJa).

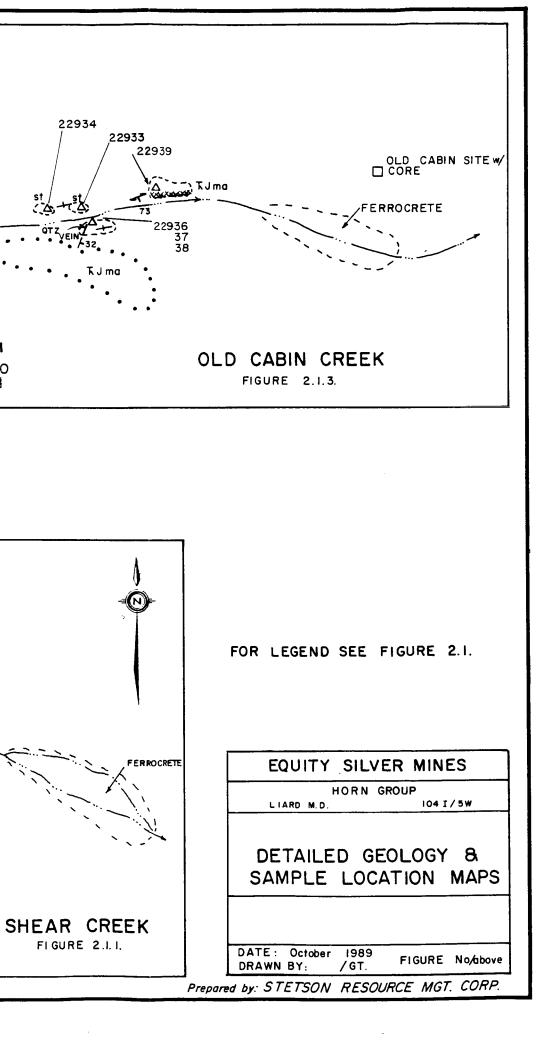
(mJgd) Granodiorite

Medium crystallic, equigranular biotrite hornblende granodiorite contacts the porphyritic andesite (TJa) to the north of the north grid. Light weathered surfaces are dark grey-green, and fracture surfaces ae weakly liminitic. The color index is 20 to 30 with roughly 2% pyrite.

(TJha) Hornfelsed Volcanics


Fine grained, hard, dark green to black albrite and epidote hornfelsed volcanics form a large steep sloped knoll west of the south grid area. Although very fine-grained, mild hornfelsing of the rocks observed on the north grid suggest the protolith is porphyrite andesite.

(ts) Talc-Sericite Schist


Several small exposures of light grey to yellow talc-sericite schist outcrop proximal to silicic alteration zones. Weathered surfaces are light grey to buff colored. Variations in the intensity of sericitic alteration of the andesites observed on the north grid suggests the schist has a porphyritic andesite protolith.

2.3 Property Mineralization and Alteration

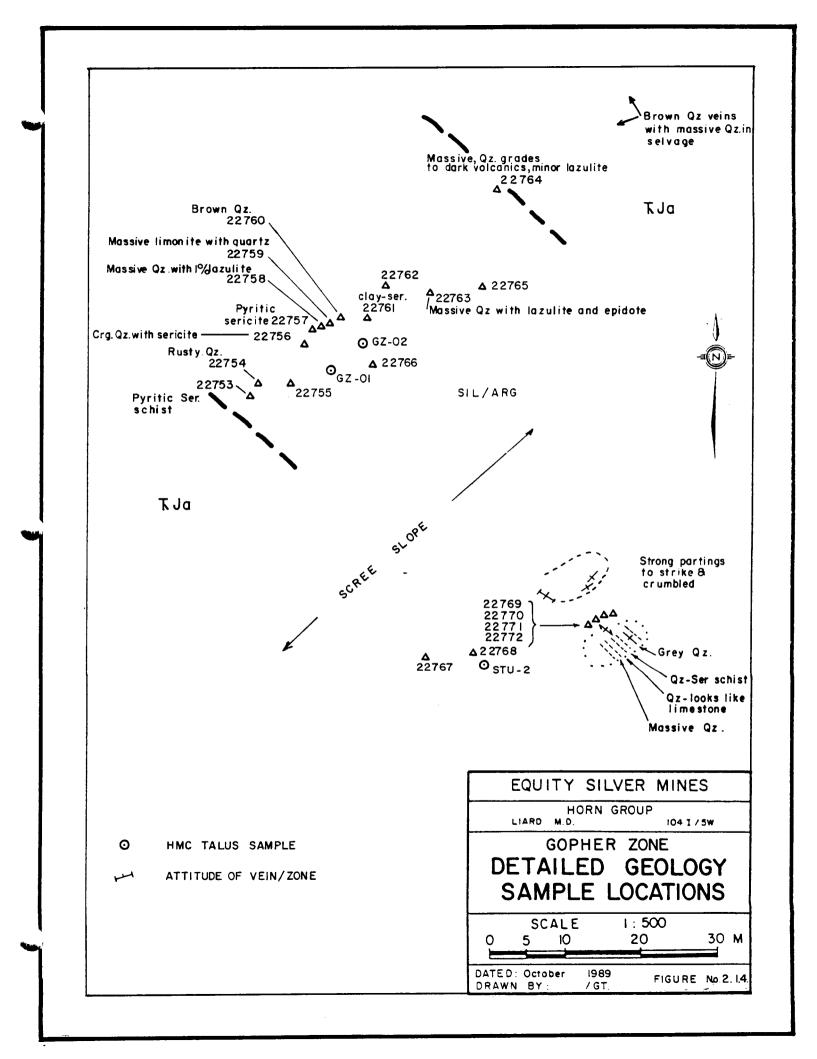
The emphasis of the 1989 field work was on geological mapping and sampling of shear and alteration zones reported by Utah Mines (1975). Further exploration exposed an additional mineralized alteration zones, shear zones, and quartz veins.

)

20

Three types of alteration were observed on the property; silicic, argillic, and sericitic alteration.

the andesites varies Silicification of from moderate to intense. A scree sample found on baseline exhibited a relatively sharp the gradational contact between coarse sucrosic quartz porphyritic andesite. Poorly exposed areas and initially mapped as intense silicic alteration may therefore, be subcrop of a massive quartzolite dyke. Exposures of quartz flooding and veining also outcrop on the property.


Argillic alteration on the property is most intense in the central area of the north grid, where silicic alteration or a quartzolite intrusion is mapped. Sericitization is also intense in this area and weakens to the east and west of the zone.

Smaller occurrences of the three alteration types were mapped in detail on Shear creek, L32 creek, Old Cabin creek, and on the Gopher zone (figures 2.1.1. to 2.1.4). Weak chloritization was also observed, but occurs property wide and is likely a regional alteration.

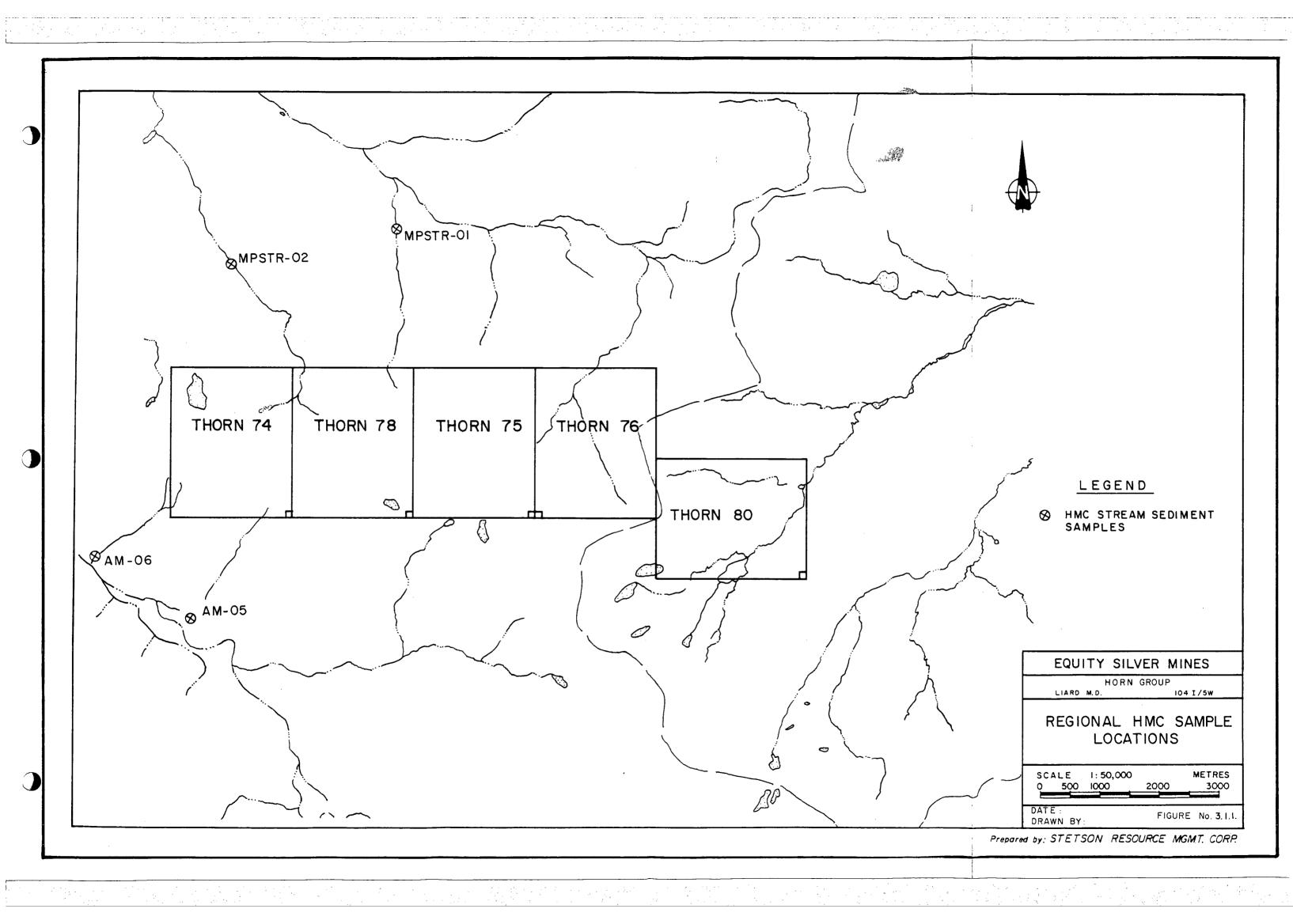
The areas of mineralization on the property include the gossanous ridges covered by the north grid, the Ridge vein above the Circle trench, Shear creek, L32 creek, and the Gopher zone on the south slope of the main property drainage.

Mineralization comprises weathered, rusty, coarse crystalline, white quartz veins with 1% to 5% finely disseminated pyrite, and quartzolite dykes or silicic alteration zones, variably sericitized and argillized which often contains lazulite and disseminated pyrite. Trace to 2% galena, and occassional tetrahedrite, chalcopyrite, and sphalerite were noted in quartz veins along shear creek and on the ridge above the Circle trench. Quartz veining on the property is generally rare, and volumetrically insignificant.

Quartzolite dykes and silicic alteration zones are often poorly exposed, and only weakly mineralized, but are laterally and vertically continuous and significant in width. No obvious structural control of the dykes and alteration zones was observed. Gold and silver values for these rocks are generally low.

A major shear zone, 65 meters wide, mapped by Utah Mines in Shear creek returned a significant gold or silver values. A small outcrop of silicified volcanics in the footwall of the shear is mineralized with small galena cubes 0.5 to 1 mm.

Except for the Shear creek shear zone, all shears and quartz veins on the property are small, irregular structures with no general random, structural control. The Shear creek shear zone has significant width, but its strike length is not readily discernable and it is very weakly Silicic alteration zones or mineralized. dykes are extensive but quartzolite weakly mineralized.


3.0 GEOCHEMICAL SURVEYS

3.1 Introduction

Extensive geochemical sampling was carried out to test the economic potential of the property. 130 rock chip samples were collected from silicic and argillic alteration zones, shear zones, and quartz veins. Twelve bulk heavy mineral concentrate stream sediment samples were collected from major property drainages, and 72 bulk heavy mineral concentrate talus samples were collected along contour lines on the north and south grids. Two bulk heavy mineral soil samples were collected from the B-horizon of the west slope of snowdrift creek valley (Figs. 3.1, 3.1.1).

The purpose of the bulk heavy mineral talus/soil sampling survey was:

- to verify 19 Ag, Cu anomalies delineated by a B-horizon soil sampling program on the west slope of Snowdrift Creek valley.
- 2. to locate possible dispersion trains from upslope mineralization.
- 3. to minimize the "nugget effect" inherent in conventional soil sampling methods.
- 4. To locate previously undetected mineralization on the property.

3.2 Lithogeochemistry

3.2.1 <u>Analytical Techniques</u>

In the field, 5-6 kilogram rock chip samples were collected, tagged, and stored in plastic bags. These samples were sent to Bondar-Clegg Laboratories in Vancouver for 29 element ICP geochemical and Fire Assay atomic absorption gold analyses. In the laboratory, samples were put through primary and secondary crushers. A sub sample of approximately 250 grams was then screened to -100, or -150 mesh and the pulp, Fire Assayed for gold plus 29 element ICP.

3.2.2 <u>Analytical Results</u>

Only one significant assay was obtained from the 130 rock precious metal samples collected the from property. Sample 22931 returned 570 ppb Au, 4.81 oz/ton Ag and 24% Cu from a 10 cm wide discontinuous The vein is massive sulphide vein. of the located immediately south Circle trench on a small ridge. Other samples returned anomalous assays. Sample 7398 returned 127 ppb Au, 5.2 ppm Ag, and 8405 ppm Pb from a select sample of silicified andesite in the footwall of the Shear creek shear zone. Small galena cubes (0.5 to 1mm) were The remaining observed in the sample. rock samples returned insignificant values in gold, silver and copper. Elevated levels of strontrium were detected, and generally associated with silicic alteration zones. This is consistent with the observations of tourmaline often lining small vugs in the silica matrix. Elevated levels of zinc were detected, but no associations are evident. Five samples were assayed mercury and one returned for an anomalous value (800 ppb). Sample 22890 was collected from fine-grained and opaline quartz float in a dry wash near the camp.

Correlation charts were completed for gold, silver, copper, and zinc using Bondar-Clegg's CORMAT program and are found in Appendix III. Correlation numbers are listed to the right of the chart for each element, and significant correlations are marked with a number while non correlating symbol (#) elements are marked by an asterisk phrase (*.***). Certain elements are not fully dissolved by Bondar-Clegg's HNO, - HCI hot extraction process and do not represent the sample geochemistry of the sample. (R. Callow 1989, personal communication) Barium, chromium, niobium, rubidium, and antimony are therefore not Gold has significant considered. with corellations silver, arsenic, tantelum, lead, cadmium, copper, tellurium, tungsten, and zinc. Silver and copper have similiar correlations have significant both no but correlation with lead. Zinc has significant corellations with gold, silver, cadmium, copper, gallium, lithium, nickel, scandium, tantalum, tellurium, vanadium, tungsten, and yittrium.

3.3 <u>Talus/Stream Sediment Heavy Mineral Concentrate</u> (HMC) Sampling

3.3.1 <u>Analytical Techniques</u>

For HMC stream sediment samples, 50 to 100 kilograms of sediment were screened through a 20 mesh sieve to obtain a 10 to 15 kilogram sample. For HMC talus or soil samples, a 10 mesh or 6 mesh sieve was used, with mesh size dependent on moisture or clay content of the medium.

The samples were placed in 11" x 17" plastic bags and sent to Vancouver for processing. The samples were mechanically panned down to obtain a 10 gm concentrate. Each sample was then studied under an ocular microscope for mineralogy, grain size and structure. (See Appendix IV). The concentrates were then analyzed for 29 element ICP and Fire Assay gold analyses.

3.3.2 <u>Analytical Results</u>

To date, only 20 HMC samples have been returned from Onex and Min-En laboratories. Of these samples, three are HMC stream sediment samples (AM-03, AM-05 & AM-06).

The stream sediment samples AM-03 and AM-06 are reported to contain a single, angular, gold particle between 200 and 400 microns in diameter.

Sample AM-05 contained finer gold of twenty three, 50 to 100 micron sized particles, and two, 100 to 200 micron sized particles.

The majority of these samples were composed of magnetite particles with minor hematite ilmenite and pyrite particles, and roughly one third unknown particles.

Gold particles were not found in the remaining talus and soil HMC samples, with the exception of a few fine particles (<50 microns) and one medium particle (100 - 200 microns) found in samples SW5+87 and SW 3+64, and in SD-02 respectively.

The visual analysis of the samples is reflected in the Fire Assay atomic absorption results returned by Min-En Laboratories.

5.0 CONCLUSION

Results to date indicate that the Horn property requires further detailed mapping and sampling with follow up on all HMC anomalies.

STATEMENT OF QUALIFICATIONS

NAME:	Wetherill, J.F.
PROFESSION:	Geologist - Engineer in Training
EDUCATION:	1987 B.A.Sc. Geology - University of British Columbia
EXPERIENCE:	1987 - Present: Geologist with Stetson Resource Management Corp. Field Supervisor for exploration programs involving geology, geo- chemistry, and geophysics in B.C. and Yukon.
	1986, June - August: Field Assistant -Geologist involved with geological, geochemical and geophysical aspects of exploration programs in B.C.

COST STATEMENT

Project Preparation

Shipping

Printing Ŝ 86.80 \$ Maps 16.70 Ŝ Drafting 48.00 J. Wetherill 1 day @ \$225/ day B. Dynes 1 day @ \$225/ day \$ 225.00 Ŝ 225.00 Ś 601.50 Field Personnel PROJECT GEOLOGIST J. Wetherill (July 24-Aug 2) 10 days @ \$250/day \$ 2,500.00 PROSPECTOR B. Dynes (July 29-Aug 2) 5 days @ \$225/day \$ 1,125.00 FIELD TECHNICIANS M. Pym (July 29-Aug 2) 5 days @ \$175/day \$ 875.00 M. Pym (July 29-Aug 2) 5 days @ \$175/day \$ 875.00 W. Landers (July 24-Aug 2) 10 days @ \$175/day \$ 1,750.00 C. Milonas (July 29-Aug 2) 5 days @ \$175/day \$ 875.00 R. Herzig (July 24-Aug 2) 10 days @ \$175/day \$ 1,750.00 M. Djordjevich (July 24-28) 5 days @ \$175/day \$ 875.00 EDA OPERATOR M. Djordjevich (July 29-Aug 2) 5 days @ \$250/day \$ 1,250.00 _____ \$11,000.00 Support Mobilization/Demobilization: Ford Bronco 2 days @ \$60.00/day \$ 120.00 64 km @ \$0.15/km Ŝ 9.60 2 days @ \$60.00/day F250 4X4 \$ 120.00 86 km @ \$0.15/km Ŝ 12.90 Helicopter 5.4 hours @ \$750/hr \$ 4,050.00 Camp: 55 mandays @ \$25/manday \$ 1,375.00 Room \$ Board 55 mandays @ \$18/manday 990.00 Gasoline \$ \$ \$ 180.00 Propane 341.90 General Supplies 551.45 \$ Communication (BC Tel) 58.80

Ŝ

111.95

- 13 -

Equipment Rental: EDA Mag/VLF-EM : 10 days @ \$200/day Generator : 10 days @ \$25/day Computor : 10 days @ \$25/day Radios : 4X10 days @ \$20/day Chainsaw : 10 days @ \$25/day Field Equipment : 10 days @ \$15/day	\$ 2,000.00 \$ 250.00 \$ 250.00 \$ 800.00 \$ 250.00 \$ 150.00 \$ 150.00
Assays	
Rock 29 ICP, Fire Assay Au, and Prep 138 rocks @ \$20/sample	\$ 2,760.00 \$ 2,760.00
Contract Services	
Geophysicist (Interpretex)	\$ 3,875.00 ======== \$ 3,875.00
Report Writing	
Geologist 5 days @ \$250/day Draftsman 5 days @ \$200/day Supplies Typing, Copying	\$ 1,250.00 \$ 1,000.00 \$ 112.60 \$ 65.00 \$ 1,527.60
Subtotal	\$31,974.30
12% Administrative Overhead	\$ 3,836.92 ======
TOTAL	\$35,811.22

REFERENCES

Gabrielse, H.

