BAPTY RESEARCH LIMITED

606 Trail Street Kimberley, B.C. V1A 2M2 Fax (604) 427-2006

Tel (604) 427-7631

LOG NO:	0301	RD.
ACTION:		
	1560	

SUMMARY OF THE

GEOLOGICAL, GEOCHEMICAL
GEOPHYSICAL, DIAMOND DRILLING
AND PHYSICAL WORK PROGRAMS

FILMED

ON THE

MCNEIL CREEK PROPERTY
FORT STEELE MINING DIVISION

NTS 82F/8E // 82G/5W

49° 21' NORTH LATITUDE 115° 59' WEST LONGITUDE

PREPARED FOR SOUTH KOOTENAY GOLDFIELDS INC.

BY

M. BAPTY, P.ENG.

P. KLEWCHUK, GEOLOGIST

MAY, 1989

TABLE OF CONTENTS

		Page
1.00	SUMMARY OF WORK AND RECOMMENDATIONS	1 /
2.00	INTRODUCTION 2.10 Location and Access 2.20 Physiography 2.30 Property 2.31 Geological Target 2.32 Claim Group and Status 40 History 2.50 1988 Program	2/ 2/ 4/ 4/ 5/ 7
3.00	GEOLOGY 3.10 Regional Geology 3.20 Property Geology 3.30 Mineralization & Target Development	8 / 8 / 10 / 12 /
1.00	GEOCHEMISTRY 4.10 Lead 4.20 Zinc 4.30 Silver	14 / 14 / 15 / 15 /
5.00	GEOPHYSICS 5.10 VLF - EM Survey 5.20 MAX-MIN Horizontal Loop EM Survey 5.30 Total Field Ground Magnetic Survey	16 / 16 / 17 / 18 /
5.00	TRENCHING	21/
7.00	DIAMOND DRILLING 7.10 Quartz - Sulfide Vein Tests 7.20 Mag Anomaly Test 7.30 Stratigraphic (Sullivan Target) Test 7.40 Discussion	25 / 26 / 28 / 29 / 33 /

8.00	CONCLUSIONS		36			
9.00	EXPENDITURE STATEMENT					
10.00	REFERENCES		40 /			
11.00	QUALIFICATION ST	FATEMENTS	41/			
12.00	APPENDICES		43 /			
12.10	$\sqrt{ ext{Appendix I.}}$	Trench Sampling; Descriptions and Analysis	5			
12.20	/Appendix II.	Report on DDH M-88-7				
12.30	/ Appendix III.	Report on DDH M-89-1				
12.40	/ Appendix IV.	Lead Isotope Analyses				
12.50	/ Appendix V.	Drill Logs				
12.60	/ Appendix VI.	Geochemical Analyses of Dril	l Core			
12.70	/ Appendix VII.	Geophysical Report on McNeil				
~		Property Lloyd Geophysics	3			

.

.*

•

LIST OF ILLUSTRATIONS

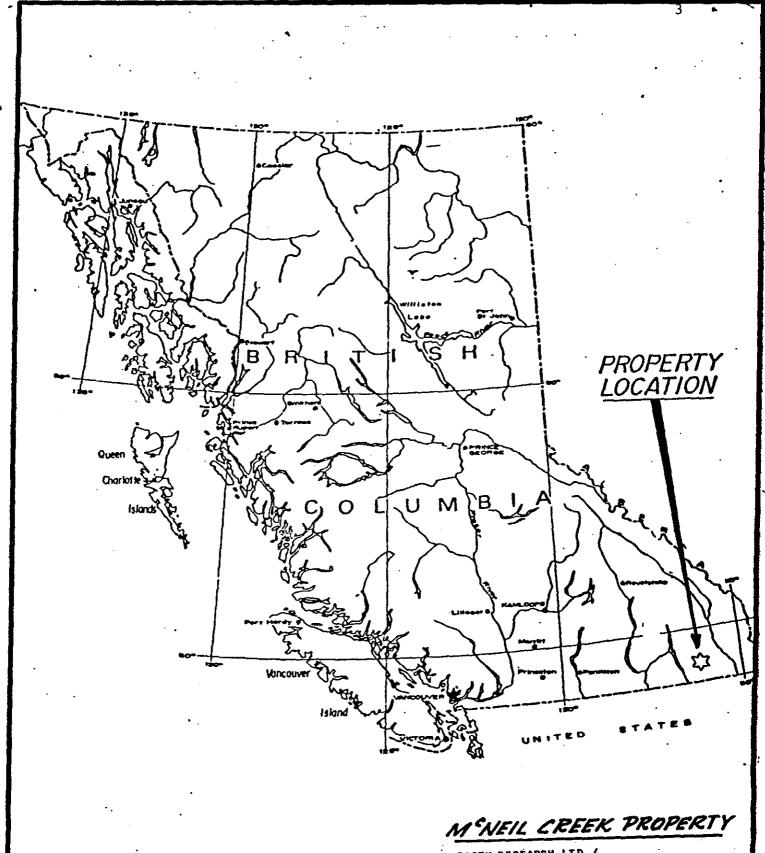
	HIST OF ILLUSTRATIONS	Page
Figure 1.	Property Location Map	3 /
Figure 2.	McNeil Creek Property Claim Map	6 🗸
Figure 3.	McNeil Creek Property Regional Geology	in pocket /
Figure 4.	McNeil Creek Property Geology	in pocket /
Figure 5.	McNeil Creek Property Soil Geochemistry	in pocket /
Figure 6.	Detail Contouring of Mag Anomaly	20 /
Figure 7.	Linear North-trending Aeromag Anomaly North McNeil Creek Property	21 /
Figure 8.	Diamond Drill Graphic Logs and Cross Sections	in pocket /
Figure 9.	DDH M-88-3, 4, & 7 Cross Section	in pocket /
Figure 10.	DDH M-89-1 Cross Section	in pocket /
Figure 11.	McNeil Creek Property Trench Geology	in pocket /
88269-1	Total Magnetic Field Profiles	in pocket
88269-2	Total Magnetic Field Contours	in pocket /
88269-3	VLF-EM Profiles (Seattle)	in pocket /
88269-4	VLF-EM Profiles (Cutler)	in pocket /
88269-5	MaxMin HLEM Profiles (880 Hz)	in pocket /
88269-6	MaxMin HLEM Profiles (1760 Hz)	in pocket /

1.00 SUMMARY

The McNeil Claim group is located 20 kilometers southwest of Cranbrook, B.C. The claims cover a series of Pb-Zn-Ag-Au veins which occur in Middle Aldridge Formation rocks above the Lower-Middle Aldridge contact (LMC).

An exploration program on the McNeil Creek property has successfully established that anomalous base metal mineralization exists at the LMC within a distinctive "Sullivan Horizon" zone, similar in many respects to the fringe of the World class Pb-Zn-Ag Sullivan orebody at Kimberley.

Soil Geochemistry, trenching and diamond drilling have tested a series of sulfide veins which occur in Middle Aldridge rocks immediately above a thick gabbro sill. This vein mineralization is similar in attitude and age to two massive sulfide veins located in similar rocks to the southeast and east; the St. Eugene vein which produced approximately 1.5 million tonnes, and the Vine vein, a relatively new discovery. The mineralized veins at McNeil occur approximately 1000m stratigraphically above the favourable Lower-Middle Aldridge contact and their presence may be an indication of underlying stratiform sulphides.


The favourable results of the 1988 exploration program at McNeil warrant additional work. Both the sulfide vein systems and the stratiform "Sullivan-type" target are recommended for continued drill testing. A first phase budget for \$650,000 is proposed to further evaluate the property.

2.00 INTRODUCTION

2.10 Location and Access

The McNeil Creek property is located 20 to 25 kilometers southwest of Cranbrook, B.C., and is centered approximately at Longitude 115° 59'W, Latitude 49° 21'N (Fig.1).

The property is readily accessible by road. The northern part of the property can be reached by taking the Lumberton road which leaves Highway 3/95 approximately 11 km south of Cranbrook. The southern part of the property is accessible off the Monroe Lake / Lamb Creek road which leaves Highway 3/95 approximately 18 km south of Cranbrook. Logging activity on the southern part of the property occurred some time ago and the tributary roads here are in a deteriorated state.

APTY RESEARCH LTD. / SOUTH KOOTENAY GOLDFIELDS INC.

FORT STEEL MINING DIVISION

LOCATION MAP

SCALE Km. 100 50 0 100 200 500 400 Km

FIG. I

MINe 100 80 0

aço €

2.20 Physiography

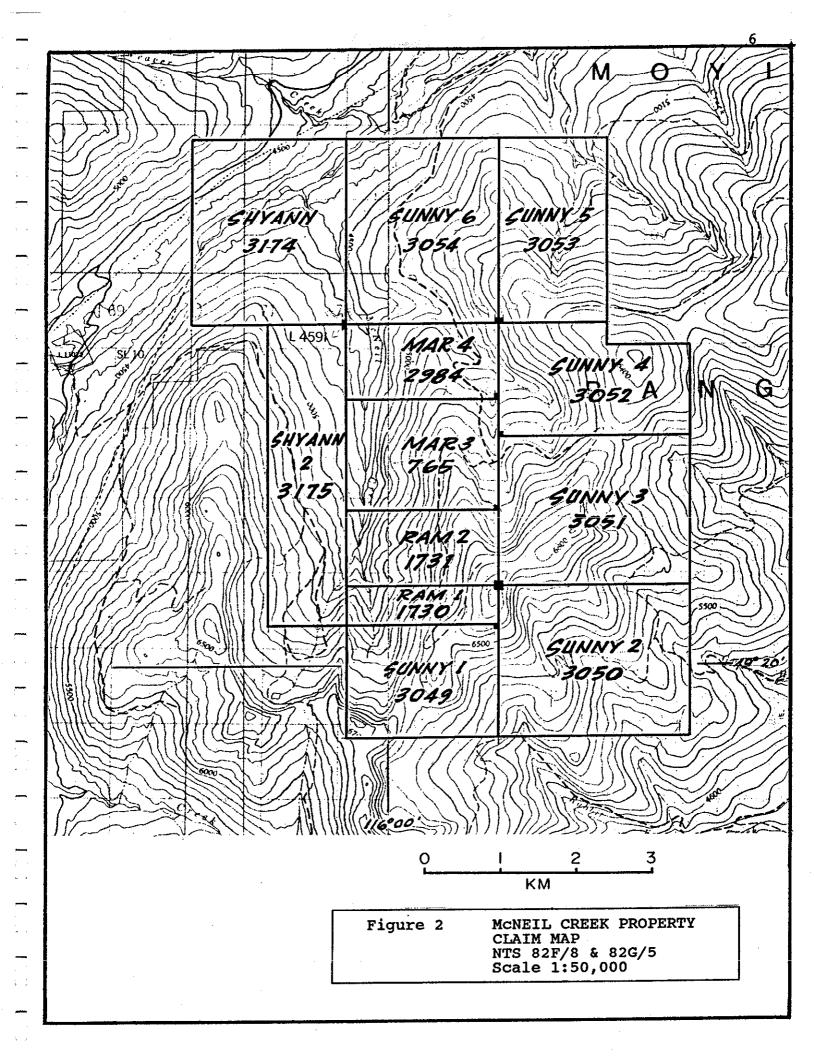
The McNeil Creek property is located in the Purcell range of the Columbia Mountains. Topography is moderately rugged with glacially rounded slopes; elevations range from 1370 to 2100 meters. Forest cover consists of Douglas Fir and Larch at lower elevations with Balsam and Alpine Fir at higher elevations. Forest fires which occurred in the last 50 years have resulted in local dense stands of immature Lodgepole Pine. Parts of these stands have been bulldozed and burned and the cleared areas planted by Forestry in the past 5 years. Large portions of the property have been clear-cut logged, to elevations as high as 2000 meters.

2.30 Property

2.31 Geologic Target

The McNeil Creek property is primarily a lead-zinc-silver target but anomalous gold mineralization is known to occur locally. Both vein type massive sulfides and Sullivan type stratiform, stratabound massive sulfides are the target mineralization at McNeil.

2.32 Claim Group and Status


The McNeil Creek property consists of 170 claim units in 12 claims:

:	Record No.	Units	Owner	Record Date	Due
	1730	4	E. Frost	Nov. 17,1982	1989
	1731	8	ff	Nov. 17,1982	1989
	765	12	11	Sept.20,1979	1989
	2984	8	11	Sept.11,1987	1989
1	3049	12	R.J. McGowan	Feb. 3, 1988	1990
2	3050	20	. 11	Feb. 3, 1988	1990
3	3051	20	11	Feb. 3, 1988	1990
4	3052	15	ff	Feb. 3, 1988	1990
5	3053	15	11	Feb. 3, 1988	1990
6	3054	20	11	Feb. 3, 1988	1990
	3174	20	S.K.G.Inc.*	Aug. 24,1988	1989
2	3175	16	t ₁	Aug. 24,1988	1989
	1 2 3 4 5	1731 765 2984 1 3049 2 3050 3 3051 4 3052 5 3053 6 3054 3174	1730 4 1731 8 765 12 2984 8 1 3049 12 2 3050 20 3 3051 20 4 3052 15 5 3053 15 6 3054 20 3174 20	1730	1730

Total Units 170

The Ram and Mar claims are under option from E. Frost of Cranbrook and F.P. O'Grady of Kimberley, B.C. Anniversary date of the option agreement is March 23. Terms of the agreement are a series of option payments over 6 years beginning in 1988 and an NSR clause with a total payment provision. A 5 kilometer perimeter clause is included and, if the original claims revert back to the owners, 3 years assessment credit are to be provided.

^{*}South Kootenay Goldfields Inc.

2.40 History

Logging activity exposed Pb and Zn mineralized quartz veins on what is now the McNeil Creek property in the late 70's; prospector E. Frost made the initial discovery in 1979. That year the St. Eugene Mining Co. (Falconbridge Ltd.) conducted a geochemical survey on the property (Assessment Report 7660 by J.R. Wilson, Oct. 30, 1979). During the next few years Frost trenched and sampled the veins.

During November, 1986 a program of linecutting, geological mapping and soil sampling was conducted by the owners (Assessment Report 16,606 by F.P. O'Grady, Dec. 7, 1987).

In March, 1988 the property was optioned to South Kootenay Goldfields Inc.

2.50 1988 Program

Linecutting, geophysical surveying, geological mapping, trenching, grid soil and rock geochemistry, and diamond drilling were completed on the McNeil Creek property in 1988 and early 1989. A total of 29.7 kilometers of line was cut, including 3.0 km of baseline. Geophysical surveys consisting of total field ground magnetics, MAX-MIN EM and VLF-EM were completed on the 26.7 km of prepared survey lines. Twenty-nine trenches were dug with a John Deere 690B tracked excavator and 2677 meters of diamond drilling were completed in a total of 8 holes.

3.00 GEOLOGY

3.10 Regional Geology

Recent mapping by Reesor (1981), Hoy and Diakow (1982), and Hoy (1984) has developed a good understanding of the geology and structure of the Cranbrook area of southeastern B.C. The area lies within the Purcell Anticlinorium, a geologic sub-province which sits between the Rocky Mountain Thrust and Fold Belt to the east and the Kootenay Arc to the west.

In the core of the Purcell Anticlinorium, the Purcell Supergroup includes up to 11 kilometers of dominantly fine-grained clastic and carbonate rocks. The anticlinorium is cut by a number of late, regional northeast-trending faults. These faults appear to follow the loci of older structures that had been active intermittently, and locally modified the type, distribution and thickness of late Proterozoic and Paleozoic rocks (Lis and Price, 1976). These changes indicate that, at least locally, these structures were active during deposition of Purcell strata (Hoy, 1979, 1982).

Lower Purcell rocks west of the Rocky Mountain Trench (Hoy and Diakow, 1982) comprise a thick accumulation of dominantly basinal turbidites. Rapid thinning and fining of siltstones to the north, northward-directed paleocurrents, dramatic thickening of turbidites just to the south, and coarse pebble conglomerates located near the basin / platformal transition (Hoy, 1979) suggest the east margin of the basin developed by growth faulting. Early stages in the development of the basin are marked by thick accumulations of Aldridge turbidites and voluminous intrusions of basic sills.

Some of the laterally extensive gabbro sills in the Lower Aldridge and lower part of the Middle Aldridge may be subvolcanic sills that intruded unconsolidated or partially consolidated, water-saturated sediments a few tens or hundreds of meters below the sediment surface.

The Aldridge Formation is host to one of the world's largest Pb-Zn-Ag deposits. The Sullivan deposit at Kimberley was originally about 160 million tonnes of 12% Pb + Zn with 67 grams per tonne Ag. The stratabound, partly stratiform deposit occurs at the Lower - Middle Aldridge transition zone (the "Lower-Middle Contact" or "LMC").

The distribution of base metal concentrations such as Sullivan, North Star, Stemwinder, St. Eugene, Estella and Kootenay King may be tectonically controlled. The tectonic control may be direct, with zones of crustal weakness localizing deep-rooted basement faults that controlled the outflow of metal-rich fluids, or indirect, with these zones localizing geothermal convective cells that controlled sulfide deposition.

The Aldridge Formation is overlain by a succession of Precambrian formations but these units do not occur on the McNeil Creek property; descriptions can be obtained from government publications such as Hoy and Diakow (1982) or Hoy (1985).

3.20 Property Geology

The McNeil Creek property is entirely underlain by rocks of the Aldridge Formation. Mapping by Hoy and Diakow has defined a gently NNE-plunging syncline which is centered in the south part of the property (Fig.3).

Lower Aldridge Formation rocks have been mapped on the east limb of the syncline, immediately east of the northeast-trending Moyie Fault. The LMC is projected by Hoy and Diakow (1982) to subcrop in the extreme southeast corner of the claim block (Fig.3). This contact, which hosts the Sullivan orebody at Kimberley, should be present across all of the property at depths ranging up to about 1500 meters.

The west limb of the syncline is cut by the north-trending McNeil Creek Fault, a major steeply west-dipping normal fault with vertical displacement in the order of 1000 meters.

Approximately 5 km to the north, the McNeil Creek Fault strikes into the Palmer Bar Fault, a NNE-trending fault showing similar displacement. The Palmer Bar Fault is known to locally carry anomalous gold mineralization with extensive quartz veining. Some of the anomalous gold mineralization encountered by drilling on the McNeil Creek property may be related to a mineralizing event associated with the McNeil Creek Fault.

South of the McNeil Creek property the Aldridge Formation is cut by the major regional NE-trending Moyie Fault which juxtaposes Precambrian Kitchener Formation rocks on the south against Lower Aldridge Formation rocks on the north, giving a vertical displacement of over 5000 meters in this area.

The east limb of the McNeil syncline is cut by the northwest-trending Little Lamb Creek Fault just east of the McNeil property. This near-vertical fault is east side down with vertical displacement in the order of 300 meters. A fault of similar orientation occurs across the southwest corner of the McNeil Creek property extending into Rabbit Foot Creek. This fault is inferred to be of similar east-side down movement but with minimal displacement.

3.30 Mineralization and Target Development

Base metal sulfides and gold mineralization are present on the McNeil Creek property. A series of sulfide-mineralized quartz veins are exposed on surface in the Middle Aldridge quartzites and siltstones in the hangingwall of the gabbro sill on the west limb of the McNeil syncline. These veins carry galena, sphalerite, chalcopyrite and anomalous gold and silver. Cerussite and pyromorphite are extensively developed in the surface trenches from weathering of galena and chalcopyrite is typically oxidized to malachite. The veins are oriented at approximately 120 degrees azimuth and are steeply dipping. This trend is parallel to the St. Eugene vein located on Moyie Lake (production history of about 1.5 million tonnes) and the more recently discovered Vine vein. Lead isotope analysis carried out by the Department of Geological Sciences at UBC has established that the vein galena from the McNeil property is isotopically similar to the St. Eugene and Vine veins, and is of similar age to Sullivan lead. One or more of these mineralized veins on the McNeil Creek property may host mineable tonnage.

This Precambrian age vein lead mineralization may be remobilized from a deeper, bedded base-metal sulfide deposit. Bedrock exposed on the McNeil property is of the lower part of the Middle Aldridge formation. The Sullivan orebody-hosting Lower-Middle Aldridge contact occurs within 300 meters of surface on a small part of the property and within 1500 meters of surface over the rest of the property. Thus the vein sulfides exposed on surface may be remobilized from a stratiform deposit located at the Lower-Middle Aldridge contact; such a stratiform deposit is a prime exploration target at McNeil.

Although vein and stratiform massive Pb-Zn-Ag mineralization are the main targets on McNeil, other possibilities exist.

Anomalous gold in quartz veins in sedimentary rocks, gabbro and fault zones on the property may be related to the McNeil Creek Fault. This north-trending structure is probably correlative with the Palmer Bar Fault to the north which hosts anomalous gold with quartz. The Moyie River, into which McNeil Creek drains, is a prominant placer gold stream. Although none of the north-flowing tributaries (like McNeil Creek) have any known historic production, there is placer gold present immediately south of the headwaters of McNeil Creek in the upper Lamb Creek and Irishman Creek drainages.

Copper mineralization is present in the veins trenched on surface. Widespread copper mineralization has been seen in the drilling in veins, in narrow stratabound zones, and in gabbro.

4.00 GEOCHEMISTRY

Soil sampling was conducted on the geophysics grid; samples were collected at 100 meter spacings on lines 200 meters apart (100 meters apart on the detailed north corner of the grid). Soil sampling method consisted of hand dug openings in overburden with a maddock. A depth of 0.30 m usually yielded B horizon soils which were placed in Kraft paper gusset bags and analyzed at Kootenay Analytical Labs in Ainsworth for lead, zinc and silver. Results are shown in Figure 5.

4.10 Lead

A broad, strong lead anomaly follows the hangingwall contact of the gabbro sill, extending about 1400 meters along strike and up to 400 meters wide. One high lead value (760ppm) occurs at 3700N, 3100E on the northeast margin of the survey area and may represent a continuation of the mineralized trend. A few single point anomalies of >100ppm Pb occur elsewhere on the grid, mainly below the footwall contact of the gabbro.

The main lead anomaly evidently reflects the vein mineralization known on surface; the downslope anomalies may be a spurious reflection of this mineralization. Sample density is insufficient to evaluate these single point anomalies.

The anomalies indicated by single point high lead values on the northeast and southeast margins of the grid should be delineated with additional sampling. These high leads are coincident with elevated zinc and silver and may be significant.

4.20 Zinc

Zinc values in the grid area are generally low. There is a reasonable correlation of anomalous zinc values (>150ppm 2n) with the area of high lead, but there is a much broader scatter of isolated one or two sample zinc anomalies than for lead.

4.30 Silver

Silver shows a broad range of values which are difficult to interpret. Four areas with clusterings of >1ppm Ag are present; two of these correlate roughly with the broad lead anomaly. There is a wide scattering of values >1ppm Ag; eight samples have values >10ppm Ag (ranging from 11.4 to 42.1 ppm Ag) and none of these correlate with the main lead anomaly. Sites with high silver values should be re-sampled to confirm the results before an interpretation of the data is made. If the anomalous silver results are confirmed then a detailed follow-up program should be conducted to evaluate the presence of high grade silver mineralization.

In summary, lead geochemistry appears to reflect the vein mineralization which has been located and trenched on surface. Because of the broad nature of the anomaly it is not clear whether presently unknown vein mineralization is reflected in the geochem results.

5.00 GEOPHYSICS

A geophysical survey consisting of MAXMIN I Horizontal Loop EM, Total Ground Magnetics and VLF-EM was conducted on the McNeil Creek property in June and July of 1988 by Lloyd Geophysics Ltd. of Vancouver (see separate report by John Lloyd).

Approximately 26.7 km were surveyed.

EM was done to test the shear zones / mineralized quartz veins for their response and to establish continuity. The magnetics survey was done in the hope of defining the gabbro sill which is partially exposed at the hangingwall but not exposed at the footwall. Knowledge of the thickness of the sill is an important factor in projecting the depths of any drill holes which would test the LMC from a collar location within the sill.

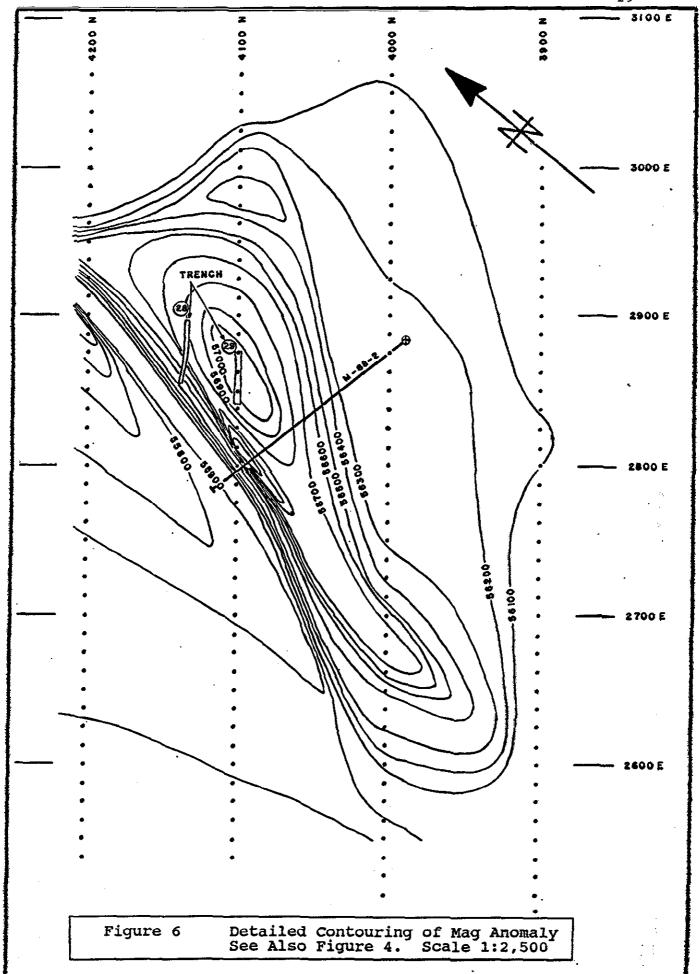
5.10 VLF-EM Survey

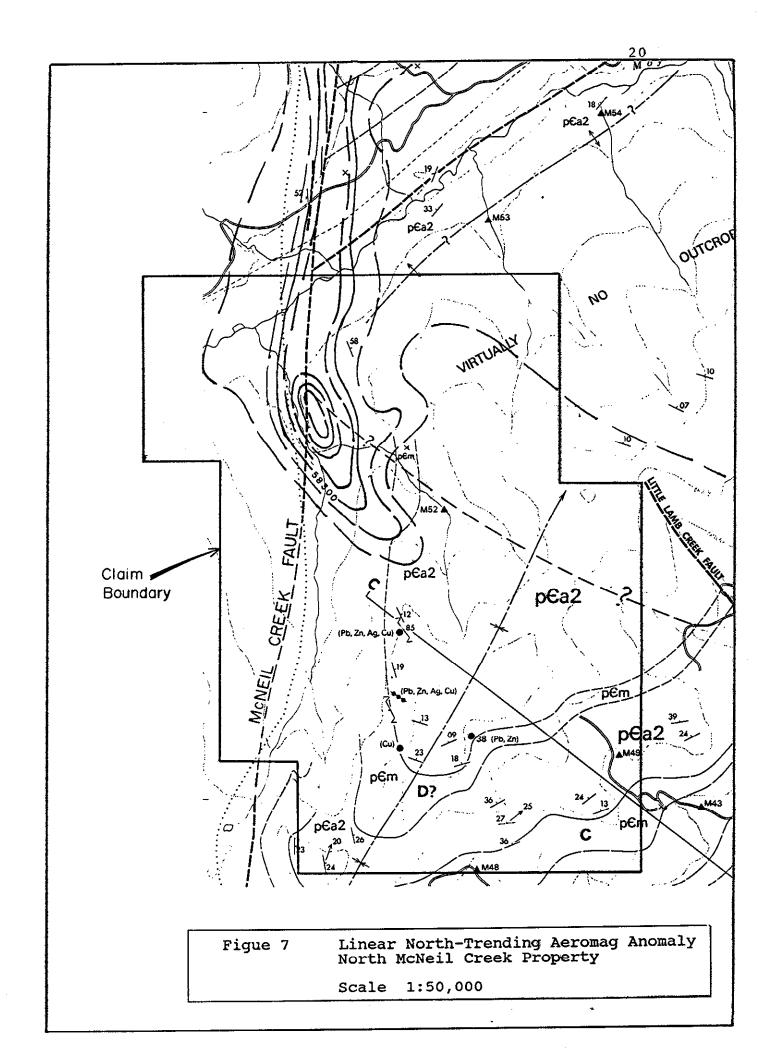
According to Lloyd (1988) "the VLF-EM survey failed to detect previously discovered NW-SE shear zones by virtue of the fact that there was no transmitting station suitably located so as to provide adequate coupling with these shear zones." A number of very weak VLF-EM conductors were detected by the survey; these may be faults or shears but there is no established continuity between survey lines and, Lloyd states that "due to their very weak nature, they may not have true bedrock sources and could be caused by conductive clays in overburden".

5.20 MAXMIN I Horizontal Loop EM Survey

The MAXMIN I Horizontal Loop EM (HLEM) survey detected a small number of possible conductors. Lloyd (1988) indicates these may or may not be bedrock responses. Rough terrain and a similarity in response between the low frequency (880Hz) and the high frequency (1760Hz) has influenced this tentative conclusion.

The HLEM conductors are not correlative with the VLF-EM conductors. The sulfide-mineralized quartz vein / shear zones known from surface trenches may have been not detected due to a lack of continuity, or to a discontinuous development of conductive sulfide like pyrrhotite or galena.


Weak HLEM responses on Line 4000N and 4100N can be interpreted to have a north alignment and may be related to a north-trending structure paralleling the mag anomaly. DDH M-88-2 was drilled across these conductors. The contact between Middle Aldridge Formation quartzites and the north-trending magnetic dike has a prominent fault associated with it at 128 meters in the drill hole. This location corresponds roughly with the EM conductors seen in the HLEM survey.


5.30 Total Field Ground Magnetic Survey

Most of the survey grid displays no magnetic variation; it is "singularly uninteresting from a magnetic point of view, with variations of 20 nT occurring over more than 90% of the property" (Lloyd, 1988).

One strong magnetic anomaly is present in the north corner of the grid on lines 4000N, 4100N and 4200N. A detailed magnetic contour map is given in Figure 6. The anomaly is open to the north and may be the extreme southern edge of a linear, northerly-aligned anomaly defined by a 1970-71 government aeromagnetic survey (Fig. 7 & Fig. 4). The aeromag anomaly coincides with the McNeil Creek Fault on the north part of the property and is very likely related to this structure. The southern end of the aeromag anomaly hooks to the east, perhaps due to the influence of a northwest-oriented fault which intersects the McNeil Creek Fault at that location, as suggested on Fig. 7.

The ground mag anomaly was trenched and drilled; results are given in sections 6.00 and 7.00.

6.00 TRENCHING

In July, 1988 a John Deere 690B tracked excavator was used to dig a series of trenches on the property. The trenching program evaluated all of the 6 quartz vein / shear zone occurrences known with a series of 27 trenches and an additional 2 trenches tested the ground magnetic anomaly at the north end of the geophysics grid. These trenches totalled 970 lineal metres and had an average depth of 3.0 metres. Location of the trenches is shown on Figure 4 and 11.

Most of the mineralized quartz veins were trenched at or near trenches that were dug prior to 1988 and only one vein structure was trenched over any appreciable strike length.

Numerous rock samples were collected and analyzed for a multi-element ICP package plus geochemical gold; geochemical results are included as Appendix I.

Geological information obtained from trench mapping suggests the mineralized quartz veins are relatively narrow and they tend to pinch and swell in both horizontal and vertical directions. Vein thickness varies from a few centimeters to a maximum observed of about 1.5 meters, with 30 cm to 1 meter widths common. Some veins are composite veins with relatively narrow veins occurring near the margins of a larger vein. Thickening of the vein structure, possibly with high concentrations of sulfides, may occur where composite veins coalesce.

Fresh sulfides are rarely seen in the trenches; galena is weathered to cerussite and pyromorphite, chalcopyrite is weathered to malachite, and sphalerite has been weathered to smithsonite. In a few trenches, fresh galena mineralization is present and occurs in a patchy pod-like manner.

The geochemical analyses demonstrate that the veins and associated shear zones are anomalous in a series of elements.

Cu, Pb, Zn, Ag and As are commonly strongly anomalous, with Au, W, and Bi being sporadically anomalous. Sr and Th appear to be locally anomalous.

Commonly the adjacent wallrock to the vein zones is quite altered. Biotite-rich quartzites are typically altered to a sandy-textured, soft punky material. This alteration is probably related to intrusion of the veins.

The veins are only known in a relatively narrow zone of metasedimentary rocks in the hangingwall zone of the gabbro sill (see Fig. 8). This observation may be due to limited understanding of the property geology but no sulfide-bearing quartz veins have been traced into the underlying gabbro and it appears that all the mineralized veins are restricted to the overlying quartzite / siltstone package. This suggests a structural control to the veins, with one of the significant factors being the competency contrast between the gabbro and the metasedimentary rocks.

Two trenches (88-9 and 88-23) exposed the sediment-gabbro contact. In both trenches the sediments are quite intensely weathered to soft, punky material yet the immediately adjacent gabbro sill is fresh-looking and competent. In contrast to the gabbro in these trenches, the gabbro at the collar sites of DDH M-88-2 and 7 is quite deeply weathered; drill sites were dug up to 4 meters vertically into weathered gabbro with the blade of a D6 bulldozer and the upper core in both holes shows evidence of weathering. These observations suggest that, although surface weathering is locally quite deep and is obviously responsible for alteration of primary sulfides in the veins to carbonates (cerussite and malachite) and phosphates (pyromorphite), there may still be an alteration process related to intrusion of the veins which has influenced the weathering of immediately adjacent sedimentary wallrocks.

The mag anomaly was trenched on line 4100N (Figs. 4 and 7). An altered felsic rock encountered below about 5 meters of overburden was interpreted to be bedrock. Some of the Cretaceous age felsic intrusives known in the area produce aeromagnetic anomalies. Examples are the Kiakho and Reade Lake stocks (see Hoy, 1987). Samples collected from the trench were non-magnetic and geochem analysis of 2 samples (numbers 6769 and 6770; Appendix I) did not show any anomalous elements present.

Narrow felsic dykes were seen in trenches 88-6, 88-8, 88-25, 88-26 and 88-27. The dykes are anomalous in copper, lead, zinc and arsenic (see Appendix I). Cretaceous (or possibly Tertiary) felsic intrusives in the area are known to be associated with copper and gold mineralization.

The magnetic anomaly was drilled to test for the presence of a mineralized felsic dyke. A magnetite-bearing gabbro dyke was encountered in the hole at a depth of 129 meters. No evidence of a magnetic felsic intrusive was seen in the drill core although one narrow zone of anomalous Cu, Pb, Zn, Ag and Au was encountered (see section 7.20 under Diamond Drilling).

7.00 DIAMOND DRILLING

Eight holes were drilled on the McNeil Creek property in 1988 and early 1989 for a total of 2677 meters. The core is stored in racks at Wycliffe Ranch, private property of Michael Bapty, Kimberley, B.C. Diamond drilling is summarized as follows:

Hole	Depth	Co-ord	inates	Azimuth	Dip	Target
M-88-1	171.9m	3383N	3080E	240	-50	Mineralized shear
M-88-2	263.0m	3972N	2910E	282	- 50	Mag Anomaly
M-88-3	169.5m	N	E	-	-90	LMC*
M-88-4	305.7m	N	E	-	-90	LMC
M-88-5	71.6m	N	E	062	-45	Mineralized shear
M-88-6	64.3m	N	E	024	-44	Mineralized shear
M-88-7	1031.8m	N	E	090	-80	LMC
M-89-1	599.2m	N	E		-90	LMC
Total	2677.0m					

*Lower Aldridge - Middle Aldridge Contact; Sullivan Horizon

Three holes tested sulfide-mineralized quartz vein / shear zone targets, one hole tested the mag anomaly at the north end of the geophysics grid and four holes were intended to test the Lower - Middle Aldridge contact.

7.10 Sulfide-mineralized Quartz Vein / Shear Zone Targets

DDH M-88-1, 5 and 6 tested the vein sulfide targets. DDH M-88-1 tested a shear at the north end of the grid while holes M-88-5 and 6 both tested another vein about 500 meters to the south. Hole locations are on Fig. 4, graphic logs and cross-sections are on Fig.8.

All three holes intersected the target veins where expected following surface projections. This data suggests the veins are quite planar structures and are fairly continuous over short distances.

DDH M-88-1 intersected the vein structure about 47 meters vertically below surface but still encountered some secondary lead mineralization as cerussite in oxidized portions of the vein.

DDH M-88-5 and 6 intersected the vein structure about 52 meters and 40 meters respectively below surface; no secondary mineralization was noted but partial oxidation of the zone has resulted in rusty iron sulfides which masks some of the character of the vein zone.

The vein zones are sulfide-mineralized quartz veins with brecciation and shearing evident. Fragments of brecciated sedimentary wallrock and patchy base metal sulfides are distributed through the zones.

Details of the better intersections are:

	•		ASSAY				ANALYSES		
Hole	Interval	Length	% Cu	% Pb	% Zn	oz/t Ag	on Au	PPB Au	PPM As
M-88-1	57.2~58.3 58.3~59.4	1.05m 1.10m	.14	1.49 2.25	.02	.15 1.16	.001	12 25	400 611
	d average true width	2.15m 2.00m	.17	1.88	.02	0.67	.001	19	508
M-88-5	57.2~57.7 57.7~58.6	0.5m 0.9	.19	16.51 .36	.38 .68	2.97 .15	.001	5 2	14 15
	d average true width	1.4m 1.2m	.15	6.13	.57	1.12	.001	3	15
M-88-6	50.8-51.5 51.5-52.3	0.7m 0.8m	.32	13.88 2.33	1.03 2.25	2.21 .46		3 <u>1</u> 3	162 128
	d average true width	1.5m 1.25m	.20	7.69	1.68	1.28	.001	16	144

These results, along with surface trench analyses, demonstrate that good potential exists to develop a mineable tonnage of ore grade material within the sulfide-mineralized quartz vein / shear zone systems.

The fact that both VLF-EM and HLEM surveys did not detect these sheared veins makes it difficult to define specific drill targets along the vein structures. Consideration should be given to utilizing other geophysical techniques to define the structures prior to any extensive drill program.

DDH M-88-1 was continued beyond the shear zone into the upper part of the gabbro sill to evaluate the contact zone as a possible site of pooling of remobilized sulfides. The contact where drilled appears conformable and no build-up of sulfides is present at that location.

7.20 Mag Anomaly Test

DDH M-88-2 was drilled to test the mag anomaly at the north end of the geophysics grid (Fig 4). The hole was collared to cross the anomaly where the highest magnetic response was detected (Fig.7). The hole collared in the footwall zone of the gabbro sill, entered Middle Aldridge rocks at 96.6 meters and back into a gabbro dyke at 129.2 meters (Figs. 4 and 8).

The dyke encountered at 129.2 meters carries appreciable magnetite at its east contact and this is obviously the cause of the mag anomaly. the dyke varies in character from the gabbro sill which the hole collared in by a more foliated, chloritic character, the presence of magnetite, numerous irregular epidote veins, and patchy, disseminated euhedral pyrite (up to 1 1/2% over intervals up to 6 meters).

Within the metasedimentary rocks encountered in the hole between the two intrusives, a narrow, 10cm wide band of quartzite is strongly silicified with vuggy quartz and carries anomalous base metal sulfides; 0.83% Cu, .01% Pb and .06% Zn.

This apparently stratabound copper-rich mineralization is not a common occurrence in the Aldridge Formation and might be considered inconsequential except that, a short distance east of the McNeil property, large boulders of similar dominantly copper mineralization are known. This type of mineralization represents an exploration target which is possibly quite different from the principal vein and stratiform massive sulfide targets. A hole to test the LMC in this area could prove interesting.

7.30 Stratigraphic (Sullivan Target) Tests

DDH M-88-3 was intended to test the LMC at a location inferred from geologic mapping to be approximately 250 meters stratigraphically above the LMC (Fig. 4). A marker intersected at 38 meters in the hole confirmed that the LMC should be near the originally inferred depth. At 131 meters the hole entered a fault zone and continued in the fault to the final depth of 169.5 meters at which point drilling was terminated because the Longyear 38 drill was incapable of continuing. The fault zone contains considerable quartz veining with some disseminated euhedral pyrite. There is evidence in the core of repeated phases of brecciation and silicification. The zone is apparently not very well cemented and the loose brecciated quartz proved impossible to drill through with the 38 machine.

The conglomeratic siltstone zone is 5 meters thick and contains small isolated, rounded clasts, some of which are rimmed with pyrrhotite. The conglomeratic siltstone also contains pyrrhotite laminae and discontinuous pyrrhotite lenses. The laminated siltstone zones carry anomalous zinc mineralization, up to 373 PPM over 1.1 meters; a 7.3 meter interval averages 205 PPM Zn.

At the base of the "Sullivan Horizon" zone is a 1.1 meter wide sheared zone which includes a narrow quartz vein and visible galena. A 40 cm interval within this zone carries 0.83% Pb, .06% Zn, 0.5 oz/ton Ag, .015 oz/ton Au and 1.12% As. The presence of these base and precious metals at the bottom of the "Sullivan Horizon" zone is very encouraging because it is at the base of a generally similar zone that the massive sulfides occur at the Sullivan.

Within the Lower Aldridge Formation cored in DDH M-88-7, zones of alteration with quartz veining and pyrite mineralization carry anomalous Cu, Pb, Zn, Ag, As and Au (maximum values are 344 PPM Cu, 230 PPM Pb, 769 PPM Zn, 26,851 PPM As, and 680 PPB Au). The highest Pb and Zn occur in one 60cm interval; the highest As and Au are in one narrow 10cm interval. This mineralization may be part of a footwall feeder zone system which deposited metals on the sea floor during "Sullivan Horizon" time.

The encouraging intersection provided by DDH M-88-7 was followed up with another stratigraphic test of the LMC by drilling DDH M-89-1 3000 meters southeast of DDH M-88-7 (Fig.4).

This hole intersected a series of gabbro sills and dykes and a small amount of Aldridge Formation metasediments (Fig. 10). LMC was intersected at 270 meters. A 20cm wide zone of broken, chloritic and pyritic core at the contact may be a minor fault zone, but if so, it appears to have minimal displacement. the LMC the hole goes from overlying thick and medium bedded Middle Aldridge quartzites and minor siltstones to underlying Lower aldridge thin bedded and laminated pyrrhotitic siltstones with minor quartzite. the rocks (particularly of the Lower Aldridge) are considerably altered by an underlying 150 meter thick gabbro sill; only 33 meters of Lower Aldridge sediments were intersected below the LMC and above the sill (see Fig. 10). The change in bedding thickness and lithology, and the presence of abundant disseminated pyrrhotite in the underlying thin bedded sediments is convincing evidence that this is the LMC. A short report on DDH M-89-1 was written in March, 1989 and is included as Appendix III.

DDH M-89-1 tested the LMC just above a gabbro sill and close to a north-trending gabbro dyke which could be a feeder for the sill. In theory this could be a favourable location for sulfides to be present at the LMC because the Sullivan orebody occurs just above a gabbro sill which forms an arch-like structure immediately below the deposit.

The limbs of the gabbro arch apparently transgress bedding of the Lower Aldridge.

The 150 meter thick sill intersected in DDH M-89-1 only 33 meters below the LMC was not seen in DDH M-88-7; two thin gabbro sills do occur in the Lower Aldridge cored by that hole (Figs. 8 and 9), but at a greater distance below the LMC.

Obviously there is considerable variation in both thickness and stratigraphic location of the gabbro sills in the southeast portion of the McNeil Creek property. This situation may be somewhat analogous to that which is present at the Sullivan orebody. These irregularities in the gabbroic intrusions may represent proximity to feeder zones which have also served as conduits for hydrothermal fluids that deposited massive sulfides at the LMC on the McNeil Creek property.

7.40 Discussion

The variation in character of the LMC between DDH M-88-7 and DDH M-89-1 may have significant implications for discovery of a base metal sulfide deposit on the McNeil property.

The presence of a distinctive "Sullivan Horizon" zone in DDH M-88-7 and the absence of such a zone in DDH M-89-1 suggests that conditions were quite different at the sites of the two holes during Sullivan time. The anomalous base metals present in the LMC zone of DDH M-88-7 supports the possibility of a nearby build-up of base metal sulfides at the LMC.

A second attempt at drilling the LMC in the area was made by DDH M-88-4, collared approximately 200 meters southeast of DDH M-88-3 (Fig. 4). The fault in DDH M-88-3 was inferred to be related to the McNeil Creek Fault to the west and thus was considered to have a northerly strike. DDH M-88-4 intersected what is evidently the same fault zone at 281 meters and the hole terminated in this zone at a depth of 305.7 meters (Figs. 8 and 9). The fault evidently strikes northwest, parallel to the Little Lamb Creek Fault mapped by Hoy and Diakow (1982), Fig.3, to the east of the McNeil Creek Property and dips steeply northeast. Anomalous concentrations of Cu, As and Au are associated with the quartz veining and shearing in the fault zone; higher values occur with pyrite and small carbonate veins.

Late in 1988, DDH M-88-7 was collared approximately 500 meters east of DDH M-88-4 and drilled at -80 degrees due east to test the LMC below the broad soil geochem anomaly seen on surface (Figs. 4 and 5). The hole successfully tested the LMC and continued through the upper part of the Lower Aldridge Formation to a final depth of 1032 meters (Figs. 8 and 9). An interim report on DDH M-88-7, written shortly after the hole was completed, is included as Appendix III.

A distinctive "Sullivan Horizon" zone was encountered from 809.7 to 838.8 meters, consisting of massive to finely laminated siltstone and conglomeratic siltstone.

In 1980 Cominco Ltd. drilled a hole on their Lew claims, approximately 7 km southwest of DDH M-88-7. The hole was collared on the basis of stratigraphic markers present in surface bedrock and was intended as a stratigraphic test of the In Cominco's opinion, the hole was drilled deep enough to have intersected the LMC but the horizon was not identified in The conclusion reached at that time was that the the core. Lower - Middle Aldridge transition zone had lost its distinctive character in this part of the sedimentary basin, with upper Lower Aldridge rocks being similar in character to lower Middle Aldridge rocks. An alternate interpretation considered is a thickening in the basin at this point with increased thickening of the lower Middle Aldridge section, in which case the Lew hole may have not been drilled deep enough to intersect the LMC.

Assuming either of these interpretations of Cominco's Lew hole is correct, the recent intersection of a distinctive and thick "Sullivan Horizon" zone in DDH M-88-7, contrasting markedly with results obtained in the Lew hole, strongly suggests that the McNeil Creek Fault has played a significant role in the distribution of facies types during deposition of sediments at Sullivan time. The McNeil Creek fault may have been an active fault during Aldridge deposition.

The fault zone conceivably was also the conduit for upward migration of sulfides which accumulated at the LMC. If the McNeil Creek fault had a controlling influence in the deposition of sulfides at the LMC then future drilling of the McNeil property should first test ground close to the fault. Structural complications which probably exist toward the north edge of the property restrict the opportunities for relatively shallow (<1000m) testing of the LMC very far in this direction. A minimum of two additional holes can be confidently located now, to test the LMC near the McNeil Creek fault, east and northeast of DDH M-88-7. Results of this drilling can then be used to direct any additional drilling.

There is evidence of younger (Cretaceous or Tertiary age) mineralization on the McNeil Creek property. Narrow felsic dykes seen in trenches 88-8, 88-26 and 88-27 and a probable wider dyke interpreted in trench 88-29 may be related to such young mineralization. The dyke sampled from trench 88-8 is anomalous in Cu, Pb and Zn (59 PPM Cu, 2179 PPM Pb, 746 PPM Zn); two dykes sampled from trench 88-27 are anomalous in Pb (114 PPM and 549 PPM). The 10cm band of silicified quartzite seen in DDH M-88-2 with 0.83% Cu is anomalous in Pb (131 PPM), Zn (468 PPM), Ag (6.2 PPM), and Au (46 PPB). In DDH M-88-7, a 20cm wide zone of 'quartz sand' at 688.3 meters is high in Cu, Pb, Zn as well as 676 PPM W, 2909 PPM Mn, 593 PPM Sr and 218 PPM Ba. This mineralization may be related to young intrusive-related hydrothermal activity.

8.00 CONCLUSIONS

- 1. The 33 meter thick "Sullivan Horizon" zone intersected by DDH M-88-7 at the Lower-Middle Aldridge contact is similar in many respects to the "Sullivan Horizon" zone that occurs on the fringes of the Sullivan orebody. The presence of anomalous base metal mineralization and conglomerate indicate that conditions were favourable for deposition of stratiform sulfides at the LMC in the McNeil Creek area.
- 2. The absence of a "Sullivan Horizon" zone at the LMC in DDH M-89-1 places a favourable perspective on the area near DDH M-88-7.
- 3. The McNeil Creek fault may be a controlling structure which influenced the deposition of sulfide mineralization at Sullivan time in the McNeil Creek area. Significant changes in the character of the LMC between DDH M-88-7, M-89-1 and Cominco's Lew hole west of the fault support this conclusion.
- 4. Irregularities in the gabbroic intrusives, established by DDH M-88-7 and DDH M-89-1, may represent proximity to conduits along which the gabbros were emplaced. These conduits may have served as channelways for hydrothermal activity which vented base metals to the sea floor in the present McNeil Creek area during Sullivan time.

- 5. A series of at least 6 sulfide mineralized veins occur on the McNeil Creek property. These are similar in age and general orientation to the massive sulfide St. Eugene and Vine Veins. Three drill holes which tested two of the veins intersected up to 9% combined Pb and Zn and 1.7 oz/ton Ag over a true width of 1.2 meters. The drilling demonstrates the veins have continuity; a small to moderate sized deposit of economic grade is a reasonable target on the property.
- 6. The vein mineralization appears restricted to a relatively narrow package of Middle Aldridge Formation rocks immediately above a thick gabbro sill on the west limb of the McNeil syncline. The relationship suggests a structural control for the veins, influenced by the competency contrast between the gabbro and Middle Aldridge rocks.
- 7. A Precambrian age for the vein lead mineralization establishes the presence of an early mineralizing event at McNeil; the vein sulfides may be remobilized from a stratiform occurrence at the Lower Middle Aldridge contact.

- 8. Soil geochemistry successfully detected the zone of vein mineralization exposed on surface; a broad, strong lead anomaly follows the hangingwall contact of the gabbro sill. The anomaly persists to the northeast edge of the grid area and suggests that undiscovered veins occur beyond the grid to the north.
- 9. Geophysical surveying with VLF-EM, HLEM and ground magnetics failed to detect the known mineralized quartz veins / shear zones, due possibly to poor coupling with VLF-EM transmitter stations and a lack of continuity of conductive material in the veins.
- 10. Some of the anomalous copper and gold mineralization seen on the McNeil Creek property may be related to younger, Cretaceous or Tertiary age events. Small felsic dykes which are anomalous in base metals and are probably related to young intrusive activity, are present on the property.

9.00 EXPENDITURE STATEMENT DEC. 1988 - MARCH 1989

MAR 4 (2984), MAR 3 (765), RAM 2 (1731), RAM 1 (1730)

GROUP 13 SEPT. 8/88 (RAM GROUP)

FORT STEELE MINING DIVISION

	Aug 1988- Feb 1989	March 1989	<u>Total</u>
Base Map	622.06		622.06
Line Cutting	5,000.00		5,000.00
Geophysics	21,000.00		21,000.00
Trench Sampling & Assaying	4,000.00		4,000.00
Lead Dating	500.00		500.00
Diamond Drilling	222,520.82	54,130.32	276,651.14
Bulldozer	29,644.75		29,644.75
Mobilization	6,462.50		6,462.50
Sampling	2,379.23		2,379.23
Assays	5,532.90	1,654.95	7,187.85
Core Storage	1,422.39		1,422.39
Reclamation	818.76		818.76
Geology	19,726.45	1,946.00	21,672.45
Transportation	3,000.63		3,000.63
Management OH	46,578.48	8,659.69	55,238.17
Project Management	18,892.72		18,892.72
Total	\$388,101.69	\$66,390.96	\$454,492.65

10.00 REFERENCES

- Hoy, T. (1979). Geology of the Estella Kootenay King area, Hughes Range, Southeastern British Columbia, B.C. MEMPR Preliminary Map No. 36, 9p.
- 2. Hoy, T. 1982. "The Purcell Supergroup in Southeastern British Columbia; sedimentation, tectonics and stratiform lead-zinc deposits. In: Precambrian sulphide deposits; H.S. Robinson Memorial Volume (R.W. Hutchinson, C.D. Spence, and J.M. Franklin, Eds.). Geol. Assoc. Can. Special Paper 25.
- Hoy, T. (1985). The Purcell Supergroup, Fernie West-half, Southeastern British Columbia, Part A - Stratigraphy -Measured Sections, B.C. MEMPR, Bull-76, 79pp.
- 4. Hoy, T. (1987). Geochemistry, geochronology, and tectonic implications of two quartz monzonite intrusions, Purcell Mountains, Southeastern British Columbia, Can. Journal of Earth Science Vol 25 pp 106-115.
- 5. Hoy, Trygve, and Diakow, L., 1982. Geology of the Moyie Lake Area, BC MEMPR, Preliminary Map 49.
- 6. Leech, G.B. (1958). Fernie Map Area, West-half British Columbia, Geol Surv. Can. Paper 58-10 40pp.
- 7. Lis, M.G. and Price, R.A., 1976. large scale block faulting during deposition of the Windermere Supergroup (Hadrynian) in Southeastern British Columbia: Geol Surv. of Can. Paper 76-1A p. 135-136.
- 8. Lloyd, John, July, 1988. "A geophysical Report on ground Magnetometer, VLF-EM and Horizontal Loop EM Surveys for Dragoon Resources Ltd.
- 9. Reesor, J.E., (1981). Geology of Grassy Mountain Map area (82F/8) Purcell Mountains, East Kootenay District, British Columbia. Geol. Surv. Can., Open File 820.

11.00 QUALIFICATIONS

11.10 Author's Qualification

As author of this report I, Peter Klewchuk, certify that:

- 1. I am an independent consulting geologist with offices at 246 Moyie Street, Kimberley, British Columbia.
- 2. I am a graduate geologist with a BSc degree (1969) from the University of British Columbia and an MSc degree (1972) from the University of Calgary.
- 3. I am a fellow in good standing of the Geological Association of Canada.
- 4. I have been actively involved in mining and exploration geology, primarily in the province of British Columbia, for the past 17 years.
- 5. I have been employed by major mining companies and provincial government geological departments.
- 6. I have an indirect interest in this property through a stock option to acquire 25,000 shares in Dragoon Resources Ltd. Dragoon Resources Ltd. is a 50% owner of South Kootenay Goldfields Inc.

Dated at Kimberley, British Columbia, this 30th day of March, 1989.

Pety Hearl

Peter Klewchuk Geologist

11.20 Contractor's Qualification, McNeil Project

- I, Michael Bruce Bapty, of the City of Kimberley, in the Province of British Columbia, hereby certify that:
- I am a Consulting Mining Engineer and Contractor at 606 Trail St., Kimberley, B.C.;
- 2. I am a graduate of the University of British Columbia with a BASc in Mine Engineering (1968), and have been active in Mine Exploration, Operations, Development, and Administration for twenty-one years;
- 3. The accompanying report was reviewed and endorsed based upon a series of visits and examinations of the property and the supporting data, throughout the project period;
- 4. I have an indirect interest in this property through a senior consultant's (employee) stock option to acquire 45,000 shares in Dragoon Resources Ltd.; direct ownership of 25,000 shares of Dragoon Resources Ltd. through a Private Placement; and a warrant to acquire a further 25,000 shares in Dragoon Resources Ltd. subsequent to the above private placement. Dragoon Resources Ltd. is a 50% owner and Managing Partner of South Kootenay Goldfields Inc. I do not expect my interests to change as a result of endorsing or submitting this report;
- 5. I am a Member of the Association of Professional Engineers of the Province of British Columbia.

Dated at Cranbrook, British Columbia, this 31st day of March, 1989.

M. Bapty, P.Eng. President

12.00 APPENDICES

12.10 APPENDIX I TRENCH SAMPLING; DESCRIPTIONS & ANALYSES

Sample Number

Description

- 6724 Trench M1. Fault gouge on FW side of complex zone of quartz veining and shearing. Quartz vein immediately to east. 25cm wide Color banded from yellow-brown and orange-brown to gray and pale blue-green.
- 6725 Trench M1. Quartz vein adjacent to 6724. 25cm wide. Numerous open space quartz crystals. Yellowish limonitic vugs. Quartz vein at 150/60NE.
- 6726 20m south of Trench M2 along road. Limonitic, vuggy quartz vein 114/83N.
- 6727 Trench M2. Grab sample of central part of quartz vein, adjacent to road. Limonitic and vuggy with galena and cerussite.
- 6728 Trench M2. Grab sample of quartz vein along NE, footwall contact with adjacent unaltered sedimentary rocks.
- Trench M2. Upper, south end of main trench exposure. Quartz vein is about 70cm wide. Grab sample of very strongly limonitic, vuggy quartz with pyromorphite.
- 6730 Trench M1. SW side of NE fault zone. Limonitic orange, yellow and yellow-gray fault gouge. Chip sample over 60cm (representing true thickness of about 35 or 40cm).
- Trench M1. Mn-stained, fragmented central felsic material in fault gouge zone. May be felsic dike.
- 6732 Trench M1. Fault gouge, on NE side of NE fault zone.
 Orange to gray colored chip sample over 50cm
 representing a true thickness of about 25 or 30cm.
- 6733 Trench M3. Grab of shattered quartz vein with pyromorphite, limonitic vugs, chlorite and weathered biotite.
- 6734 Trench M4. Grab sample of limonitic quartz vein.
- 6735 South side of landing, east of L24N L20E. Wavy, 4cm wide limonitic quartz vein in brecciated, limonite-altered sediments.

- 6736 Trench M5. Grab sample of quartz vein with pyromorphite and weathered biotite.
- 6737 Trench M5. South margin of quartz vein Mn-rich fault gouge, some limonitic staining, possibly minor quartz veining.
- 6738 Trench M6, in diorite. Limonitic quartz vein.
- 6739 Trench M7. Limonite-altered contact zone between sediments and diorite.
- 6740 Trench M7. Quartz vein intruding sediments near diorite contact; vein terminates in sediments. Quartz is clear with limonite staining and limonitic vugs; minor pyrite is present.
- 6741 Trench M7. Dark gray, almost black altered material at contact of finger of diorite. Material is sandy with considerable biotite.
- 6742 Trench M7. Limonitic, strongly cleaved sediments in immediate footwall zone of quartz vein. Pyromorphite occurs with sediments.
- 6743 Trench M7. Quartz vein. Grab sample from central part of vein. Very limonitic with considerable pyromorphite on some surfaces.
- 6744 Trench M7. Limonitic altered, deep reddish-brown colored hangingwall contact zone of quartz vein with sediments. May be some quartz veining in sample.
- Trench M7. North end of trench. "On strike" with quartz vein. Skarn-like quartz rich rock, not well exposed. Some quartz veining, fine-grained galena (?) and pyrite, some pyromorphite and local coarse-grained amphibole.
- Ouartz vein float (subcropping). Glassy, brownish limonitic quartz with goethite, limonite-encrusted vugs. Approx. grid location Line 21N, 3450E.
- Quartz vein with weathered biotite, slightly iron stained. Approx. grid location Line 21N, 4400E.
- Rusty weathering, pyrrhotite-bearing silty quartzite.
 Approx. grid location Line 21N, 4500E.
- Ouartz vein. Limonitic and vuggy with euhedral quartz crystals, biotite and sericite. Approx. grid location Line 20N, 4250E.

