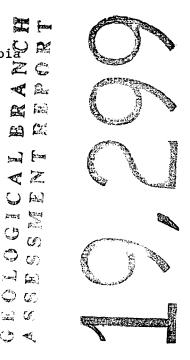
LOC MO:	1114	P0.
ACTION		
FILE MD	****	

GEOPHYSICAL AND GEOCHEMICAL REPORT on the

LIKELY 2, 4, 5 and 6 GROUPS

EASY #1, EASY #3, EASY #5, EJL, LAKE 1, JUN 10, AUG 2, E2, NOB #1, CAT, JUNE AND AST 1 CLAIMS


LIKELY, B.C. AREA

Cariboo Mining Division, British Columbia ZC N.T.S. 93-A/12E and 93-A/11W

SUB-RECENDER RECEIVED NOV - 8 1989 VANCOUVER, B.C.

Latitude 52°37' North Longitude 121°34' West

CORONA CORPORATION 1440 - 800 West Pender Street Vancouver, B.C. V6C 2V6

Christopher L. McAtee, M.Sc.

୦ ଓ

- (=)

90 and W.

يە ي

October 31, 1989

TABLE OF CONTENTS

		Page No.
SUMMA	ARY AND RECOMMENDATIONS	(i)
1.0	INTRODUCTION	1
2.0	PROPERTY DESCRIPTION	1
3.0	LOCATION AND ACCESS	2
4.0	PHYSIOGRAPHY	3
5.0	EXPLORATION HISTORY	3
6.0	GEOLOGY	4
7.0	EXPLORATION PROGRAM	6
	7.1 Grid Emplacement	7
	7.2 Geochemical Survey	7
	7.2.1 Hepburn Lake - AUG 1 and E2 Claims	8
	7.2.2 Rose Gulch - NOB #1 Claim	8
	7.2.3 Spanish Mountain - CAT Claim	8
	7.2.4 JUNE Claim	8
	7.2.5 AST 1 Claim	9
	7.2.6 Poquette Creek - Sawmill - EASY #1 Clair	n 9
	7.3 Geophysical Survey	9
	7.3.1 VLF-EM Survey	10
	7.3.2 Magnetometer Survey	10
8.0	CONCLUSIONS AND RECOMMENDATIONS	10
STATE	EMENT OF EXPENDITURES	12
STATE	EMENT OF QUALIFICATIONS	14
REFER	RENCES	15
Di	ILLUSTRATIONS	Fallering Bage
<u>Figu</u>		Following Page
1	Location Map	2
2	Claim Map	2
3	Geological Map - Fisher and Grogan Creek Area - EASY EASY #3, EJL, LAKE 1, JUN 10 Claims	#5, In Pocket
4	Sample Location Map - EASY #1, #3, #4, #5, E2 Claims	"
5	Sample Location Map - JUNE, DUG, ROSE 2, ROSE 3, EASY 7, NOB #1 Claims	u
6	Sample Location Map - AST 1 Claim	11

.

1

4

1

-

-

9

ILLUSTRATIONS Cont'd

7	Sample Location Map - E2, AUG 1, EASY #3, MARCH 1, In Pocket MARCH 2, NOV 4, HEP FRACTION Claims	
8	Sample Location Map - MARCH 1, MARCH 2, EASY #3, JUN 11, "DOG, CAT, GAP Claims	
	APPENDICES	

APPENDICES

Assay Results APPENDIX A

Appendix Report on VLF-EM and Magnetic Surveys Over the Likely Project Grid, Likely, B.C. by E.R. Rockel, Interpretex Resources Ltd. APPENDIX B

SUMMARY AND RECOMMENDATIONS

The Likely Property is located adjacent to the town of Likely in central British Columbia. The claims are underlain by Triassic basalt flows, tuffs, siltstones, argillites and phyllites which have been intruded by felsic to intermediate stocks and dykes.

An initial program of prospecting, gridding and rock and soil geochemistry was carried out on the property by **Corona Corporation** between May and September, 1989. This initial program investigated mineral occurrences and soil anomalies outlined on the property by previous operators. In addition several new occurrences of gold in bedrock were discovered.

During August and September 1989 a program of soil and rock geochemistry and magnetometer and VLF-EM surveys was conducted in order to investigate the more promising anomalies and gold occurrences.

Soil geochemical traverses were completed in the vicinity of Hepburn Lake and Rose Gulch. Prospecting and rock geochemisty were directed at soil anomalies found earlier in the season. Results from the rock and soil geochemistry were generally discouraging.

Magnetometer and VLF-EM surveys totalling 13.9 line kilometres were completed in the vicinity of Fisher and Grogan Creeks. Two new gold in bedrock occurrences had been found in this area by the initial exploration program. In addition a diorite intrusion was mapped along the creek bottoms.

Several linear conductive and magnetic trends were outlined by the geophysical surveys. They are not co-incident with known gold mineralization or gold-in soil anomalies.

Due to the discouraging nature of the results of the initial and follow up exploration programs conducted during 1989 further work is not recommended.

Respectfully submitted,

Christopher L. McAtee M.Sc.

Christopheř L. McAtee M.Sc. Project Geologist – Corona Corporation

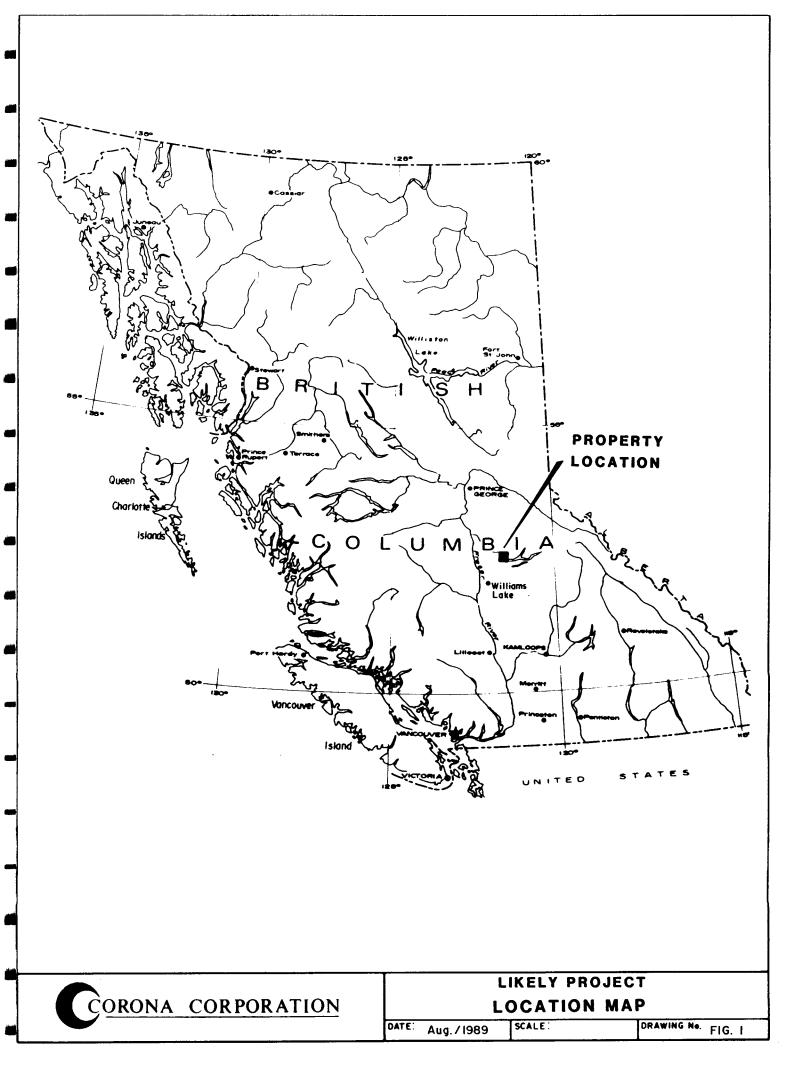
1.0 INTRODUCTION

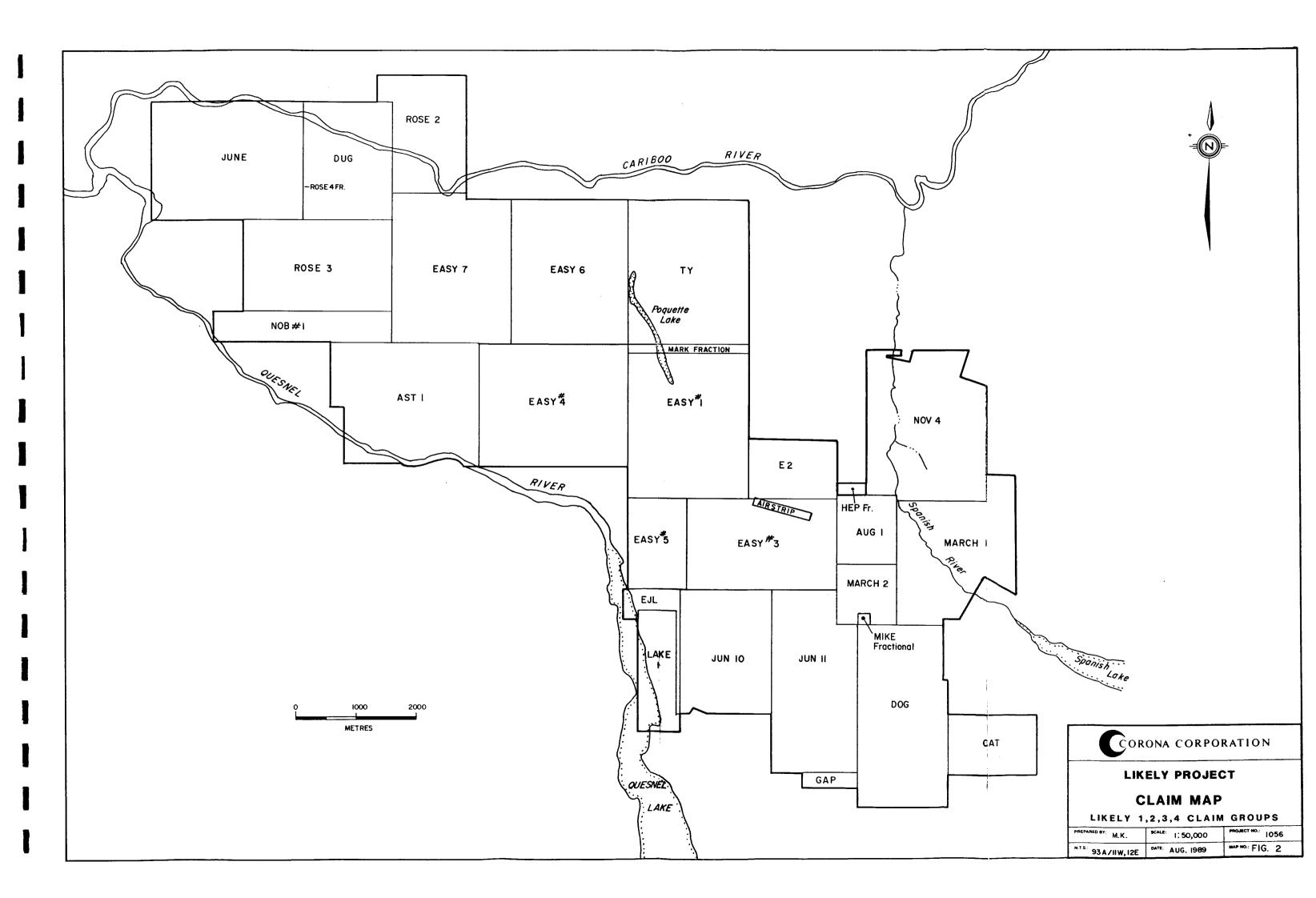
The LIKELY 2, 4, 5 and 6 claim groups lie on the eastern boundary of the Quesnel Trough, an area of Mesozoic volcanic and sedimentary rocks extending along the eastern edge of the Intermontane Belt.

The claims were staked between November 1978 and October 1985 to cover placer gold showings and quartz veins in the Likely, B.C. area.

This report details the 1989 exploration program which was carried out on June 12, July 6, and from August 25 to September 13, 1989. The program consisted of soil sampling on the E2, AUG 1 and NOB #1 claims, rock sampling on the CAT, JUNE, AST 1 and EASY #1 claims, and a 13.9 km Magnetometer and VLF-EM survey on the EASY #3, EASY #5, EJL, LAKE 1 and JUN 10 claims.

2.0 PROPERTY DESCRIPTION


The LIKELY 2, 4, 5 and 6 claim groups are located in the Cariboo Mining Division and are comprised of 274 units in 25 located mineral claims (Figure 2).


All the claims of the LIKELY 2, 4, 5 and 6 claim groups are owned by Corona Corporation of Vancouver, B.C., with details as follows:

		2.
<u>Claim Name</u>	<u>Units</u>	<u>Record No.</u>
LIKELY 2 GROUP		
EASY #1	20	877
EASY 6	20	881
EASY 7	20	1007
TY	20	1051
MARK FR	$\frac{1}{21}$	6183
	81	
LIKELY 4 GROUP		
ROSE 2	12	3992
DUG	12	999
JUNE	20	1050
ROSE 3	15	4196
ROSE 4 FR	1	4197
AST 1	20	5101
NOB #1	_6	5389
	86	
LIKELY 5 GROUP		
EASY #3	15	879
EASY #5	6	881
JUN 10	18	1798
JUN 11	18	1799
LAKE 1	8	3994
EJ	2	4592
GAP	2	6302
MIKE FRACTIONAL	1	6599
CAT	6	7155
DOG	<u>18</u> 94	7156
LIKELY 6 GROUP		
AUG 1	6	1149
E2	6	4321
HEP FRACTION	1	6309
	13	

3.0 LOCATION AND ACCESS

The LIKELY 1, 2, 3 and 4 claim groups lie to the north, northwest, and southeast of the Village of Likely, B.C., which is located at 52°37' North Latitude and 121°34' West Longitude (Figures 1 and 2).

The area is accessible from Highway 97 at 150 Mile House by 75 km of all weather road to Likely. Numerous logging roads, which vary from good two-wheel drive roads to overgrown walking paths, provide access to all parts of the property.

4.0 PHYSIOGRAPHY

The area is composed of low plateaus, canyons and rounded hills with elevations from 700 m on the Quesnel River to 1,433 m above sea level on Spanish Mountain. Rock outcrop is confined to the creek and river bottoms, canyons and roadcuts.

Vegetation consists of lodgepole pine, spruce, balsam, and poplar. A dense growth of willow, alder and immature spruce occupies the logged areas of the property.

5.0 EXPLORATION HISTORY

Small scale placer operations have been worked in this area since the 1860's. Gold-bearing quartz veins were discovered on the northeast side of Spanish Mountain in 1933. There have also been reports of hard rock exploration on Cedar Creek and Gold Creek in the early days.

The Bullion Mine, which yielded approximately 59,700 ounces of placer gold, operated from 1894 to 1905 with intermittent small scale activity from 1933 to the present.

Exploration in the area since the early 1960's has resulted in the discovery of Placer Dome's QR gold deposit between lower Maude Creek and Slide Mountain, and the Mount Polley porphyry copper-gold deposit owned by Imperial Metals Corporation and Corona Corporation.

Prospector R.E. Mickle began acquiring claims in the Likely area in 1977. He optioned these claims to Carolin Mines Ltd. in 1981. The claims are now the subject of an option agreement between Carolin Mines and Corona Corporation. Listed below is a summary of exploration work performed by various companies from 1978 until the present time.

- 1978 Silver Standard Mines Soil geochemistry, 4 diamond drill holes Gold Creek.
- 1979, 1981 Aquarius Resources Ltd. Geochemical surveys and trenching Peso claims.
- 1981 Carolin Mines Aquarius Resources Ltd. Airborne EM and magnetometer survey, 3 geochemical grids.
- 1982 Carolin Mines Aquarius Resources Ltd. Minor trenching.
- 1984 Mt. Calvery Resources Carolin Mines Ltd. Comprehensive program of line cutting, grid establishment, geochemical soil survey a n d backhoe trenching.

1987 - Dome Exploration (Canada) Ltd. - Carolin Mines Ltd. - 1,356 m of percussion drilling in 28 holes, limited trenching.

6.0 GEOLOGY

The property lies on the eastern boundary of the Quesnel Trough, which in this area consists of Upper Triassic coarse grained augite and augite-olivine basalt and monolithic flow breccia with minor greywacke, mudstone and conglomerate. This volcanic sequence is underlain by Triassic metasediments comprised of argillites, slates, quartzites and phyllites.

Spanish Mountain - CAT Claim

The main rock type on Spanish Mountain is a dark grey, fine grained phyllite which is interbedded with impure quartzite horizons of varying thickness and extent.

Gold is associated with both short gash and massive quartz veins. On the CAT claim short 1 to 10 cm, 20 cm, 66 cm, and 90 cm gash quartz veins have been found. These veins strike northeast-southwest with westerly to vertical dips and are generally barren of sulphides. An equal number strike northwest-southeast and dip northeast to vertical. Galena and tetrahedrite? were observed in some cases (Figure 8).

Pyrite occurs as cubic and prismatic aggregates which commonly weather out to produce a fine honeycomb (aerobar) texture in which native gold is often observed. This feature is particularly evident at the vein contacts and extends into the wallrock for a few centimetres, especially if the wallrock is argillaceous. Pyrite cubes up to 3 cm in diameter give the rocks a mottled appearance, especially in the quartzites.

In the phyllites, pyrite also forms small pods and stringers. A gold foil coating the insides of weathered pyrite cavities can sometimes be observed associated with quartz veins, and gold can sometimes be panned from the quartz. Mariposite occurs in scattered patches, especially noticeable in the lighter coloured rocks.

Fisher and Grogan Creeks - EASY #5, JUN 10, and EJL Claims

The main rock unit is a vesicular basalt with minor tuffs. Up to several percent disseminated sulphides are present with pyrrhotite vesicle fillings fairly common. Highly magnetic mafic volcanic rocks were found on Grogan Creek at the 89L-SR116 rock sample site and a mafic diorite stock was mapped on Fisher and Grogan Creeks (Figure 3).

Gold Creek

Gold Creek has received considerable attention in the past by way of closely spaced geochemical sampling and a series of four diamond drill holes (Godfrey, 1980). The steep roadside exposure near the mouth of Gold Creek consists of fine grained volcanic flows which are in contact with an angular volcanic talus deposit.

At this exposure, irregular, closely spaced, hematite stained, crisscrossing alteration zones are typically from 2 to 10 cms wide, but locally 25, 50 and 100 cms wide. The rock in these zones is thoroughly decomposed and is commonly accompanied by quartz veins from 2 to 5 cm wide in vertical or steeply dipping fractures.

Poquette Lake Area - EASY #1, #4, 6, TY and MARK FRACTION Claims

The dominant rock type in this area is vesicular basalt with minor agglomerate, tuff, andesite and argillite. A narrow felsic dyke was mapped near the EASY #1 - EASY #4 boundary and a diorite stock outcrops south of Poquette Lake on the EASY #1 claim (Figure 4).

JUNE, ROSE 3, NOB #1, AST 1, AUG 1 and E2 Claims

On the JUNE and DUG claims mafic volcanics, tuffs and vesicular basalts outcrop on the south side of the Cariboo River and at the LK showings. A series of rusty argillites and phyllites are exposed in Rose Gulch (Figure 5). Basalt, basalt porphyry and andesites are exposed along a road on the north shore of the Quesnel River west of Likely on the AST 1 claim. Basalt also outcrops on the steep north facing slope south of the Quesnel River on the AST 1 claim. No outcrop was observed on the AUG 1 and E2 claims in the area soil sampled (Figure 7) but rusty volcanic flows outcrop 1.5 kms to the west on a road near the EASY #1 - E2 claim boundary.

7.0 EXPLORATION PROGRAM

During 1989 a program of rock and soil geochemistry and magnetometer and VLF-EM geophysical surveys was conducted on the LIKELY claims. The purpose of the surveys was to delineate a magnetic diorite intrusive and gain further structural information in the Fisher and Grogan Creek areas. Also, rock sampling in the vicinity of soil anomalies was undertaken on Gold Creek, Spanish Mountain, Poquette Creek and on the AST 1 claim north and south of the Quesnel River. A small soil survey was conducted on lower Rose Gulch and north of Hepburn Lake.

Field work on lower Rose Gulch (NOB #1 claim) was carried out by Steve Robertson, geologist, and Bob Mickle, prospector, on July 6, 1989. Steve Robertson and assistant Jonathon Cowan conducted the soil survey north of Hepburn Lake (AUG 1 and E2 claims) on June 12, 1989 and Chris McAtee, geologist, collected rock samples from August 25 to September 13, 1989.

Line re-establishedment and the magnetometer and VLF-EM surveys were conducted by geologists Chris McAtee and Gary Roste from August 31 to September 13, 1989.

7.1 Grid Emplacement

The Mt. Calvery Resources grid established in 1984 was re-established in the Fisher and Grogan Creeks area. Odd numbered lines were re-established from 341 to 355 North and new intermediate lines were established from 344 to 354 North (Figure 3). Grid stations were established every 25 metres. A total of 13.9 kilometres of grid lines were established.

Two contour soil lines were established with 25 metre stations north of Hepburn Lake and two soil traverses were run on lower Rose Gulch (Figures 5 and 7). All lines were run by hipchain and compass and marked with flagging.

7.2 Geochemical Survey

A total of 53 soil samples and 24 rock samples were collected during the field program. Soil samples were taken at a minimum depth of 20 cms, generally in the B-horizon. The soil samples were dried and sieved and the -80 mesh fraction was analyzed by Eco Tech Laboratories of Kamloops, B.C. using their 30 element I.C.P. package. The samples were also analyzed for gold at Eco Tech by fire assay with an atomic absorption finish.

Rock samples were dried, crushed and pulverized and a -140 mesh split was analyzed for gold plus 30 elements using the above mentioned techniques. Twenty rock samples were analyzed by Eco Tech Labs and 4 samples were run by Acme Analytical Laboratories, Vancouver, B.C. Assay results are presented as Appendix A and plotted on Figures 4, 5, 6, 7 and 8. 7.2.1 Hepburn Lake - AUG 1 and E2 Claims

Gold in soils north of Hepburn Lake range from <5 to 55 ppb and silver ranged from 0.2 to 4.8 ppm. Anomalous silver values are found at both ends of line H-2 (Figure 7).