1979 Cry Lake Map Area; Geol. Surv. Canada, Open File Map 610.

Clouthier, G.A. and Vyselaar J.

1975 Geological and Geophysical Report on the Tom Group 1; BCDEMPR Assessment Report #5769.

Graham, J.D.

1982 Geochemical Report on Drift Group Mineral Claims; BCDEMPR Assessment Report #10,923

Smee, B.W.

1971 Geochemical Soil Survey on the Lotus Group of Claims; BCDEMPR Assessment Report #3538.

ar-pa40

APPENDIX I

Geophysical Report

1.0 INTRODUCTION

A geophysical program, consisting of electromagnetic (VLF-EM) and magnetic surveys, was carried out on two grids located on the Horn Mountain claim group in the Liard Mining Division near Dease Lake, B.C. The survey was carried out in August, 1989.

2.0 OBJECTIVES

- to establish a correlation between magnetic minerals and mineralized trends,
- to test the effectiveness of VLF-EM in following possible mineralized trends and to establish new unrecognized conductive trends,
- to establish geophysical areas of interest for future exploration.

3.0 SURVEY SPECIFICATIONS

Survey Parametera

- survey line separation 50 m.
- survey station spacing 12.5 m.
- VLF-EM and magnetic survey total 24.1 km.

Equipment Parameters

- VLF-EM and Magnetic Surveys

- Scintrex Omni Plus combined VLF-EM and magnetometer
- Dip Angle (in-phase) and Quadrature (out-of-phase) measured in percent at each station
- VLF-EM Field Strength measured at each station
- transmitting stations used NPM (23.4 kHz) Lualualei, Hw.
 - NAA (24.0 kHz) Cutler Ma.
- earth's total magnetic field measured in gammas (nT)
- magnetic variations controlled by automatic magnetic base station recording every 30 seconds
- instrument accuracy +/- 0.1 nT.

Equipment Specifications - see Appendix I

4.0 DATA

Calculations

Total Field Magnetic Survey

Total field magnetic readings were individually corrected for variations in the earth's magnetic field using magnetic base station values. The formula used for magnetic corrections was; CTFR = TFR + (DBL - BSR)

> where: CTFR = Corrected Total Field Reading TFR = Total Field Reading DBL = Datum Base Level BSR = Base Station Reading

Presentation

- Cutler VLF-EM in-phase, out-of-phase and field strength readings are presented in profile form on Figure # G-1 at a scale of 1:5000
- Lualualei VLF-EM in-phase, out-of-phase and field strength readings are presented in profile form on Figure # G-2 at a scale of 1:5000
- Magnetic data were profiled and are presented on Figure # G-3 at a scale of 1:5000
- Magnetic data were contoured and are presented on Figure # G-4 at a scale of 1:5000
- The geophysical interpretation is presented on Figure # G-5 at a scale of 1:5000
- Field readings and calculated values are listed in Appendix II

5.0 INTERPRETATION

Discussion of Results

Total field magnetic data over the Horn Mountain survey area were noise free with no cultural sources observed. Magnetic readings range from 57100 nT. to 61300 nT. The magnetic datum value for the total field magnetic profile map was determined by statistical analysis to be 58500 nT. This datum value, which graphically shows if a magnetic reading is above or below the mean value for the grid, was also the threshold between dashed and solid contours on the total field magnetic contour map.

Three magnetic units have been defined on the Horn Mountain survey area based on magnetic intensity and activity. Magnetic unit "M1" covers the central portion the northern grid and is characterized by relatively quiet magnetic activity with values ranging from 58300 nT. to 58600 nT. Magnetic unit "M2" is characterized by steep gradients and high intensity ranging from 58500 nT. to 61300 nT. Located on the east and west edges of the north grid and the east edge of the south grid, "M2" consists of numerous variable wavelength anomalies. Magnetic unit "M3" exhibits steep gradients and lower magnetic intensity than "M2".

Two magnetic low features trending approximately east-west, have been delineated on the Horn Mountain grid based on profile character continuation from line to line and contour terminations and offsets. These magnetic lineaments are labeled "L1" to "L2" on Figure # G-4. Lineaments "L1" and "L2" exhibit similar profile character and are both coincident with VLF-EM conductors. As well, both lineaments terminate abruptly into inferred fault "F1".

Three magnetic high features, labeled "D1" to "D3" on Figure # G-4, have been delineated on the survey area. Lineaments "D1" and "D2" trend approximately east west and are located within magnetic unit "M2". "D1" is a relatively wide, monopolar feature that appears to consist of several discrete individual anomalies. "D2" is a strong high exhibiting dipolar response and long wavelengths. "D3" is located within magnetic unit "M3" and trends approximately north. "D3" is a moderate, monopolar high feature that exhibits the strongest response on line 1000S and weakens to the north until line 800S where "D3" terminates into "F1".

VLF-EM data were noisy at times but no cultural sources were observed. Data quality was good and duplicate readings at baseline 0 on line 300S and at 200E on line 2400S show that in-phase and quadrature results were virtually identical when surveyed on different days. Field strength readings are dependent on transmitter power output and weather conditions therefore, these results are time dependent. For this reason level changes in field strength data result from data acquired on different days. Only NAA, Cutler, Maine data were interpreted due to weak responses obtained from the NPM, Lualualei, Hawaii NSS, transmitter.

VLF-EM data display a response to topography within the survey area. The topographic signature characteristically exhibits long wavelength and large amplitude in-phase and quadrature responses as well as a broad field strength anomaly. Topographic effects are seen as strong positive in-phase results on the northwestern portion of the survey area. Due to the strong topographical responses the VLF-EM profiles were plotted at a compressed vertical scale of 1 cm. equals 30%.

VLF-EM response was complex on the north grid. Numerous, strong but short conductors delineated on the north grid have been grouped into two conductor systems. Conductor system "C1" is located north of inferred fault "F1" within magnetic unit "M1". Conductor system "C4" is located south of "F1" in magnetic unit "M2". Conductors "C2" and "C3" east-west trending strong anomalies with relatively long strike lengths. Over most of the north grid a relatively strong, short wavelength noise is observed.

Inferred faults "F1" and "F2" were interpreted on the basis of magnetic profile character continuation and magnetic contour offsets as well as VLF-EM conductor displacements and terminations. Inferred fault "F1" represents a change in magnetic character from magnetic unit "M1" to "M3". Also "F1" terminates a number of lineaments and conductors. "F2" was interpreted to explain the right lateral displacement of "M2" from 100E on line 400S to 425E on line 300S. "F2" also appears to terminate a few conductors.

The south grid exhibited less active response than the north grid with only three conductors observed. Conductors "C5" and "C6" exhibit moderate to strong response and trend approximately in the same direction as "C2" and "C3". Although the magnetic environment is too active to delineate lineaments, it appears that "C2" and "C3" correlate well with local magnetic low features. A weak, unlabeled conductor is observed to be coincident with the interpreted contact between "M1" and "M2".

-3-

Conclusions

Magnetic and VLF-EM results over the Horn Mountain claim group were auccessful in defining magnetic units, which may represent area lithology, and in delineating numerous conductors and magnetic lineaments, believed to represent structural features such as faults or shear zones.

Magnetic units outlined on Figure # G-4 define areas of varying magnetic susceptibilities. Magnetic units represent areas of different magnetic mineral content, thereby suggesting different rock types. Generally, the more magnetically active areas represent higher mafic mineral content. For this reason, the more magnetically active unit "M2" is interpreted to define an area underlain by basic volcanic flows.

Magnetic low lineaments "L1" and "L2" trend east-west and are believed to represent oxidization within shear zones or possibly fault controlled acidic intrusions. The coincidence of strong conductors with the magnetic low lineaments suggests that sulphide mineralization may exist along these magnetic low features.

Magnetic high lineaments "D1" and "D2" are located in a magnetically active unit "M2". "D1" exhibits monopolar response, suggesting deep depth extent. "D1" also appears to be made up of several parallel bodies and is interpreted to represent a number of closely spaced, narrow basic dykes. "D2" is parallel to "D1" and exhibits highs ranging from 1500 nT. to 2000 nT. above background and is interpreted to represent a basic dyke. "D2" exhibits dipolar response suggesting that it has a shallow depth extent. To the south, "D2" appears to be terminated at line 700N by "F1".

Magnetic high lineament "D3" consists of an individual high trending north from line 1000S to line 800S. "D3" is characterized by 50 m. wide magnetic highs ranging from 700 nT to 1500 nT above background and is interpreted to represent a basic dyke.

The VLF-EM method was quite responsive on the Horn Mountain grid. Conductors are primarily interpreted to represent conductive structures. Conductor intersections and stronger anomalies within long conductors may represent structural traps or fault dilations and are interpreted to be the best candidates for economic mineralization in the area.

Noisy VLF-EM response over the north grid may indicate either the presence of conductive overburden or the presence of numerous fracture zones. Considering the relatively large amplitude and apparent line to line continuation of the noise, fracture zones are believed to be the source of the VLF-EM noise.

The numerous moderate to strong anomalies making up conductor system "C1" are believed to represent a fracture or breccia zone. Anomalous response for "C1" is stronger than usually expected for such short strike lengths, suggesting a highly conductive source. A localized

....5

magnetic high near 500W on lines 200S and 300S appears to terminate a number of "C1" conductors. This magnetic high may represent a basic dyke which has cut through "C1". It is also possible that there are more cross-faults such as inferred faults "F1" and "F2" terminating and offsetting the conductors in this area. In this case, the stronger anomalies within "C1" may represent fault intersections and are therefore considered important geophysical targets.

Conductors "C2" and "C3" are both interpreted to represent structural features, probably a fault. The strong response of these conductors coupled with the good correlation with magnetic low lineaments "L1" and "L2" suggest that "C2" and "C3" represent a major feature and, as discussed above, possibly containing sulphide mineralization. The intersection of "C2" with a "C4" conductor is interpreted to be the best target along "C2". The strong anomalies on lines 800S and 900S are thought to be the best targets along "C3".

Conductor system "C4" contains the strongest anomalies observed on the grid. Conductors within "C4" exhibit similar character to "C1" conductors and are also interpreted to represent fracture zones. The strongest conductor within "C4" is located at approximately 750W from line 800S to 1000S and appears to be growing stronger as it continues off the grid to the southeast.

Although conductors "C5" and "C6" exhibit weaker response and the correlation with magnetic low features is questionable, these conductors are believed to be related to conductors "C2" and "C3". Therefore "C5" and "C6" are interpreted to represent structural features.

6.0 RECOMMENDATIONS

The VLF-EM and magnetic interpretation has delineated magnetic and conductive trends on the Horn Mountain survey area that warrant follow-up exploration. Surface geological investigations are recommended to determine the importance of the following targets.

The strongest anomalies along conductors "C2" and "C3" are considered the highest priority targets for follow-up exploration on the grid. Next in priority are the strongest anomalies within conductor systems "C1" and "C4". The most notable targets in these systems are line 1000S at 810W and line 400S at 350W. The last priority targets on the grid are conductors "C5" and "C6".

A larger VLF-EM and magnetic survey is recommended to determine the extent of the conductors and magnetic features discovered in the present survey.

A horizontal loop electromagnetic survey is recommended to more accurately define the location of strong VLF-EM conductors if fault controlled mineralization is suspected. If disseminated mineralization is believed to be present, an induced polarization/resistivity survey is recommended to determine chargeable and resistive zones. A deep electromagnetic survey, such as UTEM, is recommended to determine the depth extent of conductive bodies discovered in the present survey. Respectfully Submitted

٠÷

÷.

. •

INTERPRETEX RESOURCES LTD. Vancouver, British Columbia

T.R. Matich

Geophysicist

CERTIFICATE

I, Thomas Raymond Matich, Geophysicist of Surrey, British Columbia, Canada, hereby certify that:

- 1. I received a B.Sc.'degree in Geophysics from the University of British Columbia in 1982.
- 2. I currently reside at 13914 116 Ave, in the Municpality of Surrey, in the Province of British Columbia.
- 3. I have been practising my profession since graduation.
- 4. I hold no direct or indirect interest in, nor expect to receive any benefits from, the mineral property or properties described in this report.
- 5. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.
- 6. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Date: October 30, 1989

Surrey, British Columbia Signed:

Thomas Raymond Matich B.Sc.

AUTHOR'S NOTE

•

Data interpreted in this report were accumulated without supervision by Interpretex Resources Ltd. and were supplied by the Client to the writer(s). These data and the locations on the ground from which these data were accumulated are, except when specified otherwise by the writer(s), assumed to be reliable and correct and were interpreted using this assumption.

APPENDIX I

.

• ·

.

.

,

Equipment Specifications

.....

	_
Specifications*	
Frequency Tuning Range	
Transmitting Stations Measured . Up to 3 stations can be automatically measured at any given grid location within frequency tuning range	
Recorded VLF Magnetic Parameters	
Standard Memory Capacity 800 combined VLF magnetic and VLF electric measurements as well as gradiometer and magnetometer readings	
Display	
RS232C Serial I/O Interface 2400 baud rate, 8 data bits, 2 stop bits, no parity	
Test Mode	
Sensor Head Contains 3 orthogonally mounted coils with automatic tilt compensation	
Operating Environmental Range	
Power Supply	
Weights and Dimensions Instrument Console	
*Preliminary	1

*Preliminary

EDA instruments inc., 4 Thorncliffe Park Drive, Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR, Cables: Instruments Toront (416) 425-7800

in USA, EDA Instruments Inc., 5151 Ward Road, Wheat Ridge, Colorado U.S.A. 80033 (303) 422-9112

Printed in Canada

el ne ne el centero

Specifications

specifications	
Dynamic Range	18,000 to 110,000 gammas. Roll-over display feature suppresses first significant digit upon exceeding 100,000 gammas.
	Tuning value is calculated accurately utilizing a specially developed tuning algorithm
Automatic Fine Tuning	. ± 15% relative to ambient field strength of last stored value
Display Resolution	0.1 gamma
Processing Sensitivity	
Statistical Error Resolution	
Absolute Accuracy	 ± 1 gamma at 50,000 gammas at 23°C ± 2 gamma over total temperature range
Standard Memory Capacity	4 200 data blacks of sections
Total Field or Gradient Tie-Line Points Base Station	100 data blocks or sets of readings
	Custom-designed, ruggedized liquid crystal display with an
	operating temperature range from -40°C to +55°C. The display contains six numeric digits, decimal point, battery status monitor, signal decay rate and signal amplitude monitor and function descriptors.
RS 232 Serial I/O Interface	2400 baud, 8 data bits, 2 stop bits, no parity
Gradient Tolerance	
	A. Diagnostic testing (data and programmable memory) B. Self Test (hardware)
Sensor	Optimized miniature design. Magnetic cleanliness is consistent with the specified absolute accuracy.
Gradient Sensors	0.5 meter sensor separation (standard), normalized to gammas/meter. Optional 1.0 meter sensor separation available. Horizontal sensors optional.
Sensor Cable	Remains flexible in temperature range specified, includes strain-relief connector
Cycling Time (Base Station Mode)	Programmable from 5 seconds up to 60 minutes in 1 second increments
	, -40°C to +55°C; 0-100% relative humidity; weatherproof
Power Supply	Non-magnetic rechargeable sealed lead-acid battery cartridge or belt; rechargeable NiCad or Disposable battery cartridge or belt; or 12V DC power source option for base station operation.
Battery Cartridge/Belt Life	2,000 to 5,000 readings, for sealed lead acid power supply, depending upon ambient temperature and rate of readings
Weights and Dimensions	-
Instrument Console Only	2.8 kg, 238 x 150 x 250mm
NiCad or Alkaline Battery Cartridge	
NiCad or Alkaline Battery Belt	, 1.2 kg, 540 x 100 x 40mm
Lead-Acid Battery Cartridge	
Lead-Acid Battery Belt	
Sensor	
Gradient Sensor (0.5 m separation - standard)	
Gradient Sensor	
(1.0 m separation - optional)	
	Instrument console; sensor; 3-meter cable, aluminum sectional sensor staff, power supply, harness assembly, operations manual.
Base Station Option	Standard system plus 30 meter cable
Gradlometer Option	Standard system plus 0.5 meter sensor

E D A Instruments Inc. 4 Thorncliffe Park Drive Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR Cable: Instruments Toronto (416) 425 7800

In U.S.A. E D A Instruments Inc. 5151 Ward Road Wheat Ridge, Colorado U.S.A. 80033 (303) 422 9112

Printed in Canada

APPENDIX II

Rock Chip Assay Results

۰.

•••

Geochemical Lab Report

•

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: U89-03947.0 (COMPLETE)

REFERENCE INFO:

	CI TENTA CTI										
	PROJECT: E		I RESOURCE MANAGEMENT				D 3Y: B. DYNES NTED: 6-AUG-39				
		10111				UNIC PAL	NICU: 6-HUG-67				
				NUMBER OF	LOHER						
	ORDER		ELEMENT	ANALYSES	DETECTION LINIT	EXTRACTION	RETHOD				
	1	Αu	Gold - Fire Assay	5	5 998	FIRE-ASSAY	Fire Assay AA				
	2	Ag	Silver	5	0.2 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	3	As	Arsenic	5	S PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	4	Ba	Barius	5	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	5	Be	Beryllium	5	0.5 PPH	HNO3-HCL HOT EXTR	Ind. Coupled Plasma				
	6	81	Bisauth	5	2 PPm	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	7	Cd	Cadmium	5	1 2211	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
					L FF10						
	8	Ca	Cerius	5	5 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	9	Ca	Cobalt	5	1 PPn	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	10	Cr	Chronium	5	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	11	Cu	Copper	5	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	12	Ga	Gallium	5	2 201	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
·	13	La	Lanthanun	5	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	14	Lī	Lithium	5	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	15	lla	ño i ybdenum	5	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	16	Nb	Nichium	5	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	17	NT	Nickel	5	1 221						
· · · · · · · · · · · · · · · · · · ·	±,				1 FFU	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	18	P5	Lead	5	2 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	19	RЬ	Rubidium	5	20 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	20	Sb	Antimony	5	S PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	21	Sc	Scandius	5	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	22	Sn	Tin	5	20 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
• <u></u> •••	23	Sr	Strontium	5	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plassa				
	24		Tantalua	5	10 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	25	Te		- -	10 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	25	V	Vanadium	5	1 PPf	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	27	ų	Tungsten	5	10 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
					10 FF (1						
	28	Y	Yttrium	5	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	29	Zn	Zinc	5	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	30	Zr	Zirconium	S	1 PPn	HN03-HCL HOT EXTR	Ind. Coupled Plasma				
	31	Hg	Mercury	5	5 PP8	HN03-HCI-SnS04	Cold Vapour AA				

.