- Probable felsic dike. White to pale gray color, variably limonitic with weathered (limonitic) spots which may have been sulfides. Vague brecciated texture.
- Brecciated, altered silty quartzite with epidote veins. Approx. grid location Line 37N, 3150E.
- 6752 Trench M-88-1 north wall. East half (40cm) of fault zone; Mn and liminote-stained fault gouge.
- 6753 Trench M-88-1 north wall. West half (40cm) of fault zone; Mn and limonitic stained brecciated sediments.
- 6754 Trench M-88-7. Chip sample across 25cm wide fault zone. Includes blue-gray fault gouge, brecciated Mn and limonite stained sediments.
- 6755 Trench M-88-8 (downhill of trench M-2). Felsic dike in possible shear zone.
- 6756 Trench M-88-9 (=trench M-9). Shear zone with strong chloritic alteration, limonite spotting, some Mn, in fault gouge. Fault oriented at 147/425W.
- 6757 Trench M-88-9. Limonite and Mn in fault gouge material with possible quartz veining.
- 6758 Trench M-88-9. Grab sample of altered biotitic sedimentary rock. Rock is sandy and can be crumbled in the hand.
- 6759 Trench M-88-19. Grab sample chipped off quartz vein.
- 6760 Trench M-88-19. Altered diorite on FW side of quartz vein.
- 6761 Trench M-88-13. Chip sample of brecciated quartz vein zone; part of a 1m wide brecciated, Mn and limonite stained zone.
- 6762 Trench M-88-22. 15cm wide fault zone at 127/87N. Quartz veining, limonitic fault gouge with minor pyromorphite.
- 6763 Trench M-88-21. 15cm wide quartz vein at 115/59N.
- 6764 Trench M-88-21. 5cm wide fault zone at 110/59N.
- Trench M-88-23. Grab sample of bleached, brecciated, limonitic-altered sedimentary rock which carries pyromorphite along fractures. The brecciated zone is about 2m below surface and appears to be a sub-horizontal fault zone trending 005/15W.

- 6766 Trench M-88-24. Rubbly, unoxidized diorite. Sampled to compare with oxidized diorite in Trench M-88-18.
- 6767 Trench M-88-27. Felsic dike 10cm wide, white to light gray color with weak patchy limonite staining. North end of dike exposure.
- 6768 Trench M-88-27. Felsic dike at south end of exposure.
- 6769 Trench M-88-29. Magnetic anomaly on Line 41N at 2875E. Felsic intrusive. Yellow-brown-orange colored, limonite altered; mainly fine-grained feldspar with minor sericite. Brecciated texture.
- 6770 Trench M-88-29. Felsic intrusive from 2865E on Line 41N.
- 6771 Trench M-88-23. Grab sample of limonitic, brecciated sedimentary rock with pyromorphite on fractures (similar to 6765).
- Trench M-88-23. Quartz vein. 20cm wide, brecciated, limonitic with minor feldspar and pyromorphite.
- 6773 Trench M-88-18. Pegmatite vein with quartz and Beryl (?) elongate, hexagonal pale green crystals comprise up to 50% of the 10cm wide vein. Vein is on the FW side of a 70cm wide shear zone (136/80S) containing reddish oxidized diorite.
- 6774 Trench M-88-18. Quartz vein zone. Chip sample across 40cm width at east edge of zone.
- 6775 Trench M-88-18. Strongly limonite-stained vuggy quartz veining near central part of quartz vein zone.
- Vuggy quartz veining with strong Mn, some limonite; central part of quartz vein zone, west of 6775.
- 6777 Trench M-88-18. Altered diorite along west contact with quartz vein zone. Strongly reddish oxidized with minor included quartz vein material. Diorite is extensively oxidized along this quartz vein zone.
- 6778 Trench M-88-15. Just north of L26N, 2135E. Limonitic quartz vein with strong pyromorphite mineralization. Vein is about 20cm wide.
- Trench M-88-16. Quartz vein. White to light gray "bull quartz" with very minor limonitic staining. Vein thickness from 20cm width immediately below overburden to 75cm width about 1.5m lower.

- 6780 Trench M-88-16. Felsic dike, 30cm wide, adjacent to 6779 quartz vein. Dike is white to light gray colored, cross-cuts host bedding, is orange limonitic colored on fractures.
- 6781 Trench M-88-12. Massive galena with minor included quartz veining.
- Trench M-88-10. Chip sample across 40cm wide shear. Vein pinches to 10cm locally and varies in the amount of quartz it contains. Sampled where quartz is minimal. Pyromorphite and cerussite present.
- 6783 Trench M-88-11. Chip sample across 35cm of quartz veining and fault breccia and gouge. Shear zone is at 164/77E. Adjacent beds are not strongly fractured.
- Trench M-88-2. Upper trench on open forestry plantation. East 60cm of 1.2m shear zone. 10-15% quartz veining; mostly brecciated sediments, fault gouge, vari-colored from gray to yellow and reddish-brown limonitic.
- 6785 Trench M-88-2. West 60cm of 1.2m shear zone.
- Trench M-88-3. Chip sample across 70cm wide shear zone. Est. 50% quartz, 50% limonitic fault gouge with pyromorphite. Adjacent beds are strongly brecciated, punky and locally contain pyromorphite on fracture surfaces.
- 6787 Trench M-88-3. Breccia zone. Intensely fractured, darker altered sediments.
- 6788 Trench M-88-4. Chip sample of 15cm wide shear zone at 18.3m from SW end of trench. Considerable pyromorphite present in shear and on fractures in adjacent brecciated beds.
- 6789 Trench M-88-4. Shear zone at 19.5m from SW end of trench. Grab sample of localized mass of cerussite crystals which occur in a bulbous mass along west contact.
- 6790 Trench M-88-4. Grab sample of vuggy limonitic quartz vein with pyromorphite and cerussite from east side of shear zone.
- 6791 Grab sample of intense goethite and limonite developed with quartz vein; minor pyromorphite is present.
- 6792 Trench M-88-5. West 60cm of 1.8m wide shear zone. Limonitic altered fault breccia and gouge.

- 6793 Trench M-88-5. Middle 60cm of 1.8m wide shear zone. Manganese and limonite stained fault breccia with cerussite. Some very strong limonite.
- 6794 Trench M-88-5. East 60cm of 1.8m wide shear zone.
 Limonitic, cerussite-rich breccia with about 30cm of reddish-brown rotted quartz vein material.
- 6795 Trench M-88-5. Chip sample of 30 to 50cm wide zone adjacent to footwall (west) side of shear zone. Whitish bleached sediments, possibly some felsic dike material plus brecciated quartz veining and mafic, brecciated material.
- 6796 Trench M-88-6. Chip sample across 50cm wide quartz vein/shear zone. Reddish to yellowish manganese and limonitic stained fault breccia.
- 6797 Trench M-88-6. Grab sample of whitish-gray, limonite and manganese stained felsic dike. Small pink phenocrysts of probable K-spar.
- Trench M-88-25. Chip sample across 50cm wide quartz vein/shear zone. Mostly limonite and manganese stained quartz veining with limonitic vugs; central 10cm wide zone of fault gouge material and whitish possible felsic dike.
- 6799 Trench M-88-25. Possible felsic dike; bleached white, sericitic felsic material.
- 6800 Trench M-88-25. Chip sample of 20cm wide brecciated felsic dike. Chlorite and manganese veinlets; strong vuggy limonite, manganese and glassy goethite are present in adjacent beds.
- Trench M-88-26. Narrow quartz vein (6 to 12cm wide). Brownish-yellowish rusty quartz with some more intense limonite staining.

12.20 APPENDIX II REPORT ON DDH M-88-7

Drill Hole M-88-7 has intersected a "Sullivan Horizon" zone which compares favorable with stratigraphy marginal to the Sullivan Orebody.

The zone in DDH M-88-7 is recognized by its presence at the Lower-Middle Aldridge contact, by its relationship to overlying marker bands in the Middle Aldridge and by its lithologic character.

The zone consists of massive to very finely laminated argillaceous siltstone. Included are intervals of slump-type 'conglomerate' units which have very few clasts. This package of stratigraphy is quite different from both the overlying Middle Aldridge and underlying Lower Aldridge. The "Sullivan Horizon" zone intersected by DDH M-88-7 may be more similar to equivalent stratigraphy near the Sullivan orebody than to equivalent stratigraphy on Cominco's Vine property approximately 10 kilometers to the northeast.

In contrast, a hole drilled by Cominco approximately 7 km to the southwest of DDH M-88-7, on the Lew claims, was planned to test the Lower-Middle Aldridge contact but never intersected recognizable Lower Aldridge. The hole was collared on the basis of surface stratigraphic control. Results of the Lew hole suggest that the McNeil hole is near the western edge of recognizable Lower aldridge stratigraphy, or, Middle Aldridge strata is dramatically thickened between the McNeil and Lew Holes.

In 1988, Cominco intersected mineralized Sullivan Horizon stratigraphy north of the Kimberley fault and west of the Sullivan deposit. Previous drilling approximately 5 km north of the fault had cored the 'Sullivan Horizon' zone but with no indication of any base metal build-up. Barren and mineralized intersections occur within 5 or 6 km of each other, and demonstrate the need for repeated testing of the favorable zone for proper evaluation.

The 'Sullivan Horizon' zone intersected in DDH M-88-7 is favorable evidence that many of the geologic conditions which characterize the Sullivan orebody are present on the McNeil Property. Further testing of the zone is recommended.

Peter Klewchuk January 26, 1989

12.30 APPENDIX III REPORT ON DDH M-89-1

DDH M-89-1 was drilled between February 20 and March 6, 1989, to test the Lower-Middle Aldridge contact and was collared 3km south-southeast of DDH M-88-7.

The Lower-Middle Aldridge contact was intersected at 270.0m. The contact is broken and this may be a minor fault; as evidenced by about 20cm of broken core.

The contact at 270.0m is a distinct change from thick and medium bedded quartzites of the Middle Aldridge to thin bedded and laminated siltstone of the Lower Aldridge. Strong pervasive alteration caused by a thick underlying gabbro sill masks the character of these rocks.

Lower Aldridge rock was cored from 270.0m to 303.2m (33.2m). From 303.2m to 579.7m is gabbro with an included quartz-bearing fault zone from 406.2m to 418.8m. Contact relationships demonstrate the gabbro is a sill.

579.7 to 590.7m is altered siltstone, thin bedded and laminated but again quite pervasively altered by silicification and chloritization. Fine disseminated pyrrhotite and vein pyrite are common. No base metals were noted.

At 590.7m an irregular contact with a gabbro dike was encountered; the dike continues to the end of the hole at 599.2m.

DDH M-89-1 did not core much Lower Aldridge but the lithology is distinctive enough that reasonable confidence can be placed in the interpretation that it is Lower Aldridge.

The lack of a distinct "Sullivan Horizon" zone in DDH M-89-1 may be due to elimination of the zone by a fault at the contact, but evidence for such a fault is poor. It appears that the "Sullivan Horizon" zone does not exist in the area of DDH M-89-1 and this interpretation shifts the emphasis back towards DDH M-88-7. Further drilling of the Lower-Middle Aldridge contact is recommended by extending out to the NW from M-88-7. This would test for continued build up of base metal sulfides and the favorable Sullivan Horizon that is indicated by the difference between these two last holes.

HOLE COMPARISON

Feature	M-88-7	M-89-1	Conclusion
Base Metals	present, fractures	absent	(Move North of 88-7
Tourmalinite	absent	absent	(and West of 89-1
Contact Sills	absent	present, close t	o NS feeder
Laminated Sulphides	s present	present	
F.W. Conglomerate	present	absent	

P. Klewchuk Consulting Geologist March 6, 1989

12.40 APPENDIX IV
LEAD ISOTOPE ANALYSIS

THE UNIVERSITY OF BRITISH COLUMBIA Department of Geological Sciences 6339 Stores Road Vancouver, British Columbia CANADA V6T 284 June 17, 1988

M. Bapty, P. Eng., Bapty Research Limited, 606 Trail Street, Kimberley, B.C. V1A 2M2

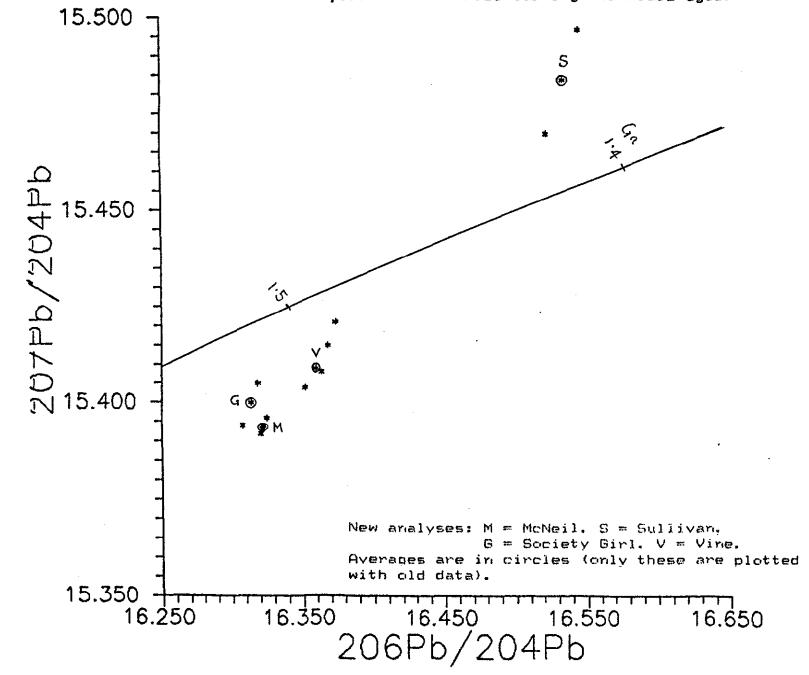
Dear Mr Bapty,

Please find enclosed the results of the lead isotope analyses on the samples from Dragoon's McNeil property that you submitted to our laboratory on May 30, 1988. The results show conclusively that the McNeil property is not related to Sullivan samples from the Lower-Middle Aldridge contact, rather it is related to the Middle Aldridge St Eugene system, and Moyie Intrusions.

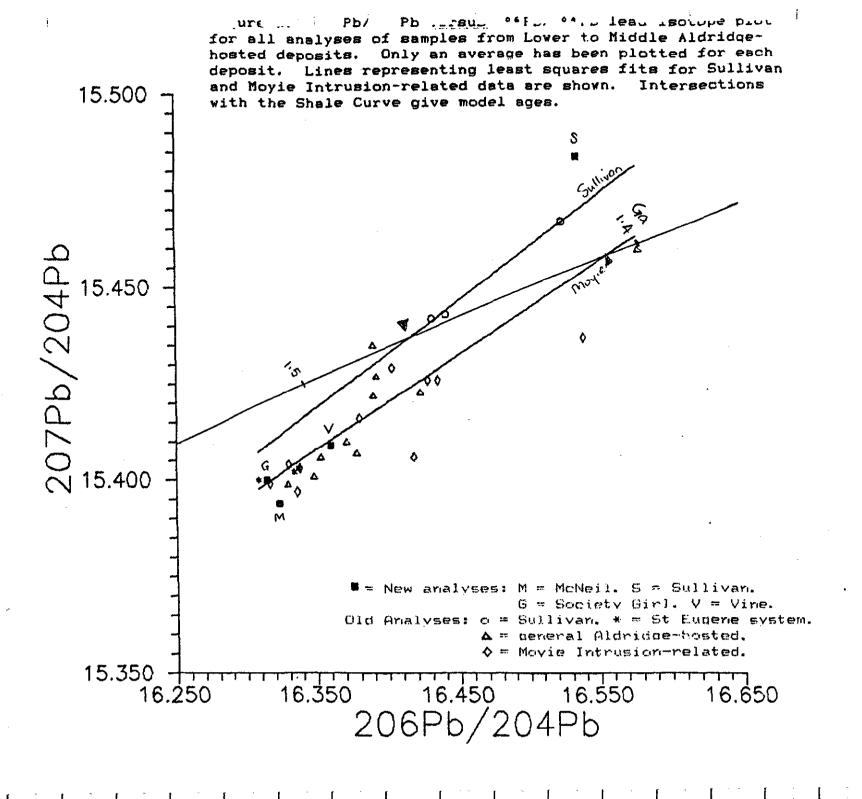
Since much of the data in our files is old and of unknown quality, I analysed two samples from Sullivan, one from Society Girl, and two from Vine, along with the two samples from McNeil. This gave me a good comparison for the lead isotopic signatures of Sullivan and later mineralization. The enclosed tables contain both the new analyses and a compilation of old data from deposits in the Lower to Middle Aldridge. Figure 1 shows the results of all new analyses plotted on a standard lead isotope plot. Figure 2 shows all the data, with only averages used for each deposit. The separation between Sullivan and Moyie intrusion-related leads is clear, and McNeil plots with the latter group.

I have sent an invoice for analysis of two galena samples to Dragoon Resources.

Thank you for your interest in our technique as an exploration tool.


Yours sincerely,

Janet E. Gabites Research Scientist


and & Gabites

Encl.

Figure 1. ** 7Pb/* ** Pb versus ** * Pb/* ** Pb lead isotope plot for new analyses of samples from McNeil, Sullivan, Society Girl, and Vine deposits. The Shale Curve gives model ages.

 $(\mathbf{C}_{p},$

12.50 APPENDIX V

DRILL LOGS

 Drill Hole I			.		•			ł			
 Property MCNE	11. CREEK	District	Hole No. M-88-01				1]	[}	
Commenced Sep	rember 18. 1988	Location	Tests at	Hor. Comp.	<u></u>		1	ļ]]	[]	1
Completed Sen	stember 23, 1988	Core Size NO 2	Corr. Dip _51°	Vert. Comp.				1		'	:
Co-ordinates 3	393N 3025E Geoph	ysics Grid	True Brg. 240°	Logged by p	Klewe	huk	ļ	ļ	dia		٠ ا_
Objective Test	Vcin/Shcar system	s Stratigraphy to (Sabbro % Recov.	Date Sept.	21		E	979	Collar	≥ .	ength
			Sill				[진_	<u> </u>	18	Elev.	9,
Footage From To	Description				Sample No.	Length	Ana	YSIS	7		_
0 -3.05	CASING - No	noro.					Π	Π			
						7	1	1		\Box	<u> </u>
3.05-37.7	SILTY QUARTZ	TE, QUARTZITE & SIL	TSTONE				[-	T			
3.111=32.11			colored, thin a med thick b	edded: rarely		-	Ĭ]_			
	_		derately strong alteration i								
	-1		c. Local bleaching and purp					Ì			Ē.
			icic and chloritic alteratio	•							L
			throughout Some med thick]				Ĺ
			with patchy development of a					\coprod			
	ſ		all aggregates of light pink			<u> </u>		1			
			of hornfels carries minor P					Ī			L
<u> </u>			resent in most of the hornfe			1	7	Ţ.			
	-		uniform 70° to c/a. with m	-							Γ
			beds are ripple cross-lami								
· · · · - · · - · · · · · · ·			ighout the interval with many				Ī				Γ
			nm-lcm wide vein of silica t	•							
			pale buff color and looks	•	[L				L
			tivity. From 26.5m to 28.3m								i
			it the core at 55° to c/a.								ì.
			related as well. At 28.6m c						ļ '	ļ	1_
	1		in character: suggests that		<u> </u>		_	1_	1	<u></u>	<u>!</u>
			tions too. (These are expos		i		L	_	<u></u>	<u>;</u>	<u>.</u> .

Colour Plot 4 Out

Costage Description Sample Length No. Cont. -37.7 Cont. along the main McNeil Ck Road). Sample: 18.5 - 19.0 1.5m 7901 1.5 2 19 245 448 0 37.7-39.3 BRECCIA Med. thick quartzites and silty quartzites are irregularly fractured and intruded by thin veinlets of white to light gray quartz (& feldspar?) Ouartz is of a fine-grained, granualr texture in some places. Some of the white vein material is powdery clay & may be altered feldspar.	True Brg. **Recov. Date Sample No. Longed by PK E E E E E E E E E	o-ordinates blactive botage om To -37.7	Cont. along the main McNeil Ck Road).	True Brg.	Logged by PK Date	Sample	Length	Anai	yels		<u> W </u>	
Description Postription Postription Cont. along the main McNeil Ck Road). Sample: 18.5 - 19.0 1.5m 7901 1.5 2 19 245 448 0 37.7-39.3 BRECCIA Med. thick quartzites and silty quartzites are irregularly fractured and intruded by thin veinlets of white to light gray quartz (& feldspar?) Quartz is of a fine-grained, granualr texture in some places. Some of the white vein material is powdery clay & may be altered feldspar. Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 16.10 39.3-56.6 SILTY QUARTZITE, QUARTZITE & SILTSTONE Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout Fine grained disseminated po plus biotite along with local ZNS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.7. Thin Lacture has associated with it locallized yugginess, plus thin	And McNeil Ck Road). 3.5 - 19.0 1.5m 7901 1.5 2 19 245 448 0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	objective sotage om To -37.7	Cont. along the main McNeil Ck Road).		Date	Sample	Length	Anai	yels		<u> W </u>	
Description To To To To To To To To To	In McNeil Ck Road). In McNeil Ck Road). In artzites and silty quartzites are irregularly fractured and intruded Interest of white to light gray quartz (& feldspar?) Quartz is of a granualr texture in some places. In this powdery clay & may be altered feldspar. In a gray to med. blue-gray colored, medium & thin bedded with a few stred zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thorefore the gray to med by the formula of the pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration with gray to med by the pale is a few thick beds. Silicic and chloritic alteration with gray to med by the pale is a few thick beds. Silicic and chloritic alteration with gray to med by the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray to mean the pale is a few thick beds. Silicic and chloritic alteration with gray	notage om Yo -37.7	Cont. along the main McNeil Ck Road).	% Recov.			Length	Anai	yels		<u> W </u>	
Description To To To To To To To To To	In McNeil Ck Road). In McNeil Ck Road). In artzites and silty quartzites are irregularly fractured and intruded Interest of white to light gray quartz (& feldspar?) Quartz is of a granualr texture in some places. In this powdery clay & may be altered feldspar. In a gray to med. blue-gray colored, medium & thin bedded with a few stred zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale is a few thick beds. Silicic and chloritic alter	-37.7	Cont. along the main McNeil Ck Road).						yels		<u> W </u>	
Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar ta interval from surface to 37.7m. Patchy hornfelsic alteration cacurs throughout. Fine grained disseminated to plus biotite along with local Zns occur in the hornfelsic patches. Bedding is policially planar and fairly consistant at 70° to c/a. At 44.7 a thin Lacture has associated with it locallized vagginess, plus thin	In McNeil Ck Road). 3. 5 - 19.0 1.5m 7901 1.5 2 19.245 448 0.8 11 11 11 11 11 11 11 11 11 11 11 11 11	-37.7	Cont. along the main McNeil Ck Road).	ne main McNeil Ck Road).			Cargo.					
along the main McNeil Ck Roadl. Sample: 18.5 - 19.0 1.5m 7901 1.5 2 19 245 448 0 37.7-39.3 BRECCIA Med. thick quartzites and silty quartzites are irregularly fractured and intruded by thin veinlets of white to light gray quartz (& feldspar?) Quartz is of a fine-grained, granualr texture in some places. Some of the white vein material is powdery clay & may be altered feldspar. Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 1610 39.3-56.6 SILTY QUARTZITE, QUARTZITE & SILTSTONE Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local Zns occur in the hornfelsic patches. Redding is typically planar and fairly consistant at 70° to c/a. At 44.7 , thin liacture has associated with it locallized yugginess, plus thin	artzites and silty quartzites are irregularly fractured and intruded lets of white to light gray quartz (& feldspar?) Quartz is of a granualr texture in some places. Thite vein material is powdery clay & may be altered feldspar. The QUARTZITE & SILTSTONE The qray to med. blue-gray colored, medium & thin bedded with a few ated zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale ish & greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine seminated po plus biotite along with local ZnS occur in the hornfelsic ding is typically planar and fairly consistant at 70° to c/a. In Inseture has associated with it locallized yagginess, plus thin	· · · · · · · · · · · · · · · · · · ·	along the main McNeil Ck Road).			Γ.			CH.	Рb		Ag_
along the main McNeil Ck Roadl. Sample: 18.5 - 19.0 1.5m 7901 1.5 2 19 245 448 0 37.7-39.3 BRECCIA Med. thick quartzites and silty quartzites are irregularly fractured and intruded by thin veinlets of white to light gray quartz (& feldspar?) Quartz is of a fine-grained, granualr texture in some places. Some of the white vein material is powdery clay & may be altered feldspar. Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 1610 39.3-56.6 SILTY QUARTZITE, QUARTZITE & SILTSTONE Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local Zns occur in the hornfelsic patches. Redding is typically planar and fairly consistant at 70° to c/a. At 44.7. thin liacture has associated with it locallized yugginess, plus thin	artzites and silty quartzites are irregularly fractured and intruded lets of white to light gray quartz (& feldspar?) Quartz is of a granualr texture in some places. Thite vein material is powdery clay & may be altered feldspar. The QUARTZITE & SILTSTONE The gray to med. blue-gray colored, medium & thin bedded with a few ated zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale ish & greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine seminated po plus biotite along with local ZnS occur in the hornfelsic ding is typically planar and fairly consistant at 70° to c/a. In Inseture has associated with it locallized yagginess, plus thin	· · · · · · · · · · · · · · · · · · ·	along the main McNeil Ck Road).			i	<u> </u>					
Sample: 18.5 - 19.0 1 5m 7901 1.5 2 19 245 4480 37.7-39.3 BRECCIA Med. thick quartzites and silty quartzites are irregularly fractured and intruded by thin veinlets of white to light gray quartz (& feldspar?) Ouartz is of a fine-grained, granualr texture in some places. Some of the white vein material is powdery clay & may be altered feldspar. Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 1610 39.3-56.6 SILTY QUARTZITE, QUARTZITE & SILTSTONE Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated no plus biotite along with local ZnS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.9 a thin liacture has associated with it locallized yugginess, plus thin	artzites and silty quartzites are irregularly fractured and intruded lets of white to light gray quartz (& feldspar?) Quartz is of a granualr texture in some places. Thite vein material is powdery clay & may be altered feldspar. The QUARTZITE & SILTSTONE The qray to med. blue-gray colored, medium & thin bedded with a few ated zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale ish & greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine seminated po plus biotite along with local ZnS occur in the hornfelsic ding is typically planar and fairly consistant at 70° to c/a. In Inseture has associated with it locallized yagginess, plus thin									L		
37.7-39.3 BRECCIA Med. thick quartzites and silty quartzites are irregularly fractured and intruded by thin veinlets of white to light gray quartz (& feldspar?) Quartz is of a fine-grained, granualr texture in some places. Some of the white vein material is powdery clay & may be altered feldspar. Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 1616 39.3-56.6 SILTY QUARTZITE, QUARTZITE & SILTSTONE Typically light gray to med. blue-gray colored, medium & thin bedded with a few. narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout Fine grained disseminated no plus biotite along with local ZnS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.7 thin limiture has associated with it locallized yugginess, plus thin	nartzites and silty quartzites are irregularly fractured and intruded lets of white to light gray quartz (& feldspar?) Quartz is of a qranualr texture in some places. thite vein material is powdery clay & may be altered feldspar. 1.7 - 39.3					7901	1.5	12	19	245	448	ام
Med. thick quartzites and silty quartzites are irregularly fractured and intruded by thin veinlets of white to light gray quartz (& feldspar?) Quartz is of a fine-grained, granualr texture in some places. Some of the white vein material is powdery clay & may be altered feldspar. Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 1610 39,3-56.6 SILTY QUARTZITE, QUARTZITE & SILTSTONE Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZnS occur in the hornfelsic patches. Redding is typically planar and fairly consistant at 70° to c/a. At 44.7 a thin lacture has associated with it locallized yugginess, plus thin	rets of white to light gray quartz (& feldspar?) Quartz is of a granualr texture in some places. white vein material is powdery clay & may be altered feldspar. 1.7 - 39.3		ì				Ĭ	Ŧ.				
by thin veinlets of white to light gray quartz (& feldspar?) Ouartz is of a fine-grained, granualr texture in some places. Some of the white vein material is powdery clay & may be altered feldspar. Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 161	rets of white to light gray quartz (& feldspar?) Quartz is of a granualr texture in some places. white vein material is powdery clay & may be altered feldspar. 1.7 - 39.3	37.7-39.3	BRECCIA	·								
fine-grained, granualr texture in some places. Some of the white vein material is powdery clay 5 may be altered feldspar. Sample: 37.7 - 39.3 l.6m 7902 l.6 l 3 22 161 g 39.3-56.6 SILTY QUARTZITE, QUARTZITE 5 SILTSTONE Typically light gray to med. blue-gray colored, medium 5 thin bedded with a few narrow laminated zones 5 a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish 5 greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZnS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.9 a thin limitature has associated with it locallized yugginess, plus thin	qranualr texture in some places. thite vein material is powdery clay & may be altered feldspar. 7.7 - 39.3		Med. thick quartzites and silty	quartzites are irregularly fr	actured and intrude	d	<u> </u>	<u>L</u>	<u>L</u>			
Some of the white vein material is powdery clay 5 may be altered feldspar. Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 161 1 39.3-56.6 SILTY QUARTZITE, QUARTZITE 6 SILTSTONE Typically light gray to med. blue-gray colored, medium 6 thin bedded with a few narrow laminated zones 6 a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish 6 greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZnS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44." a thin fracture has associated with it localized yugginess, plus thin	TE, QUARTZITE & SILTSTONE the gray to med. blue-gray colored, medium & thin bedded with a few ted zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale ish & greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine minated po plus biotite along with local ZnS occur in the hornfelsic ding is typically planar and fairly consistant at 70° to c/a. In Lincture has associated with it locallized yagginess, plus thin		by thin veinlets of white to lic	ht gray quartz (& feldspar?)	Ouartz is of a			<u>L</u>	<u>L</u>			
Sample: 37.7 - 39.3 1.6m 7902 1.6 1 3 22 1611 39.3-56.6 SILTY QUARTZITE, QUARTZITE & SILTSTONE Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZnS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.9 a thin fracture has associated with it localized yugginess, plus thin	TE, QUARTZITE & SILTSTONE the gray to med. blue-gray colored, medium & thin bedded with a few ted zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale ish & greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine minated no plus biotite along with local ZnS occur in the hornfelsic ding is typically planar and fairly consistant at 70° to c/a. In Lincture has associated with it locallized yagginess, plus thin		fine-grained, granualr texture i	in some places		<u> </u>	ļ		L			
39.3-56.6 SILTY QUARTZITE, QUARTZITE & SILTSTONE Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZnS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.% a thin fracture has associated with it locallized yugginess, plus thin	TE, QUARTZITE & SILTSTONE tht gray to med. blue-gray colored, medium & thin bedded with a few. ted zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale ish & greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine minated po plus biotite along with local ZnS occur in the hornfelsic ding is typically planar and fairly consistant at 70° to c/a. n lineture has associated with it locallized yagginess, plus thin		Some of the white vein material	is powdery clay & may be alte	red feldspar.	<u> </u>	<u> </u>	ــــــ	<u>L</u> .	<u> </u>	1_1	
Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZNS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.9.1 thin fracture has associated with it locallized yugginess, plus thin	the gray to med. blue-gray colored, medium & thin bedded with a few steed zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale ish & greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine minated po plus biotite along with local ZNS occur in the hornfelsic dding is typically planar and fairly consistant at 70° to c/a. In lineture has associated with it locallized yagginess, plus thin		Sample: 37.7 - 39.3 1.6m			7902	1.5	┶	3_	22	ıaı	ىم
Typically light gray to med. blue-gray colored, medium & thin bedded with a few narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZNS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.9.1 thin fracture has associated with it locallized yugginess, plus thin	the gray to med. blue-gray colored, medium & thin bedded with a few steed zones & a few thick beds. Silicic and chloritic alteration silicification results in a dense, mottled appearance with pale ish & greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine minated po plus biotite along with local ZNS occur in the hornfelsic dding is typically planar and fairly consistant at 70° to c/a. In lineture has associated with it locallized yagginess, plus thin				<u> </u>	<u> </u>	ļ	!	<u> </u>	L		
narrow laminated zones & a few thick beds. Silicic and chloritic alteration are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZNS occur in the hornfelsic patches. Redding is typically planar and fairly consistant at 70° to c/a. At 44.9 a thin fracture has associated with it locallized yagginess, plus thin	silicification results in a dense, mottled appearance with pale ish a greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine minated po plus biotite along with local ZnS occur in the hornfelsic dding is typically planar and fairly consistant at 70° to c/a. n lineture has associated with it locallized yagginess, plus thin	39.3-56.6	SILTY QUARTZITE, QUARTZITE & SIL	TSTONE				1_	<u> </u>	L		
are present; silicification results in a dense, mottled appearance with pale gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine grained disseminated po plus biotite along with local ZnS occur in the hornfelsic patches. Redding is typically planar and fairly consistant at 70° to c/a. At 44.7 a thin fracture has associated with it locallized yugginess, plus thin	silicification results in a dense, mottled appearance with pale ish 6 greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine minated po plus biotite along with local ZnS occur in the hornfelsic dding is typically planar and fairly consistant at 70° to c/a. n lineture has associated with it locallized yagginess, plus thin		Typically light gray to med. blu	e-gray colored, medium & thin	bedded with a few	<u> </u>	Ļ	1	<u> </u>		1	<u>. </u>
gray to purplish & greenish discoloration. Generally very similar to interval from surface to 37.7m. Patchy hornfelsic alteration occurs throughout. Pine grained disseminated po plus biotite along with local ZnS occur in the hornfelsic patches. Hedding is typically planar and fairly consistant at 70° to c/a. At 44.7 a thin tracture has associated with it locallized yugginess, plus thin	ish 6 greenish discoloration. Generally very similar to interval to 37.7m. Patchy hornfelsic alteration occurs throughout. Fine minated po plus biotite along with local ZnS occur in the hornfelsic ding is typically planar and fairly consistant at 70° to c/n. n lineture has associated with it locallized yagginess, plus thin		narrow laminated zones & a few t	hick beds. Silicic and chlor	itic alteration	Ĺ	 	!	<u> </u>	ļ	1_1	
from surface to 37.7m. Patchy hornfelsic alteration occurs throughout Fine grained disseminated no plus biotite along with local ZnS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44.7 a thin tracture has associated with it localized yugginess, plus thin	to 37.7m. Patchy hornfelsic alteration occurs throughout Fine minated po plus biotite along with local ZnS occur in the hornfelsic ding is typically planar and fairly consistant at 70° to c/a. n lineture has associated with it locallized yagginess, plus thin		are present; silicification resu	ilts in a dense, mottled appea	rance with pale	ļ	ļ	ļ	ـ	_		
grained disseminated no plus biotite along with local ZnS occur in the hornfelsic patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44." a thin tracture has associated with it locallized yagginess, plus thin	minated no plus biotite along with local ZnS occur in the bornfelsic ding is typically planar and fairly consistant at 70° to c/a. n Institute has associated with it locallized yagginess, plus thin		gray to purplish & greenish disc	coloration. Generally very si	milar to interval	ļ	↓	↓_			 	
patches. Bedding is typically planar and fairly consistant at 70° to c/a. At 44." a thin tracture has associated with it locallized yugginess, plus thin	n Instance has associated with it locallized yagginess, plus thin		from surface to 37.7m. Patchy h	nornfelsic alteration occurs t	hroughout Fine	ļ		 	ļ	<u> </u>	-	
At 44.9. thin tracture has associated with it locallized vagginess, plus thin	n lineture has associated with it locallized yugginess, plus thin		grained disseminated po plus bio	tite along with local ZnS occ	ur in the hornfelsi	<u> </u>] —	ļ	ļ	ļ	
			patches. Bedding is typically p	lanar and fairly consistant a	t 70° to c/a.	 -	↓ —	┼	 	├—	├	<u> </u>
veinlets of pale greenish feldspar? Adjacent biotitic quartzite is altered &	ale greenish feldspar? Adjacent biotitic quartzite is altered 5		At 44.9 a thin tracture has asse	ociated with it locallized vuo	giness, plus thin	 -	┼─	┼	┼	 	-	-
			veinlets of pale greenish feldsp	ar? Adjacent biotitic quartz	ite is altered &	· ~~~	<u>:</u>	↓ :		 	1-	

Property McNET	L CREEK District	Hole No. M-88-01	Hor, Comp.						
Completed	Core Size	Corr. Dip	Vert, Comp.					1 1	
Co-ordinates	OUTS SEE	True Brg.	Logged by p			1		ا ۾	
Objective		% Recov.	Date Date	K	-	l _∈	5	Cottar Dip	
Objective		70 10001				E E	T Brg.	18	<u>}</u>
Footage	Description			Sample No.	Length	Anal			
rom To			<u> </u>	100.	┼	╨	Cu.	Pb	<i>z</i> .
-56.6	Cont.			7903	0.2	╁╴	140	55	•
·	Sampling: 40.9 - 41.1 0.2m			7903	0.6	 ;	101	1	-
	47.7 - 48.3 0.6m			7904	0.5	 	-	2219	_
	56.1 - 56.6 0.5m	·		7903	0.3	╬╌	197		-
56.6-56.8	OUARTZ VEIN ZONE, QUARTZITE								
	A central 4 cm wide quartz vein	is parallel to bedding at 70°	to c/a. Quartz i	5	↓	1	igsqcup		_
	vuggy, contains patches of light			<u> </u>	<u> </u>	<u> </u>			_
	disseminated but tends to be con	ncentrated near or within vugs	and near the	<u> </u>	<u> </u>	↓_	1	اـــا	_
	margins of the vein. O.V. cuts			<u> </u>	<u> </u>	1_	<u> </u>		
	silicified and altered to a moti			<u> </u>		<u> </u>		<u> </u>	L
	immediately above the OV is chlo	oritic, rusty and carries minor	pyrrhotite &	<u> </u>		1_	<u> </u>		L
	chalcopyrite along with a few gr	rains of PbS. Pink feldspar is	common, patchy		<u> </u>	<u> </u>	↓_		L
	and this zone appears to be part	t of the OV alteration zone.2 t	<u>hin veinlets occu</u>	<u> </u>	 	1_	↓	_	Ļ
	4cm & 6cm below the main OTZ ve	in: the upper one is a quartz v	ein with rugged	<u> </u>	<u> </u>	╀	ـــــ		_
	boundaries, vein is about 3mm wi			ļ	↓	┼	╄		L
	carry disseminated PbS.		<u> </u>	ļ <u>.</u>		╀—	+	1.12	r
	Sample: 56.6 - 56.8 0.2m			7906	0.2	₽_	413	1	Ļ
				Assay	<u>'</u>	1001	1.15	14.8	ċ
56.8-59.4	QUARTZ VEIN/BRECCIA/SHEAR ZONE				+	┼—	┼	-	ŀ
	Rusty oxidized quartz-chlorite l			4	1-	┼—	┼	╂╼╣	ŀ
	quartz occurs as pods and veins	and chlorite forms a matrix to	quartz pods and			ᆚ	丄	ــــــــــــــــــــــــــــــــــــــ	L

mmenced	NEIL CREEK District Location							She			
mpleted	Core Size	Corr. Dip	Vert. Comp.			ł	1			ł	l
-ordinates		True Brg. % Recov.	Logged by P	K		ł_		Sollar Dip		£	ģ
ojective		Date			Claim	Bro	8	Elev.	ength	tole No.	
place	Description		Sample	Length	O Anai		10	<u> </u>	<u> </u>	Ī	
m To	Description			No.	Length			Pb	Ζn	Λq	۸
-59.4	Cont.					1					
	sedimentary rock fragments.	Most fractures are quite rusty and	this masks			Γ					Γ
		ong metamorphic overprinting of pink				Г		\sqcap			Γ
		gates are up to 3mm across. A few r				\sqcap				_	Γ
		is have developed in the more strong									
	zones. Shearing, fracturing			Assav		001	. 14	1.49	.02	. 15	Γ
	Sampling: 57.25 - 58.3	1.05m		7908	1.05	12	1272	13,550	205	5.5	40
	58.3 - 59.4	1.10m		7909	1.10	25	1953	20,099	159	88.	9 9
				Assay		رووا	.20	2.25	.02	1.1	5
59.4-60.35	QUARTZITE RUBBLE					1_	<u> </u>		igsqcup	<u>L</u>	<u> </u>
	Only ~ 25cm of core recovere	d; mainly rusty oxidized fragments o	f quartzite.		<u> </u>	 _	<u> </u>		Ш	L_	L
	A few pieces at 59.4m are ve	ry chloritic & some of the overlying	q vein zone			!	_		Ш		L
	may have been lost.				1	 _	<u> </u>	<u> </u>	igspace	·	╄
	Sample: 59.4 - 60.35			7910	0.95	38	28/	242	94	1.8	1
				Assay	ļ	901	.03	24	.01	.07	┖
60.35-68.5	OUARTZITE, MINOR SILTSTONE		·	ļ <u>.</u>		↓	↓	<u> </u>		<u> </u>	Ļ
	Med, bluish gray colored, me	dium bedded with a few thin beds & 1	aminations	.		 	L	└	igsqcup		L
	Weak brecciation is evident	<u>locally - thin quartz filled fractur</u>	es occur locali	<u> </u>	ļ	 	 -	↓	\sqcup		L
		c with pink feldspar (?) occur from		 	-	 	 	├ ┈	igsquare		<u> </u>
	Patches of coarser biotite.	<u>chlorite & pink feldspar or garnet a</u>	re scattered	 	ļ	 —	<u> </u>	├ !	igsquare		<u> </u>
	through the zone. Bedding i	s at 70° to c/a.		Assay		ប់ប្រវ	.01	20	. 01	. 119	L
	Sample: 60.35 - 61.3			7911	0.95	122	24	أمهورا	tarl	2 0	- 1

Property McNI	antite	District	Hole No. Maggan	•					1	
Commenced	ELL CREEK	Location	Hole No. M-88-0 Tests at	Hor. Comp.					1	1
Completed		Core Size	Corr. Dip	Vert. Comp.			1		Ì	
Co-ordinates		· <u></u> _ · · · · · · · · · · · · · · · · · · ·	True Brg.	Logged by)Y		1		άÖ	ļ
Objective			% Recov.	Date	Α		ε	ģ	ar D	١.
		· · · · · · · · · · · · · · · · · · ·							Collar	
Footage From To	Description				Sample No.	Length	Anal	ysis		
68.5-71.0	SILTSTONE	MINOR SILTY ARGILLITE	A QUARTZITE							
	Mainly th	in bedded, few med, thi	ck beds. a few very thin c	r laminated zones						
	A pervasi	ve silicification is pr	esent; silty or quartzitic	: beds are more affec	ted	.j				
	than argil	laceous beds. Planar	bedding is at 70° to c/a.							
. <u> </u>										
71.0-160.4	SILTSTONE	& QUARTZITE. MINOR ARG	ILLITE							
	Light_gray	to med. bluish-gray c	olored. med. and thick bed	ded with narrow zone	s	_	<u></u>		!	_
	of thin bo	dded more argillaceous	beds. Silicification is	present throughout			 			<u> </u>
	and has ro	sulted in pale greenis	h & purplish discoloration	with a mottled	ļ. <u> </u>	<u> </u>	 		<u> </u>	_
	texture.	Small_patches_of_hornfo	elsic texture, probable con	cretions, are scatter	e d	<u> </u>		<u> </u>	<u> </u>	
	through th	<u>e interval. Amphibole</u>	(chloritized), biotite, p	ink garnet and whiti	sh	1	ļ_			_
	feldspar-q	uartz aggregates are c	ommon along with minor pyr	rhotite		<u>. j </u>	.	ļ <u> </u>	ļ	igspace
	Bedding_is	quite consistent at 6	5-70° to c/a.			 _	 	_		<u> </u>
	Locally th	ere is minor brecciation	on with veins of milky whi	<u>te quartz or feldspa</u>	r		 	ļ	<u> </u>	 —
	this_mater	ial is very fine grain	ed and appears amorphous.	These veins are		<u> </u>	}		}	ļ. <u>.</u> .
	typically_	sub-paralici_to_c/a_(5	-15°). Typically the imme	diate_wallrock_is			 -		<u> </u>	
	unaltered_	by the voins but near	94.5m, within one vein 20n	c, the			 		<u> </u>	<u> </u>
	scdimentar	x_rock_is_altered_to_a	brownish_colored,_biotiti	c_material_which_is_	_		.			ļ
	softer, mo	re 'punky' than the una	lltered rock		_{	┧	 -	[_		Ĺ
	157.2 - 16	0.4 is dominantly thin	<u>bedded. There is no obvi</u>	ous recognizable				ļ	<u> </u>	!
	increase i	n the degree of alterat	ion as the gabbro contact	at 160.4m is approa	ched.		-	<u> _</u> .	ļ	<u> </u>

Propi		IL CREEK	District	Hole No. M -88-01				-			l
	menced		Location	Tests at	Hor, Comp.			┨	'		١
	pleted		Core Size	Corr. Dip	Vert. Comp.			1		dio	
	rdinates			True Brg.	Logged by F	<u> </u>		┧┎	÷	<u> </u>	
Obje	ctive			% Recov.	Date			Sein S	9.0	Selle	
Foota	ee To	Description	:			Sample No.	Length		llysis		ï
16	0-4-171.9	GABBRO			· .			<u> </u>		丄	1
	<u> </u>		at 160.4m is quite sh	arp, core is unbroken & the	contact is very clo	se					1
				to c/a Adjacent heds in				1_	1_		1
				le the sediment-gabbro cont					\perp	<u> </u>	Ì
				otite-rich at 160.4 but get		e					1
. [ition is 15-20% Quartz 20%						↓	1
T T				hloritized. There appears				1_		 	1
		to the a	mphiboles - they are	randomly aligned. This vei	nlets of white to					<u> </u>	4
				bro. These typically conta		<u> </u>				ᆚ_	_
		-1		o & Cpy are present in mino						ـــــ	_
				tz veins, but in very minor				1	<u> </u>	┷	
										┷	_
	171.9	END OF H	IOLE					4_		ֈ	_
								4_		+-	_
				100		- 			+	-	_
				<u> </u>			_ _	4-	뉴	+-	_
<u> </u>			V								_
L					<u></u>				_ 		_
1						- 1			\perp		

	T. 24. 1988	District Location Core Size	Hole No. M-88-02 .* Tests at Corr. Dip51 °	Hor. Comp.							
	3.1988	COIR SIZE	True Brg. Az 282°	Logged by			1	1	٩		l
o-ordinates	·		% Recov.		P. Klei		╏	5	15	1. 1	Ę
bjective TEST	MAGNETIC ANOM	ALY	% RBCOV.	Date Sept.	26. 19.	88	E E	84	Collar Dip	3	ength.
otage	Description				Sample	Length		lysis			<u>-</u>
m To					No.		-	+	-		-
0 -7.9m	Casing, No	Core	<u></u>		_	 -	┼	-	-		-
<u>-</u>		·		· · · · · · · · · · · · · · · · · · ·		-	╁	+	┼	┞─┤	È
.9-96.6m	GABBRO			<u> </u>		- 	╁		╁	╂─┤	⊢
			White feldspar content varies				-	-	╄	 	-
			artz. 5%, occurs with feldspar				┥	1-	├	 	H
			roxenes: chloritic alteration i		sive		╀		┼—		\vdash
		·· —	urface to 40m core is fairly l				┼-	+		 	⊢
	rusty-oxidi:	zed. In pieces the	<u>gabbro breaks down to a coarse</u>	sand-possibly			1_	-	 	 	┝
,	a surface we	eathering character.	A few thin quartz and quartz-	-feldspar veins			<u> </u>	1-	╄.		<u> </u>
	cut the core	at various angles	to c/a. At 13.1m a broken 2 cm	<u>n wide white qu</u>	artz		_	┦—	ļ	<u> </u>	_
	vein is ligh	htly rusty. at 25.9	m a 4 - 5cm wide whitish felsic	dike cuts the			_	1_	<u> </u>		L
	core_at_~ 30	o to c/a. Core is	quite broken here and true widt	h is not				1_		igspace	L
			edral rusty oxidized pyriteon f		es,		<u> </u>	Ц	L	igsqcup	Ŀ
			ten crenulated chlorite and fir					<u> </u>	↓	\sqcup	_
			thin white quartz veins are so		h			1	1_		L
			at 67.4 carry enhedral pyrit				1_	-	<u> </u>	<u> </u>	L
			ns of the crystals but with a f				上			<u> </u>	L
			From about 87.0m to 96.6m is mo				1_				١_
			akly breceiated with numerous v				_	1_	4_	 	<u> </u>
			A few oxidized pyrite cryst				1	_	ــــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>
	these veinle						┺	┧_	1_	<u> </u>	L
	Contact at	6.6m is broken but	adjacent fractures suggest that	titis.at~65°	td		1_	丄	<u> </u>		L

Property MCNE:	II. (REEK District Location	Hole No. M -RR-02	Hor. Comp.							
Completed	Core Size	Corr. Dip	Vert. Comp.			1	1		. [ĺ
Co-ordinates		True Brg.		PK		1		흕		Ĭ
Objective		% Recov.	Date			Ì€	ě	Sollar Dip	l.	Length
						10	! —	ઉ	€	اقا
on to	Description			Sample No.	Length	Anal	ysis			\equiv
96.6-129.2	QUARTZITE AND SILTSTONE									
	Core is fairly broken, most of t	he interval is moderately to s	trongly silicif	íeď						
	Bedding is indistinct through m	uch of the interval but appear	s to be mainly							
	med. & thin bedded with minor th	ick beds. Recognizable beddin	g is fairly				T			
	consistent at 75-85° to c/a. Th	e interval is entirely altered	mainly							_
	silicification which has resulted	d in bleaching and mottled dis	coloration to						Ш	
	light gray, pale green and purple	e. Some more greenish patches	are chloritize	d	l					
	Chlorite occurs locally as a mat.	rix to brecciation where the s	iltstone is				上			
	strongly bleached or albitized to	o a whitish color. Chlorite i	s also common			1				
	on fracture surfaces. Some of the	he silicified zones are glassy	. dense-looking							
	("cherty") and hard. Small yello	ow carbonate veins are present	locally. In			1				
	places (eq at 122.6m) these carry	y reddish ZnS. PbS & Cpy. Py	& po are also					. !		
	associated with some carbonate ve	eins. Py & po are both common	in minor amoun	ts	1	<u> </u>				
	and do occur together in places.	At 107.5-107.5 10cm of core	is more vuggy -				L.			
	generally small vugs < 3mm across	s. quite siliceous, with Cpy.	Dy. po possible			1_	<u> </u>		\sqcup	
	Aspy and %nS. Cov occurs in sma	ll ragged patches as a matrix	to vuggy quartz	-	-	 	 	<u> </u>	\vdash	
	ZnS occurs in small reddish grai	n aggregates. Small possible	fault zones occ	ur		ــــ	↓		\sqcup	
	locally: at 105.2 and 106.0. 5-7	cm_wide_'bedding-parallel'_chl	oritic fault		 	<u> </u>	 	<u> </u>		
	breecia and gouge may be bedding	plane faults. Both occur at	~ 80° to c/a.		- -	<u> </u>	<u> </u>	<u> </u>		
	A similar dem wide zone occurs a	L 111.7m. And 128.4 to 128.8	is mostly		-	┷	 - -	Ш	 	
	Lault breccia also at ~ 80° to c	/a. At 112.3m broken core and	sand may be	<u> </u>	-	<u> </u>	 			_
						<u> </u>	<u>L</u>		\perp	_

roperty (AC):	ELL CREEK District Location	Hole No. M-88-02	Hor, Comp,							·
completed	Core Size	Corr. Dip	Vert. Comp.							} !
o-ordinates		True Brg.	Logged by pk			'		e D	1	i
biective		% Recov.	Date			E	g g	5	. 1	ength
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					·····	Clain		Coller	Elev.	٤
potage rom T0	Description			Sample No.	Longth	Алаў Au		PPM	zn I	
					 	<u> </u>	Lu	10	"" 	ΛQ
-129.2	Cont.			7912	0.10	2	10	00	10	0.
<u> </u>	Sampling: 96.6 ~ 96.7	0.10m Strongly silicified with	med grained	7912	0.10		10	78	101	<u> </u>
	06.7 07.3	oxized pyrite		7913	0.60	1	4	22	12	0.1
	96.7 ~ 97.3	0.60m Strong silicification. m			1.50	 	166		-	0.1
	106.0 ~ 107.5		n, malachite E	7915	Histy			(1)	٠,	
		azurite py and po			0.10	46	7754	╂	168	
	107.5 ~ 107.6		· =		1	-	83	1	, ,	
		passible Aspy chloritic		Assay		2	1.83	_	52	_
	107.6 - 109.7	2.1m 50-60cm core loss. Chlor			<u>k.10</u>	-	 -	- * *		
	114.7 ~ 116.0			7917·	1.30	2	33	25	53	0,1
		magnetite with vugay quart		 	 	╂─	1	 _ `		 -
	116.0 ~ 116.8	0.6m Ouartz & Co. veining, mind		 	-	 —	 	 	 	
<u>,</u>	122.1 - 123.5	1.4m Chloritic, albitic alterat	ion. ZnS, PbS 18	7919	1.4	6_	77	71	1119	
		with Otz, Co, veins		 	 	<u> </u>	ļ.,_	├	 	├
	123.5 ~ 124.5	1.5m Chloritic		7920	1.5	1	39	8	1	0.1
	124.5 ~ 126.4	1.5m Chloritic	20	7921	1.5	1	32	$\overline{}$	48	
	126.4 - 127.9	1.5m_Chloritic	21.	7922	<u> 1.5</u>		32	1	51	
	127.9 - 129.2	1.3m_Chloritic	22	7923	 1.3.	L_	26	12	35	9-1
	Minor magnetite Occurs wi	th vuggy quartz at 115.9m. Larger	patches of po are		Ļ	$ldsymbol{oxed}$		 		_
	magnetic below the fault	zone at 128.4-128.8. Strong sheari	ng at 60-90° to		<u> </u>	匚		<u> </u>	Ш	
		diment-gabbro contact is a shear zo		<u></u>	<u> </u>	<u>」、</u>	<u> </u>	<u> </u>		<u></u>

Drill Hole Record District Hole No. M-88-02 Property MCNEIL CREEK Commenced Location Tests at Hor. Comp. Corr. Dip Core Size Vert. Comp. Completed True Brg. Co-ordinates Logged by Peter Klewchuk Objective % Recov. Description Length Cu Pb 2n Ag As 129.2-263.0 GABBRO 129.2 - 135.5 Foliated at 70° to c/a. Strongly chloritic with abundant elongate, ragged patches of white feldspar aligned parallel to foliation/ cleavage. Magnetite occurs throughout as thin bands, irregular patches and disseminated. All of the core is magnetic. About 15% disseminated. Pyrite occurs throughout, some as elongate blebs parallel to cleavage. 132.6-132.7 is chloritic, quartz rich band with minor pyrite, very minor cpy. as thin veinlets at 75° to c/a giving a brecciated appearance to the rock. 2 71 7923 0.9 28 Sampling: 129.2 - 130.1 0.9m More massive med-coarse grained, strongly chloritic. Plagioclase is white, gray-white to pale green color, and comprises 40-50% of the rock. veins of epidote occur through the entire interval. Most are at 60-80° to c/a but a few are more irregular; they range in thickness from a few mm to about 2 cm. Dissem. euhedral pyrite is commonly associated with the epidote and locally small patches of pyrrhotite are present. Magnetite is common to about 169m as thin veins and irregular patches; most of the gabbro is magnetic above 169m. Magnetite is very rare below 169m and the patchy pyrrhotite is nonmagnetic. From about 164 to 169m the gabbro is brecciated with numerous healed fractures 168.6 to 169.0 is more strongly cleaved, wavy, & appears to be a fault zone; it may somehow control the distribution of magnetite. At 168.4m a 4cm length of core is massive black magnetite and quartz. Abundant dissem euhedral pyrite

Property McNEIL Commenced	CREEK District Location	Hole No. M-88-02 ∴ Tests at	Hor. Comp.							
Completed	Core Size	Corr. Dlp	Vert. Comp.			Į ,	ļ			1
Co-ordinates		True Brg.	Logged by PI	<u></u>		i '	١.	ā		ےا
Objective		% Recov.	Date			Claim	o G	Collar Dip	E S	Length
<u> </u>			<u> </u>	1_	T	Anal		<u>ŏ</u> _		4
From To	escription			Sample No.	Length	λυ	Cu	₽b	DD Zn	ĪΑ
135.0-263.0	occurs in broken core im	. below. Below 169.0m the gabbro appear	s more com-	T	T .	ppb	_		Γ	Γ
	petent and the core is is				1					Γ
		0.7m Irregular epidote veins cross-cut	ting magnetit	c	T					Γ
		veins.		7924	0.7m	1	97	2	25	
	148.0-149.4	1.4m Epidote veins, magnetite and po ve	ins	7925	1.4	2	59	2	13	Γ
	165.5-166.1	0.6m Brecciated, abundant epidote		7926	0.6m	ī	117	3	35	Γ
	166.1-167.9	1.8m Brecciated gabbro		7927	1.8m	7	222	8	48	ŀ
	167.9-168.6	0.7m Brecciated, magnetite plus pyrite		7928	0.7m	4	31	4	52	
 	168,6-169,0	0.4m Sheared gabbro. Strongly chloriti	ic	7929	0.4m	2	147	5	72	. :
} 				T .	1					Γ
 	2:6 5-238 7 is more oblor	itic; in places black broken core & foli	lated, locally	/				-		Γ
		haracter suggests this is a fault zone.								Γ
		hes are elongate (at ~ 55° to c/a) and r								•
		artz-epidote-chlorite-pyrite vein, top co		1	1					Γ
		m contact is broken with a narrow zone of		T	1					Γ
		ed gabbro below.		1	1					Γ
	Sampling: 236.7-238.4	1.7m		7930	1.71	2	5	7	95	ī
	238,4-239,2	0.8m		7931	0.8	1	5	2	60	ī
 	239,2-239.6	0.4m Epidote-Qtz-Py vein & fault Bx.	· · · · · · · · · · · · · · · · · · ·	7932	0.41	1	5	2	29	ī
				1	1		T			Γ
 		2 11 3			 		 	_		г