7.2.2 Rose Gulch - NOB #1 Claim

Anomalous gold values of 845 and 500 ppb were found on lower Rose Gulch (Figure 5). The coincident gold (845 ppb) and arsenic (125 ppm) soil anomaly at RC 2+00E is most likely derived from rusty argillites which outcrop at the sample location. The 500 ppb gold value obtained in glacial soils at RC 5+00E is probably a result of placer enrichment.

7.2.3 Spanish Mountain - CAT Claim

Five rock samples which returned gold values of 5 to 2290 ppb were collected on the CAT claim (Figure 8). A 153 cm wide rusty fractured quartz vein containing 5 x 10 mm patches of galena returned 2.29 g/t (.067 opt) and 1117 ppm Pb (74801, resampling of 74468). This vein, which trends 020°, could not be followed to the north or south. Narrow quartz veins found at spot high gold soil locations returned low gold values (74802 to 74805, Figure 8).

7.2.4. JUNE Claim

A weak gold-copper-silver soil anomaly and spot high gold values were found on the JUNE claim 2 kms northeast of Quesnel Forks, B.C. (McAtee, 1989, Figure 9). A ground check of the gold-copper-silver anomaly at 8+50 to 9+50E and the gold high at 6+50E showed overburden and angular float. Float rocks consist of silicified bleached tuffs with disseminated pyrite, calcite stringers and mariposite. Rock samples 74806 and 74807 taken near 12+50E returned low gold values of 10 and 50 ppb. Rocks sampled were silicified bleached tuffs with 1-10 mm quartz-carbonate veinlets containing minor sphalerite and galena (Figure 5).

7.2.5 AST 1 Claim

A gold-copper soil anomaly was found 1.7 kms northwest of Likely near line 392N, 74W (McAtee, 1989 - Figure 9). Numerous northeast and northwest trending shears in the area show soft, rusty decomposed zones in silicified, epidote altered basalts and tuffs. Seven rock samples taken in this area returned values of 35 to 220 ppb gold (Figure 6).

A gold-arsenic soil anomaly found 2.8 kms WNW of Likely on the AST 1 claim was also investigated. Angular, silicified, bleached basalt chips which were collected from the soil returned values of 35 to 80 ppb Au and 160 to 406 ppm As (Figure 6, Appendix A).

7.2.6 Poquette Creek - Sawmill - EASY #1 Claim

Additional rock sampling and geological mapping were conducted on Poquette Creek and on the road west of Potter's Sawmill. Diorite was mapped and sampled on the west side of Poquette Creek south of the sawmill road cutoff (Figure 4). Altered, hematite stained diorite near L364N, 49W returned values of 2 and 1 ppb Au, 71.8 and 27.7 ppm Ag, and 5014 and 1736 ppm Pb (74821 and 74822, Appendix A). Two samples of altered mafic diorite near L366N, 46+50W (74823 and 74824) also returned low gold values of 4 ppb (Figure 4).

A northerly trending fault zone is exposed on the west side of the switchback road for 100 metres from L369N, 42+50W. Intensely folded, faulted and fractured basalts with 2.5 to 5 cm wide east-west striking quartz and carbonate veinlets outcrop along the roadcut. A 45 cm wide quartz-carbonate vein (74820) assayed 110 ppb Au and 862 ppm As (Figure 4). Also, a shallow dipping 51 cm wide quartz vein in rusty altered volcanics (74819) returned 20 ppb gold.

7.3 GEOPHYSICAL SURVEY

VLF-EM and Magnetometer surveys were conducted on the Likely grid. Data was collected at 25 metre intervals and was processed and interpreted by E.R. Rockel of Interpretex Resources Ltd. His detailed report is included as Appendix B.

7.3.1 VLF-EM Survey

Several weak to moderate strength conductors cross the grid on northwest and east-west trend (Figures G-3 and G-4, Appendix B). These conductors are interpreted as faults or fracture zones.

7.3.2 Magnetometer Survey

Two magnetic high lineaments and one magnetic low lineament have been outlined on the Likely grid. E.R. Rockel of Interpretex Resources Ltd. interprets magnetic lineaments L-1 and L-2 as basic dykes and lineament L-3 as oxidation within a fault zone (Appendix B, Figures G-1 and G-2). There is some evidence for L-1 and L-2 as basic dykes since pyroxenite subcrop was found at the western end of lineament L-1 and 50 metres north of L-2 (Figure 3). No evidence was found on the ground for a fault along lineament L-3, but the area is covered with overburden. If fault L-3 exists, it is possible that L-2 has been downfaulted relative to L-1 as mentioned by Interpretex.

It was initially thought that the magnetic diorite intrusive, which outcrops in Fisher and Grogan Creeks, could be outlined more exactly by means of a magnetometer survey. In the field it was found that magnetic pyrrhotite is common in both the dioritic and volcanic rocks. Therefore the magnetometer survey was unable to discriminate between the different lithologies.

8.0 CONCLUSIONS AND RECOMMENDATIONS

The results from the soil geochemical program described in this report failed to outline a contiguous gold anomaly. Investigation of one station, anomalous soil samples from this and previous exploration programs failed to locate significant gold mineralization in bedrock.

Results from the magnetometer and VLF-EM surveys outlined several linear magnetic and conductive trends. The VLF conductors have been interpreted as faults or fracture zones. Linear magnetic highs have been interpreted as mafic dykes. A linear magnetic low was interpreted as a fault. The geophysical anomalies are not coincident with gold-in-soil anomalies and cannot be correlated to any known mineralization on the property.

Due to the lack of success in this and previous exploration programs in locating a significant zone of gold mineralization in bedrock or encouraging drill targets no further work is recommended.

Respectfully submitted,

Christopher L. McAtee, M.Sc.

Christopher L. McAtee, M.Sc. Project Geologist Corona Corporation

STATEMENT OF EXPENDITURES

GEOCHEMICAL SURVEY

SALARIES

100

1

6

1

in the second second

.

-

-

Project Geologist	6 days @ \$224/day	1,344.00
Geologist	1.5 days @ \$175/day	262.50
Assistant	1 day @ \$175/day	175.00
Assistant	1 day @ \$154/day	154.00

FOOD & LODGINGS

10 man days @ \$42/day	420.00
Mobilizations/Demobilization	121.00

VEHICLE RENTAL/FUEL

ANALYTICAL

Eco Tech Laboratories	
Soil Samples 53 @ \$14.50	768.50
Rock Samples 20 @ \$17.00	340.00
Acme Analytical Laboratories	
Rock Samples 4 @ \$13.75	55.00
Freight	25.00
SUPPLIES	_42.00

\$4,075.80

GEOPHYSCIAL SURVEY SALARIES Project Geologist 13 days @ \$224/day 2,912.00 Geologist 12 days @ \$190/day 2,280.00 FOOD & LODGINGS 25 man days @ \$42/day 1,050.00 Mobilization/demobilization 164.00 TRANSPORTATION **Commercial Airlines** 145.00 Vehicle Rental/Fuel 1,069.30 GEOPHYSICAL EQUIPMENT RENTAL VLF-EM, Magnetometers - 7 days @ \$85/day 637.00 + shipping GEOPHYSICAL CONSULTING Interpretex Resources Ltd. 781.50 SUPPLIES 221.51 \$9,260.31 REPORT PREPARATION PROJECT GEOLOGIST 11 DAYS @ \$224/DAY 2,464.00 DRAFTING, REPRODUCTION 266.00 \$2,730.00 GEOCHEMICAL SURVEY \$4,075.80 GEOPHYSICAL SURVEY 9,260.31 REPORT PREPARATION 2,730.00 TOTAL EXPENDITURES \$16,066.11

STATEMENT OF QUALIFICATIONS

- I, CHRISTOPHER L. McATEE certify that:
- 1. I am a mineral exploration geologist.
- 2. I am a graduate of Brock University, St.Catharines, Ontario with a degree in Geological Sciences (M.Sc., 1977) and a graduate of Wright State University, Dayton, Ohio, with a degree in Geology (B.Sc., 1972).
- 3. I have spent the past ten years in mineral exploration and development in Canada and the United States.
- 4. I personally examined the property and directed the geochemical and geophysical program conducted by Corona Corporation in 1989.

ther FML,

Christopher L. McAtee, M.Sc. Geologist

Dated at Vancouver, B.C. this 3/2 day of October, 1989.

REFERENCES

- Bailey, D. (1988) Geology of the Hydraulic Map Area N.T.S. 93-A/12. B.C. Ministry of Energy, Mines and Petroleum Resources. Preliminary Map No. 67, 1:50,000.
- Bailey, D.G. (1988) Geology of the Central Quesnel Belt, Hydraulic, South-Central British Columbia. B.C. MEMPR, Geological Fieldwork, 1987, Paper 1988-1.
- Cochrane, D.R. (1979) Geochemical Assessment Report on the Likely Group (Peso, Peso B and Peso E. mineral claims) on behalf of Aquarius Resources Ltd., November 26, 1979.
- Godfrey, J.D. (1980) A Survey of the Mineral Prospects in the Likely District. Aquarius Resources Ltd. and Carolin Mines Ltd. Private Report, March 19, 2980, 74 pp.
- Goodall, G.N. and Fox P.E. (1987) Percussion Drilling Report on the Carolin Option - Cat, Wren, Dug and Easy Groups. Dec. 10, 1987.
- McAtee, C.L. (1989) Geochemical Report on the Likely 1, 2, 3 and 4 Groups, Likely, B.C. Area. B.C. Assessment Report #18, 989. August 18, 1989.

Richardson, Paul W. (1983) Geological, Geophysical, Geochemical, Evaluation Report on part of the Likely Project. September 30, 1983.

Schmidt, A.J. (1984) Geochemical Assessment Report on the Cariboo-Likely Project. Oct 5, 1984, Vol. 1 and 2.

- -

- APPENDIX A 1

- ø -
- -
- -

- - ASSAY RESULTS

ECO-TECH LABORATORIES LTD. Chis Mc ale

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 1, 1989

CERTIFICATE OF ANALYSIS ETK 89-661

Corona Corporation 1440, 800 West Pender Street VANCOUVER, B.C. V6C 2V6

Attention: TONY RANSOM

SAMPLE IDENTIFICATION: 9 ROCK SAMPLES RECEIVED AUGUST 28, 1989 ------ PROJECT: 1056 P.O. #89-0174

ET#	D	escription	Ац (ррb)	Au (g/t)	Au (oz/t)
661 -	1	74801	>1000	2.29	.067
661 -	2	74802	65		
661 -	З	74803	5		
661 -	4	74804	5		
661 -	5	74805	40		
661 -	6	74806	10		
661 -	7	748 07	50		
661 -	8	74808	60		
661 -	9	74809	220		

NOTE: > = GREATER THAN

fax: CORONA, VCR

SC89/1056/3

ECO-TÉCH LABORATORIES LTD. Doug Howard B.C. Certified Assayer

SC897

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 6, 1989

CERTIFICATE OF ANALYSIS ETK 89-688

Corona Corporation 1440, 800 West Pender Street VANCOUVER, B.C. V6C 2V6

Attention: TONY RANSOM

SAMPLE IDENTIFICATION: 11	ROCK SAMPLES RECEIVED SEPT. 1, 1989
	PROJECT: 1056
	P.O. NO.: 0192

ET#		Description	Au (ppb)
====== 688 -	1	74810	170
688 -	2	74811	180
688	З	74812	40
688	4	74813	60
688	5	74814	35
688 -	6	74815	80
688 -	7	74816	70
688 -	8	74817	35
688 -	9	74818	65
688 -	10	74819	20
688 -	11	74820	110

ECO-TECH LABORATORIES LTD.

ÉCŐ-TÉCH LABORATORIES LTD Doug Howard B.C. Certified Assayer

3

fax: CORONA, VCR C. McAtee SC89/1056/3 ACME ANALYTICAL LABORATORIES LTD.

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

A)

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

Corona Corporation PROJECT LIKELY File # 89-3993

Zn Ni SAMPLE# Mo Cu Pb Ag Co Mn Fe As U Au Th Sr Cd SÞ ۷ Ca Bi Cr Mg Ba Τí ¥ Au* Ρ La в Al Na κ PPM PPM PPM PPM PPM PPM Х РРМ РРМ РРМ РРМ РРМ РРМ PPM PPM PPM PPM * % PPM PPM PPM X X PPM PPB * PPM * * 57 71.8 / 5 311 2.20 74821 1 547 5014 7 92 5 ND 13 .16 .050 2 70 15 17 .17 29 .54 .02 2 11 .01 11 .14 2 2.85 89 5 74822 1 222 1736 403 27.7 11 10 575 ND 6 14 6 54 2 16 .21 .066 12 8.32 59 2.72 .01 .02 . 14 1 1 2 140 95 57 1.9 12 14 617 4.51 5 5 ND 2 32 1 2 2 74823 2 109 2.40 .118 10 23 1.43 64 6 3.06 .02 11 .07 4 2 229 74824 1 354 91 56 1.6 11 18 724 4.08 148 5 ND 1 53 2 30 4.18 .120 13 7.73 41 .01 13 .62 .02 . 19 86**1** 9 4

ביינגערוני באינדי ואינגע אייגער איינגער איינגער איינגער איינגער 0001 100 A REAL PROPERTY AND A REAL

Ċ,

1 Assay Recommended.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

Corona Corporation

June 27, 1989

ET#	Description	Au (dqq)
319 - 31	GC 31	
319 - 32	GC 32	35
319 - 33	GC 33	60
319 - 34	H 2 25	25
319 - 35	H 2 50×	20
319 - 36	H 2 100	10
319 - 37	H 2 150	
319 - 38	H 2 175	<5 -
319 - 39		5
	H 2 200	10
319 - 40	H 2 225	<5
319 - 41	H 2 275	<5
319 - 42	H 2 300	15
319 - 43	H 2 325	30
319 - 44	H 2 350	40
319 - 45	H 2 375	<5
319 - 46	H 2 400	55
319 - 47	H 4 0	<5
319 - 48	H 4 25	5
319 - 49	H 4 50	10
319 - 50	H 4 75	<5
319 - 51	H 4 100	5
319 - 52	H 4 125	<5
319 - 53	H 4 150	<5
319 - 54	H 4 175	5
319 - 55	H 4 200	<5
319 - 56	H 4 225	<5
319 - 57	H 4 250	<5
319 - 58	H 4 2 7 5	· <5
319 - 59	H 4 300	<5
319 - 60	H 4 325	<5
319 - 61	H 4 350	5
319 - 62	H 4 375	<5
319 - 63	H 4 400	<5
319 - 64	L 337N 57 + 00W	<5
319 - 65	L 337N 57 + 50W	<5
319 - 66	L 337N 58 + 00W	<5
319 - 67	L 337N 58 + 50W	45
319 - 68	L 337N 59 + 00W	43 (5
319 - 69	L 337N 59 + 50W	<5
319 - 70	L 337N 60 + 00W	<5
319 - 70 319 - 71	L 337N 60 + 50W	
319 - 71 319 - 72		<5 5
		5
319 - 73 319 - 74	L 337N 61 + 50W	<5 (5
319 - 74 316 - 75	L 337N 62 + 00W	<5
319 - 75	L 337N 62 + 50W	<5

1

1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

Corona Corporation

JULY 19,1989

ET#	Descri	otion			Au (ppb)
=======================================	================	========			
426 - 76	AST	3 +	00	W	75
426 - 77	AST	3 +	50	W	110
426 - 78	AST	4 +	00	W	50
426 - 79	AST	4 +	50	W	15
426 - 80	AST	5 +	00	W	20
426 - 81	AST	5+	50	W	40
426 - 82	AST	;∵ 6 ÷	00	W	30
426 - 83	AST.	6+	50	W	<5
426 - 84	AST	7 +	00	W	10
426 - 85	AST	7+	50	W	15
426 - 86	AST	8+	00	W	NO FINES
426 - 87	AST	8 +	50	W	<5
426 - 88	AST	9+	00	W	5
426 - 89	AST	9+	50	W	NO SAMPLE
426 - 90	AST	10 +	50	W	NO FINES
426 - 91	AST	11 +	00	W	NO FINES
426 - 92	AST	11 +	50	W	5
426 - 93	AST	12 +	00	W	<5
426 - 94	AST	12 +	50	W	<5
426 - 95	AST	13 +	00	W	5
426 - 96	AST	13 +	50	W	5
426 - 97	AST	14 +	00	W	<5
426 - 98	AST	14 +	50	W	<5
426 - 99	AST	15 +	00	W	5
426 - 100	AST	15 +	50	W	<5
426 - 101	AST	16 +	00	W	<5
426 - 102	AST	16 +	50	W	10
426 - 103	AST	17 +	00	ω	5
426 - 104	AST	17 +	50	W	<5
426 - 105	AST	18 +	00	W	<5
426 - 106	AST	18 +	50	W	<5
426 - 107	AST	19 +	00	W	5
426 - 108	AST	20 +	00	W	<5
426 - 109	AST	20 +	50	W	<5
426 - 110	AST	21 +	00	W	<5
426 - 111	RC	0 +	00	Έ	<5
426 - 112	RC	0 +	50	Ε	<5
426 - 113	RC	1 +	00	E,	, <5
426 - 114	RC	1 +	50	Ε	<5
426 - 115	RC	2 +	00	Е	845
426 - 116	RC	2 +	50	Ε	70
426 - 117	RC	3 +	50	Е	25
426 - 118	RC	4 +	00	Ε	<5
426 - 119	RC	4 +	50	Ε	15
426 - 120	RC	5 +	00	Ε	

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

Corona Corporation

JULY 19,1989

ET#	Description	Au (ppb)
426 - 121	RC 5+ 50 E	< <u>5</u>
426 - 122	RC 6+00E	5
426 - 123	RC 6+ 50 E	10
426 - 124	RC 7 + 00 E	20
426 - 125	RC 7 + 50 E	<5
426 - 126	RC 8 + 00 E	10
426 - 127	RC 8 + 50 E	· <5
426 - 128	RC 9 + 00 E	<5
426 - 129	RC 9+ 50 E	<5
426 - 130	RC 10 + 00 E	10
426 - 131	RC 10 + 50 E	5
426 - 132	RC 11 + 00 E	<5
426 - 133	RC 11 + 50 E	<5
426 - 134	RC 12 + 00 E	<5
426 - 135	RC 12 + 50 E	10
426 - 136	RC 13 + 00 E	<5
426 - 137	L 365 N 39 + 00 W	5
426 - 138	L 365 N 39 + 50 W	<5
426 - 139	L 365 N 40 + 00 W	5
426 - 140	L 365 N 40 + 50 W	5
426 - 141	L 365 N 41 + 00 W	170
426 - 142	L 365 N 41 + 50 W	<5
426 - 143	L 365 N 42 + 00 W	5
426 - 144	L 365 N 42 + 50 W	5
426 - 145	L 365 N 43 + 00 W	15
426 - 146	L 365 N 43 + 50 W 👘	10
426 - 147	L 365 N 44 + 00 W	50
426 - 148	L 365 N 44 + 50 W	30
426 - 149	L 365 N 45 + 00 W	20
426 - 150	L 385 N 38 + 00 W	10
426 - 151	L 385 N 38 + 50 W	10
426 - 152	L 385 N 39 + 00 W	20
426 - 153	L 385 N 39 + 50 W	25
426 - 154	L 385 N 40 + 00 W	<5
426 - 155	L 385 N 40 + 50 W	<5
426 - 156	L 385 N 41 + 00 W	5
426 - 157	L 385 N 41 + 50 W	<5
426 - 158	L 385 N 42 + 00 W a	10
426 - 159	L 385 N 42 + 50 W	20
426 - 160	L 385 N 43 + 00 W	5
426 - 161	L 385 N 43 + 50 W	5
426 - 162	L 385 N 44 + 00 W	20
426 - 163	L 385 N 44 + 50 W	<5
426 - 164	L 385 N 45 + 00 W	25
426 - 165	L 385 N 45 + 50 W	15

Page 4

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

Corona Corporation

JULY 19,1989

ET#	Description	Au (ppb)
426 - 31	ROSE 0 + 50 W	10
426 - 32	ROSE 0 + 100 W	15
426 - 33	ROSE 0 + 105 WND	5
426 - 34	RDSE 0 + 150 W	10
426 - 35	ROSE 0 + 200 W	5
426 - 36	ROSE 0 + 250 W	5
426 - 37	ROSE . 0 + 300 W	10
426 - 38	ROSE 0 + 350 W	5
426 - 39	ROSE 0 + 400 W	<5
426 - 40	RDSE 0 + 450 W	5
426 - 41	RDSE 0 + 500 W	10
426 - 42	RDSE 0 + 550 W	~ 5
426 - 43	RDSE 0 + 600 W	5
426 - 44	RDSE 0 + 650 W	<5
426 - 45	ROSE 0 + 700 W	5
426 - 46	RDSE 0 + 750 W	<5
426 - 47	ROSE 0 + 800 W	<5
426 - 48	ROSE 0 + 850 W	5
426 - 49	ROSE 0 + 900 W	<5
426 - 50	ROSE 0 + 950 W	<5
426 - 51	ROSE 0 + 1000 W	<5
426 - 52	BM 0 + 00 W	<5
426 - 53	BM 0 + 100 W	<5
426 - 54	BM 0 + 237 E	<5
426 - 55	BM 0 + 269 M +EAST	<5 <5
426 - 56	BM 0 + 310 M +EAST	<5 <5
426 - 57	BM 0 + 410 ME	<5
426 - 58	BM 0 + 420 M EAST	15
426 - 59	BM 0 + 466 M E	610
426 - 60	BM 0 + 555 E	85
426 - 61	BM 0 + 655 E	<5
426 - 62	BM 0 + 765 EAST	5
426 - 63	BM 0 + 856 E	<5
426 - 64	BM 0+1056 E A	<5
426 - 65	BM 0 + 1176 ME	5
426 - 66	BM 0 + 1280 E	<5
426 - 67	BM 0 + 1380 ME	<5
426 - 68		<5
426 - 69	BM 0 + 1500 E	<5
426 - 70	AST 0 + 00 W	<5 <5
426 - 71	AST 0 + 50 W	15
426 - 72	AST 1 + 00 W	
426 - 73		15
426 - 73		40 5
420 - 74	AST 2 + 00 W	J

		10041 E Kamloop V2C 2J3 Septemb	. Trans s, B.C. er 7, 1	1989	itry.									CORONA 1440 - Vancoev V2C 2V6 ATTN:	800 We er, D. Chris	st Pend C. HcAtee								·	9 Rock S Project All vals	Samples, # 1056 mes in i	, recei PPH uni	SIS ETK ived Aug less oth	ust 28/ ervise	189 reporte		
EIK	DESCRIPTION	Ag	A11	l As	1	Ba	Bi	i Cal	Cđ	Co	Cr	Ca	Fel	. 12	: L	a Ng	I Z	in	No	NaZ	Ni	P	Ph	Sb	-	-			•••••••	·===== / ¥	Y	2022224 Za
661.1	74801	2.1	0.22	14	6	17	< 5	0.07	<1	7	118	8	1.22	0.02					-	<.01	< 1	409	1177	18	< 20	5	<.01	10	4	< 10	< 1	54
661.2	74802	0.2	0.05	11	7	14	< 5	0.04	<1	3	148	<1	0.56	0.02	< 10			-	-	<.01	<1	170	33	11	< 20	4	<.01	< 10	1	< 10	< 1	11
661.3	74803	۲.2	0.02	< 5	9	< 5	< 5	0.05	< 1	2	178	1	0.52	<.01	< 10	×.0	231	. 1	5	<.01	<u>(</u> 1	228	8	11	(20	4	<.01	< 10	1	< 10	< 1	15
661.4	74804	0.3	0.03	< 5	7	19	< 5	0.02	< 1	2	179	2	0.41	(.01	< 10					(.01	ć i	43	16	14	< 20	6	<.01	10	1	< 10	< 1	11 -
661.5	74865	0.5	0.22	37	6	86	< 5	0.18	1	29	130	35	2.98	0.02	< 10				-	<.01	36	371	46	54	(20	19	(.01	13	8	< 10	2	36
661.6	74806	۲.2	0.21	< 5	6	39	20	4.57	<1	38	68	76	5.64	0.10	18			-	-	<.01	53	848	81	190	(20	173	(.01	(10	41	(10	<1	34
661.7	74807	3.3	0.12	32	6	27	< 5	5.23	4	24	42	240	4.45		16				-	(.01	10	990	1527	272	22	347	<.01	(10	12	< 10	2	249

11 0.31

17 3.01 (.01 (10 0.27 196

145

ì ì

۰.