Geochemical Lab Report

REPORT: V89-03947.0 (COM	PLETE)	<u>]</u> .		REFERENCE INFO:			
CLIENT: STETSON RESOURCE P PROJECT: EQUITY	IANAGENENT		SUBMITTED 3Y: B. DYNES DATE PRINTED: 6-AUG-39				
				SAMPLE PREPARATIONS NUMBER			
		2 -150	5	CRUSH, PULVERIZE -150 5 BATCH SURCHARGE 5			
are therefor package. Bi, Be and A	e running an 1 15 may be eleva	ICP 29 element Ited due to an					
REPORT COPIES TO: \$13	-1155 MELVILLE	E STREET	INUC	DICE TO: #13-1155 MELVILLE STREET			
	<u>.</u>						
			<u></u> 477 - <u></u>				
	<u> </u>		<u> </u>				
	CLIENT: STETSON RESOURCE M PROJECT: EQUITY SAMPLE TYPES R ROCK OR BED ROCK REMARKS: We do not of are therefor package. Bi, Be and R additive for REPORT COPIES TO: \$13	SAMPLE TYPES NUMBER R ROCK OR BED ROCK S REMARKS: We do not offer a 30 eleme are therefore running an 1 package. Bi, Be and Rb may be eleva additive interforce from REPORT COPIES TO: #13-1155 MELVILLS	CLIENT: STETSON RESOURCE MANAGEMENT PROJECT: EQUITY SAMPLE TYPES NUMBER SIZE FRACTIONS R ROCK OR BED ROCK S 2 -150 REMARKS: We do not offer a 30 element package and are therefore running an ICP 29 element package. Bi, Be and Rb may be elevated due to an Bidditive interference from Fe. 3n and Ca REPORT COPIES TO: #13-1155 MELVILLE STREET REPORT COPIES TO: #13-1155 MELVILLE STREET	CLIENT: STETSON RESOURCE MANAGEMENT PROJECT: EQUITY SAMPLE TYPES NUMBER R ROCK OR BED ROCK S Z -150 S Z REMARKS: We do not offer a 30 element package and are therefore running an ICP 29 element package. Bi, Be and Rb may be elevated due to an additive interference from fer in and C3. REPORT COPIES TO: #13-1155 MELVILLE STREET			

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: U89-	03947.0			:	•		-	OJECT: EQ	D: 5-4UG UITY		PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	Au PP8	Ag PPH	As PPH	8a PPit	Be PPN	37 1991	Cd PPH	Ca PPit	Ça PPtt	Cr PPM	Cu PPM
R2 22888		10	0.3	173	90	6.6	34	<1	13	1	5	180
R2 22889		16	0.3	227	210	6.5	47	<1	17	<1	8	39
R2 22890		39	0.4	109	45	3.4	17	<1	7	4	53	36
R2 22391		<5	<0.2	51	63	1.7	10	<1	9	4	9	13
R2 22892		< <u>s</u>	<0.2	63	8	2.3	12	<1	<5	7	71	32

÷

•

1		 	 	
1	 		 	_

A	

A

.

Geochemical Lab Report

	REPORT: V89-	03947.0	:						IE PRINIE OJECT: EI			PAGE 18	
	SAMPLE NUMBER	ELEMENT UNITS	Ga PPIt	La PPN	Lī PPH	ita PPN	Nb PPit	NT PPH	Р Б РРП	Rb PPN	55 991	Sc PPH	Si PP?
	R2 22888 R2 22889 R2 22890 R2 22891		7 12 <2 4	4 6 2 3	5 15 <1 2	30 22 28 2	<1 <1 <1 <1	1 2 3 3	54 78 20 11	70 64 74 93	39 48 20 14	1 6 <1 1	<20 <20 <20 <20
	R2 22392		<2	<1	<1	3	<1	4	3	<20	14	<1	<20
~							-		<u></u>				
-													
		. « * ***											
													_
~													

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

 REPORT: V89-	REPORT: 189-03947.0						PROJECT: EQUITY				PAGE 1C	
 SAMPLE NUMBER	ELEMENT UNITS	Sr PPN	Ta PPit	Te PPn	V РРП	u PPN	Y PPfi	Zn PPn	Z . PPM	Hg PP8		
 R2 22888		52	<18	18	40		<1	13	4	140		
R2 22389		146	<10	29	73	<10	2	91	12	115		
R2 22890		10	<10	10	3	<10	<1	3	29	300		
R2 22891		48	<10	10	14	<10	1	7	2	10		
R2 22392		34	<10	<10	10	<10	<1	2	<1	25		

::

:

• • •

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-05231.0 (COMPLETE)

REFERENCE INFO: SHIPMENT #3

CLIENT: STETSON RESOURCE MANAGEMENT PROJECT: HORN

SUBMITTED BY: J. WETHERILL DATE PRINTED: 29-AUG-39

				NUMBER OF	LOWER		
	ORDER		ELEMENT	ANALYSES	DETECTION LIMIT	EXTRACTION	METHOD
	1 4	Au	Gold - Fire Assay	28	5 PPB	FTRE-ASSAY	Fire Assay AA
1	2	Ag	Silver	28	0.2 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
ſ	3 6	Ás	Arsenic	28	S PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
Ì	4	Ba	Barius	28	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	5 8	3e	Beryllium	28	0.5 PPM	HNO3-HCL HOT EXTR	Ind. Coupled Plassa
-	6 8	Bi	Bismuth	28	2 PPH	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
Ĺ	7 (.d	Cadmium	28	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
ſ	8 (Ce	Cerius	28	5 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	9 (a	Cobalt	28	1 PPH	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
1	10 (Çr	Chronium	28	1 991	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	11 (ີມ	Copper	28	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	12 (Sa	Gallius	28	2 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
٢	13 (.a	Lanthanum	28	1 PPN	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	🛶 14 l	Li	Lithium	28	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	15 1	to	lla i ybdenus	28	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	16 1	٩b	Nicolum	28	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
L	17 N	11	Nickel	28	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
ſ	18 f	25	Lead	28	2 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
ļ	19 R	ъ	Rubidium	28	20 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	20 5	50	Antisony	28	5 PPN	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
Į		ic	Scandium	23	1 221	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
L	22 \$	ริก	Tin	28	28 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
ſ	23 S	Sr.	Strontium	23	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	24		" Tantalun	28	10 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	25 1	le `	🦾 Telluriun	23	10 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	26 1	V	Vanadium	28	1 PPn	HN03-HCL HOT EXTR	Ind. Coupled Plassa
	27 4	1	Tungsten	28	10 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
ſ	28	Y	Yttrium	28	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	29 Z	ln 🛛	Zinc	28	1 PPn	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	30 2	Zr	Zirconium	28	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma

Geochemical Lab Report

REPORT: U89-	05231.0 (CONPL	LETE)]			REFERENCE INFO: SHIPMENT	#3
		ANAGEMENT				SUBMITTED BY: J. WETHERI DATE PRINTED: 29-AUG-39	-L
SAMPLE	TYPES	NUMBER	SIZ	E FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
R ROCK	OR BED ROCK	28	2	-150	28	CRUSH, PULVERIZE -150	28
RENARKS	: We do not off have run our place.	fer a 31 elemen 29 element ICP	t ICP packae	package so we ge in its			
REPORT	PLES DUM DIS-	CSS MELVILLE	SIKEEL		N0	01CE 01: 113-1155 MEVILLE	SIRFE
·			<u> </u>				•
<u> </u>							
			<u> </u>	······			
	255 5 - 5						
	:						
					······································		<u></u>
	CLIENT: STET PROJECT: HOR SAMPLE R ROCX REMARKS	CLIENT: STETSON RESOURCE M PROJECT: HORN SAMPLE TYPES R ROCX OR BED ROCK REMARKS: We do not off have run our place.	SAMPLE TYPES NUMBER R ROCK OR BED ROCK 28 REMARKS: We do not offer a 31 element have run our 29 element ICP place. REPORT COPIES OF DISTUSS MERVILLE	CLIENT: STETSON RESOURCE MANAGEMENT PROJECT: HORN SAMPLE TYPES NUMBER SIZ R ROCK OR BED ROCK 28 2 REMARKS: We do not offer a 31 element ICP packad place. Stepper ICP packad	CLIENT: STETSON RESOURCE MANAGEMENT PROJECT: HORM SAMPLE TYPES NUMBER SIZE FRACTIONS R ROCK OR BED ROCK 28 2 -150 REMARKS: We do not offer a 31 element ICP package so we have run our 29 element ICP package in its place. 3EPORT COPIES TO: PTI-TISS DEPUTIEE STREET	CLIENT: STETSON RESOURCE NAMAGEMENT PROJECT: HORM SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER R ROCK OR BED ROCK 28 2 -150 28 REMARKS: We do not offer a 31 element ICP package so we have run our 29 element ICP package in its place. REPORT COPIES OF PIS-IISS TERVILLE SIREET NU	CLEMT: STETSON RESOURCE NAMAGEMENT CLEMT: STETSON RESOURCE NAMAGEMENT SUBNITIED BY: J. WETHERL DATE REINTED: 27-AUG-59 SAMPLE TYPES NUMBER SIZE FRACTIONS NUMBER A ROCK OR BED ROCK 28 2 -150 28 CRUSH, PRUVERIZE -150 REMARKS: We do not offer a 31 element ICP package so we have run our 29 element ICP package in its place. BEPORT CUPIES TO: BIS-TISS REVUILE STREET NUMBER SUBNITE OF BIS-TISS REVUILE STREET NUMBER SUBNITE OF BIS-TISS REVUILE STREET

Geochemical Lab Report

_										D. 29-016	-39		
	REPORT: V89-	05231.0						PR	ROJECT: HO	DRN		PAGE 1A	<u></u>
	Sanple NUMBER	ELEMENT UNITS	4u PP8	Ag PPri	As PPH	8a PPN	Be PPn	81 PPM	Cd PP#	Ca PPN	Ca PPit	Cr PPH	C PP
	R2 22801		9	<0.2	ও	549	0.5	<2	<1	<u>رج</u>	<1	189	1:
	R2 22802		9	<0.2	ৎ	97	4.4	<2	<1	<5	13	63	1:
l	R2 22903		8	<0.2	< 5	100	8.5	<2	<1	12	4	29	47
	R2 22804		6	0.4	<5	63	20.5	9	<1	23	- 7	13	26
	R2 22805		10	<0.2	<5	561	3.1	<2	<1	19	15	20	22
	R2 22806		10	1.1	<১	193	2.2	23	<1	64	<1	12	6
	R2 22307		21	<0.2	27	319	25.9	9	2	ও	4	8	179
	R2 22808		18	0.3	30	332	4.0	5	4	42	<1	42	26
	R2 22309		12	<0.2	<٢	163	5.4	<2	<1	20	6	24	63
L	R2 22810		18	<0.2	<১	108	6.4	<2	<1	্র	7	40	43
1	R2 22811		9	0.3	< S	48	1.2	<2	<1	20	2	75	40
	RZ 22812		17	<0.2	<۲	50	1.5	<2	<1	Ś	<1	115	14
	R2 22813		51	<0.2	<5	50	11.0	3	<1	89	2	11	95
	R2 22814		12	0.2	<5	7	1.3	<2	<1	16	<1	198	8
L	R2 22815		7	<0.2	27	112	23.0	<2	<1	43	3	101	29
	82 22816		<۲	<0.2	ও	>2001	1.0	<2	<1	ও	2	197	10
	R2 22817		11	0.3	<5	1026	0.3	2	<1	9	<1	143	19
	R2 22818		9	<0.2	ও	533	4.2	2	<1	<٢	<1	78	6
	R2 22819		7	<0.2	17	638	1.7	3	<1	ৎ	<1	79	4
L	R2 22820		<5	<0.2	<5	204	1.1	<2	<1	12	<1	80	5
1	R2 22821		12	<0.2	ৎ	204	0.9	4	<1	<5	<1	129	9
	R2 22822		6	<0.2	<5	158	<0.5	<2	<1	<٢	<1	180	4
	R2 22823		ৎ	<0.2	<5	>2000	<0.5	<2	<1	<5	1	95	4
}	R2 22824		7	<0.2	ও	23	1.0	<2	<1	10	<1	196	12
	R2 22825		8	<0.2	<\$	43	6.4	<2	<1	11	12	57	23
	R2 22926		38	0.6	<5	43	9.5	<2	<1	10	14	43	52
	R2 22927		13	0.5	<5	45	8.7	<2	<1	17	22	23	40
	R2 22929		43	2.7	<s< td=""><td>111</td><td>4.9</td><td><2</td><td><1</td><td>23</td><td>1</td><td>32</td><td>28</td></s<>	111	4.9	<2	<1	23	1	32	28

:

Geochemical Lab Report

		REPORT: 489-05231.0								D - 29-4116	- 39		
	REPORT: 189-	-05231.0	<u> </u>			,		Pf	ROJECT: HO	IRN		PAGE 18	
<u> </u>	SAMPLE	ELEMENT	Ga	La	Li	ita	Nb	Ni	P5	Rb	Sb	Sc	S
	NUMBER	UNITS	PPit	PPit	PPH	PPN	PPN	PPIt	PPI	PPM	PPit	PPN	PP
<u></u>	RZ 22801		<2	<1	<1	2	<1	4	12	<20	دي	<1	<2
	R2 22802		2	11	13	<1	4	38	<2	28	<s< td=""><td>5</td><td><2</td></s<>	5	<2
	R2 22803		<2	13	68	2	2	4	11	81	< S	5	<2
	RZ 22804		5	6	78	5	5	2	1042	<20	ও	4	<2
	R2 22305		<2	19	27	2	6	2	34	49	্র	6	<2
	R2 22806		<2	33	2	<1	<1	<1	810	<20	ও	2	<2
	R2 22307		9	8	<1	38	<1	1	<2	182	د>	2	<2
	R2 22808		<2	18	1	<1	<1	5	22	67	10	2	<20
	R2 22309		<2	15	32	<1	2	3	4	79	< 5	7	<21
	R2 22810		<2	6	2	4	<1	2	10	<20	্র	1	<20
	R2 22811		<2	13	(1	8	<1	2	4	42	10	1	<21
	R2 22812		<2	2	<1	13	<1	4	5	42	ও	1	(20
	RZ 22813		<2	40	15	4	<1	2	<2	44	ও	5	<20
	R2 22814		8	2	1	3	2	4	20	<20	ও	<1	<20
	R2 22815		10	5	1	13	2	3	50	<20	<5	4	<20
	R2 22816	·····	<2	1	<1	11	<1	5	24	<20	ও	<1	<20
	R2 22817		<2	4	<1	<1	<1	5	17	<20	ও	1	<20
	RZ 22318		<2	2	<1	35	<1	3	22	<20	< 5	<1	<20
	R2 22819		<2	2	<1	2	<1	3	10	<20	د۲	<1	<20
	R2 22820		<2	8	<1	8	<1	2	3	<20	ও	<1	<20
	R2 22821		<2	2	<1	1	<1	4	16	<20	8	<1	<20
	R2 22822		<2	<1	<1	<1	<1	4	5	<20	S	<1	<20
	R2 22323		<2	2	<1	<1	<1	2	2	<20	<5	<1	<28
	R2 22824		<2	5	<1	11	<1	4	<2	<20	S	<1	<20
	R2 22825		4	3	3	2	2	3	8	61	<5	6	<20
•	R2 22926		<2	- 9	1	3	<1	4	19	<20	ও	2	<20
	R2 22927		2	11	3	2	1	4	13	40	< 5	3	<20
	R2 22929	•	<2	13	<1	3	<1	2	12	<20	<5	<1	<20

Geochemical Lab Report

	REPORT: V89-05231.0		••••••••••••••••••••••••••••••••••••••					1		D: 29-406-39		
¦	REPORT: 989-	-05231.0						PR	OJECT: HO	RN	PAGE	10
	SANPLE NUMBER	ELEMENT UNITS	Sr PPN	Ta PPit	Te PPtt	V PPtt	u PPH	y PPit	Zn PPn	Zr PPH		
	RZ 22801		13	<10	<10	2	<18	<1	5	15		
	R2 22802		66	<10	<18	56	<10	6	93	11		
	R2 22803		150	<10	13	98	<10	11	72	41		
	R2 22804		103	<10	<10	63	<10	3	193	20		
	R2 22805	····	1031	<10	28	101	<10	13	93	43	`. 	
	R2 22806	<u> </u>	85	<10	<10	14	<10	3	5	17 .		
[RZ 22807		19	<10	<10	55	<10	2	2	24		
	R2 22808		308	<10	<10	48	<10	4	12	4		
	R2 22809		149	<18	<10	74	<10	10	73	32		
	R2 22810	·	19	<10	<10	9	<10	5	11	31		
	82 22811		10	<10	<10	7	<10	<1	7	9	·	
	R2 22812		28	<10	<10	6	<10	<1	8	12		
1	RZ 22813		98	<10	<10	66	<10	6	65	5		
	R2 22814		7	<10	<10	4	<10	1	5	6		
	R2 22815		72	<10	<10	22	<10	3	4	7		
	R2 22816		19	<10	<10	2	<10	<1	6	5		
~	R2 22317		79	<10	<10	10	<10	2	5	16		
	R2 22813		60	<10	<10	10	<10	<1	4	5		
	R2 22819		53	<10	<10	11	<10	4	4	12		
L	R2 22820		153	<10	<10	7	<10	<1	4	2		
	R2 22821		14	<10	<10	4	<10	4	9	9		
	R2 22822		6	<10	<10	1	<10	<1	6	6		
	R2 22323		34	<10	<10	3	<10	1	4	1		
	R2 22824		9	<10	<10	3	<10	<1	5	9		
	R2 22825		29	<10	<10	58	<10	9	20	9		
	R2 22926		18	<10	<10	12	<10	5	6	t		
	R2 22927		32	<10	<10	27	<10	8	26	4		
	R2 22929		81	<10	<10	19	<10	2	5	1		

KUSS CALLON

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-05219.0 (COMPLETE)

REFERENCE INFO: SHIPMENT #3

CLIENT: STETSON RESOURCE MANAGEMENT PROJECT: HORN SUBMITTED BY: J. WETHERILL DATE PRINTED: 23-AUG-39

	ORDER	E	LEMENT	NUMBER OF	LOWER DETECTION LINII	EXTRACTION	METHOD
	1	Au	Gold - Fire Assay	32	5 P PB	FIRE-ASSAY	Fire Assay AA
	2	Ag	Silver	32	0.2 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	3	As	Arsenic 114	32	S PPIT	HN03-HCL HOT EXTR	Ind. Coupled Plasma
XRF-		8a	Barius NOT TON	~~~ 32	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	5	Be	Sary Live .	32	0.5 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	6	81	Bisauth	32	2 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	7	Cd	Cadmium	32	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	8	Ca	Cerius	32	5 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	9	Ca	Cobalt . LL	32	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plassa
	10	Cr	Cobalt Chrosius - vot total	32	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	11	Cu	Copper	32	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	12	Ga	Gallium	32	2 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	13	La	Lanthanue	32	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	14	Li	Lithium	32	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	15	ita	Nolybdenus Not to	32	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	16	Nb	Niobius	32	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	17	Nī	Nickel	32	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	18	Pb	Lead	32	2 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	19	ЯЪ .	-Rubidius- 1 421	32	20 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plassa
	20	Sb	Ancienty > Not total	32	5 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	21	Sc	Scandium	32	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	22	Sn	Tin	32	20 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
·	23	Sr	Strontium ·	32	1 PPit	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	24	Ta "	Tantalum	32	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	25	Te	Tellurium	32	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	26	V	Vanadium	32	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	27	H	Tungsten	32	10 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	28	Y	Yttrius	32	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	29	Zn	Zinc	32	1 PPM	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	30	Zr	Zirconium	32	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma

ι.

-

Geochemical Lab Report

	REPORT: 489-05219.0 (COMPLETE)		;		REFERENCE INFO: SHIPHENT #3
	CLIENT: STETSON RESOURCE MANAGEMEN PROJECT: HORN	IT			SUBMITTED BY: J. WETHERILL DATE PRINTED: 23-AUG-89
	Sample Types Numbe	R SI	IZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER
	R ROCK OR BED ROCK 32	2	-150	32	CRUSH, PULVERIZE -150 32
	REMARKS: Please note: He no I ICP package, so we a instead.	re substitut	ting 29 element		
	Assay of high Ag.Cu	ta fallam ar	489-05219.6		
	REPORT COPIES TO: #13-1155 ME	LVILLE STREE	1	INVO	ICE TO: #13-1155 MELVILLE STREET
	-4	•			
	·.				
· · · · · · · · · · · · · · · · · · ·					
-					

1.