•

Commenced Oct	### District 3, 1988 Location 19, 1988 Core Size NO2	Hole No. Tests at Corr. Dip	M-88-3	Hor. Comp.	+						2.5
Co-ordinates 356	5N 1887E Geophysics Grid	True Brg.		Logged by P -	Klewchi	uk		1 1	۽	İ	١.
Objective		% Recov.		Date			E	ا خا		. 5	Hole No
				Cuto			Claim			ength	3
cobber meters	Description				Sample	Length	Anal	vsis	<u>V</u>		
0~19.8	43				No.	-	- <u>^ "</u>	Cu	Pb :	n Ng	
0 17.0	Casing; no core				 		թթն	╌┤			+
19.8-20.6	Bubble of Outstains will be a subbush			<u> </u>	 	1	╂──	├┤			+
19.6-20.6	Rubble of Quartzite, siltstone & gabbro: m	nay be ca	ve from placing ca	ising.	 -	 	├	╂══╃			+
20.6-21.6	BRECCIA Broken & bleached siltstone or gu		•] -	}	}	╀╼┽		- - -	+
20.0-21.0	Healed fracturing is at 0° to 20° to c/a.		ization and cilici	fication are	<u> </u>	 -		\vdash			+
	present as narrow veinlets, forming a matr				}	 	 	┝╌╂	-+	+	+
	not evident. Fracture surfaces are chlori			Bedring	 -	 	 	 - 		╌┼╌	┽
	SAMPLE: 20.6-21.6 1.0m	(1C) 11m	micie.		 	1	-	 _ 			+
·	SANTEST. 20.0-21.0 1.0m		· · · · · · · · · · · · · · · · · · ·		7933	1.0n	3	171	33.9	2 1	+
21.6-131.1	QUARTZITE, minor SILTSONE & ARGILLITE			"·	<u> </u>	 		 	\dashv	+	\dagger
	Med. to light gray, locally bluish or chlo	ritic and	greenish. Silic	ic alteratio	,	1			\neg		ヿ
	appears common; some bedding planes are va-							П		7	T
	and weak carbonate alteration are also pre-					1			\neg	\neg	\top
	veins and locally, e.g. at 36.7 m and 37.0	m there i	s po, Chl. ZnS, C	ev and				\sqcap	$\neg \top$	7	十
	sometimes PbS (53.75m) in minor amounts wil										\top
	Dominantly med. & thick bedded but with name								\Box		m I
	bedded zones.	·									\prod
	At 38.0m 10-12cm of probable marker										
	At 49.0m 10cm of core is anealled breccia	a. chlori	tic with light gr	y quartz						$oldsymbol{ol}}}}}}}}}}}}}} $	\prod
	veins and one elongate bleb (1.5	Scm x 5mm) of pyrrhotite w	th very						$_{ m L}$	Ι
ł	minor Cpy.				.,,,,,	1	1 - 7			T	T

腪

,mate Employ Phi.

roperty McN	EIL CREEK	District	Hole No. M-88-3	·		İ				. (Ì
ommenced		Location	Tests at	Hor, Comp.						i l	
ompleted		Core Size	Corr. Dip	Vert. Comp.						, ,	
o-ordinates		<u></u>	True Brg.	Logged by		·	1 1	١. ١	dia	1 1	
bjective			% Recov.	Date			Cleim	9.0	Coller	8	5
				·	,		Ánah		8	ů.	<u>. </u>
orage To	Description				Sample No.	Length			Pb	Zn	λα
	52 5- 25	-ut 0 of core is	brecciated with 15% irrequi	ar veins of						\sqcap	
LIICONI			At 53.8 m a 3mm wide Otz-C							\Box	
			Po. Cpy. ZnS and PbS.	3				Π.	1		
	82.9-83.2		eining, probably a minor faul	t zone.				Γ		\Box	
	86.3-86.4		orite-matrix breccia. Core i				Γ				
	102.9		in Otz-chlorite vein. Only l]	Ţ		Γ		\Box	
	102.9		rries sulfides.					Π	T		
	nel about		ble chloritic - pale green col	oured with							
	RETOW ROOM		-quartz veins. There appears				Г	Π			
	 		th the chloritization.		T .		Π	Ī	T -	\Box	
	Podding roma		at least down to 115m. By 12	9m a strong fabri		1	T]		
			parallel cleavage) is at 35-4				Г	Π	Ι		
			hed, chloritic, evidently more		1.					\prod	
		Ni.1 m is a fault.						L			
	SAMPLING:	36.5-37.1 0.6m			7934	0.6m	4_	14	12	44	. 1
		48.6-49.1 0.5m			7935	0.5	69	34	45	51	.9
		53.5-53.8 0.3 m			7936	0.3m	32	26	78	100	. 1
		129.5-131.1 1.6m	1.2m Recovered		7937	1.6m	5	17	15	15	.1
131.1-142.	FAULT ZONE					1	ــــــــــــــــــــــــــــــــــــــ	1_	ـــ		
	131.1-131.2	Light gray-green f	ault zone				上	上	丄	oxdot	
	131.2-132.7		gular clasts of med. gray quan		1	1	1	1	1	1 '	1

roperty	MONETL CREEK District		Hole No. M-88-3				ļ.				
commenced completed	Core Si		Corr. Dip	Vert, Comp.			1	1			l
co-ordinates			True Brg.	Logged by			1		٩		l
bjective			% Recov.	Date			ε	Brg	Coller Dip	.	HIDUO:
							-Sal		3_	Elev.	٤
ortage om 70	Description				Sample No.	Length	Ane	lyele	7		\equiv
142,1 cont.	graine	d matrix.	Minor fine-grained pyrite is di	isseminated throu	1911		丁	1	\top		Π
	 	f the zone.		***************************************	* 	1	1	1-	1		_
32.7-140.8	BRECCIA					\top		十一	1		Γ
	Light gray quartz is	brecciated	in a matrix of dark gray to bl	lack chlorite		\top		1	\top		Г
	(& argillite?). Amou	int of matr	ix varies considerably; short 2	ones of 30cm can	1	<u> </u>	T	7		\Box	Г
	have <5% matrix or >8	30%. Fine-	grained pyrite is disseminated	through parts of			Т	1	T		Γ
			f the matrix. Total pyrite con				Ī	Τ	T		Γ
~	Pale yellowish carbon	ate veinle	ts occur throughout. Some of t	he chlorite is	1	1	Τ	7	1	\Box	Γ
	lighter green coloure	d. Shear	fabric ranges from 60° to c/a a	t 32.9m to ~ 15°							
	to c/a at 140.5m but	it is not	a uniform change over this inte	rval.		_1					
140.8-142.1	FAULT GOUGE and BRECO	214							<u> </u>		
	140.8- 141.0 is bro	ken quartz	ite, pieces <4cm diam.								
	141.0-141.6 is fine-π	ed. graine	d fault gouge, gray, dark gray	to black, and			<u> </u>	L			Ŀ
	gray green.						┸				L
	141.6-142.2 is sheare	d, chlorit	ic quartz. Broken core with sh	earing at ~ 0° to	<u> </u>	┵	1_	丄	1	igsqcut	L
	10° to c/a. Contact	at 142.1 is	s broken.				↓_	↓_	—		L
				-		-		╀	ــــــ		-
						-}	-	\perp	┼		<u> </u>
							1	┼	┼		
			<u> </u>	· · · · · · · · · · · · · · · · · · ·			┦	╄	┼	$\vdash \vdash$	\vdash
						·1		·!	Ь_	لـــــا	<u>L</u>

_Drill Hole Re	ecora .		•						
Property	McNEIL CREEK District	Hole No. M-88-3	·			•		1 1	
Commenced	Location	Tests at	Hor, Comp.			4		1	
Completed	Core Size	Corr. Dip	Vert, Comp.			ļ		ا ا	
Co-ordinates		True Brg.	Logged by			-		ā	
Objective		% Recov.	Date			Ē	Brg.	Soller	
	Description			Sample No.	Length		yeis	D	DI
rom To				-	 	1	T	Pb	ΧĽ
345 3	Sampling: 131.1-132.7	1.6m		7938	1.6	95	18	٩	7
-142.1 cont	132.7-133.8	1.1m	· · · · · · · · · · · · · · · · · · ·	7939	1 ,	64	120		^
	133.8-135.3	1.5m		7940	1.5	12	1	1	
	135.3-136.5	1.2m	 –	7941	7 2	.00	+-3 5	 	_
·	136,5-137,6	1.1m		7942	7 7	000	1	l	
	137.6-139.2	1.6m		7943	1.6	٦00	r—		
 	139.2-140.8	1.6m		7944	1.6	Too	1		
	140.8-142.1	1.3m		7945	1 3	Too:	2_		
						↓	L		
142.1-169.5	QUARTZ VEIN / BRECCIA - FAULT	ZONE			<u> </u>	┸-	丄	╙	
	Whitish, light gray to greeni	sh gray mottled, breceisted au	artz. Chlorite.	ļ	 	↓	↓	\sqcup	\vdash
		clomite are present with the q		 	 	╄	} —		<u> </u>
	be very broken. Chlorite and	pyrite are unevenly distribut	ed. Chlorite forms	_		┼	┼	 	H
		ches and veins and gives the e		<u> </u>		—	—		-
	pervasive greenish color. Py	rite is disseminated and in na	rrow veins & small		- 	┼—	┼—	├	\vdash
	irregular patches.			ļ		╄	┼	╀	
		massive, elsewhere it is (ane		<u> </u>	 	+-	╀	╀╌┦	⊢
		te. Locally there are thin li		 	┨	┼	╁┈	┵	<u> </u>
l	veinlets cutting the quartz -	evidence of a second phase of	brecciation/	 	1	 	₩	╀─┤	-

operty Mo	NEIL CK	District	Hole No. M 88-03	<u> </u>			l				
besnemme		Location	.' Tests at	Hor, Comp.							
ompleted		Core Size	Corr. Dip	Vert. Comp.							ļ
o-ordinates			True Brg.	Logged by PE	TER KLE	WCHUK		۱. ا	ē	1	E
ojecti ve			% Recov.	Date			E	T Brg.	Collar Dip	\$	ength
						1	ζ <u>ς</u> Anal		<u> </u>	<u> </u>	3
m To	Description			•	Sample No.	Length	Ãυ	Cu	Рb	Zπ	Αq
-169.5	Cont.	<u> </u>		•	1				L		
		at 154.0m is probably	core from higher in the h	ole. Some core loss							
		- due to rubbly natur									Ī
	Sampling:	142.1 - 145.7	3.6m ·		7946	3.6	00	. 01	. 01	01	.0
	JOSEP ZING 1	145.7 - 148.1	2.4m		7947	2,4	_	_		01	
		148.1 - 150.9	2. Am		7948	2.8		7		01	T
		150.9 153.9	3.0m		7949	3.0	001	.01	.01	01	.01
		153.9 - 154.8	0 9m fault gouge and	sand zone	7950	0.9	001	.01	Loi	01	.01
		154.8 - 157.9	3.1m		39552	3.1	001	.01	01	01	. 01
		157,9 - 160.3	2.4m		39551	2.4	001	.01	01	01	.01
		160.3 - 163.1	2.8m		39553	2.8	001	.01	low	01	.01
	····	163.1 - 166.8	3.7m		39554	3.7	001	.01	01	01	.01
		166.8 - 169.5	2.7m		39555_	2.7	2	3	2	12	.01
169.5	End of Hole										
		· · · · · · · · · · · · · · · · · · ·									
								Γ		1	
			0 100			T					
			TV.			$\overline{}$	T	П	П	ГТ	1

operty Mcl	PEIL CREEK District ,	Hole No. M 88-04	Hor. Comp.				1 1			
ompleted	. Core Size	Corr. Dip -90°	Vert. Comp.							l
*****	72 N. 1890E (Geophysics Grid)	True Brg	Logged by Pete	r Klew	chuk			8.		•
bjective		% Recov.	Date Oct. 26		988	Ē	ğ	Sollar -90	٠,	튱
						טו		8	<u> </u>	<u> </u>
otage en To	Description			Sample No.	Length	Anal		Pb	7	3.0
0-7.3	Casing: No core					†^~				Д
	Coating, No tota				 -					_
7.3-48.8	SILTY OUARTZITES, SILTSTONE									_
1000	Fine-grained, bluish-gray colored. Med	and thick hedded with we	ery few this had	1		Ţ			\Box	_
·	and laminations. Patchy bleaching is pr					<u> </u>				
	anealled fractures are also bleached loca					T	\Box		\Box	_
	silicified. Practuring is common with fa									
	One vertical fracture runs through the co	ore from 28.0m to 29.2m.	Thin quartz	·		\Box				
	veins and patchy development of quartz ar	nd feldspar near 41.7m a	nd 43.0 carry							L
	minor po and ZnS.									Ĺ
	Bedding: 75° at 9.0m; 75° at 14.1m/ 75°	at 18.5m: 75° at 24m: 7	0° at 30m:	<u> </u>						
	60° at 33.5m; 75° at 39m; 60° at 46m	· · · · · · · · · · · · · · · · · · ·		ł						L
	Sample: 42.5 - 43.4 0.9m			39556	0.9	L	61	573	1.6R	<u>. </u>
				<u> </u>		<u> </u>	$oxed{oldsymbol{oldsymbol{oldsymbol{eta}}}$			L
48.8-49.6	ALTERED SILTSTONE			<u> </u>						_
	Light gray-green fairly massive, fine-gra	ined. sandy-textured bl	eached & chlorit	lc	<u> </u>	上	$oxed{oxed}$			
	altered siltstone. Mottled texture of a	lteration has obliterat	ed bedding. Ver	<u> </u>	<u> </u>	<u> </u>	╙	$ldsymbol{ld}}}}}}$		_
	minor fine-grained pyrite is disseminated	through the zone. coa	rse pyrite -	<u> </u>	 	<u>ļ </u>	Щ		 _	_
	porphyroblasts - are concentrated with po	rphyroblasts of chlorite	<u>and</u> muscovite	 	 	 				
	sericite over 5cm of core at 49.3m. This	may he a concretionary	concentration		<u> </u>	<u> </u>	┦		 	-
	of these minerals.			<u> </u>		<u> </u>	\coprod	igsquare	\sqcup	
	Sample: 48.8 - 49.6 0.8m			39557	0.8	9_	لما	ا د ا	10	

₹'

·	District	Hole No. M 88-04				,		I		
roperty McNEIL CREEK	Location	.* Tests at	Hor, Comp.		1				- 1	
Commenced	Core Size	Corr. Dip	Vert. Comp.						- {	1
Completed	CO18 GIZE	True Brg.	Logged by pk	 				욹	- [1
Co-ordinates		% Recov.	Date			£	5	Soller Dip	. I	3
Objective						U		8		<u>. </u>
ootage Description				Sample I	Longth	Anah		Dh.	Zn	2.0
10m 75			·	-		Au		-	~~	
	SILTSTONE AND QUARTZITE				<u> </u>	╌			\neg	
Apparen	tly med a thick bedded b	of hedding planes are quite	indistinct. Dull.							
greenis	h grav (chloritic altera	tion) to med. bluish-gray.	was to black			!			\neg	
more st	rongly chloritic; fractu	res are coated with a dark of	reen to brack			 	_			
		e granular pyrite. Core is				├			\Box	
		ic again below that. A few				 	1	_		
		ed through much of the fine	grained Siliceous			⇈	\vdash	_	\sqcap	
	ine-grained quartzites).			39558	1.5	\int_{1}	9	14	28 0	0.1
Samplin	g: 49.6 - 51.1 1.51			39559	0.8	1	4			0.1
	62.2 - 63.00.8	<u> </u>		39339	0.0		1		Ŭ	<u> </u>
63.0-64.6 BRECCIA	TED, ALTERED SILTSTONE								\Box	_
		mottled, brecciated siltston	e (annealed).	<u> </u>		<u> </u>	<u> </u>	 	\vdash	
Possibl	e bedding at 50° to c/a.	Dark green to black specks	of probable chlorite	 		 -	├	├	├	
are_con	centrated in vaque patch	es throughout. Ouartz-carbo	nate veins cut	<u> </u>		 	├-	├		
across	the core at 40° to c/a.	These range in thickness fr	om < 1mm to 1.5cm wid	<u> -</u>	ļ	╂	-	├	 	
Ouartz	is light gray, carbonate	is a very pale light gray -	green. Almost white.	1		┾╌	├	 -	╁╼┤	-
		te & manganese, some with ir			ļ	┢┈	-	┼	$\vdash \vdash$	-
occurs	on fractures. At 63.6m	<u>a few elongate vugs associat</u>	ed with Otz-Co.	 		╂~-	╁─	 	⊣	_
yeining	carry minor reddish ZnS	. The entire interval is ch	<u>lorițized & silicific</u>	4	<u> </u>	┼	+-	┼─	\vdash	
Sample:				39560·	1.6	نبا	15	ļa	68.	ببر

Orill Hole R	ecord	•	•				1		-	
roperty Mene	IL CREEK Dietrict	Hole No# 88~04						. 1	-	ļ
Commenced	Location	.' Tests at	Hor, Comp.					, 1	- 1	
completed	Core Size	Corr. Dlp_	Vert. Comp.			. 1	. 1	ĺ	ĺ	1
o-ordinates		True Brg.	Logged by PK			,		음	1	. 1
bjective		% Recov.	Date			Claim		- 1	اور	ength
ootege	Description	· · · · · · · · · · · · · · · · · · ·		Sample	Length	ਰੋਂ Analy		8	<u>.</u>	5
om Te		· · · · · · · · · · · · · · · · · · ·		No.	Cangui			Ph_	Zn	Λġ
64.6-65.9	QUARTZ - CARBONATE BRECCIA							أسا	_	
•	Light gray quartz and pale yellow	ish-white dolomite form a	matrix to angular	ļ!		Ш			_	
	to ragged fragments of gray-green	siltstone. Texture of th	<u>e interval is quite</u>							
	varied. Narrow veins of light gra	ay quartz with patches of	dolomite cut the							
	core at 0 to 90° to c/a: bands of	strongly chloritized (plu	s Mn?) siltstone have	<u> </u>						
	crushed anealled borders. Otz-Co.	, matrix ranges from 5 or	IDE of the rock to 9'							الييا
	A few thin veins of pyrite and sor	me disseminated pyrite is	present				Ш			
	Sample: 64.6 - 65.9 [.]m			39561	1.1	ليا	لها	لحا	22	ــــــــــــــــــــــــــــــــــــــ
65.9-66.2	QUARTZ VEIN, FAULT ZONE, SULFIDES			<u> </u>	<u> </u>					
	Contacts are at 30° to c/a. Whit	te to light gray quartz is	mottled has an	<u> </u>				<u> </u>		
	anealled breccia texture with 'mat	trix' of fine grained PhS.	pv & ZnS. Sulfide	I :						
	content increases downward to 66.		• • • • • • • • • • • • • • • • • • • •	T	<u> </u>					<u>. </u>
	with dissem ZnS. Reddish-brown Zn									
	66.15m, along with lesser PbS. Su	ulfides occur in very rage	ed patches within							
	the quartz. Small angular to rage			<u> </u>	<u> </u>		Ш			
	"siltstone" are included in the gu	partz vein. ONe 2-3cm wid	e hand adjacent to	<u> </u>				<u></u>		_
	the shear at 66.15m carries most o	of the sulfide est 20-251	in this band					_		
	Slickensides at 66.15m are polished	ed phs. The shear zone at	66 15m is a sheared	<u> </u>		<u> </u>		<u> </u>		
	mass of dark green chlorite, fragn			<u> </u>	<u> </u>					
	brown ZnS.			Assay		012	.01	98	1.55	16
	Sample: 65.9 - 66.2 0.3m			39562	0.3	810	28	2470	1361	1.4

t					1		1 1	1!	i I	1	
Drill Hole R	ecord								1		
Property MCNI	EIL CREEK District	Hole No. M 88-04				ľ					Shoet
Commenced	Location	. Tests at	lor. Comp.				<u> </u>	Į			
Completed	Core Size	Corr. Dip	VerL Comp.			1	ļ	'	1 1		í
Co-ordinates		True Brg.	logged by	к		}		<u>a</u>			ó
Objective		% Recov.	Date			Ē	Bro.	l 🖛 🧻	× !	ength.	Hole No.
Objective						Ö.		8		<u> </u>	오
Footage	Description			Sample No.	Length	Anal	ysis Lu	Tab	Zn k		<u> </u>
From To	<u> </u>				 	r.u.		PB	7	ng	77.5
56 2-69 2	ALTERED SILTSTONE			 			 	┼-			
<u>-</u>	Med gray to greenish gray.	brecciated, bleached siltstone. Numerous	irregular		 	┼─	┼	 	 		_
	quartz and quartz-Co. veins	are present, locally as a breccia matrix	to	 	├──	╂	┼-	├	\vdash		
	angular fragments of altered	siltatone. Chloritization is strong adj	acent to	ļ	 -	├	┼	┼	╂╼┥	-	╀
	a fow of the larger veins: a	pervasive chloritization increased downw	ard in the	 	 	╌	╁	├	┼╾┤		┝
	interval. Fracture surfaces	are typically coated with dark green chl	orite	 	 	 	}	}_	╁━┤	 	╀╌
	Sampling: 66.2 - 67.7			39563	1.5	7	5_	+	137	•	_
		1.5m		39564	1.5	9_	13	20	242	1.1	110
				ļ	 	↓_	┦—	↓	 - 		 -
69.2-70.7	CHLORITIC ALTERED SILTSTONE			<u> </u>	 	╄-	↓_	1		_	<u> </u> _
		d biotitic core is quite broken. A few o	uartz : Co	-	 _	1_	Ļ	:	1	<u> </u>	▙
	. chlorite veins are present	. Rock appears to be an anealled breccia	Le	<u> </u>	<u> </u>	1_	4	 	{		
	Sample: 69.2 - 70.7			39565	1.5	↓_	16	12	22	1.1	54
 	75000772.			 	ļ	↓_	<u> </u>	╄-	 	ļ	∤_
70.7-70.9	OUARTZ/BRECCIA: SULFIDES			<u> </u>	<u> </u>	╀	 	╁-	┼'	├	╀-
10.7-10.2	Pagged veining of milky whit.	e to light gray mottled quartz forms a ma	trix to		 	 -	┿	╀-	 -	├	╀╌
	ragged fragments of chioriti	zed siltstone. Cleavage is at 40° to c/a	PO DY	<u> </u>	 	-	-	 	╀—	├	╁╴
	Cov and Co. as well as chlor	ite are present in the quartz. Sulfides	occur as	↓	↓	╀	+-	4-	┼	 —	╁
	ranged patches in the quartz	and are concentrated along a fairly sher	p contact	<u> </u>	 	J	-	┦—	+	}-	+
	>+ 70 9m (90° to c/a) althou	gh lesser sulfides occur through all of t	he interva	4	 	1	4	1-	┼-	┼-	+-
	Est 405% sulfides in the int			<u> </u>	4	1	1	4-	╁	╄	╀
	T	0.2m		89566	0.2	L	55	5 6	89	b.2	14
L	Sample: 70.7 - 70.9	<u> </u>								211-4	137

roperty McNE	IN CRUBIC	District	Hole No. M 88-04								• !
commenced		Location	. Tests at	Hor. Comp.			i	1 1	1 1	1 1	
completed		Core Size	Corr. Dip	Vert. Comp.			'	i l	اما	1 1	
o-ordinates			True Brg.	Logged by PK					ò		£
)bjective			% Recov.	Date			Claim	9.9	Coffer	ě l	ength
ootage .	Description		· · · · · · · · · · · · · · · · · · ·		Sample	Lenoth	Anaf		<u>U</u>	<u> []</u>	<u> </u>
om To	Description				No.		λu	Cu.	Ph_	70.	Ag
70.9-77 0	SILTSTONE & QUAR	TZITE			ļ.,,,,	<u> </u>	<u> </u>				
<u> </u>	Med to dark gray	and gray-green	: locally chloritic. Core	is quite broken &	}		L_	1		1	
	bedding is not v	erv evident but	the interval appears to be	of mainly thick & me	<u> </u>	<u> </u>	_	╙	<u> </u>		
	heds. About 10	cm below 70.9m	is chloritic with minor po.	75.4 to 76.2m is	ļ	<u> </u>			<u> </u>	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	
			. Thin veinlets of po cut			<u> </u>	ļ	 	<u> </u>	\vdash	
	c/a at 76.5m. N	umerous healed i	fractures are present; most	are hairline fractue	es		<u> </u>	↓ ˈ	L	\sqcup	_
	with bleaching a	lteration but a	few contain white quartz.	Apparent bedding at	<u> </u>	<u> </u>					
	75.2m is at 35°				 	<u> </u>		 	_	\sqcup	
	Sampling: 70.9	<u>- 71.0 1.10</u>	R		39567	1.1	1	170	2	153).2
	75.9	- 77.0 l.lm	n		19568	4	1_	12	13	05	1
	.a.				<u> </u>	<u> </u>	<u> </u>	 	↓_ :		<u></u>
77.0-107.9	GABBRO				<u> </u>	<u> </u>	<u> </u>	 	<u> </u>		<u> </u>
	Contact at 77.0m	is somewhat ir:	regular at 70°. Contact at	107.9 is broken but	<u> </u>	<u> </u>	1_	 _	<u> </u>		
	adjacent fabric				<u> </u>	<u> </u>			<u> </u>		
	Character varies	considerably; f	from fine grained to medium	& coarse grained,	<u> </u>	<u> </u>	_			L.J	
			or foliated or sheared.		<u> </u>	↓	 	 	<u> </u>		
	include ragged p	atches of vein o	martz and feldspar. Disse	minated iron sulfines	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		_
			e interval: concentrated n		 	<u> </u>	1_	 -	 		
	77.0 - 77.5 Ma	ssive, fairly ho	omo geneous, fine grained,	dark green. Thin	 	 - -	 	 -	 	┢╌┦	
	au	artz veins at 65	i-70° to c/a (not always pa	rallel to each other)	 	 	<u>Ļ</u>	<u> </u>	<u>ļ </u>		
	Sm	all patches of b	prown byrrhotite. brassy by	rite and very minor	1	ļ	<u> </u>	 	<u> </u>	 	
	ro	Wichshaum 2ns.	Sulfides tend to be asso	riated with quartz ve	ins.	1	J	1	l '	i. I	

operty Mr.	NEIL CREEK	District Location	Hole No. M 88-04 Tests at	Hor. Comp.					- {		Charl
propleted		Core Size	Corr, Dip	Vert. Comp.				ļļ	\	-	1
o-ordinates			True Brg.	Logged by 19	Κ		J '	} }	Sollar Dip	1_	وا
pjective			% Recov.	Date			Claim	Bro	<u> </u>	Elev.	1
							1V	·	<u>8</u>	<u> </u>	
otage on To	Description				Semple :	Longth	Anal	ysis			_
	 						t-	\vdash			+
-107	7	Y-12 1				 	 		Γij		7
	77-5 - 78-0		ated with about 7-10% sulfides	=			╁	╁╌┥			7
	 		pyrrhotite, and minor chalcop	· · ·			 	 			寸
			thin, 0.5mm veinlets, Irrequ	lar whitish quartz			╀──	╁╌┤	 		-
	<u> </u>	voins are common	(31 by volume) fairly massive, chloritic. S	mail 'angular'	 		1-	 	 		_
	78.0 - 85.5		common. Minor po & py occur i			-	+-	 			-+
		patches and thin :		ir small lilegular	 	 	1-	+	<u> </u>		-
·	85.5 - 86.6		ed zone: minor fault. Stronge	et fracturing is	 		1	1	<u> </u>		7
			lickennidge lion 86.4 86.6 ott		 	 	\vdash	\dagger	-		7
			te: some sheared at 60° to c/a		1		1-	\dagger	 	-	_
···	86.6 · 96.1		inc-med grained, dall green, S		-	1	1	1			
	ARLE MAN		in whitish quartz veins are co			 	1	†	-		-
			es of bo are present.	million circodynoce,	 	1	+-	1	 '	- 1 -	
	96_3=107_9		ark gray-green; massive to fol	isted Voinc	 	 	1-	+-	 		
 	48-X-JU7-9		of quartz with some white fel		 	 	+	†	┞─╴	- +	-+
			zones tend to be at 0-10° to			 -	+-	†	 	_	-
			C/a. Small natches and discon		 		1	+	 		
	 		ered through the interval	CIMOUS VEINS OI	 	 	+-	†	 	 -	
	Samulinu:	<u>ро в ру are scart</u> 77.0 <u>- 77.5 0.5</u> г	- · /		39569	0.5	1	18	7	188	.1
gar. P		77.5 - 78.00.50			39570	0.5			_		.6
		84.5 - 85.5 1.0n			39571	1.0	1, '	274	T -	78	``

operty Mo	NETT CREEK District Location	Hole No. M 88-04	Har, Comp.							
ompleted	Core Size	Corr. Dip	Vert, Comp.]			1. 1	
o-ordinates		True Brg.	Logged by	γK		ł		움		_
bjective		% Recov.	Date			Claim	Brg	Collar Dip	Elev.	engt.
		<u>, , , , , , , , , , , , , , , , , , , </u>	·			Ö Anal		8	Ö.	<u>.</u>
otage om To	Description			Sample No.	Length	_	Cu	Pb	Zn	Αc
107.9-128	B QUARTZITE & SILTSTONE	,				T	\Box		ГП	
		w med & thin beds. Fine to very fine gra	ined - the			Γ			\Box	
	MATRIX INC. Deduction	to be silicified. Chloritic alteration	is also	1					\sqcap	_
	Phrite interval appears	ire interval. Bedding is generally not a	pparent; locall		1	Π				_
		nw about 123m bedding is at 65-70° to c/a				ļ				
		iated with healed fractures, thin zones o				Π				
		actures, minor pyrite]					\Box	
		enish-gray quartzite with fine dissem. Zn	S, vein ZnS &				Γ			Ĺ.,
		patches of reddish brown ZnS. (Est 1.5)								
		quartz vein at 30-35° to c/a. Chloriti		<u> </u>						
	minor po	-						<u>L</u> :		L
		patch or vein of Otz-feldspar-chlorite	with minor po,			Ĺ_		<u> </u>		L
	at 35° to						1	<u> </u>		
				39573	1.3	1	25	8	21	٥.
	Sampling: 107.9 = 109			39574	0.5	L	4.4	154	6153	0.
	13-8-5-18									
128.3-141	ALTERED OUARTZITE & SIL	STONE MINOR TOURMALINITE?					<u> </u>	<u>_</u>	Ш	
		chloritic altered siltstone & quartzite	generally	<u> </u>	<u> </u>	↓_	↓_	↓		
		cerval but there are thin bands (with ind		<u> </u>	ļ	1_	↓_	 	╙	}
	boundaries) of black to	very dark gray tourmalinite. Bedding ap	pears to be	<u> </u>	 	_	1_	 _	\sqcup	ļ
	med and thick bedded wi	h a few thin beds: bedding is typically	at 70° to c/a	<u> </u>	ļ <u> </u>	<u> -</u>	↓_	↓	1	
		pink feldspar or garnet aggregates, chl		<u>. </u>	1	<u> </u>	1_	<u> </u>		<u>_</u>

=

Property McNI Commenced	Location Location	Hole No. M 88-04	Hor. Comp.			-			
Completed	Core Size	Corr. Dip	Vert, Comp.			-			. 1
Co-ordinates		True Brg.	Logged by	PK		┨	1.	ā	یا .
Objective		% Recov.	Date			Cleim	Bro.	Collar	ilev.
<u> </u>				Semple	Length	10	lysis	<u></u>	<u> </u>
From To	Description			No.	Conga			\Box	
-141	Cont.				<u> </u>	L			
	po are probably concretions. A	t 135.5 minor ZnS is present	in a mottled,			1_		╙	\sqcup
	sheared zone that is chloritic,				<u> </u>	1_			
	to c/a occurs at 135.0m.						Т.		
	Chip samples for boron analsis	collected at 131.0m and 132.7	mm		<u> </u>	1_	↓_	<u> </u>	
					<u> </u>	╄-	┸-	 	
141-168,3	QUARTEITE & SILTSTONE, MINOR AR	GILLACEOUS SILTSTONE				╀	┿	↓	
	Med. to dark gray, thick & med	bedded with a few thin bods.	Alteration is			┿	┿	┼—	
	evident throughout with silicif					┼-	 	 	 -
	and green, chloritization and l					╄-	 	 	
	152.2 and 157.0m are numerous p					↓_	↓	 	
	silicification or tourmalinizat				 	┦—	4—	 	
	of the 'tourmalinite'. Pink fe	ldspar or garnet aggregates o	ccur locally in		-	╁	—] —] -
	patches, usually iwth more inter					+-	┼┈	 	╁╾┧
	features. Near 145.0m, 15 cm o					┼─	- 	+	╂╼╂
	white to light gray quartz surr	<u>ounding angular, elongate fra</u>	gmonts of chloritic	∸┼	┼	╀	+	╁	1-1
	quartzite. Minor ZnS is presen			- 		╂╼	╂-	┼─	-
	brown sphalerite occur in narrow					╁	+-	+-	1-1
	The adjacent rock is a healed b					+-	╂	+-	
	of pyrrhotite Near 148 1 very	small patches of ZoS are pre-	sent with vague		+	╫	╁	+	╀╌┤
		rtzite					* I		

roperty ommenced	McNeil Creek	District Location	Hole No. M-88-4 Teats at	Hor, Comp.							
ompleted		Core Size	Corr. Dip	Vert. Comp.			j		1 1		
o-ordinates			True Brg.	Logged by					qlO		
bjective			% Recov.	Date		_	Claim	9 9	₩.	ند	Length
								_	8	Elev.	<u> </u>
otage om To	Description		•		Sample No.	Length	Anal		Pb	Zn	λa
-168.3 cont	At 168.1m a 5c	m wide light grav	quartz vein cuts the core at	15-20° to c/a.							***1
			minor Cpy and chlorite are			1	_				
	SAMPLING: 147.				39575	0.9m	18	42	16	192	1.6
		0-168.3 0.3m			39576	0.3m		_			
					<u> </u>		_				
168.3-168.8	SHEAR ZONE/FAU										
		ated siltstone or	quartzite. Dull gray-green,	chlorite and clay-							
	rich cleavage/s	hearing is at 30°	to c/a. Minor irregular lic	ht gray quartz							
	veining with as	sociated pyrite i	s present in the fault zone		ļ						
	SAMPLE: 168.3-	168.8 0.5m			39577·	0.5m	2	25	9	34	0.3
				<u> </u>	<u> </u>	<u> </u>			·		
168.8-206.9	QUARTZITE & SIL	TSTONE			<u> </u>	<u> </u>		<u> </u>			
	Light gray to d	ark gray; locally	chloritic and greenish. Ext	ensive silification,	<u> </u>	<u> </u>	<u> </u>				٠
	T		loration and bleaching to a l		<u> </u>	<u> </u>		<u>L</u> .			
	all common. Be	dding is at 75-80°	o to c/a. Much of the core i	s broken; some	<u> </u>		L	<u>_</u>			
	fractures are c	hloritic. Weak bi	recciation is present locally	and narrow veinlets	<u> </u>	1					!
	(up to 2mm wide	of chlorite fill	l the fractures. At 189.0m a	10cm wide Otz vein	<u> </u>	↓	ļ	<u>L</u>			
	occurs at 30° to	c/a. Patches of	po. chlorite and minor Zns.	PbS and Cpv are	ļ	├	_				
	present. The m	orgins of the quar	rtz veins are chlorite and bi	otite-altered.	<u> </u>			<u> </u>			
	At 196.1m 5cm	of core is crushe	ed. fault gouge material: adi	acent siltstone is	<u> </u>	 		<u> </u>			
	relatively unali	fored This appear	ars to be a minor bedding-par	allel fault.	١ .	I		1	1		

roperty	McNeil Creck District	Hole No. M-8				'		- 1	1
Commenced	Location	Tests_at	Hor. Comp.			1 .		· }	
ompleted	Core Size	Corr. Dip	Vert. Comp.			ł		_ 1	Į
o-ordinates	<u> </u>	True Brg.	Logged by		-	1		å	
bjective		% Recov.	Date			Claim	919	Coller	. i.e.
				Sample		Ö Anat	-	o i	<u></u>
ootege om 7a	Description			No.	Length	Λu	Cu	Pb	_
-206.0 cont	SAMPLING: 170.3-170.4 0.1m			39578	0.1m	79	162	18	18
	188.9-190.2 0.3m			39981	0.3m	1	27	8	45
					<u> </u>	<u> </u>	[
206.0-225.5	SILTSTONE, Minor QUARTZITE			<u> </u>	<u> </u>	<u> </u>			_
	Thin & med. bedded, med. to dark of	ray colored. Bedding is	t 75-80° to c/a	ļ		↓	 		_
	Lighter gray (med.gray) quartzites			ļ		<u> </u>			
	Core is fairly broken: most fractu		: locally fine-grained	<u> </u>		<u> </u>	<u> </u>		
	pyrite is smeared on fracture surf			<u> </u>	1		L		
	matrix of chlorite veinlets. Pate			<u> </u>	<u> </u>	<u> </u>	L_		
	Rounded crystal aggregates of dull			<u> </u>	<u> </u>	<u>L</u>			
	and minor pyrrhotite and present i			ł	<u> 1</u>	<u> </u>	L	اــــا	
	SAMPLES: 218.8-219.8 1.0m wes			39984	1.05	,	21	11_	52
		cretion with pyrrhotite		39985	0.3	1	27	18	71
				<u> </u>				<u> </u>	
225.5-244.9	QUARTZITE, Minor SILTSTONE			<u> </u>		<u> </u>	<u> </u>	<u> </u>	
	Med. and dark gray colored, typica	ally med. bedded; core is o	uite broken & bedding	<u> </u>	—	↓_	 	<u> </u>	
	thickness is not entirely evident	throughout. Recognizable	bedding planes are	ļ	<u> </u>	1_	 	1_	<u> </u>
	mostly around 70° to c/a, ranging	from about 60-80° to c/a.	Fracture surfaces ar	<u> </u>	<u> </u>	4_	<u> </u>	 	<u> </u>
	typically chloritic: locally there	e is weak brecciation with	a thin chlorite-veinl	<u>dt</u>	 	↓_	 	<u> </u>	<u> </u>
	matrix. Minor po occurs locally o	on thin fractures and with	in one lensey, wavy	ļ	 	╀-	4_	_	<u> </u>
	kwartz vein (max 3mm wide) at 233.	8m. At 238.lm a lcm wide	band at 60° to c/a	<u> </u>	<u> </u>	<u> </u>	4_	<u> </u>	_
	is a chlorite-calcite-quartz breco	ia with one 3mm x 12mm ble	eb of po. Rosettes of	<u> </u>			1	<u>L</u>	

Colone Plet 4 Dipo

Property Mc	Neil Creek	District	Hole Na. M-88-4				•	- 1		ţ '	١.
Commenced		Location	Tests at	Hor. Comp.					1		
Completed		Core Size	Corr. Dip	Vert, Comp.			1 /	ŀ		1	1
Co-ordinates			True Brg.	Logged by					ទ		Ŀ
Objective			% Recov.	Date			Cialm	Brg	Solie		ength
Footage	Description				Sample	Lenoth	Anah		10	ш_	13
rom To					No.				Рb	Zn	Λq
-244.9 cont	pyrite occur loc	cally on fract	ure surfaces with chlorite.		 	 	1	<u></u>	┞	<u> </u>	<u> </u>
	SAMPLE: 237.7-2	38.4 0.7m			39987	0.7m	1_	28	В	31	0.
					 	—	ppb		↓	<u> </u>	L
244,9-281.0	SILTSTONE & QUART				∤ -	 	<u> </u>	<u> </u>	ـــــ	1_	<u> </u>
	ABout 60% thin &	med. bedded s	iltstone. 40% med. & thick bedded a	uartzites.	 	 	├ ─-	 	₩	╄	╀
	Color is mainly	meddark gray	but with numerous zones of lighter	gray, bleached	 		<u> </u>	-	├	↓ _	<u> </u> _
	rock. Core is m	oderately brok	en with many short zones of strongl	y broken core.	↓	↓	₋	 	↓	<u> </u>	L
	Bodding is at 60	-70° to c/a.	A weak brecciation is present throu	gh most of the	↓	 	— ′	 _	┞	╄	Ļ
	interval: thin f	ractures are f	illed with white quartz, yellowish	carbonate.	↓	 	↓	<u> </u>	 	<u> </u>	Ļ
	chlorite andmino	r sulfides. S	ulfides are mainly pyrrhotite with	minor ZnS and Cr	<u>, y </u>	╄	<u> </u>	<u> </u>	┞	 	┞
			ly along bedding-parallel zones; the		 	┼─-	<u> </u>	 	 	╄	┞-
	-		ed nyrite. A few zones of more exte		——	 	 '	 - -	├-	↓	↓
	core with crushed	<u>d rock are pro</u>	<u>bably minor fault zones. Most frac</u>	tures are coated	1	 	<u> </u>	 	⊢	 	
	with very dark g	reen chlorite			 -	┿	Į—'	├	 	┼—	ļ
	SAMPLING: 244-9	-246.3 1.4m	Thin, white calcite veins, minor of	chlorite,	┼	 	 		 	┼—	⊢
			minor po. very minor Cpy		39989	1-4m	₩	7	121		1
	246.3-	-247.8 1.5m	Thin calcite-chlorite veins		990	1.5m	1-	1	222	1	1
	247_R-	-249.3 <u>1.5</u> m			991	1.5m	₩-	1	29		p.
	249_3-		Rleached, broken core, po. Chl ve.		992	1.5m	<u>k</u>		20		þ.
			Brecciation, veinlets of po, Chl;	patches of po	993	1.7m	₽	44	+	56	┼-
	255.3-		Siltstone with Qtz-Po-Chl veining Bleached, chloritic siltstone		994	0.4m	Ľ :		16	+	p.:

Property	McNeil	Creek	District		Hole Na. M-88-4							
Commenced			Location		Tests at	Hor, Comp.				'	1	1
Completed			Core Size		Corr. Dip	Vert. Comp.				'	a	l
Co-ordinates					True Brg.	Logged by			_		0	١
Objective					% Recov.	Date			Claim	Bro.	Collar	100
Footage	Description						Sample	Length	Anal		10	PH.
From To						 	No.		Δu	Cu	Pb	F
-281.0m con	·	259.2	2-259.8	0.6m	Otz veins, chlorite, po, Fault Brecc	ia & gouge	ļ	<u> </u>	<u> </u>	↓	<u> </u>	Ļ
					at 40° to c/a		39996		_	-	16	_
		259.8	-261.2	1.4m	Bleached, chloritic broken core		39997				_	-
		261.2	-262.8		Minor Bx, yellowish .CO2 veins, minor		39998				_	-
		262.8	-264.7	1.9m	Bleached, brecciated core, thin CO	veins	39999	1.9m	1		_	7
		268.2	2-269-2	1.0m	Bx bleached, minor Qv., po		40000	1.0	1	24	13	Þ
		271.0	-272.6	1.6m	Bleached, Bx core, py, po. Chlorite,	Fault shear	<u> </u>	 	<u> </u>	↓_	ـــــ	Ļ
					at 272.5m at 15° to c/a.		39051	1.6m	3	28	5	ļ.
	·	272.6	-274.0	1.4m	Bleached, Bx core, thin Otz - CO, ve	nlets	39052	1.4m	1_	<u> 23</u>	6	13
		274.0	-275.5	1.5m	1.3m Recovered Bleached, broken core,	thin Otz-	<u> </u>	 	<u> </u>	 	ــــــــــــــــــــــــــــــــــــــ	1
					CO, veins		39053	1.5m	1	36	10	1
		275.5	-277.0	1.5m	1.3m Recovered, Broken core, bx, thin	CO, veins,	1	 	<u> </u>	↓_	↓_	1
					minor po .		39054	1.5m	1	32	8	1
		277.0	-279.2	2.2m	Thin veinlets of Otz, CO, chloritic,	weakly bx,	<u> </u>	↓	igspace	1_	 	1
					bleached		39055	2.2m	1	31	11	1
		279.2	-281.0	1.8m	Bleached, bx, broken core, CO, -Otz ve	ins, chlorit	<u> </u>	<u> </u>	<u> </u>	↓_	╄	4
	L				minor fault bx.		39056	1.8m	1_	23	<u>þ9</u>	ŀ
							1	<u> </u>	<u> </u>	↓	↓_	1
							i	1	1	1	1	1

Property	McNeil Creek	District	Hole No. M-88-4			'	1		
Commenced		Location	Tests at Hor. Com			i i		1 1	
Completed		Core Size	Corr. Dip Vert. Com)					
Co-ordinates			True Brg. Logged b	·]		å	
Objective	·		% Recov. Date			Claim	9,0	oller.	z
Footage	Description			Sample	Length	Õ Anah	9	<u>3</u>	Ē
From To			·	No.	241901			Pb	ž
281.0-305.7	FAULT ZONE								
	Bleached, brecci	ated and	sheared siltstone & quartzite. Chloritic-altered		1		L		
	throughout. Qua	rtz & car	bonate veins are common. Minor pyrite is present						
	1		- in some places pyrite forms part of the breccia						
	h .		fault breccia are present through much of the inter	val	7	1			
	T	-	o 40° to c/a and is most commonly about 30° to c/a.		7				
			stone/quartzite may be albite-alteration.		1				_
	SAMPLING:						_		•
	281.0-282.9	1.9m	1.1m Recovered Broken, Br Ouartzites, minor fault	bx	1		Ι		
			& gouge at 281.0m	28057	1.9m	1	5	8	•
	282.9-285.3	2.4m	2.0m Recovered. Broken core; local bleaching,						•
			chloritic fractures, siltstone & gtzite.	39058	2.4m	1,	16	21	•
	285.3-286.8	1.5m	Bx siltstone. Sheared at 30-40° to c/a, chloriti				25		•
	286.8-288.6	1.8m	Sheared, bx siltstone. Minor py, Otz-CO, veins.	- 127832	† ****	1	<u> </u>		-
<u> </u>			Shearing at 30-40° to c/a	39060	1.8m	AS	_	-	
	288.6-290.8	2.2m	" " Shearing lo	- 1	1.00	77	<u> 2</u>		-
} 	20030-27030	<u> </u>	at 0° to c/a, typically at 35-40° to c/a		1				
	290.8-292.6	1.8m		39061	2.20	84	<u>''</u>	"-	•
<u> </u>	290.8-292.8	1.88	Very broken, bleached, bx siltstone, chloritic		+	-	-	-	•
			fractures; minor fault bx.	39062	1.Bm	111	17	24	
 	292.6-295.0	2.4m	Very broken core. Chlorite matrix breccia: local		┼─	-	_		-
 	 		pyrite forms matrix for narrow breccia zone.		┤——	\vdash			•
	<u> </u>		Few Otz. Co, veins.	39063	₹.4m	21	25	3	

Рторепу	McNeil Creek	District	Hole No. M-88-4			1	1	ļ.
Commenced		Location	Tests at Hor. Comp.			}		Į
Completed		Core Size	Corr. Dip Vert. Comp.			Į	1	
Co-ordinates			True Brg. Logged by			1	١.	ē
Objective			% Recov. Date			Si mi	8	Sollar
<u> </u>	,				Τ.	O Anal		ŏ
Footege From To	Description			Sample No.	Length		Cu	P
-305.7 cont.	295.0-296.5	1 . Sm	1.0m Recovered. Broken core. Chlorite-matrix bx.,					Γ
303.7 00.00			Fault breccia 6 gouge	39064	1.5m	2	10	4
<u> </u>	296,5-298.2	1.7m	Sheared, bx siltstone, chloritic shears at 40° to co	a				L
			minor pyrite		1.7m	4	61	ļ
	298,2-299,9	1,7m	" Muddy fault bx & gouge over 30cm at 298.7m	39066	1.7m	2	32	5
	299,9-301,4	1.5m	Sheared, bx siltstone, some contorted small scale		1			L
			folding minor pyrite. Shearing is at 25°to 40° to c/	39067	1.5m	7	38	1
	301,4-303.0	1.6m	1.4m Recovered. Brecciated siltstone, sheared at		 	ļ	↓_	┺
			30° to c/a, chlorite & pyrite on fractures	39068	1.6m	3	65	2
	303.0-304.2	1.2m	Mainly clay-rich fault gouge. Some yellowish, felsi	c	-	_	↓_	1
			material, brecciated with thin irregular light gray			↓_	↓_	╄
			qtz veinlets.	39069	1.2m	12	12	14
	304.2-305.7	1.5m	Mostly dark gray quartz vein material, brecciated	_	 	┼-	╂—	╄
			6 chloritic	39070	1.5	1	3	Į.
	<u> </u>					├	╂	╄
105.7	End of Mole			_	 	╀╌	┼-	╀
	Caving of the f	nult zone	prevent further advance of the drill hole.			├-	┽—	╄
						┼~	╁	╁
L	Ĺ		- A. Wim		 	┦—	┼	╀

Orlli Hole F	lecord	District	Hole No. M-88-05	· ·							. 1884
	v 9, 1988	Location	Toeto at	Hor. Comp.				1	. 1	- 1	۳
Completed Nov.	11, 1988	Core Size	Corr. Dip _44*	Vert. Comp.			1		ı	ı	- 1
Co-ordinates 350	7N 2588B (GEOPH	YSICS GRID)	True Brg. 062*	Logged by	Peter	Klewch			3	1	و ا
Objective TEST	MINERALIZED QUAR	TZ VEIN	% Recov.	Date Nov.	12, 19	88	8	g	oller Dip	ž	
							Ю	T	10 1		<u> 3 3</u>
Footage Front To	Description	•			Sample No.	Length	Ana	Cu	विवा	žn T	AQ As
03.05	Casing - No Coz	•				\lnot	T	T			
	- Casting - no con	· · · · · · · · · · · · · · · · · · ·					1			\neg	$\neg \vdash$
3.05-10.4	OUARTZITE, MINC	D STITETONE						Т			
- ZAVA AVAT			by silicic alteration. Mainly thi	ck bedded i			T	T			T
			ling is at 25-30° to c/a Silicific				1				
	E .		ong healed fractures and discolored				Т	T	\Box		
			ctures are locally micaceous. Patc				T	1_			
<u> </u>			concretionary: these patches are si				T				
			vroblasts of pink feldapar or garna					\mathbb{I}			
***************************************	aggregates.	ALL PALL				$\neg \top$	T	T	Γ		
	WddY gdaras*						1	T	T .		
10.4-17.6	PLOTITIC STATE	ONE. MINOR OUART	+ 1 TP				\top	Τ_			
10.4-17.0			tions & thick beds. The entire int	ervel (c			Π	\mathbb{T}	\Box		
			nd med, grained biotite present thre		rhe			\perp			
			y be due to weathering with the bio	•			Τ	1_	L		
			eathering activity. Alternately th				I.	\perp			
			e may be a localized alteration eff							<u></u>	\sqcup
			morphism. Bedding is at 30° to c/a					1.	1.		\sqcup
		- 13.2 1.6m			39	580 1.6	m 2	14	6	101	0.2
		- 14.8 1.6m			39	581 1.6	mlı	36	8	10	12
1	1						L	<u>. </u>		_	\sqcup
										ل	
<u> </u>							•				211-047

Drill Hole R	ecord	•									1
Property MCNE	IL CREEK District	Hole No. M RS-05	·		1				ļ	Ĭ	3
Commenced	Location	. Tests at	Hor. Comp.								cs.
Completed	Core Size	Corr. Dip	Vert. Comp.								ļ
Co-ordinates		True Brg.	Logged by PK					å å			ď
Objective		% Recov.	Date			4	d a	1	į	ŧ	3
						25	_	8_	ð l	3_	ピ
From To	Description			Semple No.	Length	Anel	C	Ph	Σn	λσ	Ĭ.
17.6-54.7	SILTSTONE & QUARTZITE	•									T-
	Light, med and dark bluish-gray c	dlored. Thin bedding common:	come laminations.					_		_	†
	med and thick beds. Overtrites a					_					T
	consistent at 30° to c/a. Biotite										T
	much of the cores chlorite is con						_		П	_	T
	textured zones which are probably						Г		П	Г	Т
	pink garnets and minor po and py						Г	T			Т
	A few thin quartz veins are prese							Π			Π
	quite yuggy over a few cm.		•								\mathbf{I}
	37.7 to 38.4 is weakly brecciated	with fracture coatings of mass	ive white fine-								\mathbf{I}
	grained feldspar. Clay is also p										Ι.
	coat fractures at 42.3m and 43.9m										L
	and clay gouge occur at 44.0 and										L
	Sample: 37.7 - 38.4 0.7m			39582	0.7	ī	13	14	87.	۵.	بلد
							1_	_	<u> </u>	١.,	丄
54.7-57.2	HW ALTERED ZONE: MINOR OUARTZ VET	NING			1	1_	1	1_	_	1_	4
	Altered siltstone and quartzite.	randing from blue-gray, relativ	vely unaltered to	1	<u>l</u>	1_	L	1	<u> </u>	<u> </u>	1
	stronlay bleached and hornfelsic.			<u> </u>			1_	1	 	1_	\bot
	albitization, with marginal chlo					1_	1	1	1_	╀-	4
	reddish-oxidized iron sulfides. e				<u> </u>	_	1_	1_	_	丄	_
	is blue-gray, relatively unaltere			l <u> </u>	1	L	Ĺ			1_	1
	hornfelsic chlorite, biotite, whi			T	1	Т	T	Т	I	1	T

Property McNi Semmenced	11 Crenk District Hole No. M 89-05 Location Tests at	Hor. Comp.]				
Completed	Core Size Corr. Dip	Vert, Comp.]	1	1		Ì
co-ordinates	True Brg.	Logged by	PK]		용		ĺ
Objective	% Recov.	Date			Ē	ģ	i 🕳 🔝	Jak	al de
octage	Description				نا		<u> 8</u>	<u> </u>	3
rom To	Description		Sample No.	Langth	Ana An	lysis Ci	l Pb	2 n	Àσ
-57.2	Cont.			1	7	1			
	the sedimentary character to 56.7m: Opartz veins at 50° to c/a occi	r at 55 7		1	\top	T		П	Π
	(3cm wide) and 55.9 (30-12cm), and at 56.15m (3-4cm wide) Quartz				1	1			
	med. gray and is intergrown with chlorite and feldspar. 56.7 - 57.	•			1	T			_
	relatively unaltered light blue-gray, rusty-fractured siltstone, ti			1	1	\top	\vdash	\cap	_
	at 35° to c/a.			T	T	1		\Box	
	57.1 - 57.2m is Hornfelsic - altered material: med-coarse grained ch	lorite			T	\top	П	\Box	_
	feldspar, quartz with minor disseminated, small ragged patches of ye			\top	\top	1			_
	chalcopyrite. Pyrthotite, galena, sphalerite and very minor chalcopyrite.			1	1	1	1		_
	present in the quartz veining at 55.7m & 55.9m . Some of the sulfid	•		$\overline{}$	\top	†	1		Г
	encrusting small yugs: typically the sulfides occur as ragged, irred				1	+	<u> </u>		
	branching patches among quartz. Au Cu Pb Zn			 	+	T	1	М	_
	Sampling: 54.7 - 55.6 0.7m Assav: .001 .02 .01 .16	.02	39583	to 7	1,	1	65	1276	٠,
	55.6 - 56.0 0.4m .001 .10 .06 1.32	.02	39584	7			520	_	
		.03	39585		_		396	_	_
	56.7 - 57.1 0.4m	.01	39586		1		572		
	57.1 - 57.2 0.1m .001 .42 .22 .57		39587		7		1962		
<u> </u>				T	1	1			
57.2-57.7	QUARTZ VEIN, SULFIDES, HORNFELS				T	T		\Box	
	75-80% of the interval is light to dark gray quartz veining with 10	t galena	7	T_		\Box			_
	which occurs as a ragged, branching patchy 'matrix' to some of the				T -			\neg	
	Patchy oxidized po or by is also present and very minor chalcopyrite		ted.	\Box	T	T			_

roperty Mc	NEIL CREEK District Location	Hole No. M 88-05	Hor. Comp.								Sheet
ompleted	Core Size	Corr. Dlp	Vert. Comp.					_	. 1		ı
o-ordinates		True Brg.	Logged by Pe	er Klew	chuk		. 1	collar Dip	ւ Լ	_	ğ
bjective		% Recov.	Date			Claim	Bro	흦	Fiev.		2 2 2 2
		·		Ta	Length	Analy		رح	<u> </u>	ا_رُ	主
clege bm To	Description			Sample No.	renge	Au	<u>cul</u>	Pb.	Zn T	Āġ	Α
-57.7	Veining and fabric is at 45-50°	to c/a. Hornfelsic patch	es make up about						Ш		L
	25% of the interval: they are co										L
	sedimdents, chlorite, biotite, p										
	Sample: 57.2 - 57.7 0.5			39588	0.5	5	728	12617	3069	5.	L
				Assay		00	119	16.51	38	رو	L
				<u> </u>		<u> </u>					L
57.7-58.6	ALTERED SILTSTONE, HORNFELS, OUA	RTZ_VEINS		<u> </u>	<u> </u>	 _	<u> </u>		\sqcup		Ļ
	Brecciated and bleached siltstone	e is largely altered to a	patchy hornfels	<u> </u>	<u> </u>	 	<u> </u>	<u> </u>	$\vdash \downarrow$		Ļ
	consisting of thin quartz veins.			<u> </u>	 	┼	 	 	├ ┤		╀
	veining at 20° to 40° to c/a make	es up about 30% of the in	terval. Minor med	<u> </u>	ļ	┼	<u> </u>		╄┩	_	╀
	grained galena is present in some	e of the quartz veining.	Fractures within		<u> </u>	┼	╄	 			Ļ
	this zone are strongly rustly ox	idized with a rind of rou	gh limonite.	 -	<u> </u>	 	 	}—	├ ╌┥		ļ.
	Sample: 57.7 - 58.6 0.91	M	 	39589	0.9	1	$\overline{}$	\mathbf{T}	1	3.8	╀
				Assay	-	100	423	36	68	-15	╁
	CLEGGOVE AND CHICAGO			-		1-	1				t
58.6-62.9	SILTSTONE AND QUARTZITE Med & thick bedded: a few thin be	-dd lociontions lig	ht aray to mad			Τ	T				T
	blue-gray, discolored by silicif:										Ţ
 · · · ·	healed fractures. Bedding is at				1	1					T
	garnet veins cut the core at 30°			Assay		001	.01	06	.19	.01	J
	I .		inge, ustat, utteris, title IIII.	39590	2.2	2 .	42	64	1)742	6	I
	Sampling: 58.6 - 60.8 2.21			39591	12.	٦.	25	_	1838	-	T

roperty McN commenced	IEII, CREEK District	Hole No. M 88-05	Hor. Comp.					i 1		
ommericed	Core Size	Corr. Dip	Vert. Comp.						- }	
o-ordinates		True Brg.	. Logged by	Peter Kle	wchuk		1	dia		
biective		% Recov.	Date			1	g g	l 🕳 1	إ ي	engte.
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Ю_		3	}	ŝ
otage em To	Description			Sample No.	Length	Anal		Pb i	2 m	À
62,9-63.7	HORNFELS, QUARTZ VEINING				T .	1		~		~111
	Med gray quartz veining at 35-40°	to c/a approx 90° to b	edding with extensi	,,	\vdash	1		\sqcap		_
	development of chlorite, pink to				1					_
	pyrrhotite (and possibly pyrite?		•			i			\Box	~
	is associated with garnet and com				1	 	М			_
	of the core over narrow 3-8cm len		• • • • • • • • • • • • • • • • • • • •		1	 		\sqcap	\Box	
	assuming approximately east-dippi	•		*		\Box	П		\Box	_
			• •		 	1	\vdash		\Box	
	west and dips nearly vertically in	e ir is promanty parallel	TO THE MAIN QUARTZ		1	 		\vdash	$\neg \uparrow$	_
	vein.			39592	0.8	١.	7122	35		-
	Sampling: 62.9 - 63.7 0.8m			Assay	"-B			01	-	
				ROSGY	1-	1				
63.7-71.6	SILTSTONE & QUARTZITE, MINOR QUART	TZ-CHLORITE-ALBITE? VEININ	iG							Ξ
	Typically med, gray to browinsh or	r bluish-gray, thin, med a	nd thick bedded.			<u> </u>				
	Silicification has produced bleach	hed zones along healed fra	ctures. Irregular		<u> </u>	↓_	<u> </u>		$\sqcup \downarrow$	_
	chlorite veins with whitish silic	ification or albitization,	quartz veining,			1	<u> </u>	igsqcup		
	garnets & minor pyrohotite occur	locally at 30° to 90° to c	:/a; these veins are			<u> </u>				_
	not all sub-parallel to each other	r; some are obviously cros	s-cutting suggestin	g		1		لنا		
	a large-scale	brecciation.								
	At 70.8m a fracture at 30° to c/a	contains a thin veinlet o	f white felsic mate	riel	<u> </u>	1		igsqcup		
	Sampling: 63.7 - 64.9 1.2m		,	39593	11.2	١,,	1	12	076	