< 1 0.01

STE: < = Less than

661.9

74808

74809

J: C. HcAtee

(.2 0.83

(.2 0.83

27

38

7

7

11

8

< 5

< 5 0.71

47

43

< 1

51

31

33 2.99 0.04

. . .

ECO-TECH LABORATORIES LTD.

67

0.08

59 0.13

< 10

11

39

< 10

53 (10

13

8

3

3

57

36

48 < 20

48 (20

< 1 1418

1 <.01 < 1 1311

BOUG HOWARD B.C. CERTIFIED ASSAYER Eco-Tech Laboratories Ltd. 10041 E. Trans Canada Hvy. Kanloops, B.C. V2C 2J3 September 19, 1983

CORONA CORPORATION 1440 - 800 N. Pender St. Vancouver, B.C. VGC 2V6 ATTN: Tony Ranson

1

1

CERTIFICATE OF AMALYSIS ETK 89-688A 11 Rock Samples, received September 1/89 Project: 1056 P.O. No: 0192 All values in PPM unless otherwise reported

:::::::::	************	******	*******	==========	******							******																			******
ETK	DESCRIPTION AG ALZ AS B Ba Bi CaZ Cd Co Cr Cu FeZ KZ La MgZ Ma Mo Na																														
		-					PI			10	ur		191	K 4	La	ngi	na.	no	Maz	- Ni	. r	Pb	Sb	SA	Sr	TiZ	U	۷		r	/ n
60a 4				*=		======	7211111	*******	********	*******	22122	*****	*******	*******	******	2222222				*****						*******	******		********	******	******
000.1	74810	<.2	1.60	22	9	20	< 5	3.31	1	27	80	233	3.72	0.10	(10	0.94	589	2	0.02	7	990	12	٩	/ 20	82	0.06	< 10	105	(10	< 1	110
688.2	74811	2.8	1.81	< 5	7	25	< 5	1.09	Ē	66	24	1120		0.08										12		0.00			/ 10		101
688.3	74812	٢.2	3.43	12				-			24		6.71	A* A9	< 10	1.27	728	< 1	0.02	11	1092	< 2	< 2	43	98	0.07	< 10	100	(10		
		1.2	-	13	3	- 43	()	1.74	<1	69	18	127	5.12	0.08	(10	1.66	1328	<1	0.03	16	911	< 2	(5	(20	132	0.06	< 10	119	< 10	3	26
688.4	74913	۲.2	1.90	59	7	15	6	0.92	(1	32	15	15	4.54	0.06	(10	0.94	317	11	0.02		998	2.5		26	37	0.07	< 10	88	/ 10	11	14
688.5	74814	۲.2	2.16	21	0		1 5								1 10		211	1	V.VZ	J		ν Ζ	11	10	3/	0.0/	11		10	× 1	
					9	11	< 2	1.38	< 1	15	50	23	2.61	0.04	< 10	1.30	364	< 1	0.01	43	850	3	39	34	62	0.03	< 10	53	< 10	1	17
688.6	74815	۲.2	1.52	160	7	39	7	0.55	2	23	70	47	3.68	0.05	< 10	1.21	641	15	0.03	22	1068	12	(5	39	36	0.06	< 10	191	< 10	2	22
688.7	74816	۲.2	2.32	406	10	32	11	1.38	2	23	44	50	3.45												47			98	(10	2	22
688.8	74817	٢.2	1.84	244	6	40								4.43	(10	1.55	551		0.03	20	1123		21	< 20	4/	0.06	< 10	70	10	4	~~~
_					3	48	()	0.99	4	19	38	- 76	3.51	0.08	< 10	1.26	425	< 1	0.04	16	1237	(2	11	< 20	47	0.06	< 10	98	< 10	< 1	17
688.9	74818	<.2	1.99	- 46	8	43	< 5	0.82	< 1	27	70	60	4.05	0.08	< 10	1.83	639	2.1	0.03	22	1168	12	26	37	40	0.10	< 10	99	(10	(1	29
\$88.10	74819	۲.2	0.36	{ 5	5	41	15	4.63										1.1				× 4		21							
88.11	74820					71			,	14	90	37	2.63	0,06	< 10	1.84	850	26	(.01	- 24	532	- 14	62	52	320	<.01	< 10	34	< 10	3	47
	/ 40ZU	4.7	0.18	862	1	13	< 5	3.62	1	19	133	30	1.87	0.06	< 10	0.49	424	8	<.01	11	271	< 2	37	24	167	<.01	< 10	10	< 10	< 1	18
																	•				2								:		

'TE: < = Less than

I: Corona, VCR C. HcAtee

ECO-TECH LABORATORIES LTD.

ECU-TECH LABORATORIES LTD. BOUG HONARD D.C. CERTIFIED ASSAYER

.....

CORONA CORPORATION - ETK 89-319A

PAGE 3																																	
ETK#	DES	CRIPTIONS		A6	AL(Z)	AS	B	BA	BI	CA(I)	CD	C0	CR	C	U FE(I)	K(I)	LA	MG(1)	MN	HŪ	NA(Z)	NI	P	PB	SB	SN	SR 1	1(1)	U	۷	W	Ŷ	ZN
			******	******				******	*****			*****							*******		******			*****	======						******	******	\$ 2 3 2
319 -			1		1.46	45	<2	50	<5	. 39	1	15	43		9 3.26	.03	(10	.82	397	3	.05	33	640	12	5	(20	13	.06	10	57	<10	4	100
319 -		•	2		1.42	75	<2	90	<5	. 30	3	13	36		3.62	.02	<10	.57	275	4	.04	23	1100	12	5	<20	13	.03	<10	78	<10	2	147
319 -		-	3		1.29	75	<2	110	<5	.64	3	14	35		9 3.51	.03	<10	.56	859	3	.04	22	1400	20	5	<20	23	.03	10	66	<10	2	181
319 -		-	4		1.32	50	<2	85	<5	.65	2	16	41		3 3.19	.02	<10	.79	581	2	.04	25	690	8	5	<20	22	.04	10	55	<10	3	111
	-	-	5		1.77	90	<2	80	<5	. 34	3	14	39		2 4.41	.02	<10	.60	250	2	.04	33	1990	14	10	<20	12	.04	10	91	<10	3	126
319 -		-	Ś		1.04	45	<2	65	<5	.36	2	8	29	2		.02	<10	.40	230	3	.04	19	850	10	5	<20	14	.04	20	57	<10	2	82
319 -			7		1.75	95	<2	70	<5	.52	3	18	45	69		.03	<10	.83	419	4	.04	38	930	12	10	<20	19	.05	10	71	<10	5	99
319 -			-		2.13	95	<2	145	<5	. 36	3	20	50		5 4.43	.03	<10	.78	376	3	.04	44	2030	16	10	<20	14	.04	30	79	<10	4	232
319 -			9		1.63	90	<2	100	<5	. 55	3	15	43		8 4.02	.03	<10	.73	601	3	.04	32		10	5	<20	21	.04	<10	77	<10	3	132
319 -					2.57	105	(2	50	<5	. 46	3	31	61		4.52	.03	<10	1.08	421	3	.04		1000	12	15	<20	29	.05	10	98	(10	4	96
319 -					1.50	50	(2	70	<5	.55	2	18	41		4 3.28	.04	<10	.56	825	3	.04		1320	10	5	<20	23	.04	10	77	<10	2	121
319 -				<.2		115	(2	70	<5 (5	. 49	4	23	55		7 5.15	.03	<10	.99	325	4	.04			12	10	<20	34	.04	20	115	<10	3	148
319 -					1.98	80	(2	85	<5 (5	.35	3	19	55	30		.03	<10	.73	322	3	.03	34	2490	12	10	<20	20	.05	20	95	<10	2	141
319 -					1.18	30	<2 (2	60 50	<5 /5	.31	1	8	34	13		.03	<10	. 39	166	2	.03	15	980	10	5	<20	14	.06	<10	68	(10	1	101
319 -			-		1.95	70 115	<2 <2	100	<5 <5	.31 .54	2 3	16	46		3.62	.02	<10	.65	319	2	.03	29	1480	12	15	<20	17	.05	<10	91	(10	1	118
319 - 319 -					2.26	90	(2	70	(5	. 46	2	23 24	61 63		3 4.17 L 4.20	.02 .03	<10 <10	.89	1165	4	.03		1310	12	15	(20	28	.03	<10	105	<10	2	117
319 -		-			2.53	75	<2	125	(5	.40	2	24	35		5.22	.03	(10	.80 1.29	482 603	3 5	.04			12	15 20	20	23 38	.05 .02	<10 <10	116 132	(10	2	196 89
319 -					1.81	340	<2	85	(5	. 44	7	18	47	76		.03	<10	.17	363	3	.03 .03	34 35	1250 1640	12 14	15	〈20 〈20	30 37	.02	10	108	<10 <10	2	109
319 -					1.88	115	<2	65	(5	.69	3	24	58	87		.05	<10	.93	565 671	3	.03	39	920	12	10	(20	54	.03	<10	101	(10	2	79
319 -					1.53	" 85	(2	55	(5	.38	1	19	43	44		.04	<10	.83	297	3	.03	27	730	12	10	(20	37	.03	(10	75	<10	2	75
319 -		-			1.85	105	(2	60	(5	.60	2	23	65		2 3.91	.03	<10	1.05	505	2	.03	43	460	12	15	(20	67	.05	<10	106	<10	2	77
319 -					2.13	225	(2	110	<5	. 82	Ā	27	33		3 4,44	.09		1.15	1003	4	.04	29	1020	12	15	(20	121	.09	<10	129	<10	2	100
319 -					1.27	50	(2	40	<5	.38	i	16	38		5 2.88	.05	<10	.63	357	2	.03	26	680	10	10	(20	24	.06	<10	60	<10	2	67
319 -		-			1.99	80	(2	70	(5	.60	2	22	60		3,83	.05	<10	1.02	423	4	.03	42	800	10	15	<20	47	.05	(10	113	<10	2	78
319 -					1.43	45	(2	65	<5	. 56	1	17	40		2.65	.03	(10	.56	933	2	.03	27	690	8	10	<20	22	.04	(10	66	(10	2	75
319 -				.4	.82	25	<2	55	(5	. 40	1	8	24		1.75	.02	(10	.35	344	2	.03	14	660	6	5	<20	13	.03	(10	50	<10	1	43
319 -	91 6	C 26	3	.4	.76	20	<2	55	۲5	.44	1	9	22	10	1.65	.02	<10	. 33	315	1	.03	13	260	10	5	(20	15	.05	(10	49	<10	1	53
319 -	92 6	C 25	Э	.6	2.33	125	<2	165	<5	1.18	3	20	18	95	5 4.76	.06	(10	.77	786	3	.03	21	990	25	15	20	130	.08	<10	171	<10	3	175
319 -	93 G	iC 30)	.4	1.86	200	<2	80	(5	1.52	4	28	30	142	4.51	.04	10	.79	930	2	.03	30	1310	38	20	<20	72	.03	<10	109	<10	7	78
319 -	94 6	C 31	L	.4	1.27	155	<2	60	(5	.57	3	13	38	35	5 2.91	.04	<10	.50	362	4	.03	24	750	12	10	<20	24	.05	<10	70	<10	3	80
319 -	95 6	iC 32	2	.6	1.59	135	<2	115	۲)	2.13	3	24	50	159	4.29	. 06	10	1.29	1549	3	.04	44	1470	18	15	<20	94	.04	<10	113	<10	11	146
319 -	96 6	iC 3:	3	1.0	2.28	170	<2	145	(5	1.80	4	37	51	214	5.68	.08	10	1.65	2200	6	.04	46	1900	46	20	<20	88	.07	10	153	<10	17	109
319 -	97	H 2 2	5	4.8	1.22	45	<2	260	<5	3.34	5	15	25	- 94	3.40	.06	10	. 33	3806	9	.03	72	1490	22	۲5	<20	105	.01	20	25	<10	17	206
319 -	98	H 2 50)	1.8	1.08	50	<2	100	<5	.57	3	19	23	62	2 3.95	.05	10	. 37	1278	10	.03	56	630	24	5	<20	25	.01	10	26	<10	10	203
319 -	99	H 2 100)	1.0	.61	35	<2	80	<5	2.30	2	10	11	24	2.38	.06	<10	.23	1968	7	.03	23	550	18	5	<20	96	.01	20	15	<10	3	123
319 -	100	H 2 150)	.2	. 14	<5	<2	<5	<5	.25	1	3	5	9	.43	.02	<10	.16	356	- 4	.03	8	580	8	<5	<20	130	<.01	110	6	<10	1	42

CORONA CORPORATION - ETK 89-319A

PAGE 4 ETK# DESCRIPTIONS	AG AL(I) AS	B BA BICA((I) CD CO CR	CU FE(1) K(1)	LA NG(Z) HN	MG NA(I) NI P	PB SB SI	SR T1(1)	ט ע אי א זאגע
******		****************							
319 - 101 H 2 175	1.0 .70 35	<2 60 <5 1.	25 2 12 15	29 2.66 .03	(10 .22 720	6 .03 30 520	16 10 <20	60 .01	10 20 <10 3 135
319 - 102 H 2 200	.8 .63 30	(2 70 (5 .	48 1 12 13	29 2.59 .03	<10 .22 350	6 .03 29 520	14 5 (20	24 .01	10 20 (10 2 138
319 - 103 H 2 225	.8 .62 30	<2 50 <5 .	76 2 11 14	31 2.65 .04	(10 .24 414	8.03 28 500	12 5 (20	31 .01	10 21 <10 5 138
319 - 104 H 2 275	.4 .07 5	(2 25 <5 2.	86 2 1 2	10 .25 .01	<10 .09 260	2 .03 6 280	8 (5 (20	108 (.01	10 2 <10 1 66
319 - 105 H 2 300	.4 .71 45	<2 45 <5.	13 1 12 20	50 3.42 .03	10 .32 359	9.03 48 370	16 10 (20	7.01	20 22 <10 7 157
319 - 106 H 2 325	1.2 .71 40	<2 100 <5 .	46 2 14 18	47 3.17 .03	10 .22 892	8.03 47 570	20 10 <20	18 .01	20 23 <10 8 178
319 - 107 H 2 350	1.4 .80 50	<2 65 <5.	28 2 18 21	66 4.13 .03	<10 .30 612	12 .03 59 580	22 10 <20) 13 .01	10 25 <10 7 186
319 - 108 H 2 375	1.0 .64 35	(2 10 (5 .	35 2 12 17	36 3.09 .03	<10 .21 356	8 .03 37 600	16 5 <20	14 .01	20 21 (10 3 145
319 - 109 H 2 400	.6 .78 60	(2 65 (5 .	09 2 14 20	60 3.77 .02	<10 .27 351	13 .03 51 480	10 10 (20	6.01	10 22 <10 3 187
319 - 110 H 4 0	.4 .87 35	<2 50 <5 .	07 1 11 24	31 3.31 .02	<10 .35 300	5,03 34 920	14 15 <20	7.01	20 28 <10 2 124
319 - 111 H 4 25	.6.91 25	<285 <5.	07 1 11 29	26 3.20 .02	<10 .37 437	7 .03 29 1020	14 10 <20	5.01	10 31 <10 2 126
319 - 112 H 4 50	.4 .92 50	<2 55 <5 .	03 1 14 31	60 3.55 .03	<10 .49 461	8.03 55 490	16 10 <20	4.02	30 29 <10 4 148
319 - 113 H 4 75	.4 .95 35	<2 90 <5 .	05 1 11 34	39 3.30 .02	<10 .49 338	8 .03 41 940	14 10 <20	5.01	20 32 <10 2 149
319 - 114 H 4 100	.4 .56 25	<2 45 <5.	14 1 7 21	19 2.16 .02	(10 .26 312	6 .03 23 560	10 5 (20	7.01	10 25 <10 1 75
319 - 115 H 4 125	.4 ,66 20	<2 50 <5 .	10 1 10 26	22 2.58 .03	<10 .45 289	4 .03 29 550	8 <5 <20	7.01	<10 26 <10 2 102
319 - 116 H 4 150	.6 .82 30	<2 50 <5 .	11 1 10 26	33 3.38 .03	<10 .56 292	6 .03 21 1000	10 5 <20	8.02	<10 37 <10 2 98
319 - 117 H 4 175	.4 .58 20		14 1 7 20	16 2.40 .03	<10 .42 377	3.03 18 590	10 <5 <20	7.01	<10 29 <10 1 95
319 - 118 H 4 200	.4 .68 40		15 1 10 22	27 3.28 .03	<10 .53 378	6.04 25 580	10 5 (20	10 .02	10 35 (10 2 109
319 - 119 H 4 225	.2 .66 20		19 1 8 21	20 2.75 .03	(10 .49 265	3.04 18 450	12 5 < 20	12 .02	<10 37 <10 2 86
319 - 120 H 4 250	.6 .59 25		18 1 9 24	24 2.81 .02	<10 .45 311	6.03 23 440	10 5 <20	12 .02	(10 35 (10 2 85
319 - 121 H 4 275	.4 .50 25		20 1 8 21	18 2.44 .03	<10 .33 522	4 .03 18 700	14 5 <20	15 .01	<10 32 (10 1 76
319 - 122 H 4 300	.4 .74 25		13 1 8 23	29 3.21 .02	<10 .54 362	4 .03 22 1150	10 5 (20	8.01	<10 35 <10 2 94
319 - 123 H 4 325	.4 .38 420		16 (1 4 18	10 1.90 .03	(10 .21 320	3.03 14 770	8 5 <20	8.02	<10 27 <10 1 57
319 - 124 H 4 350	.4 .33 5		18 (1 5 11	6 1.16 .03	(10 .19 377	1 .03 6 550	6 <5 <20	11 .03	<10 20 <10 1 45
319 - 125 H 4 375	.6 .79 15	<2 105 <5.	14 1 9 30	22 2.94 .03	<10 .49 358	3.03 20 950	10 5 <20	9.01	<10 38 <10 2 108
319 - 126 H 4 400	.2 .77 15	<2 65 <5.	12 1 8 40	20 2.76 .02	<10 .49 242	3.03 19 980	12 5 (20	9.02	(10 39 (10 2 81