٠

Geochemical Lab Report

								04	TE PRINTE	D: 23-406	-79	· · · · ·	
	REPORT: V89-	.05219.0						1	OJECT: HO			PAGE 1	A
	SAMPLE NUMBER	ELEMENT UNITS	Au P P 8	Ag PPtt	As PPN	Ba PPtt	Be PPti	81 PPH	Cd PPtt	Ca PPit	Ca PPtt	Cr PPH	Cu pp=
	R2 7387	<u> </u>	13	<0.2	ও	40	<0.5	<2	<1	13	<1	278	
	R2 7388		11	<0.2	ৎ	123	<0.5	<2	<1	29	<1	64	13
	R2 7389		ও	0.4	ৎ	57	<0.5	<2	<1	ও	1	32	12
	R2 7390		10	<0.2	ও	47	<0.5	<2	<1	ও	33	47	68
L	R2 7391		ৎ	<0.2	ও	63	<0.5	<2	<1	7	13	5	30
	R2 7392		ও	<0.2	ও	60	<0.5	<2	<1	21	8	7	75
	RZ 7393		ও	(J. 2	ও	శన	<0.5	<2	<1	7	19	19	187
	RZ 7394		7	<0.2	20	112	<0.5	<2	<1	11	8	11	107
	R2 7395		ও	<0.2	ও	- 107	<0.5	<2	<1	5	5	10	49
L	R2 7396		ও	<0.2	ও	138	<0.5	<2	<1		3	9	22
	R2 7397		ও	<0.2	ও	29	<0.5	<2	<1	ও	12	14	93
	R2 7398		127	5.2	46	47	<0.5	<2	2	ও	2	172	28
	R2 22930		<১	<0.2	ও	72	<0.5	<2	<1	S	20	19	207
	R2 22931		578	>50.0	164	16	<0.5	<2	57	ও	10	<1	>20000
L	R2 22932		11	0.7	ব	278	<0.5	<2	4	14	<1	21	442
	R2 22933		ও	0.9	ও	62	<0.5	2	<1	10	3	125	566
	RZ 22934		32	<0.2	ও	178	<0.5	<2	<1	51	4	76	79
	R2 22935		ও	<0.2	ও	114	<0.5	<2	<1	49	<1	చ	59
	R2 22936		থ	0.3	ও	140	<0.5	<2	<1	62	4	55	90
L	R2 22937		<5	<0.2	ও	101	<0.5	<2	(1	41	<u>(1</u>	207	60
	R2 22938		ও	<0.2	7	48	<0.5	<2	<1	13	<1	299	29
	R2 22939		ও	<0.2	29	. 84	<0.5	<2	<1	43	20	51	29
	R2 22940		6	<0.2	6	6	<0.5	<2	<1	ও	<1	368	7
}	R2 22941		ও	<0.2	ও	48	<0.5	<2	<1	45	<1	69	8
L	R2 22942			<0.2	ও	15	<0.5	<2	<1	63	<u>a</u>	33	4
	R2 22943		6	<8.2	ও	394	<0.5	<2	2	14	15	53	327
	R2 22944	14. 1	9	<0.2	ও	599	<0.5	<2	<1	11	19	59	64
	R2 22945	-	14	0.7	<5	87	<0.5	<2	<1	27	<1	33	37
	R2 22946		17	2.2	ৎ	76	<0.5	<2	<1	6	<1	32	37
L	R2 22947		12	2.0	9	59	<0.5	<2	<1	9	3	118	35
the second s													7/
	R2 22948 R2 22949		85	4.4 0.2	ও	28	<0.5 <0.5	<2	<1	6	12	16	76

Geochemical Lab Report

								0	ATE PRIMI	D: 23-446	-29		
¦ \	REPORT: V89-	-05219.0						P	ROJECT: HO	DRN		PAGE 18	
	SAMPLE NUMBER	ELEHENT UNITS	Ga PP11	La PP II	LI PP#	ito PPtt	Nib PPH	Nî PPH	Pb PPN	Rts PPH	Sb PPit	Sc. PPtt	ρ
	R2 7387		<2	7	<1	2	<1	S	<2	<20	ও	<1	~~~~
	R2 7388		<2	15	2	<1	<1	2	<2	<20	ও	<1	<
	R2 7389		<2	1	1	2	<1	3	6	<20	ও	1	<
	R2 7390		<2	<1	14	4	<1	19	<2	<20	S	5	<
·	R2 7391		7	3	10	4	2	17	<2	<20	S	7	<
	R2 7392		3	9	6	2	2	2	10	<28	ও	1	(
	R2 7393		7	2	9	4	3	7	3	<20	ও	3	<
	R2 7394		7	4	8	3	3	8	3	<20	ও	2	<
	R2 7395 R2 7396		2	2		4	Z	4	4	<20	S	2	<
<u> </u>	RZ 7376		<u> </u>	<1	11	3	2	4	2	<20	ও	2	<
	R2 7397		<2	<1	7	4	<1	4	6	<20	ও	1	<
	R2 7398		<2	<1	<1	24	<1	4	8405	<20	ଓ	<1	<
	R2 22930		3	1	8	2	<1	4	24	<20	ও	3	<
	R2 22931 R2 22932		6	<1 5	<1	17	17	11	118	<20	S	3	<
	RZ ZZ73Z		•		2	3	<1	2		<20		2	<
	R2 22933		2	5	8	<1	<1	6	6	<20	ও	3	C
	R2 22934		<2	24	<1	21	<1	2	<2	<20	ও	1	C
	R2 22935		<2	24	6	59	<1	3	<2	<20	ও	2	C
	R2 22936 R2 22937		<2	31	<1	25	<1	3	2	<20	S	1	<
 /	RZ 22737	······································	<2	22	(1	18	<1	3	<2	<20	<u>د</u>	1	<
	R2 22938		<2	6	<1	32	1	5	3	<20	ও	<1	<
	R2 22939		5	18	33	10	2	10	<2	<20	ও	12	Ċ
	R2 22940		(2	<1	<1	22	<1	6	11	<20	S	<1	<
	R2 22941 R2 22942		<2 <2	24 33	<1	33	(1	2	12	<28	S	4	ς.
	NZ ZZ74Z		~~		<1	6	<1	l	<2	<20	ও	<u>4</u>	<
	R2 22943		<2	- 6	15	10	<1	14	<2	<20	ও	8	<
	R2 22944	24.5 5 - 192	10	7	28	3	<1	30	<2	<20	ও	21	<
	R2 22945		<2	12	6	30	<1	5	37	<20	<5	3	<
	R2 22946		<2	3	7	11	<1	2	396	<20	ও	2	<: C
	R2 22947		<2	4	<1	11	<1	4	665	<20	ৎ	<1	
	R2 22948		<2	4	13	5	<1	10	438	<20	ও	2	¢
	R2 22949		<2	21	<1	6	<1	6	<2	<20	< S	1	<2

.

Geochemical Lab Report

000407	05040 0				1.1				0:-23-4UG-39		
 REPORT: V89-	-15217.1						PR	NOUECT: HO	RN	PAGE	10
 SAMPLE	ELENENT	Sr	ľa	Te	v	у.	Y	Zn	Zr		
NUMBER	UNITS	PPN	PPIt	PPt	PPit	PPit	PPH	20 PPN	2r PPH		
R2 7387		4	<10	<10	3	<10	<1	3	7		
R2 7388		14	<10	<10	4	<10	9	10	8		
RZ 7389		11	<10	<10	33	<10	<1	6	2		
R2 7390		31	15	<10	140	<18	4	172	2	· .	
 R2 7391		15	24	<10	170	<10	14	246	1		
 R2 7392		53	<10	<10	23	<10	5	42	1		
R2 7393		69	<10	<10	69	<10	4	56	2		
R2 7394		40	10	<10	53	<10	7	39	2		
R2 7395		27	<10	<10	43	<10	∡	28	2		
R2 7396		39	<10	<18	48	<10	3	39	2		
 R2 7397	-	చ	12	<10	24	(10					
R2 7398		ວ 9	<10	<10	26 3	<10	2	26	2		
R2 22930		54	<10			<10	<1	51	2		
R2 22931				<10	98	<10	6	211	6		
R2 22932		42	24	361	<1	120	5	500	8		
 RZ 22732		91	<10	<10	50	<10	22	6	6		
R2 22933		9	<10	<10	24	<10	3	68	8		
R2 22934		402	<10	<10	21	<10	7	5	3		
R2 22935		288	<18	<10	57	<10	7	22	4		
R2 22936		276	<10	<10	6	<10	5	10	3		
 R2 22937		353	<10	<10	8	<10	6	7	3		
 R2 22938		150	<10	<10	3	<10	2	4	1		
R2 22939		972	13	<10	184	<10	19	159	2		
R2 22940		7	<10	<10	3	<10	<1	رسد ۲	<1		
R2 22941		18	<10	<10	4	<10	2	،	57		
 R2 22942		3	<10	<10	<1	<10	4	5	21 99		
 R2 22943		95	. 91	/10	+++	/10			45		
R2 22944		95 17	·21	<10	111	<10	6	247	15		
R2 22945	1.00 - 1 .00	16	<10	<10	257	<10	6	162	2		
		108	<10	<10	39	<10	2	77	7		
R2 22946		15	<10	<10	30	<10	Z	135	15		
 R2 22947		64	<10	<10	1	<10	1	47	22		
 R2 22948		26	13	<10	28	<10	2	182	3		
R2 22949		61	<10	<10	11	<10	5	46	8		

Geochemical Lab Report

— —							
:	REPORT: V8	9-1157	234.A (COMPLETE)			REFEREN	IF INFO: SHIPHENT #3
	CI TENT: STI PROJECT: H		RESOURCE MANAGEMENT		, <u>, , , , , , , , , , , , , , , , , , </u>		D BY: J. WETHERILL INTED: 21-AUG-89
	ORDER		FLENENT	NUMBER OF	LOWER DETECTION LINIT	EXTRACTION	riethod
	1	Au	Gold - Fire Assay	32	5 PPB	FTRE-ASSAY	Fire Assay AA
	2	Ag	Silver	32	0.2 PPH	HN03-HCL HOT EXIR	Ind. Coupled Plasma
	3	As	Arsenic	32	S PPN	HNO3-HCI HOT FXTR	Ind. Coupled Plasma
	4	8 a	Barius	32	t PPn	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	5	8e	Beryllium	32	als PPH	HN03-HCL HOT FXTR	Ind. Coupled Plasma
	6	81	Bisauth	32	2 PPN	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	7	Cd	Cadmium	32	1 PPN	HNO3-HCI. HOT FXTR	Ind. Coupled Plasma
	8	Ca	Cerius	32	5 PPn	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	9	Ca	Coba i t	32	1 251	HNO3-HCI HOT FXTR	Ind. Coupled Plasma
	10	Cr	Chronium	32	t PPH	HNO3-HCL HOT EXIR	Ind. Coupled Plasma
	11	Cu	Copper	32	1 PPN	HN03-HCI HOT FXTR	Ind. Coupled Plasma
	12	Ga	Gallium	32	2 PPn	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	13	La	lanthanu	32	1 PPn	HNG3-HCI. HOT FXIR	Ind. Coupled Plasma
V	14	Li	Lithium	32	t PPH	HNO3-HCL HOT EXIR	Ind. Coupled Plasma
	15	ño	Nolybdenue	32	1 PPN	HN03-HCI HOT FXTR	Ind. Coupled Plasma
	16	Nb	Niobium	32	t PPM	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	17	NI	Nickel	32	1 991	HN03-HCI HOT FXTR	Ind. Coupled Plasma
	18	25	Lead	32.	2 PPn	HN03-HCL HOT EXIR	Ind. Coupled Plasma
	19	Rb	Rubidium	32	20 PPN	HN03-HCI HOT FXIR	Ind. Coupled Plasma
	20	Sb	Antisony	32	S PPN	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	21	Sc	Scandium	32	1 PPN	HN03-HCI. HOT FXTR	Ind. Coupled Plasma
	22	Sn	Tin	32	211 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	23	Sr	Strontiu	32	1 PPN	HN03-HCI HOT FXTR	Ind. Coupled Plasma
	24	Ta	Tantalu	32	IN PPH	HNO3-HCI. HOT EXTR	Ind. Coupled Plasma
	25	Te	Telluriun	32	10 990	HNO3-HCI HOT FXTR	Ind. Coupled Plasma
	26	Ų	Vanadium	32	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	27	¥	Tungstan	32	10 PPn	HN03-HCI HOT FXIR	Ind. Coupled Plasma
	28	Y	Yttrium	32	1 PPN	HN03-HCL HOT EXIR	Ind. Coupled Plasma
	29	Zn	Zinc	32	1 PPN	HNO3-HCI HOT FXTR	Ind. Coupled Plasma
	30	Zr	Zircanius	32	1 PPn	HN03-HCL HOT EXIR	Ind. Coupled Plasma

••

.

Geochemical Lab Report

			-		
	REPORT: 089-115234.11 (Comm	FTF)			REFERENCE INFO: SHIPHENT #3
	CLIENT: STETSON RESOURCE MA PROJECT: HORN	INAGENENT			SUBNITTED BY: J. WETHERTLL DATE PRINTED: 21-AUG-39
	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUNBER	SAMPLE PREPARATIONS NUMBER
	R ROCK OR BED ROCK	32	2 -150	32	CRUSH, PULVERIZE -150 27
<u></u>	REMARKS: We do not off have run our place.	er a 31 einme 29 element [C	ent JCP package so we IP package in its		
	REPORT COPTES TO: 113-	LISS HELVILLE	STREET	INU	DICE ID: ELI-LISS NELVILLE STREET
		<u> </u>			
		 		· · · · · · · · · · · · · · · · · · ·	
~					

Geochemical Lab Report

	REPORT: U89-	+15234.11				:	:		<u>IF PRINTE</u> OJECT: HO			PAGE LA	
	SANPLE	FLENENT		i	ÂS	ßa	ße	 0:	<u> </u>				
	NUMBER	UNITS	Au PP8	Ag PPtt	PPn	PPN	221 221	Bī PPh	Cd PPN	Ca PPN	Ca PP N	Cr PPH	ş
	R2 22785		14	<0.2	46	67	56.3	7	<1	11	<1	60	
	R2 22786		24	<11.2	23	119.	22.3	<2	4	23	4	83	
	R2 22787		8	<11.2	6	(777)	1.6	<2	<1	S	2	122	
	R2 22788		ពេ	<1.2	12	47.	6.5	(2	<1	6	4	137	
	R2 22789	······································	15	8.4	14	66	8.5	<2	<1	<5	1	193	
	R2 22790		15	<1.2	ও	45	1.4	<2	<1	ও	<1	218	
	R2 22791		26	0.5	14	248	7.0	12	4	nt	4	60	
	R2 22792		19	N_3	<5	180	1.3	<2	<1	< <u>s</u>	<1	202	
	R2 22793		11	<0.2	6	116	1.9	<2	<1	<5	d	172	
	R2 22794		รก	n.s	13	359	2.0	<2	<1	< S	2	303	
	R2 22795		9	<11.2	25	178	24.0	63	<1	8	<1	138	
	R2 22796		9	d1 <u>.2</u>	<5	479	2.3	<2	<t< td=""><td><s< td=""><td>t</td><td>22.7</td><td></td></s<></td></t<>	<s< td=""><td>t</td><td>22.7</td><td></td></s<>	t	22.7	
	R2 22797		23	<¶.2	30	55	32.1	<2	<1	13	d	296	
	R2 22798		26	Π.4	11	77.4	4.3	6	<t< td=""><td>i1</td><td><1</td><td>102</td><td></td></t<>	i 1	<1	102	
	R2 22799		123	থা.2	<5	21	5.4	<2	<1	<u>(5</u>	tt	339	
	R2 22800		14	1.3	41	120	29.3	2.	4	12	<1	112	
-	R2 22901		ও	<11.2	ۍ	11	2.4	<2	<1	ୟ	d	219	
	R2 22902		8	<11.2	S	395	2.3	<2	<1	Ś	t	316	
	R2 22903		9	<11.2	7	465	4.9	<2	4	\$	19	731	
	R2 22904		9	1.5	21	18	30.4	</td <td><1</td> <td>32</td> <td>2</td> <td>241</td> <td></td>	<1	32	2	241	
	R2 22905		57	<0.2	52	41	82.9	48	1	ও	457	168	
	R2 22906		21	<11.2	330	38	69.7	<2	<1	16	1	77	
	R2 22907		ৎ	<1.2	8	14	4.7	<2	<1	5	2	496	
	R2 22908 R2 22909		7 ব্য	<n.2 0.2</n.2 	14 22	770 10 9	4.0 24.0	3 <2	<1 <1	7 35	। <1	174 87	
	R2 22910		<u>د</u> ح	<n.2< td=""><td>S</td><td>150</td><td>1.5</td><td>6</td><td><1</td><td><s< td=""><td>4</td><td>102</td><td></td></s<></td></n.2<>	S	150	1.5	6	<1	<s< td=""><td>4</td><td>102</td><td></td></s<>	4	102	
	R2 22911		5	<11.2	6	241	3.5	<2	4	7	4	191	
	R2 22912	÷	<s< td=""><td><11.2</td><td>12</td><td>40 57</td><td>6.6</td><td><?.</td><td><1</td><td>• 11</td><td>3</td><td>270</td><td></td></td></s<>	<11.2	12	40 57	6.6	.</td <td><1</td> <td>• 11</td> <td>3</td> <td>270</td> <td></td>	<1	• 11	3	270	
	R2 22913		11	0.6	79	54	27.1	5	<1	15	<1	71	1
	R2 22914		6	1.3	17	31	16.7	12	<1	<5	8	<u>ts</u> 7	
	R2 22915		16	<0.2	16	11	12.2	<2	<1	٢	8 .	189	
	R2 22916		ও	<11.2	72	19	138.7	<2	2	ও	<1	27.	4

. .

Geochemical Lab Report

	REPORT: V89-	-15234 1	;						IDE PRINTE NOJECT: HO	D:_21-411G			
				l	: 			Pr				PAGE 18	
	SAMPLE	FI ENENT	Ga	ta	Lī	ño	Nb	Nī	Pb	Rb	Sb	Sc	
	NUMBER	UNITS	PPH	PPit	PPIt	PPN	PPH	PPH	PPIt	PPN	PPH	PPtt	P
	RZ 22785		7	<1	<1	39	<1	<1	143	<20	৫	2	<
	RZ 22786		2	5	<1	75	<1	2	8	<211	ও	2	<
	R2 22787		<2	3	<1	4	<1	3	29	<211	ও	<1	<
	R2 22788		<2	<1	<1	t4	<1	4	6	<211	Ś	<1	(
	R2 22789		<2	<1	<1	48	(1	5	7	<211	ও	4	<
	R2 22790		<2.	<1	<1	5	<1	S	2	<211	Ś	<1	
	R2 22791		6	t	3	33	<1	2	29	<211	ও	1	•
	R2 22792		<2	<1	<1	2	4	5	32	<211	ও	4	
	82 22793		<2	<1	<1	2t	<1	5	9	<20	S	4	
	82 22794		<2	<u>(1</u>	<1	2.4	<1	77	27.	<211	ও	<1	
<u> </u>	R2 22795		6	<1	<1	41	<1	6	2112	62	ও	<1	
	R2 22796		<2	<1	<1	t1	<1	6	12	<211	ও	<1	•
	R2 22797		8	4	2	7	<1	4	2 t	<211	\$	4	<
	R2 22798		<2	3	<1	7	<1	?	37	30	Ś	2	•
<u> </u>	R2 22799		<2	t >	t>	5	d	6	14	24	<u> </u>	<1	
•	R2 22800		13	<1	3	911	<1	3	45	<211	ও	2	~~~~
	RZ 22901		(2	<1	<1	<1	<1	5	(2	<211	ও	<1	<
	R2 22902		<2	<1	<1	18	<1	8	3	<211	ও	<1	<
	R2 22903		<2	<1	<1	23	<1	8	5	<211	ও	3	<
	R2 22904		4	5	<1	18	۲ (۱	14	6	78	ও	1	
	R2 22905		nt	<1	4	12	<1	37	7	84	ও	3	<
	R2 22906		t6	<1	<1	93	<t< td=""><td><1</td><td>16</td><td><211</td><td>ও</td><td>5</td><td><</td></t<>	<1	16	<211	ও	5	<
	R2 22907		<2	<1	<1	2	<t></t>	8	<2	<211	ও	<1	C
	R2 22908		<2	2	<1	3	< 1	6	97	64	S	<1	<
	R2 22909		18	Dt	27	5	2	6	2	56	ও	6	<
	R2 22910		<7.	t	<1	2	<1	7	27	<211	ও	4	<
	R2 22911	. 48 ¹⁴ . 1	<2	2	<1	3	<1	5	11	<211	s	2	<
	R2 22912	.1	<2	2	<1	4	<1	6	9	2?	< S	4	<
	R2 22913		3	3	<1	17	<1	5	17	53	٨S	6	<
	R2 22914		.</td <td><1</td> <td>1</td> <td>1</td> <td><1</td> <td>6</td> <td>116</td> <td>(21)</td> <td>ও</td> <td>1</td> <td><</td>	<1	1	1	<1	6	116	(21)	ও	1	<
	R2 22915	**	(7	<1	<1	12	<1	5	8	26	ও	1	<
	R2 22916		3	<1	<1	19	<1	(1	7	113	ৎ	2	C

•

. . .