	NEIL CREEK	District	Hole No. M 88-05	Hor, Comp.							
commenced		Location Core Size	Corr. Dip	Vert. Comp.			1				
ompleted_		Core Size	True Brg.				1		diO		
co-ordinates			% Recov.	Logged by PK		·	Ε	ا خ	2	۱. ا	Length
bjective			% Recov.	Date			Claim	910	Collec	E S	Length
normage To	Description				Sample No.	Length	Anal	ysis			
				····	- Ind.	 	L۸u	Cir	LEP-	Zn	<u>∆g</u>
-71.6	Sampling o				39594	1 0	 -	-		1336	
		67.1 - 68.1	1.0m Rusty fractures, thin Ot	z veins, possible	Assay	1.0		_		10	
	 	68.6 - 69.7	minor fault at 68.0m 1.lm Chlorite, quartz veining	esenate no	39595	1, ,	, –	7	1	928	
	 	08.0 - 07.7	1.1m Chitorite, quartz verning	, darnecs, bo	Assay.	1777	+	_		.15	-
	<u> </u>		· · · · · · · · · · · · · · · · · · ·		1,000			1	1		
71.6	End of Hol	10			 	1					
.11.0	End of no						\top	I^-			
						1	1	T			
			a Ichen				T	T	1		
				···-	1		T	Т	·		, —
	1					1		T			
	 	<u>, , , , , , , , , , , , , , , , , , , </u>									·
	 						Γ				
	1										
							_	_	1_	<u> </u>	_
						1	1_	1	 	丄	<u> </u>
							1	<u></u>	1	<u> </u>	<u> </u>
						1	1_	1	↓_	ـــــ	ota
					- {	1	i		1	ì	i

ррепу ма	NEIL CREEK District	Hole No. M 88-06	****			ľ				•
mmenced NOV	11,88 Location	Tests at	Hor. Comp.			1			- 1	
mpleted NOV	13,88 Core Size NO 2	Corr. Dip -45°	Vert. Comp.			Į			.	
ordinates 30	2N 2620E (Geophysics Grid)	True Brg. Az 024°	Logged by	PETER KL	EWCHUK	4	١.	coller DIP		-
jective TES	T MINERALIZED QUARTZ VEIN	% Recov.	Date NOV	13, 1988			ė,		¥ .	ength e
						No.		<u> </u>	<u>. </u>	
tage m Te	Description			Sample No.	Length		.,,			~
0 -3.05	CASING - no core				1 .					
	•				\top	T				
05-10.0	OUARTZITE								\Box	
		ick bedded with a few thin & med th	ick beds.				Τ.			_
		urs throughout: healed fractures are		a					\Box	_
		7m one thin veinlet/fracture has as:					Ц.			
		opment of biotite and chlorite.				_				
	Redding is at 25-30° to c/a						L			
									\Box	_
10.0-16.8	BIOTITE - ALTERED SILTSTONE					_	<u> L</u>			_
		thick bedded, with bedding quite con	nsistently at			<u> </u>	<u> L</u>		\Box	L
		erval is a dull orange-brown color-						L.,	\Box	_
		uch of the core is quite broken and		aces				<u> </u>		-
		oxide. Fine-grained biotite is exte								Ĺ
		terval giving it a noted speckled cl					_			_
						\perp			1	_
16-8-26-6	SILTSTONE MINOR SILTY OUAR	TZITE				1_		<u> </u>		
11124-21124		rely med thick. Thicker bedded silt	ty quartzite						\square	_
		5m. Fine-grained biotite is present							Ш	
		n the thin beds & laminae - evident		of		<u> </u>				
		ring. Bedding is consistent at 30°					$\cdot $			
			ormed but bou		1	1	1 -	1		

Drill Hole	Record .	Hole No. M 88-05	·			,			
Commenced	Location	Tests at	Hor. Comp.				- 1	- [
Completed	Core Size	Corr. Dip	Vert. Comp.				١,	. 1	
Co-ordinates		True Brg.	Logged by PK				.	5	
Objective		% Recov.	Hor. Comp. Vert. Comp. Logged by pk Date Sample Langer Analysis No. Duartzites are typically is hedded. Bedding is fractures are bleached to a present through all of the idation is present on fracture rown limonitic discoloration ached patches which may be bedding. Scm wide and zoned nitish bleaching up to 3 cm bleached 'concretion' carries ink-orange garnet. Chlorite At 37.0m about 10cm of core is idspar around angular fragments in 46.3m to 48.7m with some						
				I		10.1		<u>ت</u> ک	<u>i</u>
Footage From To	Description				Langer				_
26,6-50.1	OUARTZITE, 35% SILTSTONE			•			_]		
		sh-gray colored. Quartzites	are typically	[
	thick and med bedded. siltstor								
									
	1				<u> </u>			1.	
		•	•						
	present to that depth.								
		oncentrated in bleached patc	hes which may be						
				· .					
	with a strongly chloritic oute			<u> </u>		<u> </u>			
	wide, occurs outside the chlor	•			<u> </u>	1			
	At 35,2m a narrow (6cm wide) h	ornfelsic-textured bleached	'concretion' carries	<u> </u>	<u> </u>	<u> </u>			
	minor dark reddish-brown 2nS w			ļ		┞-			
<u></u>	and biotite are present in the	concretion also. At 37.0m	about 10cm of core is	5	ļ	 		\sqcup	
	brecciated with vein matrix of	whitish quartz-feldspar aro	und angular fragments		↓	 	<u> </u>		
	of chloritic quartzite. Core	is more broken from 46.3m to	48.7m with some			丄		\sqcup	
	gouge on fracture surfaces - b	inor faulting.			↓	<u> </u>	<u> </u>		<u>_</u>
	Sampling: 26.6 - 26.8 c	hloritic, bleached concretio	a	39596	0.2	16.	215	_6,	25
<u> </u>	35.1 - 35.3 0	.2m Narrow ZnS bearing conc	retion.	39597	0.2	12	18	18	23

roperty McN commenced completed	ELL CREEK District Location Core Size	Hole No. M 88-06 Tests at Corr. Dip	Hor, Comp.						<u> </u>	ĺ
o-ordinates		True Brg.	Logged by PK			1		e E		ĺ
bjective		% Recov.	Date			E S	r Brg.	in I	Jer.	ength
			·		,	<u> </u>		<u>8</u>	ŭ j	_ئ
otage on To	Description			Semple No.	Langth	Anal		Pb.	Zn	λa
50.1-50.8	SILTSTONE			1		Г			7	
·	Med. gray to med blue-gray. La	aminated and thin bedded; biotite	-spotted							
	throughout. Bedding at 35° to	40° to c/a. Numerous fractures	are present,							
	bedding-parallel to cross-cutti	ing, typically with yellowish-bro	wn clay			П				_
	material coating the fractures.	to 1 cm thickness. About 6 cm	of core at			\Box				_
	50.5m is brecciated, soft; alte	ered with thin 'veinlets' of brow	nish clav							
	(intrusive?) material as a matri	x. Onc 2-3 mm wide veinlet of r	eddish ZnS							
	cuts the core at 80° to c/a at	50.15m			<u> </u>					
	Sample: 50.1 - 50.8 0.	7m		39598	0.7	_نا	22	44	1695	L
				Assay		00	1.01	1.01	15	L
				<u> </u>				Ŀ	Ш	_
50.8-51.5	SULFIDE VEIN/BRECCIA ZONE			<u> </u>	<u> </u>	<u> </u>		$ldsymbol{f eta}$		L
	Very little quartz veining is p	resent compared to DDH M 88-05.	Zone is		<u> </u>	<u> </u>		<u> </u>		Ŀ
	partially oxidized and this mas	ks the texture somewhat. The int	terval is a		<u> </u>	<u> </u>				
	chlorite-galena-sphalerite-chal	copyrite-feldspar?-quartz vein w	ith minor		<u> </u>	 	igspace			_
	included breccia fragments of t	hin bedded to laminated siltstone	. Dark green		<u> </u>	 _				
	to black color from chlorite and	d oxidized pyrite. PbS & 2nS are	e intergrown		<u> </u>	↓	\sqcup	\square		
	with chlorite and green-weather:	ing feldspar? as well as quartz.	Chalcopyrite		 _	↓_				
	occurs as a minor constituent	but is concentrated locally: diss	seminated in	 		↓_				
	2-3mm diam, grain aggregates.		. 	4	<u> </u>	4_				
	A vaque banding in the zone is a	at 80° to c/a. Core is quite sof	t from	1	<u> </u>	┵		\sqcup	_	
	weathering but much of the sulfi	ide mineralizaiton looks fresh.	Intersection	1	l	1	Į _ '	1_ J	L. J	į

roperty McNE]	I. District Location	Hole No. M 88-	06 Hor. Comp.							l İ
completed	Core Size	Corr. Dip	Vert, Comp.					_	ľ	I
o-ordinates		True Brg.	Logged by	•к				ੂਰ	Ì	_
bjective		% Recov.	Date			Cletm	Brd		<u>*</u>	angua
				T		O Anal		ا ن	<u> </u>	یا
otage an To	Description			Sample No.	Langth			Pb	Zn	7
50.8-51.5	SULFIDE VEIN/BRECCIA ZONE cont.			{				}		Ĺ
	appears to be near the lower lim	rit of surface oxidation.	Contact at 50.8m is							Ĺ
	irregular, brecciated with stron									L
	along healed fractures. Core re				<u>L _ </u>					j
	SAMPLE: 50.8-51.5 0.7m			39599	0.7m	31	2797	1341	A. 75	Ŀ
				<u> </u>	Льау	.ce,	. 32	1234	1,63	Ŀ
51.5-53.0	BRECCIATED QUARTZITE & SILTSTONE	, QUARTZ VEINING, PbS &	ZnS	<u> </u>	<u> </u>	<u></u>	<u> </u>	لـــا		Ļ
	A vein margin brecciated, altere	d zone. Mainly relative	ly 'unaltered' quartzit	3	 	<u>L</u> _	╙			Ĺ
	with included zones of healed br	ecciation consisting of	quartz veining,	{_		ļ	┡	 		Ļ
	chloritization and patchy pink-c	range garnets, galena and	d sphalerite. Minor		 	 				ļ
	white calcite occurs with the su	lfides in quartz veins.	Minor chalcopyrite	 	 	<u> </u>				ŀ
	occurs locally with chlorite and	Pbs & ZnS		 -	├ ──	 				ŀ
	SAMPLING: 51.5-52.3 0.8m			39600	0.80			24646		•
	<u> </u>			 	Assay	1001	10	緩		1
	52.3-53.0 0.7m			39601			17		2685	ť
	<u> </u>			 	hssay	.001	m	.33	-27	+
53.0-55.3	QUARTZITE, MINOR SILT STONE			 	 -	├	 	 -		ł
	Thick & med bedded med gray quar			 	 	 	 	 		ł
	hiotite-altered siltstone. A fe			 	 	}	}	}	 	ł
	interval: bleached white to pale			 	┼	+-	+-	\vdash		f
	darnets, and, at 54.2 m. minor r				┼──	┯	₩	-		t
	associated with chloritic fracty	res in weakly bleached s	Utstone.	<u></u>	ــــــــــــــــــــــــــــــــــــــ	ــــــــــــــــــــــــــــــــــــــ				

· Company

Completed Core Size Co-ordinates Objective Footage Description From To SAMPLING: 53.0~54.3 1.3	Corr. Dip True Brg. % Recov.	Vert. Comp. Logged by Date	PK			' 1	1	1
Objective Focuse Description From To			PΚ				~ i	i
Footage Description	% Recov.	Date			}	1. 1	흄	i
rom to						g E	100	₩.
rom To			Sample	Langth	Anal		<u>د د</u>	<u> </u>
53.0-55.3 SAMPLING: 53.0-54.3 1.3		·	No.	Limigur		iu.	ъ	Zn
	B		39602	1.3m	2_	.8	72	H4
			1	Assay	,001	01	.01	.0
54.3~55.3 1.0	in		39603	1.0m	1	31	55	91
			<u> </u>	Assay	.001	01	01	.0
55.3-57.0 CHLORITIC - ALTERED BRECCIA				 	<u> </u>			<u> </u>
Bleached & altered siltston	e is extensively altered to chlori	te, garnet,	<u> </u>	 	<u> </u>			<u> </u>
feldspar in association wit	h thin quartz veins, Pyrrhotite s	minor 2nS and Cuy	<u> </u>	<u> </u>	1_			<u> </u>
are associated with quartz	veins and are disseminated through	patchy zones of	<u> </u>	<u> </u>	<u> </u>	Ш		_
stronger chlorite alteratio	n. Some of the horn felsic altera	tion is banded	<u> </u>	1	<u> </u>			_
roughly parallel to bedding	at 35-60° to c/a: elsewhere it is	roughly parallel	<u> </u>	<u> </u>	<u>L</u>			<u>_</u>
	veins at ~ 25° to c/a. A lcm		<u> </u>					L
of ZnS occurs at 40° to c/a	at_56.9 m			<u> </u>	<u> </u>		L	_
SAMPLING: 55.3-56.2 0.9	n		39604	0.9	1	333	-56	1551
	·		<u> </u>	ssay	.001	1.03	.01	1
56.2-57.0 0.8r	h		39605	0.8m	1	151	17	576
			<u> </u>	Assay	.001	لما	لعدا	O,
57.0-64.3 SILTSTONE, minor QUARTZITE,	local BRECCIA		ļ	<u> </u>	<u> </u>	ot		_
Thin bedded & laminated silt	stone, biotite-altered; quartzite	s which occur	ļ	↓	<u> </u>	igspace		\vdash
toward the bottom of the in	terval are thicker bedded. Beddi	ng is at 35° to	 	↓	<u> </u>	igspace	-	-
40° to c/a. A few local pat	ches of more intense pale gray si	lification with	1	ــــــ	<u> </u>	<u> </u>	\vdash	-

Property Mc1	NEIL CREEK	District	Hole No.	M-88-6	,					ł
Commenced		Location	Tests at	Hor. Comp.			1	1 1	1 1	-
Completed		Core Size	Corr. Dip	Vert. Comp			l	1 1	٩	ł
Co-ordinates			True Brg.	Logged by	PK		_		2	.)
Objective			% Recov.	Date			E :	Brg.	Collar Dip	
	Description	· ·			Sample No.	Length	Anat	lysis	РЫ	757
From To		wiv is quarte-calcit	e. A few large vugs are	present on the marc		+	P.	 		"
-64.3 cont.	of the zone	A locallized more if	tense silification is pre	esent within & below	v the	1	 	\vdash		
	breccia zon									
		57.0-59.2 2.2m			39606				6	
						Assay	1.001	01	إيميا	20.
		59.2-60.2 1.0m			30607	t.om	11	47	25	162
						\58a\	<u> </u>	01	1.01	.04
	<u> </u>	<u> </u>		·····		4	╀-	 -	1	-4
64_3m	End of hole	<u> </u>					╀	┼—	╀┈┤	
·			D. Whent				╁╌	┼─	╁┷┤	
<u> </u>	<u> </u>			-,			╫	╁╌	1-1	
ļ					j	 -	 	+-	\vdash	
						┪	\top	+	1-1	
}							$oxed{oxed}$			
							┷	4_	 	<u> </u>
						<u> </u>	↓_	╀—	├ ─	
							╀	┼	+	
F	ľ				1			ᆚ_		!

· vporty	NEIL CREEK	District Location	Hole No. M-88-7 Tests at	Hor. Comp.					ļ		
ompleted		Core Size HO-NO	Corr. Dip _80°	Vert. Comp.			4	ľ	ا ما	. 1	
	998N 2220E		True Ringx Az 090°		PK	 	1_		Saller Dip		=
		e Aldridge Contact for	% Recov.	Date Jan.	1989		E S	ğ	8	. E	Length
St. St.	ratiform Sulfi	des			Sample	Length	Ana		<u>o_</u>	<u> </u>	<u> </u>
on To	Description				No.		Cu		Zn	Äq	Λs
D-9.1m	CASING						1	1			<u> </u>
		•									
9.1- 125.0	m GABBRO							1			L
	Med. to dar	k gray-green colored,	locally more felsic & speckled	white.			<u>L</u>	<u> </u>			
	Medcoarse	grained granular text	ure with intergrown crystals o	f feldspar &				<u>L</u> .			<u> </u>
	_(chloritize	d) amphibole. Composi	tion varies with more mafic &	more felsic zon	es		1	_	\sqcup		<u> </u>
	but average	s ~ 45% chloritized ho	rnblende. 30% with bladioclase	feldspar, 15%			<u> </u>	乚	$oxed{oxed}$		
	_biotite and	about 10% quartz. To	xture is fairly homogeneous bu	t there is a		_	 _	↓_	┦	<u> </u>	
	weak fabric	. usually defined by n	arrow feldspar-rich bands. at	70-80° to c/a.	_		1_	↓_	<u> </u>		
	Narrow zone	s near the top of the	hole are weathered with weakly	oxidized gabbr	<u>。</u>	_[1_	1_	igspace		<u> </u>
	decomposed	to a coarse sandy mate	rial. A few fracture surfaces	are coated wit	h		↓_	1_	انبل	\square	
	white felds	par s/or clay. Whitis	h quartz-feldspar veins occur	sporadically			1	<u> </u>			<u> </u>
			at 25° to c/a coated with whi		_		1_	1			Ľ.
			white quartz vein at 15° c/a				1	1_			<u> </u>
		= :	ll yugs are present in the qua-				1_		<u> </u>		_
		surfaces	have small spots of Mn oxide	on them.			ļ	╄	 		┞
	39 6-39	9.9m Crushed.	oxidized gabbro, Possible far	ult zone at			1_	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	1	\sqcup	<u> </u>
		~ 60°	to c/a		_		4	<u> </u>	<u> </u>		<u> </u>
	<u> </u>	55.6m 10cm cru:	sh zone, minor faults at 35° to	o c/a mostly			4_	1_	 		
		whitish	felsic material.			4	 	ــــــــــــــــــــــــــــــــــــــ	 	Ш	 _
							1	•			
	59.6m-5		ed, reddish-brown oxidized mate	erial. Core is		: 	4—	┧	├ —		-

Ш

¥ D

Property McN	VEIL District	<u> </u>	Hole No. M-88-7	·							Sheet
Commenced	Locatio	on	Tests at	Hor. Comp.						- 1	0
Completed	Core S	ize	Corr. Dip	Vert. Comp.			i 1	1	. 1	Ì	
Co-ordinates			True Brg.	Logged by					g	١_	9
Objective			% Recov.	Date			Claim	Brg.	Collar	- Hell	tole No
							IQ .		<u>රි බ</u>	<u>دا ن</u>	
rots To	Description				Sample No.	Longth	Anal) Cu		in A	a L	sΛ
	n. SAMPLE: 59.6-59.9	0.3m			39071	0.3m	85	12	73	. 2 2	59
- 12 J. Om Co.	. 3/11/1/201							\sqcap	П	\top	Т
······································	81.7m	A few "por	phyroblasts" of dissemina	ted pyrrhotite are						\Box	\Box
·		present in	massive gabbro								\Box
	86.6m		roken core: possible very	minor fault or						\perp	\Box
			one at 20°-30° to c/a								
	91.4m		rubbly, more pale green	gabbro, possible							_
		minor faul									_
	100.8-101.7	Zone of br	ecciation. White quartz	vein and gabbro are	<u> </u>		<u> </u>		Н	\rightarrow	_
		brecciated	; angular fragments of bo	th lithologies are	<u> </u>	1	!	$oxed{oxed}$	1		_
		intermixed	. Angular cavities are p	resent. Quartz is		<u> </u>	 _	igspace		_	4
		chloritic .	and carries numerous smal	l grains of a platey		<u> </u>	<u> </u>		\vdash		_
		black mine	ral, probably ilmenite.			<u> </u>	↓	 			_
	SAMPLE: 100.8-101.7				39072	D.9m	<u>ko</u>	8	27_ Q	ᆚ	2
	From 100.8 to 105.8m	Core is more	broken with rubbly zones	, thin, often broken		├	╄	\vdash	[—}		\dashv
	(and healed) white q	uartz veins a	t ~ 30° to c/a.			-	┼	 	├─┤		\dashv
	Below ~ 122.0m the	gabbro is dari	ker green to black and mo	re fine-grained at the	<u> </u>	 	╀	-	} 		
	footwall chilled con	tact zone. B	iotite is more abundant.	about 25 or 30% with		<u> </u>	 —	├	╂╼╾	 l-	\dashv
	plagioclase feldspar	only 15 or 21	0%. A few thin quartz ve	ins occur in this	<u> </u>		╄	┼	╂╼╼╂	-	
			. 2 of these veins are p		<u> </u>	 		₩	[—		{
			ned ilmenite. The Lower		<u> </u>		 _ `	ـــ	├		\dashv
1	appears to be at ~	65° to c/a;. 1	underlying alteral sedime	nts are broken.	<u> </u>	<u>. </u>	┸.	<u> </u>			

- repairty	NEII, District	Hole No. M-88-7			ļ					,
Commenced	Location	Tests at	Hor. Comp.							
Completed	Core Size	Corr. Dip	Vert. Comp.							
Co-ordinates		True Brg.	Logged by			_		ē		s
Objective_		% Recov.	Date			Cledim	8	Soller Dip	, (10 k	Length
	Description			Sample		Analy	reis			
rom to	2000			No. 39073	0 . Bm	_	PЬ	2n 159	Ag	
125.0m cont	· · · · · · · · · · · · · · · · · · ·			39073	U.BM			[39]	<u> </u>	33
125.0-144.0m			iek gwerteitee			├─ॱ		 	├─┤	
	Mainly thin & med. bedded. A few			 	 	├┈		┟─┤		
	Alteration decreases in intensity			 		\vdash		 	 	
	hiotite are developed in quartzit			 		 				_
	to 1/2-1mm by 145.0m. Brecciatio				 	 			\vdash	_
	diminishing below there. Some of						\vdash			_
	near 130-133m are decomposed to a				 	-				
	present in the breceiated zone be			 	 	\vdash	H		\Box	
	with the quartz veins. Chlorite-				 	├─	┝─┤		\vdash	-
	brecciated zones. Core is modera			 	 	 	\vdash	 	H	
	local rubbly sections. Bleaching			 		├─┤	$\vdash \vdash$			
	gabbro sill. Core angle: 65° at	126.0m; 50° at 130.0m; 50	at 135.0m;	 -	 	 	\vdash			
	70° at 140.5m; 62° at 144.0m			89074	D.3m	 		97	0.1	9
	SAMPLING; 125.0-125.3 0.3m				1.2m			108		- 6
	125.3-126.5 1.2m 126.5-127.3 0.8m			39076	D . 8m	_				
	129.5-127.3 .0.8			173.3						
	130.4-131.9 1.5m D	ecomposed, sandy quartzites,	, Bx with Q.V.	39077	1.5m	5	7	43	0.1	2
	131,9-133.0 1.lm	*		39078	1.1m	5	6	41	0.1	2
				· ·		\Box	\Box			
						-	_		\vdash	

Property Mc Commenced Completed	NEIL CREEK Distr Loca		Hole No. M-88-7 Tests at Corr. Dip	Hor. Comp.							ļ	Š
··l		. 020	True Brg.	Logged by					ا ۾	Į	- }	
Co-ordinates			% Recov.	Date		·	E	94 d	oller Dip		.	ž
Objective			A Necot		····		Claim	8	5 1			훋
Cootage	Description				Sample	Length	Anal					_
or mon					No.	<u> </u>	<u>u</u>	Pb.	2n	Va 1	As.	Δu
144.0-164.7m	65% SILTSTONE 35% (QUARTZITE			 	<u> </u>	<u> </u>	\sqcup		_+		
	Med. gray to dark h	blue-gray colore	ed. Siltstones are typic	cally thin bedded &		 	<u> </u>	igsquare		_	_	
	laminated, quartzite	es are typicall	y med, thick bedded with	a few thick beds.	<u> </u>	<u> </u>	<u> </u>	Ш		_		
	Bedding is mostly (planar with some	irrequiarities. A per-	vasive alteration is			1_	\sqcup		_		
	present; it has pro	oduced a browni	sh discoloration or blead	ching in some beds. a	nd	 	<u> </u>	┶┵				_
	along thin healed f	fractures. Mine	or quartz veining with lo	cal brecciation is		 	<u> </u>	┦	 			_
	present at 156.7m.	About 2m of co	ore from 161-163m is stro	ongly silicified in	_		<u> </u>	1		_}		_
	patches - hard & q	lassy. Core and	<u> 110: 62° at 148m: 68° at</u>	156m: 63° at 163m.		 -	<u> </u>	}	 	}		-
	Chloritic alteration	on is present no	ear the base of the inter	zal	<u>. </u>	┞—	<u> </u>	┦┈┤	┝╼┥	\dashv		-
164.7-170.4	SILTSTONE & OUARTZI	TE Silicifie	d with thin quartz veins	. locally brecciated		<u> </u>	ļ	 			_	ļ
	Mainly thin & med.	bedded siltstor	e with a few med. thick	quartzite beds.	 	 	↓_	} —				-
	The entire interval	l is silicified	with a light gray-brown	discoloration.	 	 	 	╁┷┤			_	-
	Strongest bleaching	occurs along	hin healed fractures and	l in irregular patche	s	 		 	 	 -		L
	with nebulous bound	aries. Thin ye	llowish-white quartz vei	ns up to 3 mm wide.	 	 -	├	↓	┝╼┥			-
	lens-like in shape	& probably tens	ion gash veins, occur th	roughout the interva	1	 	<u> </u>	╀╌┦	\vdash			┞
	Near 168.8 m the ve	ins form a matr	ix to angular fragments	of pale gray-brown		 	╄	1-	├┈┤			╀
			rugs with crystalline qua	····	<u> </u>	 	┝	 		 -		╀
	Minor pyrite occurs	s locally with a	few of the quartz veins			↓	├	┼	 	┟╼╌╂	,	╀
	Bedding: 60° at 16	6m; 60° at 170).4m.		_	↓	├	╄	├	 -l		Ļ
	SAMPLE: 168.6-169.	2 0.6m Bred	ciated quartzite with qu	artz vein matrix	39079	0.60	1 5.	37	₹Z	إنما	32	4
	At 164.7 is a 4cm w	vide bedding-par	allel crush zone, unceme	nted breccia,		-	<u> </u>	↓	┦			Ļ
ļ	probably a minor be	edding-plane fau	ilt		<u> </u>	L	1	1		i 1		1

	Drill Hole	•		4	M~88-7				-					5 1
_	Property	MCNEIL CREEK	District	Hole No.	M-86-7	Hor, Comp.			l	ļ		1	Ì	ŝ
	Commenced		Location	Tests at	··					ļ		i 1	1	
	Completed		Core Site	Corr. Dip		Vert. Comp.					d O		- 1	
	Co-ordinates			True Brg.		Logged by			_	اه	2		5	ž
	Objective			% Recov.		Date			E E	ģ	Collar	* *	end in	lote No.
	Footage	Description					Sample	Length	Anal	<u> </u>	<u> </u>	<u></u>	ر_ <u>۔</u> 	<u></u>
	гот То		, <u>, , , , , , , , , , , , , , , , , , </u>				No.	1				\Box	\Box	
	170.4-175	.3 SILTSTONE, mi	nor QUARTZITE: MARKE	R INTERVAL			<u> </u>	<u> </u>	L	<u> </u>	_	 		
		Mainly thin	bedded siltstones,	some laminated zone	s, with a few	med. thick	 		<u> </u>	<u>L</u>		\vdash	_	
		guartzites.	Laminated marker ze	ones occur through	this interval	: about 6cm	1	<u> </u>	<u> </u>	<u> </u>			_	
		at 170.4;	5cm at 171.0m; 60cm	from 173.3-173.9 and	d possibly at	175.3 (10-15cm)			<u> </u>	<u> </u>				
		Bleaching a	nd silicification wi	th chloritic altera	tion persist	through this	<u> </u>	 	<u></u>	<u> </u>		—		
		interval to	o and appear to have	affected the nature	e of the mark	er zones such	<u> </u>	<u> </u>	L	ـــ	<u> </u>		_	
		that they a	re fairly indistinct	A few 'tension g	ash' quartz v	eins arc present	<u> </u>		<u>L</u>	<u> </u>	<u> </u>	\sqcup	_	
		similar to	overlying interval.			· ·	<u> </u>	1	<u> </u>	_	<u> </u>			
	<u> </u>	Bedding: 6	0° at 172m: 68° at 17	75m.			<u>L</u>	1	<u>L</u>	<u> </u>	<u> </u>		_1	
	175.3-19		LTY QUARTZITES. 25%				<u>l</u>	1_		_	<u> </u>			
			are typically thick i		hick beds.	Color is dark	·				}		_]	
			usually mottled from]							
			ale gray-green bleac							Π	Т	\Box		_
	 		re thin bedded and l						Π	Γ	Τ	\Box		_
			lanar with minor wavi				1	1		\top	1	\sqcap		_
	 		occur in narrow zones				 		1	1	 	\Box		
			stones are pale brown				1	 	Г	† <u> </u>	1			
	{		ey appear much less a				1	1	T	1	 	\sqcap		_
	<u> </u>		rately broken, fract				 	 	1	T-	T	\Box		_
	 					MILIT CHICFIE	1	1	Т	1	1			<u> </u>
	 		chlorite is common				 		Τ.	1	Τ-			<u> </u>
		Bedding: 67	° at 178.5; 54° at 1	6/.3: 03 At 191m:	26 at 19/m.		1		1-	1	1	$\vdash \dashv$	\neg	_
	L			 _	 ,		<u></u>	 -		۰				_

	* *									
Drill Hole F	Record	, .				 .				6
Property MCNE	IL CREEK District	Hole No. M-88-7	<u> </u>		1		1	ĺ	- [Sheat
Commenced	Location	Tests at	Hor. Comp.				1		- 1	٦
Completed	Core Size	Corr. Dip	Vert. Comp.					_	ł	- }
Co-ordinates		True Brg.	Logged by					윰		_
Objective		% Recov.	Date			E E	9.0	Collar		Lengus Hole No
						Ö Anai		ل ق	<u>. 1</u>	<u>. 13</u>
From To	Description			Sample No.	Length			Zn	Δa	AS A
197.0-205.	6 Est. 85-90% SILTY QUARTZITES, 150	SILTSTONE				<u> </u>				
	Thicker bedded, more massive qua		l with generally			_			_	_
	narrower zones of intervening s				L	<u> </u>	<u> </u>		1	_
	silification than above but some				<u> </u>	<u> </u>	<u> </u>	<u> </u>	 	
	Below 202.9m core is more broken				<u> </u>	<u> </u>	 '			-
	zone - no shearing or cleavage					<u> </u>	<u> </u>			
	hairline fractures, no matrix.				<u> </u>	<u> </u>	↓_	_		_
	Bedding: 60° at 199m: 60° at 20				 	ļ	↓_	 	\vdash	
205.6-208	4 SILTSTONE				ļ	ļ	╄	.	┝─┼	-+
	Dark gray to brownish-gray, this	n bedded with few laminations.	a few med. thick	<u>:</u>	<u> </u>	1_	↓	<u> </u>	\vdash	
	beds. Very minor brecciation with				<u> </u>	1_	 -		├ ─-┼	 ∔
	near 207.5m. Thin quartz veins				├	 	↓ _	<u> </u>	\vdash	
	wide at 0° to 5° to c/a carries	minor ZnS, very minor PbS as w	ell as Cpy, Po &P		ļ	ļ _	 	Ļ_	├ ─-┼	
	Bedding: 61° at 206.3m; 55° at				 	↓_	╄-	<u> </u>	 	}
	SAMPLE: 205.6-206.3 0.7m			39080	0.70	101	20	358	1.5	4
					 	 —	┼-	┼	┞╼┤	
208.4-234.	.7 EST. 85% QUARTZITE, 15% SILTSTO	NE		<u> </u>	├ —	┼-	╀	┼—	├	
	Generally similar to 197-205.6			}	} -	┼-	╁╌	┼─	} ∤	
	Patchy silicification & bleachin	ng are common. Minor quartz ve	ining is present:	 	┼	╁╌	╁╴	一	-	
	some to ~ 4 or 5cm wide. A few			 -	1	╁	+	╁╾	\vdash	
<u> </u>		rse qr. Biotite. Locally there			+	+-	+	┼─	┢╌┤	
1	"crackle" type of brecciation wi	ith hairline veinlets & small l	enses (e.g.<1cm le	<u>dng)</u>	i	.i	<u>ــــــــــــــــــــــــــــــــــــ</u>	1	لسا	

53 x X

Orill Hole Re	ecord	•								
pperty McN	IETH CREEK District	Hole No. M-88-7				·				
ommenced	Location	Tests at	Hor, Comp.							İ
ompleted	Core Size	Corr. Dip	Vert. Comp.			,				
o-ordinates		True Brg.	Logged by			}		8		
bjecti ve		% Recov.	Date			Clair Ela	F Brg.	Soller Dip	Elev.	de de
								<u>8</u>	<u></u>	<u>-</u>
otage om Te	Description			Sample No.	Length	Anah Cu	yea Pb	kn	Λq	Δs
-234.7 con	. of white quartz. Chlorite is co	ommon on fracture surfaces &	locally bedding-							_
	parallel bands are chloritic. O			<u> </u>		\Box		\vdash	\Box	<u> </u>
	212.5m is associated with fine d									
	a small patch of dissem. Cpy (ro							Γ	\Box	\Box
	bleached siltstone.						1			abla
}	Small 3-4mm. diam. light pink qa	rnet porphyroblasts are deve	loped adjacent to a			Г	Γ			abla
	quartz Vein near 223.8m.									
	At 226.1m and 225.4m narrow 3-4c	m. bedding-parallel bands ar	e uncemented breccia							
	probably minor bedding plane fau						\sqcap			[
	Bedding: 60° at 213m; 61° at 21	9m; 61° at 227m; 66° at 233.	5m				Π			
	SAMPLING: 211.8-212.9 1.0m	One 30cm Otz vein at 15° to	c/a. Minor Cpy, po.	39081	1. 4 m	205	21	92	2.2	2
		Otz vein 4 cm, wide Blebs of								
	v. min	or ZnS		39082	0.4m	44	16	6.7	4	3
					<u> </u>					L
234.7-235.0	BRECCIA				<u> </u>	_				
	Gray-green colored brecciated ch	loritic siltstone. Thin vei	nlets of quartz.	<u> </u>	<u> </u>	_	<u> </u>			
	chlorite, calcite form a matrix	to angular fragments of alte	red sedimentary rock		<u> </u>	<u> </u>	<u> </u>	↓		<u> </u>
	Minor 00, Cov. 2nS in the veinle	ts. /About lm above this in	terval ie 233.7-		<u> </u>	<u> </u>	L	<u> </u>		
	234.7 is also more strongly chlor	ritic)		ļ	<u> </u>	<u> </u>	<u> </u>	 		ļ
	SAMPLE: 234.7-235.0 0.3m			39083	0_3m	30_	4	استط	1.1	5
				ļ	<u> </u>	<u> </u>	<u> </u>	 _		<u> </u>
				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	┸┙	

roperty Mc	NEIL CREEK District Location	Hole No. Tests at	M-88-7 Hor.	Comp.							
ompleted	Core Size	Corr. Dip		. Comp.			1		음		
o-ordinates		True Brg.		ged by		<u> </u>	E	9	1 • •	. I	
bjective		% Recov.	Date	<u>'</u>			匮	979	종		֓֞֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֡֓֡
ortage ortage	Description				Sample No.	Length	Anal	7818			_
235.0-237.3	SILTSTONE, 20% QUARTZITE					<u> 1</u>	<u> </u>	<u> </u>		\sqcup	
	Med. & thin bedded, a few	laminations. Quartzites	are of med. thicknes	s. Most		<u> </u>	<u> </u>	<u> </u>	<u> </u>	\sqcup	!
	of the interval is strong	ly chloritized and beddin	g planes are indisti	nct.	ļ. ——	<u> </u>	↓_	↓_	↓	1_	
	Core is quite broken. At	237.2m a 4cm wide band o	f sheared, chloritic	fault		 	<u>L</u>	1_	1_	\sqcup	ا
	gouge at 65° to c/a ind	icates a bedding plane fa	ult. Bedding at 70°	to c/a.		<u> </u>	↓_	ـــــ	ــــ	$\downarrow \downarrow$	
						 	 	╀-	↓_	\sqcup	
235.0-237.3	SILTSTONE, 20% QUARTZITE	<u> </u>			<u> </u>	 	┺	↓_	╄~	╁	
	Med. & thin bedded, a few	laminations, Quartzites	are of med, thicknes	ss.	}	 	}_	↓_	 	 	
	Most of the interval is s	trongly chloritized and b	edding planes are inc	istinct.	 _		┷	↓ —	┼	╢	
		237.2m a 4cm wide band o			<u> </u>	 	┼	╄	┼	 	
	gouge at ~65° to c/a ind	icates a bedding plane fa	ult. Bedding at 70°	to c/a.	ļ		┼-	┼—		╀╌┼	
					 -		+-	╀	╁	╁	
237.3-255.2	~ 65% SILTY QUARTZITE,				 -		╂	╆	+-	┼╌┤	
		d. bedded, dark blue-gray			├ -	 	+-	┼─	+-	╂╌┧	
		<u>q healed fractures. Silt</u>			 		+-	+-	+-	┼╌┤	
		brownish-colored, biotit			 -		┨—	+-	+-	╁╾┦	
		11v; at 239.4m a concretion			 	+	┼~	┼─	┿		
		sts of garnet & rounded b			 	┼	+-	┽╌		╂╾╂	-
	1 - /-1	minor Cpv & ZnS are scatt	ered through the inte	rval.	ì	J		ــــــــــــــــــــــــــــــــــــــ	ا ــــــــــــــــــــــــــــــــــــ		
		* at 243.5m: 55° at 247.5			1		1			7 3	

Count Plat & Date

ommenced ompleted	Menell CREEK	District Location Core Size	Hole No. Tests at Corr. Dip	M-88-7	Hor, Comp.		 					
o-ordinates			True Brg.		Logged by]	1	음		i
bjective			% Recov.		Date			Sel P	Ð.	Soffer Dip	ev.	tigue
								<u> 10 </u>		<u> 8</u> _	<u>.</u>	<u> </u>
otage om _ To	Description					Sample No.	Length	Anal	lysis.			·
255.2-256.3	MARKER ZONE LA	MINATED SILTSTONE		:			1	Γ	\Box			
	T		minated siltstone w	ith a few nar	row "waste" band	16						_
			dites. Bedding at						Γ			
									Γ	\Box		Ĺ
256_3=27B_1	75% SILTY QUA	RTZITES, 25% SILTST	ONE									
	Quartzites an	e thick & med. bed	ded, med-dark bluis	n-gray. Heale	ed, bleached	<u> </u>			1_			
	fractures are	common in many of	the quartzites. S	Itstones are	thin bedded &	<u> </u>		L				Ĺ.,
	laminated, oc	curring in zones o	f 10 to 40cm thick.	Chloritic a	teration is	<u> </u>	<u> </u>	↓_	↓_	1_	\vdash	
	common in the	siltstone zones,	Thin light gray to	white quartz	veins are	<u> </u>	<u> </u>	丄	↓_	<u> </u>	\sqcup	<u> </u>
	scattered thr	ough the interval,	up to ~ 4cm thick.	Most are at	5° to 20° to	<u> </u>	<u> </u>	<u> </u>	4_	$oxed{oxed}$	 	<u>_</u>
	c/a, a few at	about 30°. Minor	po & Cpy are presen	t in some of	the QV, as well	<u> </u>		<u> </u>	1_	ك		<u></u>
	as py. Py al	so occurs along fra	ctures. Patchy pai	e brown-gray	bleaching occur	₫	1	1_	1		\sqcup	L
	locally.					1		1_	<u> </u>			Ŀ
	At 276.2m a 3	-4cm wide fault zor	ne carries fault gov	ge and quartz	veining.	<u> </u>	Щ_	_	┷	╙		L
	Adjacent rock	s are broken but no	t cleaved parallel	to the fault	zone, suggestin	<u> </u>			1_	1	Ш	_
	this is a min	or break. Two faul	t-parallel fracture	s occur withi	n 1.5m below th	e		<u> </u>	Т_	\perp	1	_
	fault.		<u> </u>		····	<u> </u>		1_	┦—	1	\square	L
	Bedding: 60°	at 261.5m; 60° at	269m; 56° at 274m;	57° at 278m.		<u> </u>		1_	┦—			
						<u> </u>		1_	┷	$oxed{oxed}$	Ш	_
78.1-278.2	FAULT ZONE					<u> </u>		1_	1_	1		
	Crushed core	fault gouge over	15 cm, parallel to	bedding. Pal	<u>e gray-green in</u>	<u> </u>	· 	⊥ :	4	↓		Ĺ
	color, 1.5cm	wide quartz vein e	xtends below fault	zone for ~ 15	cm, at 10° to c	<u>/la</u>	<u> </u>	丄	丄	┸┛		<u>. </u>

Property Me	CNEIL CREEK	District Location	Hole No. M-88-	7 Hor. Comp.						
Completed		Core Size	Corr. Dip	Vert. Comp.			} }	}	- }	
Co-ordinates			True Brg.	Logged by			1	Ì	â	
Objective .			% Recov	Date] <u> </u>	e e		
05/00.70							Änah		<u>S</u>	
Footage From 10	Description				Sample No.	Length				_
278.2-30	1.2 85% QUARTZITES,	15% SILTSTONE								
278.2-30			edded with bedding planes	that can be guite vag	ue.]				
	Siltstones are	thin bedded & la	minated, occurring in harro	ow zones of 10 to 30c	<u>m </u>		1_			
	Color is usual	ly a dark blue-gr	ay but pervasive alteration	n; (bleaching) has						_
	produced patch	es of lighter gra	y and gray-brown coloration	. The usual healed			1			
	fractures with	associated bleac	hing are common in quartzi	es. A few narrow	J		}	<u> </u>	1	_
	veinlets of qu	artz-chlorite are	present: at 280.3m an 8cm	band of core is		_	_		\vdash	_
	weakly breccia	ted with hairline	vellowish carbonate veinle	ts. At 280.4 to 280	4		 	_		_
	a 1.5cm wide_o	wartz vein cuts t	he core at 15° to c/a. The	top end of the vein			↓	<u> </u>	1	_
	ends abruptly	at a 3mm wide bed	ding-parallel quartz vein.	Part of an elongate	 -		╀—	}_		
	(// to bedding) concretion at 2	93.3m carries coarse bioti	te and ragged rounded			 	ļ		
	garnet porphyr	oblasts to 4mm di	am. Most of the concretion	is lighter in color			 	├-		_
	than the host						╀	├-		
	Pyrite is pres	ent on some fract	ure surfaces: minor po occi	irs with quartz-chior	ide		4-	┞-	-	_
	veins.						╁	╀╌	╀╼┤	_
		at 281m: 56° at 2	86m: 59° at 293m: 58° at 3)0m		_}	- 	 -	 	_
							┼	┼	╂╾┪	_
301.2~3	02.0 QUARTZ-CHLORI							╂	1	
	Top 30cm are v	ery (ine-grained;	light gray silica. Faint	laminations are siltstone. 'Contac			┥—	╂~	╀╌┤	-

roperty McNi commenced		District Location	Hole No. M-88-7	Hor, Comp.			1	, 1	ļ	,	ì
mpieted		Core Size	Corr. Dip	Vert, Comp.				,			1
-ordinates		0.	True Brg.	Logged by				.	흑	.]	,
jective			% Recov.	Date			Cleim	o de	Coller Dip	<u>۽</u> ج	ength
							Q_{-}		<u> 8</u>	<u> </u>	<u> </u>
1 To	Description				Sample No.	Longth	Analy Cu		Zn	ΛqΙ	Δε
302,0 cont	biotite, pyrite &	feldspar conti	inues to 302.0m with fracturi	ng, cleavages at	T	1.				\Box	
	~ 20° to c/a.				1						$\overline{}$
											_'
02.0-307.7	QUARTZITE, minor S	SILTSTONE			Ι					\Box	'
	Mostly dark blue	-gray with patc	thy bleaching to gray-green &	gray colors. Thic	k	Ţ	Ш				'
	, - '		beddingplanes. The few thin				<u> </u>	\Box		_	
			or fracturing is present with]					'
			cur at 20-30° to c/a. A few				Ш			4	
			pyrite. Fractures are both !		s				لِب	4	
	cutting, Bedding				<u> </u>	 			,		'
					<u> </u>		igsqcup				
07.7-308.4	BRECCIATED QUARTZ	Z: PROBABLY FA	ULT		<u> </u>	<u> </u>	L		\Box		—
		is parallel to	bedding: contact at 308.4 is	at 55° to c/a, with	1		\sqcup		<u> </u>		<u>. </u>
	2cm of crump)	ed chloritic m	aterial, suggesting movement	i.e. a thrust fault	<u>-</u>				\longrightarrow		
	Most of the zone	is a light gra	v mottled quartz with a heale	ed crackle breccia		┴	\sqcup	\Box			
	texture, Hairlir	e fractures are	e chloritic with minor fine-q	grained pyrite. Chl	Idrite_	↓ —	<u> </u>		\longrightarrow		
			2cm wide (bedding-parellel) 2			┦—	 				
	breccia character	15cm of core	e at ~ 308.3m is bedded, fin	ne-grained siliceous		┦—	 				
	& appears to be i	ntensely silici	ified siltstone.			 	╄┦	\square			
	SAMPLE: 307.7-30	0.7m			39084	0.7m	112	(5)	1117	6.152	2

	FK District	Hole No. M-88-7							
Property McNEIL CRE Commenced	EK Unation	Tasts at	Hor, Comp.				.		
Completed	Core Size	Corr. Dip	Vert. Comp.				. 1		
Co-ordinates		True Brg.	Logged by					5	
Objective		% Recov.	Date			<u>ַ</u>	Brg.	<u> </u>	;
						ΨK			<u>.</u>
Footage Description	on			Sample No.	Langth	Analy		75 TA	~
	ITE, minor SILTSTONE			1	1			\top	_
	rally similar to interval 3	02 0 = 307.7m. One 2.5cm of	lartzite Clast.				\neg	\neg	
	ded, elongate is sub-paralle						\Box		_
	occur nearby. At 312.1m, a				<u> </u>			$\neg \uparrow$	_
	sibly a concretionary feature	····	AATE TO MISSEME BASE	 			\Box		_
	ing at 311m is at 59°.				1		\Box		_
Bedd	ing at 311m is at 39				1		\Box		_
314 4 310 5 00110	ZITE, minor SILTSTONE, BREC	CT B		<u> </u>		\vdash			_
	rally similar lithologies to		lowitie When of th						_
	is weakly brecciated to mod			1	 	\Box			_
	tures are narrow with quart:				1	\Box	П		_
	s are of whiter calcite and	,,,,,,,,		T	T***		\sqcap	\neg	_
blea	ching (possibly weak albitize	zation) is prominent from 3	8.4m to 319.5m.		T				
Zinc	mineralization occurs as a	small disseminated specks as	d as small lenses a					\Box	
few	mm to lycm long within heale	ed fractures. Est. max. of	~ 1% ZnS over narrow						
widt	hs. Very minor Cpy occurs w	with po. Most recognizable	bedding is at ~ 67°						
toc									
SAMP	LING: 314.4-314.9 0.5m			39085	0.5m	28	180	755 1	L
				39086	7	T	Г	1320	_

Drill Hole R	ecord	park of the Park of the Park									
Property McN	EIL CREEK District	Hole Na	M-88-8					- [- [1
Commenced	Location	Tests at		Hor. Comp.					١	.	٦
Completed	Core Size	Corr. Dlp		Vert, Comp.					ì	- {	1
Co-ordinates		True Brg.		Logged by					å		Į,
Objective		% Recov.		Date			Ę	e A	5	.	
							_		8	3	
From To	Description				Semple No.	Langth	AS 3	/9/4 5 h E	- n	Ac I	No. 12
319.5-344.8	QUARTZITES, very minor SILTSTONE						-		"- 	<u> </u>	, , ,
	SILTY QUARTZITES are thick and med. bedde	ed. mostly	dark blue-gra	v with some						_	十
<u> </u>	lighter colored bleaching alteration.			, wzen bome	 	 		Н	_	\neg	\dashv
	Narrow siltstone zones are thin bedded a	nd dark gr	av to blue-gra	v.						一	\neg
	Near 321.0m thin white calcite veinlets		····			<u> </u>		М			\dashv
	4mm wide,										7
	321,2-321,4 Porphyroblasts of chlorite	n quartzi	te, along with	irromlar					7		
	bedding - // bands of dark green chlorit		<u> </u>								7
_	At 322.0m about 20cm of crushed chloritic		be a minor far	olt zone.							
	Fracturing in the 2m or so below this is										
	At 323.1m ~ 10cm of core is sheared, ch			rtz veining and	1						
	blebs of po.										\neg
	At 326.3m minor crackle brecciation over	20cm.									\neg
	At 328.5m A band of po, quite irregular	but ~ 6mm	wide, is devel	oped in a							
	chloritic bed.										
	At 328.9m 20cm length of core is sheared	, chloriti	c, with small	blebs of po &						\Box	
	py.										\Box
	SAMPLE: 328.7-328.9 0.2m				39087	0.2m	204	52	215	7.5	34
	At 326.8m Fracture at 35° to c/a with me	d. gray cl	ay fault gouge	? and euhedra	1						
	phrite; may be a very minor fault - adjac	ent rock i	s undisturbed.								
	Bedding is quite consistent at ~ 60°.		= ·· · · · · ·								
						J	<u> </u>		{		

Drill Hole R	ecora	• •	•						'	۱
Property	MCNEIL CREEK District	Hole No. M-88-7	· ·			}				
Commenced	Location	.' Tests at	Hor. Comp.]				ļ
Completed	Core Size	Cort. Dip_	Vert, Comp.]				l
Co-ordinates		True Brg.	Logged by]	1	뭄	1	I.
Objective		% Recov.	Date			Ę	ģ	100	ż	Ę
						<u> </u>	-	8_	<u> </u>	
Footage From To	Description		•	Sample No.	Length	<u> </u>	1 76#8	Τ-	Τ-	Т
344.8-372.7	SLUMP ZONE: SILTSTONES & QUARTZ	ire ·				Τ	T	Т	T	T
	Bedding is generally disrupted		edding planes at		1	1			1	T
	~ 60° to c/a. Small regged.					T		Τ		Γ
	argillaceous siltstone, are enc					T	T	T	T	Ţ
	essentially weakly developed fr									Ι
	throughout the interval. Fabri			,				\perp	<u>L</u>	I
	bedding.					L	\perp	\mathbf{L}	L	I
	Included are zones of relativel	y undisturbed thin bedded sil	tatones, suggesting				L			1
	that the slump zones have been			<u> </u>		1_	1		┸-	1
	Minor precciation is evident lo			<u> </u>		↓_		1	1_	1
	usually with minor po & locally					↓_		1_	┵	1
	At 352.7m there is patchy devel		a very dark gray to	ļ		↓_	4	↓_	┴	1
	black, silicified siltstone or			ļ	-	↓_	1_	 _	┷	4
	po - rich zone indicate it is p	art of a slump unit. Bedding	at 360m in a zone	ļ	-	╀-	╀-	╀	┼	+
	of thin bedded siltstones is at	60° to c/a.		 		╀	+-	┼-		+
				╂		┿	+-	┼	+	+
372.7-372.9	5 BRECCIA ZONE .			 		┰	┼~	┽╌	╌	+
	Fragments of green-gray silicif			 	┽—	┿	┿	╁	+-	╁
	a matrix of chlorite, pyrite &	pyrrhotite. Angular fragment	s are elongate	 		┿	+-	十	+-	+
	parallel to cleavage at 35° to	45° to c/a. Adjacent core is	broken & it is not	 		╁╸	+	┨	+-	+
	evident if cleavage is // to bed present. A central 12-14 cm zo	ding. Both light & dark gree	n chlorite are	 	- -	+-	` -	+-	+	+

. =

Property McNE	IL CREEK	District	··	Hole No.	M-88-7	,			ŀ				
Commenced		Location		Tests at		Hor. Comp.			1		1		1
Completed		Core Size		Corr. Dip		Vert. Comp.			1		ĺ	1	i
Co-ordinates				True Brg.		Logged by			1	1	æ		l
Objective				% Recov.		Date			<u></u>	9.0	Collar Dip	1.	uji (j
									<u> 10 </u>		3	<u>.</u>	5
rom To	Description	•					Sample No.	Length	Anal	yaha	17.	LΑσ	
-372 95 000	strongly c	hoved			•			 	<u> </u>	150	<u> </u>	LAST	AS.
			0.25m				39088	0.25m	1.	174	75		
	JANA BD.		3.2.3m				3,000	P.23*	<u> </u>		 ' °	۳	347
372.95-377.3	SLUMP ZONE							1	 	\vdash	一		
		similar to inte	rval from 344.	8-372.7m.	Bedding plan	es are quite		1	1	 			
		en irregular.					7	1	1		$\overline{}$	\sqcap	
		Some darker										\Box	
		~ 377.5m is mo											_
	bleaching a	re more chlori	ic with bioti	te.								\Box	
377.3-393.0	OUARTZITE. m	inor SILTSTONE									\Box	\Box	
	~ 85-90% c	f the interval	is dark blue-	gray thick	& med. bedde	d silty quartzit	3.						
	10-15% is n	arrow zones of	med to dark o	ray thin s	med, bedded	siltstone.	}						•
	Ouartzites	are bleached to	a pale green	-gray color	along heale	fractures.	1						
	At 381.4m a	narrow bedding	- parallel (~ 60° to c	a) 1-2cm wide	e band of crushed	2						
	chloritic m	ateria) is prol	ably a minor	bedding-pl	lane fault.				\prod				
						sem, porphyrobla:	3.5						
	of pink gar	net . biotite !	minor po.								·		
	At 386.4m m	inor brecciation	n is evident	with branch	ing quartz-c	lcite veins &	1		<u> </u>				
	minor po.						J		1_			\sqcup	
	Bedding: 6	7° at 381m; 60°	at 383.7m; 6	1° at 390m;	60° at 392.		<u> </u>	<u> </u>	<u> </u>			\sqcup	
i							1	1	(((1	i i	

Drill Hole Re	SIL CREEK District	Hole No. M -88-7	•						
Commenced	Location	Tests et	Hor, Comp.						
Completed	Core Size	Corr. Dip	Vert. Comp.			1	}		
Co-ordinates		True Brg.	Logged by			1		å	
Objective		% Recov.	Date			١		20ller	Ė
Footage [Description			Sample No.	Lèngth	Āns	_	8 6 T	<u>}</u>
393.0-397.6	SILTSTONE & ARGILLACEOUS SILTSTON	NE -i-o- OHADETTED				T			
393.V=397.0	Dark gray and med. gray colored		with a few marrow			1	1		
	laminated intervals. A few 10-			1		T	T		_
	394.0m is bleached whitish with			1		1			_
	porphyroblasts of lightpink gar			 	1	1			_
	bedding planes have minor brecc					П			
	minor bedding plane faults. Th			1e		T			_
	yet & bedding-plane slippage ha					Γ			
-	Much of the core is broken & fr								
	Healed chloritic breccia is evi								
 	Bedding: 54° at 393.5m; 60° at								
	A narrow zone of "fragmental" w		eous clasts in a			\perp	L	\Box	_
	silty matrix is present over ~					╀-	ļ		_
	Py, po & Chl are concentrated a			J	4_	1_	ļ		
						1_	 		_
397.6-438.0	EST 65% QUARTZITES, 35% SILTSTO					╀—	╄-	 	-
	Generally similar to overlying.	intervals of this mixed lithe	ology. Quartzites	ate :		+-	╀		-
	typically thick & med. bedded,	dark gray to dark bluish-gra	y, commonly with				┼-		H
	altered healed fractures - blea					╁	╬╌	-	ł
	pink garnets are present in som	<u>e quartzites. Siltstones ar</u>	e thin bedded &			╌	╫	-	H
	laminated, gray-brown to dark b	luish-gray.				4	`	-	ŀ

Property Commenced	McNEIL CREEK	District Location	Hole No. M-88-7	Hor. Comp.						1.
Completed		Core Size	Corr. Dlp	Vert. Comp.]			
Co-ordinates		<u> </u>	True Brg.	Logged by					å	
Objective		,	. % Recov.	Date			E	5	Collar Dip	ength
Footage From To	Description				Sample No.	Length	3 Anal		8 i	<u> </u>
-438 cont.	At 424.4m a 1	hem zone of fault go	uge is parallel to beddin	ng. Rock at 424.2m i	s		\vdash	1	\Box	\top
			ce - apparently silicifie							
	to the minor	fault.				1		Т		
	From 424.5 to	425.3m core is brok	en & chloritic with local	dissem py. Fractur	es			 		
	at 20° to c/a	are common; may be	cleavage related to the m	ninor fault at 424.4m	7			 		
	-		m; 65° at 415m; 60° at 41			1	1		П	
	¬	; 68° at 433m; 65° a				1	Г			
438-0-455	SE EST 70% SILTS	STONE. 30% QUARTZITE						T		$\neg \vdash$
			siltstones predominate.							
	Quartzites her	re are typically more	e bleached with patchy ho	rnfelsic alteration				_		
	where bands or	r pods of chlorite.	piotite, garnet and rare	pyrrhotite occur						
							_			
	within light o		d quartzite. Siltstones	are variably silicif	ieu		1			
		gray to white altered	d quartzite. Siltstones and dark brown to black i							
	and some narro	gray to white altered ow zones are glassy a	···· ·	n color (not tourmal			_			
	and some narro	gray to white altered ow zones are glassy a .5-3cm wide QV at 35°	and dark brown to black i	n color (not tourmal zone of lighter	inite)					
	and some narro	gray to white altered ow zones are glassy a .5-3cm wide QV at 35° a light gray-green co	and dark brown to black i to c/a occurs within a	n color (not tourmal zone of lighter	inite)					
	and some narro At 436.9m a 1. bleaching to a be related to	gray to white altered ow zones are glassy a .5-3cm wide QV at 35° a light gray-green co the Q.V.	and dark brown to black i to c/a occurs within a	n color (not tourmal zone of lighter rite. Alteration ma	inite)					
	and some narro At 436.9m a 1. bleaching to a be related to Bedding: 68°	gray to white altered ow zones are glassy a .5-3cm wide QV at 35° a light gray-green co the Q.V. at 437.5m; 77° at 44	and dark brown to black in to c/a occurs within a color, with flecks of chlo	n color (not tourmal zone of lighter rite. Alteration ma t 451m; 70° at 455.3	inite)					

Property Mo	CNEIL CREEK	District	Hole No. M-88-7	,	•	1			
Commenced		Location	Tests at	Hor. Comp.			- 1		:
Completed		Core Size	Corr. Dlp	Vert, Comp.			ļ	ı l	. 1
Co-ordinates			True Brg.	Logged by					ā
Objective			% Recov.	Date	·····		Cladm	Bud	oller
		· · · · · · · · · · · · · · · · · · ·				T-	O Analy	<u>- 1</u>	ا_ق
From To	Description	·			Sample No.	Langth			
455.5-467.2	EST. 65% QUA	RTZITE 35% SILTSTONE	•		_}			\square	Ш
	Thick & med.	bedded quartzites a	re commonly bleached to light	: & med. gray colo	ÇS				
	with patchy	greenish discolorati	on. Pale gray-green bleachir	ng is common along			Ш		
			in zones of thin bedded & lam				Ш		Ш
	are dark gra	y to black, locally	brownish-gray. Bedding is mo	stly planar but		<u> </u>		\sqcup	
	there are nu	merous occurrences o	f local disruption; rip-up ty	pe features -		<u> </u>	igsqcup	↓ !	
	ragged clast	s within beds and mi	nor soft sediment deformation	r; small-scale slu	ու	ļ		igspace	<u> </u>
	features.					ļ	\sqcup	┞╌┦	Ш
	Prom 455.5 t	o 456.0m a 1-2cm wid	e quartz vein carries minor p	oo & biotite.		╄	<u> </u>	 	
	Adjacent qua	rtzite is quite stro	ngly bleached with porphyrobl	lastic development	 	 	<u> </u>	ļ'	
	of biotite,	chlorite, pink garne	ts & minor po as well as loca	al very minor redd:	i sh	 	L	-	₩
	ZnS.				-1	 	 	 _	_
	SAMPLE: 455				39114	0.5m	110	13	32
	457.8 to 458	1.1 is a mottled ligh	t gray to white quartz vein.	Upper contact is		 	 	 —	₩
	irregular, v	ery chloritic, at 30	" to c/a; lower contact is at	~ 60° to c/a,		 	╀	┼—	₩
	parallel to	<u>bedding. Irreqular</u>	patches of chlorite & lesser	biotite are prese	nt	 	₩	┼	₩
	within the c	<u>uartz. Λ few grains</u>	of PbS are on the lower cont	act of the vein.	20110	10.3	╁	 	
		7.8-458.1 0.3m		 	39115	0.3π	19	123	1/2
<u></u>	Bedding: 68	3° at 458.3m; 70° at	462m; 65° at 465m	·		+	╀─	┼	+
1	1					1	_	┸—	

			,	•			1	1 1		i 1	
Drill Hole Ro	•		Hole No M-88-7		,						
Property	MONEIL CREEK	District	Hole No. M-88-/				1			ĺ	ĺ
Commenced		Location		Hor. Comp.					1 1		ĺ
Completed		Core Size	Corr. Dip	Vert. Comp.			ł		۰		
Co-ordinates			True Brg.	Logged by		<u></u>		_	ē		ء
Objective			% Recov.	Date			Clelm	e i	oller Dip	306	englh
00000	Description			· · · · · · · · · · · · · · · · · · ·	Sample	Length	Anal		رں	ا يو	تا
ora To	Descripcion			<u> </u>	Ho.				\Box		
467.2-495.0		ONE, 20% QUARTZIT				<u>L.</u>					L
•	Siltstones & ar	gillaceous siltsto	ones are thin bedded & lamina	ited, med.gray-brow						\square	
	and dark blue-c	ray in color. MOs	st bedding is planar but ther	e is considerable	1	L	<u> </u>				
	small-scale irr	egularity with sof	t sediment deformation/slump	features. Locally	d						
			. Med. & thick bedded quart								
	through the int	erval; dark blue-q	ray in color with pale gray-	green bleaching		<u> </u>	1				
	along healed fr	actures. Patchy h	normfelsic-textured concretio	ns are fairly commo	11		<u>L.</u>				
			& rare po enclosed by bleac		1			Ι			L
			core around a central zone o				$oxed{oxed}$				L
			open fracture carries a narro		<u> </u>						
			t. Healed brecciation has a								Г
, , , , , , , , , , , , , , , , , , ,			l to sub-parallel at ~ 30° t					\square			
			es of pyrrhotite, up to ~ lc		T		П	Γ		\sqcap	ŀ
			. Pyrite is also present, bo				T	$\overline{}$		\Box	Г
			PLE: 484.6-485.3 0.7m		39116	0.7m	42	\$N7	100	3.4	2
	Bedding: 67° a	t 469m; 70° at 471;	m; 73° at 478.5m; 71° at 483	m; 69° at 487m;	T			П		П	Г
	67° at 491m; 68						П	\Box		\Box	Г
				_				1			Γ
495.0-500.20	75% QUARTZITE,	25% SILTSTONE	-		1						Π
37770 3000			green to dark blue-gray colo	red, locally bleach	ed						Г
			as of (possible) concretiona		1 .	1	Τ.	1			Π
	hornfels with d						_	$\overline{}$		· · · · · ·	•

Drill Hole Record MONETL CREEK M-88-7 District Hole No. Property Commenced Location Tests at Hor. Comp. Core Size Corr. Dio Vert. Comp Completed True Brg. Logged by Co-ordinates % Recov. Date Objective Description brownish-gray to black Bedding at 65° to c/a REDUCED TO NO. -498.3m-EST. 55% QUARTZITE. 45% SILTSTONE Typical zone of mixed middle Aldridge lithologies. commonly dark blue-gray in color with bleaching along healed fractures scattered patches of hornfelsic development of biotite, chlorite, Zones of siltstones are pyrrhotite. These patches are probably concretions. up to lm thick, thin bedded & laminated, dark blue-gray, dark gray & brownish gray colored. Bedding is commonly planar but there are numerous small irregularities and narrow zones with ragged contacts & rip-up fragments suggesting minor slumping. Minor pyrrhotite occurs throughout, disseminated & in small veinlets At 515.6m lcm of core is crushed parallel to bedding; possibly a minor slip zone At 537m a 3cm wide fault zone of crushed, pale gray bleached siltstone is a bedding - parallel fault zone. Adjacent core is variably bleached & locally crackle-breeciated for 2-3m above & below the fault. More crushed core in a marrow zone at 548m may be a parallel small fault (core is broken). Minor dissem, pyrite occurs on fractures within the zone.