NOTE: < = LESS THAN

CC: MARK TINDALL VCR FAX: VCR SC89/1056

4 Haven

ECO-TECH LABORATORIES LTD. Doug Howard B.C. Certified Assayer

CORONA CORPORATION - ETK 89-426A

and the second second

ETK	DESCRIP				AG AL		AS	B	BA	BI CA(%)	CD	CO	CR	CU FE(%)		LA MG(%)		HO NA(Z)	NI	P	PB	SB	SN	SR T		U	v	W	Y	ZN
426 A- 10		16+	00 1	*1#=======	.2 2		25	<2	105	<5.67	<pre><1</pre>	25	57	38 4.25		(10.8)		5.05	 41		:====== 14	10	<20	309	.08			<10	=	201
426 A- 10	2 AST	16+	50 1		.2 3	3.01	10	<2	90	<5.66	(1	33	126	31 4.60	.13	(10 2.50	657	2.05	130		16	15	<20	301	.11	10	105	10	2	210
426 A- 10	3 AST	17+	00 ¥		<.2 2	2.85	70	<2	115	<5.48	<1	32	118	65 7.19	.09	<10 1.68	670	9.05	117	2200	12	20	<20	687	.10	30	258	<10	6	202
426 A- 10)4 AST	17+	50 6		.4 2	2.47	15	<2	215	<5.44	<1	24	100	20 4.76	.05	(10 1.3)	1178	4.05	64	4910	18	15	<20	277	.06	40	141	10	3	256
426 A- 10	5 AST	18+	00 6		.2 2	2.74	15	<2	180	<5.50	(1	24	135	28 4.88	.09	<10 1.74	632	7.05	103	3520	14	15	(20	365	.05	<10	177	10	3	285
426 A- 10	6 AST	18+	50 6		.6 3	3.82	5	<2	250	<5 1.22	<1	32	- 74	34 4.45	.09	<10 1.85	2027	5.05	98	1470	14	20	(20	281	.22	40	106	<10	4	169
426 A- 10	7 AST	19+	00 6		.4 3	3.78	5	<2	230	<5 1.15	<1	30	69	29 4.29	.09	<10 2.06	1987	5.06	95	1390	12	15	(20	265	.21	10	110	10	5	146
426 A- 10		20+	00 6		.4		10	<2	70	<5 .60	1>	- 14	13	32 3.94	.06	10 .29	957	1.05	22	950	14	10	<20	47	<.01	40	14	<10	8	111
426 A- 10		20+	50 k		.2 2		10	<2	105	<5.74	(1	20	44	23 3.61	.07	<10 .80	- 553	6,05	29	1700	14	10	<20	186	.15	20	124	10	3	202
426 A- 11		21+	00 1		.6 2		20	<2	120	<5.68	(1	19	86	60 4.29	.09	<10 1.27	552	2.05	55	1310	16	5	<20	256	.09	40	145	<10	4	146
426 A- 11		0+	00 E		.4 2		25	<2	155	(5.91	<1	26	54	42 5.25	.04	(10 .96	988	4.05	39	4220	14	15	<20	191	.12	40	127	<10	5	186
426 A- 11		0+	50 E			.38	60	<2	75	<5.22	<1	17	33	63 3.99	.06	<10 .08	346	5.05	30	550	16	15	<20	31	<.01	30	91	<10	5	97
426 A- 11		1+	00 E			.65	70	<2	85	<5.60	<1	29	48	99 6.47	.11	<10 .26	977	3.05	64	1010	20	25	<20	32	.01	40	127	<10	19	132
426 A- 11		1+	50 8		.6 2		15	<2	390	(5 3.51	<1	81	143	118 6.49	.06	<10 1.99	1667	4 .05	138	1250	14	20	<20	61	.01	20	107	<10	14	101
426 A- 11		2+	00 E		-4		125	<2	80	(5 5.11	<1	34	32	76 5.69	.05	<10 .41	1370	4 .05	63	1260	18	35	<20	88	<.01	60	83	<10	19	115
426 A- 11		2+	50 E		.4 1		45	(2	45	(5 1.63	<1	21	40	53 3.26	.05	<10 .86	672	2.05	38	940	14	10	(20	73	.06	20	63	<10	7	77
426 A- 11		3+	50 E		-4 1		45	(2	55	(5 1.52	<1	17	41	48 3.20	.04	<10 .86		1.05	35	870	16	5	<20	47	.06	40	63	<10	8	65
426 A- 11		4+	00 E			.91	50	<2	40	<5 1.44	<1	20	35	58 3.14	.06	<10 .67		2.05	37	930	14	10	(20	46	.05	30		<10	7	73
426 A- 11		4+	50 E			.14	15	(2	65	(5 .41	(1	16	43	19 3.08	.04	<10 .68		2.05	31	490	14	5	<20	11	.01	50	59	<10	5	68
426 A- 12		5+	00 8		.4 1		25	<2	45	(5.82	(1	15	40	44 2.95	.07	<10 .69		2.05	32	480	18	5	<20	28	.06	30	61	<10	8	58
426 A- 12		5+	50 E		.2 1		55	<2	70	<5 1.08	(1	20	43	58 3.64	.04	(10 .85		3.05	42	910	12	10	<20	49	.06	40	69	<10	9	91
426 A- 12 426 A- 12		6+ 6+	00 E 50 E			1.08	15	<2 (2	55	(5.24	(1	12	30	16 2.46	.03	(10 .54		2.05	24	460	14	5	(20	18	.05	40	55	(10	2	51
426 A- 12		7+	00 8	u u	.2 .2	.95	30	<2 (2	30	(5.27	(1	13	40	34 2.44	.03	<10 .62		2.04	24	310	12	5	<20	18	.05	30	55	<10	4	47
426 A- 12		7+	50 E		.2 1		20	<2 (2	35	(5.22		6	25	12 2.11	.03	<10 .35		2.08	16	630	10	5	(20	14	.04	<10		<10	2	37
426 A- 12		8+	00 E		.4 1		20 30	<2 <2	50	(5.39		10	36	23 2.68	.05	<10 .51		3.05	25	870	10	2	(20	22	.04	50	62	<10	2	63
426 A- 12		8+	50 E		.4 1				70 55	(5.27	(1	14	41	31 3.22	.04	<10 .57		2.05	27	1130	18	5	(20	17	.04	20	76	<10	2	58
426 A- 12		8+ 9+	00 E		.2 1		25 15	<2 <2	55 95	(5.34		10	32	18 2.70	.04	<10 .47		3.04	21	850	8	2	<20	20	.03	10	68	(10	2	54
426 A- 12		9+	50 E		.2 1		20	3	35	<5.18 <5.32	(1 (1	8 15	27	15 2.30 34 2.55	.03	<10 .42		2.04	15	750	8	5	(20	12	.03	20	60	(10	2	53
426 A- 13		10+	00 E			.95	20	$\langle 2 \rangle$	40	<5.27	ä	12	31	18 2.82	.04 .04	10.58		3.02	25	490	10	5	(20	21	.07	20	57	(10	8 2	48
426 A- 13		10+	50 E			.88	20	(2	50	(5.21		10	31	16 2.78	.03	<10 .45 <10 .36		3.04	18 17	400	10	3 5	<20 <20	16	.06	30	75 61	<10 <10	2	51 55
426 A- 13		11+	00 E			.91	10	<2	60	(5.21	A A	9	26	6 2.56	.03	<10 .36 <10 .33		3.03		1100 1170	12	5 5	<20 <20	14 14	.03 .04	30 30	51	(10	2	58
426 A- 13		11+	50 E			.73	15	<2	50	(5 .16	ä	,	21	8 1.BO	.03	(10 .34		2.03	12	860	10	5	(20	14	.01	10	43	<10	1	36
426 A- 13		12+	00 8		.4 1		25	(2	35	(5.28	a	11	35	22 2.76	.03	(10 .52		1.04	26		12	5	(20	12	.02	(10	43 56	(10	2	49
426 A- 13	-	12+	50 E		.6 1		25	(2	75	(5.45	ä	11	44	24 2.76	.03	(10 .51		3.04	19	410	12	J 5	(20	23	.04	20	66	(10	5	45
426 A- 13		13+	00 E		.2		10	(2	65	(5.14	ä		23	6 1.89	.03	<10 .28		1 .03	10	1830	10	5	<20 <20	23	.04	10	37	<10	2	62
160 1 14			** 5		••				00			v	23	u 1.03	.03	10 .20	201	1.03	10	1030	10	J	120	7	• ٧٩	10	3/	110	4	02

. . .

PAGE 4

CORONA CORPORATION - ETK 89-426A

PAGE 2 ETK#	DESCRIPT					AL(%)	AS	B	BA	BI CA(Z)	CD	CO	CR	CU FE(%)		LA NGC		MN	NO NAC		NI P	PB	SB	SN	SR T1		U	۷	W	Y	ZN
426 A-		13+	00			1.15		(2	75	<5 .3 2	<1	18	41	45 3.73	.09			716	3.		39 820	24	10	<20			60		<10		101
426 A-	28 JL	13+	50	ε	.8	1.17	25	<2	70	(5.45	(1	16	33	37 3.71	.09			676		04	37 1240	22	5	<20			20		(10	6	106
426 A-	29 JL	14+	00	Ε	1.0	.85	110	<2	45	(5 2.08	(1	26	42	82 4.02	.06	10 .	74	962	3.	05	52 1010	28	5	<20	67	.03	20	48	<10	1	104
426 A-	30 ROSE	0+	00	8	.8	1.32	50	<2	80	(5 2.25	(1	20	40	58 3.40	.07	<10 .º	93	907	3.	05	40 950	16	10	(20	77	.08	60	60	<10	9	95
426 A-	31 ROSE	0+	50	N	.8	1.32	55	<2	75	<5.72	<1	18	43	47 3.25	.05	(10 .	68	831	1.	05	36 840	16	5	<20	37	.05	40	58	(10	8	80
426 A-	32 ROSE	0+	100	W	1.4	1.31	70	<2	75	<5.67	(1	23	46	58 3.87	.04	10 .	73 1	248	5.	05	35 1180	18	10	(20	34	.05	30	64	<10	8	95
426 A-	33 ROSE	0+	105	WEND	1.0	2.51	25	<2	150	<5.35	<1	63	46	81 5.81	.05	<10 1.0	00	630	8.	04 :	07 820	62	20	<20	27 (.01	70	43	10	7	236
426 A-	34 ROSE	0+	150	W	1.0	1.12	35	<2	60	(5.70	(1	20	42	54 2.79	.05	<10 .	73	655	3.	04	35 920	14	10	<20	30	.04	60	57	<10	9	75
426 A-		0+	200		.6		25	<2	65	<5 1.66	<1	18	34	43 2.86	.05	<10 .	84.	577	2.	04	34 870	16	5	<20	61	.05	80	55	<10	8	75
426 A-		0+	250		.6		190	<2	75	< 5 .6 7	<1	30	33	68 7 .8 8	.05	10 📜	37	911	4.	04	48 920	18	45	<20	38	.02	20	120	(10	22	130
426 A-		0+	300		1.0		55	<2	90	(5 .96	(1	52	46	97 7.70	.05			2069	4.	05	84 1110	22	15	<20	46	.01	30	165	10	39	169
426 A-		0+	350			1.39	25	<2	105	(5.45	(1	19	48	40 4.19	.04			885	2.	05	29 770	16	15	<20	28	.04		122	10	6	93
426 A-		0+	400			1.63	40	(2	145	<5 .67	<1	56	67	103 6.92	203			1361		06	71 940	34	15	(20		.02		147	10	59	208
	40 ROSE	0+	450			1.16	45	(2	115	<5 2.43	(1	48	63	99 9.27	.05			254		06	83 1110	26	15	<20		.01		149	10	29	183
	41 ROSE	0+	500			2.00	50	(2	115	<5 1.01	(1	59	72	106 6.82	.05		56 1			04	67 1370	36	15	(20		.01		205	<10	23	168
	42 ROSE	0+	550			2.14	30	<2	170	(5 1.58	(1	43	93	122 6.05	.04	30 1.		1315		04	51 1340	26	15	<20		.01	30	185	<10	33	173
	43 ROSE	0+	600			1.60	25	(2	160	(5 .B4	(1	26	61	73 4.37	.06			810		07	45 1000	20	5	<20		.02			<10	11	115
	44 ROSE	0+	650			1.96	25	<2	145	<5 .73	(1	38	58	92 5.09	.05			671		05	60 1000	24	15	<20		.01		112	<10	11	139
	45 ROSE	0+	700			1.20	90	(2	80	<5.75	(1	28	45	91 5.05	.06			305		05	42 990	22	5	<20		.04	20		<10	13	112
	46 ROSE	0+	750			1.66	20	<2	250	(5 1.85	(1	42	47	80 4.54	.06			820		05	59 830	38	10	(20	73 (60		(10	9	154
	47 ROSE 48 ROSE	0+ 0+	800 850			1.74	10	(2	365	(5 1.12	(1	44	45	66 5.15	.05			870		04	80 1470	26	5	(20	73 〈		20	63	<10	18	144
	49 ROSE	0+	900			2.61	30	(2	85 300	<5.71 <5.79	(1	26	54	55 3.82	.07			720		05	45 1030	8	10	<20		.06	30		<10	8	72
	50 ROSE	0+	950		¥	2.11	20 5	<2 <2	300 195	<5.79 <5.41	<1 <1	41	88 50	93 5.89	.06	(10 1.		430	-	05	65 1570	16	15	<20	104 (30	86	<10	11	117
426 A-		0+	1000			2.03	5	<2	125	(5 1.20	<1	36 36	50 44	110 4.84 52 5.05	.07 .05			322		05 ^5	60 810	12	15	<20	76 (30	62	<10	12	124
426 A-	52 BM	0+	00			1.33	10	(2	55	<5 .61	(1)	19	40	32 3.03	.03	(10 1.)		417 744		05 06	63 1310 23 1250	18	15 5	〈20 〈20	134 〈 35	.01	50 70	47 74	<10 <10	12 5	115 58
426 A-	53 BM	0+	100			1.59	15	(2	65	(5.31	A A	15	40	30 3.41	.04	(10 .		295		05 05	28 1190	8 1	ວ 5	<20 <20		.08	80	/4 81	(10	J	за 45
426 A-	-	0+	237			2.59	15	<2	45	(5 1.03	<1	48	107	280 6.53	.05	10 3.		677		03 05	22 2010	0	15	(20		.17	50	183	<10	10	4J 88
426 A-		0+		N+ EAST		2.10	5	(2	35	(5 1.57	(1	36	80	570 5.49	.03	10 1.1		996		06	24 930	0	10	(20		.1B	40	136	(10	11	63
426 A-		0+	-	N+ EAST		2.78	10	(2	65	(5 1.51	ä	15	31	89 2.67	. 16			1141		06	14 2100	4	10	(20		.09	40	69	<10	۰۰ ۲	57
426 A-		0+	410			2.74	15	(2	50	<5 1.37	4	18	36	117 3.21	.13			812		13	17 1500	6	15	(20		.11	10	78	<10	7	43
426 A-		0+				3.52	25	(2	25	<5 1.49	< <u>i</u>	28	36	112 4.98	.05	(10 1.)		953		11	26 2380	8	20	(20		.07	80	155	(10	6	56
426 A-	59 BM	0+	466			2.93	845	(2	110	<5 .47	a	56	81	160 7.19	.03	<10 1.3		716		06	77 860	4	20	(20		.06	70	319	<10	5	58
426 A-		0+	555	E		1.51	90	<2	55	(5 2.12	< <u>i</u>	77	108	352 6.71	.03	10 1.3		2505		05	63 1350	14	15	<20		.01	30	173	(10	21	69
426 A-		0+	655	£		2.56	30	(2	165	(5 1.41	ä	18	40	60 4.61	.06			757		05	15 3780	12	15	(20		.05	30	112	<10	6	171
426 A-	62 BM	0+	765	EAST		2.44	10	(2	115	(5 1.31	ä	22	41	61 3.68	.07			974		05	10 7650	8	10	(20		.11	20	71	<10	4	94
426 A-		0+	856	E		3.73	10	(2	60	(5 1.34	(1	17	45	148 2.81	.13	20 .		800		06	11 4880	8	10	<20		.07	60	54	<10	19	35
													. –			•			- •			-									

5

Έ.

PAGE 2

APPENDIX "B"

APPENDIX REPORT

ON

VLF-EM AND MAGNETIC SURVEYS OVER THE LIKELY PROJECT GRID LIKELY, BRITISH COLUMBIA

-

1.0 INTRODUCTION

A geophysical program consisting of electromagnetic (VLF-EM) and magnetic surveys was carried out on the Likely grid in the Cariboo Mining Division near Likely, B.C. The survey was carried out in September 1989.

2.0 OBJECTIVES

- to establish a correlation between magnetic minerals and mineralized trends,

- to test the effectiveness of VLF-EM in following possible mineralized trends and to establish new unrecognized conductive trends,

- to establish geophysical areas of interest for future exploration.

3.0 SURVEY SPECIFICATIONS

Survey Parameters

- survey line separation - 100 m.

- survey station spacing 25 m.
- VLF-EM and magnetic survey total 13.9 km.

Equipment Parameters

VLF Electromagnetic Survey

- Geonics EM-16 used for all survey
- transmitting station Seattle, Wa.
 - Annapolis, Md.
- direction faced easterly

in-phase (dip angle) and out-of-phase (quadrature)

components measured in percent at each station

Total Field Magnetic Survey

- measured total magnetic field in gammas
- magnetic variations controlled by automatic magnetic base station recording every 30 seconds
- instrument accuracy +/- 1 gamma
- station repeatability better than +/- 3 gammas

Equipment Specifications - see Appendix I

4.0 DATA

Calculations

Total Field Magnetic Survey Total field magnetic readings were individually corrected for variations in the earth's magnetic field using magnetic base station values. The formula used for magnetic corrections was; CTFR = TFR + (DBL - BSR)

> where: CTFR = Corrected Total Field Reading TFR = Total Field Reading DBL = Datum Base Level = 58400 gammas BSR = Base Station Reading

Presentation

- Magnetic data were profiled and are presented on Figure # G-1 at a scale of 1:5000
- Magnetic data were contoured and are presented on Figure # G-2 at a scale of 1:5000
- Seattle VLF-EM in-phase and out-of-phase readings are presented in profile form on Figure # G-3 at a scale of 1:5000
- Annapolis VLF-EM in-phase readings are presented in profile form on Figure # G-4 at a scale of 1:5000
- The geophysical interpretation is presented on applicable magnetic and VLF-EM data maps.

5.0 INTERPRETATION

5.1 Discussion of Results

Total field magnetic data over the Likely grid area appeared to be relatively noise free. Magnetic readings range from about 57100 nT to over 58600 nT. The magnetic datum value for the total field magnetic profile map, Figure # G-1, was determined by statistical analysis to be 57300 nT. This datum value, which graphically shows if a magnetic reading is above or below the mean value for the grid, was the threshold between dashed and solid contours on the total field magnetic contour map, Figure # G-2.

The background magnetic environment in the survey area was quiet and exhibited magnetic readings near the mean value for the grid. A weak regional trend, seen as a gradual change from lower values in the west to higher values in the east, is observed on the Likely grid.

The magnetic profiles are dominated by a number of strong highs in the central portion of the survey area. The strong magnetic highs are often made up of a number of long and short wavelength magnetic anomalies. Most magnetic anomalies observed on the grid exhibited monopolar response. Where possible, individual magnetic high trends were delineated and labeled as magnetic lineaments. These magnetic high ...3

lineaments are designated "L1" and "L2" on Figure # G-1 and Figure # G-2. A magnetic low feature which appears to separate "L1" and "L2" was interpreted on the Likely grid and labeled "L3" on the magnetic profile and contour maps.

Seattle VLF-EM data were noise free and few cultural sources were observed. A power transmission line on the southwest edge of the grid produced strong negative in-phase values. Although the Annapolis transmitter had better orientation for conductor coupling than the Seattle transmitter, the Annapolis data set was so noisy that quadrature results were considered totally unreliable and therefore were not profiled. Due to the low signal to noise ratio, only Annapolis anomalies displaying line to line continuation were interpreted.

Several VLF-EM conductors, generally trending northwest, were delineated over the Likely grid. Important conductors are labeled "C1" to "C6" on Figure # G-3 and Figure # G-4.

5.2 Conclusions

Magnetic results over the Likely grid show a quiet magnetic background with numerous northwest trending magnetic high features cross-cutting the grid. The relatively quiet magnetic background indicates that the area is underlain by either a homogeneous rock type or rock types with similar magnetic susceptibilities.

Within the quiet magnetic background, the relatively narrow magnetic features making up lineaments "L1" and "L2" are believed to represent basic dykes due to the long, narrow nature of these anomalies. Supporting this interpretation, the monopolar response of the magnetic anomalies making up these lineaments suggests that the causative body may extend to great depth. Short wavelength highs reflect narrow, near surface features and longer wavelength highs reflect deeper bodies.

Lineament system "L1" is a group of east trending, 50 m. to 75 m. wide anomalies forming parallel lineaments in the southern portion of the Likely grid. "L1" exhibits moderate to strong magnetic intensity with anomalies ranging from 500 nT to 2000 nT above background and shows no correlation with VLF-EM conductivity. "L1" was interpreted using magnetic profile character as a guide to determine strike direction. These magnetic anomalies are believed to represent a group of relatively narrow dykes containing magnetic minerals.

Magnetic high lineament "L2" consists of an individual high trending approximately east from lineament "L3" at line 34800N and gradually weakens and dies out completely at line 35100N. "L2" is believed to represent a deeper magnetic body than lineament "L1", due to its longer wavelength. The magnitude of this anomaly suggests that "L2" may also represent a dyke containing magnetic minerals.

-3-

Magnetic low lineament "L3" was delineated based on magnetic contour terminations and offsets as well as correlation with weak VLF-EM conductor "C6". Magnetic low lineament "L3" is believed to represent oxidization within a fault zone. The coincidence of "C6" with "L3" supports this interpretation. If lineament "L3" has faulted the magnetic material interpreted as magnetic dykes, then the deeper lineament "L2" may represent material which has been faulted down relative to "L1".

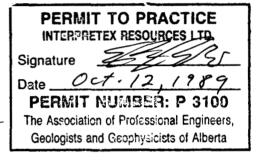
Conductor "C1" is an east trending Seattle conductor characterized by weak to moderate in-phase response with moderate quadrature response following the in-phase response (positive quadrature). "C1" is interpreted to have weak conductance and is thought to represent a structural feature, possibly a fracture zone.

Conductor "C2", "C3" and "C4" are Seattle conductors trending approximately northwest. As with "C1", these conductors are interpreted to have weak conductance and are believed to represent structural features. System "C4" is also visible on Annapolis VLF-EM data and is therefore considered a more definite target then conductors seen only on one set of data.

Conductor "C5" is a weak to moderate Annapolis conductor which is coincident with "C3" seen on the Seattle VLF-EM profile map and is believed to represent another structural feature.

Conductor "C6" is a weak Annapolis conductor which shows fair correlation with magnetic low lineament "L3". This conductor system may represent conductive material such as fault gouge within the "L3" interpreted fault.

6.0 RECOMMENDATIONS


Conductor "C4", although without significant magnetic associations, is a relatively well defined conductor system and can be considered a target for additional exploration on the ground. Conductor "C3", where coincident with "C5", is also a candidate for ground investigation. The interpreted fault conductor "C6" may be important, especially where it cuts between magnetic lineaments "L1" and "L2". This region of conductor "C6" warrants investigation on the ground.

Respectfully Submitted

INTERPRETEX RESOURCES LTD.

Vancouver, British Columbia

E.R. ROCKEL

Consulting Geophysicist n T.R. MATICH

Geophysicist

CERTIFICATE

I, EDWIN ROSS ROCKEL, Geophysicist of Vancouver, British Columbia, Canada, hereby certify that:

- 1. I received a B.Sc. degree in Geophysics from the University of British Columbia in 1966.
- 2. I am a Consulting Geophysicist and owner of Interpretex Resources Ltd. of Box 48239, Bentall P.O., in the City of Vancouver, in the Province of British Columbia.
- 3. I currently reside at 6571 Cooney Rd., in the Municipality of Richmond, in the Province of British Columbia.
- 4. I have been practising my profession since graduation.
- 5. I am a Professional Geophysicist registered in the Province of Alberta.
- 6. I am a Professional Engineer registered in the Province of Saskatchewan.
- 7. I am a Certified Professional Geological Scientist registered in the United States of America.
- 8. Geophysical work described in this report, and the interpretation of data therefrom were performed by employees of Interpretex Resources Ltd., under my direct supervision.
- 9. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.
- 10. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Date: Oct-12,1989 Signed: _

Vancouver, British Columbia

Edwin Ross Rockel B.Sc., P.Geoph., P.Eng.