Geochemical Lab Report

	REPORT: V89-05234.0							IF PRINTE		1	PAGE	tC	
	SAMPLE	FLEMENT	Sr	Ta Nom	Te	Ų OR#	W M	Y	Zn	Zr			
	NUMBER	UNTTS	PPH	PPN	PPN	PPH	PPN	PPtt	PPN	PPH			
	R2 22785		41	111>	11>	34	01>	2	<1	13			
	R2 22786		151	<18	<10	20	<10	4	4	10			
	RZ 22787		87	<18	<10	5	<18	2	4	7			
	R2 22788		9	<1日	<111	4	<10	<1	4	18			
	R2 22789	<u> </u>	9	<111	<10	3	<10	<1	7	6	· · ·		
	R2 22790		7	<111	<10	2	<10	<i>(</i> 1	5	14			
	RZ 22791		128	<10	<18	16	<1A	t	5	35			
	R2 22792		18	<10	<10	5	<10	<t< td=""><td>5</td><td>12</td><td></td><td></td><td></td></t<>	5	12			
	RZ 22793		6	<1()	Nt>	?	<10	<1	7	8			
	R2 22794		5	<1/1	<1/1	3	<10	<1	7	20			
	R2 22795		66	<10	(10	13	<1N	<1	5	21			
	R2 22796		10	<10	<10	5	<10	<1	5	6			
	R2 22797		15	<10	11	129	<10	2	8	5			
	R2 22798		24	<10	<10	17	<10	t	7	36			
	R2 22799		5	<10	<10	1	11>	<1	14	2			
	R2 22800		61	<10	<10	43	<10	3	12	20			
Ψ	R2 22901		11	0t>	<1A	12	<10	4	8	6			
	R2 22902		17	<1/1	<10	5	<10	<1	7	<1			
	RZ 22903		45	(10	<10	5	<10	<1	5	4			·
	R2 22904		41	<10	<10	45	<10	2	16	3			
	R2 22905		13	nt	18	28	nt>	3	44	<1			
	R2 22906		89	<10	<10	58	<10	3	<1	9			
	R2 22907		3	<1N	<10	5	11>	<1	12	1			
	R2 22908		44	<1fl	<10	8	<10	3	11	13			
	R2 22909		119	nt>	<10	87	<10	4	101	23			
	R2 22910		49	<10	<111	15	<10	<1	9	5			
	R2 22911	2 - 194 - X	35	01>	(10) (10)	9	(1D	1	6	23			
	R2 22912		32	<10 (11)	<10 (40	8	<10	<1	5	17			
	R2 22913		123	<111 <17	(10) (10)	29	<10	1	3	24			
	R2 22914		30	<tn< td=""><td><1/1</td><td>1</td><td><10</td><td>tt</td><td>•</td><td>27</td><td></td><td></td><td></td></tn<>	<1/1	1	<10	tt	•	27			
	R2 22915		7	<111	012	7	<10	<1	4	8			
	R2 22916		8	<10		23	20	2	<1	6			

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-05233.0 (COMPLETE)

REFERENCE INFO: SHIPMENT #3

CLIENT: STETSON	RESOURCE MANAGEMENT
PROJECT: HORN	

SUBMITTED BY: J. WETHERILL DATE PRINTED: 29-AUG-39

_	ORDER		ELEMENT	NUMBER OF	LOWER DETECTION LINIT	EXTRACTION	NETHOD
	1	Αu	Gold - Fire Assay	41	5 229	FIRE-ASSAY	Fire Assay AA
	2	Ag	Silver	41	0.2 991	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	3	Âs	Arsenic	41	5 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	4	8a	Barius	41	1 PPN	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	5	8e	Beryllium	41	0.5 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	6	81	Bisauth	41	2 PPit	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	7	Cd	Cadmium	41	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	8	Ca	Cerium	41	5 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	9	Ca	Copalt	41	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	10	Cr	Chronium	41	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	11	Cu	Copper	41	1 PP#	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	12	Ga	Gallium	41	2 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	13	La	Lanthanu	41	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	14	Li	Lithium	41	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	15	ño	llolybdenum	41	1 PP#	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	16	Nb	Nichium	41	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	17	Ni	Nickel	41	1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	18	Pb	Lead	41	2 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	19	Rb	Rubidius	41	20 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	20	Sp	Antimony	41	5 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	21	Sc	Scandium	41	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	22	Sn	Tin	41	20 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
. <u></u>	23	Sr	Strontium	41	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	24	Ta	Tantalum	41	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	25	Te 🗍	Tellurius	41	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	26	V	Vanadium	41	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	27	u	Tungsten	41	10 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	28	Y	Yttrius	41	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	29	Zn	Zinc	41	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	30	Zr	Zircanium	41	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma

.

Geochemical Lab Report

*	REPORT: V89-05233.0 (COMPLETE)			REFERENCE INFO: SHIPMENT #3	
	CLIENT: STETSON RESOUR PROJECT: HORN	ice Management			SUBMITTED BY: J. WETHERILL DATE PRINTED: 29-AUG-39	
	SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER	
	R ROCK OR SED RO	ICX 41	2 -150	41	CRUSH PULVERIZE -150 41	
		nt offer a 31 eleme 1 our 29 element IC	ent ICP package so we P package in its			
	REPORT COPIES OF	13-055 58-7114	SIRE		NC=_01_112=1155_1EPJI11=_318E=1	
	·					
			·			
	and the second sec					
~						

Geochemical Lab Report

				A DIVISION	OF INCHC.	VPE INSPECT	ION & TESTIN	IG SERVICES		B. 00			
	REPORT: V89-	-05233.0							OJECT: HO	<u>d: 29-4116</u> RN	- 29	PAGE 1A	:
	SAMPLE NUMBER	ELEHENT	Au PP8	Ag PPM	As PPN	Ba PPM	Be PPM	Bi PPM	Cd PPit	Ce PPN	Ca PPN	Cr PPN	Cu PPH
[R2 JH-A		ঁ	<0.2	< <u></u> <td></td> <td>e .</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		e .						
	R2 JH-9			0.3		56	5.1	<2	4	29 27	7	22	31
1	RZ JW-C		14	<0.2	<u>رج</u>	64 20	4.7	3	<1	23	6	90	192
	R2 JH-0		<ऽ <ऽ	<0.2	< <u>s</u>	30	11.3	<2	<1	15	15	42	67
	R2 JH-E		۲ <u>ن</u>	<0.2	9 24	16 205	1.8 2.2	<2 <2	<1 <1	<s <s< td=""><td><1 <1</td><td>226 38</td><td>12 5</td></s<></s 	<1 <1	226 38	12 5
	R2 JH-F		18	<0.2	40	44	45.2	<2	<1	৻৻	<1		77
ł	R2 JH-G		9	0.4	< 5	8	6.1	<2	<1	5	4	351	25
	R2 JH-H		< S	<0.2	< S	296	5.7	<2	<1	33	10	31	25
	R2 JH-I1		ও	<0.2	6	247	7.4	<2	<1	8	9	98	11
	R2 JH-12		<5	<0.2	ৎ	607	3.0	<2	<1	9	<1	48	7
	R2 JH-J		<۲	<0.2	<5	145	1.2	<2	<1	ৎ	<1	310	10
	R2 JH-K		<5	<0.2	<5	541	3.0	<2	<1	< 5	<1	282	11
	R2 J4-L		<s< td=""><td><0.2</td><td>109</td><td>35</td><td>11.7</td><td>2</td><td><1</td><td><s< td=""><td><1</td><td>43</td><td>25</td></s<></td></s<>	<0.2	109	35	11.7	2	<1	<s< td=""><td><1</td><td>43</td><td>25</td></s<>	<1	43	25
{	R2 JH-11		<5	<0.2	7	35	28.4	<2	<1	7	6	26	74
	R2 JH-N		ও	<0.2	<5	915	13.3	<2	<1	12	11	48	79
	R2 JH-0		14	0.2	<۲	241	15.2	3	<1	8	11	29	171
	R2 22751		<5	<0.2	13	319	7.0	<2	<1	17	<1	75	17
	R2 22752		<5	<0.2	s	30	3.6	<2	<1	ৎ	2	305	17
1	R2 22753		<5	<0.2	ৎ	381	8.9	<2	<1	10	9	65	31
	R2 22754		<5	<0.2	<5	28	2.1	<2	<1	<5	<1	438	22
	R2 22755		<১	<0.2	7	796	8.4	<2	<1	14	<1	143	38
	R2 22756		< 5	<0.2	ৎ	192	1.5	<2	<1	7	<1	237	17
	R2 22757		ও	<0.2	<s< td=""><td>416</td><td>11.5</td><td><2</td><td><1</td><td>12</td><td>19</td><td>112</td><td>53</td></s<>	416	11.5	<2	<1	12	19	112	53
}	R2 22758		<٢	<0.2	ৎ	990	1.1	<2	<1	5	1	215	9
L	R2 22759	<u>. </u>	<u> <</u>	<0.2	12	745	9.7	<2	<1	66	<1	170	16
	R2 22760		<s< td=""><td><0.2</td><td>8</td><td>64</td><td>12.6</td><td><2</td><td>4</td><td><১</td><td><1</td><td>321</td><td>87</td></s<>	<0.2	8	64	12.6	<2	4	<১	<1	321	87
ļ	R2 22761	i na kata Na kata	<5	<0.2	<5	675	1.6	<2	<1	8	1	216	17
	R2 22762		<5	<0.2	<5	146	1.2	<2	<1	8	<1	397	10
	R2 22763		<5	<0.2	<5	729	1.2	<2	<1	6	<1	185	6
L	R2 22764		<\$	<0.2	<5	889	0.7	<2	4	8	4	210	5
	R2 22765		٢S	<0.2	<১	1780	1.3	<2	<1	11	1	205	8
	R2 22766		<5	<0.2	ও	1840	2.3	<2	<1	14	2	93	10
	R2 22767		< <u>s</u>	<0.2	14	95	31.9	<2	1	< <u>S</u>	<1	70	60
	R2 22768		<5	<0.2	< 5	152	1.2	<2	<1	<s.< td=""><td><1</td><td>279</td><td>8</td></s.<>	<1	279	8
	R2 22769		<5	<0.2	14	429	8.0	<2	<1	6	<1	146	17
	R2 22770		<5	<0.2	81	46	57.7	3	1	<5	(1	100	77
)	R2 22771		<5	<0.2	15	94	10.3	<2	<1	5	<1	169	21
-	R2 22772		<٢	<0.2	6	800	3.2	<2	<1	7	1	157	8
	R2 22773		<5	0.5	<5	1527	2.9	<2	<1	23	2	139	6
ļ	R2 22774		<۲	<0.2	S 4	201	89.4	<2	<1	<s< td=""><td>2</td><td>44</td><td>390</td></s<>	2	44	390

Geochemical Lab Report

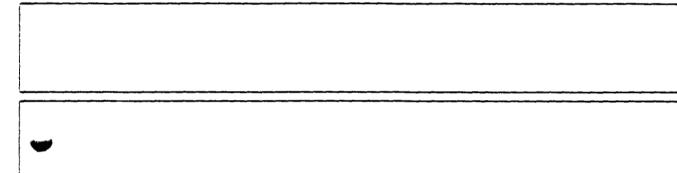
	REPORT: V89-	05233.0					:	L L	OJECT: H	<u>:D: 29-4110</u> DRN	1-49	PAGE 18	
	SAMPLE NUMBER	ELEMENT UNITS	Ga PPM	La PPN	Li PPH	Ла РРП	Nb PPH	Nî PPN	P5 PPit	R6 PPM	Sb PPM	Sc PPH	Si PP*
	R2 JH-A		2	16	6	1	2	2	2	<20	<5	1	<28
	R2 J H- 8		7	11	15	<1	2	5	5	<20	< S	4	<20
1	R2 JH-C		6	7	8	3	<1	3	6	92	<٢	4	<20
	R2 JH-0		<2	3	<1	<1	<1	4	6	46	<s< td=""><td><1</td><td><20</td></s<>	<1	<20
<u> </u>	R2 JH-E		<2	1	<1	2	<1	2	4	.34	<5	2	<20
	R2 JH-F		7	<1	4	16	<1	<1	12	<20	ও	2	<20
	R2 JH-G		3	<1	<1	1	<1	5	5	<20	S	<1	<20
	R2 J H-H R2 J H- I1		6	19	11	4	4	S	3	44	ৎ	4	<20
	R2 JH-I2		2	2	1	3	<1	3	<2	<20	<5	1	<20
ļ			<2	3	<1	<1	<1	1	12	<20	ও	4	<20
	R2 JH-J		<2	<1	<1	5	<1	7	14	<20	< S	<1	<20
	R2 JH-K R2 JH-L		<2	<1	<1	2	<1	4	4	35	ও	<1	<20
			5 17	2 3	<1 22	6	<1	<1	43	44	< <u>s</u>	6	<20
	R2 JH-N		13	6	19	18 3	<1 2	<1 14	14 7	30 93	ৎ ও	5 8	<20 <20
										/3			
	R2 JH-0		10	4	44	46	2	5	17	146	< <u>s</u>	7	<20
\checkmark	R2-22751		6	7	4	6	<1	2	20	<20	ও	3	<20
	R2 22752 R2 22753		5	1	2	<1	<1	7	<2	76	<s< td=""><td><1</td><td><20</td></s<>	<1	<20
	R2 22754		<2 <2	4 . <1	<1	<1	<1	2	3	<20	<5	1	<20
L			~~~~~		<1	3	<1	5	<2	26	<5	<1	<20
	R2 22755		3	5	2	7	<1	2	9	26	<5	1	<20
	R2 22756 R2 22757		<2	3	<1	<1	<1	5	<2	21	<5	<1	<20
	R2 22758		6 <2	•	1 <1	2	<1	7	3	<20	S	3	<20
	R2 22759		3	32	2	<1 2	<1 <1	5 4	▲ 3	<20 <20	ও ও	1 2	<20 <20
·										~20	<u> </u>	4	
	R2 22760		<2	<1	<1	2	<1	8	<2	<20	ও	<1	<20
	R2 22761	18 <u>-</u>	<2	4	<1	1	<1	5	7	<20	<5	<1	<20
	R2 22762	÷	<2	4	<1	6	<1	6	<2	21	. <s< b=""></s<>	<1	<20
	R2 22763 R2 22764		<2	3	<1	15	<1	3	4	<20	< 5	<1	<20
	NZ ZZ/64		<2	*	<1	11	<1	3	5	<20	ও	<1	<20
	R2 22765		<2	9	<1	2	<1	3	3	101	ৎ	5	<20
1	R2 22766		<2	13	<1	1	<1	2	19	70	ও	1	<20
ł	R2 22767 R2 22768		6	<1	<1	4	<1	<1	5	63	S	1	<20
1	R2 22769		<2 2	1 3	<1 <1	<1 . 3	<1 <1	6	6	<20 48	ৎ ৎ	<1 <1	<20 <20
·			<u>د</u>			. 0	<u></u>	2	3	40	<u> </u>		
	R2 22770		5	<1	<1	15	<1	<1	4	<20	ও	2	<20
	R2 22771		<2	<1	<1	2	<1	3	<2	<20	S	<1	<20
	R2 22772		<2	3	<1	<1	<1	3	5	59	<s< td=""><td><1</td><td><20</td></s<>	<1	<20
	R2 22773		<2	17	<1	<1	<1	S	13	<20	<5	2	<28 <20
	R2 22774		13	<1	6	6	<1	3	17	<20	6	6	<20

Geochemical Lab Report

~	REPORT: U89-	-05233.0					:		ROJECT: HO	<u>7) - 29-aug-39</u> IRN	PAGE 1C
	SAMPLE	ELEMENT	Sr PPH	Ta PPH	Te PPN	U PPM	4 PPM	Y PPH	Zn PPit	Zr PPM	
	R2 JU-A		13	<10							
	R2 J4-8		31		<10	22	<10	11	37	18	
	RZ JH-C		12	<18	<10	33	<10	7	62	7	
	R2 JH-0		22	<10	<10	44	<10	9	34	16	
1	R2 JH-E		22 74	<10 <10	<10 <10	9 8	<10 <10	<1	14	1	
							<u> </u>	2	4	5	· · · · · · · · · · · · · · · · · · ·
	rz JH-f rz JH-g		11	<10	<10	38	<10	2	10	20	
	R2 JH-H		4	<10	<10	4	<10	<1	7	15	
	R2 JW-I1		61	<18	<10	12	<10	8	49	15	
	R2 JH-I2		29 105	<10 <10	<10 <10	10	<10	1	5	29	
			100		< <u>, , , , , , , , , , , , , , , , , , , </u>	5	<10	<1	6	8	
	R2 JH-J		45	<10	<10	3	<10	<1	13	<1	
	R2 JH-K		19	<10	<10	5	<10	<1	6	<1	
	R2 JH-L		55	<10	<10	.36	<10	1	13	3	
ļ	R2 JH-M		19	<10	<10	79	<10	4	363	5	
l	R2 JH-N		85	<10	10	101	<10	5	128	7	
1	R2 JH-0		30	<10	<10	94	<10	5	109	4	
1	R2 22751		59	<10	<10	29	<10	3	20	29	
1	R2 22752		12	<10	<18	13	<10	1	27	7	
	R2 22753		36	<10	<10	16	<18	2	3	12	
	R2 22754		6	<10	<10	5	<10	<1	4	<1	
	R2 22755		35	<10	<10	16	<10	2	3	3	
	R2 22756		12	<10	<10	8	<10	<1	8	2	
	R2 22757		41	<10	<10	39	<10	3	32	1	
	R2 22758		51	<10	<10	6	<10	<1	7	<1	
	R2 22759		101	<10	<10	17	<10	3	6	1	
	R2 22760		25	<18	<10	40	<10	<1	5	<1 .	
•	R2 22761		37	<10	<10	5	<10	1	6	<1	
	R2 22762		11	<10	<10	3	<10	<1	4	<1	
	R2 22763		49	<18	<10	5	<10	<1	5	<1	
	R2 22764	······	63	<10	<10	3	<10	<1	6	<1	
	R2 22765	·	90	<10	<10	20	<10	<1	4	<1	
	R2 22766		61	<10	<10	11	<10	3	6	1	
	R2 22767		12	<10	<10	42	<10	1	6	17	
	R2 22768		20	<10	<10	5	<10	त	7	1	
	R2 22769	<u> </u>	26	<10	<10	75	<10	1	3	1	
1	R2 22770		8	<10	<10	263	<10	2	6	1	
	82 22771		14	<10	<10	53	<10	<1	1	4	
	R2 22772		51	<10	<10	9	<10	<1	4	<1	
-	R2 22773		67	<10	<10	5	<10	4	3	4	
1 -	R2 22774		14	11	<10	128	11	2	49	5	

Geochemical Lab Report

	REPORT: V89-	-05233.0			:			3	UE PRINTE			PAGE ZA	
	SAMPLE NUMBER	ELENENT UNITS	Au PP9	ag PPN	As PPN	8a PPM	Be PPN	Bî PPN	Cd PPN	Ce PPN	Ca PPti	Cr PPH	C PP
	R2 22775		<5	<0.2	6	276	8.5	<2	<1	<১	17	55	 6
											· .		
~									<u> </u>				
										<u></u>			
				· · · · · · · · · · · · · · · · · · ·									
		<u></u>											
~													



Geochemical Lab Report

_

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

~	REPORT: V89-	05233.0						PROJECT: HORN PAGE 28						
	SAMPLE NUMBER	ELEHENT UNITS	Ga PPH	La PP N	LI PPN	ila PPit	Nb PPH	Ni PPN	РБ РРП	Rb PPtt	Sta PPM	Sc PPn	Sn PPH	
	R2 22775		3	1	1	<1	<1	7	2	<20	<5	2	<20	

✓

.