Property McNF	IIL CREEK Dist	ict	Hole No. M-88-7		•						•	1
Commenced	Loca	ition	Tests at	Hor, Comp.								Š
Completed	Con	Size	Corr. Dip	Vert. Comp.								
Co-ordinates			True Brg.	Logged by		,			히			ا
Objective			% Recov.	Date			E S	9.0	Soller	٠,	Ę	ON AIO
		 			,	-	<u> </u>	<u> </u>	8	3	3	뎔
rom Te	Description	•		<u>. </u>	Sample No.	Longth	Anal	7818		1		Т
557.8 cont.	Bedding: 72° at 503	m; 63° at 509л	n; 72° at 578m; 58° at 527m; 6	2° at 534m;		1.						Τ
	63" at 541	l m; 74° at 55	lm;									I
												I
557.8-561.4m	SILTSTONE, 5-10% QU/	RTZITE	<u> </u>	_								Ι
	Thin bedded and lami	nated, med. t	o dark grav with some dark blu	e-gray to black								I
	zones. Composition	varies from a	very hard, silicified dark si	ltstone to silty		<u> </u>						1
	argillite.				<u> </u>							╛
	A few med. thick qua	rtzites are D	resent: these show alteration	both as bleached	<u> </u>							
<u> </u>	pale green colored m	ottling along	healed fractures & whitish 'c	oncretions' with		ļ						1
	med. & coarse-graine	d biotite, ch	lorite, garnet & minor pyrrhot	ite.	<u>.</u>	<u> </u>	<u> </u>					1
	At 558.0m a 1.5cm ba	nd of crushed	rock parallel to bedding is p	robably a minor	<u> </u>	<u> </u>	<u> </u>		<u>.</u>	Ш		1
	slip.				<u> </u>	<u> </u>						1
	Bedding: 62° at 558	.51: 64° at 50	61.4m		<u> </u>		<u> </u>				•	╧
	· · · · · · · · · · · · · · · · · · ·				<u> </u>					<u> </u>		╀
561.4-622,21	QUARTZITE, minor SIL	TSTONE			<u> </u>		<u> </u>	L				1
	Mainly thick & med.	<u>bedded light c</u>	ray to dark gray quartzites.	About 15% of the	<u> </u>	 	<u> </u>	_	_			1
	interval is thin bed	ded & laminate	ed gray & brownish-gray siltste	ones. 'Normal'			<u> </u>	_		Ш	·	Ł
	alteration similar t	o overlying in	tervals is present throughout	. A few thin	<u> </u>				<u> </u>	\sqcup	(1
	quartz veins, up to	~ 6cm wide, c	out the core at high angles.	These typically		↓	_	<u> </u>				1
	carry biotite, chlor	ite, pyrrhotit	e. At 572.8m minor Cny occur:	s with po in a	 	 	_		_	┦		1
	Otz vein and at 573.	5m minor ZnS i	s present in a 5mm wide O.V.	·	1	1-	<u> </u>					1
L.	SAMPLE 572.6-573.2m	0.6m			39117	0.6m	1 72	120	100	ผฝ		- 1

	CNEIL CREEK District	Hole No. M-88-7	· ·	•		ļ. ļ		
Commenced	Location	Tests at	Hor, Comp.			1		
Completed	Core Size	Corr. Dip	Vert. Comp.			-	1	
Co-ordinates		True Brg.	Logged by			<u> </u>		Ē
Objective		% Recov.	Date			틍	Brg.	1
Footage	Description			Sample	Langis	Anai	_	10
LOS IS	Cescipion		:_	No.				i'n
<u> </u>	599 6 - 600.3 Mostly broken quar	ctz veining, at 10-15° to c	/a, Chlorite, biotit	٠,	<u> </u>	<u> </u>	L	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$
	garnet, & minor pyrrhotite are pr	resent in the quartz.				<u> </u>	<u> </u>	<u> </u>
	SAMPLE: 599.6-600.3 0.7m	- <u>-</u>	· · · · · · · · · · · · · · · · · · ·	39215	0.7m	17	9	29
	At 617.7m a lcm wide bedding-para	allel band of fault gouge i	s a probable minor			<u></u>	上	<u> </u>
	bedding-plane slip.			<u> </u>		<u> </u>	L	1
<u> </u>	Minor po 6 py are present through	h the interval. Po is fine	ly dissem. through			<u> </u>	L	
	some of the beds (<<5%) and occur	rs locally as discontinuous	laminations 1-3mm	ــــــــ		1_	$oldsymbol{ol}}}}}}}}}}}}}}}}}$	$oldsymbol{ol}}}}}}}}}}}}}}}}}$
	wide. Py is present on some frac	ture surfaces.	·····	<u> </u>		lacksquare	<u> </u>	1
	Bedding: 73° at 563m: 57° at 56	9m: 64° at 577m: 66° at 58	lm: 70° at 585m:	<u> </u>		 	丄	↓
•	64° at 589m: 67° at 595	5m: 63° at 603m: 62° at 606	m: 66° at 6125m:			上	ـــــ	
	72° at 621m.	•		<u>. </u>		<u>Ļ.</u>	1_	$oldsymbol{\perp}$
	Two narrow bands of stratigraphic	marker are present; at 60	7.2m a 3cm band is o	F		<u> </u>	$oldsymbol{\perp}$	ــــــ
	faint contrast and at 612.6m a 60					╄	1_	igspace
622.2-625.4	SILTSTONE, SILTY ARGILLITE					<u> </u>	╄-	
	Thin bedded & laminated, with one	med. thick silty quartzit	e bed at 623m.			1_	丄	╄
	Color is brownish-gray; bedding i	is mostly planar with some	wavy bedding & some			1_	丰	1_
	minor slumping evident. Bedding	is at 73°.	······································		 	 	\bot	╄
		<u></u>				1_	丄	- -
625.4-645.7	75% QUARTZITE, 25% SILTSTONE		······	4		 	╀	┿
023,4-047.7								

Property	MCNEIL CREEK District	Hole No. M-88-7	·	•						•
Commenced	Location	Tests at	Hor. Comp.				li		- 1	
Completed	Core Size	Corr. Dip	Vert. Comp.					۵]	
Co-ordinates		True Brg.	Logged by		·			2	ļ	4
Objective		% Recov.	Date			E E	g G	oller Dip	•	Lengih
	Description			Sample	Length	Anai		<u> </u>	9	
cotage rom Te	Description		<u></u>	No.		Cii	₽b	2n 7	٦	15
-645.7 cont.	and mottled light gray patches wh	ich may be concretions with	<u>biotite, chlorite,</u>	<u> </u>					_	
	pinkish garnets & minor po. A 1					_		\square	_	
	carries minor biotite & chlorite.			ļ					_	
	627,3m is coated with pyrrhotite			<u> </u>				Ш		
	628.4m (1 cm wide) and 628.7m 3cm								_	
	SAMPLE: 628.6-628.9 * 30cm of 0			39118	0.3m	3_	4	8	1.1	2
	Bedding: 73° at 629m; 65° at 635	m; 68° at 639m; 69° at 644m								
	AT 644.9m a 5mm wide yellow-brown		lcite vein is							
	parallel to bedding.						Ι.			
645 7-648 8	SILTSTONE, SILTY ARGILLITE									
043.7 040.0	Thin bedded & laminated, brownish	-gray. Generally similar to	622.2-625.4m					·		
	interval. Bedding is at 70° to c						Π.			
640 0 600 2	QUARTZITE, ~ 15% SILTSTONE			1		П	Π			•
040.0-000.2	Quartzites are med & thick bedded	light gray to brownish gray	v & commonly			Т	П			
	somewhat mottled by alteration.				1		T	\sqcap		Γ
	fractures in many of the quartzit					1	T			
	generally darker brown-gray color					Т	T		Γ	1
	some brecciation and quartz-chlor				1		Т	1		Ī
	662m bedding-parallel bands up to					Т	Τ	П	Г	T
	textured patchwork of quartz and				1	Т	<u> </u>		\sqcap	
	At 663.2m 30cm of quartzite core		ne fractures have i	10		1		T		
,	obvious matrix.	15 Clacie Diecelated, Martin		-		T			\sqcap	

Рторегty	Record MCNEIL CREEK District Location	Hole No. M-88-7	Hor. Comp.			-		
Commenced	Core Size	Corr. Dip	Vert. Comp.			1 1		
Completed	Cota area	True Brg.	Logged by			1]		g a
Co-ordinates		% Recov.	Date			[]	Brg.	3
Objective		No Decore	554			틍	81	ই
Footage	Description			Sample	Length	Analy		Zn I
rom Ye	1			TWO.	+	1	20	211
-688.2 cont	<u> </u>	to very light gray quartz véin at	5-10° to c/a:		+	1	-	
·	margin of the Vein is irregular.	<u>, '</u>				+_	_	
	SAMPLE: 665.4-665.9 0.5m			39119	0.5m	7	8	26
		al is bleaced to a bight gray colo			-	-	<u> </u>	
<u></u>		robably hydrothermal alteration.	Pyrite occurs	 	-}	-		-
	on a few fracture surfaces throu			_	- 	 	-	\vdash
	Numerous fractures are coated wi				-	-	-	}
	Bedding: 70° at 651m; 63° at 65	58m; 72° at 661m; 65° at 664.5m; 6	5° at 673m:			-	<u> </u>	
	70° at 679m; 70° at 685m					- 	├	
688.2-688.4	~ 20cm of QUARTZ SAND		<u></u>		 		1	₩
	Fine grained subhedral quartz cr	ystals, mixed with muscovite, som	e dark fragmer	11:		╄-	↓_	₩
	(drill cuttings?) and fine cuhed	dral pyrite. Adjacent rock is app	arently unalte	red.		1	↓	╄
	SAMPLE: 688.2-688.4 0.2m			39120	0.2	m 587	نما	<u> 166</u>
						676	PP	×w;
						290	<u> </u>	opm.
						593	tom.	s
	<u> </u>					118	ppr	п Ва
						Ί	\mathbb{L}	Ŀ
						T	\mathbb{L}	\mathbb{L}
 	 					Т	T	T
					_	\neg	_	1

Drilli Hole R	ecord	Male Na. M-88-7	· .							2
Commenced	Location	Tests at				İ				Ø
Completed	Core Size	Corr. Dip	Vert. Comp.				!	ŀ		1
Co-ordinates		True Brg.	Logged by			١.		đ		ا
Objective		% Recov.	Date			Ē	Brg	Coller Dip		Hole No.
						19		8_	Elev.	5 3
Footage From 10	Description			Sample No.	Length	Ana	ysis		1	
688,4-763.5	QUARTZITE. 20% SILTSTONE			<u> </u>	<u> </u>					十
585.4-703.5		ng 648.8-688.2m interval; less alter	ation is evident		 	1				十
		but there is local minor disturbance			+		1			_
		A few isolated, rounded, elongate cla		ŧ	1	1				\neg
		can be seen. There is minor localli								
		. at 731.Sm. Pyrrhotite occurs in fr				Ì				
	in a few places & there is m									
	758.9-760.8m is more thin be	dded & laminated, chloritic-altered t	to gray-green			<u> </u>	<u> </u>			
	colur.				 	<u> </u>	<u> </u>			_
	Bedding: 70° at 690.0m; 68°	at 694m; 77° at 700m; 75° at 707m; 7	75° at 709m;	<u> </u>	1	_	↓_		Ш	
	74° at 717m; 78° at 721m; 76	° at 724m; 75° at 730m; 76° at 735m;	76° at 740m;	<u> </u>	1	<u> </u>	<u> </u>			
	76° at 749m; 77° at 756m; 73			<u> </u>			_			_
763.5-767.5	SILTSTONE & ARGILLITE, minor		·····	<u> </u>		<u> </u>		<u> </u>		
		ay, thin bedded & laminated siltstone	e,			_	ot			
	argillaceous siltstone & arg	illite with 15% med. thick beds of me	ed to dark blue-	ļ		<u> </u>		<u> </u>		
	gray silty quartzites. Mino	r fine-grained pyrrhotite is present	through much of	L		<u> </u>		<u> </u>		
		trated along vaque bedding-parallel z		<u> </u>	<u> </u>	<u> </u>		<u> </u>		
	Redding is at 78° to C/a.			<u> </u>	-	ـــ	╄-	<u> </u>	\sqcup	
		·	·····	ļ		<u> </u>	↓_	ļ	ļ,	
				 		igapha	╄	<u> </u>	_	
				 -	- -	 -	\ _	 	<u> </u>	$\vdash \vdash$
L				<u> </u>		<u>_</u>		<u> </u>	<u> </u>	
	:				•			•		51/-04E)

Property	Menell Creek	District	Hole No.	M-88-7		•					
Commenced		Location	. Tests at		Hor. Comp.						
Completed	······································	Core Size	Corr. Dip		Vert. Comp.					1 1	l
Co-ordinates	•		True Brg.		Logged by]		중	ļ
Objective			% Recov.		Date			Ę	Bro.	3	ż
00/00/01			•					<u> </u>	-	8	ŭ
	Description	,				Sample No.	Longto	Anal		En l	۲,
From 16					<u> </u>		1	1	-		۲
767:5-789.5m	OUARTZITE, 35-4	10% SILTSTONE			Park San		╁	╂──	-		H
<u> </u>	Med, gray to d	ark blue-gray, th	ick & med. bedded (silty) quartzit	es. Thin		 -	 	-		۲
	bedded & lamin	ated siltstones &	silty argillites a	re generally da	rker in color	<u></u>	┼	┼─	-		H
	dark gray-brow	n. SILTSTONE zon	es are fairly unifo	rmly distribute	d through the		╂	-	-	-	H
	interval.						+	╫	├	-	H
			esent locally, alon		ecciation.	 -	┼	┼~	├-	 	H
· [88.0m. minor po. Co			_{	 	┼	 -	-	₽
	Bedding: 77°	at 771.0m: 75° at	<u> 777.0m: 77° at 784</u>	m: 78° at 788m.		_		1-	 -	 	ł
	SAMPLE: 787.6	- 788 1 0.5m				39216	0.5m	59	BZ	268	۴
789.5-801.5	SILTSTONE, 30%					- 	+	╂	 —	 	╁
	Variably color	ed from pale gray	green to darker gr	ay-green & blue	-gray. Thin	5		 		┯	╀
	med. bedded.	Some med. & thick	zones are internal	<u>ly laminated -</u>	presumably			┼-	┼-	┼—	Ŧ
	siltstones but	qenerally strong	ly bleached & silic	ified. Bedding	is planar at		-{	╂		┼—	╀
	75° to c/a.								┼-	┼-	+
	Very minor pyr	ite is present ale	ong thin fractures.			_		+-	╀-	╀—	+
801.5-809.7m	QUARTZITE, 153							 	┼-	╀	+
	Mainly thick-b	edded quartzites	with narrow zones o	f thin bedded.	darker				╀	+-	+
	siltstones. A	few thin, poorly	developed quartz v	cins/silicified	fractures			+-	╄	 	╀
			: minor po is pres					+-	4—	╨	+
			nd to be at ~ 70° t							1	1

- [[[] -

Drill Hole R											. 27 1984 19
Property	MONETL CREEK	Cietrict Location	Hole No. M-88-7	Hor. Comb.							뚕
Completed		Core Size	Corr. Dio	Vert. Comp.							- }
Co-ordinates			True Brg.	Logged by					بي		
Objective	····	·	% Recov.	Date			ε	Brg.	Collar Dip	_	Lengin Hole No.
00,000.00									3	Elev.	를
Footage From To	Description				Sample No.	Langeh	Ana Cii		2 п	Ag I	As Ai
809.7-812.3	SILTSTONE		· · · · · · · · · · · · · · · · · · ·	**************************************		│ .			¥		
		m is a narrow, l	bedding-parallel shear about 4	mm wide; probably		† — —					
			ault. Thin & med. bedded with								\top
			ed throughout. Minor finely d				<u> </u>				
			bedding-parallel bands of po								
			ning to gray & pale green.								П.
	SAMPLE: 810.3-8		veins & bands		39217	0.4m	44	5	55	0.1	2 4
812.3-820.4	SILTSTONE				Ţ						
	Finely (but indi	stinctly) lamina	ated to massive. Few bedding p	olanes are present			Ĺ.,				
	at ~ 80° to c/a.	Color is med.	to dark gray with vague mottli	ing. Pine dissem.					L '		
	po is common thr	oughout, est. 2%	. A few of the more distinct	bedding planes]		<u> </u>		·		
	have po concentr	ated along them,	as discontinuous bands.								
	SAMPLING: 818.4				39218	1.0m	27	12	113),]	2 3
	819.4	-820.4 1.0m			39219	1.Om	33	16	74	1	222 1
820.4-825.3	CONGLOMERATIC SI	LTSTONE									
	Mainly massive,	locally with thi	n bedding planes, vague lamina	tions and vaque					<u> </u>		
	compositional ba	nding. Rounded	clasts, darker in color than t	he siltstone,			<u> </u>				
	range in size fro	om <1 MM TO_>2cm	diam. Clasts are scattered th	rough most of the							
			few % to about 6% over 15cm.				<u> </u>				
			rims and discontinuous intern								
	Clasts and discor	ntinuous, po-bea	ring lenses form a fabric whic	h is bedding-			<u>.</u>	<u> </u>			
	parallel at 40°	to 80° to c/a.			1						
<u> </u>			•								11.447

Drill Hole R	ecord .									
Property	McNeil Creek District	Hole No. M-88-7				ľ				٠
Commenced	Location	Tests at	Hor. Comp.					i	1	
Completed	Core Size	Corr. Dip	Vert. Comp.				1	1 1	Į	
Co-ordinates		True Brg.	Logged by					oller Dip	. 1	_
Objective		% Recov.	Date			臣	Brg.	₫	<u> </u>	engre.
						Ι <u>Ο</u>		8	<u></u>	<u>:</u>
Footage Form To	Description			Sample No.	Length	Anal	काण दिया	2 n	ла Т	As
				1		<u> </u>				-11-
-825.3 cont		e, lenticular and are probably rip-u	in Clasts.	 	<u> </u>	 	-	\vdash		
	This entire interval may be a slu	mmp unit.		39220	1 0-	1	-	55		_
	SAMPLING: 820.4-821.4 1.0m		·	39221	1.1m	1		67	-	_
	821.4-822.5 1.1m	<u> </u>			1.1m	_			(
	822.5-823.6).1m				0.7m	1			****	
	823.6-824.3 0.7m					1		1	7-71	8
	824.3-825.3 1.0m			39224	1.0m	 31	15	58	}-1	5
			<u></u>		-	╄	┼─	├──	 	_
825.3-836.7	SILTSTONE				 	{	 	[-	\vdash	
		from quite distinctly laminated to		 	├	╀	┼	 	\vdash	-
		are defined by biotite, chlorite and			 	┼─-	! —		┞—┦	-
		av: some compositional variation is		th	├	╀		-	╀─┦	-
	lighter colored zones more argill	laceous: argillaceous siltstone. Es	t. 2-31			╄	—	┼—	 	H
	dissem, po occurs throughout, ter	ding to concentrate as faint, often		-	 	╄	┼	┼—	 	├-
	discontinuous, laminations,				 	┼	┼	╀		⊢
<u></u>		lanar although locally there is evid			 	┼	╄	 —		├
	wavy bedding or concretionary dev	elopment of pyrrhotite. Bedding at	titude is			┼-	╬	┼	<u> </u>	L
	80° to c/a throughout.		_ 		 	╄	╀	4		┞—
	SAMPLING: 825.3-826.4 1.1m	·	···	39225				84	7	2
	826.4-827.5 1.lm			39226	1 . 1 m	28	14	148	0.1	2
	827.5-828.6 1.lm			39227	<u>l 1m</u>	18.		373	+	2
	828.6-829.7 1.lm			39228	1.1m	Вв	12	774	0.1	17

Drill Hole R Property Commenced	ecord McNeil Creek	District Location	Hole No. M-88-7 Tests at	Hor. Comp.							-	Sheel &
Completed		Core Size	Corr. Dip	Vert. Comp.		*******			ĺ		,	ĺ
Co-ordinates			True Brg.	Logged by				1	å			
Objective	·		% Recov.	Date			Sela	g. G		,	enger :	Hole No.
<u></u>							10	-	₹	E S	<u> </u>	운
From To	Description	·			Sample No.	Langth	Anah		7.	λαİ	N 40	<u> </u>
836.7 cont.	SAMPLING: cont.		-					7.0		^	Λ <u>></u>	
		-830.7 1.0m			39229	1.0m	19	10	107	D. 1	2	3
	830.7-	-831.7 1.0m			39230	1.0m			-	5.1		4
	831.7-	-832,7 1,0m			39231	1.0m	16	22	205	5.1	2	2
<u> </u>	832.7	-833.7 1.0m			39232	1.0m	23	19	107	5.1	2	2
[833.7-	-834.7 1.0m			39233	1.0m	i 4	5	53	0.1	2	ì
	834.7-	-835.7 1.0m			39234	1.0m	17	7	7	p . 1	2	3
	835.7-	-836.7 1.0m			39235	1.0m	22	6	29	0.1	2	1
836.7-837.7	ALTERED SILTSTO	NE										
	Mottled & bleac	hed, pale to dark	gray-green colored. Bedding pl	anes are wavy,								
	broken & some a	re rather indisti	nct. Fine-grained pyrite occurs	on fracture				П				\Box
	surfaces. Core	is moderately br	oken but not sheared.									
	SAMPLE: 836.7-	837.7 1.0m			39236	1.0m	26	18	39	0.1	46	1
837.7-838.8	SHEAR ZONE, QUA	RTZ VEINING										
	Cleavage/sheari	ng ranges from 38	o to 65° to c/a. Zone is discol	ored by								
	alteration to a	dark gray to pal	e gray-green color. Bedding is	entirely]							
	obliterated; c	olor banding appe	ars due to cleavage. Minor faul	t gouge occurs								
	at 837.7m; abou	t lcm of crushed,	gray-green rock.									
	838.4 to 838.7	is largely quartz	veinging, sheared at 60 to 65°	to c/a with			_					\perp
	included crushe	d bands of wallro	ck, disseminated pyrite and a 3	cm long x ~ 1cm								
	wide irregular	patch of fine-gra	ined PbS near the bottom of the	quartz vein zone	ļ	<u> </u>						L
	Coarse pyrite o					7	[1	<u> </u>			

-

roperty	McNeil Creek	District Location	Hole No. M-88-	7 Hor. Comp.			, 				•
ompleted		Core Size	Corr. Dip	Vert. Comp.						ı	
o-ordinates			True Brg.	Logged by			. '		윰	1	i
bjective			% Recov.	Date			Elelo Bland	9	Coller Dip	* ************************************	ugue.
							O		<u>8</u>		<u>.:</u>
ortage prib To	Description			•	Sample No.	Langth	Anal Cu		Zn	Āα	Ā:
	Basal 10cm of	this zone is simil	ar to the sheared top part	of the interval.						\neg	
	SAMPLE: 837.7				39237	0.7m	37	20	44	0.2	23
		838.8 0.4m			39238	0.4m	24	83:12	563	139	Jy 95
838 8-842.1		SILICIPIED SILTST	ONE .								
<u> </u>			nout: glassy and hard. Som	e thin bedding is evi	4		匚				
	dept with silts	tone/argillite te	ctures; most of the interva	l is med. thick beds			<u> </u>				L.,
			ne or quartzite. Small pat			<u> </u>	<u> </u>				_
			the interval. Minor Cpy i		<u> </u>	<u> </u>	<u> </u>		_		L
	Color varies fr	om light gray, lie	tht gray-brown, to darker b	lue-gray.	<u> </u>	<u> </u>	↓	 	<u></u>	لــا	L
	Recognizable be	dding is at ~ 80°	to c/a.		 	<u> </u>	ــــ	<u> </u>	<u> </u>	<u> </u>	L
	SAMPLE: 838.8-	839.8 1.0m			39239	1.0m	13	44	31.	0.1	3
842.1-843.1	QUARTZ VEIN					┿	—	╄	₩	 	Ļ
	Mottled blue-gr	ay to white quart:	z. Contacts are at 15-20°	to c/a (i.e. vein is	-	 	—	╄-	↓—	ļ [†]	Ľ
	probably about	40cm thick) 20% of	consists of ragged patches	of biotite, Chiorice		 -	╀	┼	[—	 	⊢
			patches of pyrrhotite are s	cattered through the		 	—	┼	├ —	_	⊢
			znS may be present.		 	 	 	_	Į.	<u> </u>	<u> </u>
	SAMPLE: 842.1-	843.1 1.0m	<u> </u>	 	39240	1.0m	134	57	72	0.2	5.2
843.1-878.4	SILTSTONE, min-	or QUARTZITE					+-	+	 	-	⊢
	Thin bedded sil	tstone & argillace	ous siltstone with about 5	<pre>% med. thick quartzit</pre>			╀	┼—	┼	 	⊬
			ites are more common in the			+	┼	┼	┼	 	
	interval. The	entire interval is	s altered; silification is	pervasive and there i	5		ــــــــــــــــــــــــــــــــــــــ	1_	ــــ	ļ	↓_

	Drill Hole	Record		•							- 1	31
	Property	McNeil Creek District	Hole No. M-88-7	•							198	Ě
	Commenced	Location	Tests at Hor.	Соптр.					. 1		ŗ	1
	Completed	Core Size	Corr. Dip Vert.	Comp.		_			· I		ı	
1	Co-ordinates		True Brg. Logg	ed by					훕ㅣ		_	<u>:</u>
	Objective		% Recov. Date				Claim	E.0	oller Dip	ě.	Length Hole No	5
						·	<u> </u>	<u> </u>	8	ă	<u> </u>	<u>-</u>
	Footage From 16	Description			Sample No.	Langth	Anal Cu		Zn.	Λg	s	λu
	-878.4 con	brecciation and quartz tcalc	ite veining. Fracture surfaces are commonly	chloriti	С					\Box	\neg	_
į		and disseminated med-coarse								\Box	工	_
		Bedding is typically planar	at ~80° to c/a with wavy irregularities pres	ent but							\Box	
			silicification occurs adjacent to quartz vein									
		with local development of pi	nk garnet aggregates.				L	_				_
		At 853.2m thin quartz veins	occur over 7cm of core, at 70° to c/a. Pale	gray-		<u> </u>		<u> </u>		\sqcup	\dashv	
		green bleaching extends from	852.8m to 853.6m with dissem. medcoarse gr	ained		<u> </u>		Ш		$\boldsymbol{\sqcup}$	\dashv	_
		pyrite throughout.					<u> </u>			\sqcup	\dashv	
		SAMPLE: 852.8-853.6 0.8m			39241	0.8m	21	135	84	0.6	<u> </u>	4 3
٠		At 857.4m a 6cm band of core	is all chlorite & biotite with white quartz-	feldspar	٠.	 	_	<u> </u>	Ш	\sqcup		_
		margins. Possibly a concreti	on.			Ļ	<u></u>	_	<u> </u>		\dashv	_
		At 862.9m 10cm of core is bre	cciated with a calcite matrix. Angular fragm	ents		<u> </u>	<u></u>	\Box		1		_
		of greenish-altered siltstone	are displaced by white calcite veinlets < lm	m to						Ш		_
		5mm wide; veins are quite ir	egular. Minor vein & dissem. pyrite are as	sociated	·	ļ	<u> </u>		\square			_
		with this bx.				<u> </u>	<u> </u>	<u> </u>	Ш			_
		At 865.0-865.1cm a probable o	oncretion; layered chlorite, feldspar & quar	tz with		 	<u> </u>	<u> </u>		\sqcup	\dashv	
		pink garnets enclosed within	strongly silicified siltstone.				<u> </u>	<u> </u>	نــــا	\sqcup		
			brown to black biotitealtered material with	small,		<u> </u>		<u> </u>	لــــا	\vdash	\dashv	_
		amparently randomly-oriented	light gray crystals, 1x3mm in cross-section,			├	-	┡	 		\dashv	
		presumably chlorite.				 	_	├-	-	$\vdash \vdash$	-	•
			hout, usually slightly concentrated in narro	w bands.		 	 ``	┼—	₩	 		-
	L	h few thin veinlets of po are	also present.		<u> </u>	<u> </u>	<u>L.</u>	<u></u>	ட			-
		*				•				1	21447	

Drill Hole	Record					}	į.]			
Property	McNeil Creek	District	nois no.	-88-7		1			, 1	
Commenced		Location	Tests at	Hor, Comp.			$_{1}$ $_{1}$,	
Completed		Core Size	Corr. Dip	Vert. Comp.			į 1		اما	
Co-ordinates			True Brg.	Logged by		·	1_4	1. 1	8	
Objective			% Recov.	Date			E	B.	Tallo	š
	Description				1		O I		<u>0 =</u>	<u>=</u>
Footage From Te	Description				Sample No.	Length			in N	Δ
878.4~885	.0 GABBRO SILL					<u>.</u> '	<u></u> _ '	<u>'_</u> _		Ĺ
	Alteration has	masked both upper	8. lower contacts; fine-g	rained biotite-altered			' ال	$\sum_{i=1}^{n}$		Ĺ
	seds grade int	o biotite & chlori	te-rich gabbro. Upper co	ontact at 878.4m appears	i		\prod'	\Box'		Ĺ
	bedding-parall	el while lower con-	tact at 885.0 is sub-para	illel to bedding (about			<u> </u>			i
	10" to hedding). Gabbro is medi:	um to dark gray-green, fi	ne-grained at the conta	cts,		\Box'			Ĺ
	grading to med	ium grained across	most of its thickness.	Chloritized amphibole,		<u> </u>	<u>_</u> '	'		L
	gray feldspar	& ~ 5% dark brown	to black biotite are the	major constituents.	<u> </u>	<u> </u>	'	'		Ĺ
	Minor pyrrhoti	te occurs throughou	out; small blebs & lenses,	, usually with very minc	r					Ĺ
	Cpy. Near 881	.4m a thin quartz ·	vein at 5-10° to c/a carr	ies po, Cpy and patchy						Ĺ
	reddish ZnS.	SAMPLE: 881.3-881.	.8 0.5m		39242	0.5m	, 34	127	244	įť
885.0-944	1.4 SILTSTONE				<u> T </u>					ĺ
	Mainly thin &	med. bedded; numero	ous med. thick 'beds' are	finely laminated. A	T					ĺ
	few med, thick	beds are quartziti	ic.					L		Ĺ
	Alteration has	produced silicific	cation & bleaching throug	hout; narrow zones are						ĺ
			color & there are local c							ĺ
	porphyroblasts	of garnet. Chlori	ite and pyrite are common	along fracture surface	s					
	and sericite	is pervasively deve	eloped throughout. Most	bedding is planar,	T					ĺ
	typically at 7	5°-80° to c/a; loci	ally there is lensey & wa	ivy bedding with small	\top					ĺ
	scale cross-ber	dding. Fine pyrrhe	otite is desseminated thre	oughout & is weakly	Τ					į
		,	bands. Locally there		u s					ĺ
	h bootelings // 1		iscontinuous) of po.	- - . -	T,	T	Ι.	.]		ĺ

	•		• • •	•	•		-			1	
roperty	McNeil Creek	District	Hole Na. M-88-7			ļ					ē
ommenced		Location	Tests at	Hor. Comp.							-
mpleted	<u>., </u>	Core Size	Corr. Dip	Vert. Comp.					ا ۵		- 1
o-ordinates			True Brg.	Logged by		<u>. </u>	_		윤	s	
bjective			% Recov.	Date			5	Brg	릏	. Igu	!
	· · · · · · · · · · · · · · · · · · ·				1	L	Analy		<u> </u>	<u>د</u> ا ن	
tage	Description	•			Sample No.	Length		Ph.	zn h	a hé	
	AT 928.3m disse	minated reddish Zn	S (?) or garnets are associate	ed with pyrrhotite	,						
, , , , ,	7		discontinuous laminations.					\Box	П		
			band of fine grained pyrite	le present					П	\neg	
	SAMPLE: 928,2-			LA DIESENL	39249	2 2 2 2	25	145	105		-
44.4-950.0	T.		•		127297	P. EIII	77		1831		-
44,4-950.0	7		light to dark gray in color	r mived with				\Box	\Box	$\neg \vdash$	
					1	 				一	_
			iltstones are darker grav to b		 	 				\dashv	_
			with a few patches of pink of	marnet addregates.		 		\vdash	_	-	
	Bedding is at				 	 			1	一	_
950.0-960.0	SILTSTONE, mine				 	 	1		 	+	
			prownish gray & greenish gray		 	 	╁	\vdash	-	\dashv	_
			zite. Numerous narrow bands			┼	┼	 	\vdash		_
			ently silicified (possibly wea			┼	┼─`	 	╁╾┼		_
			r throughout - usually adjace			 	 	 	 		
	cified zones.	Fine pyrrhotite is	disseminated through much of	the interval;	- 	┼	┼	├	 	\dashv	
			ng - parallel bands.			↓ —	╄	⊢	├ ─┤	-	
	A few narrow be-	dding-parallel band	s & laminations of po are als	o present, and at	-	 	₩	 	\vdash	 -	
	959.6m a 4cm wie	de patch of po cove	rs half of the core diameter.		<u> </u>	╄	—	╄	┦		
(Bedding is most	ly planar, there ar	e local irregularities & band	s with small scal	e	 	↓	┞	Ш	-	
	cross bedding.	Most Bedding is at	78-84° to c/a.		 	 	—	╄	\vdash	-	
	SAMPLING: Spec	imen at 950.0m for	boron. Specimen at 953.5m for	boron.	4	┿	<u> </u>	 		_	
	7	4-960.0 0.6m		·	39250	b.6m	17	24	[69]	الت	18

Drill Hole Re		W 99.7				-			
Property	McNeil Creek District	Hole No. M-88-7)	1 1	, 1		.
Commenced	Location	Tests at	Hor, Comp.			į 1	1	.	. !
Completed	Core Size	Corr. Dip	Vert. Comp.		\longrightarrow	I^{*}	()	اما	. 1
Co-ordinates		True Brg.	Logged by		\longrightarrow	1_1	4	8	
Objective		% Recov.	Date			橿 1	5	檀 /	į
			· lea		· · · · · · · · · · · · · · · · · · ·	O Anely	_	س ک	<u> </u>
Footage To	Description		. No	rapie L	Longen	Cu.	配	Zn	Λσ
960.0-966.6	GABBRO SILL	-							
(400.0-30×1x-1	Contact 960.0m is slightly distur	rbed by a quartz vein (which e	xtends to 960.9m)						_
 	but is quite obviously conformable	le to bedding: contact at 966.	6m is fairly sharp						_
	parallel to bedding at ~ 80° to							\Box	1
	960.0 to 960.9 is mixed quartz ve	histite, ga	-not & pyrrhotite					\Box	_
 	in a hornfels-textured zone paral	11 With Colorator Passacer	na quartz & quartz-					\Box	, -
	in a hornfels-textured gone bald.	181 to a 1th with the proces	+ =+ +he 960.0					\Box	,-
 	feldspar vein. (0° to c/a). Whit	6 SIDICE SITERION IS PIECON	at the source		—			\Box	_
 	contact.	· · · · · · · · · · · · · · · · · · ·	··· mite			1			_
 '	960.9-965.2m is fine to med. grai	ned, gray to gray-green massa-	/e, quice			-	-	1	$\overline{}$
	homogeneous, feldspar-biotite ric	h 'qabbro'. Z-3 % Gissem, po .	18 present and		-	 	1	 	$\overline{}$
	there are scattered 'porphyroblas	ta' of pale pink garners up to	3 1.2cm diam.		 '	 	—	1	_
	At 965.2m a 4cm wide light gray-w	/hite quartz vein occurs at 20	to c/a. Minor		+	1	+-	+	
	chlorite and biotite are present	within the quartz.			 	+	+	+	+
	965.3 to 966.6 is med. to fine gr	rained gray-green gabbro. Text	ture is a bit		 '	┼	+-	₩	-
	mottled, probably influenced by Q	JV at 965.2; texture is fine-gr	rained at contact		1	 	╀	+-	+
	at 966.6m.	·			1	+	 -	+~	╁
	SAMPLING: 960.0-960.9m 0.9m		<u> </u>	9251	0.9m	33	31	100	P
966.6-982.4	SILTSTONE				4	 	+-	4	+
	Thin & med. bedded. Central part	c of the interval is quite alt	ered; color is			丄	丰	_'	Ļ
<u> </u>	dark gray & gray brown from 966.6	6 to 972.0m and from 976.0 to 9	982.4. Flecks of		Щ.	1_	1_	—'	Ļ
	light gray chlorite (7) are commo	on in some beds. Central 4m fr	rom 972 to 976m is		<u>.l.</u>	上	<u>.</u>	 	Ļ
	The second secon	cattered quartz veining and pyr	rite mineralization		1	1	1	1	l.

Drill Hole F	lecord			X-6 - 1	· .					Ιİ		 35
		Hole No.				,						Sheet
Commenced	McNeil Creek District : Location	Tests at	M-88-7	lor, Comp.			l					Ė
Completed	Core Size	Corr. Dip		ert Comp.]			J
Co-ordinates	00.4.244	True Brg.		ogged by			Ì		qiO	1		يا
Objective		% Recov.		ate		 	E			.	ength E	ON elo
Objective		% nacov.		/4 Ug			E E	r Brg.	Soller) j	Ě	
Foolage	Description				Sample	Length	Ānai		1	T		<u>ب</u>
rom (s					ma.		Cu	Pb_	Zn_	Λο	ΛS.	ť
-982.4 cont	T			tite has	 	 		-	-	┤┤		۲
•	coarse cuhedrai crystals d				 		 		 	╁		r
	At 969.0m a 3mm wide, ragg				 	-	⊢	1	一	╌┤		t
	From 972.5 to 973.0; A ser				 		├	╂╍╌┤	╁	┤╌┤		ł
····	bedding Brecciation, she		associated. Wall I	OCK 1S	<u> </u>	-	一	1	1	11		t
	bleached to a dull vellow-				 		\vdash	1	╁╌	1	<u> </u>	t
	From 974.1 to 974.3 a few		with chloritization	& greenisi	 	 	╁	┼	 	-	_	t
	silification. Minor pyrr				 		 	!	1	1-1		t
	At 975 0m a 8cm wide massi	44			 		┢	 	┢			t
	but appears to be bedding-				 -	 	╁	+-	١.			t
	along the lower contacts .					 	-	+	 			t
	pyrite & dolomite : white				17	 	-	—	├─	\vdash		t
	bleached to a tan-vellow-gr	av color. One thin OV a	it 975.5m carries min	ior	 	 	╁	+	-	┝╾┤		t
<u> </u>	vellowish-green ZnS.		·			<u> </u>	+	1	1		26851	
	SAMPLING: 968 15-968.25	0.1m				0.1m		$\overline{}$	1			т
	968.25-969.05	0.8m			89253 89254	0.5m	_	$\overline{}$		0.2		Т
	972.0-972.5	0.5m		···	89255	0.5m	+	4	_	0.2		+
	972.5-973.0	0.5m			39256		+	+		~		+
	973.0-974.1	1.1m			39257	1	1	$\overline{}$	_	b.1		т
	974.1-974.4	0.6m			39258	7	_	_	7—	b.1	_	7
<u></u>	974,4-975.0	0.6m			39259	1	_	_	+	-		*
L	975.0-975.6	U - 010			1 476 17	UAI	1120	.15.24	<u> </u>		21-	

Drill Hole Record Hole No. District Tasts at Location Core Size Corr. Dip Completed Vert Comp Co-ordinates True Brg. Logged by Objective % Recov Date Description -982.4 cont SAMPLING: cont. 975.6-976.5 0.9m 39260 . 9m 80° to c/a Bedding is quite consistently at 982.4-1010.3 70% QUARTZITE, 30° SILTSTONE Quartzites are light to med, gray, thick and med, bedded Intervening zones of siltstone range from single beds (or tops of quartzitic turbidites) to 30 and 40cm bands of thin bedded siltstone, silty argillite and rare argillite. Most bedding is planar but there is local wavy bedding and, 1000.5m a fold within 5cm of core which is probably soft sediment deformation. A lew quartz veins are present in the lower part of the interval ~ 1002.lm a 1-1.5cm wide vein at ~ 0" to c/a, occurs on one side of the core for ~ 30cm. Vein is of med, gray mottled quarty with up to 15% irregular clots of pyrrhotite with minor cpy. Margin of the vein has a hornfelsic texture with pink garnets, chlorite & minor biotite. SAMPLE: 1001.0-1001.4 39261 0.4m 41 0.4m At 1005.0m a 6cm wide OV cuts the core at 30° to c/a. clots are randomly distributed in the mottled light gray quartz <u>.2m</u> SAMPLE: 1004.9-1005.1 From 1009.6-1010.3m there are a few patches of irregular quartz veining with especiated pyrihotite and chlorite; at ~ 1010.2m a small patch of po carries mino 39263 0.7m SAMPLE: 1009.6-1010.3

Property	BoNeil Creek District	Hole No. M-88-7	·			}	, }	}	ļ
Commenced	Location	Tests at	Hor. Comp.			1 1			Į
Completed	Core Size	Corr. Dip	VerL Comp.			1 1			
Co-ordinates	<u></u>	True Brg.	Logged by		<u> </u>	, !	. 1	គឺ	ŀ
Objective		% Recov.	Date			Claim	9/0	Collar Dip	2
<u> </u>						Ö Anah		8_	Ÿ
Footage From To	Description			Semple Ha.	Length			Zn	Λ
1010.3-1012	9 QUARTZ VEIN				<u>.</u>				L
	Quartz veining cuts through core at	0° to 30° to c/a; adjacer	nt seds, within the						Ĺ
	interval are altered, silicified. P	atchy chlorite, biotite &	pyrrhotite occurs						Į_
	within the vein material & spots of	pink garnet, chlorite &	minor biotite		<u> </u>				
	occur in the marginal: altered sedim	ents.							Ĺ
	The bottom 20cm of the interval is v	ery strongly chloritic wi	th biotite and has a		<u> </u>				l
	gabbroic character. Contact at 1012				<u> </u>				ļ.
	SAMPLING: 1010.3-1012.5 1.2m			39264	1.20	111	14	59	þ
	1012.5-1012.8 0.3m			39265	0.30	<u>, B</u>	386	233	þ
1012.8-1031.	A 60% QUARTZITE, 40% SILTSTONE			<u> </u>	1	1_	<u> </u>		ļ
	Quartzites are med-dark gray, thick	6 med. bedded, fine-grain	ed & silty.	Ĺ <u> </u>			<u></u> '		Ĺ
	Intervening zones of siltstones/silt			,	<u> </u>	↓_	<u> </u>		L
	bedded & laminated, often with a dis-			<u> </u>		↓_	1	_	ļ
	indicating some current activity. F			<u> </u>	<u> </u>	4_	└	igsqcup	ļ
	parallel bands.			ļ	↓	1_	↓ _		ļ
	Small folds with axes # to bedding, o	occur in siltstones near	1031.5m; evidently	 	ऻ	4-	↓ _	 	۱
	soft sediment deformation. At 1013.	lm a ragged 1cm wide po (+ minor Cpv) vein	<u> </u>	 	1_	ـــــ	<u> </u>	ļ
	cuts the core at 25° to c/a.			 	—	┵	-	<u> </u>	₽
	Bodding is typically at 80-85° to c/a	a	<i></i>	 	┼	┼	┼-	 -	1
L	SAMPLE: 1012.8-1013.2 0.4cm	- O Men	·	39266	10.4	n 92	134	103	4
)	17 17		<u>! </u>	<u>. j</u>	<u></u>	1_	<u> </u>	1

•

roperty	McNeil Creek	District	Hole No. M-89-1				ľ				į
ommenced	Feb. 20, 1989	Location	Tests at	Hor. Comp.			{	ĺ	(1	iĺ	
ompleted	March 6, 1989	Core Size HO	Corr. Dip -90°	Vert, Comp.			4	1	_		
o-ordinates	OORON 2500E		True Brg	Logged by P			┨╻╶	1.	coller Dip		s
bjective To:	t Lower-Middle A	<u>ldridge Contact for</u>	% Recov.	Date Feb.	23, 19	189	틀	2	를	<u> </u>	
	Economic Sulfide	<u>'S</u>			Sample	Length	Ana	_	<u> </u>	w j	<u> </u>
meters To	Description				No.			\perp		\Box	
-47.2	CASING: NO COR	E (Bedrock probabl	y intersected ~ 38m)		<u> </u>		上	丄	 _'	\sqcup	
47.2-113.2m	GABBRO .				<u> </u>		1_	↓		\sqcup	
	Med. gray-green	to dark gray-green	colored. Typically med. g	rained with 10-15%			_	⊥_	<u> </u>	<u> </u>	
	phenocrysts of w	hite feldspar avera	aging \sim 8mm across. The ma	ed, grained	\	ـــــــــــــــــــــــــــــــــــ			<u>L</u>	Ш	_
	groundmass is co	mposed of ~ 60% cl	hloritized amphibole & 40% v	white plagioclase.				L			
	Ouite homogeneou	s : there is local	fabric consisting of veins	& seams of white	<u> </u>				<u> </u>		
	Coldspar at 70-8	n° to c/a, suggesti	ing the intrusive is a sill	. A few veinlets							
- 	are at 15-20° to	c/a. At 68.3m mir	nor shearing with pale gree	nish feldspar veini	119						
			ine-grained pyrrhotite is p					\prod	I		
			ng are present: e.g. at 80.		Ţ .	,]]	T			
		est grain size is f					Ţ	П	Γ		
			is rimmed with ragged po &	minor Cpy.			1	T			
·			r & is increasingly fine-gra				T_{-}	T			Ľ
·,			to the contact at 113.2m.					\mathbb{L}	<u>L</u> _	\Box	Ĺ
	Contact at 113 2	m is wavy, but fair	ly sharp, at 20° to c/a. /	A 10cm wide zone is	1			$oxed{\mathbb{T}}$	1_		
		ed at the contact.						\mathbb{I}_{-}			
		•	· ·				T	T	T	Γ	Γ
113.2-117.4	OUARTZITE & SILT		ilicified & chloritized; co	olor varies from		$\neg \neg \neg$	T	T	T:		Γ
·	Outto strongly a	Tereor preached, s	lue-gray. Most of the inter	rual is brecciated	1		1	丅	_	T	_
	nale grav-green	to dark dray and bl	a for this whitich folders:	r veins cut the	1		\top	\top	1		Γ
	with bleached ha	rrine tractures.	A few thin whitish feldspar	eto with a fow this	k		十	十	\top	t^{-}	
	core at 0° to 20	<u>to c/a near 115m.</u>	Med & thin beds predomine 10° throughout. Contact at	112 2- in multi-	┭		┪┈	\top	1	T	Г

:

. .