CERTIFICATE

I, Thomas Raymond Matich, Geophysicist of Surrey, British Columbia, Canada, hereby certify that:

- 1. I received a B.Sc. degree in Geophysics from the University of British Columbia in 1982.
- 2. I currently reside at 13914 116 Ave, in the Municpality of Surrey, in the Province of British Columbia.
- 3. I have been practising my profession since graduation.
- 4. I hold no direct or indirect interest in, nor expect to receive any benefits from, the mineral property or properties described in this report.
- 5. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.
- 6. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Date: October 12, 1989

Surrey, British Columbia Signed:

Thomas Raymond Matich B.Sc.

AUTHOR'S NOTE

Data interpreted in this report were accumulated without supervision by Interpretex Resources Ltd. and were supplied by the Client to the writer(s). These data and the locations on the ground from which these data were accumulated are, except when specified otherwise by the writer(s), assumed to be reliable and correct and were interpreted using this assumption.

-

APPENDIX I

•

انت ا

Equipment Specifications

•

GEONICS LIMITED VLF EM 16

-

1

1

Source of Primary Field:	VLF transmitting stations
Transmitting Stations Used:	Any desired station frequency can be supplied with the instrument in the form of plug-in tuning units. Two tuning units can be plugged in at one time. A switch selects either station.
Operating Frequency Range:	About 15-25 Hz
Parameters Measured:	 The vertical in-phase component (tangent of the tilt angle of the polarization ellipsoid). The vertical out-of-phase (quadrature) com- ponent (the short axis of the polarization ellip- soid compared to the long axis).
Method of Reading:	In-phase from a mechanical inclinometer and quad- rature from a calibrated dial. Nulling by audio tone.
Scale Range:	In-phase ±150%; quadrature ±40%
Readability:	±1%
Reading Time:	10-40 seconds depending on signal strength
Operating Temperature Range:	-40 to 50° C.
Operating controls:	ON-OFF switch, battery testing push button, station selector, switch, volume control, quad- rature, dial ±40%, inclinometer dial ±150%
Power Supply:	6 size AA (penlight) alkaline cells. Life about 200 hours
Dimensions:	42 x 14 x 9 cm (16 x 5.5 x 3.5 in)
Weight:	1.6 kg (3.5 lbs)
Instrument Supplied With:	Monotonic speaker, carrying case, manual of operation, 3 station selector plug-in tuning units (additional frequencies are optional), set of batteries
Shipping Weight:	4.5 kg (10 lbs.)
Name and Address of Manufacturer:	Geonics Limited 1745 Meyerside Drive/Unit 8 Mississaùga, Ontario L5T 1C5

MODEL G-816

PORTABLE PROTON MAGNETOMETER

Sensitivity:	±1 gamma throughout range					
Range:	20,000 to 90,000 gammas (worldwide)					
Tuning:	Multi-position switch with signal amplitude • indicator light on display					
Gradient Tolerance:	Exceeds 800 gammas/ft					
Sampling Rate:	Manual pushbutton, one reading each 6 seconds					
Output:	5 digit numeric display with readout directly in gammas					
Power Requirements:	Twelve self-contained 1.5 volt "D" cell universally available flashlight-type batteries. Charge state or replacement signified by flashing indicator light on display.					
Temperature Range:	Console and sensor: -40° to +85°c					
	Battery pack: 0° to +50°C (limited use to -15°C; lower temperature battery belt operation - optional)					
Accuracy (Total Field):	± 1 gamma through 0° to $\pm 50^{\circ}$ C temperature range					
Sensor:	High signal, noise cancelling, interchangeably mounted on separate staff or attached to back pack					
Size:	Console: 3.5 x 7 x 11 inches (9 x 18 x 28 cm) Sensor: 3.5 x 5 inches (9 x 13 cm) Staff: 1 inch diameter x 8 ft. length (3 cm x 2.5 m)					
Weight:	Console (w/batteries): 5.51bs. 2.8kgs. Sensor and signal cable: 4.01bs. 1.8kgs. Aluminum staff: 2.01bs. 0.9kgs.					
	Total Weight 11.51bs. 5.2kgs.					

EG & G Canada Exploranium/Geometrics Division Unit #1 640 Hardwick Road Bolton, Ontario LOP 1AO

MODEL G-856

PROTON PRECESSION MEMORY MAGNETOMETER

- Display Six digit display of magnetic field to resolution of 0.1 gamma or time to nearest second. Additional three-digit display of station or day of year.
- Resolution Typically 0.1 gamma in average conditions. May degrade to lower resolution in weak fields, noisy conditions or high gradients.
- Accuracy One gamma, limited by remnant magnetism in sensor and crystal oscillator accuracy.
- Clock Julian clock with stability of 5 seconds per month at room temperature and 5 seconds per day over the temperature range of -20 to +50 degrees Celsius.
- Tuning Push button tuning from keyboard with current value displayed on request. Tuning range 20 to 90 kilogammas.
- Gradient Tolerates gradients to 5000 gammas/meter. When high gradients Tolerance truncate count interval, maintains partial reading to an accuracy consistent with data.
- Cycle Time Complete field measurement in three seconds in normal operation. Internal switch selection for faster cycle (1.5 seconds) at reduced resolution or longer cycles.
- Manual Read Takes reading on command. Will store data in memory on command at operator's discretion.
- Self-Cycle Internal switch will cause the instrument to self-cycle, storing automatically, for time dependent measurements. Available intervals are 5, 10 and 30 seconds, 1,2,5, and 10 minutes depending on switch position.
- Memory Stores 1,000 readings in portable mode, keeping track of time and station number. In base station operation, records last four digits of field at discrete intervals, allowing storage of over 2,500 readings.
- Output Plays data out in standard RS-232 format at selectable baud rates. Also outputs data in byte parallel, character serial BCD for use with digital recorders.

Inputs Will accept an external sample command.

SpecialAn internal switch allows adjustment of polarizationFunctionstime and count time to improve performance in marginalarea or improve resolutuon or to speed operation.

G-856 cont'd

Physical	Instrument console: 7 x 10½ x 3½ inches (18 x 27 x 9 cm) 6 lbs (2.7 kg) Sensor: 3½ x 5 inches (9 x 13 cm) 4 lbs (1.8 kg) Staff: 1 inch x 8 feet (3 cm x 2.5 m) 2 lbs (1 kg)
Environmental	Meets specifications from 0 to 40 degrees Celsius. • Operates satisfactorily from –20 to 50 degrees Celsius. Weatherproof.
Power	Operates from 8 D-cell flashlight batteries (or 12 volts external power). May be operated at 18 volts external power to improve resolution. Power failure or replacement of batteries will not cause loss of data stored in memory.
Standard Accessories	Sensor Staff Chest Harnes Two sets of batteries Operating Manual Applications Manual for Portable Magnetometers
Optional Accessories	RS-232 Interface Cable Rechargeable Battery Pack (mounts inside case in place of normal batteries) and Charger Cold weather battery belt Digital Tape Recorder with Interface Cables
EG & G Canada Exploranium/Geom	etrics Division

Exploranium/Geometrics Divis Unit #1 640 Hardwick Road Bolton, Ontario LOP 1A0

,

100

.

APPENDIX II

•

,

•

VLF-EM and Magnetic Data List

Area:	EX RESOURC	ES 17D. 0	ata listi	ng	(Line & St		= Northings and Eastings, = Southings and Westings)	
	LIKELY	000						
Date: DATA TYPE	October, 1 /ex.	.983			7	HOTOHMONT	. TVDC.	1075 DET01 0.
	tar: Total Fiel	d Marwati	e Valuee			NSTRUMENT Geometric	is S-826 Magnetometer	DATA DETAILS: Corrected total magnetic field
	VLF-EM In-						M-16 VLF-EM Receiver	Facing easterly using Seattle Transmitter
	VLF-EM Qua			ase)		8 H	n io ati tri veletaer	Facing easterly using Seattle Transmitter
	VLF-EM In-					F N	<i>B</i> R	Facing easterly using Annapolis Transmitte
N/S	E/W							
STATION	LINE #		# 1.	# 2 .	# 3.	# 4		
line 3410	Ō							
-5925	34200	-5925	57438	12.0	0.0	0.0		
-5950	34200	-5950	57454	2.0	4.0	1.0		
-5975	34200	-5975	57432	-3.0	2.0	-10.0		
-6000	34200	-6000	57416	19.0	-4.0	55.0		
-6025	34200	-6025	57415	20.0	-3.0	12.0		
-6050	34200	-6050	57425	14.0	-6.0	9.0		
-6075	34200	-6075	57435	12.0	-4.0	13.0		
-6100	34200	-6100	57458	15.0	-3.0	9.0		
-6123	34200	-6125	57500	8.0	-2.0	4.0		
-6150	34200	-6150	57523	4.0		4.0		
-6175	34200	-6175	57542	3.0		6.0		
-6200	34200	-6200	57479	8.0		4.0		
-6225	34200	-6225	57470	7.0		8.0		
-6250	34200	-6250	57496	6.0		0.0		
-6275	34200	-6275	57467	17.0		2.0		
-6300	34200	-6300	57490	17.0		-6.0		
-6325	34200	-6325	57474	22.0		-5.0		
-6350	34200	-6350	57491	17.0		-13.0		
-5375	34200	-5375	57497	18.0		-12.0		
-6400	34200	-6400	57447	15.0		-12.0		
-6425	34200	-6425	57427	10.0		-4.0		
-6450	34200	-6450	57506	8.0		-2.0		
-6475 5500	34200	-6475	57524	9.0		-14.0		
-6500 -6505	34200 34200	-6500	57494 57462	7.0		-17.0		
-6525 -6550	34200 34200	-6525 -6550	57463 57443	11.0 14.0		-6.0 -5.0		
-6530 -5575	34200 34200	-6575	57493 57491	14.0		-5.0		
-5500	34200 34200	-6600	57471	14.0		-10.0		
-6625	34200 34200	-6625	57428	15.0		-10.0		
-6650	34200	-6650	57423	16.0		-5.0		
-6675	34200	-6675	57392	17.0		-3.0		
-6700	34200	-6700	57399	22.0		-4.0		
-6725	34200	-6725	57403	23.0		0.0		
-6750	34200	-6750	57385	20.0		3.0		
-6775	34200	-6775	57356	18.0	4.0	10.0		
-6800	34200	-6800	57347	19.0	7.0	13.0		
-6825	34200	-6825	57340	22.0		10.0		
-6850	34200	-6850	57326	27.0		10.0		
-6875	34200	-6875	57308	32.0		-3.0		
-6900	34200	-6900	57317	30.0		0.0		
-6925	34200	-6925	57331	30.0		5.0		
-6950	34200	-6950	57310	32.0		5.0		
0,00	=vv				0.0	2. 5		

100

-

100

Ť

	-6975	34200	-6975	57310	34.0	4.0	0.0
	-7000	34200	-7000	57299	37.0	1.0	-4.0
	-7025	34200	-7025	57283	37.0	3.0	-6.0
	-7050	34200	-7050	57303	36.0	2.0	-2.0
-	-7075	34200	-7075	57295	31.0	4.0	8.0
	-7100	34200	-7100	57278	26.0	0.0	5.0
	-7125	34200	-7125	57243	33.0	3.0	10.0
	-7150	34200	-7150	57245	16.0	1.0	-3.0
	-7:75	34200	-7175	57205	17.0	-5.0	-4.0
	-7200	34200	-7200	57454	10.0	-4.0	-6.0
-	-7225	34200	-7225	57452	12.0	-1.0	-2.0
	-7250	34200	-7250	57531	-11.0	-1.0	-5.0
	line 34300						
	-5925	34300	-5925	57414	4.0	-6.0	5.0
	-5950	34300	-5950	57367	35.0	2.0	12.0
	-5975	34300	-5975	57541	25.0	-5.0	10.0
	-6000	34300	-6000	57466	15.0	-4.0	10.0
#	-6025	34300	-6025	57417	10.0	0.0	3.0
	-6050	34300	-6050	57378	5.0	-2.0	0.0
	-6075	34300	-6075	57366	1.0	-5.0	0.0
-	-6100	34300	-5100	57343	5.0	-7.0	0.0
-	-6125	34300	-6125	57358	12.0	-5.0	5.0
	-6150	34300	-6150	57371	17.0	-3.0	5.0
	-6175	34300	-6175	57339	19.0	-4.0	10.0
	-6200	34300	-6200	57356	25.0	-4.0	15.0
	-6225	34300	-6225	57650	31.0	-2.0	0.0
	-6250	34300	-5250	58145	27.0	-8.0	0.0
_	-6275	34300	-6275	58283	19.0	-11.0	0.0
-	-6300	34300	-6300	57802	12.0	-12.0	0.0
	-6325	34300	-6325	57627	10.0	-8.0	5.0
-	-6350	34300	-6350	57582	11.0	-10.0	10.0
	-6375	34300	-5375	57462	8.0	-4.0	11.0 20.0
	-6400	34300	-6400	57457	10.0	-1.0	
-	-6425	34300	-6425	57481	7.0	-3.0	9.0
	-6450	34300	-6450	57486	7.0	-3.0	0.0
	-6475	34300	-6475	57511	7.0 5.0	-3.0 -E.0	5.0 5.0
	-6500	34300	-6500	57510	6.0	-5.0 0.0	
-	-6525	34300	-6525	57305		0.0	0.0
	-6550	34300	-6550	57592	9.0		-7.0
	-6575	34300	-6575	57448	10.0	2.0	0.0
	-6600	34300	-6600	57373	15.0	6.0	3.0
	-6625	34300	-6625	57349	17.0	4.0	5.0
	-6650	34300	-6650	57366	15.0	8.0	10.0
	-6675	34300	-6675	57327	18.0	7.0	20.0
	-6700	34300	-6700	57286	25.0	11.0	17.0
	-6725	34300	-6725	57293	25.0	9.0	12.0
	-6750	34300	-6750	57294	29.0	8.0	15.0
-	-6775	34300	-6775	57281	37.0	10.0	15.0
	-6800	34300	-6800	57288	37.0	7.0	15.0
	-6825	34300	-6825	57301	34.0	6.0	4.0
#	-6850	34300	-6850	57290	30.0	B. 0	5.0
	-6875	34300	-6875	57304	30.0	8.0	10.0
	-6900	34300	-6900	57309			
	line 34400						
-	-5925	34390	-5925	11	-4.0	10.0	
	-5950	34390	-5950	57398	0.0	-3.0	5.0

	-5975	34390	-5975	57374	1.0	-5.0	5.0
	-6000	34390	-6000	57366	12.0	-7.0	3.0
	-6025	34390	-6025	57346	13.0	-8.0	8.0
	-6050	34390	-6050	57329	22.0	-5.0	9.0
	-6075	34390	-5075	57435	18.0	-6.0	6.0
	-6100	34390	-6100	57344	14.0	-5.0	-7.0
	-6125	34390	-6125	57365	13.0	-6.0	-3.0
	-6150	34390	-6150	57265	12.0	-4.0	4.0
	-6175	34390	-6175	57151	14.0	-2.0	8.0
	-6200	34390	-6200	57025	19.0	-2.0	14.0
	-6225	34390	-6225	57915	17.0	-6.0	13.0
	-6250	34390	-6250	58117	14.0	-6.0	0.0
	-6275	34390	-6275	57899	14.0	-5.0	-15.0
	-6300	34390	-6300	57897	12.0	-5.0	-8.0
	-6325	34390	-6325	58460	12.0	-4.0	-18.0
	-6350	34390	-6350	58309	14.0	-2.0	-15.0
	-6375	34390	-6375	57793	12.0	1.0	-12.0
	-6400	34390	-6400	57700	9.0	2.0	-10.0
	-6425	34390	-6425	57460	12.0	1.0	0.0
	-6450	34390	6450	57425	10.0	4.0	5.0
-	-6475	34390	-6475	57419	7.0	5.0	-5.0
-	-6500	34390	6500	57433	7.0	4.0	0.0
	-6525	34390	-6525	57518	4.0	4.0	-5.0
-	-6550	34390	-6550	57502	1.0	2.0	3.0
	-6575	34390	-6575	57471	7.0	4.0	-7.0
	-6600	34390	-6600	57384	10.0	12.0	5.0
	-6625	34390	-6625	57326	16.0	8.0	0.0
	-6650	34390	-6650	57310	22.0	9.0	10.0
	-6675	34390	-6675	57279	25.0	7.0	15.0
	-6700	34390	-6700	57286	32.0	9.0	20.0
Ĩ.	-6725	34390	-6725	57277	30.0	8.0	20.0
	-6750	34390	-6750	57266	24.0	10.0	17.0
	-6775	34390	-6775	57265	17.0	0.0	14.0
	-6800	34390	-6800	57264	11.0	1.0	5.0
	-6825	34390	-6825	57282	16.0	5.0	7.0
	line 34500						
	-6000	34495	-6000	57403	2.0	-4.0	-5.0
	-6024.5	34495	-6025	57381	8.0	-4.0	0.0
	-6049	34495	-6050	57368	9.0	-5.0	10.0
	-6073.5	34495	-6075	57355	11.0	-6.0	10.0
-	-6098	34495	-6100	57339	10.0	-4.0	7.0
	-6122.5	34495	-6125	57333	6.0	-4.0	2.0
	-6147	34495	-6150	57316	0.0	-1.0	5.0
	-6171.5	34495	-6175	57290	0.0	-2.0	6.0
-	-6196	34495	-6200	57263	-2.0	-2.0	10.0
	-6220.5	34495	-6225	57237	6.0	-2.0	15.0
	-6245	34495	-6250	57228	10.0	-5.0	15.0
لين	-6269.5	34495	-6275	57247	9.0	-4.0	10.0
	-6294	34495	-6300	57403	5.0	-5.0	15.0
	-6318.5	3449 5	-6325	57787	7.0	-4.0	3.0
-	-6343	34495	-6350	57905	10.0	-1.0	7.0
	-6367.5	34495	-6375	58226	14.0	0.0	-5.0
	-6392	34495	-64 00	58001	15.0	1.0	-3.0
	-6416.5	34495	-6425	58125	14.0	1.0	-5.0
-	-6441	34495	-6450	57872	16.0	2.0	-1.0
	-6465.5	34495	-6475	58825	15.0	1.0	-1.0

	-6490	34495	-6500	58090	15.0	0.0	-15.0
	-6514.5	34495	-6525	57442	20.0	2.0	-15.0
	-6539	34495	-6550	57209	18.0	4.0	-15.0
	-6563.5	34495	-6575	57279	19.0	4.0	-10.0
	-6588	34495	-6600	57302	21.0	3.0	0.0
	-6612.5	34495	-6625	57311	22.0	4.0	0.0
	-6637	34495	-6650	57306	21.0	5.0	-5.0
-	-6661.5	34495	-6675	57287	25.0		
						4.0	5.0
	-6686	34495	-6700	57258	30.0	6.0	14.0
	-6710.5	34495	-6725	57230	31.0	8.0	11.0
	-6735	34495	-6750	57223	25.0	5.0	5.0
	-6759.5	34495	-6775	57323	21.0	3.0	10.0
	-6784	34495	-6800	57217	21.0	-1.0	3.0
	-5808.5	34495	-6825	57253	21.0	0.0	-5.0
	-6833	34495	-6850	57270	25.0	6.0	6.0
	-6857.5	34495	-6875	57271	24.0	6.0	4.0
	-6882	34495	-6900	57247	25.0	6.0	3.0
	-6906.5	34495	-6925	57242	15.0	4.0	-3.0
	-6931	34495	-6950		14.0	8.0	0.0
	-6955.5	34495	-6975	57181	7.0	4.0	3.0
	-6980	34495	-7000	57153	5.0	6.0	-1.0
	line 34600		•			*	
	-5925	34565	-5925	57456	10.0	0.0	5.0
	-5949.53	34565	-5950	57464	3.0	0.0	10.0
	-5374.07	34565	-5975	57371	-5.0	4.0	-3.0
	-5998.60	34565	-6000	57395	-1.0		
						0.0	-7.0
-	-6023.14	34565	-6025	57392	10.0	-2.0	0.0
	-6047.67	34565	-6050	57378	10.0	0.0	5.0
	-6072.20	34565	-6075	57369	11.0	-4.0	9.0
	-6096.74	34565	-6100	57382	10.0	-3.0	8.0
	-6121.27	34565	-6125	57390	9.0	-2.0	5.0
	-6145.81	34565	-6150	57349	9.0	-1.0	3.0
	-6170.34	34565	-6175	57332	10.0	3.0	4.0
	-6194.88	34565	-6200	57326	14.0	0.0	5.0
	-6219, 41	34565	-6225	57306	20.0	-1.0	13.0
	-6243.95	34565	-6250	57275	20.0	-1.0	10.0
	-6268.48	34565	-6275	57255	19.0	-5.0	13.0
	-6293.02	34565	-6300	57231	20.0	4.0	10.0
	-6317.55	34565	-6325	57306	20.0	0.0	10.0
	-6342.09	34565	-6350	57765	24.0	4.0	20.0
	-6366.62	34565	-6375	57471	25.0	4.0	20.0
	-6391.16	34565	-6400	57119	23.0	3.0	8.0
	-5415.69	34565	-6425	57136	23.0	2.0	10.0
		34565		58298	23.0	4.0	4.0
س	-6440.23		-6450 -6475				
	-5464.76	34565 34565	-6475	58206	20.0	9.0	0.0
	-6489.30	34565	-6500	57517	20.0	4.0	4.0
	-6513.83	34565	-6525	57254	23.0	4.0	-5.0
-	-6538.37	34565	-6550	57392	20.0	1.0	0.0
	-6562.90	34565	-6575	57289	17.0	-1.0	0.0
	-6587.44	34565	-6600	57265	25.0	4.0	0.0
	-6611.97	34565	-6625	57278	25.0	2.0	3.0
	-6636.51	34565	-6650	57300	23.0	4.0	3.0
	-6661.04	34565	-6675	57318	26.0	4.0	5.0
	-6685.58	34565	-6700	57279	27.0	4.0	0.0
	-6710.11	34565	-6725	57259	25.0	2.0	10.0
	-6734.65	34565	-6750	57237	24.0	5.0	5.0

.