• •

Geochemical Lab Report

	REPORT: V89-	15233 1						DATE PRINTED: 29-AUG-39 PROJECT: HORN				PAGE 2C	
	SAMPLE	ELEMENT	Sr	 Ta	Īe	u v	¥	<u>Рк</u> У		Zr		PAGE	2C
	NUMBER	UNITS	PPI	PPH	PPit	PPH	PPI	PPn	PPH	PPH			
	82 22775	<u> </u>	14	<10	<10	15	<10	<1	2	<1			
				·····							, . .		
													_
•													
r													
•									<u></u>				
•													
•													
		· · · · ·									· · · · · · · · · · · · · · · · · · ·		
											· · · · · · · · · · · · · · · · · · ·		

APPENDIX III

Correlation Charts

!		.000 1	.000	
AG		****	0.957#	133
AS		*****	0.382#	133
BA ¦	* * *		-0.111	133
BE ¦	*		-0.022	133
BI		*	0.027	133
CD	`	* * * * * * * * * * * * * * * * * * * *	0.938#	133
CE :	* {		-0.057	133
CO		☆ ☆	0.077	133
CR	* * {		-0.083	133
CU ¦	1	*****	0.933#	133
GA ¦	;	*	0.046	133
	* * *		-0.067	133
LI	* {		-0.043	133
10	!	**	0.083	133
NB ¦	1	*****	0.766#	133
II	9	***	0.128	133
PB	1	****	0.200#	133
RB	* [-0.037	133
B	*	}	-0.016	133
C	÷		0.003	133
N I	:	1	* * * * *	133
R	* [1	-0.032	133
'A		* * * * * * * * * * * * * * * * * * * *	0.504#	133
'E	1	*****	0.934#	133
V ¦	* *		-0.083	133
W		*****	Ø.923#	133
Y	:	*	0.040	133
N	1	* * * * * * * * * * * * * *	0.546#	133
R	*!		-0.024	133

• • • •

4.8 M . ·

-1.000	0	.000 1	.000	
J		·	0.957#	13
5		*****	0.371#	13
A	* *	f	-0.074	13
E	×	t t	-0.056	13
[]	:	*	-0.017	13
	•	****		13
E	* *	1	-0.062	13
) [;	*	0.000	13
₹ ¦	* * *	1	-0.118	13
J		****	* 0.987#	13
		¦	0.048	13
	÷	1	-0.065	13
	÷	1	-0.036	13
		¦ ☆	0.038	13
		****	Ø.823#	13
		**	0.092	13
		* * *	0.109	13
	* *		-0.062	13
	ž	*	-0.020	13
:	ڊ	*	0.009	13
			; 5.555 ; * * * *	13
1 . I	* [-0.026	13
3 1		* * * * * * * * * * * * *	Ø.525#	13
1	1	*****	* 0. 984#	13
	* * !		-0.076	13
l I		******	0.977#	13
1		*	0.051	13
1	1	* * * * * * * * * * * * * * * *	0. 583#	13.
	, *			
			-0.018	133
-1.000	·	000 1	.000	

.

.

-1.000	0.00	00	.000	
AU			0.933#	133
AG		********		133
AS {		* * * * * * * * * *	0.384#	133
BA	* * !		-0.064	133
BE	*		-0.018	133
BI	* !		-0.022	133
		*****		13
CE ¦	*		-0.058	133
20	÷		0.003	133
CR	* * *		-0.118	133
GA I	* :	*	0.086	133
	* *		-0.062	133
	* :		-0.030	133
10	×		0.043	133
VB	¦ * :	* * * * * * * * * * * * * * * * * * * *	0.839#	13
II	¦ * :	*	0.094	133
PB	*		0.000	133
RB ¦	*		-0.037	133
SB ¦	*		-0.014	133
SC :	; *		0.037	133
SN ¦	:		* * * * *	133
R I	*		-0.018	133
TA ¦	¦ * :	* * * * * * * * * * * * *	0.530#	133
E :	* :	* * * * * * * * * * * * * * * * * * * *	÷ Ø.995#	133
V ¦	* ;		-0.047	133
W		* * * * * * * * * * * * * * * * * * * *	* 0.993#	133
Y	¦ * :	*	0.074	133
ZN I	; * :	* * * * * * * * * * * * *	0.579#	133
ZR	×		-0.015	133
-1.000	.0.0	 a a	.000	

· · ·

. • .

-1.000	0	.000	1.000	
U		, ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆	¦ Ø.546#	1 ·
G ¦		` ` * * * * * * * * * * * * * * * *	0.583#	
S ¦		· · · · ·	0.137	13
A l	* * * *	 	-0.141	13
E ¦	×		-0.043	13
I ¦	*	•		1
D		` `	-0.043	13
E ¦	ي		0.574#	10
)		* * *	-0.005	1:
R	* * * * * * * * * *		0.085	1.
J ¦	I	* * * * * * * * * * * * * * * *	-Ø.362#	13
4		****	0.579#	13
A l	ا فد		Ø.326#	13
		` `	0.003	13
	ر ب ج		Ø.480#	13
> }	1		-0.039	13
	•	****	∅.625#	13
	•	* * * * * * * * *	0.334#	13
	•	*	0.057	13
	*		0.011	13
	* [-0.058	13
	ŧ	* * * * * * * * * * * *	0.492#	13
	1		* * * *	13
	1	* * *	Ø.132	13
. I	•	* * * * * * * * * * * * * * * * * * *	0.682#	13
	•	* * * * * * * * * * * * * *	0.577#	13
	,	* * * * * * * * * * * *	0.439#	13
	,	* * * * * * * * * * * * * *	0.561#	13
	1	* * * * * * * * * * * *	Ø .427#	13
	<u>*</u>		-0.020	13
-1.000	а. А.	 000	¦ 1.000	

APPENDIX IV

Heavy Mineral Concentrate Data

walk glasses

Telephone: (904) 681-8919

. ...

	[· · · · · · · · · · · · · · · · · · ·	GR	AVITY CONCE	NTRAT	E		1
SAMPLE №	Weight (Kg)	Weight (g)	MINERALS	*	Nº OF PARTICLES/ FLAT	IZE ANALYSI TENING (In di 100 🛉 200	fferent size rang	es - microns)	OBSERVATIONS
<i>А</i> М-03		7.00	Mingnetite Hartite Strike Sters(Light)	60 523 33		1/1			Gold Very angular.
6-207		3.5	Kugnetite? Henatite? Somet Others(Lip!)	40 205 35					No gold 1770
AM.06		8.60	Muanatita	25 25 45		И			So'd ang Ja.
6-204		9.30	Mag. etile Hendile? Sornet others(Ligh)	2 9 60 10 10					No gold.
Sw-9t02		6. 0 0	Mugnetike Ilmenike Pyvite ofters	30					
5w-14+00		8.90	Ryagnetike friende Otros	50					
G-202		9,30	Mugratite Henrice The us (Light	30000					
561-3-54		7.00	Magnorite Tillarite Print Dissis	70			1/1		6.12 mgalo
511-15+17		6130	Mynetile pyrite Ilmenike etters	30 20 72 48					
6-206		7,50	hagetite Unidente blk.mnrl. PT-ite	60 10 2					

P02 641

T/PUB_IC UCR 6818775 11:44

68 69

Ø 6 CT

...

625 - 51 Jerenho	ED MINERAL 10 W. Hashings S ne: /6D4[681-89 K 661-8/75	OGY St. Vancouver, B S9	C Canaga V68 ILS		SILT	EDIMENT	DATA.					
	T	[GR	AVITY	CONC	FNTO		an a			
SAMPLE Nº	Weight (Kg)	Weight (g)	it Eavy MINERALS	8	Nº OF PAR	PARTICL	E SIZE A	NALYSIS F((In differ	nt size ra	inges - mi	crons) 25 🛉	OBSERVATIONS
SW-13+00			Magnetite oxid. pyrite Othters	70 2 28								No 6.12 was Observed.
5w-5+03		5.25	Magnetile ox. pyvike Ditktos	50 2 38							-	No acid. observed.
STU-OZ		6.00	Hignetile	20								No gold.
SW-17+25		10.80	Preche	70 20 10						-	-	wo gold.
SW-5+878		3,40	Magnetite Pyrite sturs (Light)	10 1 90						2/1		
5w - 6+76		6.90	Magnetile Pirite Burite? Others	40								No gold.
5D-02		7.00	Magnetite Pyrite others	50 10 40				1/2		-		gold is why angular (jagg
SW-12+05		9.00	progratike pyrite fimenike others (cight)	60 10 5 25					_			
G-201		8.70	Hangastile Heinatite Garnet Others (Light)	30 30 35 35								
AM-05		11.50	Magnetite Netotike Pyrite Others.	25 50 2 23				2/2	23/1			

641 P03

T/PUBLIC UCR 6818775

89 11:45

Ø СЧ

OREX Laboratories Ltd. APPLIED MINERALOGY

ſ

р04 4

641

17PUBLIC UCR 6818775

11:40

ע ע נ 2 5

				GŔ	AVITY	COI	NCEN	TR	ATE						
SAMPLE Nº	Weight (Kg)	Weight (g)	MINERALS	8	Nº OF P		FICLE SIZ	E ANA NING (LYSIS I In diffe	rent size	a range	9 - mi	Crons)) }	OBSERVATION
5W-0+86		11.Z	Mag life Haatite IInatie Pykyters.	50	10		0 40		200		50				
		·										<u>u</u>		*	
													-		

APPENDIX V

÷

Heavy Mineral Concentrate Assay Results

: C.SION		••									it 15	18 51.	, NORT	H YAN	ICP COUVER 06)988	. B.C.		172	• • • •						• TYP	ERO				0CT=28- (ACT:F3
MPLE IMER	AG PPN	AL PPH	AS PPM	PPH	8A PPN	PPN	BI	CA PPN	CD PPN	CO PPM	CU PPN		E X							- 28 - 294				U			GA FPN		V C	
+03 +05 +06 -201 -202	2.7	7120 7480 9020 1400 1120	1	18 12 28 12 9	55 51 165 332 1468	.1	16	1650 4090 5170 260 260	.1	80 56 72 30 30	53 89 19	37705 22457 33643 22743 20613	0 330 0 590 0 370	7	8120	677 886	1	10 60 90 40 30	72 47 50) 6) 34) 26) 12	1 3 1 1 1	19 18 21 14 19	1	1 1	785.9 762.7 216.9 770.3 734.0	130 91 115		1	3 14	0 14340
- 204 - 206 - 207 - 02 TU- 02K	1.3		1 1 1 1	9 22 13 18	537 196 267 72 237	.1	10 1 10 21 5	230 320 460 7790 300	:	29 51 39 137 26	56 38 123	23893	0 270 0 1530 0 800 0 2000 0 390	1 5 10	3530 10070	91 264 368		40 50 90 10	22 37 32 50	14 1 1 18 18 48	1 1 1 2	30 16 17 19 13	1 1 1	11	551.1 1079.6 751.6 617.5 641.4	101 67 130		1	1 2 4 5 32 2 1	j 16 2295
H-9+86 H-3+64 H-5+03K H-5+878C H-6+76K	1.7 1 2.0 1 2.2 1.4 2 1.5 7	0300 8710 4330	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17 19 20 1 9	156 125 307 410 143	.1 .1 .5	13 14 13	2300 1880 2100 3260 2170	.1	70 78 89 31 76	98 78 91	42940 43690 12059	0 2410 0 2650 0 2170 0 6780 0 3700	15	7930 8680 8840 20600 10980	644 1033	111111111111111111111111111111111111111	50 1 80 14	38	19	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	19 26 25 35	1 1 1 1	11	233.0 133.8 062.4 315.1 663.6	161 147 147		1	7 46 5 23 6 38 2 6 3 9	2375
54-9+62 54-12+05 54-14+00 54-15+17 54-17+25K	4.8 1 6.9 1 3.2 1 3.9 7.8 1	0640 2270 9830	1 1 1 2	10 16 15 13	793 109 139 89 67	.1	55 22 12	4800 3840 4530 6160 6260		118 125 115 250 309	107 122 430	36638 37791 33854	0 2550 0 1990 0 2570 0 1830 0 1830	1 9 7		1272 1215 490		20 60 70 60	46 56	84 91	8 4 1 2	28 21 22 26 25	1 1 1		687.5 924.6 864.1 372.8 301.3	214 179 97		53111	5 21 6 24 5 24 3 20 2 5	3 120 7 42 3 2110
											<u></u>								_,											

.

.

APPENDIX VI

Rock Sample Descriptions

 SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
22785	7+00m S of dry wash	Ferrocrete, multilithic	Float	-
22786	6+65m S of dry wash	Sericite schist with green tinge, quartz veinlet fragments	Float	-
22787	6+00m S of dry wash	Quartz, fine grained, grey, %15 vugs, minor finely disseminated sulphides	Float	-
22788	5+75m S of 0+20 W		Talus	-
22789	5+75 S of 0+20 W	Quartz, very rusty, grey, pyritic, yellow on W/S	Float	-
22790	2+50m S of 0+00		Talus	-
22791	3+70m S of 0+75m W	Clay - Chalky white, minor rust to buff color on weathered surface	-	15m
22792	4+00m S	Clay with sand like particles and small quartz fragments	-	lm
22793	4+00m S	Quartz - rhyolite crackle breccia, speculiter minor pyrite	Talus	-
22794	L6+00S 0+05W	Quartz, opaline, iridescent scheen	Talus	-
22795	L6+00S 1+75W	Andesite, orange rust to maroon and buff, slaty, kaolinized, with brecciated quartz veinlet	Talus	-
22796	L6+00S 1+80W	Quartz, black, minor druses, very minor bright red mineral	Talus	-
22797	L6+00S 1+80W	Quartz, dark brown and very rusty, cockscomb textures	Talus	-
22798	L6+00S 1+75W	Clay - quartz slump, multilithic	Talus	-

	SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
_	22799	L5+60S 3+80W	Quartz rusty	Talus	-
	22800	L7+00S 4+25W	Limonite and quartz fragments	Talus	-
	22751	L7+00S 4+80₩	Clay	-	-
	22752	Shear Creek	Quartz, euhedral	Select	-
	22753	24+00S 10+00W	Sericite schist, medium to intensely pyritized	Talus	-
	22754	24+00S 10+00W	Quartz, rusty	Sub Crop	-
	22755	24+00S 10+00W	Clay, sandy and sericitic	Sub Crop	-
	22756	24+00S 10+00W	Quartz, coarse grained, sericite, cubic to tabular minerial with brown streak (sphalerite)	SubCrop	-
~	22758	24+00S 10+00W	Quartz(ite), granular with seams of sericite, 1% lazurite, and minor black mineral	Sub Crop	-
	22759	24+00S 10+00W	Limonite, massive with seams of dry crackle brecciated quartz	SubCrop	-
	22760	24+00S 10+00W	Quartz, brown, sericitic sheen.	SubCrop	-
	22761	24+00S 10+00W	Sericite _ clay, yellow to minor rust	SubCrop	-
	22762	24+10S 10+00W	Quartz, coarse bull, locally grey	Talus	-
	22763	24+00S 10+00W	Quartz(ite), dark royal blue lazulite stains, emerald colored fuchsitic mica, botryoidal vugs	Talus	-
	22764	24+00S 10+00W	Quartz(ite) with lazulite to 1% in blotches to blebs, minor black mineral		

-

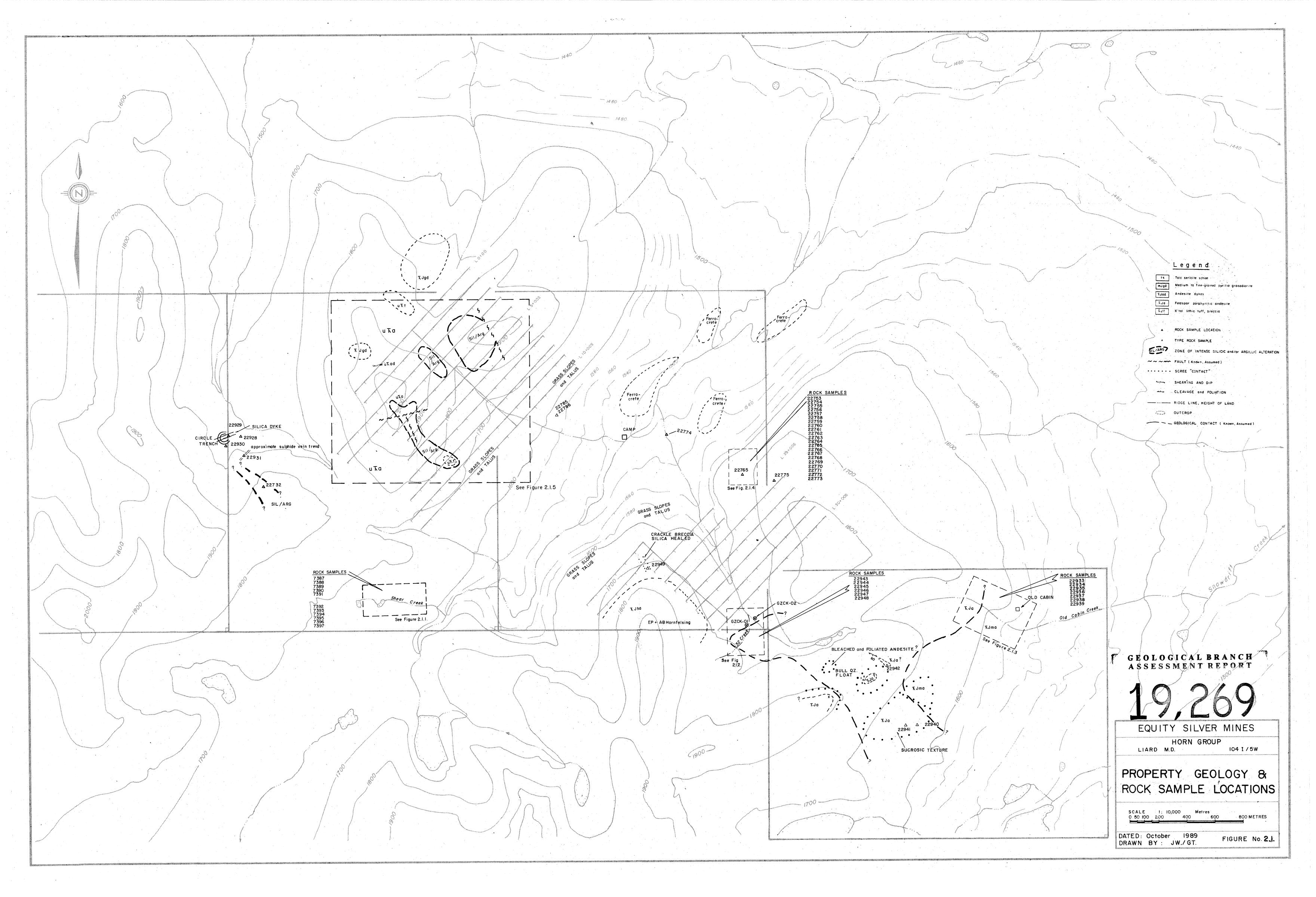
	SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
	22765	24+00S 10+00W	~ / /	SubCrop	-
	22766	24+00S 10+00W	Feldspar, sericitized, minor lazulite stains and massive black sphalerite		
	22767	24+00S 10+00W	Limonite massive	SubCrop	-
	22769	24+00S 10+00W	soft, buff color, limonitic on weathered surface.		
	22770	24+00S 10+00W	Limonitic, layering. See type	Trend 158	-
	22774		Ferrocrete	Float	-
	22771	24+00S 10+00W	Quartz vein-pod, brown, truncated along strike	158/90	.22m
	22772	24+00S 10+00W	Sericite schist, green tinge, lazulite to 1%	140/70 W	1.18m
~	22773	24+00S 10+00W	Quartz, crumbled to massive, minor lazulite, disseminated sphalerite		•9m
	22888	outwash of clay rim			
	22889	Outwash near camp	clay lake, light yellow clay		
	22890	Drywash near camp	Composite of fu topalin Quartz from dry wash		
	22891	circle trench zone	Sericite, disseminated pyrite		
	22892	circle trench zone	Grey rock, sugary quartz crystals		