Property	McNeil Creek District		<i>i</i>					- 1
100mmonced	Location	Hole No. M-89-1	Hor. Comp.			i	.]	1
Completed	Core Siz		Vert Comp.					
Co-ordinates		True Brg.	Logged by			ļ		â
Objective		% Recov.	Date			Claim	Brg.	Soller Soller
Cojacave						\circ	·	
Footage Forg 19	Description	•		Sample No.	Length	Analy		—г
	and broken but there	is some evidence in fragments tha	t it is bedding-paralle!	1.	T .			
117.2-126.1	GABBRO .			1	1			
117.27120.1		enerally similar in texture to prev	vious gabbro. Evidently		1		\Box	
	a cill about 1 5m near	each contact is finer grained & F	W contact is sharp	1				\neg
<u> </u>	and hadding-narallel at	68° to c/a. Veinlets of white ca	lcite occur through					
	and beauting parallel as	local concentration at 126.7 m is	oriented at 20° to c/a					\Box
) -	fire expland cabbro ber	e is calcareous; from 125.5 to 126	.lm gabbro is brecciate	d,		1	\Box	
ļ	fine-grained gabbto net	with irregular veinlets of calcit	ce & pyrrhotite-chalcopy	rite.	1	1		
	Time-grained, chiories	re is mainly calcite; breccia vein	filling, probably a			1	\Box	
		core is quite strongly brecciated.		· .				\Box
 		0.5m		39158	0.5π	60	7	101
	SAMPLES: 118,5-119.0 125,5-126.1	0.6m		39159			-}	
106 1 161 7	QUARTZITE, 15% SILTSTO				1	1	1	
126.1-141./		bedded quartzites with narrow zone	es of thin bedded &			1	1	
		argillaceous siltstone. Chloriti		1	1	T-	\top	\Box
		core is more greenish colored and			1		\top	
		upper part of the interval and the				T	T	
		a strongly altered, originally lar				1		
		rations along bedding planes carrie		res	T T	T	\Box	
	with purpletite Boddi	ing is typically planar, with minor	r irregularities, and		7	Τ	\top	\sqcap
	varies from 68° to 78°					7.	T	

roperty	McNeil Creek District	Hole No. M-89-1								
iommenced	Location	Tests at Corr. Dip	Hor. Comp. Vert. Comp.				l			
completed	Core Size]	ā	<u> </u>	
co-ordinates		True Brg. % Recov.	Logged by Date			æ	ò		١. '	qpue
bjective		% Recor.				Claim	Bro	3	€	5
oriage form To	Description			Sample No.	Length	Anat			Λο	Λs
15.2 cont.	bands consisting of p	ovrrhotite, pyrite, chlorite	and quartz. Three		<u> </u>	<u> </u>	L			
	T	o lem wide, occur across 10c						_		
	214.3-215.2 Broken core of sil	icified, brecciated and crus	hed quartzite a	<u> </u>			<u> </u>	<u> </u>	<u> </u>	
	siltstone	<u> </u>			<u> </u>		1_	<u> </u>	<u> </u>	Ĺ
	Bedding in the central zone is	at ~ 70° to c/a				 	<u> </u>	 	 	
	SAMPLING: 210.5-210.9 0.4m			39163	0.4m	12	25	52	2,1	5_
	212.7-213.1 0.4m			39164	0.4m	15	11	29	<u>L</u>	_عا
	214.3-215.2 0.9m			39165	0.9m	2_	5	36	<u> </u>	2
215.2-224.9	QUARTZITE, 20% SILTSTONE				 		↓_	<u> </u>	ļ	<u> </u>
	Mcd. rarely thick hedded quartz	ites; commonly internally la	minated. Alteration		1	<u>L</u>	<u> </u>	L	<u> </u>	
	is quite strong with brecciation	n and light gray to pale gre	en discoloration.		↓	ļ	↓_	<u> </u>	<u> </u>	<u> </u>
	Silification appears prevalent.				 	<u> </u>	 _	<u> </u>	<u> </u>	<u> </u>
	stone are also strongly altered	, varying in color from ligh	t gray to dark gray-		↓	 	 _	 	<u> </u>	
	brown. Chloritic alteration is	present, with chlorite and	<u>pyrite along fractur</u>	es	<u> </u>	ļ	╄-	 	ļ	<u> </u>
	At 221.9m core is crushed, blea					 _	[—	┨	┼-	L
	cleavage is at 20-30° to c	/a but this occurs at variou	<u>s strike attitudes a</u>	nd	-	╄	╁╌	┼-	┼	├-
	fault plane may be relativ					├	 	┼-	 	} —
	A 4cm wide band of crushed rock	at 216.6m is another minor	fault zone, at ~ 55°			╀	╀	+-	┼-	
	to c/a				 	┰	+-	+	┼	⊣
	Bedding: 77° at 217m: 75° at 2	20m: 72° at 224.5m				ا ــــــــــــــــــــــــــــــــــــ	4—	1—	-	 -

Drill Hole Record McNeil Creek District Hole No. Property M-89-1 Tests st Hor, Comp. Location Commenced Vert. Comp. Core Size Corr. Dip Completed True Brg. Logged by Co-ordinates % Recov. Date Objective Description 224.9-229.0 SILTSTONE & ARGILLACEOUS SILTSTONE Med. to dark gray, thin bedded & laminated; most of the zone is strongly silicified & small porphyroblasts of sericite/muscovite are common throughout Fracture surfaces are chloritic with pyrite & a moderate pervasive chloritization occurs throughout. Bedding is consistent at 74° to c/a. 229.0-270.0 QUARTZITES, 25% SILTSTONE Light, med. & dark gray colored thick & med. bedded quartzites. Small porphyroblasts of chlorite & biotite are spotted through many of the quartzites. Narrow zones of thin budded & laminated siltstones are typically darker than the quartzites, usually with a brownish tinge. Very minor pyrrhotite is present as patches of fine disseminations and as thin cross-cutting veinlets. Some fracture surfaces are chloritic, usually with minor pyrite, At 230.6m a lcm wide band of fault gouge // to bedding indicates a minor beddingplane fault. Bedding: 67° at 231.5m; 72° at 236m; 68° at 241m; 71° at 246m; 69° at 250m; 72° at 254m; 71° at 260m; 65° at 264m; 68° at 268m. 270.0-303.2m Contact at 270m is probably a fault; core is broken, chloritic with minor coarsegrained, euhedral pyrite, some crystalline calcite (loose fragments). The fault zone is a maximum of 20cm wide and adjacent rock appears unaffected; therefore it appears that displacement on the fault is relatively minor.

formani.	McNeil Creek District	Hole No. M-89-1				1 /		}
Property Commenced	McNeil Creek District Location	Tests at	Hor. Comp.					l
Completed	Core Size	Corr. Dip	Vert. Comp.			1	ŀ	
Co-ordinates		True Brg.	Logged by					효
Objective		% Recov.	Date			E	ė ė	a
35,553.5						Ctalm	H	Coller
Footage From To	Description			Sample No.	Length	Analy	/#iS	
	SILTSTONE: ALTERED Minor QUARTE	TTE		1		\Box		
	Predominantly laminated & thin be	edded; a few zones appear mor	re massive due to			\Box		
	alteration. Color varies from li	ight gray to darker gray-brow	wn; alteration has					
	produced considerable discolorati	ion. Biotite 'spotting' is p	prevalent throughout					
	and many bedding planes have beer	n 'disrupted' by the growth o	of metamorphic					
	minerals, primarily biotite. Bed	dding planes are quite plana:	; there are a few	<u> </u>				_
	minor irregularities like wavy be	eds. Minor fine-grained pyri	hotite is dissemin-	<u> </u>	<u> </u>			
	ated through the interval and a f	few po-Otz veins, usually wit	h chlorite, cut the		<u> </u>	'	<u>L</u> .	
	core at various angles. Fracture	s tend to be chloritic, with	minor pyrite.	<u> </u>	1	\perp	Ĺ	Ĺ
٠ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	At 284.2m a 2cm wide fault brecci	a zone cuts the core at 45°	to c/a.	<u> </u>		_	<u> </u>	_
	Basal 20cm of the interval (303.0	7-303.2m) is a hornfelsic mas	s of mainly biotite	<u> </u>	↓	$oldsymbol{\perp}$		<u> </u>
	& whitish feldspar porphyroblasts			<u> </u>	 	<u> </u>	<u> </u>	<u> </u>
<u> </u>	Bedding: 73° at 273m; 70° at 279	m; 65° at 286m; 66° at 292m;	70° at 288m;	ļ	 		_	
	73° at 302.5m			ļ	 	↓		
303.2-394.0				-	 		<u> </u>	<u> </u>
	Upper contact is parallel to bedd	ling at ~ 70° to c/a. Gabbro	is very fine-graine	4	┼	╁	┝╌	-
	for 10-15cm at upper contact. Te	xture is fine-med, grained t	o 304.4m, then			↓		_
	increasingly coarse-grained to ~			 _	┿	├ ─-	<u> </u>	_
	Color is dark green to gray-green	, consisting of chloritized	<u>amphibole, feldspar.</u>	<u> </u>	 -	<u></u> '	 	_
	minor biotite and quartz. Textur			↓		 	<u> </u>	-
	felsic, coarse-grained material so even fine grained. There is ev			. -	 	 `	 	

Drill Hole Record M-89-1 McNeil Creek District Hole No. Property Hor. Comp. Location Tests at Commenced Vert. Comp. Core Size Corr. Dip Completed Logged by True Brg. Co-ordinates % Recov. Date Objective Description Footage From Cu Pb | Zn Ag As i -394.0 cont, vaque "contacts" between zones of diff, grain size are typically at ~ 70° to c/a Minor fracturing with white feldspar-quartz veinlets are fairly common. Fine-grained iron sulfides - pyrrotite - occur disseminated throughout in minor concentrations. At 306-307m, a 1-2cm wide vein of feldspar, quartz and chlorite occurs at 0° to c/a. At 307.3m a 3cm wide shear zone with qtz-feldspar veining cuts the core at 30° to c/a. 331,5-334,8 is a zone of more felsic "gabbro" - more like granodiorite, with pale maroon-colored K-Spars(?) as well as lesser white plagioclase. Minor no with assoc. Cpy occurs in the zone in irregular patches & disseminated. 39166 1.0m 551 7 48 0.1 7 SAMPLES: 331.9-332.9 1.0m 39167 1.0m 440 11 36 0.1 5 332.9-333.9 1.0m Prom 392,3 to 394.0m texture is more banded with wavy chloritic lenses & quartz vein ing at 0° to 20° to c/a. 394.0-395.4 OUARTZ VEIN Massive white mottled quartz with wavy streaks of bands of dark green chlorite. Minor fine-grained euhedral pyrite is dissem, through the chlorite bands Chlorite streaks are at 10-15° to c/a. 39189 1.4m 7 2 5 0. SAMPLE: 394.0-395.4 1.4m

Property	McNeil Creek	District	Hole No. M-89-1				ľ		1		
Commenced	Location Tests at Hor. Comp.				Ì		1	1			
Completed		Core Size	Corr. Dlp	Vert. Comp.			1				l
Co-ordinates			True Brg.	Logged by			1		Š		1
Objective			% Recov.	Date	-		ε	ģ	-		A STORE
							·~	_	8_	E 94.	٩
Footage From To	Description				Sample No.	Length	Anal		2n	Aσ	T
395.4-406.2	GABBRO					1	T.				٢
		coarse grained. S	ome chloritic streaking is	present, ranging							Γ
			te quartz-feldspar veins a								Γ
			403.1. Veins vary in atti		•						Γ
			s present with chlorite no								ĺ
406.2-418.8	FAULT ZONE: OUZ										l
	Massive, white.	mottled & brecciate	d quartz. Scattered irrec	ular patches of	<u> </u>	<u> </u>	<u> </u>	L.			L
			e present. All of the zor		<u> </u>	<u> </u>	<u></u>	<u>L</u>		<u>_</u>	ļ
			ia. A few fracture surfac		_	 	<u> </u>	<u> </u>	<u> </u>		ļ
	dissem, fine-or	ained pyrite. At 41	0.4 a small piece of broke	n core (4cm across	<u> </u>	<u> </u>	<u> </u>	<u> </u>			ļ
	contains a patc	h of massive pyrrhot	ite, pyrite and chlorite.	The sulfide patch		<u> </u>	ļ	<u> </u>	<u></u>	_	Ļ
	is on the outside	de of the drill hole	. 4cm across. Practuring	is strongly			ļ	ļ	_		Ļ
			35° to c/a. Fault breccia			 	<u> </u>	_	<u></u>		ļ
			with fractures from 0 to			<u> </u>	<u> </u>	<u> </u>	<u> </u>		Ļ
	SAMPLING: 406				39190	1.3m	1	5	-	0.1	4
	407.	5-409.3 1.8m			191	1.8m	1	5	3_	0.1	1
	409.	3-410.0 0.7m		· · · · · · · · · · · · · · · · · · ·	192	0.7m	13	2	8	0.2	1
	410.	0-410.7 0.7m			193	0.7m	102	3_	58	0.1	Į.
	410.	7-412.4 1.7m			194	2.7m	45	2	32	D.2	1
	412.	4-413.9 1.5m			195	1.5m	34	2	34	0.1	1
	413.	9-415.4 1.5m			196	1.5m	8.	2_	8	0.2	L
	415.	4-416.6 1.2m .			197	1.2m	6	12	12	p.1	Ţ

Property	McNeil Creek	District	Hole No. M-89-1	<u>. </u>					
Commenced		Location	Tests at	Hor, Comp.		···			
Completed Core Size		Core Size	Corr. Dip	Vart. Comp.					_
Co-ordinates			True Brg.	Logged by]		å
Objective			% Recov.	Date			Claim	Bro.	Sello Pello
						<u> </u>	Anal	(-	ŏ
Footage From 10	Description	·			Sample No.	t.ength		Pb	22.
-418.8 cont.	SAMPLING: 416	5,6-417,7 1,1m			39198	1.1m	6	2	19
		7.7-418.8 1.1m			199	1.1m	4	2	16
418.8-579.7	GABBRO						<u> </u>	<u> </u>	<u> </u>
	418.8 to 423.0m	n is streaked with	wavy bands of chlorite ar	nd quartz enclosing			<u>L</u> _	<u> </u>	<u> </u>
			green gabbro. Wavy band		•		 	<u> </u>	<u> </u>
			ite are mixed in with the			.	1	<u> </u>	ļ
	Below 423.0m gz	bbro is quite mass	ive. coarse-grained. med.	to dark green. Thin		 	 _	<u> </u>	<u> </u>
	veinlets of qua	rtz, white feldspa	r & rarely calcite are so	attered through the			ļ	<u> </u>	 -
	gabbro: these s	vary'in attitude fr	om 20° to c/a to 60° to c	:/a		┦	 	 	
· [532.5m Reduced	to NO				 	ļ	 	ــ
			<u>e massive; decrease in qr</u>			╀—	┨—	┼-	<u> </u>
<u> </u>			fine-grained below there			 	 	╄—	
<u> </u>			lel to bedding at 68° to			┼	├	╄┷	├
<u> </u>			bottom 3 cm of the sill.				 —	╀─	₩
	Cpy are present	. A few very smal	1 pink garnets are develo	ped along the contact	· -		 	┼—	}
579.7-590.7	ALTERED SILTST				 -	┼─	┼	 	╁
			th a few more massive med			+	-	┼─	+-
			silicified massive, weakl			 	┼─	╁─	├
\			patchy discoloration to			 	+-	+-	╁
1	Incaston to muta	1 and at A	70° to c/a. Fine dissem	ı, po is common in ver	<i>y</i>	ł	1	ł .	ł_

Property	McNeil Creek District	Hole No. M-89~1				}				
Commenced	Location	Tests at	Hor, Comp.	<u> </u>		Į :			·	l
Completed	Core Size	Corr. Dip	Vert. Comp.							ļ
Co-ordinates		True Brg.	Logged by		·	1		diO.		l
Objective		% Recov.	Date			Ę	9/G	ollar	Jev.	l
						Anal	<u> </u>	Ŏ_	<u> </u>	j
Footage From 70	Description			Sample No.	Longth			21	Λα	ł
-590.7 cont	. There is patchy concentration of	nurite at the contact at 50	0 7m 1/2mm							Ī
	cross-bedding is evident in one t									Ī
	SAMPLE: 590.0-590.7m 0.7m			39200	0.7m	51	14	41	n . 1	Ì
										I
590.7-599.2	GABBRO									Į
	Contact at 590.7m is sharp, wavy,	at ~ 25° to c/a, indicating	this gabbro is a							I
	dike. A 6cm wide fine-grained ch	ill contact is present adiac	cent to the contact.							l
	Texture is increasingly coarse gra	sined to 599.2m Small felds	par phenocrysts up		<u> </u>					١
	to 8mm aceross, averaging 3-4mm ac	cross, occur within a finer-	grained (medcoarse		<u> </u>	<u> </u>	_			l
· [groundmass. About 4% of the rock	is feldspar phenocrysts. G	roundmass is a dark	<u> </u>	<u> </u>	<u>L</u> _				ļ
	green mixture of ~ 60% hornblends	and 40% white plagioclase.				<u> </u>		Ŀ		Į
	Minor calcite vein ing is present;	at 595m calcite veins are	associated with	<u> </u>		1				ļ
	epidote and dissem, pyrite. Pyrit	e, chlorite & locally epido	te are present on			<u>1 </u>			L	l
	most fracture surfaces.									ĺ
	SAMPLES: 592.5-593.5 1.0m			39201	1.00	58	10	64	0.1	I
	598.2-599.2 1.0m			39202	7				0.3	Ì
				j]	<u> </u>				J
599.2	End of Hole.		16	Ī						J
		P. Wee	**							I
		V- 1								ĺ
						Ŀ				1
								L.		j
L				,,						

•

•

.

.

12.60 APPENDIX VI

GEOCHEMICAL ANALYSES OF DRILL CORE

ì

``)

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HHO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: COTE AUT ANALYSIS BY FA-MA FROM 10 GM SAMPLE.

DRAGOON RESOURCES LTD. File # 88-5299

SAMPLE Hi Co Ma Fe As U Au Th Sr Cd Sb Bi P La Cr PPM PPK PPK PPK RES F 7981 G 415 2.24 9 1.46 .014 26 7902 G 161 373 1.77 ND 15 .40 .018 30 14 .39 18 .10 7903 G 1 140 55 251 .3 17 9 565 3.55 5 ĸĐ 8 11 .83 .014 15 13 .56 12 .10 5 1.67 .03 .20 7904 G .1 10 6 451 2.67 5 ND 14 18 108 2 9 2 2 12 .87 .022 24 12 ,54 1 11 .11 2 1.73 7905 G 1 195 2215 186 .7 21 14 415 3.86 7 15 16 2 21 .45 .024 25 20 .33 49 .16 2 1.95 7906 G 1 1419 11120 91 9.2 10 19 1292 3.83 21 .58 .013 . 29 9 .13 3 1.66 7907 G 1 74 1800 63 1.3 12 769 2.72 20 5 ND 12 .16 .011 15 12 . 22 16 .10 2 1.05 7908 G 1 1272 13540 205 5.5 7 6 1993 8.10 400 10 ИD 9 15 .12 11 .46 .014 10 5 .05 7909 G 15 1953 20094 159 38.9 14 10 2818 10.53 611 5 KD 7 1 539 14 .50 .013 15 14 .37 6 .02 2 :.12 .01 .14 7910 G 1 284 2142 94 1.8 7 4 365 5.72 1022 5 ND 13 101 2 8 .31 .016 39 9 .18 17 .01 6 1.15 7911 G 814 3.57 7912 G 20 24 210 1.48 10 5 XD 31 .18 .004 19 40 .29 1 .10 1 .12 7913 G 5 .1 7 2 207 1.22 2 KD 10 15 .26 .024 25 18 .34 7 .07 2 .52 .03 .99 7914 G 1 166 . 46 .1 18 12 437 2.69 12 5 ND 16 7 2 10 1.27 .03: 21 12 .76 26 .01 1 1.45 .01 .25 7915 G 131 468 6.2 99 13 11 ND 5 7354 39 1096 8.92 21 1.67 .049 84 14 2.18 7916 G 1 120 20 52 .1 18 6 445 2.12 7 5 ND 16 6 1 2 2 9 .97 .048 27 11 .68 25 .06 5 1.23 .01 .30 1 2

Assay required for correct result (b) 71 % Ag 25 ggm

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HMO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACE IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: COTE AD ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

STD C/AU-R 13 58 41 132 6.5 68 30 941 4.19 37 16 8 36 47 17 17 20 56 .47 .083 37 55 .92 175 .06 35 2.01 .06 .14 13 470

	DATE	RECEI	VED:	00	7 25 1	988	DAT	E RE	POR	T MAP			-		/88 MITE			NED Lle				7	D. TOTI	I, C.LI	KONG, B	. CHAN,	J. VAI	(G; CE	717180	B.C.	Assaye	RS
	Sample#	Mo PPH	Cu PPN	Pb PPM	Za K99	Ag PPN		Co PPN	ND PPM	Pe 1	36 K99	D Sem		7h PPM	Sr PPN	Cd PPM	Sb PPM	Bi PPM	V PPN	Ca %	P	La Pen		Ng }	Ba PPK	Ti	B PPN	al t	Na Ł	Z Ł	•	Au* PP8
88-02	7917G 7913G 7919G 7920G 7921G	i	33 77 39 32 32	25 71 8 13 57	53 110 30 43 51	.1 .1 .1 .1	16 17 17 21 16	7 9 9 12 11	432 297 196	1.68 2.24 2.89 3.04 3.11	11 9 5 8 8	5 5 5 5 5	DX DX DX DX	12 13 10 13	6 7 2 2 3	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2		1.40	.042 .035 .019 .022			.77 .44 .59 .58	18 30 24 50 39	.01 .01 .01 .01	7 4	1.12 1.01 1.19 1.41 1.35	.01 .01 .02 .01	.25 .21 .17 .21	2 1 1 3 2	2 6 1 1 10

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACE IS PARTIAL FOR MR FE SE CA P LA CE MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: COTE AND ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: OCT 30 1986 DATE REPORT MAILED: Nov 9/88 signed by																															
DATE	RECEI	VED:	00	7 30 1	988	DAT	E RE	EPOR	T MA	ILE	D:	Nev	9/	er.		SIG	NED	BY.	٠١	-: '-:	· ; · ·	D. TOY	R, C.LI	long, b	. CHAR,	, J.WAN	ig; cer	71718	3.C.	ASSAT!	135
									BA	PTY	RES	EARC	H	Fi	le.	# 88	3-55	38	P	age	1										
SAMPLE #	No PPN	Cu PPN	Pb PPM	7n 794	Ag PPH	N1 22%	Co PPM	No PPN	7e 1	As PPN	U PPN	Au R99	Th PPM	St PPN	Cđ PPX	ds Hqq	Bi PPN	V PPH	Ca 1	P	sJ Kqq	Cr PPN	Kg }	Ba PPM	Ti \$	B PPN	Al t	Na Ł	ĭ	¥ PPK	Au* PPB
7912 G	1	26	;	35	.1	15	15	371	3.91	10	5	ND	8	5	:	2	2	38	1.24	.013	ş	25	1.06	£ 9	.01	3	1.72	.01	.17	1	í
7923 G	1	28	2	71	.1	41	ŧí	768	9.92	3	5	ИD	2	20	1	2	2	377	4.08	.022	2		2.25	5	.01		2.45	.02	.02	Ť	i
7924 G	1	97	2	25	.1	25	30	232	9.57	4	5	ND	2	18	1	2	2		1.20	.019	3	1	. 83	1	.20	2	.97	.02	.02	i	i
7925 G	1	59	2	13	.1	25	155	114	6.34	4	5	HD	1	16	1	2	3	75		.027	2	1	.35	1	.11	2	.43	.03	.01	i	į
7926 S	1	117	3	35	.1	23	31	151	3.56	2	5	ĸĐ	2	62	1	2	2	§ 5			3	4	1.22	5	.19	2	1.55	.02	.04	i	1
7927 G	1	222	8	48	.1	36	28	568	4.45	2	5	NO	1	19	i	2	2	96	2.83	.020	3	7	1.75	5	.13	2	1.84	.02	.63	1	7
7928 G	1	31	÷	52	.1	33	39	751	3.31	5	5	ND	2	75	1	2	2	124	10.88	.014	4		1.59	2	.07		1.68	.01	.02	1	4
7929 G	1	147	5	72	.1	15	23	73.	5.46	3	5	ДK	2	22	1	2	2	146	3.11	.024	3			1	.17		2.77	.02	.04	1	2
7930 G	1	5	•	95	.:	:3	39	616	8.02	2	5	ЭК	i	5	1	2	2	161	.53	.010	:		3.40	230	. 29		1.47	.02	2.50	1	2
7931 G	1	5	i	60	.1	57	22	413	5.19	2	5	QK.	i	10	1	2	3	108	.63	.028	2		2.47	64	.15		2.78	.02	.69	i	i
7932 G	1	5	2	29	.1	33	33	231	2.92	2	5	ND	1	35	1	2	2	84	1.10	.041	2	76	1.04	7	.18	2	1.66	.03	.04	1	1
7933 G	i	17	33	92	.1	14	10	338	2.99	12	5	ND		5	:	2	2	8	.18	.017	35	8	.55	25	.01	2	1.36	.01	.20	1	3
7934 G	1	14	12	44	.:	:2	?	385	2.42	6	5	KD	13	8	1	2	2	11	.39	.009	30	15	.41	23	.02	2	.94	.01	.15	1	4
7935 G	1	34	45	51	. 9	19	12	511	3.78	537	5	ND	11	21	1	8	2	4	.72	.019	13	5	.58	35	.01	5	1.14	.01	.21	1	69
7936 G	1	26	78	100	.1	22	12	542	2.39	630	5	ND	16	47	1	13	2	3	2.10	.022	19	4	.56	10	.01	2	.61	.01	.29	1	32
7937 G	1	7	15	15	.1	10	6	316	1.04	18	5	ХD	12	23	1	2	2	3	1.07	.013	22	5	.49	{ I	.01	8	.73	.02	.:1	1	5
7933 G	1	18	9	7	.1	11	19	253	2.43	132	5	HD	19	27	1	3	2	6	1.14	.022	17	5	. 43	30	.01	3	.80	.01	. 24	1	95
7939 G	- 1	2	9	5	i	11	10	227	1.32	60	5	HD	9	29	1	3	2	2	1.32	.023	15	3	.45	27	.01	2	.66	.01	.1	i	64
7940 S	1	4	3	9	.1	. 3	11	382	2.48	33	5	ND	7	59	:	2	2	3	2.32	.016	14	3	1.01	24	.01	1	. 65	.01	.19	1	:2
370 C/AU-	R 18	60	40	132	8.5	58	31	1023	4.20	44	18	8	37	47	13	17	19	56		.094	39	57	.94	176	.07	38	2.04	.06	.14	12	515

this first figure 2 to 3 feet this first time to 3 feet this first time that the

)

)

.)

.3

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAY SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-BRO3-B20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TE B W AND LIMITED FOR MA K AND AL. AND DETECTION LIMIT BY ICP IS 3 PPK.
- SAMPLE TYPE: COTE AND ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SANFLES CĆ St Bi V Ca . Ta X5 Fe As λu "h Sr ĊŢ Ħ Ca Fb 21 λα Ľi IJ PPK PPK PPK PPK PPK PPK ŧ PPN PPK \$ 798 PPN PPM h PPM PPM PPM - } € 39555 12 10 .15 .005 C 29556 5 16 20 1.03 .037 12 31 .97 25 ,Çj .02 61 573 168 1.7 22 14 462 4.32 ХĐ 21 5 1.29 8 C 29557 17 ş 129 1.31 39 X5 13 1 2 2 1.22 .017 11 27 .26 1: .01 6 .18 .02 5 ИD 10 2 .33 .012 ţ .23 11 .01 C 39558 è 13 5 256 1.84 15 5 1 3 4 15 2 .53 C 39559 £ 312 1.74 26 5 פא 13 12 1 2 2 2 .67 .012 21 16 .37 29 .01 3 48 1 14 2 16 6.20 .016 C 35560 30 20 1260 5.67 \$3 91 2 19 2.52 .01 6 .55 C 3#561 12 15 1940 7.17 54 5 ND 173 3 8 10.75 .006 2 15 2.71 .01 . 26 .01 .07 27 1 2 2 .1 89 3163 9 5 K2 31 5 1.38 .002 ż 10 .38 .01 4 .19 .01 C 39562 28 9470 12932 4.4 12 8 305 1.31 15082√ 1 • .05 1 810 C 35563 137 37 28 1320 5.90 148 5 КD 2 73 2 40 5.73 .018 19 2.79 11 .01 6 1.55 .01 .1 5 14 3.21 2 2.55 .01 .06 C 35164 242 37 26 1280 6.36 105 30 2 54 81 5.94 .018 4 ŧ .01 25 ı. 5 69 1.07 .015 · C 39565 £2 2.22 1 .01 6 3.02 3. 21 941 8.39 21 C 29566 5 19 13 .87 .008 15 1.19 10 .01 7 1.31 1 555 .2 35 35 501 11.41 13 5 880 10.27 € 39567 1 170 2: 5 ND 41 .47 .007 E5 - 1.60 13 .01 € 3.13 .01 .09 1 2 153 .2 13 24 11 3 2 Ģ 678 4.33 17 14 .50 .027 25 35 1.08 6 1.96 .01 .20 C 33568 1 17 13 35 .1 25 1: 5 KD 6 3 35 23 .1: 1 38 26 1246 9.45 195 11 161 1.52 .624 124 3.25 34 .13 11 4.80 C 39569 7 .1 4 C 35570 71 119 865 13.20 55 2.14 .019 77 1.53 .07 . 6 98 78 31 529 7.19 32 KD 2 114 .82 .020 151 1.74 .05 7 2.45 .02 1 0 39371 274 .3 77 3 3 3 3 B 0 39572 1 1 5 33 .i 25 :7 880 5.55 24 5 KD 2 10 3 5 114 2.23 .023 7 72 2.22 .10 2 2.70 .02 .04 2 .92 1 1 11 .01 0 39573 1 25 B 21 .1 10 € 309 2.34 ŧ 5 ĸď 1 2 19 1.52 .013 ş 33 .46 • .04 C 39574 44 154 6153 . 9 15 551 2.93 ND 77 11 .83 .023 18 22 .56 2: .08 2 1.31 .01 14 STE C/AU-R 35 132 6.9 71 31 1034 4.29 42 20 37 17 19 16 20 60 .50 .090 36 55 .94 174 .07 38 2.66 .06 .13

- ASSAY REQUIRED FOR CORRECT RESULT -

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3NL 3-1-2 MCL-HNO3-B20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO to ML WITH WATER. THIS LEACE IS PARTIAL FOR MM FE SR CA P LA CR MG BA TE 8 W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: CORE AD AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

	DATE RECEIVED: NOV 16 1933 DATE REPORT MAILED: Nov 22/87 SI																P	1													
DATE	RECEI	VED	: no	V 16 1	933	DAT	RE	POR	т ма	ILE	D: /	Vov	22	198		SIG	NED	BY.	٠.:	hin	~J	D. TOTE	. C.LE	ONG. B	. CHAN,	J. VAN	G: CER	PIFIE	0 8.C.	assaye	IRS
										BAF	YTY:	RESE	ARC	H	Fi	le #	88	-585	59		ď										
SAMPLE	c)! 295	Cu P2M	PEN Pen	ID PPN	aç PPM	91 228	Cc 228	ek Ker	Fa 3	As PPN	U PPX	Au PPM	4f K95	57 77%	BD RSS	SP	31 PPM	Y PPM	Ca }	P \	La PPN	55X 52	¥ģ	98 29%	Ti }	3 PPM	λl t	Na L	K Ł	¥ PPX	λυ* PP3
C 39575 C 39576 C 39577 C 39573 C 39579	1 2 1 2	42 242 25 151 28	15 108 9 13	192 62 34 18 19		16 11 11 11	14 21 5 75 6	201 281 253	3.30	17 10 9 30 5	5 5 5	GR CR GR DR DR	20 6 20 2 10	9 15 15	1 1 1 1	2 2 2 2 2 2	2 2 2	15	.69 .80 .88 1.47	.021 .007 .015 .004 .010	28 13 56 5	:9 :0 10 9	.63 .16 .30 .08 .20	40 12 42 5 22	.95 .92 .01 .91	10	1.49 .42 1.04 .25 .41	.01 .01 .01 .01	.24 .09 .32 .05	! ! ! ! !	13 12 2 79 J1
C 39580 C 39581 C 39582 C 39583 C 39584	1 1 2 5 5	14 36 3 144 932	6 3 14 65 500	191 101 57 1174 19329	.1	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3 5 12 40	350 411 654	1.74 3.15 1.4; 3.7; 3.3;	7 7 12 11	5 5 5 5	28 28 28 28 28 28	16 21 12 11	15 32 11 7	1 1 1 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2	17 20 19 24	.25 .56 .45		30 39 31 17	13 22 17 21 3	.52 .53 .56 .44 .05	\$1 63 53 51	.15 .19 .14 .16	3	1.41 2.19 2.61 1.90		1.13 1.45 .80 .53	1 1 2	? : : : : : : : : : : : : : : : : : : :
C 39585 C 39585 C 39587 C 39583 C 39585	1	76 3714 1723	572 1361 19571	4122 /3108	1.1 .5 2.4 95.37 3.8		8 9 17 22 18	1055 450	3.79	50 21 17 14 15	5 5 5 5	DK DK DK GK	15 1 1 3	15 15 15 5	11 8 58 53 35	2 2 2 55 15	2 2 3 73 E	34	8.25 1.44	.016 .016	7 22 4 2	32 5	.15 .42 .07 .02 .36	40 1. 1.	.08 .17 .03 .01	10 9 2 11 5	.95 1.65 .42 .15 .49	.01 .03 .01 .01	.03 .19 .02 .01	8 19 20 191 38	2 1 2 5 2
C 39599 C 3959; C 39592 C 39593 C 39594	2 3 1 1	42 25 7349 11 191	641 71 25 11 97	538 139 876	.6 4.5 .1	15 15 41 23	5 34 9 13	1874 564	1.55	12 26 7 23 17	5 5 6 5	DK DK CK CK DK	12 31 4 15	33 12 5 27	13 8 9 3 12	2 2 2	2 2	13	.49 1.65 49	.016 .014 .607 .021	14 12 3 21 20	21 22 3 22 23	.31 .23 .98 .45	31 43 3 45 17	.12 .33 .19 .12	:	1.31 1.32 .54 1.77 1.41	.02 .02 .01 .01	.24 .28 .32 .62 .23	40 3 1 1 3	2 1 3 4 4
C 39595	ı	161	47	328	.1	**	:2	829	3.27	9	5	ND	3	15	5	2	2	23	1.18	.031	12	22	.63	28	.12	2	2.25	.05	.47	1	3

ـــــ say required for correct result

STD C/AU-R 18 61 39 102 6.6 67 30 1011 4.09 43 17 7 38 48 18 17 13 59 .47 .095 40 55 .84 177 .07 34 1.95 .06 .13 13 470

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HRO3-B2O AT 35 DEG. C FOR ONE BOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CE MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TIPE: Core AND AMALISIS BY ACID LEACE/AM FROM 10 GK SAMPLE.

DATE	RECEI	VED	: K	V 17 1	.986`	DATI	E RE	POR	T MA	ILE	D:	Nov	ֶׁנ	2/88		SIG	NED	BY.	<u>.</u>	ببب	٦	D.7011	E, C.LE	ONG, B	.CEAH,	1.VX	ig; cll	TIFIED	B.C.	ASSATE	RS
										BAF	ΥT	RESE	ARC	H	Fi	ie #	88	-589	0		•										
SAMPLE\$	No PPK			Zn PPN	SbK Yà	Hi PPM	Co PPM	Na PPN	ře 3	As PPN	U PPN	Au PPH	"Th PPN	ST PPN	Cđ PPX	Sb PR	Bi PPK	7.41 7.41	Ca Ł	P	La ?PN	CT PPN	Ng	35A 81	Ti 3	B PPN	λ] 1	SK \$	K t	RSA	Au* PP3
C 39596	1	215	6	251	.1	14	24	1032	6.55	56	5	MD	7	16	1	2	2	31	.57	.039	17	20	1.40	25	.05	2	3.36	.01	. 28	1	6
C 39597	1	11	18	248	.1	11	é	482	2.00	17	5	XD.	1	53	3	2	3	14	1.23	.016	15	47	.42	16	.10	2	2.35	.03	.42	3	2
C 39593	1	21	44	1645	.1	24	13	490	2.37	7	5	ND	19	9	4	2	2	- 14	31	.029	22	18	.45	38	.11	4	1.80	.02	.60	1	1
C 39599	5	2944	19167	9675	71.9	90	85	1062	11.86	162	5	MD	3	ŧ	76	82	16	6	.52	.006	3	18	.20	19	.03	2	.63	.01	.18	7	31
C 39600	3			/2:166		26	25		6.52	128	5	AD	4	5	257	25	26	3	.76		5	£	.19	1	.03	2	.35	.01	.02	41	3
C 39601	3	172	3622	2653	2.6	15	12	387	1.73	68	5	ND	7	13	35	Z	1	,	1.20	.011	6	46	.21	15	.07	2	1.17	.03	.09	1	1
C 39602	3	6.8	17	843	.1	ió	9	315	1.75	29	5	EE	13	23	4	Ž	2	::	1.21	.018	16	27	.27	43	.12	4	2.41	. 67	.39	1	2
C 39603	1	31	55	519	.1	15	9	386	2.15	23	5	KD	13	13	5	2	2	34	.70	.077	14	€0	.32	77	.12	3	1.73	.09	.50	1	1
C 39604	2	333	35	1581	.2	14	÷	538	2.00	25	5	ND	5	14	10	2	2	1	2.13		5	12	.17	\$.07	2	91	.02	.06	1	1
C 39605	1	151			.1	13	7	667		21	5	D	8	15	8	2	2		1.76		12	33	.26	1	.10	2	1.33	.0:	.96	1	1
C 39506	1	13	. 6	360	.1	24	11	552	3.51	14	5	MD	20	11	6	2	2	24	.36	.034	30	31	.53	62	.19	3	2.10	.03	1.03	1	1
C 39607	1	41	25	462	.1	15	8	187	1.70	9	5	MD	12	17	5	2	2	17	1.16	.024	22	35	.35	12	.09	3	1.45	.05	.26	1	1
\$90 C/LU-	. 17			111		67	30	1516	3 67	13	,	7	37	17	10	1.6	18	51			36	52		173	66	77	1 99	. 66	. 14	12	475

____Assay required for correct result ____

(

· ·

(

39 1.89 .06 .15

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HHO3-H2C AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MY FE SE CA P LA CE MG BA TI B W AND LIMITED FOR WA E AND AL. AS DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: CORA. AND AMBLETS BY ACID LEACH/IA FROM 10 GM SAMPLE.

- SAMPLE TYPE: CORE AUF AMALTSIS BY ACID LEACE/AA FROM 10 GM SAMPLE. DATE RECEIVED: NOV 25 1988 DATE REPORT MAILED: NOV 29/88. BAPTY RESEARCH File # 88-6012 In Ac Ni Co Ma Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B SAMPLES Pb Al Ha PER PER PER PER PER PER PPX t per per per per per per per per per t t per per \$ PPK & PPX C 39608 11 349 3.34 .025 . 15 5 1.43 14 7 471 2.89 2 5 10 14 1 2 14 .14 .015 36 16 .56 .13 2 1.45 03 C 39609 27 .1 1 2 11 .94 C 39610 31 17. 7 318 1.71 5 - 10 21 5 2 2 - 1 .25 .033 31 • .24 35 .06 2 .90 .1 2 1 10 .76 .022 C 19611 5 65 120 .1 12 7 331 1.88 5 HD. 17 10 2 2 26 13 .40 52 .08 2 1.81 04 .62 • 1 1 € 39612 27 33 .1 14 10 349 3.04 30 5 10 16 24 2 2 .50 .016 28 5 .31 28 .01 4 .83 C 39613 45 5 389 2.42 5 13 10 15 .53 .014 30 19 .37 23 .01 4 .82 C 39614 10 12 50 16 8 271 2,90 2 5 ND 16 6 16 .24 .022 20 15 . 66 57 .08 6 1.27 .01 .62 .1 1 2 17 17 60 23 10 181 1.15 5 ID 11 S 2 .22 .013 20 17 .64 35 .06 4 1.30 .02 .37 C 39615 .1 1 2 14 1 2 C 39616 18 19 69 .1 17 7 389 2.86 5 5 ND 10 7 1 2 2 14 .43 .026 17 16 .55 27 .06 4 1.08 . 01 € 642 2.38 5 22 9 2.00 .010 25 17 .11 18 .01 C 39617 14 7 ND 11 2 5 16 C 39618 34 19 8 346 3.06 2 5 YD 2 10 ,31 ,032 53 12 .58 34 .05 3 1.28 .01 .39 . 83 C 39619 12 35 .1 18 7 312 2.45 11 5 KD 4 • 2 10 .31 .011 14 15 . 11 19 .05 .02 .12 2 1 C 39620 43 36 29 .1 20 3 396 2.34 1 5 ND 7 11 1 3 3 1.19 .011 15 15 .35 24 .05 .79 .01 .20 1 1 17 .02 .02 .16 7 (06 2.73 10 3 .11 .014 19 19 .41 2 .92 C 39621 17 17 42 .1 19 3 5 RD 1 2 2 10 B 426 2.03 85 16 3 .15 .020 42 10 .29 44 .01 5 .66 .01 .28 C 39622 13 26 79 .2 17 5 ND 2 2 • 1 .65 .005 12 .03 3 .77 .01 .06 C 39623 17 5 492 2.21 12 5 2 12. 21 .38 24 1 .07 49 831 5.63 67 MD 2 114 .54 .016 71 2.16 3 2.49 C 39624 14 13 110 5 7 1 C 19625 15 26 104 .1 25 19 1097 6.29 20 5 T) 1 48 2 2 2 114 3.71 .018 4 44 3.22 6 01 2 2.26 .02 .06 1 14 .64 30 .07 2 1.35 .01 .41 11 484 3.41 18 4 2 12 .22 .021 35 1 C 39626 1 22 25 109 .1 23 7 5 ND 1 2 C 39627 21 23 42 .1 10 6 355 1.63 24 5 ND 10 .95 .007 12 12 .25 24 .04 4 .56 C 39628 384 2.22 15 .41 .014 30 10 . 39 45 2 .49 .02 19 C 39629 616 1.26 1 11 2 8 1.63 .010 17 10 .20 24 .05 14 19 37 4 3 155 5 HD 2 16. \$ 4 2.75 .02 .02 C 39630 96 175 .2 26 19 548 5.20 2 ND. 1 38 2 2 88 1.20 .018 £ 37 1.71 1 1.43 .04 .04 46 .46 .025 17 .81 4 .08 C 39631 1 156 7 29 .3 19 15 273 2.17 2 5 KD 1 8 1 2 2 2 .46 .022 31 .86 4 .07 2 1.38 .04 .03 C 39632 · 1 113 3 36 .2 32 15 301 2.35 2 5 ND. 2 2 44 2 .06 5 1.61 C 39633 239 1.83 47 ,55 ,024 2 32 . 63 33 .78 .06 2 1.20 .04 .04 27 11 234 1.78 36 2 2 37 .58 .024 2 10 C 39634 97 20 49 .1 5 MD 1 5 1.09 .02 .02 294 2.16 2 8 1 2 2 37 .45 .021 2 47 .95 1 .08 C 39635 97 16 50 .3 33 . 13 5 ND 1 .06 2 1.25 .08 .04 1 C 39636 59 11 22 .2 21 8 196 1.51 5 5 MD 1 25 1 2 2 35 .79 .027 2 28 .61 13 .71 2 .90 40 .58 .025 34 7 C 39637 .2 26 10 221 1.88 3 .08 .48 .031 51 1.10 2 1.27 .03 .04 C 39638 110 34 .2 30 15 406 2.83 2 1.40 .01 .15 15 19 10 232 2.93 1 2 .07 .020 15 1.21 13 .01 C 39639 12 42 .1 12 5 ND 17 1 2 . 1 2 .69 .01 .19 1 26 332 1.22 2 5 m 11 6 1 2 2 5 .81 .021 19 . B .34 17 .03 C 39640 .1 8 6 7 .28 13 .01 3 .58 .01 .17 1 C 39641 1 126 25 70 .1 16 11 533 1.80 15 5 ND 9 10 1 Ž 2 4 1.83 .021 8

48 19

20 19

38

67

43 132 6.8

30 1028 4.18

36

18

7

39 .50 .088

40

55 .95 175 .07

)

STD C/AU-1

17 59

7

)

.)

.)

×ή

.)

STD C/AU-R

44 132 7.1 69

31 1047 4.36 41 18

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICF - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HM03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MY FE SE CA P LA CE MG BA TI B W AND LIMITED FOR WA K AND AL. AD DEFECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: COTE AD MALISIS BY ACID LEACEDIAN FROM 10 GM SAMPLE.

DATE RECEIVED: JAN 30 1989 DATE REPORT MAILED: SIGNED BY.... J. D. TOYE, C.LEONG, B.CHAR, J. WANG: CERTIFIED B.C. ASSAYERS BAPTY RESEARCH LIMITED File # 89-0199 SANZLEE Co Na fe as 0 au Th \$1 Cđ Sb Bi V Ca F La Cr Na PPN PPN PPN PPN PPN PPN PPN PPN t pon pon pon odn dan dan dan dan dan 1 1 PPH PPH 1 PPX 1 PPH t PPM PPB C 39951 12 375 2.46 11 .92 .012 2 1.03 45 19 404 3.27 C 39983 10 16 14 16 .43 .019 16 16 .63 49 .02 4 1.52 .05 C 39983 3 13 52 .1 6 5 390 2.00 11 18 19 .82 .014 2 5 ND 2 22 18 . fi 94 .06 2 1.24 .04 .28 21 11 52 7 C 19964 .1 17 403 1.58 1 Ş H9 10 13 2 2 li .67 .022 26 13 .49 51 .01 3 1.38 .05 C 35965 71 .1 - 11 348 1.35 5 11 li .83 .011 14 13 .33 31 .07 3 .86 C 39366 15 48 .i 11 4 294 1.87 10 .44 .014 21 . 39 41 .06 2 .95 C 39987 28 23 8 529 2.98 27 ŧ 31 .1 5 15 19 3 10 .80 .020 15 .52 .02 .03 ND. 2 8 51 2 1.43 .33 C 39383 1 26 7 31 .1 14 250 1.26 4 5 ND 11 ģ 1 2 2 5 .26 .014 17 .43 45 .01 3 1.06 .07 .25 9 2 39929 15 .3 15 6 698 3.89 2 5 12 100 1 2 25 1.42 ,036 24 23 1.53 49 ,08 2 2.15 .04 .35 C 39990 222 .6 16 6 622 3.28 2 5 â 14 1 2 22 1.54 .036 20 21 1.44 35 .07 2 1.94 .04 .34 C 39991 10 8 766 3.33 5 КD 31 17 3.75 .035 15 17 1.24 22 .01 2 1.80 .03 .16 C 29992 26 20 51 12 593 3.12 15 33 10 1.95 ,032 36 .1 18 5 8 1 2 10 10 .66 .01 .2 1.35 .63 .23 C 36963 22 12 350 3.34 .1 Š ND 12 14 1 11 .47 ,021 15 22 . 64 47 .01 3 1.43 .86 .27 C 39:94 1 131 16 82 .2 58 28 425 6.16 5 5 nd 12 11 1 2 2 14 .39 .021 ı 11 .75 51 .02 4 1.82 .04 .30 6 .52 .025 C 39995 11 11 85 .1 10 7 345 2.60 9 5 ND 13 13 28 20 .42 35 .01 3 1.12 .03 .23 C 39995 518 2.25 27 2 1.36 .018 23 15 C 39997 10 . 2 10 6 343 2.01 30 5 m 10 16 1 3 2 5 .77 .014 20 7 . 29 23 .01 5 .74 .03 .14 C 39993 24 13 56 .1 14 10 372 3.14 ś 5 RD 13 11 2 7 .41 .018 18 .45 1 1 2 14 41 .01 5 1.23 .03 .26 € 39559 1 12 10 21 .1 9 489 2.06 14 5 KD 9 21 1 2 2 2 1.27 .013 13 4 .30 24 .01 2 .51 .02 .14 C 40000 24 13 55 .1 12 23 14 511 2.73 3 5 H) 7 1.52 .020 13 19 .45 29 .01 3 .96 .04 .24

B 38 49 20

6.

(-

17 22 61 .49 .097 41 55 .93 178 .07 32 2.07 .06 .13

ICP - .500 GRAM SAMPLE IS DIGISTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR HG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: CORE AU* ARALISIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE	RECEI	VED:	JA	N 31 1	989	DAT	E RE	POR	т ма	ILE	D:	Fel	, 3	/89	•	SIG	NED	BY.	(. , :	Lu	∵7.	0.707	K, C.LE	IONG, B	. CHAN	, J.YA	NG; CER	ITIPIEO	} B.C.	Assati	ERS
									BAP	TY F	RESE	ARCI	i LI	MIT	D	Fi	lle	# 89	-02	11	}										
SAMPLE	NG PPN	Cu P?M	Pb PPX	ES PRN	ŊÇ PPM	71 145	Co PPH	ESS ESS	īė ł	As PPM	U PPN	JU PPN	Th PPS	Sr PPN	Cđ PPM	Sb PPM	81 P?¥	V P?X	Că 1	P	La PPN	Cr PPN	Kg \$	Ba PFM	Tí	B F?X	Al 1	Na Ł	K 1	V PPH	Au* PF9
C 39051	1	28	5	13	.:	20	13	629	2.9:	32	5	ND	11	26	1	6	:	3	1.42	.030	8	8	.36	24	,01	2	.64	.61	.23	1	3
C 39050	1	23	6	31	.1	14	\$	573	2.17	5	5	ND	7	28	1	2	2	ě	2.49	.013	15	9	.10	12	,01.	5	.87	01		1	1
C 39053	1	35	10	5:	.1	18	9	496	2.23	6	5	ND	3	23	1	2	ž	f	1.22	.029	15	18	. 15	16	, 01	2	1.03	.01	.14	1	1
C 39054	1	32	8	36	.1	19	9	1.3	2.13	19	5	ND	14	19	1	8	2	3	.96	.027	15	5	.37	28	.01	4	.87	.01	.21	1	1
C 39655	1	31	11	55	.1	17	9	500	3.38	10	5	ND	13	23	1	3	2	9	1.13	.020	21	16	.53	24	.01	2	1.16	.61	.21	1	1
C 39056	4	23	19	73	.1	13	9	592	3.15	11	5	ND	14	26	1	2	2	6	1.36	.029	21	9	.55	25	.01	4	1.12	.01	.20	1	1
C 39057	1	25	8	5.7	.:	15	8	565	3.02	34	5	ND	12	20	1	2	2	2	1.15	.020	16	8	.56	26	.01	4	1.21	.01	.20	1	1
C 39558	1	15	21	1.	.1	15	8	474	2.63	29	5	CK	14	16	1	3	2	3	.86	.024	18	5	. 16	27	.01	2	.93	.01	.22	2	,
C 35959	1	25	9	52	.1	15	- 11	55	3.05	45	5	NC	7	44	1	2	2	6	2.73	.014	11	11	1.03	19	,01	4	1.13	.01	.16	1	:
39060	1	25	7	34	.1	16	13	642	3.14	351	5	KD	8	12	1	2	2	6	2.51	.015	12	5	1.01	27	.01	3	1.04	.01	.22	ı	45
C 39361	1	1)	13	11	.1	14	8	132	2.44	905	5	ND	9	27	1	2	2	3	1.46	.020	10	10	43	29	.01	. 5	.68	.01	.23	1	85
C 39062	1	17	24	10	.1	17	9	342	2.14	116	5	RD	11	15	1	2	2	2	.91	.016	13	4	. 39	26	.01	2	.82	.01	.22	1	11
C 39063	1	25	3	9	1	13	8		2.70	48	5	ND	10	39	1	2	2	4	2.40	.019	15	8	. 96	25	.01	4	.89		.21	1	2:
C 39064	1	10	4	17	.1	22	16	1133	4.83	73	5	ND	5	67	1	2	2	7	4.43	.018	6	6	2.08	26	,01	3	1.34	.01	.19	1	7
C 39665	1	61	10	16	.1	12	9	393	2.76	11	5	ЯD	8	21	1	2	2	2	1.23	.931	9	7	.69	36	.01	2	1.27	.01	.20	1	
C 39066	2	12	5	9	.1	25	11		2.84	75	5	ND	8	32	1	2	2	2	1.85	.033	8	1	.91	35	.01	2	1.31			1,	;
C 39067	2	33	15	10	. 1	25	16		3.12	90	5	MD	8	22	1	1	2		1.33		8	3	.11	37	.81	i	1.14			1	
C 39063	2	65	29	8	. 2	14	10		2.61		5	DN	9	22	1	2	3	3	1.20		9	3	. 15	35	.01	3				1	
C 39069	1	12	4	13	.1	15	12		2.99		5	ND	15	56	1	2	2	3	2.99		12	E		33	.01		1.47			1	1
C 39070	1	3	2	38	.1	19	12	175	3.06	6	5	ND	7	8	1	2	2	12	.38	.012	5	14	2.57	10	,01	6	2.21	.01	.09	2	

18 61 39 132 7.0 69 30 1033 4.23 42 18 7 38 47 19 20 25 59 49 .097 40 55 .96 171 .06 37 2.07 .06 .13 12 520

 $Y_{i,j}$, $y_{i,j}$, y_{i

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

M-88-7.

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HWO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LINITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: COTE AU* AMALISIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

	DATE	RECE	IVED	: ?	EB 16	1989	DAT	E R	EPOI	RT M	AILE	ED: (Fel	17,	198	39	SIG	NED	BY.		ے ک	tep.	. D. TO	ır. c <u>.</u> l	EONG.	B.CHAK	. J.W	IG: CE	RTITII	(0 B.C.	1422A	ers
			•							BAI	PTY	RESE	ARC	H LI	MIT	ED	F	ile	# 8	9-0	338	•	M	دس	سنا	Ç.						
	SAMPLES		Cu PPM	-	_	•	HI RSS	Co PPH	NC NC	Гė į	ak PPH	U FPM	Au PPH	?b PPH	ST PPM	63 888	SE P?M	B1 PPM	7 FPM	Ca 1	P	La PPM	Cr PPH	Ķģ	Ba FPM			XI Ł	Na Ł	ŗ	¥ PPN	
	17368 3	1	85	12	73	. 2	Sû	30	2525	14.05	259	5	49	i	15	2	17		741	7.1	.033	τ	35	.24	12	. 61	,	1 21	65	16		•
	C 39072	1	70	3	2*	. :	28				2	Š	no	3	12	i	٠,	- 5	11	1.10	610	,	17	76	1:	16.5	:	1.61				10
	E 39973	1	11	13	115	.;	70	35	5:1	9.90	22	5	KE	3	•	i	•	ī	21.	1 76	641	•	96	3.55	٤٠	10	•	5.70				-0
	℃ 39074	1	13	11	9.1	.1	50	3	711	1.23	9	5	NO.	ž	6	i		•	139	71	930	ί	70	2 95	*1	11		3.93				
:	C 39075	į	40	20	105	1	45	15	536	€.75	6	. 5	XE	11	- 5	i	3	. 2	153	.36	. 937	13	41	2.63	59	.13	2	3.85			3	1
	0 39076	1	100	11	123	.1	53	19	628	8.00	13	5	NC	10	á	2	2	. ,	176	. 20	.01?	22	ar	3.36	57	12	٠,	1 *2	63	1 16	٠,	
	C 39077	1	5	7	13	.1	15	4	31.	2.41	2	5	YE	14	R	•	j		16	1 77	853		16	.87	20	74.	•	1.35			,	
	C 35078	ì	. 2	E	4:	.1	15			1.53	_	5	χÇ	11	7	i	į	;	79	1.22	.019	í	. 36	.60	30	.07	:			.23	,	1
	\$70 C	20	62	39	135	7.3	72				-				51	20	14	27	61		260	11	10	36	177	.01	,:					1

GEOCHEMICAL ANALYSIS CERTIFICATE

ICF - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HMO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH MATER. THIS LEACH IS PARTIAL FOR MY FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICF IS 3 PPM. - SAMPLE TIPE: CORE AUF ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE.