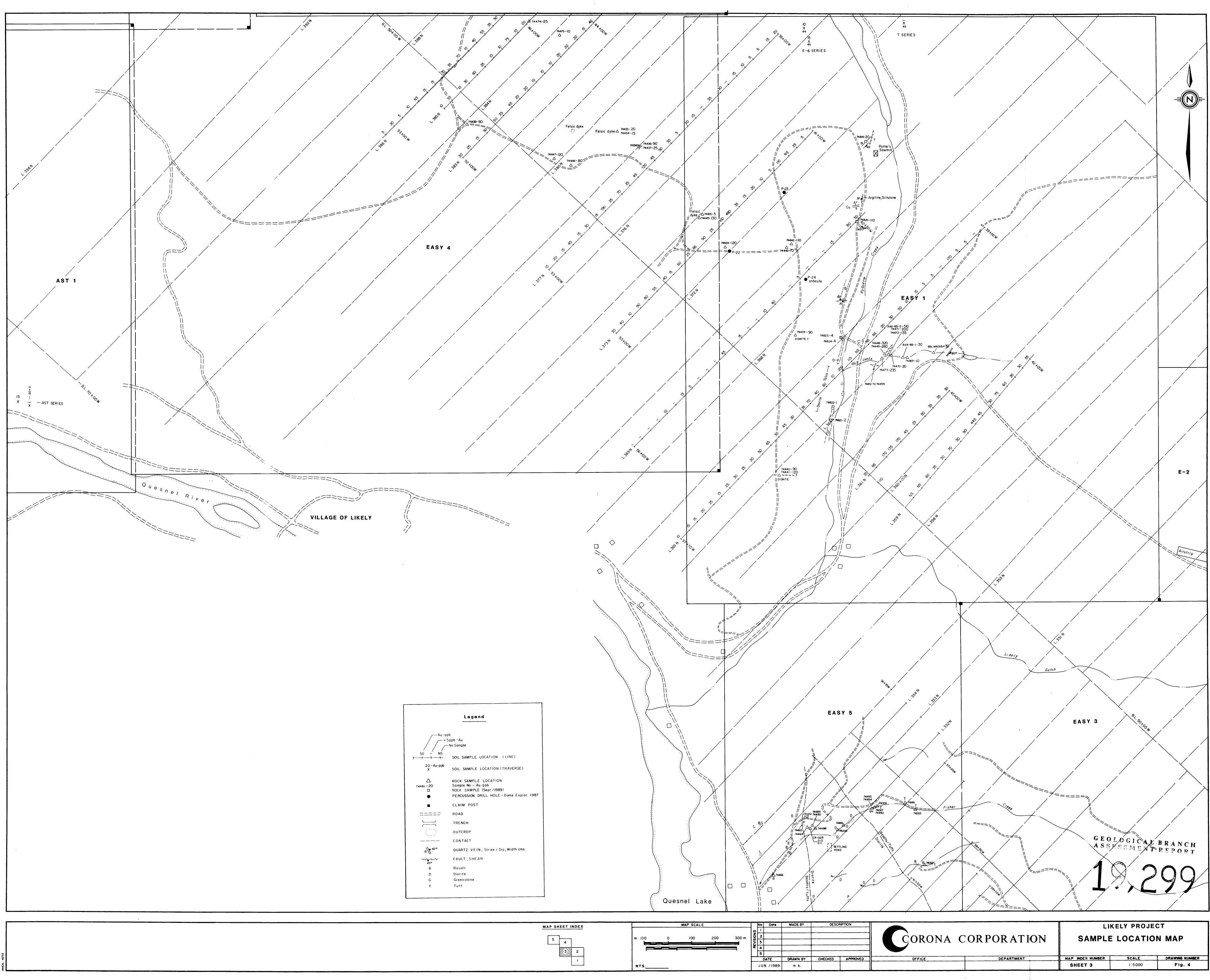
M	-5759.18	34565	-6775	57231	22.0	8.0	13.0
	-6783.72	34565	-6800	57215	25.0	4.0	12.0
	-6808,25	34565	-6825	57223	25.0	6.0	12.0
	-6832.79	34565	-6850	57312	21.0	4.0	10.0
	-6857.32	34565	-6875	57265	22.0	7.0	5.0
	-6381.86	34565	-6900	57245	20.0	8.0	12.0
	-5906.39	34565	-6925	57225	20.0	8.0	4.0
	-6930.93	34565	-6950	57210	18.0	10.0	5.0
	-6955.46	34565	-6975	57177	11.0	9.0	-2.0
	-6980	34565	-7000	57167	5.0	10.0	0.0
-	line 34700						
_	-5925	34645	-5925	57411	-1.0	1.0	2.0
	-5950	34645	-5950	57418	-5.0	2.0	1.0
يغاد	-5975	34645	-5975	57412	1.0	0.0	7.0
	-6000	34645	-6000	57412	-1.0	-2.0	17.0
	-6025	34645	-6025	57388	4.0	-6.0	11.0
	-6050	34645	-6050	57373	11.0	-8.0	10.0
	-6075	34645	-6075	57392	4.0	-8.0	9.0
	-6100	34645	-6100	57395	6.0	-6.0	10.0
	-6125	34645	-6125	57361	2.0	-8.0	5.0
-	-6150	34645	-6150	57369	3.0	-8.0	7.0
	-6175	34645	-6175	57360	10.0	-8.0	10.0
	-6200	34645	-6200	57355	18.0	-8.0	13.0
	-6225	34645	-6225	57333	24.0	-6.0	20.0
	-6250	34645	-6250	57327	26.0	-2.0	14.0
	-6275	34645	-6275	57335	25.0	-2.0	10.0
	-6300	34645	-6300	57315	25.0	0.0	5.0
	-6325	34645	-6325	57377	20.0	-2.0	1.0
_	-6350	34645	-6350	57357	23.0	0.0	5.0
	-6375	34645	-6375	57292	25.0	4.0	3.0
	-6400	34645	-6400	57654	25.0	4.0	6.0
	-6425	34645	-6425	57403	20.0	6.0	5.0
	-6450	34645	-6450	57557	22.0	6.0	-5.0
	-6475	34645	-6475	57762	19.0	0.0	-1.0
-	-6500	34645	-6500	57480	17.0	4.0	0.0
	-6525	34645	-6525	57491	18.0	4.0 8.0	-10.0
	-6550	34645	-6550	57428	20.0	2.0	-2.0
	-6575	34645	-6575	57419	20.0	5.0	-3.0
	-6600	34645	-6600	57366	18.0	8.0	0.0
	-6625	34645	-6625	57310	20.0	6.0	6.0
	-6650	34645	-6650	57291	20.0	8.0	6.0
	-6675	34645	-6675	57263	23.0	8.0	12.0
	-6700	34645	-6700	57250	25.0	6.0	5.0
	-6725	34645	-6725	57216	28.0	13.0	5.0
-	-6750	34645	-6750	57180	26.0	14.0	-5.0
	-6775	34645	-6775	57133	23.0	10.0	0.0
	-6800	34645	-6800	57157	17.0	10.0	-5.0
	-6825	34645	-6825	57170	14.0	8.0	2.0
	line 34800		0000	01110		010	2.0
	-5865	34750	-5850	57397	4.0	1.0	8.0
	-5890	34750	-5875	57403	0.0	0.0	-10.0
	-5915	34750	-5900	57397	2.0	1.0	-10.0
	-5940	34750	-5925	57408	2.0 3.0	1.0	-3.0
	-3940 -5965	34730 34750	-5950	5740a 57403	3.0 8.0	-2.0	-3.0 5.0
-			-5975				
	-5990	34750 24750		57409 57414	11.0	-6.0	0.0
	-6015	34750	-6000	57414	11.0	-6.0	0.0

.	-6040	34750	-6025	57413	11.0	-6.0	10.0
	-5065	34750	-6050	57395	15.0	-6.0	6.0
	-6090	34750	-6075	57393	15.0	-4.0	-2.0
-	-6115	34750	-6100	57384	13.0	-2.0	0.0
	-6140	34750	-6125	57363	13.0	-4.0	3.0
	-6165	34750	-6150	57346	16.0	-5.0	3.0
	-6190	34750	-6175	57328	22.0	-4.0	5.0
	-6215	34750	-6200	57339	25.0	1.0	5.0
	-5240	34750	-6225	57417	31.0	0.0	7.0
	-6265	34750	-6250	57431	30.0	4.0	18.0
-	-6290	34750	-5275	57531	25.0	6.0	14.0
	-6315	34750	-5300	57514	20.0	3.0	8.0
	-6340	34750	-6325	57661	25.0	4.0	10.0
	~6365	34750	-6350	57900	23.0	4.0	5.0
11	-6390	34750	-6375	57861	21.0	4.0	0.0
	-6415	34750	-6400	57484	17.0		
	-6440	34750 34750	-6400 -6425			0.0	8.0 E.C
	-6445			57267 57267	15.0	4.0	5.0
		34750	-6450	57200	15.0	3.0	2.0
	-6490	34750	-6475	57285	15.0	4.0	13.0
	-6515	34750	-6500	57293	15.0	5.0	10.0
	-6540	34750	-6525	57284	20.0	5.0	5.0
	-6565	34750	-6550	57327	20.0	7.0	0.0
	-6590	34750	-6575	57344	22.0	8.0	0.0
-	-6615	34750	-6600	57479	22.0	8.0	3.0
	-5640	34750	-6625	57414	22.0	9.0	-3.0
	-6665	34750	-6650	57320	18.0	8.0	5.0
	-6690	34750	-6675	57276	14.0	11.0	5.0
	-6715	34750	-6700	57232	8.0	14.0	10.0
	-5740	34750	-6725	57156	0.0	12.0	4.0
	-6765	34750	-6750	57114			
	-6790	34750	-6775	57089			
	line 34900						
	-5775	34850	-5775 -	57385			
	~5800	34850	-5800	57407	8.0	-2.0	-25.0
	-5825	34850	-5825	57405	10.0	-4.0	-5.0
	-5850	34850	5850	57409	6.0	-5.0	0.0
	-5875	34850	-5875	57402	4.0	-2.0	0.0
	-5900	34850	-5900	57396	5.0	-1.0	3.0
_	-5925	34850	-5925	57398	9.0	-2.0	0.0
	-5950	34850	-5950	57397	10.0	-7.0	5.0
	-5975	34850	-5975	57401	9.0	-4.0	5.0
	-6000	34850	-6000	57412	15.0	-7.0	10.0
	-6050	34850	~6050	57415	21.0	-9.0	12.0
	-6075	34850	-6075	57401	17.0	-9.0	20.0
	-6100	34850	-6100	57363	20.0	-5.0	17.0
	-6125	34850	-6125	57380	20.0	-10.0	0.0
	-6150	34850	-6150	57375	27.0	-2.0	10.0
	-6150	34850	-6150	51515	27.0	LIV	10.0
	-6150	34830		57378	30.0	2.0	13.0
			-6150				
	-6175	34830	-6175	57323	39.0	2.0	7.0
	-6200	34830	-6200	57261	27.0	2.0	0.0
	-6225	34830	-6225	57244	25.0	-2.0	2.0
	-6250	34830	-6250	57242	24.0	-4.0	5.0
	-6275	34830	-6275	57278	24.0	8.0	16.0
	-6300	34830	-6300	57227	22.0	6.0	16.0
	-6325	34830	-6325	57334	20.0	3.0	8.0

-6350	34830	-6350	57505	18.0	0.0	8.0
-6375	34830	-6375	57564	17.0	4.0	10.0
-6400	34930	-5400	57906	15.0	6.0	4.0
-6425	34830	-6425	57974	15.0	3.0	5.0
-5450	34830	-5450	57643	15.0	2.0	-6,0
-6475	34830	-5475	57468	16.0	5,0	-3.0
-6500	34830	-6500	57187	15.0	4.0	0.0
-6525	34830	-6525	57192	20.0	5.0	6.0
-6550	34830	-6550	57190	20.0	7.0	2.0
-6575	34830	-6575	57185	19.0	9.0	2.0
-6600	34830	-5500	57184	15.0	3.0	0.0
-6625	34830	-6625	57243	13.0	5.0	9.0
-6650	34830	-5650	57382	5.0	4.0	14.0
-5675	34830	-6575	57399	0.0	3.0	2.0
-5700	34830	-5700	57456	V.V	0.0	L. U
line 35000	04000	0000	07400			
-5700	34950	-5700	57410	6.0	2.0	2.0
-5725	34950 34950	-5725	57405	5.0	2.0	0.0
-5750	34950	-5750	57412	2.0	0.0	3.0
-5775	34950	-5775	57410	5.0	-2.0	3.0
-5800	34950	-5800	57408	6.0	-4.0	6.0
-5825	34950	-5825	57408	7.0	-7.0	4.0
-5850	34950	-5850	57408	10.0	-6.0	5.0
-5875	34950	-5875	57393	15.0	-6.0	5.0
-5900	34950	-5900	57380	15.0	-7.0	-25.0
-5925	34950	-5925	57397	16.0	-4.0	-15.0
-5950	34950	-5950	57398	16.0	-1.0	-13.0
-5975	34950	-5975	57426	22.0	-5.0	-3.0
-6000	34950	-6000	57427	22.0	-7.0	2.0
-6025	34950	-6025	57418	22.0	-7.0	-5.0
-6050	34950	-6050	57394	21.0	-7.0	0.0
-6075	3 49 50	-6075	57385	20.0	-3.0	7.0
-6100	349 50	-6100	57375	20.0	0.0	5.0
-6125	34950	-6125	57355	24.0	2.0	3.0
-6150	34950	-6150	57339	27.0	6.0	12.0
-6175	34950	-6175	57301	29.0	9.0	10.0
-6200	34950	-6200	57289	25.0	6.0	-2.0
-6225	34950	-6225	57283	21.0	0.0	6.0
-6250	34950	-6250	57281	15.0	4.0	5.0
-6275	34950	-6275	57264	13.0	-1.0	9.0
-6300	34950	-6300	57216	10.0	0.0	5.0
-6325	34950	-6325	57166	15.0	2.0	3.0
-6350	34950	-5350	57270	15.0	3.0	14.0
-6375		-6375		15.0	4.0	8.0
	34950 24050		57443			
-6400	34950	-6400	57188	15.0	5.0	15.0
-6425	34950	-6425	57325	15.0	6.0	12.0
-6450	34950	-6450	57404	12.0	2.0	5.0
-6475	34950	-6475	57269	15.0	6.0	3.0
-6500	34950	-5500	57267	12.0	6.0	6.0
-6525	34950	-6525	57231	12.0	4.0	5.0
-6550	34950	-6550	57170	14.0	11.0	12.0
-6575	3495 0	-6575	57171	13.0	10.0	12.0
-6600	34950	-6600	57172	8.0	8.0	7.0
line 35100						
-5700	35065	-5700	57399	4.0	0.0	-2.0
-5725	35065	-5725	57403	7.0	-3.0	5.0

.

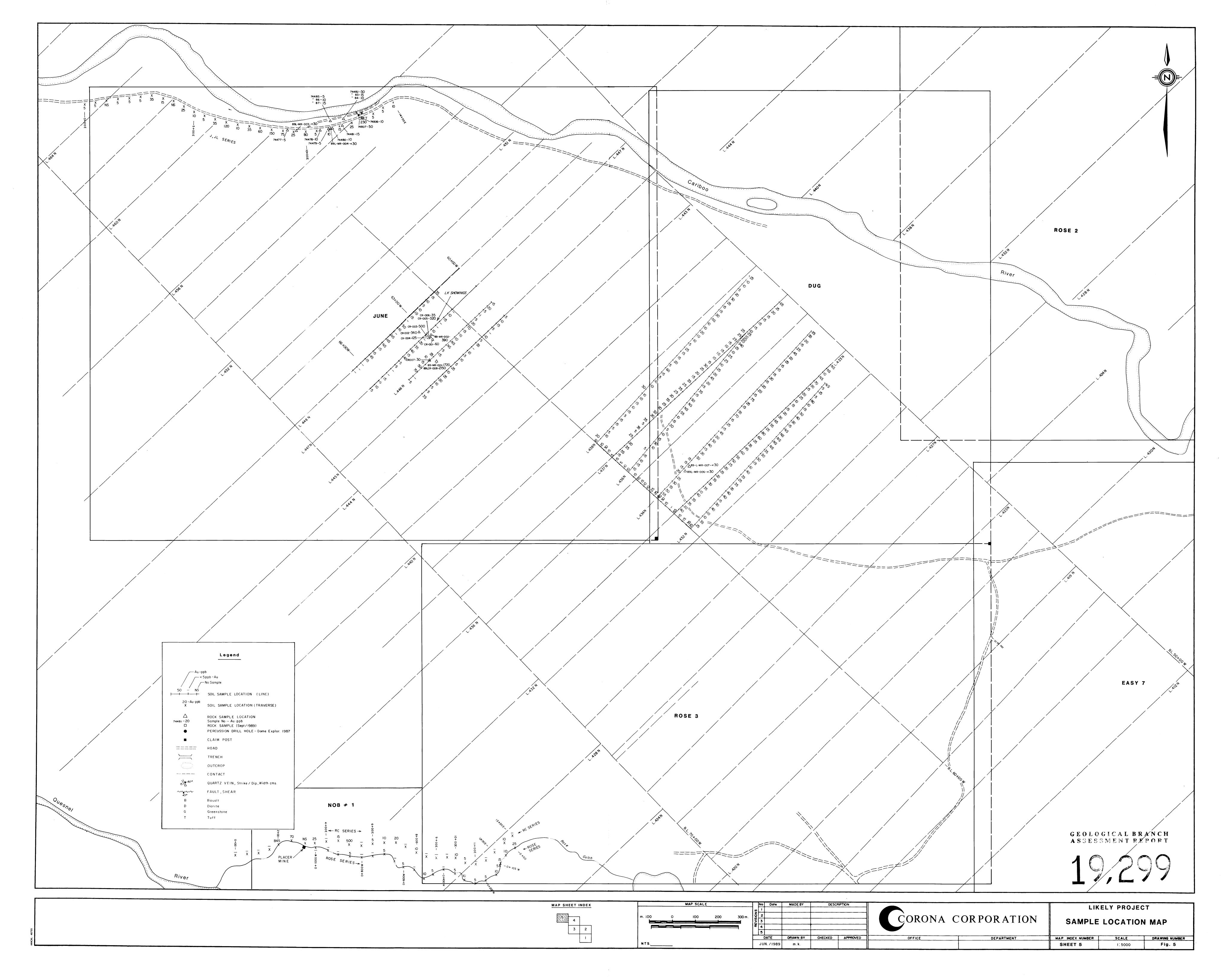
.

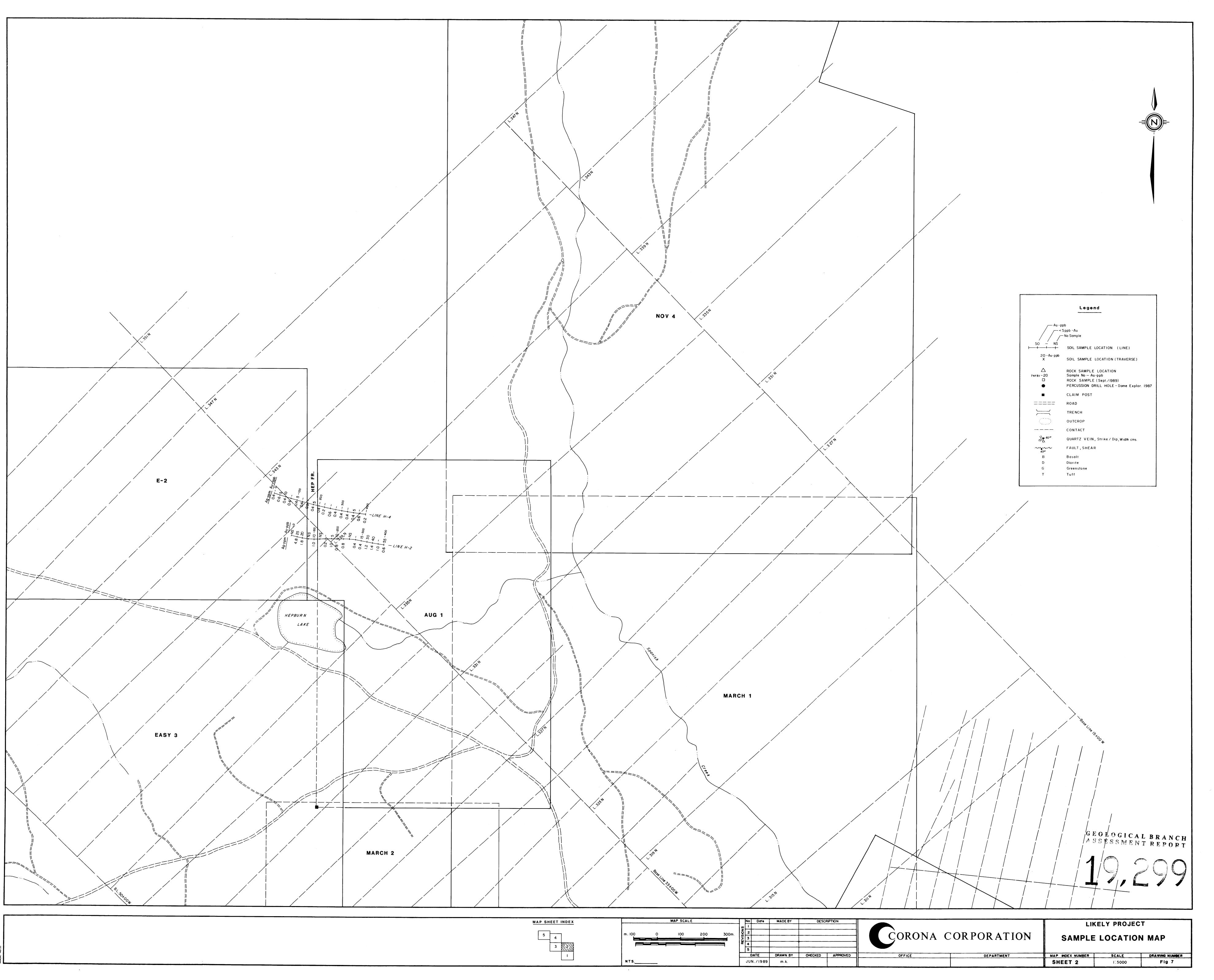

-

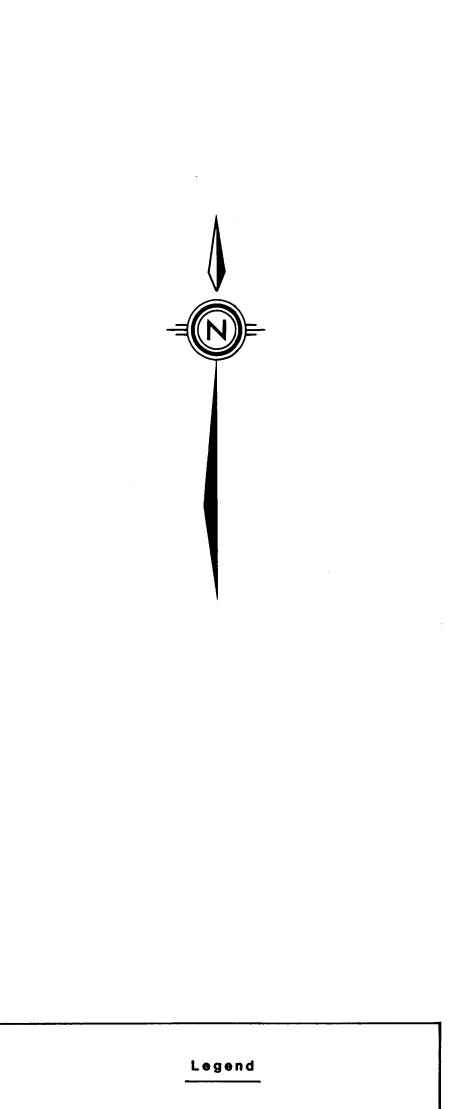
	-5750	35065	-5750	57403	13.0	-7.0	3.0
	-5775	35065	-5775	57408	15.0	-6.0	0.0
	-5800	35065	-5800	57406	14.0	-2.0	3.0
-	-5825	35065	-5825	57390	20.0	2.0	6.0
_	-5850	35065	-5850	57391	15.0	0.0	-5.0
	-5875	35065	-5875	57389	15.0	2.0	3.0
	-5900	35065	-5900	57401	11.0	1.0	5.0
-	-5923.82	35065	-5925	57389	7.0	-1.0	-1.0
	-5947.77	35065	-5950	57365	20.0	-2.0	3.0
	-5971.66	35065	-5375	57392	24.0	-2.0	6.0
	-5395.55	35065	-6000	57384	16,0	-2.0	3.0
	-6019.44	35065	-6025	57360	19.0	-2.0	1.0
	-6043.33	35065	-6050		17.0	-1.0	2.0
	-6067.22	35065	-8075	57358	21.0	-1.0	5.0
	-5091.11	35065	-6100	57342	25.0	0.0	9.0
	-6115	35065	-6125	57308	20.0	8.0	15.0
	-6138.88	35065	-6150	57296	25.0	5.0	11.0
	-6162.77	35065	-6175	57286	20.0	4.0	9.0
	-6186.66	35065	-6200	57297	25.0	6.0	13.0
	-6210.55	35065	-6225	57325	18.0	5.0	13.0 8.0
_	-6234.44	35065	-6250	57312	15.0	5.0	9.0
	-6258.33	35065	-6275	57277	15.0	4.0	0.0
	-5282.22	35065	-6300	57247	15,0	3.0	5.0
	-6306.11	35065	-6325	57263	13.0	5.0	5.0
-	-6330	35065	-6350	57235	17.0	4.0	10.0
	-6353.88	35065	-6375	57113	18.0	4.0 3.0	10.0
	-6377.77	35065	-6400	57210	15.0	5.0	15.0
	-6401.66	35065	-6425	57196	12.0	3.0	10.0
-	-6425.55	35065	-5450	57198	15.0	8.0	5.0
	-6449.44	35065	-6475	57184	7.0	5.0	10.0
	-6473.33	35065	-6500	57183	6.0	8.0	12.0
	-6497.22	35065	-6525	57169	5.0	6.0	5.0
	-6521.11	35065 35065	-6323 -6550	57174	5.0	8.0	13.0
	-6545	35065	-6575	57164	2.0	8.0	10.0
_	-6568.88 -6592.77	35065	-6600	57158 57161	-5.0 2.0	4.0 5.0	10.0 3.0
		35065	-6625 -6650				
	-6616.66	35065		57148	3.0	3.0	0.0
	-6640.55	35065	-6675	57199 57125	5.0	4.0 8.0	5.0 7.0
	~6664.44	35065	-6700		5.0		
	-6688.33	35065	-6725		10.0	4.0	-5.0
	-6712.22	35065	-6750		4.0	6.0	0.0
	-6736.11	35065	-6775		-9.0	6.0	-3.0
	-6760	35065	- 58 00	57072	-30.0	2.0	-10.0
_	line 35200		FLOF	ETINE	10.0	a	τ Δ
_	~5625	35170	-5625	57405	10.0	-8.0	1.0
	~5650	35170	-5650	57406	8.0	-7.0	0.0
	-5675	35170	-5675	57407	8.0	-8.0	5.0
	-5700	35170	-5700	57408	14.0	-4.0	12.0
	-5725	35170	-5725	57388	15.0	-6.0	0.0
	-5750	35170	-5750		13.0	-4.0	0.0
	-5775	35170	-5775	57403	11.0	0.0	2.0
	-5800	35170	-5800	57402	10.0	4.0	5.0
	~5825	35170	-5825	57394	11.0	3.0	6.0
	-5850	35170	-5850	57397	11.0	2.0	3.0
	-5875	35170	-5875	57373	11.0	3.0	10.0
	-5900	35170	-5900	57394	10.0	1.0	10.0

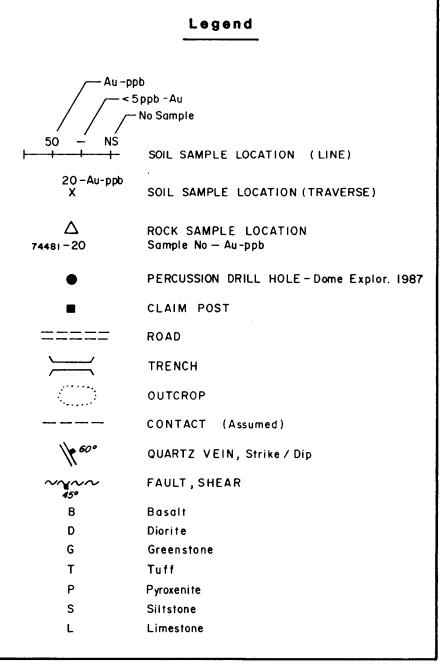
	-5925	35170	-5925	57429	4.0	-5.0	5.0
	-5950	35170	-5950	57394	12.0	-4.0	2.0
	-5975	35170	-5975	57371	13.0	-5.0	12.0
	-6000	35170	-6000	57405	10.0	-5.0	12.0
	-6025	35170	-6025	57360	14.0	0.0	19.0
	-6050	35170	-6050	57318	16.0	0.0	19.0
	-6075	35170	-6075	57306	15.0	-1.0	10.0
	-6100	35170	-6100	57301	13.0	-1.0	5.0
	-6125	35170	-6125	57295	9.0	0.0	0,0
	-6150	35170	-6150	57308	15.0	1.0	3.0
	-6175	35170	-6175	57314	19.0	7.0	15.0
	-6200	35170	-6200	57285	17.0	0.0	17.0
	-6225	35170	-6225	57281	12.0	5.0	10.0
	-6250	35170	-6250	57276	10.0	8.0	17.0
i	-6275	35170	-6275	57256	7.0	2.0	12.0
	-6300	35170	-6300	57323	8.0	1.0	3.0
	-6325	35170 35170	-5325	57313	15.0	4.0	7.0
-	-6350	35170	-6350	57258	15.0	4.0	7.0 5.0
-	-6375	35170 35170	-6375	57230	12.0		
					12.0	4.0	3.0
	-6400	35170	-6400	57209		7.0	5.0
#	-6425	35170	-6425	57209	15.0	9.0	5.0
	-6450	35170	-6450	57219	17.0	11.0	4.0
	~6475	35170	-6475	57212	10.0	10.0	2.0
-	-6500	35170	-6500	57202	10.0	5.0	-3.0
-	-6525	35170	-6525	57193	5.0	4.0	15.0
	-6550	35170	-6550	57198	3.0	-1.0	7.0
	-6575	35170	-6575	57169	6.0	1.0	4.0
	-6600	35170	-6600	57173	-10.0		
	line 35300						
	-5625	35275	-5625	57406	4.0	-3.0	-2.0
-	-5650	35275	-5650	57413	10.0	-5.0	6.0
—	-5675	35275	-5675	57427	6.0	13.0	13.0
	-5700	35275	-5700	57426	10.0	-2.0	7.0
	-5725	35275	-5725	57416	7.0	0.0	5.0
	-5750	35275	-5750	57403	4.0	2.0	0.0
	-5775	35275	-5775	57395	6.0	0.0	2.0
	-5800	35275	-5800	57392	9.0	0.0	2.0
-	-5825	35275	-5825	57390	7.0	-2.0	5.0
	-5850	35275	-5850	57391	8.0	-4.0	7.0
	-5875	35275	-5875	57393	25.0	1.0	10.0
	-5900	35275	-5900	57369	25.0	0.0	4.0
-	-5923.83	35275	-5925	57381	20.0	-2.0	6.0
	-5947.66	35275	-5950	57365	15.0	-4.0	0.0
	-5971.5	35275	-5975	57351	12.0	-2.0	5.0
	-5995.33	35275	-6000	57347	15.0	0.0	10.0
	-6019.16	35275	-6025	57353	15.0	2.0	5.0
	-6043	35275	-6050	57317	15.0	2.0	3.0
	-6066.83	35275	-6075	57318	9.0	1.0	-5.0
	-6090.66	35275	-6100	57295	9.0	2.0	8.0
	-6114.5	35275	-6125	57296	12.0	4.0	10.0
	-6138.33	35275	-6150	57314	11.0	4.0	12.0
1	-6162.16	35275	-6175	57305	10.0	2.0	10.0
	-6186	35275	-6200	57297	10.0	3.0	11.0
			-6225	57338	9.0	5.0 6.0	10.0
	-6209.83	35275 25275					
	-6233.66	35275	-6250	57268	13.0	4.0	6.0
	-6257.5	35275	-6275	57291	18.0	8.0	10.0

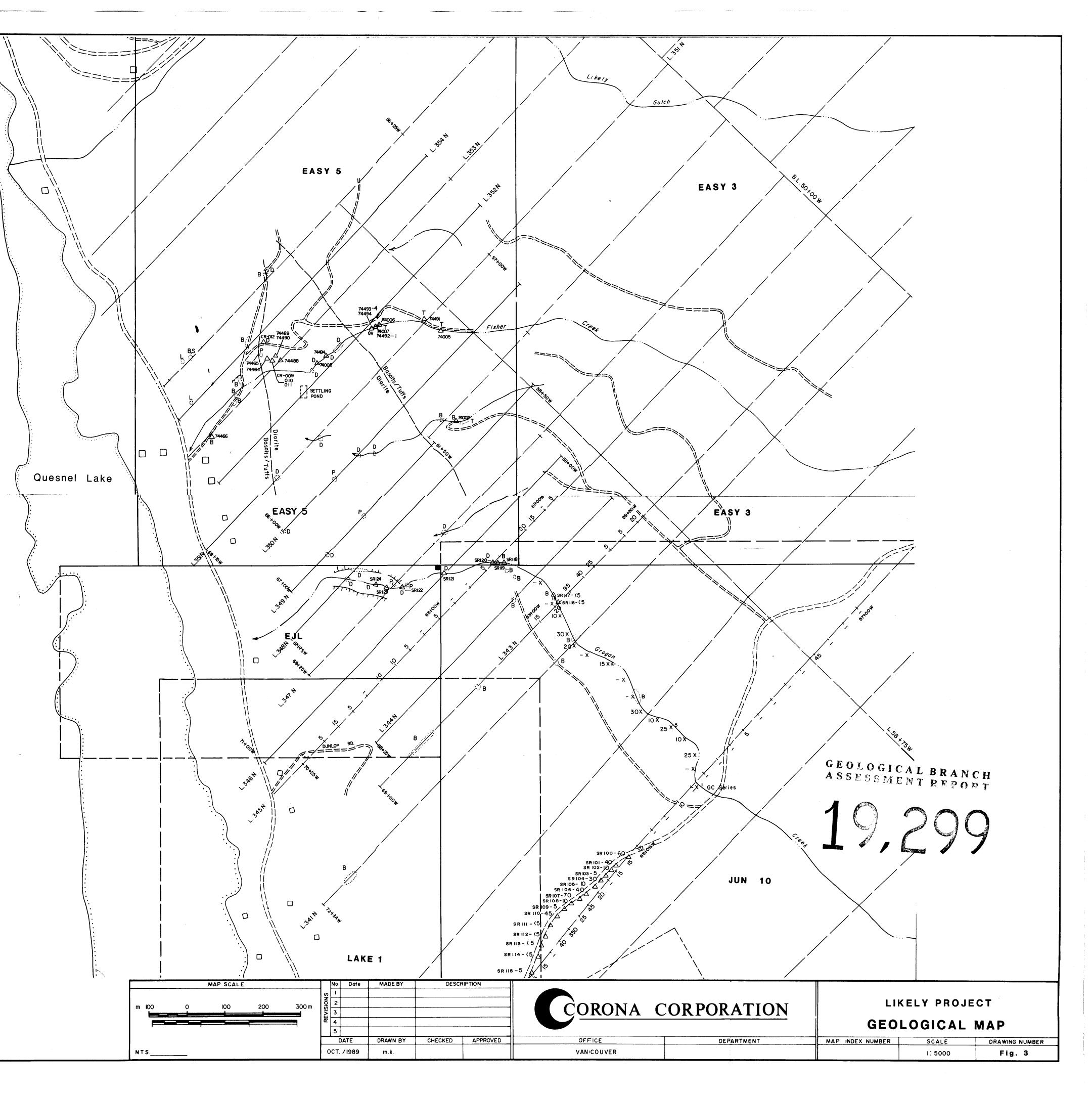
-	-6261.33	35275	-6300	57278	22.0	9.0	17.0
	-6305.16	35275	-6325	57348	20.0	10.0	17.0
	-6323	35275	-6350	57478	17.0	14.0	5.0
	-6352,63	35275	-6375	57431	9.0	12.0	15.0
-	-6275.66	35275	-5400	57200	0.0	6.0	5,0
	-8400.8	35275					
			-9485 	37175	-5,0	2.0	10.0
	-£424,33	35275	-8450	57190	<u>.</u> 0	4.0	15.0
÷	-6448,19	35275	-6475	57199	5.0	4.0	11.0
	-6472	35275	-6500	57202	10.0	1.0	11.0
	-8495.83	35875	-6565	57198	13,0	0.0	7.0
	-6519,66	35275	-5550	57271	11.0	-3.0	5.0
	-5543,5	35275	-6575	57151	17.0	0.0	0.0
	-6267.22	25275	-6600	57127	19.0	2.0	-5.0
	-6591.16	75275	-6625	57:15	:2.0	1.0	-30,0
	-6515	35273	-8650	57816			200
	317e 35400			211.12			
	-5685	35350	-5625	57398	5.0	-4.0	-7.0
	-5850	35360	-5650	57408	7.0		
	-5675	35350				-3.0	-5.0
			-5675	57410	10.0	-2.0	5.0
	-5700	35360	-5700	57407	11.0	-2.0	7.0
	-5725	35360	-5725	57404	10.0	0.0	7.0
	-5750	35360	-5750	57400	12.0	-2.0	5.0
	-5775	35360	-5775	57391	15.0	0.0	2.0
	~5600	35360	-5800	57408	13.0	-2.0	2.0
	-5825	35360	-5825	57402	13.0	0.0	-3.0
	-5850	35360	-5850	57407	15.0	0.0	5.0
	-5975	35360	-5875	57375	16.0	0.0	-2.0
	-5900	35360	-5900	57369	9.0	-2.0	3.0
	-5924.07	35360	-5925	57361	7.0	-2.0	5.0
	-5948.14	35360	-5950	57356	10.0	2.0	10.0
	-5372.22	35360	-5975	57342	10.0	-1.0	8.0
	-5956.29	35360	-6000	57344	8.0	2.0	8.0
	-6020,37	35360	-6025	57345	11.0	3.0	7.0
	-6044.44	35360	-6050	57332	11.0	0.0	5.0
	-6068.51	35360	-6075	57331	12.0	2.0	14.0
	-60 92. 53	35360	-6100	57310	16.0	3.0	8.0
	-6116.65	35360	-6125	57302	9.0	-2.0	5.0
_	-6140.74	35360	-6150	57339	14.0	-2.0	-3.0
—	-6164.81	35360	-6175	57316	14.0	5.0	-2.0
	-5188.83	35360	-6200	57318	12.0	6.0	2.0
	-6212, 96	35360	-6225	57351	11.0	4.0	2.0
	-6237.03	35360	-6250	57388	3.0	4.0	10.0
	-6261.11	35360	-6275	57250	:1.0	-1.0	10.0
	-5285.18	35360	-6300	57243	15.0	1.0	4.0
	-6309.25	35360	-6325	57234	35.0	1.0	8.0
	-6333.33	35360	-6350	57241	36.0	-3.0	8.0
	-6357.40	35360	-6375	57222	25.0	-3.0	7.0
	-6381.48	35360	-6400	57218	20.0	-4.0	2.0
	-6405.55	35360	-6425	57197	20.0	-4.0	5.0
	-6423.63	35360	-6450	57191	29.0	0.0	10.0
	-6453.70	35360	-5475	57175	25.0	4.0	15.0
	-6477.77	35360	-6500	57162	18.0	1.0	10.0
	-6501.85	35360	-6525	57151	8.0	0.0	0.0
	-5525, 92	35360	-6550	57119	0.0	3.0	1.0
_					-23.0	4.0	-7.0
	-655) Ni DECAN	35360	-6575	57111	-co.V	4.V	-7.V
	line 35500)					

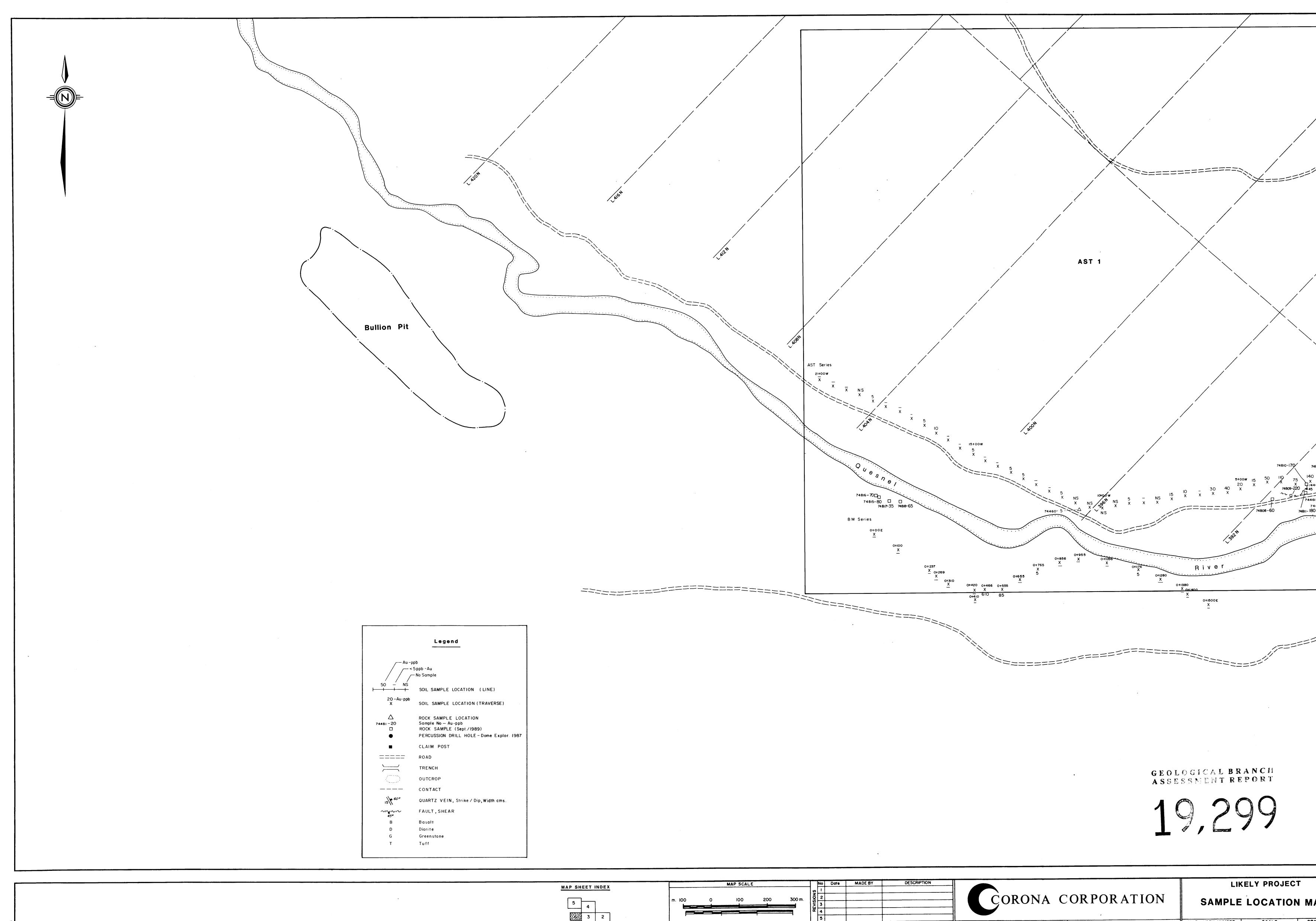

-	-5625	35445	-5625	57398	7.0	0.0	4.0
	-5649.72	35445	-5650	57396	7.0	1.0	8.0
	-5674.44	35445	-5675	57393	5.0	0.0	8.0
_	-5699.16	35445	-5700	57394	2.0	0.0	6.0
	-5723.69	35445	-5725	57391	9.0	-1.0	3.0
	-5748.61	35445	-5750	57394	9.0	-2.0	-1.0
	-5773.33	35445	-5775	57393	8.0	-4.0	-4.0
	-5798.05	35445	-5800	57386	9.0	-3.0	-3.0
	-5822.77	35445	-5825	57379			
	-5847.5	35445	-5850	57385			
-	-5872.22	35445	-5875	57351	0.0	1.0	3.0
-	-5896,94	35445	-5900	57360	3.0	-2.0	3.0
	-5921.65	35445	-5925	57356	7.0	1.0	3.0
	-5946.39	35445	-5950	57351	10.0	0.0	3.0
	-5971.11	35445	-5975	57351	11.0	2.0	5.0
	-5995,83	35445	-6000	57339	12.0	0.0	11.0
	-6020.55	35445	-5025	57331	10.0	0.0	7.0
	-6045.27	35445	-6050	57333	10.0	0.0	7.0
	-6070	35445	-6075	57343	11.0	0.0	10.0
	-6094.7 2	35445	-6100	57340	12.0	-2.0	17.0
-	-5119,44	35445	-6125	57365	15.0	0.0	5.0
	-6144.16	35445	-6150	57357	16.0	0.0	-5.0
	-6168.88	35445	-6175	57329	12.0	-3.0	-5.0
	-6193.61	35445	-6200	57313	15.0	-1.0	4.0
	-6218.33	35445	-6225	57281	20.0	2.0	5.0
	-5243.05	35445	-6250	57257	22.0	0.0	4.0
	-6267.77	35445	-6275	57249	18.0	0.0	5.0
	-6292.5	35445	-6300	57219	16.0	-2.0	5.0
	-6317.22	35445	-6325	57262	13.0	0.0	5.0
	-6341.94	35445	-6350	57202	14.0	-2.0	12.0
أأنخد	-6365.66	35445	-6375	57199	15.0	1.0	5.0
	-6391.38	35445	-6400	57188	19.0	8.0	15.0
	-6416.11	35445	-6425	57173	15.0	6.0	13.0
	-6440.83	35445	-6450	57162	19.0	6.0	17.0
	-6465.55	25445	-6475	57129	15.0	6.0	12.0
	-6490.27	35445	-6500	57096	10.0	8.0	5.0
	-6515	35445	-6525	57145	3.0	6.0	-20.0