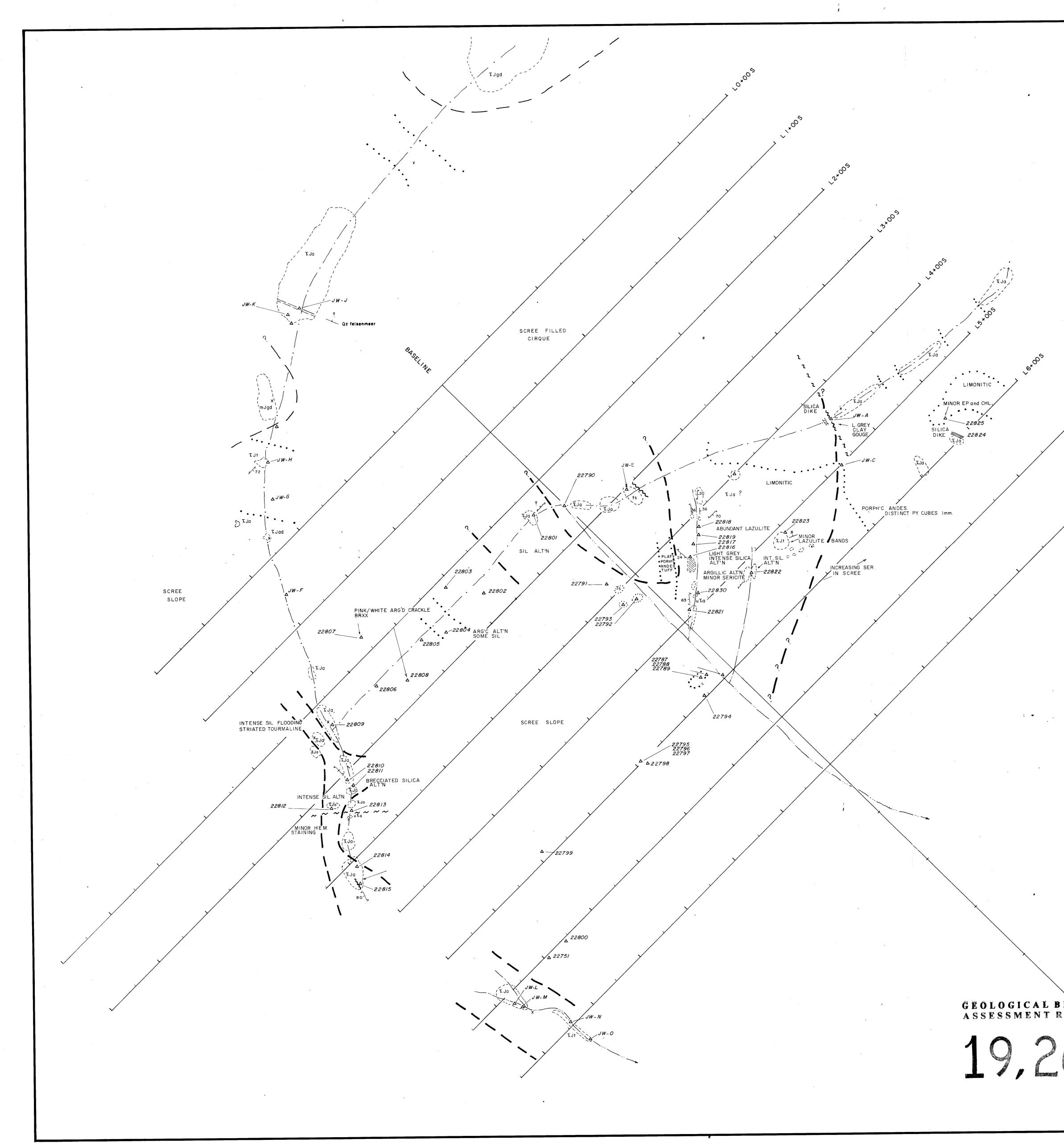
	SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
	22785	Dry wash near camp	Ferrocrete, multilithic		
:	22786	Dry wash from camp	Ferrocrete, multilithic		
:	22787	L3+00S 6+00W	Float in dry wash, fine-grained grey quartz, rings (15% of Rx), Mnr fn diss Su's	-	Float
:	22788	5+75S 0+20W	local scree 'bump', Msv. Qz Rx (Dyke) local Py Bxwk + jarosite		
:	22801	L2+25S 0+50W	Intense silcic alteration, vuggy, limonitic on fractures, minor disseminated Pyrite		
	22802	L2+50S 1+75W	Crystal lithic tuff, welded texture, carbonitized, no visible sulphides		Felsenmeer
•	22803	L2+20S 2+10W	Black crystal lithic tuff, oriented glass shards, limonitic on fractures, 1-2% pyrite		Felsenmeer
	22804	L2+20S 2+50₩	Intense argillic alteration, light blue colored surfaces, 2-3% pyrite with limonitic rimming		Felsenmeer
	22805	L2+55S 2+75W	Black crystal lithic tuff, welded texture, 2-3% pyrite		Felsenmeer
	22806	L2+50S 3+75W	Argillic altered tuff, very limonitic, no visible sulphides		Felsenmeer
	22807	L1+80S 3+50W	Pink/white argillic crackle breccia, purple-black to dark green mineral on fractures and open spaces		Felsenmeer
	22808	L2+70S 3+50W	Crackle breccia as in #22807		Felsenmeer
	22809	L2+50S 4+75W	Feldspar porphyritic andesite, sheared with flow		

	SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
			textures,limonitic on fracture surfaces		
	22810	L3+10S 5+10W	Moderate silicic alteration of porphyritic andesite, limonitic and pyritic (2-3%), shear trend 138		
	22811	L3+10S 5+20W	Brecciated silicic alteration, limonitic weathered surfaces, fine disseminated pyrite		
	22812	L3+10S 5+75₩	Light brown-orange silicic alteration, minor hematite staining, some brecciation		
	22813	L3+50S 5+75W	Shear zone hosted by moderately silicified andesite	80/80 S	.5M
	22814	L4+10S 6+00W	Intense silicic alteration, no visible sulphides, some vugs, minor limonite on fractures		
~	22815	L4+20S 6+20₩	Silica nodule and breccia from small shear zone, no visible sulphides, limonite + hematite staining	155/86S	40 cm
	22816	L4+50S 0+60W	Intense silicic alteration, highly fractured with primary fracture plane 128/24S, light grey		
	22817	14+30S 0+90E	Intense silicic and argillic alteration, no visible sulphides	Subcrop	.5m
	22818	L4+15S 1+00E	White to light brown silicic-argillic alteration, no visible sulphides, abundant lazulite	Subcrop	lm
	22819	L4+20S 1+00E	White to light brown silicic-argillic alteration, no visible sulphides, abundant lazulite	Subcrop	lm
	22820	L4+80S 0+50E	Buff to pale yellow sercicte with argilic alteration, no visible sulphides	172/83W	1.5m

SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
22821	L4+95S 0+25E	Buff to light grey, sheared, silicic alteration, no visible sulphides	172/83W	1.5m
22822	L5+10S 1+10E	Intense buff silicic alteration, ~30/45W fractures, sucrosic texture	-	Select
22823	L5+10S 2+00E	Buff to light grey banded tuff?, minor lazulite bands	-	Select
22824	L6+00S 4+85E	Silica dyke, sucrosic texture, minor vugs, limonitic fractures	-	Select
22825	L5+70S 5+00E	Very limonitic silicic float, minor epidote and chlorite	-	Float
JW-A	L4+40S 3+60E	Light grey clay gouge from ridge fault, 20m width, no visible sulphides	-	Select
JW-B	L4+40S 3+50E	Silica dyke with some sericite and minor pyrite, faint limonite on fractures	-	Select
🥣 ЈЖ-С	L5+00S 3+25E	Intense limonitic scree, 5-10% pyrite	-	Float
JW-D	L4+00S 2+05E	Limonitic silica dyke, minor pyrite (<l%)< td=""><td>-</td><td>Select</td></l%)<>	-	Select
JW-E	L3+00S 0+80E	Buff to light yellow sericite schist, no visible sulphides	-	Select
7387	Shear Creek	Vuggy quartz vein, vugs to 5cm in diameter, coarse crystals, minor pyrite (<1%)	90/50S	20cm
7388	Shear Creek	Argillized, foliated andesite, limonite and hematite veinlets, 106/84N foliation	-	Select
7389	Shear Creek	Very limonitic, foliated andesite?, 5% pyrite	-	Select
7390	Shear Creek	Pyritic andesite, weakly chloritized, minor quartz stringers	-	Select

- 4


	SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
	7391	Shear Creek	Sheared, chloritized andesite, basaltic texture with oriented limonitic-filled vugs	-	Select
	7392	Shear Creek	West boundary of 65m shear zone 155/70SE, very limonitic/jarositic with 5% Pyrite	155/70E	Select
	7393	Shear Creek	As 7392 but less sheared	155/70 E	Select
	7394	Shear Creek	Random shear orientation, buff and rusty patches, lof2 samples	155/70 E	2m
	7395	Shear Creek	Random shear orientation, buff and rusty patches, 2of2 samples	155/70E	2m
	7396	Shear Creek	Limonitic and jarositic shearing	155/70E	Select
	7397	Shear Creek	Bright yellow shear zone with rusty gouge and breccia	115/60N	lm
ť	7398	Shear creek	Silicified, pyritic, andesite?, limonitic galena cubes	-	Select
	JW-F	North Ridge	Limonitic, vuggy scree, argilized andesite? phenocrysts	-	Float
	JW-G	North Ridge	Silicic alteration/dyke scree. vuggy, limonitic 5% pyrite	-	Float
	JW-Н	North Ridge	Foliated (42/72S) medium grey carbonitized pyroclastics?	-	Select
	JW-I1	North Ridge	Pale yellow to white bleached pyroclastics 5-10% pyrite, very limonitic on fractures	-	Float
	JW-12	North Ridge	Highly oxidized, silicic andesite?	-	Select
	JW-J	North Ridge	Vuggy, coarse crystalline quartz felsenmeer, fine black disseminations	ll4 Trend	20cm
	ЈМ-К	North ridge	Vuggy, coarse crystalline quartz felsenmeer, fine black disseminations	?	20cm


~	SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
	JW-L	L7+10S 5+75W	Completely argillized silica dyke or silicified andesite? no remnant textures	-	Select
	JW-M	L7+25S 5+70W	Chloritized, argilized volc's? faint remant porphyritic texture, pyrite	-	Select
	JW-N	L8+00S 5+25 W	Crystal tuff, hematitic fractures, 1-2% pyrite, abundant crystal fragments.	-	select
	JW-O	L8+50S 5+25W	Pyritic breccia, bleached clasts in tuffaceous matrix	-	select
	22933	Old cabin creek	Megaphyric basalt, plagiocalse crystals rounded to subangular, quartz filled vugs	-	Float
	22934	Old Cabin Creek	Very limontitc sericite schist, fine disseminated pyrite, 100/75 S foliations	-	Select
~	22935	Old Cabin Creek	Limonitic sericite schist, pyrite blebs, 130/70S foliation	-	Select
	22936	Old Cabin Creek	Limonitic vuggy, volcanic vent? vugs are elongated, vertical and up to 5cm in length	-	Select
	22937	Old Cabin Creek	Lens of sucrosic quartz in 22936 rock	Lens	25cm
	22938	Old Cabin Creek	Subparallel quartz veins up to 5cm in width	50/525	Select
	22939	Old Cabin Creek	Sericite/Megaphyric basalt contact	160/45S	0.5m
	22940		Quartz float, sparse gun steel grey disseminations	-	Float
	22941		Quartz float, sparse gun steel grey disseminations	-	Float

	SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
	22942		Intense argillic alteration, limonitic fractures, no visible sulphides 122/60 S foliation	-	Select
	22943	L32 Creek	Poorly lithified conglomerate (old ferrocrete) limonitic, boulders to 30cm diameter	-	Select
	22944	L32 Creek	Black to dark green, pyritic tuff 76/45 S foliations	-	Select
	22945	L32 Creek	Intense argillic alteration, limonitic with minor sericite, no visible sulphides	-	Select
	22946	L32 Creek	Sericite schist, limonitic fractures, no visible sulphides	-	Select
	22947	L32 Creek	Silicic alteration, disseminated and bleb pyrite, limonitic	-	Select
	22948	L30+60S 1+20W	Intense argillic alteration with minor sericite, fine grey sulphides	-	Select
~	22949	L23+50S 1+00W	Multilithic crackle breccia, silica healed, open spaces, limonitic	-	Select
	22926	Circle trench	Pyrite breccia, bleached matrix with fime grained pyrite clasts	40/74S	80cm
	22927	Circle Trench	Bleached volcanics with remnant porphyritic textures, pyrite blebs to 5cm in diameter	-	Select
	22928	Circle trench	Limonitic shear zone, 5m width, no visible sulphides	64/80 S	1.5m
	22929	Circle trench	Sericitic quartzolite dyke, 25m width, pods and blocks of fine pyrite, limonitic	-	Select
	22930	Circle trench	Light green pyroclastics, cherty and porphyritic (semi-absorbed) fragment	-	Select
	22931	Circle trench	Massive sulphide vein, malachite and azurite staining, chalcopyrite	80 trend	10cm

SAMPLE NO.	LOCATION	DESCRIPTION	STRIKE & DIP	WIDTH
22932		Gossanous argillic alteration	_	Grab

.

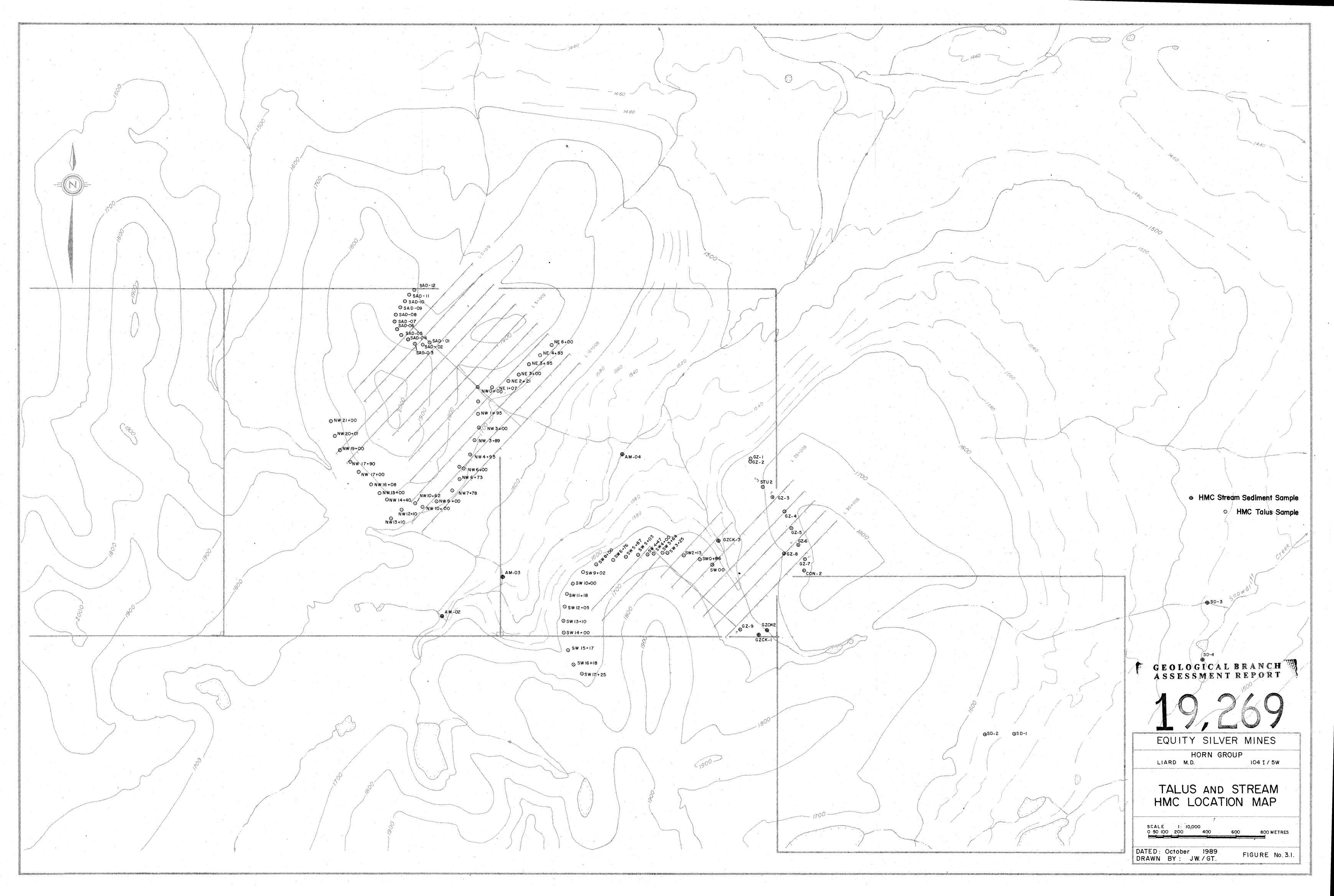
.

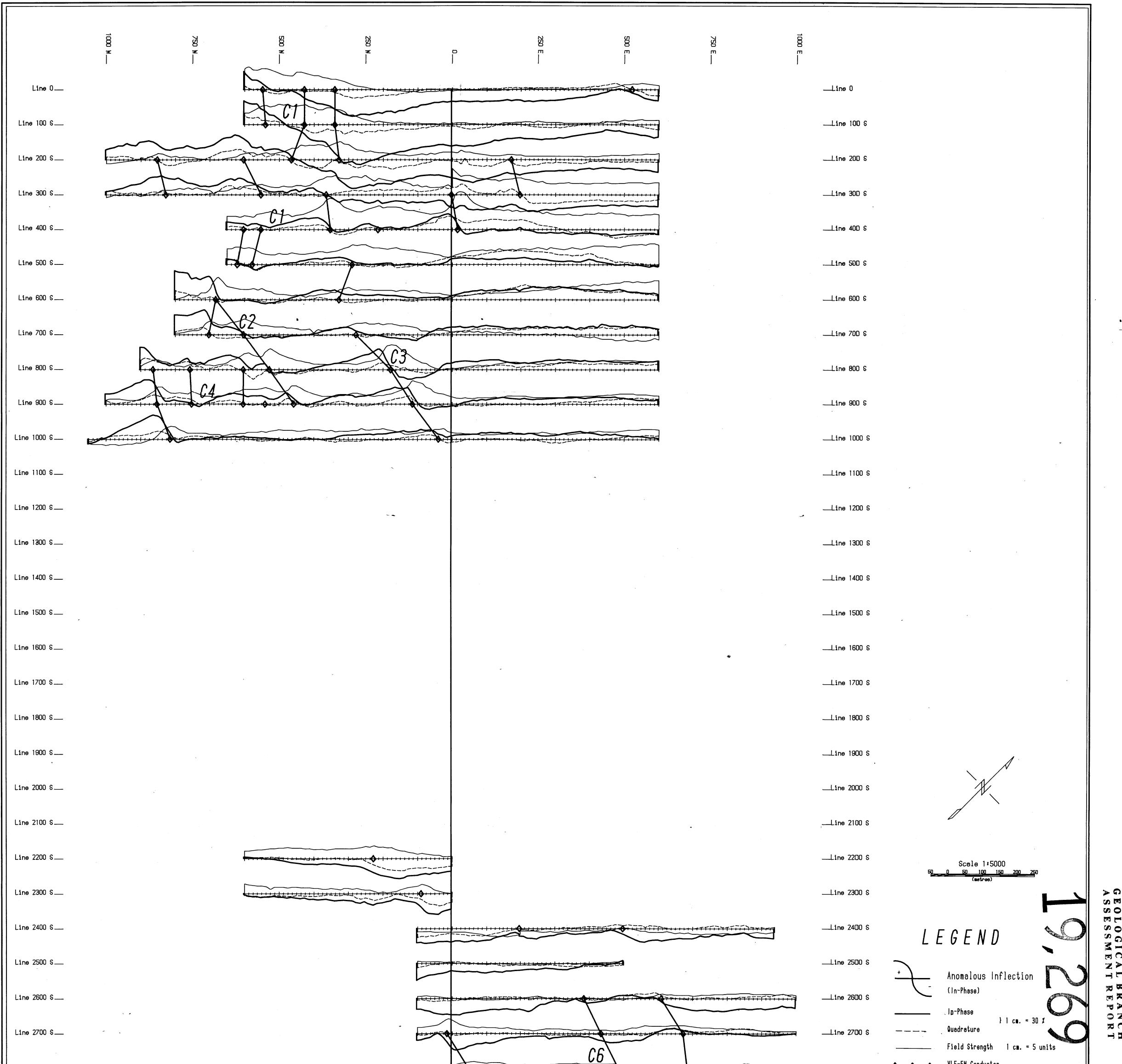
	EQUITY SILVER MINES	
LBRANCH	HORN GROUP LIARD M.D. 104 I / 5W	
TREPORT	NORTH GRID	
	DETAILED GEOLOGY & SAMPLE LOCATION MAP	
	SCALE 1: 2500 0 25 50 100 150 Metres	
	DATED: October 1989 DRAWN BY: /GT. FIGURE No. 2.1.5.	

GEOLOGICAL CONTACT (Known, Assumed)

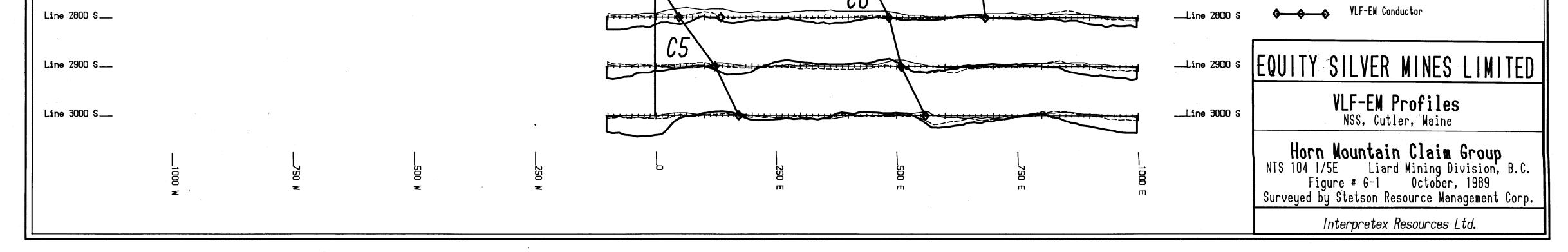
mogu	
TJad	Andesite dykes
τJα	Feldspar porphyritic andesite
ΤJf	X'tal lithic tuff, breccia
۵	ROCK SAMPLE LOCATION
×	TYPE ROCK SAMPLE
SIL/ARG	ZONE OF INTENSE SILICIC and/or ARGILLIC ALTERATION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FAULT (Known, Assumed)
•••••	SCREE "CONTACT"
۸ <i>ا</i>	SHEARING AND DIP
· · · ·	CLEAVAGE and FOLIATION
,	RIDGE LINE, HEIGHT OF LAND
	OUTCROP

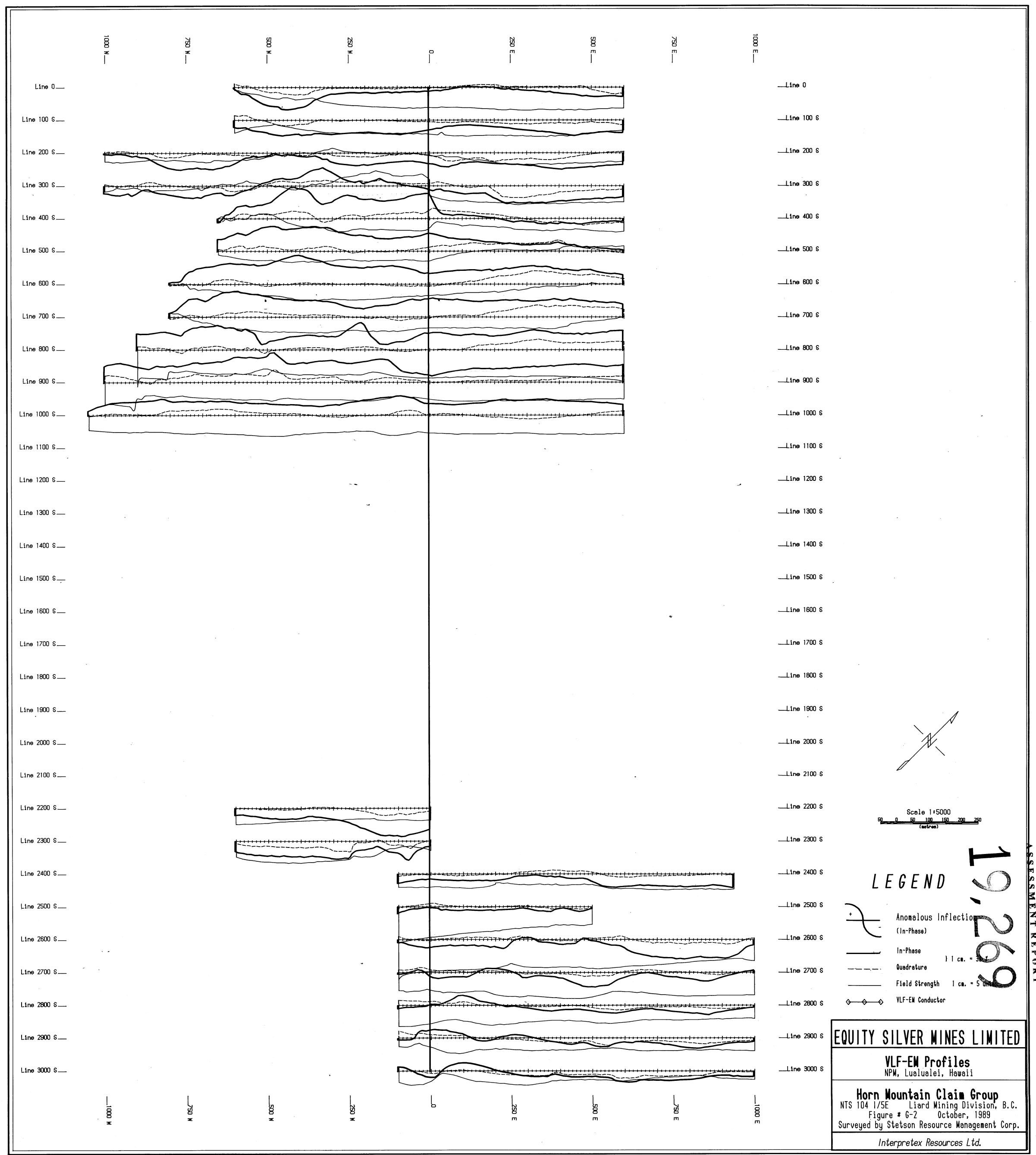
Legend


ts

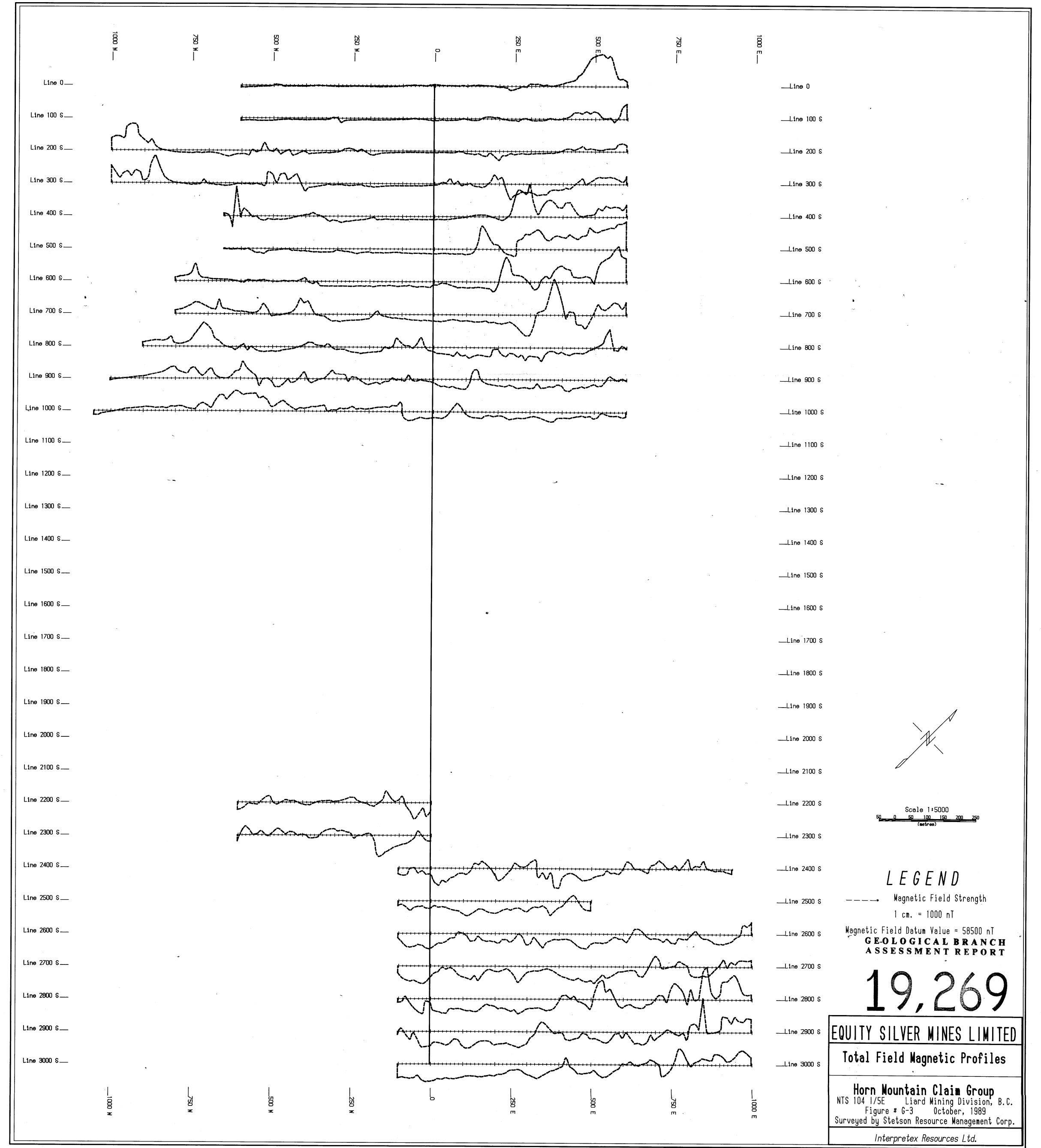

*

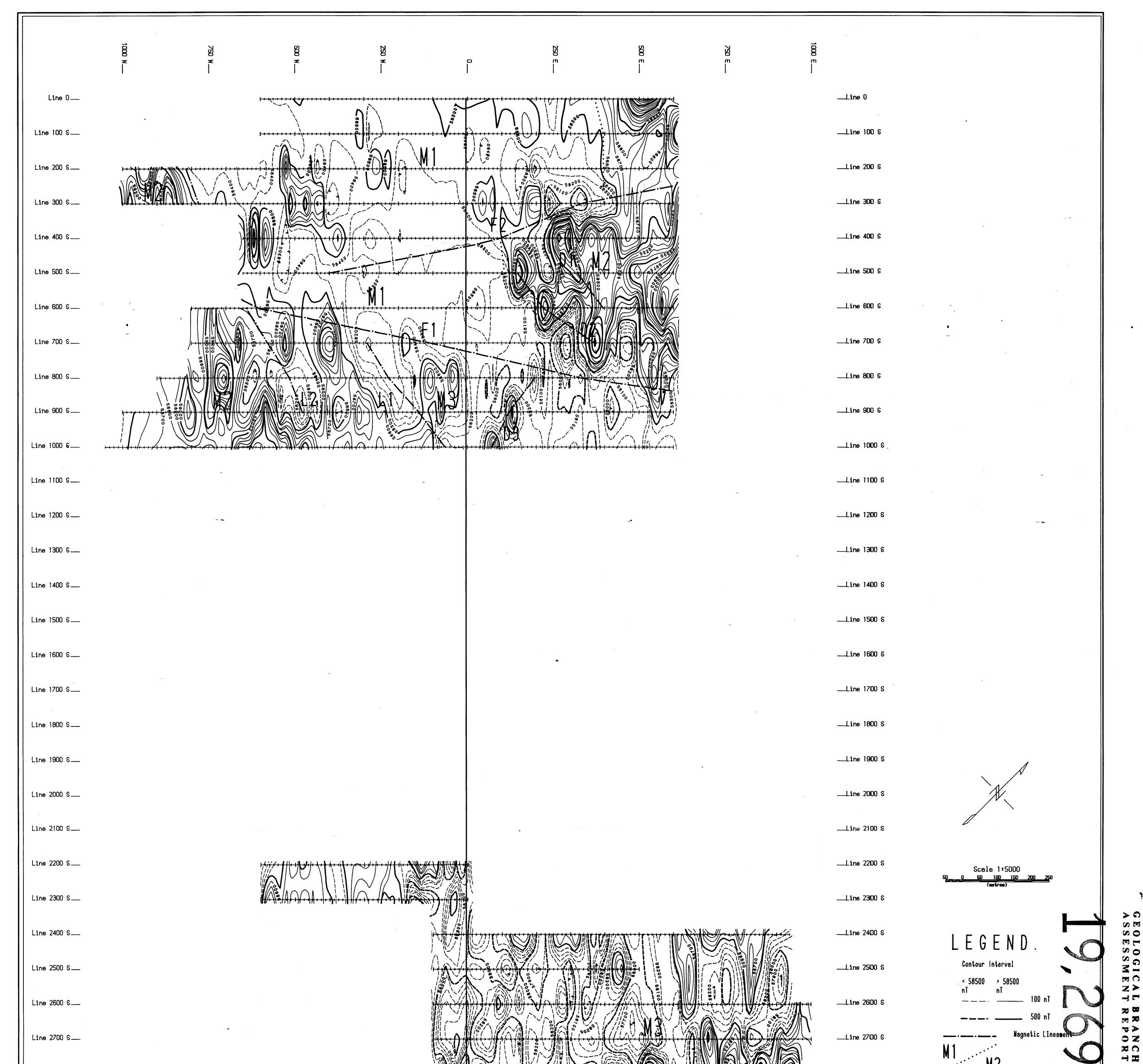
*

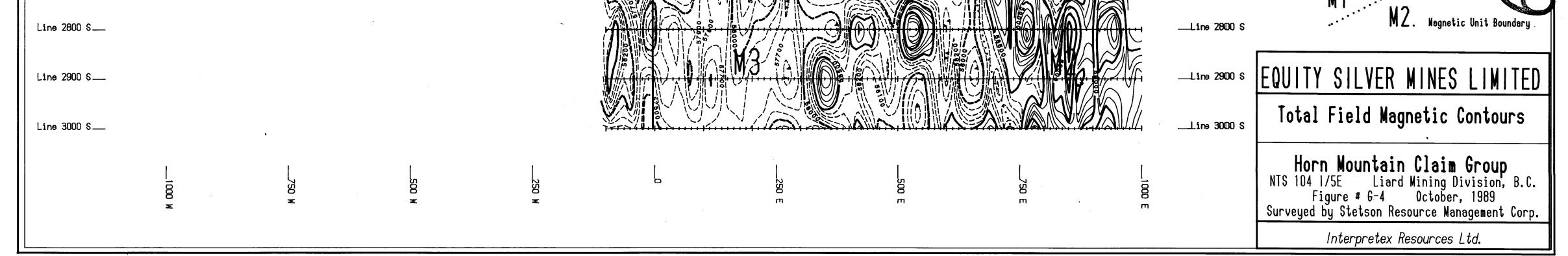

Talc sericite schist

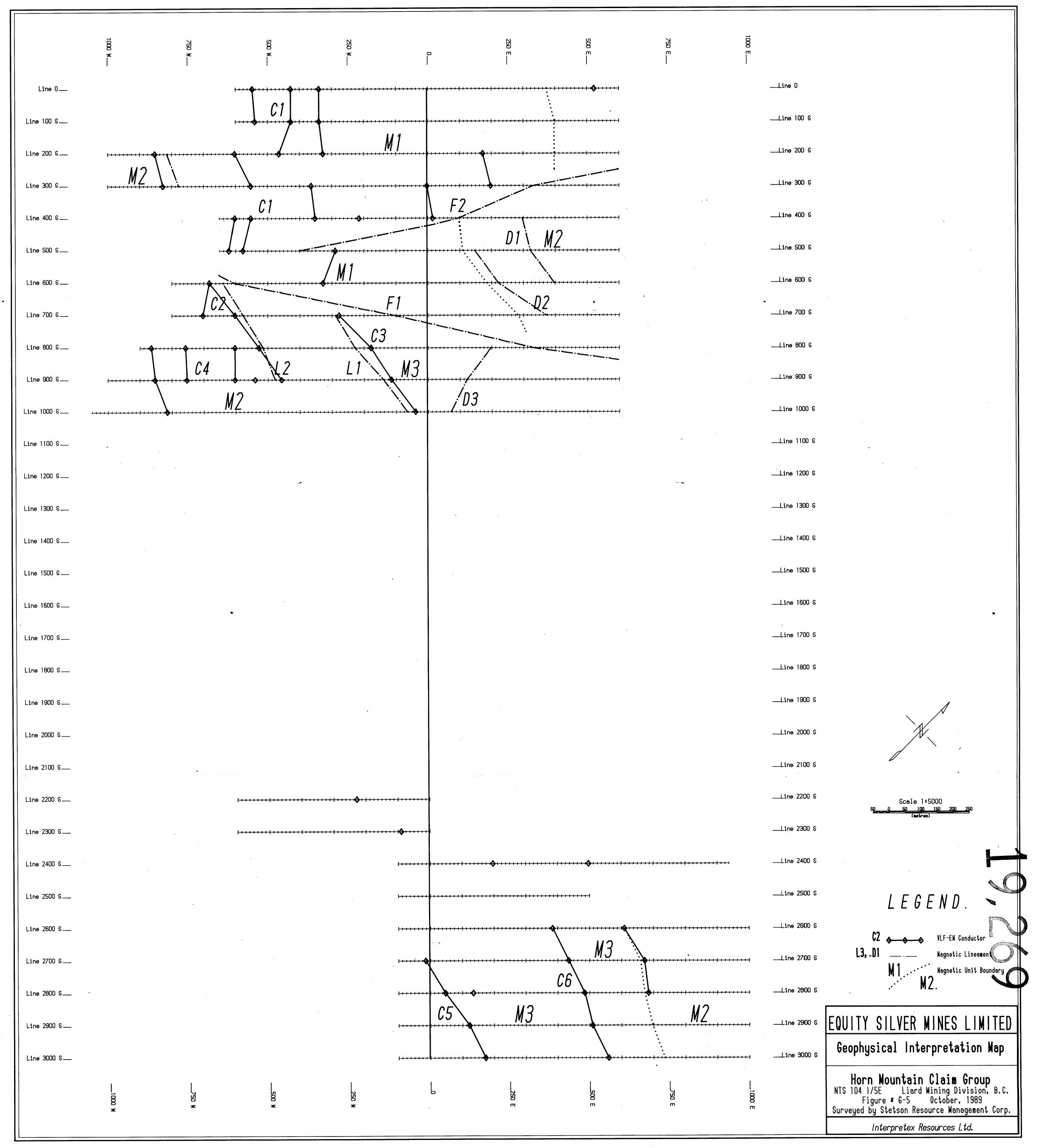

mJgd Medium to fine-grained pyritic granodiorite







EOLOGI E C NL BRANCH




20 Q ME ZA BRAN **7 0** -









GEOLOGICAL BRANCH ASSESSMENT REPORT