DATE RECEIVED: MAR 1 1989 DATE REPORT MAILED: Minch 2/89 SIGNED BY ... BAPTY RESEARCH LIMITED PROJECT-MCNEIL File # 89-0471

								DAT .		. BOBA	INCII	71.1.1	1156	PR	Ja 00	1 - 11	C14 E T		r I I	.e ≠	89-	047	Ť									
	Sanpleà	HOS	Cu PPN	69 899	as RSS	DA Neg	HI PPM	CO	10 259	fe 1	ak R88	N48	84 275	Th PPN	Sr PPM	Cd PPH	Sb PPR	Bi PPM	No.e	Ca	P	ia Kgg	Cr PPN	Ha 1	Ba PPM	7i \$	8 ??N	Al 1	Na %	Į,	Sbit A	Au* PPB
	M-58-67 C 39079 M-88-07 C 39083 M-98-07 C 39082 M-88-07 C 39082 M-88-07 C 39083	1 3 1 2 1	5 101 205 441 30	37 201 21 16 4	37 358 92 67 63	.1 .5 .2 .4 .1	15 23 13 17 13	11 10 6 6	149 463 258 288 497	1.84 3.75 2.11 1.97 3.82	32 4 2 1 5	5 5 5 5	DR DR DR DR	12 13 12 13 15	39 10 8 5	1 2 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2		1.03	.023 .035 .015 .016	23 25 18 11 25	7 20 23 27 21	.53 .80 .37 .35	28 56 45 73 48	.31 .07 .38 .11	2	.47 1.58 .86 .99	.04 .03 .04 .06	.14 .58 .29 .37	1 4 1 1	4 2 1 3
`	N-88-07 C 39084 N-38-07 C 39085 N-38-07 C 39086 N-88-07 C 39088	1 1 2 1	12 28 37 204 42	5 180 48 52 34	11 755 432 215 76	.1 1.1 .2 .5 .1	5 12 24 71 19	15 15 53 11	402 770	1.02 4.22 3.76 10.56 3.27	2 6 15 34 327	5 5 5 5	HD HC HD HD	2 14 14 4 13	8 7 7 9	1 1 2 1	2 2 2 2 3	2 2 2 2 2 2	12 22 41 159 6	.41	.001 .022 .020 .022 .020	7 31 33 8 17	19 22 33 125 11	.13 .83 .69 1.98	14 37 57 85 27	.62 .55 .69 .17	2	.32 1.72 1.45 3.55 .85	.02 .03 .08 .02	.12 .19 .26 1.09	1 12 6 1	5 1 2 6 23
	H-88-07 C 39029 H-88-07 C 39090 H-88-07 C 39091 H-88-07 C 39093	1 1 1 1	116 5 8 3 2	5 49 21 26 14	37 69 101 143 92	.2 .1 .1 .1	31 20 20 20 20	12 5 8 10 7	269 278 375 373 313	2.17 1.79 2.77 3.07 2.62	9 2 3 8	5 5 5 5	ON ON OR OR	1 17 15 19	15 3 4 14 6	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	55 24 27 6 14	. 35	.033 .021 .018 .027	2 21 39 41 32	38 22 25 8 15	.80 .71 .69 .45	18 32 38 50 56	.11 .10 .15 .01	2 2	1.35 1.19 1.43 .88 1.38	.12 .06 .06 .02	.09 .48 :74 .27 .79	1 1 1 1	•
	M-68-07 C 39094 M-68-07 C 39395 M-88-07 C 39096 M-88-07 C 39098	3 2 1 1	7 21 8 15 16	13 15 32 27 2	125 116 65 139 60	.1 .3 .2 .1	21 17 16 16 14	7 9 13 7	377 469 462 527 236	2.42 2.96 3.44 4.52 2.64	8 5 8 2	5 5 5 5	OK OK OK OK	21 10 14 13 15	5 5 10 7 2	1 1 1 1	2 2 2 2 2	2 3 2 2 2 2	30 24 19 34 13	.38 .65 .32	.018 .014 .647 .033 .024	27 17 22 24 33	45 23 22 31 13	.44 .61 .83 .99 .48	167 92 99 143 135	.15 .15 .66 .18	2 2 2	1.19 1.44 1.85 2.24 1.38	.06 .07 .03 .06	.56 .78 .50 1.07 .89	3 1 1 2 1	•
	K-88-07 C 39639 X-88-07 C 39103 X-88-07 C 39101 K-88-07 C 39102 X-88-07 C 39103	1 2 6 2 1	109 19 118 8 96	11 14 42 13 104	37 51 66 29 982	.1 .2 .2 .1 .8	24 14 30 17 18	6 16 10 16	403 321 251 199 464	4.18 2.16 3.81 1.51 4.24	18 6 16 13	5 5 5 5	ND ND ND ND	17 12 21 10 17	9 3 6	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	21 16 14 8 23	.57 .22 .33	.067 .013 .034 .010	34 18 35 15 38	19 21 13 17 23	.82 .33 .60 .20	131 88 106 40 65	.16 .10 .69 .65	19 2 2	1.98 1.02 1.47 .58 1.74	.02 .06 .01 .05	1.25 .35 .79 .15	1 1 1 1	•
	K-88-07 C 39104 K-88-07 C 39105 K-88-07 C 39106 K-88-07 C 39107 K-88-07 C 39108	1 7 1 1 7	20 80 52 27 9	9 3 40 65 25	62 54 117 149 68	.1 .1 .1 .2	15 32 21 20 16	8 21 9 11	377 381 282 302 431	3.80 5.95 3.70 3.63 2.78	5 13 4 16 33	5 5 5 5	00, 07 08 04 04	20 14 24 16 19	9 4 4 5 15	1 1 1 1	2 2 2 2 2	2 2 2 2 2	9 25 19 20 24		.019 .037 .028 .020	27 15 56 39 42	14 22 18 22 22	.38 .94 .71 .73 .61	63 100 98 100 88	.02 .11 .12 .13	2 13 4	1.18 2.11 1.70 1.75 1.47	.02 .05 .02 .03	.29 .80 .82 1.02	1 1 1 2	
PROSPECTURE'S	H-88-07 C 39109 H-85-07 C 39110 H-88-07 C 39111 K-58-07 C 39112 H-88-07 C 39113	1 1 1 1 64	16 16 22 4 328	35 73 11 11 3035	72 96 43 98 412	.1 .3 .1 .1	11 11 17 15	6 7 6 19	226 415 152 292 43	1.76 3.55 1.76 2.26 40.16	13 7 4 2 2213	5 5 5 5	40 40 40 40 40	13 12 20 20 5	5 11 7 4 2	1 1 1 1	2 16 2 2 2	2 2 2 2 2	8 9 7 13 3	.17 .11 .12	.016 .016 .019 .018	30 25 35 48 5	11 14 8 13	.32 .52 .29 .39	77 40 71 91 10	.07 .03 .04 .12	2	.94 1.25 .93 1.16	.02 .04 .01 .02	.51 .28 .44 .76	3 1 1 2 3	•
Manufacture, or	STD C/AU-R	18	61	42	134	7.4	67	31	1021	4.22	19	21	â	39	49	18	15	17	60	.48	.095	40	56	.94	174	.06	32	1.89	.06	.13	13	505

ICP - .500 GRAW SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR ARD IS DILUTED TO TO ML WITH WATER.
THIS LEACH IS PARTIAL FOR MH FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU SETECTION LIMIT BY ICF IS 3 PPM.
- SAMPLE TYPE: CORE AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED:	MAR 6 1989	DATE REPORT MAILED: March 7, 1989	SIGNED BY BY Cham. D. TOTE. C. LEONG. B. CHAB. J. WANG: CERTIFIED B.C. ASSATERS
----------------	------------	-----------------------------------	---

													/					•								. 47121.01	OMELA			autäun	
					B	APT	Y RE	SEA	RCH	LIMI	TED	PRO	OJEC	T M	CNEI	LL	Fi	le :	# 89	-05	15	P	age	1							
SAMPLE#	OK KSS	PSN		Zn PPN	AĢ PPN	Ni PPN	Co P2N	Na PPN	îe 3		SBM	Au PPH	Th PPM	Sr PPM		Sb PPM	Bi PFM	SSÄ A	Ca	P	La PPN	Cr PPN	Ng Ł	Ba PPM	7i	B PPN	Al R	¥a	ĭ	_	Au* PPB
X-93-67 C 39114	2	110	13	32	.1	71	11	282	2.04	4	5	HD	7	14	1	2	2	11	. 22	.008	17	16	.31	32	.05	1	0	6.1	.19		•
N-38-07 C 39115	1	9	23	72	. 1	9	3	316	1.87	4	5	80	I	14	1	2	ž	II		.052	ij	6	.41	10	.03		. 14		.05	1	
N-88-07 C 39116	1	4.2	1117	400	3.4	18	11	421	2.75	2	5	ND	12	17	1	ž	ž			.029	13	19	.52	32	.06	-	1.97	.03	.13	2	ı
M-88-07 C 39117	1	170	30	67	.2	9	ó	580	2.02	a	5	GK	9	24	i	ž	ž			.010	27	11		71	.08		.37	.03	.13	,	4
N-88-07 € 39118	2	3	4	8	.1	11	1	45	. 39	2	5	HD	2	5	,î	2	2		.63		4	8	.03	3	.01	-			.65	. 1	l
H-98-07 C 39119 H-38-07 C 39123	1	7	8	26	.1	5		123	89	2	5	DΚ	8	11	1	2	2	1	-	.008	15	9	.13	13	.04	2	.34	.02	.13	1	1
	17		143	466	. 3	23		•		10	- 5	ĦD	17	593	1	10	2		5.18	.034	41	23	. 29	218	£?	13	1.55	.14	.81	676	6
STO C. AU-R	19	62	44	136	7.3	69	30	1060	4.10	41	21	6	40	51	19	15	22	63	.51	.097	42	38	.91	131	. 07	36	2.97	.06	.14	13	525

 $\textbf{f}_{1},\textbf{f}_{2},\textbf{f}_{3},\textbf{f}_{4},\textbf{f}_{3},\textbf{f}_{4},\textbf{f}_{3},\textbf{f}_{4},\textbf$

Sample#	oM Kgg	Cu PFM	ćq XSQ	3n Pan	77X	NI PPM	CO PPN	No FPM	Fe 1	AS PPM	U PPH	PRN NSS	Th PPM	St PSH	Cđ PPN	Sb PPN	Bi PPN	Y99	Ca %	P	La PPX	CT PPN	Ŋġ	8a 22%	71 1	B PPN	Al Ł	Na t	ţ	N48
M-38-07 C 39121 M-88-07 C 39122 M-88-07 C 39123 M-88-07 C 39124 M-88-07 C 39125	1 1 1 1	1 5 9 31 11	25 34 10 10 79	38 55 25 66 87		12 11 9 14 17	9 6 2 10 9	389 315 359	1.74 1.97 1.03 2.85 3.06	28 2 6 4 2	5 5 5 5	CH OH OH OH OH	16 13 3 16 11	14 T 25 5	1 1 1 1	2 2 2 2 2	2 2 2 2	2 12 10 16 37	.13 1.12 .15	.032 .014 .010 .018 .032	40 34 16 34 24	3 15 12 15 30	.25 .44 .20 .58 1.28	48 71 23 76 60	.61 .10 .06 .11	2	.66 1.03 .53 1.40 2.64	.02 .02 .03 .03	.12 .45 .10 .45 1.11	2 3 1 2 2
M-88-07 C 39125 M-88-07 C 39127 K-88-07 C 39128 M-38-07 C 39129 K-88-07 C 39130	1 1 1 1	25 30 15 10 27	10 7 13 17 7	74 79 85 98 47		23 21 23 17 17	10 11 11 10 9	239 256 271	3.09 3.50 2.99 2.80 2.33	5 2 3 3	5 5 5 5 5	0K 0K 0K GK GK	18 19 15 19 22	4 3 4 3 5	1 1 1 1	2 2 2 2 2	2 2 3 2	17 18 19 15 14	.09 .09 .13 .13	.023 .026 .019 .035	14 38 35 39 47	16 18 20 14 14	.81 .82 .71 .57	134 116 100 102 36	.14 .15 .12 .12 .10	5 2 5	1.62 1.77 1.59 1.51 1.25		1.05 1.15 .87 .32	1 1 2 2 1
M-88-07 C 39131 M-38-07 C 39132 M-38-07 C 39133 M-38-07 C 39134 M-68-07 C 39135	1 2 1 1	11 8 9 9	9 12 21 16 10	61 39 47 12 86		12 16 10 10 22	7 7 5 5 11	399 432 248	2.13 2.46 1.74 1.58 3.53	8 7 8 2 6	5 5 5 5	0H OH OH OH	12 12 15 10 16	16 11 30 9 8	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	13 12 19 14 23	.32 .13 .99 .43	.066 .015 .030 .012 .042	27 23 34 22 35	15 1 6 22 17 21	.14 .39 .36 .31	91 60 111 52 102	.09 .05 .12 .09	2 2 12	1.23 1.06 1.25 .81 1.71	.03 .05 .05 .04	.30	1 1 1
M-63-07 C 39136 M-88-07 C 39137 M-88-07 C 39133 M-98-07 C 39139 M-63-C7 C 39140	1 1 1	3 1 31 1 10	27 17 1 19 6	43 37 20 30 80		11 3 6 6 18	4 3 7 3 9	221 755 237	1.46 1.08 1.41 1.13 2.71	2 2 2 7	5 5 5 5	ND ND, NO ND ND	12 8 7 9 18	9 18 118 15 5	1 1 1 1	2 2 2 2 2	2 2 2 2 2	12 9 5 9	.32 .58 4.19 .71	.015 .010 .042 .009	28 16 14 12 41	13 12 10 10 16	.25 .17 .19 .19	70 48 23 32 109	.09 .06 .04 .07	2 2 2 2 4	. 58 . 56	.03 .05 .02 .04	.50 .21 .09 .13	1 1 1 1
M-88-07 C 39141 M-88-07 C 39142 M-88-07 C 39143 M-88-07 C 39144 M-88-07 C 29145	9 1 1 1	1 2 4 16 30	14 12 2 11 8	119 34 75 38 51		; 7 13 12 20	2 6 10 5	289 390	1.84 1.41 3.07 1.50 3.31	2 6 7 4 2	5 5 5 5	08 08 08 08	21 16 9 12	147 10 4 11 3	1 1 1 1	2 2 2 2 2	2 2 3 2 2	14 15 17 10 15	1.83 .26 .10 .69	.022 .023 .011	19 42 32 20 12	15 13 16 16 13	1.01 .29 .61 .23	141 95 128 34 106	.09 .09 .14 .07	2 2	3.35 1.00 1.57 .70 1.40	.09 .02 .02 .03	56 .96 .21	1 2 2 1
K-88-07 C 39146 K-88-37 C 39147 K-58-07 C 39148 K-36-07 C 39149 K-88-07 C 39150	1 1 1 1	8 3 18 9	7 26 11 14 10	34 50 76 62 67	.1	9 9 14 14 13	4 5 10 7 10	243 357 270	1.48 1.51 3.85 2.21 3.18	2 2 2 4 2	5 5 5 5	HO HO HO HO HO HO	13 12 21 15 12	8 5 4 4	1 1 1 1	2 2 2 2	2 2 2 2	13 13 21 16 19	.29 .20 .22 .21	.013 .019 .018	30 28 31 33 26	17 26 20 29 14	.32 .82 .43	65 91 152 90 156	.09 .10 .15 .13	2		.03 .02 .01 .03 .02	. 42 .53 1.08 .52 1.04	1 1 1 1
K-88-07 C 39151 K-88-07 C 39152 K-88-07 C 39153 K-88-07 C 39154 K-88-07 C 39155	1 4 1 1		9 37 17 6		1	14 16 13 16 14	7 8 8 9 6	505 287 304	2.61 2.63 2.43 3.33 1.95	2 4 3 2 2	5 5 5 5	ОН ОИ ОИ ИО	18 10 12 16 11	10 4 4	1 1 1 1	2 2 2 2 2		17 30 12 20	.12 .55 .16 .10	.038 .016 .021	34 26 25 34 24	30 28 33 20 40	1.42 .48 .65	109 42 66 128 42	.13 .12 .10 .15	2	1.32 1.69 1.13 1.66	.03 .03 .03 .02	.70 .93 .46 1.04	1 2 1 2
H-88-07 C 39156 H-86-67 C 39157 STD C	1 1 19	1 7 52	10 8 43	52		9 13 70	5 9 31	252	1.45 2.28 4.68	5 7 44	5 5 23	DK Dk T	14 16 39	4	1 1 19	-		12 13 61			26 34 41	20 23 51	.44	46 112 177	.09 .12 .07		.93 1.18 2.05	.04 .02 .06	,32 ,73 ,14	1 1 13

1-

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.

THIS LEACH IS PARTIAL FOR MM PE SE CA P LA CE MG BA TE 8 W AND LIMITED FOR MA E AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: COTE AU* AMALTSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED:	MAR 13 1989 DATE REPORT MAILED:	March 15/89	SIGNED BY	7 D. TOTE. C. LEONG, J. WANG: CERTIFIED B.C. ASSATERS
	BAPTY RESEARCH LIMITED	PROJECT MCNEIL	File # 89-0555	Page 1

SAMPLE≸	Но		Pb	2n	ÄĢ	Ní	Co	Ms	! #	ÀS	IJ	Au	Th	Sr	Cđ	Sb	81	V	Ça	?	id	Cr	Xā	Ba	۲í	В	Al	Xa	I	¥	àu*
	FPN	PPN	PPN	PPM	PPM	26%	264	PPM	*	SEX	PPM	PPN	SEX	PPN	P?N	PPN	28%	PPN	1	ł	PPK	PPM	ţ	SPK	ł	PPN	3	\$	3	PPR	275
M-69-01 C 39133	1	60	1	101	. 2	19	28	1502	6.37	20	5	210	1	93	6	2	2	:63	10.98	.090	•	11	2.12	10	. 13	2	3.43	. 02	. 65	1	1
M-89-01 C 39153	:	75	10	138	.1	24	12	1033	6. ??	12	5	ЯD	3	17	6	1	2		1.78		9	17	2.10	8	9	_	3.31	. 05	.66	i	i
M-89-01 C 39160	2	27	29	:28	.1	18	10	605	3.60	2	5	ND	3	21	1	. 2	2	36	1.04	.036	23	33	1.46	100	.15	3	2.07	.09	. 58	2	2
K-89-01 C 39161	Ţ	1054	15	5133	1.3	-(3	34	385	2.93	108	5	ИÐ	4	17	2.7	2	3	11	5.41	.622	14	15	.57	61	.11	2	1.34	.86	.54	2	2
M-89-01 C 35161	2	512	16	70	. i	53	28	311	4.47	ŧ	5	ND	11	4	1	2	2	26	, 25	.015	17	30	.43	69	.14	2	1.13	.06	.55	5	1
N-89-01 C 39162	ı	12	25	3.2	.i	13	11	245	1.60	5	5	HO	17	12	1	:	2	29	.55	.016	2	2:	.31	32	. 01	2	1.27	.01	.19	i	ī
N-89-01 C 35164	i	15	13	29	.1	13	10	197	2.72	ó	5	ND	3	5	1	2	÷	24	.53	0.3	11	20	.53	21	,09	ž	.87	.95	.19	5	1
M-89-01 C 39165	ţ	•	5	36	.1	5	#	133	1.16	1	5	ND	1)	4	1	3	2	- 11	.41	0.5	21	12	,34	39	.07	2	. 18	.:2	.26	3	:
K-89+01 C 3919E	l	551	7	48	.1	31	34	312	3.24	7	5	ND	5	15	1	33	2	29	1.65	145	13	ŧ	.13	2	.07	2	.84	.07	.06	5	3
M-39-01 C 3916"	1	440	П	26	. i	25	29	319	3.15	5	5	HO	4	8	2	2	ž	38	1.12	.131	12	3	. 18	ń	10	2	1.31	. 08	. 26	- 4	3

#319KKE	OK MSS	uS Kaq	63 MSS	ESS PPH	şk Res	HES HES	20 23 N	Nn P?N	₹e }	As PPK	K95	Au PRS	7h PPK	ST Mas	C4 77%	5 5 1444	81 81	V PPN	Ca }	?	La PPM	Cr PPN	¥.	34 ?PN	7: 3	B Pan	Al }	Ha Ł	۲ ۱	y N95	
H-89-01 C 39168	1	63	1	53	.:	14	25	423	3.42	4	5	HO	1	48	,	,	,	20	1.23	.121	a	۵	1.15		**	•				_	
M-89-01 C 39169	1	213	1	52	. 2	22	26	572		į	5	ХĎ	i	21	ž	,	,	107	.91	105	10		1.41	55	-11		1.85	.09	.25	1	
N-89-01 C 39170	1	5 C	5	59	.1	10	28		3.93	,	5	ND	i	51	3	3	,	104			10			52	.27		2.58	.11	.41	į	
X-89-01 C 33171	4	5	24	. 8	.:	13	3		1.09	2	ç	NO	ġ	1	1	,	,	13	.25	.012	-		1.11	71	.29	Ž	2.35	.05	. 27	I	
M-89-01 C 39172	1	50	:	37	.1.	20	:2		3.22	ž	5	ND	16	4		2	į	19		.038	20 36	23 16	.25 .59	1 135	.09 .15	?	.54 1.72	.09 .03	.05 .93	1	
N-89-01 C 39173	ż	8	58	207	1.	14	7	276		11							_						• • • • • • • • • • • • • • • • • • • •	•••		•	****	, vu		٠	
M-69-01 C 39174	i	15!	58	390		15	11	375		22	;	.40	10	,	I	1	7	30		.018	31	31	.68	1:6	. 13	2	1.45	.09	.83	ı	
M-39-01 C 39175	,	68	23	370	.1	31	17		2.89	•	,	NO	11	4	<u> </u>	-	ï	17	.19	.027	20	15	.50	9.6	5	2	1.43	.05	. 92	:	
K-69-01 C 39176	,	43	7	53			13		3.10	:	,	YD.	17	· ·	l	3	2	12	.:7	023	37	14	. 70	89	. 39	2	1.09	. 02	.39	i	
N-89-01 C 39177	2	13	14	. 8	.1	23		239			•	HE	12	3	1	:	2	13		.028	27	15	.47	€5	.12	2	1.12	.66	.5€	ĭ	
M-03-VE C 53E.F		-3	14	10	. 1	26	÷	168	1.31	3	5	MD	12	3	1	ì	2	, 6	.15	.023	26	12	.25	79		h	.90	.0.	.56	i	
N-99-01 C 39:78	1	7	17	59	.1	12	5	292	1.77	4	ţ	ND	10	5	1	2	2	.18	.70	.017	24	20	.45	52	.11	,	36	0.0	16		
K-19-01 C 39179	2	3	:	12	. 1	13	į.	167	1.41	- 1	5	#0	18	3	• 1	•	1	9	.19	.024	31	13	.38	δá	.03	•	. 36	.08	.36	1	
M-89-01 C 39180	1	1	9	31	. !	11	4	169	1.14	5	5	50	13	3		•	;	13	.39	.016	22	16	.35	36	.07	4		.03		Į.	
X-39-01 C 39:81	3	3	1	17	.1	21	4	:17	1.1		5	ND	Ü	i	i	•	7	16	. 43	.014	17	24	.29	30 78	.07		.68	.07	. 19	l	
M-89-91 C 39181	ŧ	3	5	34	.:	i S	3	211	1.35	• •	5	90	13	3	1	1	2	17		.013	11	21	.35	24	.[9	2	.94 .70	.07 .05	.45 .21] 	
N-39-91 C 29133	2	43	3	13	.1	25	12	:33	7.16	,	•	яс	11		1	1		16	•••											•	
N-89-01 C 39184	7	31	5	15	.1	17	12	273		Ì	Ċ	HO	14	•	•	•	•	10		9	33	13	. 43	59	. 55		1.17	. 32	.41	Z	
N-39-01 C 39185	ı	132	•	38	.1	31	17	363		ė	ć	פא	11	11		•	•	12			25	16	.33	47	.02		1.45	.05	. 25	l	
M-39-01 C 39186	t	193	5	32	i.i	29	15	31.8		,	,	ND OK	•		1	•	:				ζ	23	.37	7			1.55	17	.07	3	
X-39-01 C 19187	1	325	•	19	.2	29	12	241		í	,	UN CR	,	15 20		- 4	•		1.57	.012	:	15	.75	17	8		1.41	. 20	.10	2	
_	•		•	•••	• •	23	1.	441	1.2)	1	7	NO.		ŹŪ	1	•	Z	37	1.40	.029	ĩ	6	.65	14	.19	2	1.48	.20	.08	5	
X-89-01 C 39188	1	5	5	- 11.	.1	33	16	551	1.16	ŧ	5	310	1	10	1	2	2	20	1 35	. 329	2	19	1.57	12	5	,	1 20	20			
STD C	20	64	42	138	7.5	74	21	1636	1.29	43	18	7	38	50	21	16	23		.18		40			176			1.39	.09	.08		

(

(.:,

(

€

ť

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 MCL-HMC2-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MM FZ SR CA P LA CR MG BA TI 3 W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TIPE: COTE AU* ANALYSIS BT ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED:	MAR 15 1989	DATE REPORT MAILED:	March 20/89	SIGNED BY
----------------	-------------	---------------------	-------------	-----------

					E	BAPT	RE	SEA	RCH	LIMI	TED	PRO	OJEC	T Mo	NEI	L	Fil	e =	89-	0584	4 }	Pa	ge 1								
Sahpues	92K 1888	Cu PPN	ć5 859	a) 299	Ag ?PN	Ni Pen	Co PPM	en Pen	₹e ∢	As P?M	U PPM	DA Nes	75 898	ST PPM	Cd PPM	SE PPM	Bi PPM	¥ 229	Ca {	P	La Pen	CT PPH	No	Ba PPM	11 1	8 898	Al L	Ha 2	3	¥ 855	Au* ??8
H-89-01 C 39189	1	7	:	5	. 2	11	2	61	. 11	3	ţ	85		;	ı	3	i	5	.55	.002	2	22	.10	4	.01	2	.12	.01	.!!	i	1
M-39-01 J 39190	:	1	j	5	.1	10	9	111		14	5	59	:	2	ŧ	2	4	1.	.71	.001	1	5	.13	i	.01	3	.20	.01	. 11	1	1
X-89-01 C 39191	2	1	5	3	. 1	10	ì	102	. 15	2	5	ЯĎ	:	1	1	2	5	5	1.07	.001	2	34	.12	ŧ	.01	2	.12	.01	.01	1	1
K-39-01 C 39192	ı	13	2	3	. 2	11	1	131	.73	2	5	DK	:	3	+1	2	2	3	1.01	.001	2	1	.16	6	.01	4	.15	.01	. 31	t	1
M-88-01 C 39193	i	102	3	58	.1	31	34	709	3.95	3	ŗ	N3	:	13	1	2	:	50	5.37	.643	2	15	1.61	3	.09	2	1.73	.02	.11	ı	2
X-89-01 C 33194	1	46	2	32	.1	!5	12	600	1.4*	2	5	KD	:	17	1	3	4	25	10.30	.009	:	5	.53	1	. 32	7	. 56	.01	.01	ı	ı
X-89-01 C 39195	1	34	2	34	.1	14	20	337	1.59	10	5	KD	1	7	i	1	3	35	3.56	.037	2	10	.78	1	. 03	2	. 99	.01	.01	1	2
N-69-01 C 39196	Z	8	2	â	. 2	8	2	151	.53	2	5	ND	:	- {	1	;	2	7	2.39	.093	2	32	.17	3	.51	2	. 19	.01	.1:	4	1
M-89-01 C 39197	2	6	2	1.	. i	10	2	138	.13	4	j	HĐ	:	2	1	2	2	. 5	1.05	.016	2	8	.30	1	.04	į	.40	.02	.01	1	2
K-89-01 C 39198	2	£	2	19	.1	21	6	199	1.20	2	5	AC	ï	2	I	3	3	25	.80	.024	2	34	. 18	2	.02	3	.57	.02	10.	1	1
H-39-01 C 39199	2	4	1	16	. 2	16	5	222	1.23	2	5	ND	:	3	1	2	2	25	.94	.007	2	9	.44	7	.03	4	. 59	.02	.02	1	1
X-39-01 C 39200	2	51	14	ŧ į	.1	30	29	169	3.99	5	ţ	30	12	3	1	3	2	53	.10	.951	22	47	1.45	10	.11	9	1.63	.14	úá	ı	7
W-89-01 C 39201	1	58	13	64	.1	16	32	765	4.34	2	5	NO	i	29	i	2	3	119	2.14	.117	1	11	1.79	79	25"	3	2.54	08	.55	1	32
M-89-31 C 39202	2	61	11	52	.3	18	23	430	3.63	2	5	DK	1	27	t	5	3	97	.39	.050	6	13	1.23	89	.26	2	1.84	,07	.45	1	1

10 63 39 137 7.2 70 31 1649 4.11 38 18 8 38 50 19 15 21 63 .48 .095 40 57 .97 178 .07 37 1.99 .06 .13 12 510

STD C/AU-R

SAMPLE#	KO Kqq	Ct PPM	Pb PPM	28 22%	Ag PPN	Ni PPN	Co PPH	Hn PPX	Fe }	As PPH	PPY	ns HSB	d† 1839	Sr Pen	six cq	SE PPK	81 PPM	¥88	Ca 3	P	La ??%	Cr P99	Mg /	Ba PPN	Ti }	8 ?PM	λl	Na k	K Ł	¥ 228
N-89-01 C 39203	1	53	13	::4	.1	21	9		3.07	:	5	HD	10	10	1	2	2	33	. 23	.035	21	29	1.48	12	. 1¢	,	1.62	. 37	.15	
X-89-01 C 39204	2	6:	33	: 51	.1	26	11	257	1.26	2	5	ND	11	9	1	2	2	11	.21	.036	20		1.29	49	.14		i. 1i	3		:
M-89-01 C 39235	ı	32	23	193	.1	20	10	285	3.45	3	5	40	10	ı	1	,	ī	16	.19	.036	20		1.17				-		. 80	- 4
M-89-01 C 39206	1	35	ίί	149	.1	13	9	360	3.50	•	ç	GK	10	13	i	,	i	38	.53	.036	20			76	.13	_	1.58		1.07	1
H-89-01 C 39207	1	1	10	5.1	.1	46	20		1.14	•	•	ЯD	1		•	•	3				20		1.11	35	.18		2.99		1.22	i
		•		• •		.•	•-	,	1.11		•	IIV	•	,		4	÷	í ð	2.32	.972	÷	22	15	ĩ	.11	2	2.64	5	.98	I
N-99-01 C 39208	1	150	8	47	.1	44	24	663	3.81	12	5	NO	1	16	:	,	1	15	1.59	.024	,	,,	1.90	12	20	,		10		
H-89-01 C 39209	:	87	5	10	.2	2.7	8	245	1.51	•	•	NO.	1	9	ī		:	-	1.13		-			12	.09		2	. 39	.08	3
M-89-01 C 39210	1	27	4	25	1	:5	1i		1.86	÷	í	HD	•	10	•	1	•					12		13	.07		1.07	. 13	.11	1
M-89-01 C 39211	1	109	2	:3	1	26			1.(4	:			•	• •		:	3	37		.023	4	16	. 90	10	.07	3	1.24	1	.03	2
H-39+01 C 39212	÷	133	,	19			17			:	3	40	1	32	Ţ	_ Z	•		1.35		7	28	. 1	17	.06	2	2.01	. : 5	.04	3
2-23-AL C 13715	1	111	,	17	- 1	53	27	448	4.10	- 2)	äD	1	if	I	2	i	52	.35	.027	:	87	1.86	1	.09	2	2.73	.:0	. 05	2
M-39-01 C 39213	i	150	9	14	.1	32	10	217	1.75	4	ξ	ND		19	,	•	•	10				••								
H-89-01 C 39214	1	213	15	*1	1	36	13		1.56	i	é	_	11		1	3			1.23			30	. 3	36	.11		1.57		, ŋç	:
STD C	20	63	42	3-	7.1						1	ИĐ	- 11	12	1		l	13	, 45		16	13	1.71	78	. 19	2	2.23	.15	. 15	2
DIS -	-0	9.7	14		7.1	76	31	1649	1.21	41	13	8	:8	50	- 19	14	22	63	+3	.098	40	57	.96	175	.07	36	1.95	.06	.13	15

ICF - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: CORE AU° AMALTSIS BY ACID LEACH/AA FROM 10 GM SAMPLS.

DATE RECEIVED: MAR 17 1989 DATE REPORT MAILED: March 20/89 SIGNED BY ... D. TOYE. C. LEONG. J. WANG: CERTIFIED B.C. ASSATERS

	BAPTY RESEARCH LIMITED PROJECT MCNEIL File # 89-0606 Page 1																														
SAMPLE#	MC PPM	Cu PPH	P5 X95	Pok Ros	ķķ Ķēs	N1 PPM	CC PPN	Ma PPM	Tê 1	λs 28M	U ??N	AU RS4	Th PPM	3: ??#	Cd ?PK	SB PPH	Bi PPM	y P?N	Ca 1	?	La Ppy	CT PPM	Kģ Ł	Ba Pen	T:	3 79%	Al Ł	He L	ľ.	¥ PPH	Au* 278
M-38-07 C 39215	3	17	9	29	.1	13	2	201	.53	3	•	HO.	ì	7	i	,	;	5.	.47	.009	18	1:	.11	15	.03	7	.30	.65	.16	,	,
N-33-07 C 39215	1	59	32	268	. 2	26	13		1.03	ž	ţ	ND	15	1	i	ž	:	- 14		.024	33	17	.68	8.	.11		1.36	.02	.72	1	3
H-88-07 C 39217	1	44	5	53	.1	34	11		3.15	2	5	ND	12	-	•1	2	3	ķ		.923	25	11	.49	36	.62	3	.89	.01	.72		,
K-88-07 C 39015	2	27	:2	1:3	.1	2:		593		2	5	ND	10	16	i	:	ž	40		.035	15		1.49	145	.14		1.04		1.07	1	3
N-88-07 C 39219	ì	21	16	74	.1	19	3	111	3.76	222	5	ЖĐ	è	18	1	?	:	27		.633	14		1.11	86	.10		1.27	. 96	.73	1	1
M-85-01 C 3922:	2	33	5	5:	.1	14	10	207	3.15	8	5	XD	9	12	:	2	2	6	. 29	.03!	11	à	.52	51	.03	2	.59	.03	.38	1	2
M-86-01 C 39221	2	27	5	6-	.1	2:	8	255	3.93	14	5	50	10	5	1	2	3	13		.53:	13	16	.70	88	.09		1.14	.05	.74	1	3
X-38-07 C 39211	1	30	:0	óì	. }	20	9	253	2.12	?	5	89	11	5	:	;	2	11	. 15	.033	23	13	. 63	11	.13		1.12	.05		•	3
M-83-37 C 39333	2	29	10	63	.1	22	8	244	3.05	3	5	31	10	5	1		:	12	.13	.034	23	15	,72	B.	.10	_	1.15	.05	. 3	;	i
X-39-07 C 39224	ŧ	31	5	58	.1	23	3	200	1.31	5	5	HD	ii	6	1	2	1	3	.21	.034	::	11	.63	65	. 97	5		.03	.56	i	ž
M-88-07 C 39225	:	23	14	34	.1	21	9		3.15	2	5	NC	9	5	1	2	2	25	.27	.034	19	24	1.67	67	.13	2	1.45	.05	.93	;	3
X-88-07 C 39326	2	25	14	143	.1	21	10	542	3.38	2	5	ND	10	11	1	2	2	38	36	.033	iá	31	1.35	90	.16		1.86		1.13	i	2
M-28-07 C 39237	3	23	50	373		29	8		2.99	2	5	¥D	9	6	2	2	:	23	. 22	.031	17	22	.97	69	.11	2	1.30	. 05	.86	1	7
M-38-07 C 39228	2	38	32	274	.:	20	i0		3.50	17	5	nc	11	16	2	2	2	26	.41	.035	19	18	1.02	33	.10	2	1.56	.06	.90	i	2
N-98-07 C 39219	3	19	10	107	.1	19	É	3.0	1.57	2	5	ND	3	•	1	Ì	ì	15	.22	.023	15	1.	.83	54	.09	1	1.13	.04	.72	ì	3
H-33-27 C 39230	1	14	34	213	.1	12	4	301	1.12	2	5	ND	6	4	i	2	4	17	.;â	.013	9	15	.65	38	.08	:	.91	.05	. 52	1	4
M-88-07 C 39231	2	16	22	205	1	12	1	220	2.26	2	5	ND	•	5	i	2	5	10	.17	.018	14	10	.58	39	. 05	2	.82	.02	.50	1	2
N-88-07 C 39232	2	23	13	107	.1	15	5	170	2.35	2	5	КD	3	5	i	2	2	6	. 15	.020	15	7	. 45	35	.04	2	.59	.02	. 19	1	2
M-82-37 C 39233	2	14	5	53	.1	12	3	199	9	2	5	NC.	5	4	1	ż	2	B	.16	.017	13	9	. 49	32	. 05	Ž	.70	.02	.41	1	1
X-88-07 C 39234	2	17	1	37	.1	11	5	205	2.10	2	5	ĦD	7	5	i	2	4	7	.18	.017	15	7	.46	34	.05	2	.63	.02	.36	i	3
M-88-07 C 39235	2	22	6	29	.1	13	8	215	2.31	2	5	ND	11	11	1	3	?	6	26	.021	25	10	.45	53	.04	4	.82	. 03	. 45	3	1
M-88-07 C 39236	1	26	18	39	.1	14	7	379	2.61	46	5	MD	10	27	1	3	2	4	. 81	.018	13	5	. 49	34	.01	6	.60	.02	.20	2	1
N-88-07 C 39237	4	37	26	44	.2	16	10	464	2.71	234	. 5	ND	8	48	ì	14	2	2	1.53	.035	7	i	.57	38	.01	3	.62	.02	.21	3	14
N-83-07 C 39238	1	24	83:5	563	13.4	11	5	933	3.18	11995 4	/ 5	ND	7	55	8	167	3				í	3	.51	22	.01	ž	.38	.01	.18	i	420
M-38-07 C 29239	3	13	44	11	.1	13	2				5	ЯD	10	10	1	?	2	2		.009	21	8	.07	22	.01	4	.29	.03	.15	3	4
N-88-07 C 39240	1	34	57	72	.2	25	10		3.26	52	5	ND	2	9	i	2	2	12	.35	.019	33	â	.55	21	.06	3	.98	.04	, 28	1	2
N-36-07 C 39241	2	21	135	84	. 6	17	7		3.08	1055	5	ЯD	7	90	1	15	3	3	2.37	.032	8	7	.74	11	.01	2	.50	.02	.18	1	143
H-88-07 C 39242	:	344	27	221	.\$	47	25		3.10	2	5	HD	1	36	1	:	3	38	1.26	.016	2	34	. 99	10	.08	2	2.21	.14		2	3
STD C/AU-R	20	62	42	135	7.5	76	31	1051	4.36	4.9	21	3	39	51	20	15	21	58	.50	.097	41	59	.94	182	.07	38	1.95	.06	.14	13	520

⁻ ASSAY REQUIRED FOR CORRECT RESULT .

Sample#						H1 PPM		Ku Psk	Fe		O PPM	Au PPN	th PP4	S: PPX	C4 728	SD H15	B: Pex	V KSS	Ca 1	?	Sa PPM	CI PPM	Ķģ		7i Ł		Al 3		χ 1	¥ K9S
N-88-67 C 39242 H-88-07 C 39244 H-88-07 C 39245 H-88-07 C 39245 H-88-07 C 39247	1 2 1	31	10 2 6	4: 6: 5:	.1 .1 .1	24 17 13 24 50	7 5 12	195 357 350	3.78 2.20 1.65 3.74 9.58	2	5	HD HD HD	21 12 13	1	1	2 3 2	2 2	12 15 15	.10 .13 .12	.023 .012 .013	41 21 38	1: 1: 16	.38 .61 .72	108 82 117	.10 .13 .13	3 2 4	1.09	.03 .05 .02	.30 .33	2
K-88-07 C 39243	1	22	10	•:	.1	15	ş	397	2.89	7	5	liD	11	ó	i	3	2	10	.23	. 0 20	23	10	. 6 ĉ	72	. 36	2	.82	. 03	.43	3

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DBG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AN DEFICTION LIMIT BY ICP IS 3 PPM. - SAMPLE TIPE: CGRE AND ANALYSIS BY ACID LEACH/AM FROM 10 GM SAMPLE.

					В	APT	r RE	SEA	RCH	LIMI	TED	PRO	OJEC	T Mo	NEI	L	Fil	e #	89-	0613	3 }	Pa	ge 1								
SAMPLES	CH 295	CV PFX	PE Pen	ZE PPH	K55	81 185	Co PPN	An PP4	Fe }		U Pen	795 X45	Th PPX	ST PPH	Cá PPX	SÈ PPN	B1 PPH	V PPM	Ca Ł	?	La PPX	er PPN	No No	Ba PPM	Ti Ł	8 29%	Al 3	Ns Ł	; ;	¥ KSS	AU* PPS
M-88-57 C 39249	:	35	145	185	. 1	13	10	507	3.51	:	5	90	11	į	•	2	3	25	36.	.046	: 8	29	. 89	55	.13	•	1.37	.03	. 6 :		
N-83-07 C 39356	1	1*	24	89	.1	11	11		4.17		5	XD	15	5	1	•	1	15		.311	16	16	.50	53	.09		1.13	.03	.5:	1	•
N-38-07 C 39251	:	33	31	106	.1	6	18		5.64	2	. 5	X3	i	21	1	2	2		2.35		- 4	2	.51	17	.1:		1.15	.03	**	•	12
M-88-07 C 39252	3	29	143	27	. 8	25	60	908	5.95	26851 -	5	CK	1	36	1	37	2		3.30		3	5		23	.01	3	38	.02	12	1	689
M-88-01 C 39253	5	34	63	110	.2	24	11	428	3.12	509	5	KO	10	32	.1	10	2		1.18		13	5	.60	23	.01	6	.45	.01	21	ì	19
M-38-07 C 39054	:	27	75	95	.2	25	3	Sa:	1.87	95	5	RD	¢	62	1	,	2	7	2.46	313	15	17	.53	27	. 01	٤	.54	.02	.13		3
N-68-01 C 39255	2	14	50	24		21	7			1215	5	XC.	÷	87	1	,	:		3.33		3	14	.53	20	.01	,	.31	.02	.19	1	3 7:
M-83-07 C 39156	4	28	33	96	.1	21	8		2.79		5	KC.	9	74	:	- 4	,		2.76		12	11	.92	32	.0:		.41	.02		,	7
M-88-07 C 3935"	3	27	63	140	.1	20	3		2.86	19	5	80	10	33	1	;	:		1.58		24		1.05	26	.08	,	1.35	.02	. 15	1	1
M-88-07 C 39258	3	23	31	81	.1	13	8		3.11		5	50	9	75	i	2	į		2.56		15		1.02	36	.01	į	.40	.01	.22	1	3
X-86-07 C 39259	1	130	230	769	1.8	35	19			1981	5	NE	3	85	7	86	2	13	3.74	.169	2	5	1.42	32	.01	2	.35	.01	.::	1	176
M-86-07 C 19160	- 2	11	37	215	.1	20	•		2.32	23	5	GK	3	58	2	2	2	12	3.19	.036	13	19	1.07	25	.02	5	.94	.02	.25	1	15
X-88-07 C 39061	:	41	13	44	.1	13	9		2.15	1	5	ND	7	20	1	:	3	11	.93	01.	14	18	.31	21	. 96	2	.75	.02	.15	2	1
M-88-07 C 39262	4	ļá	12	47	.1	14	10		1.97	3	5	ИĈ	5	14	1	:	2	i O	.91	. 336	13	13	.21	9	.04	2	.19	.02	0;	1	5
N-28+07 C 35262	:	59	21	77	.1	21	12	312	3.39	3	5 .	NE	14	9	!	2	2	25	.25	.:15	12	24	.Sê	77	.li	2	1.23	.02	.57	1	2
K-38-07 C 39264	3	11	14	59	.i	17	Ą	374	1.38	2	5	ХO	5	26	1	?	2	15	81	. 209	8	:3	.43	22	.07	1	1.03	.02	.19	1	,
M-88-07 C 39155	1	8	165	233	.2	66	55	802	2.36	60:	5	NO	3	20	1	2	3			623	i	25		3;	.09	-	1.17	03	20	i	1
X-38-07 C 39266	1	90	34	103	.2	50	25	368	5.59	8	5	X3	15	5	i	2	2	27	,26	.:34	28	24	.11	105	.16		1.76	.02	35	1	;
STD C/AU-R	18	63	42	132	5.9	69	31		1.21	34	17	7	39	50	20	20	20	61		.:33	40	55	.95	175	.05		2.00	. 36	.13	13	520

- ASSAY REQUIRED FOR CORRECT RESULT -

Sample#	No Neg	Cu PPM	Pb PPM	žn PPN	AÇ PPN	Ni PPK	Cc PPM	Kn PPK	Fe 3	As PPH	U PPN	Au PPM	Th P?H	ST PPN	Cđ PPX	Sb PPN	Bi PPM	55R A	Ca Ł	?	La PPH	Cr PPM	Ng L	Ba PPM	Ti k	B PPN	Al 3	Ha }	į	7 7 7
M-28-07 C 39361	1	26	25	88	.1	18	B	507	3.20	3	ţ	FD	12	13	1	2	2	39	. 51	.046	27	31	1.27	40	.14	2	1.63	.03	93	1
M-98-07 C 39258	2	27	22	64	.1	16	1	493	2.76	65	5	ND	11	20	1	2	2	22	.83	.024	24	20	.93	51	.09	2	1.18	.04	60	2
N-88-07 C 39269	4	38	18	89	.1	28	14	477	4.21	4	5	ИD	11	10	1	2	2	19	.44	.039	29	17	.58	47	.12	4	1.47	.02	. 54	1
M-88-07 C 39270	1	7	16	105	.1	12	6	290	2.52	2	5	KD	23	5	1	2	2	14	.13	.029	50	13	.51	86	.12	2	1.31	.01	.79	1
K-88-07 C 39271	1	45	10	263	.1	34	15	261	3.28	45	5	HD	:0	6	1	3	2	7	.13	.013	14	8	.33	32	.03	3	.50	.02	.27	1
X-83-07 C 39272	3	34	13	87	.1	23	10	414	3.99	7	5	ND	11	11	1	2	2	43	.10	.038	23	34	1.41	56	.13	1	1.58	,04	.70	1
H-68-07 C 39273	1	7	17	55	.1	11	4	289	1.71	5	5	ND	14	9	1	2	2	15	.20	.012	23	15	.40	64	.08	2	.82	.04	.34	1
H-83-07 C 39274	2	23	213	109	.1	17	8	638	3.19	5	5	ND	11	21	1	2	2	29	2.05	.040	27	31	1.24	42	.14	5	1.33	.04	.96	1
M-88-97 C 39275	1	40	12	57	.1	1€	11	266	2.91	2	5	WD	11	13	1	2	2	14	.31	.014	23	17	.40	86	.11	3	1.10	.03	.54	:
M-88-07 C 39276	i	14	15	78	.1	19	\$	354	2.86	3	5	HD	.13	7	1	2	2	18	.25	.015	24	20	.55	108	.13	3	1.29	.03	.70	Z
N-38-07 C 39277	1	51	28	114	.1	26	15	341	4.21	2	5	ND	15	4	1	2	Z	19	.16	.019	33	17	.69	104	.13	5	1.66	.01	. 83	1
STD C	19	63	38	132	6.8	73	32	1039	4.29	39	16	7	39	50	19	14	23	60	.48	.094	40	54	.95	178	.07	34	2.02	.06	.13	13

(

(

(

(

·1:

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED:

JAN 12 1989

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

Jan 16/17.

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

AU** AND AG** BY FIRE ASSAY FROM 1/2 A.T.

SIGNED BY D. TOYE, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

DRAGOON	RESOURCE:	s LTD.	FIL	E # 88	-5299R
SAMPLE#	Cu %	Pb %	Zn %	Ag** OZ/T	Au** 02/T
7905 G	.02	. 24	.02	.02	.001
7906 G	.15	1.18	.01	.29	.001
7907 G	.01	. 19	.01	.05	.001
7908 G	. 14	1.49	.02	. 15	.001
7909 G	.20	2.25	.02	1.16	.001
7910 G	. 03	. 24	.01	.07	.001
7911 G	.01	.20	.01	.09	.001
7915 G	.83	.01	.06	.28	.001

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

SIGNED BY, D. TOYE, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

BAPTY RESEARCH FILE # 88-5299R

SAMPLE# Pb Ag % OZ/T 7906 G 1.20 -7908 G 1.55 -7909 G 2.39 1.25

ASSAY CERTIFICATE

- SAMPLE TYPE: Core

SIGNED BY. D. TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

BAPTY RESEARCH LTD. PROJECT MCWEIL FILE # 88-5678

SAMPLE#	Cu %	Pb %	Zn %	Ag OZ/T	Au OZ/T
	,	•	ŭ	, -	, -
7946 G	.01	.01	.01	.01	.001
7947 G	.01	.01	.01	.01	.001
7948 G	.01	.01	.01	.01	.001
7949 G	.01	.01	.01	.01	.001
7950 G	.01	.01	.01	.01	.001
C 39551	.01	.01	.01	.01	.001
C 39552	.01	.01	.01	.01	.001
C 39553	.01	.01	.01	.01	.001
C 39554	.01	.01	.01	.01	.001

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: NOV 24 1988 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

BAPTY RESEARCH FILE # 88-5732R

SAMPLE# Pb Zn Au**
% % OZ/T
C39562 .98 1.55 .029

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED: NOV 24 1988
852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AG** & AU** BY PIRE ASSAY PROM 1/2 A.T.

SIGNED BY D. D. TOYE, C. LEONG, B. CHAN, J. WANG; CERTIFIED B.C. ASSAYERS

BAPTY RESEARCH LTD. FILE # 88-5732R

SAMPLE# CU PB ZN AG** AU** % % % oz/t oz/t

C39562 .01 .98 1.55 .16 .029

ACME ANALYTICAL LABORATORIES LTD.

BATE RECEIVED: JAN 12 1989
B52 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6
PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** AND AG** BY FIRE ASSAY FROM 1/2 A.T.

SIGNED BY.... D.TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

BAPTY RESEARCH LTD. FILE # 88-5732R

SAMPLE# Cu Pb Zn Ag** Au**
% % OZ/T OZ/T

C 39574 .01 .02 .76 .02 .001

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

DATE RECEIVED:

JAN 12 1989

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** AND AG** BY FIRE ASSAY FROM 1/2 A.T.

7. D.TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

RALLA	RESEARCH	LTD.	ETPP	# 88-	·5859R
AMPLE#	Cu %	Pb %	Zn %	Ag** OZ/T	Au** OZ/T
39583	.02	.01	.16	.02	.001
39585	.03	.03	.30	.03	.001
39586	.01	.07	.40	.01	.001
39587	.42	.22	.57	.12	.001
39590	.01	.06	.19	.01	.001
39591	.01	.01	.09	.01	.001
39592	.76	.01	.05	.13	.001
39593	.01	.01	. 10	.01	.001
39594	.01	.01	. 15	.01	.001
	39583 39585 39586 39586 39587 39590 39591 39592 39593	AMPLE# Cu % 39583 .02 39585 .03 39586 .01 39587 .42 39590 .01 39591 .01 39591 .76 39593 .01	\$ \$\\ \\$ \\ \\	AMPLE# Cu Pb Zn % % % 39583 .02 .01 .16 39585 .03 .03 .30 39586 .01 .07 .40 39587 .42 .22 .57 39590 .01 .06 .19 39591 .01 .01 .09 39592 .76 .01 .05 39593 .01 .01 .10	AMPLE# Cu Pb Zn Ag** % % OZ/T 39583 .02 .01 .16 .02 39585 .03 .03 .30 .03 39586 .01 .07 .40 .01 39587 .42 .22 .57 .12 39590 .01 .06 .19 .01 39591 .01 .01 .09 .01 39592 .76 .01 .05 .13 39593 .01 .01 .10 .01

ACME ANALYTICAL LABORATORIES LTD. DA 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 DATE RECEIVED: NOV 24 1988 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp AU** AND AG** BY FIRE ASSAY FROM 1/2 A.T.

. 1 D. TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

BAPTY RESEARCH LTD. FILE # 88-5859R

SAMPLE#	Cu %	Pb %	Zn %	Ag** OZ/T	Au** OZ/T
C39584	.10	.06	1.22	.02	.001
C39588	.19	16.51	.38	2.97	.001
C39589	.13	.36	.68	.15	.001
C39592	.75	.01	.06	. 18	.001

ACME ANALYTICAL LABORATORIES LTD.

BATE RECEIVED: JAN 12 1989

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp ... Aut* AND AG** BY FIRE ASSAY FROM 1/2 A.T.

SIGNED BY D. TOTE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

	BAPTY	RESEARCH	LTD.	FILE	# 88-	5890R
S	AMPLE#	Cu	Pb	zn	Ag**	Au**
		8	8	%	OZ/T	OZ/T
C	39598	.01	.01	.15	.01	.001
C	39601	.01	.33	.27	.07	.001
C	39602	.01	.01	.08	.01	.001
C	39603	.01	.01	.09	.01	.001
C	39604	.03	.01	16	.01	.001
C	39605	.01	.01	.06	.01	.001
C	39606	.01	.01	.05	.01	.001
C	39607	. 01	. 01	. 04	- 01	. 001

ACME ANALYTICAL LABORATORIES LTD.

BATE RECEIVED: NOV 24 1988

BESS E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp
SIGNED BY..... D.TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSATERS

BAPTY RESEARCH FILE # 88-5890R

SAMPLE# Pb Zn Ag % OZ/T

C39599 13.82 1.03 2.21
C39600 2.33 2.25 .46

ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Core

SIGNED BY D. TOYE, C.LEONG, B.CHAN, J.WANG; CERTIFIED B.C. ASSAYERS

BAPTY RESEARCH PROJECT MCNEIL FILE # 88-5606A

SAMPLE#	Cu	Pb	Zn	Ag	Au
	%	%	%	OZ/T	OZ/T
C 39017	.01	.01	.01	.02	.001
C 39018	.01	.01	.01	.01	.005
C 39019	.01	.01	.01	.01	.006
C 39020	.01	.01	.01	.01	.002
C 39021	.01	.01	.01	.01	.001

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED: MAR 21 1989

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

SIGNED BY D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

BAPTY RESEARCH LIMITED PROJECT MCNEIL FILE # 89-0606R

SAMPLE# CU PB ZN AG AU % % 02/t 02/t
M-88-07 C 39238 .01 .91 .05 .39 .013

ACME ANALYTICAL LABORATORIES LTD.

DATE RECEIVED: MAR 22 1989

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: Pulp

SIGNED BY D. TOTE, C. LEONG, J. NANG; CERTIFIED B.C. ASSATERS

BAPTY RESEARCH LIMITED PROJECT MCNEIL FILE # 89-0613R

SAMPLE# CU PB ZN AG AU % % % oz/t oz/t
M-88-07 C 39252 .01 .01 .01 .03 .018

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

GEOCHEMICAL/ASSAY CERTIFICATE

1CP - .500 GRAM SAMPLE IS DIGISTED WITH 3ML 3-1-2 ECL-BRO3-B20 AT 95 DEG.C FOR ONE BOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MM FE SE CA P LA CE MG BA TI B W AND LIMITED FOR MA E AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.
- SAMPLE TYPE: P1 ROCK P2 SOIL AU* AMALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE./

						*****	• ••••	••••				1	- 10			,		75	-7														
DATE	RECEI	VED	: 10	L 23 1	988	DATE	RE	POR	T MA	ILEI); <i>f</i>	try.	3 / 8	6		ass/	YER	٠٠٠.	·. Ļų	1	.D.	TOYE	OR	C.I	EON	G, (CERT.	IFIE	D B	.c.	ASS.	AYER:	5
						sou	TH :	KOOI	ENAY	GO	LDFI	ELD	s in	IC.	PRO	JECT	McN	EIL	1	File	# 8	8-2	921		Page	1							
SAMPL I	Ho Hqq			SSE IO	Ag ??N	N1 Ren	Co PPH	H1 PPH	Te 1	31E	. U PPM	PPH	i br Th	St PPN	Cđ PPN	Sb PPM	B1 PPM	. Y	Ca	P	La PPM	CT PPM	Ng 1	. Ba ?PX	Ti t	B PPM	Al t	Ja 1	Į,	77K	Au* ??B	th t	Ag OI/T
6782A	13	70	5 23181	1473	154.3	5	5	601	8.10	71	5	HD	1	2	3	241	53	3	.11	.054	9	2	.01	7	.01	5	.43	.01	. 05	168	98	-	
6783A	6	19	2 22638	1545	45.8	4	6	420	5.65	206	6	MD	1	4	1	329	10	15	.14	. 228	15	13	.20	8	.01	2	1.02	.01	.04	46	11	-	-
6784A	3	25	8 13967	328	5.0	4	13	737	6.90	384	5	MD	11	2	1	321	19	10		.062	52	7	.03	21	.01	2	.77	.01	.23	3	115	•	-
6785A	1	5	1942	143	.5	3	1.4	174	3.16	317	1	NO	14	2	1	33	2	4	.07	.040	"	4	.03	20	10.	5	.53	.01	.10	1	•	•	-
6786A	5	74	2 22839	397	126.4	. 1	. 1	1154	7.26	141	5	MD	2	1	1	369	12	13	.06	.313	18	15	.03	7	.01	. 2	1.16	.01	.06	,	. 27	•	•
6787A	1	1		582		22	12		3.58	11	5	MD	15	16	1	12	1	21		.021	70	11	.68	51	.15		2.16	.01	.13	1	5	•	•
6788A	13		5 23225		12.1	6	• 1		3.05	93	5	MD	1	11	1	23	10	16	.45		35	17	.35	6	.03	2	1.55	.01	.07	.1	13	•	-
6789A	2		6 23560		25.1	1	1	_	1.22	18	5	ИĎ	1	1	1	421	,	1		.086	12	3	.02	ا ب	.01	2	.11	.01	.01	30		78.66	
6790A	4		7 23551	•	42.6	1	• 5		9.65	35	5	2	2	1	1	734	2	- 6			11	3	.01	3	.01	2	.46	.01	.03	1		56.91	1.56
ETSEA	•	43	4 23040	114	22.5	. 1	5	10197	6.70	203	5	#D	I	1	į	335	1	13	.63	.050	2		.02	1	.05	2	1.16	.01	.01	1	345	•	•
6792A	20	110	5 23728	251	187.0	4	19	2111	23.25	52	. 6	MD	7	2	1	806	73	1	.07	.291	24	15	.04	10	.02	2	2.18	.01	.05	74	139		
6793A	12	128	6 23669	356	115.7	2	- 11	2816	11.00	H	ે 5	2	3	1	1	511	30	11	.23	.301	29	19	.03	- 4	.01	2	1.06	.01	.03	167	86	•	-
67943	16	112	8 23655	480	114.2	4	- 11	2566	10.64	129	- 5	2	. 1	1	1	1237	85	11	.10	.858	43	42	.04	5	.01	2	.94	.01	.02	370	92	•	-
6795A	2	68	2 23720	221	12.3	. 2		3616		10	5	HD	4	2	Ţ	102	- 4	15	.31	.062	10	15	.31	7	.06	2	1.69	.01	.02	11	10	•	•
6796A	17	147	1 23668	251	277.1	3	15	1160	14.38	151	5	2	5	1	1	2192	87	17	.05	.270	27	20	.04	1	.02	2	1.70	.01	.02	1	325	•	•
6797A	6		4 23765	127		2			4,53	•	5	ID	7	2	1	422	2	27		.037	15	27	.05	ı	.01	-	3.40	.01	.05	1	14	•	-
6798A	13		1 13216		12.9	4	13		13.20	205	1	ND	- 6	2	1	356	12	12	.21	.051	22	5	.06	•	.02	3	1.36	.01	.05	1	52	•	-
6799A	1		0 1999	19	2.9	1	3		1.93	70	5	MD	15	1	1	59	3	2	.01	.030	50	•	.02	16	.01	. •	.53	.01	.21	l	8	-	•
6800X	5		4 14239		94.5	•			1.11	701	5	MD	10	2	1	458	4		.10	.028	27	1	.05	,	.02	2	2.11	.01	.10	1	32	•	•
ESOIA	1	6.	3 1228	87	.5	1	3	157	1.47	12	5	MD.	1	1	1	25	2	4	.04	.006	6	. 1	.06	4	.01	3	.25	.01	.05	2	4	•	•
STD C/AU-	R 17	6	2 43	132	7.1	44	25	1045	4.03	10	20	8.	38	47	17	19	19	58	.16	.091	40	57	.92	17\$.07	32	1.98	.06	.13	12	470	•	-

- ASSAY REQUIRED FOR CORRECT RESULT FOR CA > 10,000 PPM Ay > 35 PPM

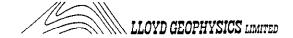
APPENDIX VII

GEOPHYSICAL REPORT ON MCNEIL CREEK PROPERTY, LLOYD GEOPHYSICS

A GEOPHYSICAL REPORT ON A
GROUND MAGNETOMETER,
VLF-EM AND
HORIZONTAL LOOP EM
SURVEY

ON THE MCNEIL CREEK PROPERTY FORT STEELE MINING DIVISION CRANBROOK, BRITISH COLUMBIA

LATITUDE 49°21'NORTH LONGITUDE 115°59'WEST N.T.S. 82F/8 and 82G/5


FOR

DRAGOON RESOURCES LTD.

BY

John Lloyd, M.Sc., P. Eng. LLOYD GEOPHYSICS LIMITED

JULY 1988

SUMMARY

During the period June 9 to July 1, 1988 Lloyd Geophysics Limited carried out ground magnetometer, VLF-EM and Horizontal Loop EM surveys on the McNEIL CREEK property near Cranbrook, British Columbia for Dragoon Resources Ltd. Some 31 kilometres of each type of survey was completed.

The magnetometer survey outlined a strong anomaly which is worthy of additional exploration by trenching and drilling.

The VLF-EM survey failed to detect previously discovered NW-SE shear zones by virtue of the fact that there was no transmitting station suitably located so as to provide adequate coupling with these shear zones. Elsewhere a number of weak VLF-EM conductors were detected.

A number of possible horizontal loop EM conductors were identified. There is no reasonable correlation between the weak VLF-EM conductors and the possible horizontal loop EM conductors.

No drilling is recommended for either the VLF-EM or the horizontal loop EM conductors until correlation between the geochemical survey data and the known surface geology has been attempted.

TABLE OF CONTENTS

		<u>Page</u>
1.	INTRODUCTION	1
2.	PROPERTY LOCATION AND ACCESS	1
3.	GEOLOGY	. 2
4.	PURPOSE OF THE GEOPHYSICAL SURVEYS	3
5.	INSTRUMENT SPECIFICATIONS	4
	5.1 Magnetometer and VLF-EM Equipment 5.2 Horizontal Loop EM Equipment	4 4
6.	SURVEY SPECIFICATIONS	5
	6.1 Magnetometer Survey6.2 VLF-EM Survey6.3 Horizontal Loop EM Survey	5 6 6
7.	DATA PROCESSING	6
8.	DATA PRESENTATION	7
9.	DISCUSSION OF RESULTS	7
	9.1 Magnetometer Survey 9.2 VLF-EM Survey 9.3 Horizontal Loop EM Survey	7 8 9
10.	CONCLUSIONS AND RECOMMENDATIONS	10
	APPENDIX	
Cos	sonnel Employed On Survey t of Surveys	(i) (ii) (ii)

1. INTRODUCTION

During the period June 9 to July 1, 1988 Lloyd Geophysics Limited carried out ground magnetometer, VLF-EM and horizontal loop EM surveys on the NCNEIL CREEK property for Dragoon Resources Ltd. The property comprises parts of the SUNNY, RAM and MAR claim groups.

Approximately 31 kilometres of magnetometer, 31 kilometres of VLF-EM and 31 kilometres of horizontal loop EM were completed on the property.

2. PROPERTY LOCATION AND ACCESS

The property is located in the Fort Steele Mining Division of British Columbia and consists of 140 units as follows:

Claim Name	Record Number	Expiry Date
SUNNY 1	3049	Feb. 1989
SUNNY 2	3050	Feb. 1989
SUNNY 3	3051	Feb. 1989
SUNNY 4	3052	Feb. 1989
SUNNY 5	3053	Feb. 1989
SUNNY 6	3054	Feb. 1989
RAM 1	1730	Nov. 1988
RAM 2	1731	Nov. 1988
MAR 3	765	Sept. 1988
MAR 4	2984	Sept. 1988

The claims are located in the Moyie Range, 35 kilometres southwest of Cranbrook at latitude 49°21'N and longitude 115°59'W. See Figure 1.

Access to the property is by Highway 3 for 10 kilometres southwest of Cranbrook to Lumberton and then via a 25 kilometre gravel road. The claims are at elevations of between 1600 and 2200 metres, where terrain is partly logged at upper elevations and densely timbered with second growth at lower elevations.

3. GEOLOGY

The property has been mapped by Mr. Peter Klewchuk, who provided a 1:5000 surface geology map of the property to assist in the preparation of this report.

Bedrock exposures are sparse and tend to be along roads. The property is underlain by the Aldridge Formation of Middle Proterozoic Age including the Middle-Lower contact at 500 to 800 metres below surface. The Sullivan orebody at Kimberley occurs just below this contact.

The Middle Aldridge Formation comprises relatively flat-lying, thin to very thick bedded metamorphosed siltstones and quartzites. A series of northwest-southwest shear/fault zones with quartz veins cut the stratigraphy at high angles.

intrusive, diorite gabbro sill, strikes One a or approximately north-south through the central portion of Locally there are phases of the diorite the property. which contain considerable intrusions magnetite. Cretaceous felsic intrusions can also be magnetic.

4. PURPOSE OF THE GEOPHYSICAL SURVEYS

The purpose of the selected geophysical surveys was to outline for drilling and/or trenching any of the following targets which could be reasonably expected to occur on the property. These geophysical targets are described by company geologist Mr. Eric MacDonald as follows:

- 1) Galena, sphalerite, silver vein systems some of which are exposed in outcrop on the property and are similar to the Vine property of Cominco Ltd. These targets could be expected to contain 100,000 to 200,000 tons with lead ranging from 10% to 60% and containing only minor amounts of zinc and iron sulphide. Only minor amounts have been exposed on surface outcrops and these have been variable in grade, width and strike continuity.
- 2) Mineralized shear zones, ranging from 200,000 to 1,000,000 tons of 15 to 20% Pb, 5 to 10% Zn and 10 to 15% iron as sulphides.
- 3) A flat lying stratiform massive sulphide deposit similar to that of the Sullivan ore zone containing 1 to 10 million tons grading approximately 5% Pb, 5% Zn, and 10 to 20% iron as sulphides.
- 4) Fissure vein gold deposits of variable dimensions possibly in the range of 10,000 to 30,000 tons containing 0.3 oz/ton to 1.0 oz/ton Au.
- 5) A crackle breccia type gold deposit of undetermined size relating to a syenite intrusive in the northeast corner of the grid.