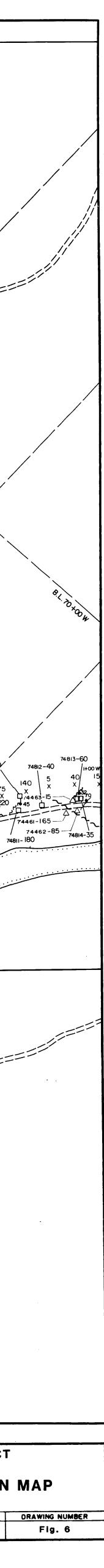


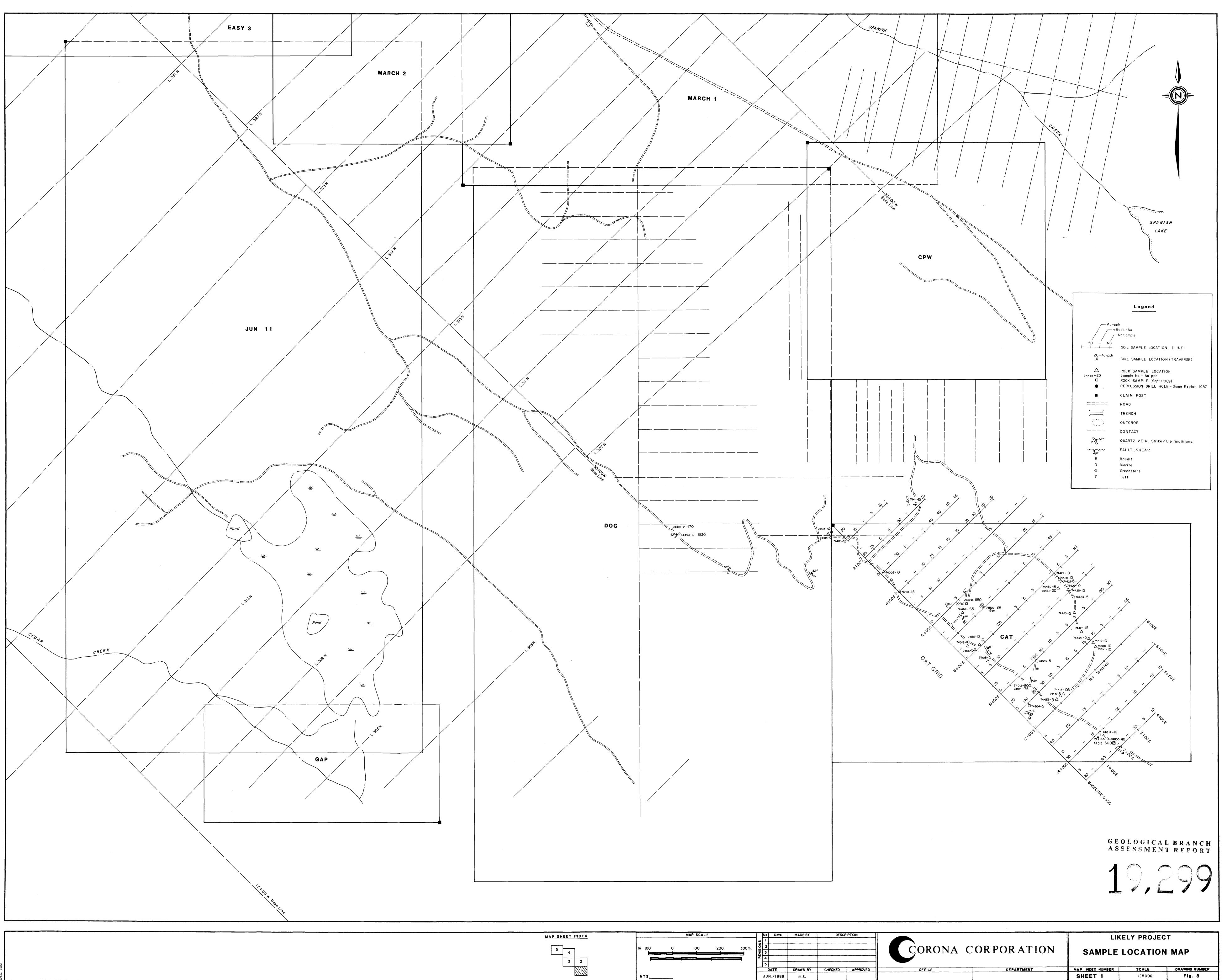

MAP	SH	EET	IN	DE
	5	4]	
		3/		2


		MAP SCALE	
n. 100	0	100	
NTS.			


•

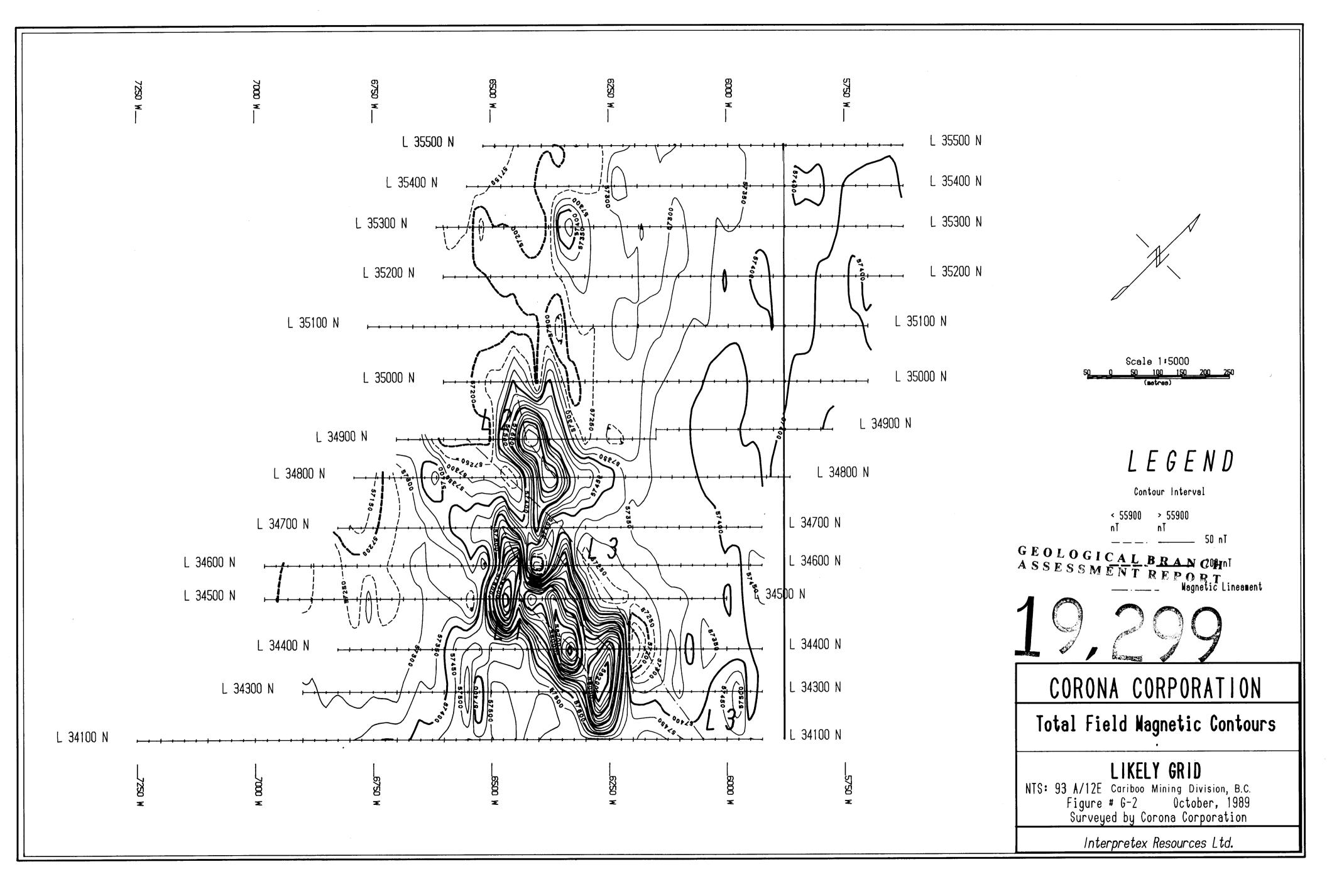


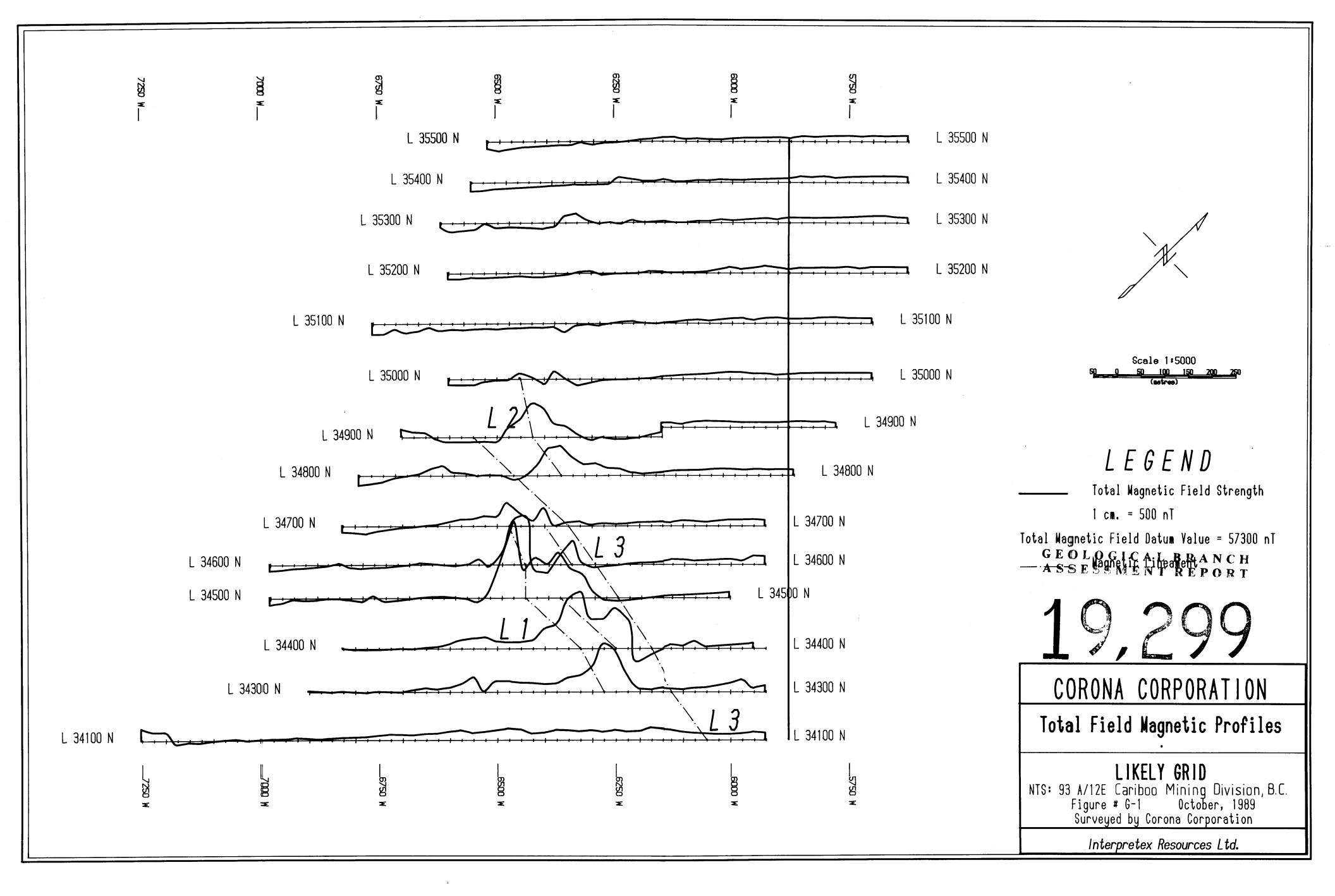

)
:F

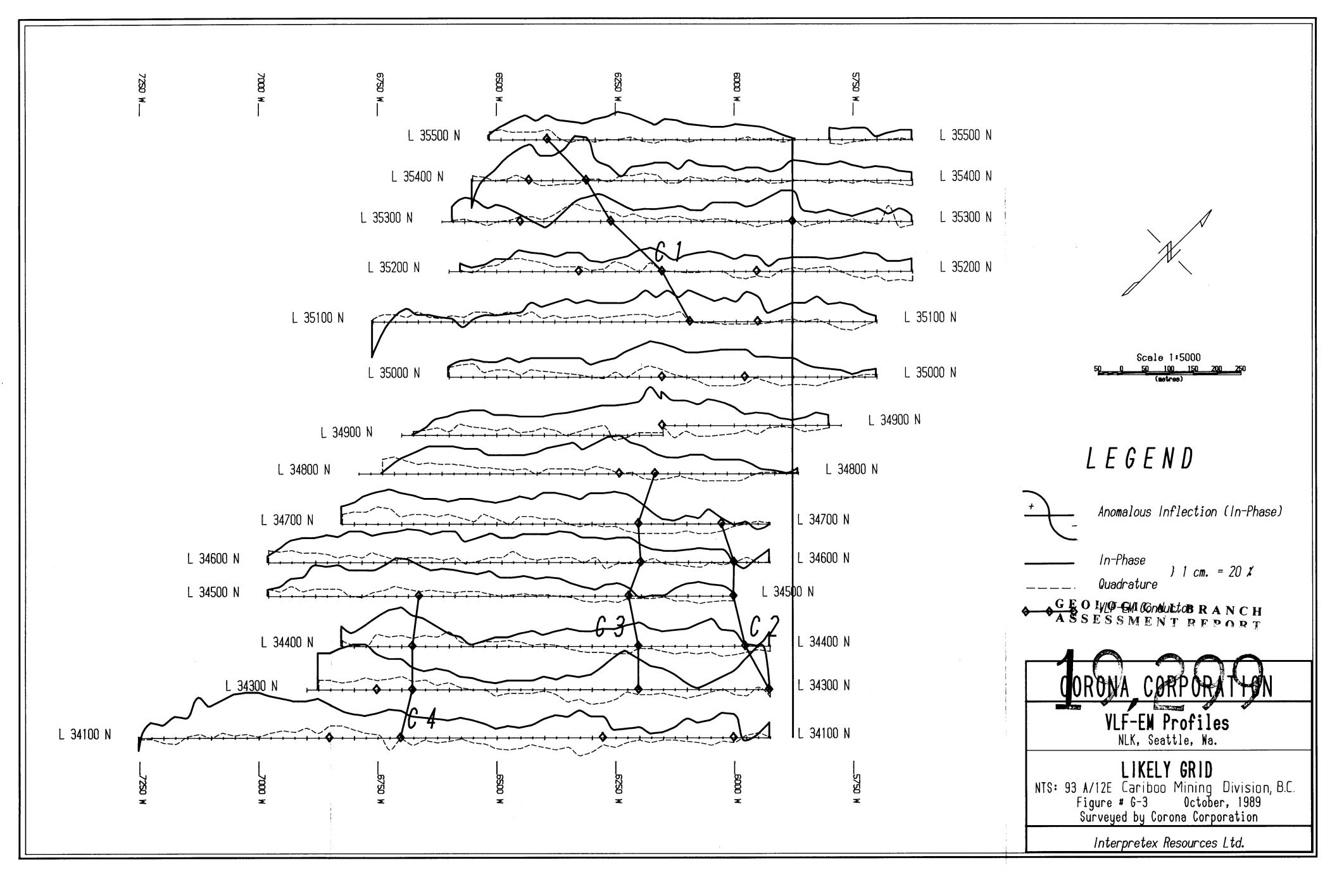

ROAD
TRENCH
OUTCROP
CONTACT
QUARTZ VEIN, Strike/Dip,Width cms.
FAULT, SHEAR
Basalt
Diorit e
Greenstone
Tuff

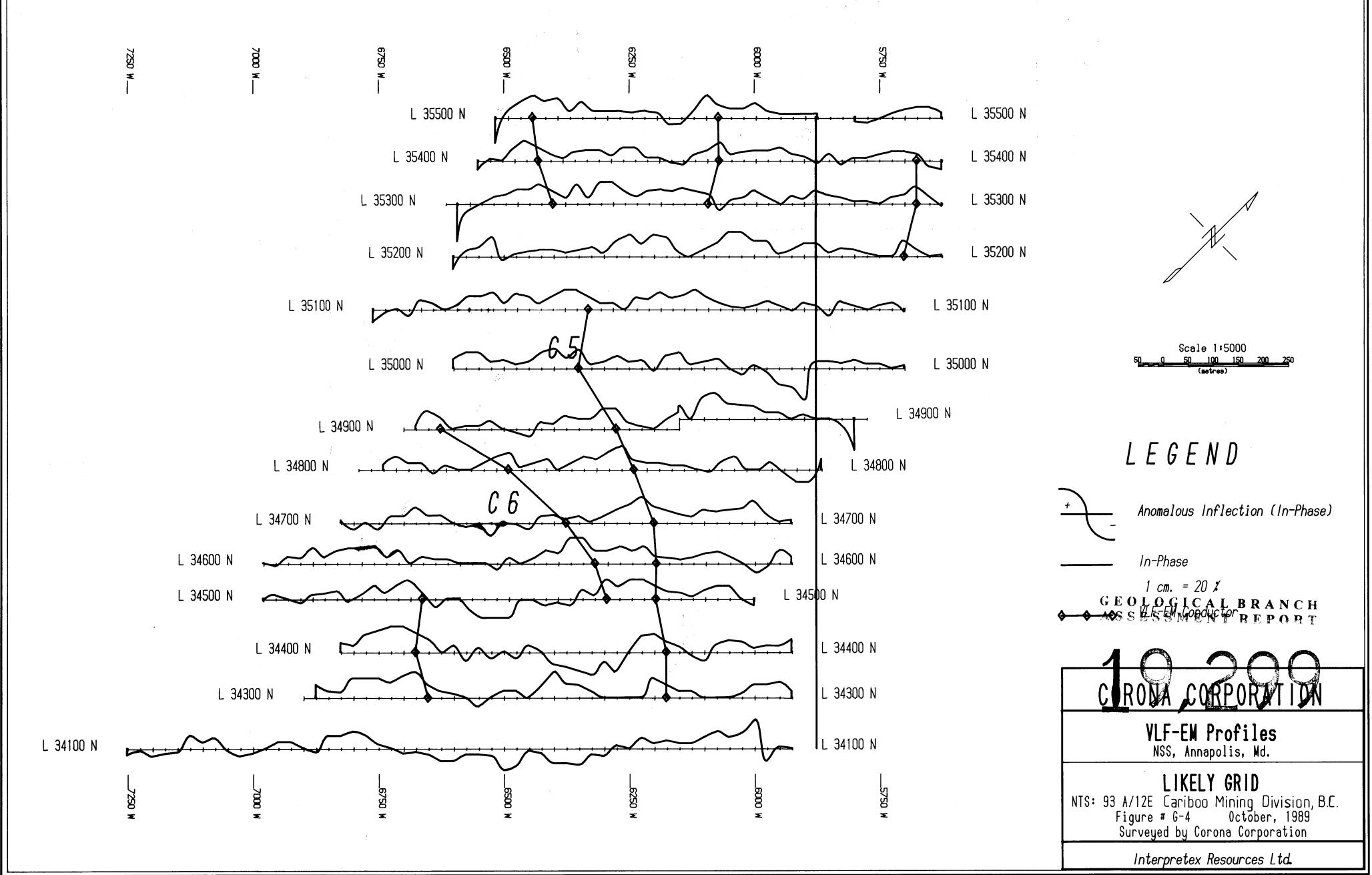
MAP SHEET INDEX	MAP SCALE						No	Date	M/
5 4	m. 100	0	100	200	300 m.	REVISIONS	2		
	NTS.							ATE . / 1989	DRA

			CORONA C	UKPUKATION	SAMPLE	LOCATION	1
WN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX NUMBER	SCALE	
n.k.					SHEET 6	1.5000	


LIKELY PROJECT






-

MAP SHEET INDEX	MAP SCALE	No Date	MADE BY	DESCR	IPTION			
5 4 3 2		S 2 2 S 2 S 3 3 4 5				CORONA	CORPORATION	SAI
		DATE	DRAWN BY	CHECKED	APPROVED	OFFICE	DEPARTMENT	MAP INDEX
	NTS	JUN./1989	m.k.					SHEET
				<u>المستعمر من معامل المعام ا</u>	L,, 4			

.