INSTRUMENT SPECIFICATIONS

5.1 Magnetometer/VLF-EM Equipment

The equipment used was the OMNI PLUS combined magnetometer/ VLF-EM system manufactured by EDA Instruments Inc., Toronto, Canada.

The completely software/microprocessor system is A portable proton precession magnetometer controlled. measures and stores in memory the total earth's magnetic field at the touch of a key. It also identifies and stores the location and time of each measurement and computes the statistical error of the reading and stores the decay and strength of the signal being measured. Throughout each survey day a similar base station magnetometer measures and stores in memory the daily fluctuations of the earth's magnetic field. The use of two magnetometers eliminates need for a network of base stations on the grid. At end of each day the field data is merged with the base data in the computer and automatic diurnal corrections are applied to correct the total field data.

The VLF-EM hardware of the OMNI PLUS system has the ability to measure, both the VLF magnetic and electric fields from at least two different transmitting stations. The system requires no operator orientation of the sensor head towards the transmitting stations. This is achieved by the utilization of three orthognal sensor coils rather than the two sensor coils used in conventional systems.

5.2 Horizontal Loop E.M. Equipment

The equipment used was a portable MAXMIN I ground EM system

manufactured by APEX PARAMETRICS LIMITED, Toronto, Canada.

It is an expansion of the popular MAXMIN II and MAXMIN III systems.

Both receiver and transmitter coils are maintained a fixed distance apart and moved in unison from station to station. In the Horizontal Loop mode, as used in this survey, both the receiver and the transmitter coils are maintained horizontal and coplanar and are joined by a reference cable.

The equipment can be operated at 110, 220, 440, 880, 1760, 3520, 7040 and 14080 Hz with coil separations of 12.5, 25, 50, 100, 125, 150, 200, 250, 300 and 400 metres. Both the in-phase and quadrature components of the secondary magnetic field in % of the primary or transmitted field are measured at each station and plotted at the mid-point between the receiver and transmitter coils.

6. SURVEY SPECIFICATIONS

6.1 Magnetometer Survey

This survey was carried out on lines 200 metres apart and readings were taken at 12.5 metre station intervals. In one strongly anomalous area additional lines were surveyed so that the coverage was completed on lines 100 metres apart in this area.

6.2 VLF-EM Survey

This survey was carried out on lines 200 metres apart and readings were taken at 12.5 metre station intervals. In the area of strong magnetic relief, lines 4100N and 4200N were also surveyed so that coverage was completed on lines 100 metres apart in this area.

Two transmitter stations were selected for this survey:

- (a) Seattle, Washington, USA (NLK 24.8 kHz)
- (b) Cutler, Main, USA (NAA 24.0 kHz)

6.3 Horizontal Loop EM Survey

This survey was carried out on lines 200 metres apart. Readings were taken every 25 metres using a coil separation of 75 metres. Two transmitter frequencies were used viz. 880 and 1760 Hz. Additional lines, 3900N 4100N and 4200N were also surveyed, so that coverage was completed on lines 100 metres apart in this area.

7. DATA PROCESSING

The data collected was processed in the field using a portable Compaq 286 Computer and an Epson printer.

Using appropriate software, the magnetic field data was corrected for diurnal variations by merging it with the base station magnetic data.

The VLF-EM data was automatically downloaded from the field

instrument to the computer. The Horizontal Loop EM data was entered to the computer manually via the keyboard.

For data integrity checks and for a quick review of anomalies all geophysical data was plotted out in profile form on the Epson printer.

Final preparation of maps was carried out in the Vancouver office on an E size (34" x 44") Hewlett Packard plotter.

8. DATA PRESENTATION

The data obtained from the survey described in this report are presented on 6 maps as follows:

Description	Dwg. No.	
Total Magnetic Field Profiles	88269-1	
Total Magnetic Field Contours	88269-2	
VLF-EM Profiles (Seattle)	88269-3	
VLF-EM Profiles (Cutler)	88269-4	
MaxMin HLEM Profiles (880 Hz)	88269-5	
MaxMin HLEM Profiles (1760 Hz)	88269-6	

9. DISCUSSION OF RESULTS

9.1 Magnetometer Survey

This survey detected a strong magnetic anomaly on the northern corner of the grid on lines 4000N, 4100N and 4200N. The anomaly is approximately 700 to 1000 nT above

background and is open to the north. It lies directly west of a north south striking diorite sill, which appears to have little or no magnetic signature. It is therefore reasonable to assume that the anomaly is either caused by a different rock type or if indeed the diorite sill is the cause, then its magnetite content is sharply increased on this part of the grid. Regardless of this, the magnetic anomaly is worthy of further exploration.

The remainder of the property is singularly uninteresting from a magnetic point of view, with variations of less than 20 nT occurring over more than 90% of the property.

9.2 The VLF-EM Survey

Before describing the results from this survey, mention should be made about the limitations imposed upon the method arising from the use of fixed location transmitting stations.

The field generated by VLF transmitting stations is primarily horizontal and the direction of this horizontal field is perpendicular to the direction of the transmitting station. Therefore to obtain maximum coupling with a geological conductor it is necessary to select a transmitting station whose direction is co-linear with the geological strike of the conductor.

At first this would seem fairly straight forward since there are generally two or three stations to choose from. Initially we selected Annapolis, unfortunately this station went off the air on the first survey day. We switched to Cutler whose geographical direction is approximately

co-linear with the geological strike of the property only to find that the direction of the primary field was approximately 90° away from the anticipated direction. We have observed this phenomenom over a period of 20 years whilst doing VLF-EM surveys. A number of explanations have been proposed to explain this phenomenon. These include distortion of the primary field due to "focussing" especially in mountainous areas. Variations in the primary field pattern with distance from the station, and a more recent explanation is that the primary field follows "great circle routes" and not true azimuth or geographic direction paths.

Based mainly on signal strength, the only two stations available to us were Seattle and Cutler. The primary fields of these two stations were virtually in opposite (1800) directions and neither were very suitable for maximum coupling with the NW-SE shear zones which are known to occur on the property from geological mapping and trenching.

The VLF-EM data obtained from both Seattle and Cutler are almost identical, and a number of very weak EM conductor axes have been identified and are plotted in Dwg. Nos. 88269-3 and 88269-4. Hopefully these very weak conductors are caused by faults or shears. However, due to their very weak nature, they may not have true bedrock sources and could be caused by conductive clays in overburden.

9.3 Horizontal Loop EM Survey

Whilst every effort was made to maintain the transmitter and receiver coils equidistant and co-planar during the course of the survey, it is clear that the rough terrain

has introduced random variations in the in-phase component of about ± 5%. The quadrature component of course is not affected in this way, and remains uninterestly smooth throughout the survey area.

οf a number of possible EM conductors have been The axes and identified are plotted on Dwg. Nos. 88269-5 important to understand that these 88269-6. is Ιt may not be genuine bedrock conductors, but may in fact be caused by "noise" due to cable shortening and misalignment in rough terrain. Such an explanation for these increased responses is further reinforced by the that there is virtually no difference in the amplitude of the responses between the low frequency (880 Hz) and the frequency (1760 Hz) in either the in-phase or high quadrature measurements.

There is no reasonable correlation between the possible Horizontal Loop EM conductors and the previously described weak VLF-EM conductors.

10. CONCLUSION AND RECOMMENDATIONS

From a study of the geophysical data obtained from the various surveys described in this report is has been concluded that

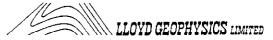
- A. The magnetometer survey outlined one strong anomaly in the northern part of the property which is worthy of additional exploration.
- B. The VLF-EM survey failed to detect previously discovered NW-SE shear zones by virtue of the fact that

there was no transmitting station suitably located so as to provide adequate coupling with the known shears and at the same time have sufficient signal strength to provide reliable measurements.

- C. There is no reasonable correlation between the weak VLF-EM conductors and the possible Horizontal Loop EM conductors.
- D. The Horizontal Loop EM data suffered from random variations in the in-phase component measurements caused by the rough terrain. These variations were rather small and have most probably not caused any strong conductors to go undetected.

Trenching and/or drilling is recommended for the strong magnetic anomaly located on the northern portion of the property. The drill hole locations should be guided by correlating the magnetic data with the geochemical data and the known surface geology.

No drilling is recommended for the weak VLF-EM and Horizontal Loop EM conductors that have been identified. Instead an attempt should be made to correlate the EM data with the geochemical data and known surface geology, at which time a drilling decision can be made.


Respectfully Submitted LLOYD GEOPHYSICS LIMITED

John/Lloyd, M.Sc., P. Eng.

Geophysicist

John blay

July 1988 Vancouver, B.C.

APPENDIX

Personnel Employed On Survey

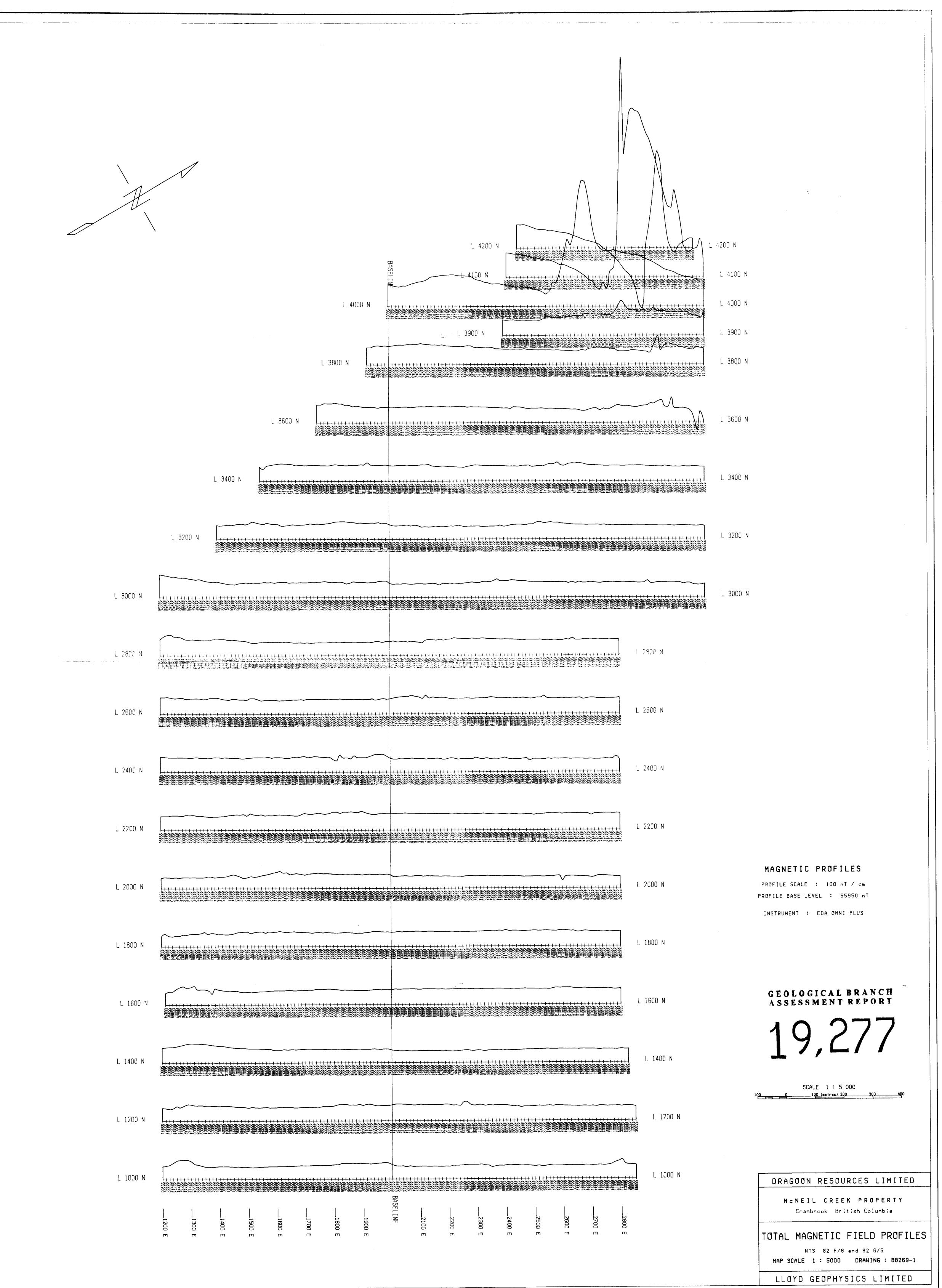
<u>Name</u>	Occupation	Address	<u>Dates</u>	
J.Lloyd	Geophysicist	Lloyd Geophysics Limited 1110-625 Howe Street Vancouver, B.C. V6C 2T6	July 19-22/88	
D. Klit	Geophysicist	11	Jun 9-Jul 1/88	
M. Pearson	Instrument Operator	. 11	Jun 16-Jul 1/88	
J. Zondag	Typist	н	July 25-26/88	

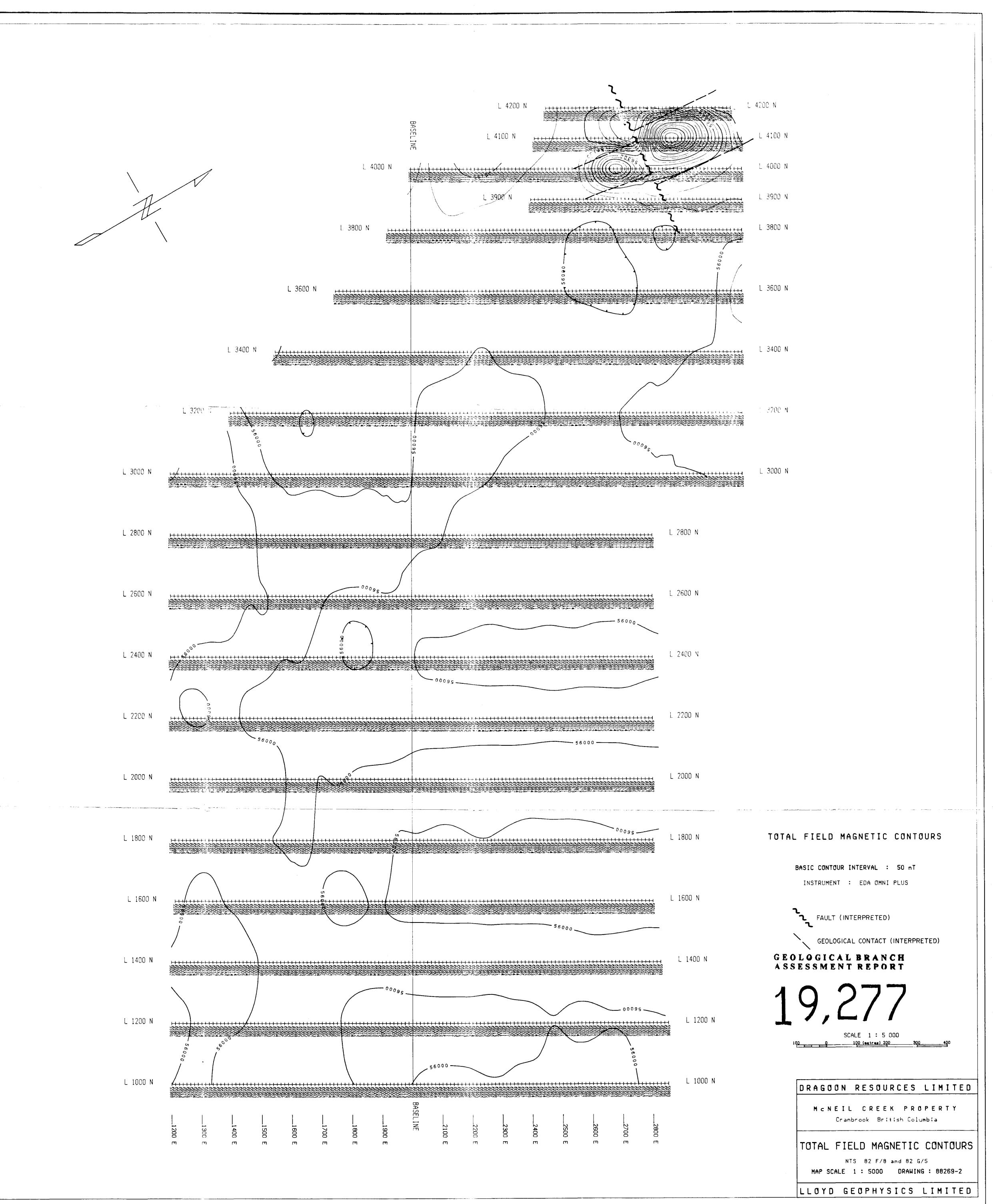
Cost of Geophysical Surveys

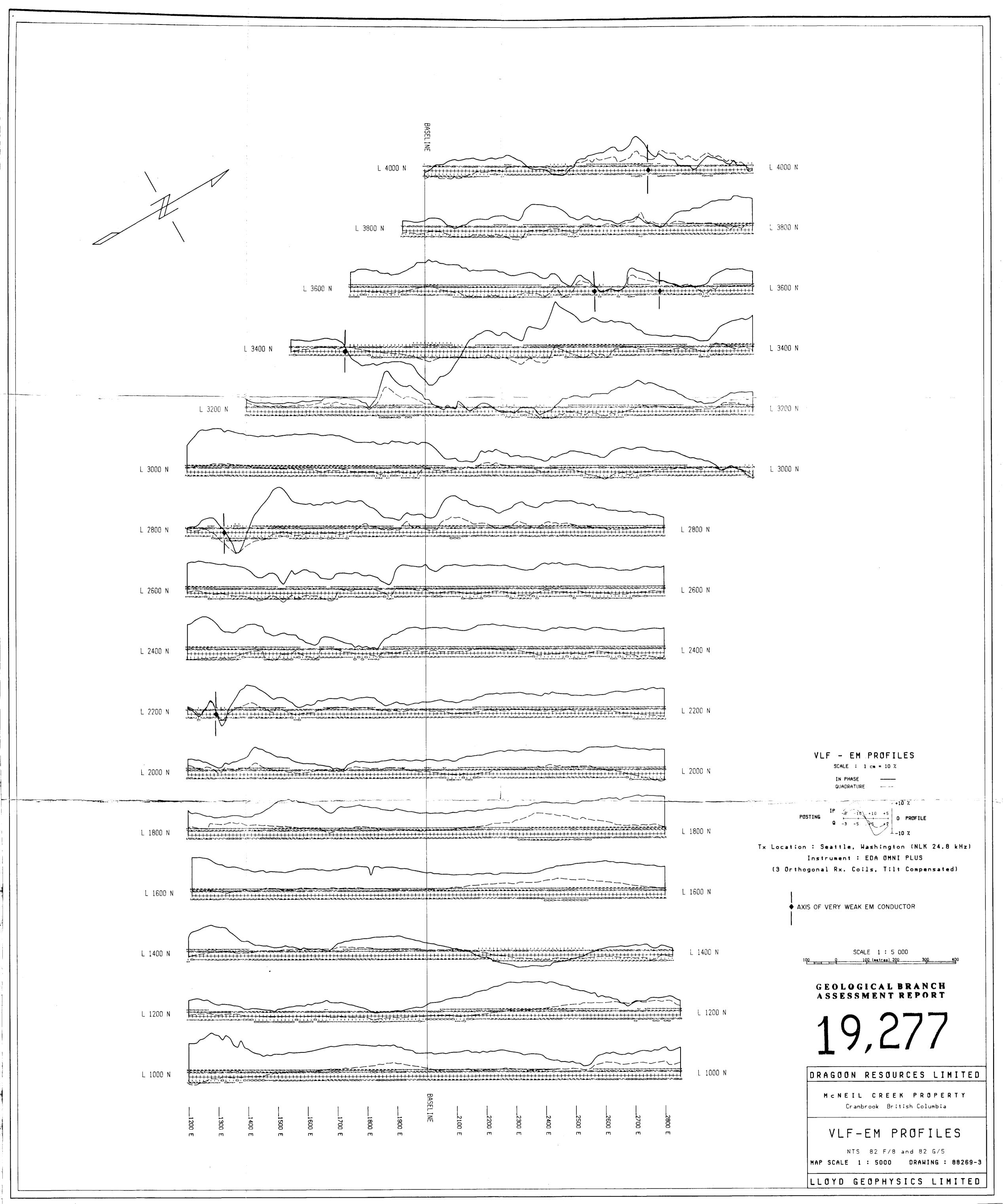
Lloyd Geophysics contracted the data acquisition of the MAG. and VLF-EM surveys on a per kilometer basis and the HLEM survey on a per diem basis. Living and travelling expenses, computer data processing, reproduction, interpretation and report writing were extra costs. The total costs incurred by Lloyd Geophysics Limited to complete the MAG., VLF-EM and HLEM surveys was \$20,762.25. The breakdown of these costs are shown below.

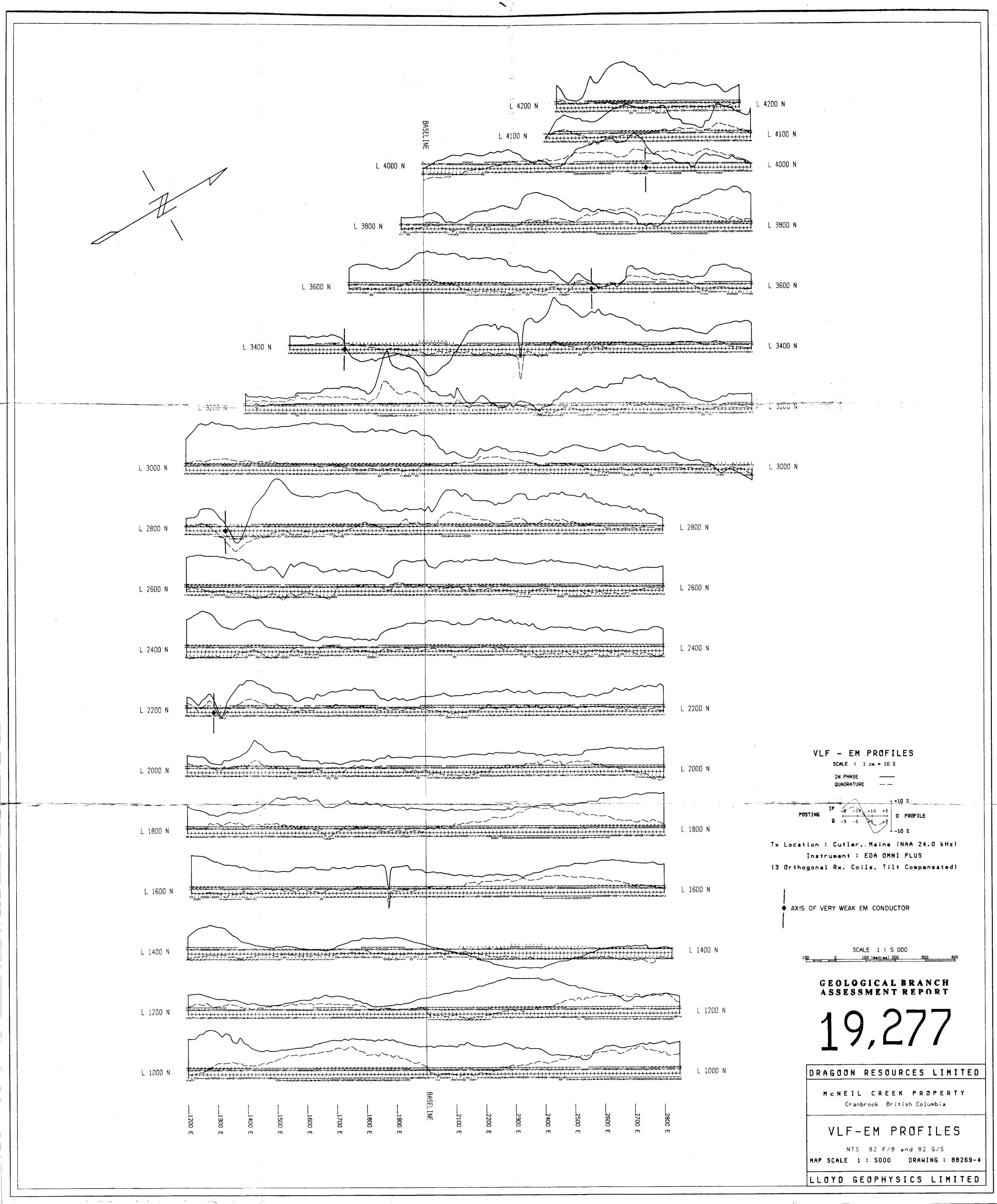
		MAG and VLF-EM	HLEM	TOTAL
1.	Data Acquisition \$	5,468.00	\$ 8,600.00	\$ 14,068.00
2.	Truck Charges	660.00	720.00	1,380.00
3.	Living & Travel	488.92	907.98	1,396.90
4.	Final Maps and Reproduction Costs	1,194.90	1,122.45	2,317.35
5.	Interpretation and Report Writing	800.00	800.00	1,600.00
	Totals \$	8,611.82	s <u>12,150.43</u>	\$ 20,762.25
	ģ	322/km	\$ 453/km	

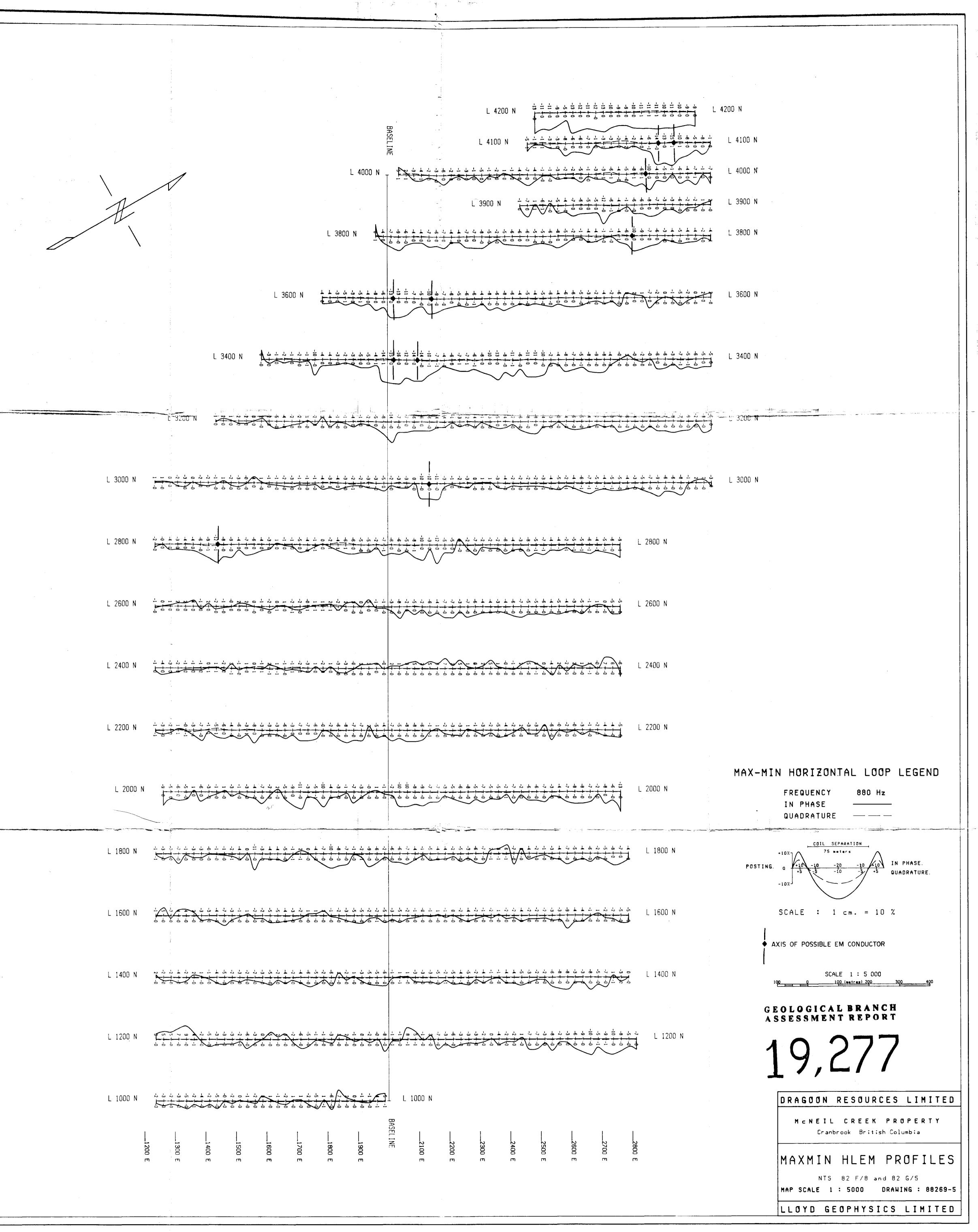
Certification of Author

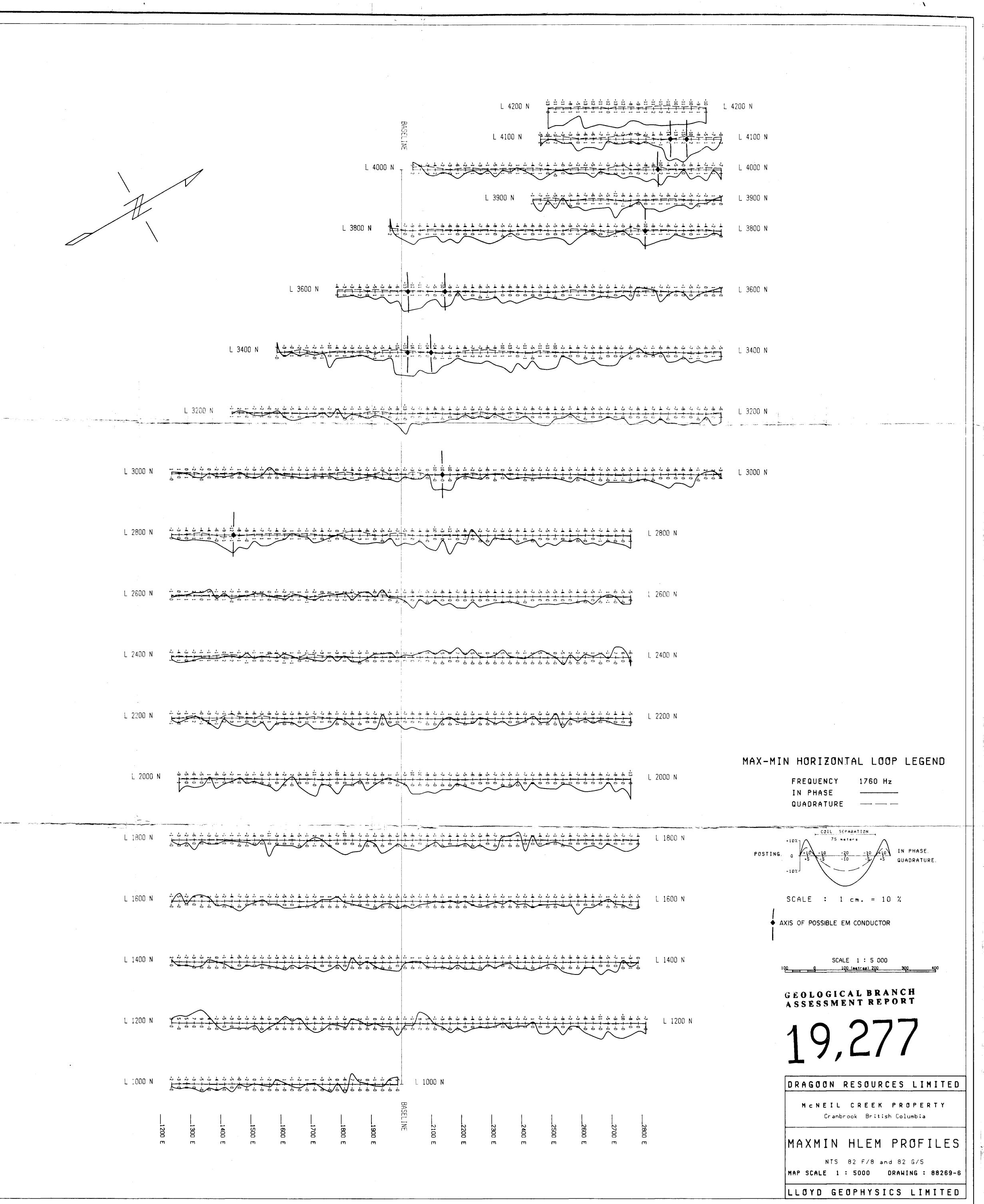

- I, John Lloyd, of 1110-625 Howe Street, in the City of Vancouver, in the Province of British Columbia, do hereby certify that:
- 1. I graduated from the University of Liverpool, England in 1960 with a B.Sc. in Physics and Geology, Geophysics Option.
- 2. I obtained the diploma of the Imperial College of Science and Technology (D.I.C.), in Applied Geophysics from the Royal School of Mines, London University in 1961.
- 3. I obtained the degree of M.Sc. in Geophysics from the Royal School of Mines, London University in 1962.
- 4. I am a member in good standing of the Association of Professional Engineers in the Province of British Columbia, the Society of Exploration Geophysicists of America, the European Association of Exploration Geophysicists and the Canadian Institute of Mining and Metallurgy.
- 5. I have been practising my profession for over twenty-five years.

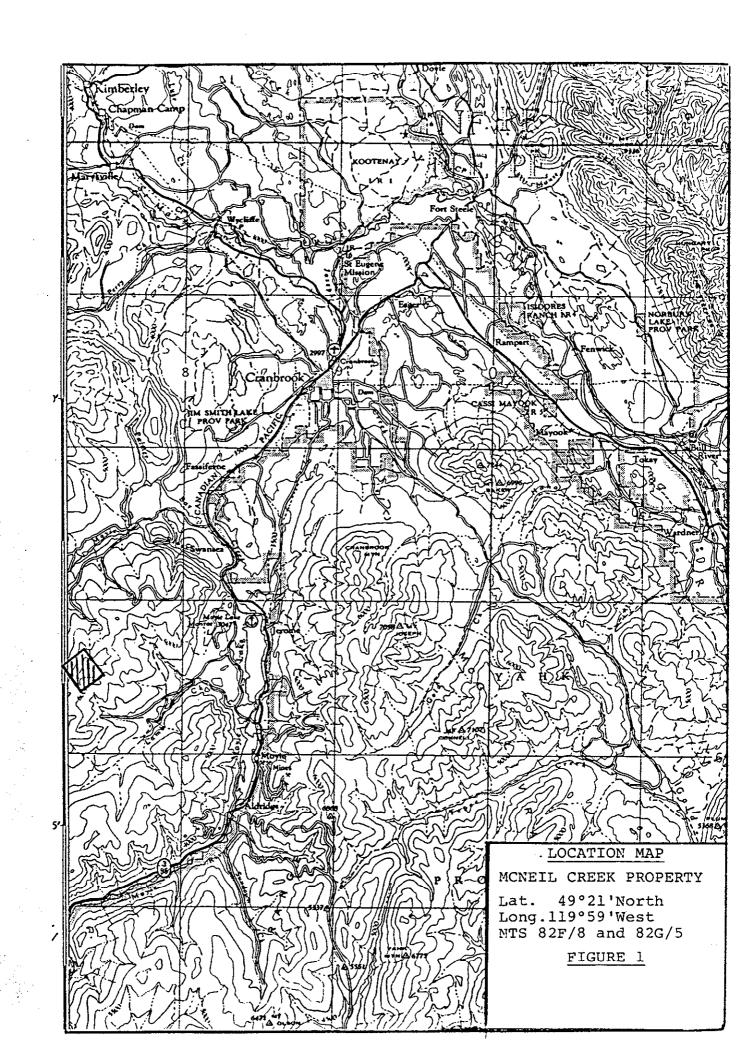

John Lloyd, P. Eng.

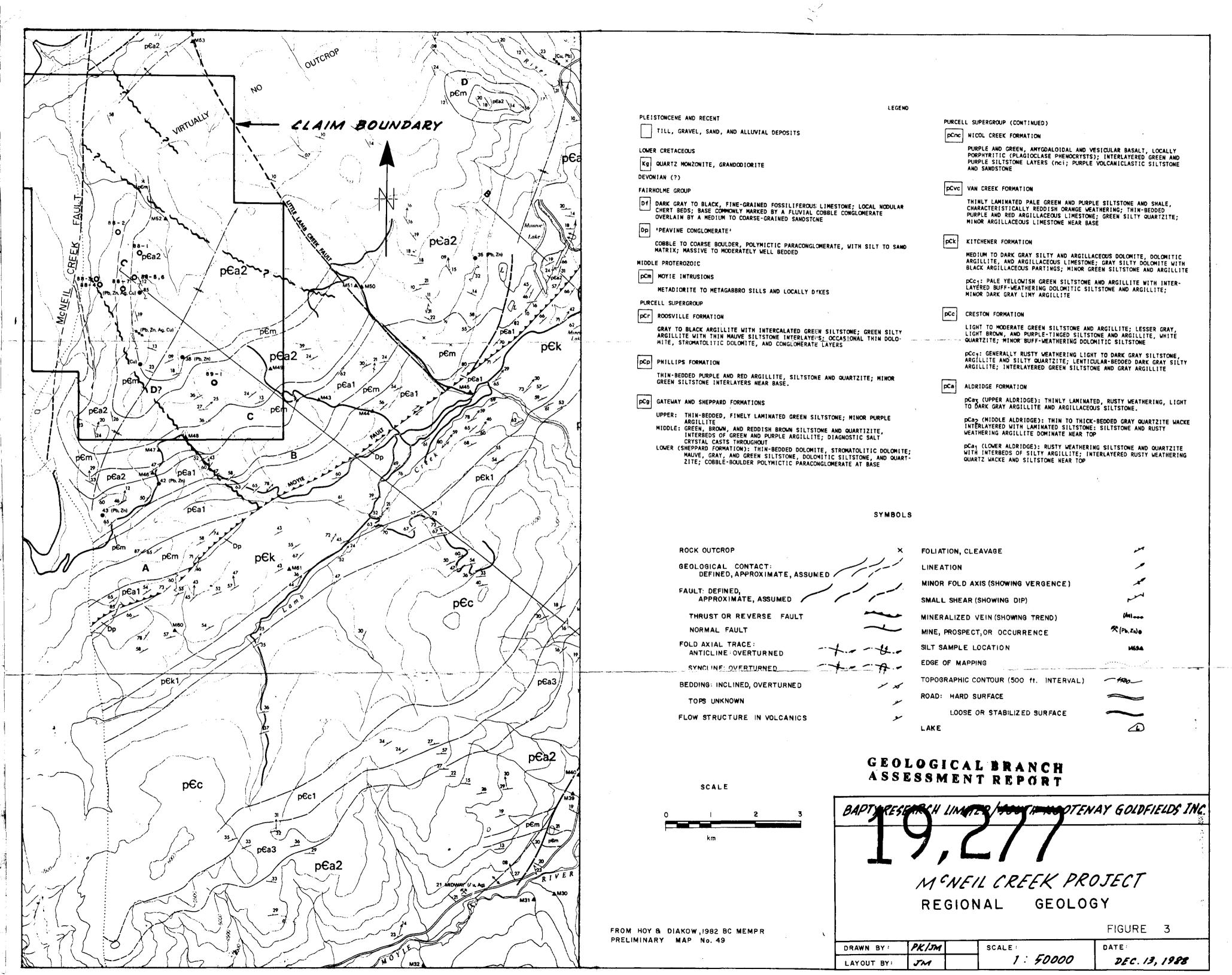

Tolmhlajd

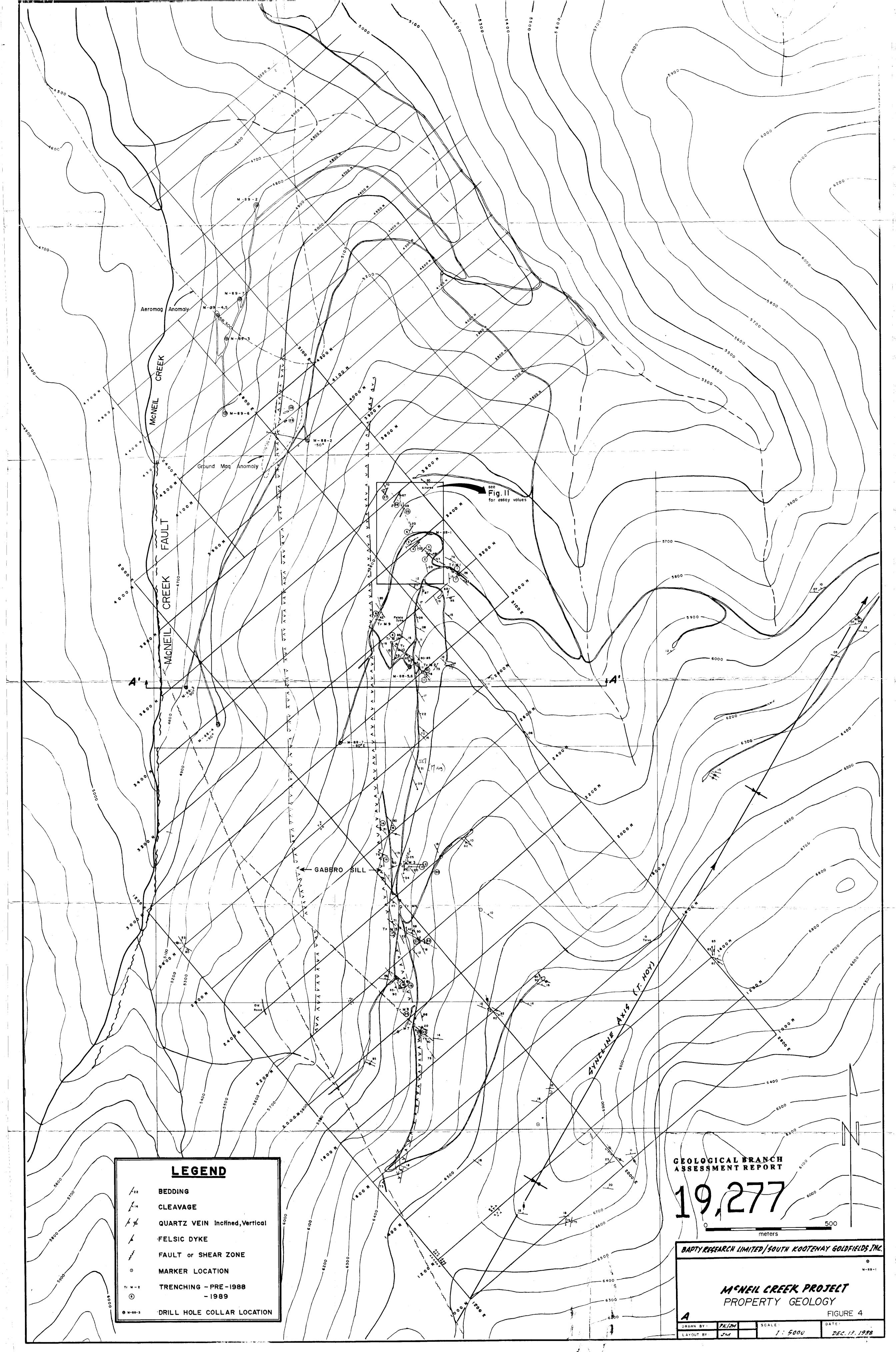

Vancouver, B.C. July, 1988



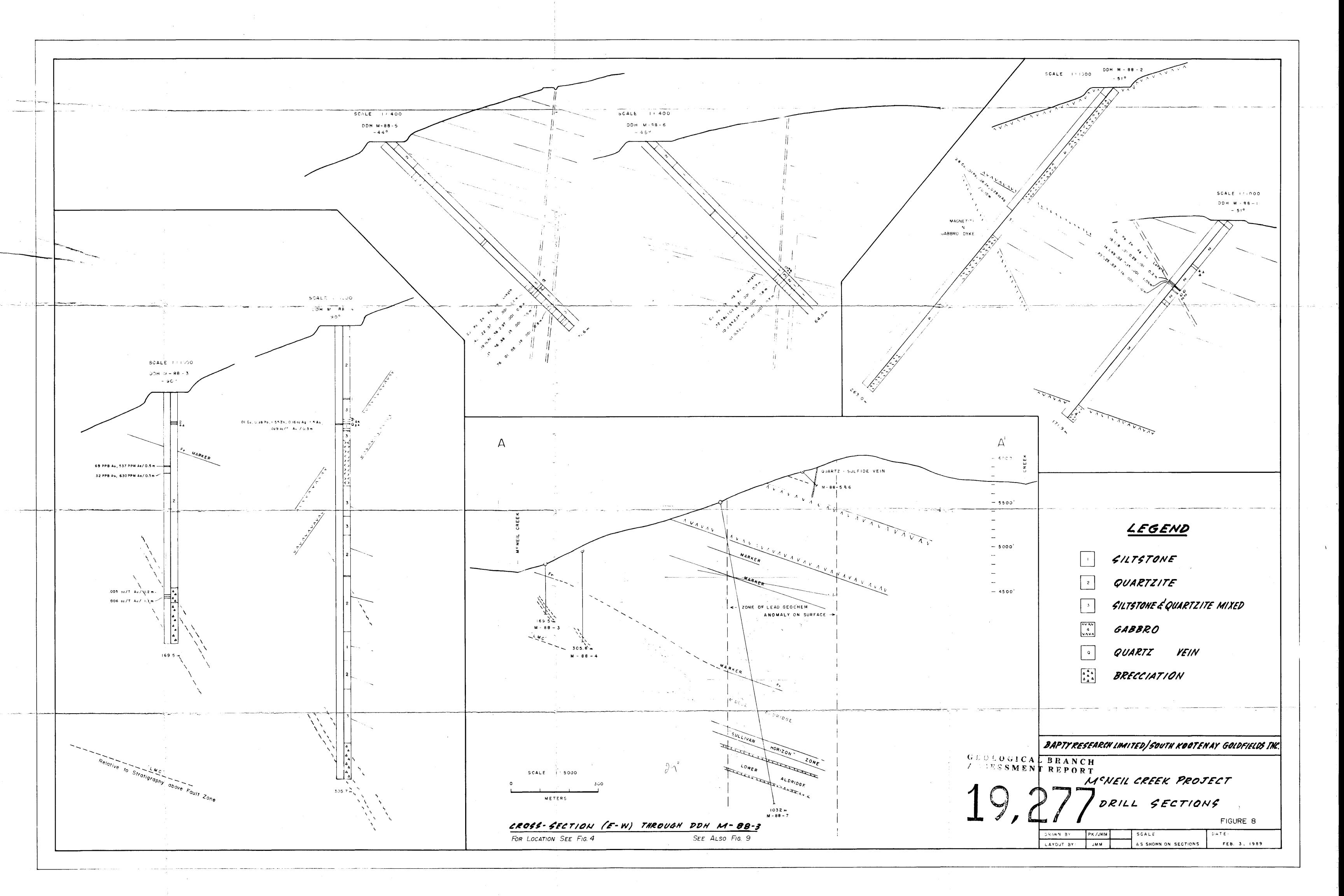


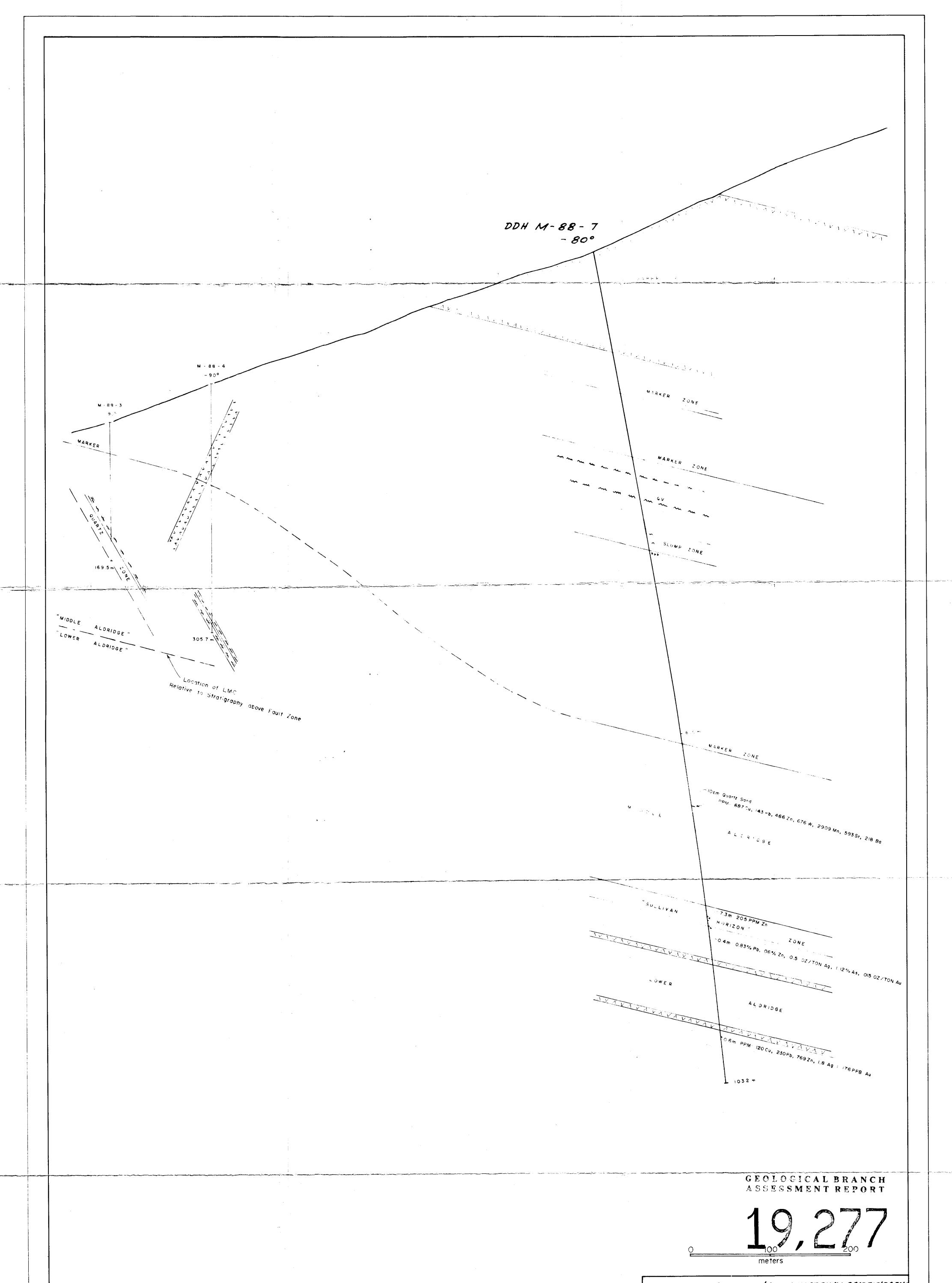


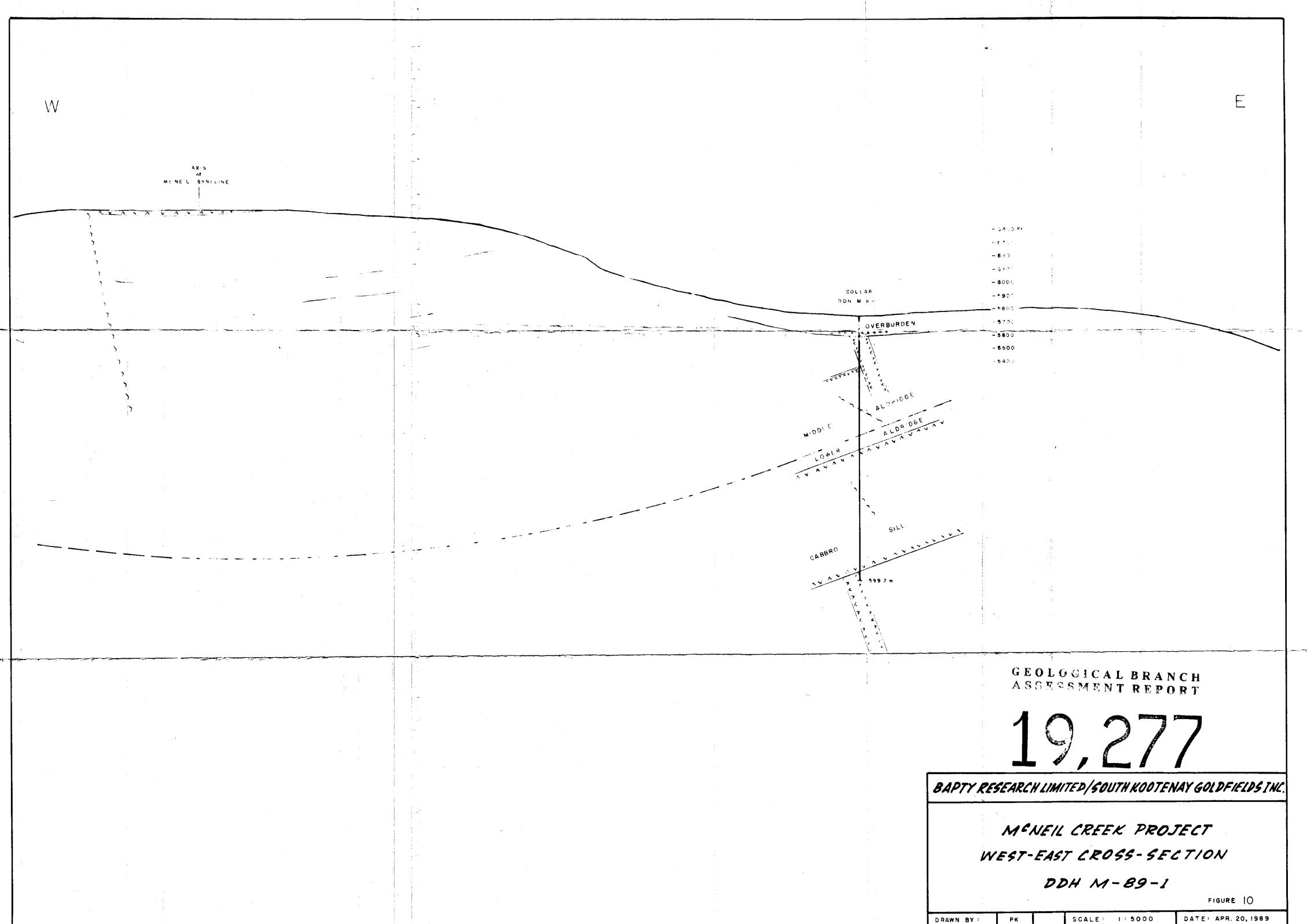












BAPTY RESEARCH LIMITED | SOUTH KOOTENAY GOLDFIELDS INC

MCNEIL CREEK PROJECT
WEGT-EAGT CROGG-GECTION
DDH M-88-3, 4 & 7

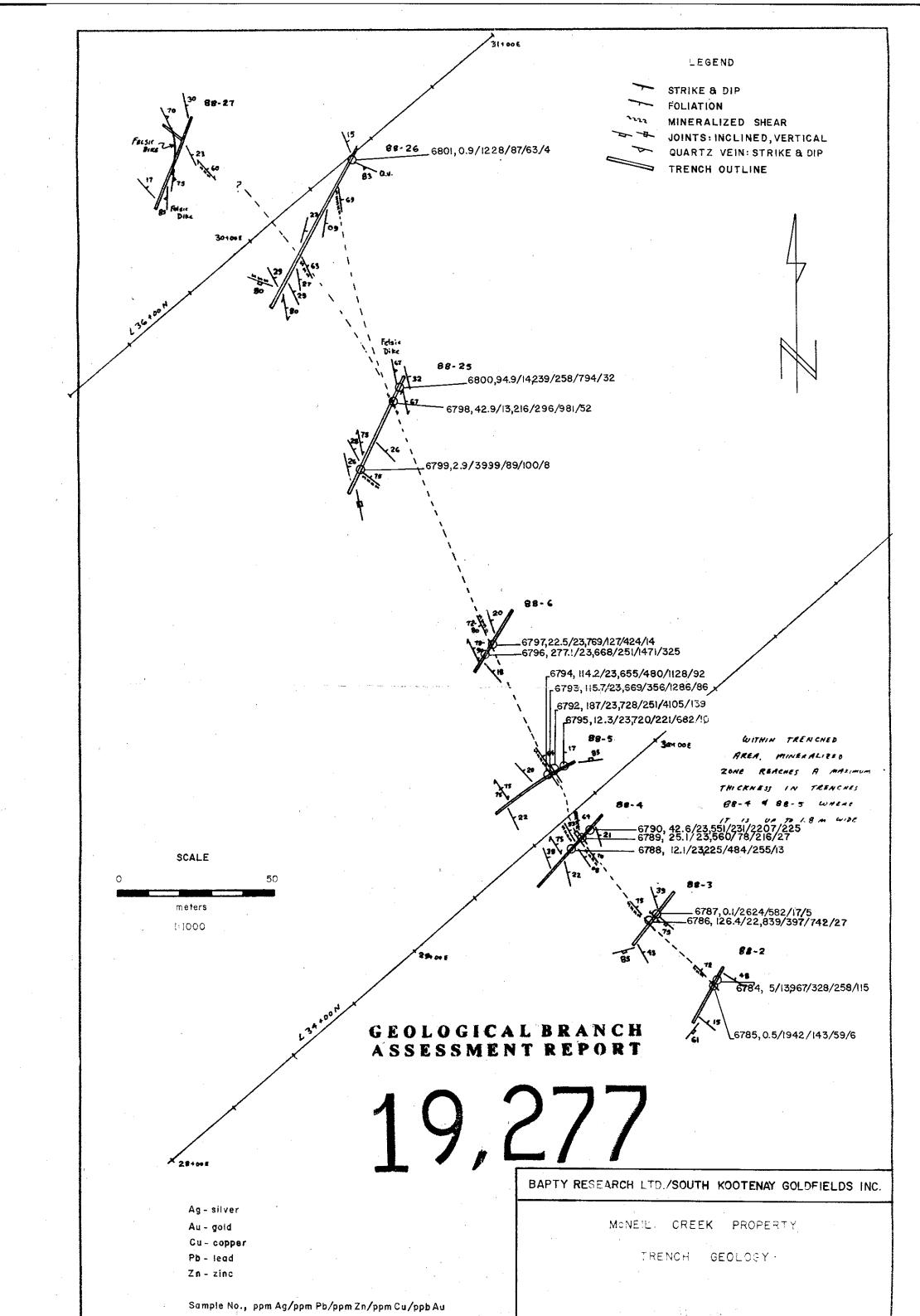

SPAWN BY: PK/JMM SCALE DATE:
LAYOUT BY: JMM 1:2000 FEB. 7, 1989

FIGURE 9

JM M

LAYOUT BY:

