GEOLOGICAL BRANCH ASSESSMENT REPORT



GEOPHYSICAL REPORT ON THE GIANT NICKEL PROPERTY

N.T.S. 92-H/5 & 6 Latitude 49°2**%**'N Longitude 121°30'W

#### NEW WESTMINSTER MINING DIVISION

2

1

for

CORONA CORPORATION 1140 - 800 West Pender Street Vancouver, B.C. V6C 2V6

D. Johnson, B.Sc. E.R. Rockel, B.Sc., P.Geoph., P.Eng.

#### TABLE OF CONTENTS

.

| SUMMARY                                  | 1 |
|------------------------------------------|---|
| CONCLUSIONS                              | 1 |
| INTRODUCTION                             | 1 |
| - LOCATION AND ACCESS                    | 1 |
| - HISTORY                                | 1 |
| - POTENTIAL                              | 2 |
| - CLAIMS                                 | 2 |
| GEOLOGY                                  | 3 |
| GEOPHYSICS                               | 3 |
| STATEMENT OF QUALIFICATIONS - D. JOHNSON | 4 |

**#** 

1

**A** 

6

'

-- DRAWING NO.

#### **APPENDICES**

| LIST OF CLAIMS                            | APPENDIX | 1   |
|-------------------------------------------|----------|-----|
| GEOPHYSICAL REPORT - E.R. ROCKEL          | APPENDIX | 2   |
| STATEMENT OF QUALIFICATIONS - E.R. ROCKEL | APPENDIX | 2   |
| EQUIPMENT SPECIFICATIONS                  | APPENDIX | GP1 |
| STATEMENT OF EXPENDITURES                 | APPENDIX | 3   |
| LIST OF PERSONNEL                         | APPENDIX | 4   |

MAPS

| 1             | Location Map                   | After | Page  | 3  |
|---------------|--------------------------------|-------|-------|----|
| 2             | Claim Map                      | "     | **    |    |
| 3             | Property Map                   | **    | "     |    |
| 5             | Survey Coverage                | In    | Pocke | et |
| GP-1          | VLF-EM Profiles                |       | n     |    |
| GP-2          | Magnetic Contours              |       | 11    |    |
| GP-3          | Chargeabiity Contours          |       | 11    |    |
| GP-4          | Resistivity Contours           |       | 11    |    |
| G <b>P-</b> 5 | Geophysical Interpretation Map |       | 11    |    |
| PS-1          | to 6 IP Pseudosections         |       | 11    |    |

#### SUMMARY

Geophysical work, consisting of 44.8 miles (71.7 km) of magnetometer and VLF EM surveys and 10 miles (16km) of IP survey were conducted in 1988 on Corona Corporation's 'Giant Nickel" property near Hope B.C. This work was aimed at defining massive sulphide bodies similar to those which were mined from 1959 to 1974, yielding 4,620,257 tons grading 0.77% Ni and 0.34% Cu. Five zones of anomalous IP response have been outlined, of which at least four are interpreted as representing possible massive sulphides.

#### CONCLUSIONS

Several magnetic and VLF EM anomalies have been attributed to cultural features such as pipe and buildings resulting from previous mining operations on the property. Anomalies considered as legitimate generally fall within a broad east-west trending 'conductor swarm', believed to represent conductive portions of an east west structural zone. This zone may in fact be a channelway for fluids which deposited disseminated and/or massive sulphides which are believed to give rise to anomalous IP responses.

#### INTRODUCTION

#### LOCATION AND ACCESS

The Giant Nickel property is located in rugged mountainous terrain 12 km NNW of Hope B.C. Access is provided by rough mining and logging roads up Texas Creek (10km) and Emory Creek (15km), which leave Highway 1 near Choate. Extensive reconstruction of portions of the Texas Creek road were required prior to the 1988 geophysical work described in this report.

The steep craggy terrain with heavy timber and thick undergrowth are typical of the eastern flank of the Coast Range Mountains. Elevations range from 520m. at the tailings area at the east edge of the claims to over 1300 m. at the west end of Zofka Ridge.

#### HISTORY

Early prospecting in the area led to the discovery in 1923 of the Pride of Emory showing. Exploration, including 3 underground levels and more than 150,000 feet of diamond drilling, continued sporadically into the late 1950's.

The property was mined almost continuously from 1959 to 1974, yielding 4,620,257 tons of ore grading 0.77% Ni., and 0.34% Cu., with a mill recovery of 85%. In later years, credit was paid for cobalt content which averaged 0.1% to 0.15%.

Ore was drawn from 24 separate stopes, none of which extended below the 2600 foot elevation. Three of these stopes yielded better than 500,000 tons; the Brunswick #2 at 694,500, the Pride of Emory at 681,300 and the 4600 with 662,000.

To allow compatibility with an extensive historical data base, Imperial measurement has been retained for recent exploration work on the property.

#### POTENTIAL

At the time of closing reserves were quoted as 1,027.151 tons (proven, probable, possible) grading .71% Ni. and .31% Cu.

Recent exploration programmes have been guided by the belief that considerable potential remains for discovery of additional sulphide pipes as well as extension of the known deposits below the 2600 level.

#### CLAIMS

,

The property consists of two mineral leases, 73 recorded claims and 92 crown granted claims as listed in Appendix 1. Area is 2300 hectares (5690 acres). The property is owned 100% by Corona Corporation and lies within the New Westminster Mining Division.

GEOLOGY

The Giant Nickel property lies within an ultrabasic complex intruded into granites, granodiorites and quartz diorites of the Coast Range batholith. This package is bounded on the east by the Hope Fault, a major north trending high angle structure marked by a band of serpentinite schist and amphibolite.

Ultrabasic rocks form an irregular intrusion about 5km long east to west and 1.5 km wide. This composite stock consists mainly of pyroxenites with peridotites as cores and segregations and lesser amounts of dunite. Contacts within the stock are generally gradational.

Mineralization consists of subvertical pipes of disseminated and massive pyrrhotite, pentlandite, chalcopyrite and pyrite. Sulphides tend to be concentrated at contacts within and peripheral to the ultrabasic stock, especially where the diorite and ultrabasic form embayments into one another. Pipes typically have a very limited cross sectional area but strong vertical continuity.

#### GEOPHYSICS

Geophysical work conducted between August 1 and October 23 1988 consisted of 44.8 line miles of VLF EM and magnetic surveys and 10 line miles of induced polarization over selected portions of the grid. This work succesfully outlined a broad east-west zone hosting several conductive areas suspected to indicate sulphide bodies. Survey work was contracted by Interpretex Resources Ltd. of Vancouver B.C.

A report by E.R.Rockel, B.Sc., P. Geoph., P.Eng. describing in detail the nature, extent and findings of the geophysical work is attached as Appendix 2.

#### STATEMENT OF QUALIFICATIONS

#### DARREL L. JOHNSON

I, Darrel L. Johnson, resident of the District of Coquitlam B.C., declare that:

- 1. I hold a B.Sc. degree in geology, granted by the University of British columbia in 1970;
- 2. I have worked as a geologist in all phases of exploration work throughout B.C.since 1970;
- 3. I Have been employed by Corona Corporation as a senior geologist since 1988:
- 4. I wrote the 'Summary and Introduction" section of this report, based on study of internal company reports, a visit to the Giant Nickel property and discussions with Corona geologists and E.R.Rockel.

Darrel L. Johnson

Signed this & day of November,

1989 at Vancouver B.C.





| 1 | 505           |              |             |  |  |  |  |
|---|---------------|--------------|-------------|--|--|--|--|
|   | GIAN          | T NICKEL PRO | DJECT       |  |  |  |  |
|   | CLAIM MAP     |              |             |  |  |  |  |
|   | MAP INDEX NO. | SCALE        | DRAWING NO. |  |  |  |  |
|   |               | 1: 30,000    | 2           |  |  |  |  |



APPENDIX 1

1

-

1

-

LIST OF CLAIMS

1

10

1

-

100

-

•

#### GIANT NICKEL 1028

|                                                                                                                                                           |                                 | 1020                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------|--|
| Province :B.C.<br>Mining Division:NEW WESTMINSTER<br>Land District :YALE<br>Lat./Long. :49°27' /121°30'<br>NTS :92H/5E,6W<br>Location: 10 km NNW. of Hope | Owner<br>Operator<br>J.V. Partn | :CORONA CORPORATION<br>:CORONA CORPORATION<br>ors:<br>:<br>:<br>: |  |
|                                                                                                                                                           |                                 |                                                                   |  |

CROWN GRANTED CLAIMS

\_\_\_\_\_

| LOT NO. | CLAIM NAME           | AREA<br>(ha) | MINERAL<br>LAND TAX<br>FOLID NU. | UNDER-<br>SURFACE<br>CHARGE NU. | CERTIFICATE<br>OF TITLE<br>(SURFACE)  | REGISTERED<br>OWNER<br>(SURFACE) |
|---------|----------------------|--------------|----------------------------------|---------------------------------|---------------------------------------|----------------------------------|
| 1244    | QUEEN CHARLOTTE      | 20.90        | 6029-1                           |                                 | · · · · · · · · · · · · · · · · · · · |                                  |
| 1245    | GRAND FORKS          | 20.90        | 6029-1                           |                                 |                                       | 1                                |
| 1246    | NORTHERN STAR        | 6.10         | 6029-1                           |                                 |                                       |                                  |
| 1247    | PROVINCE             | 19.33        | 12908-9                          | -                               |                                       |                                  |
| 1248    | MITE FRACTION        | 0.73         | 12908-9                          |                                 |                                       |                                  |
| 1374    | VIK FRACTION         | 2.16         | 12908-9                          |                                 |                                       |                                  |
| 1379    | SUMMIT NO. 4         | 20.90        | 12908-9                          |                                 |                                       |                                  |
| 1380    | SUMMIT NO. 5         | 20.90        | 6088-7                           |                                 |                                       |                                  |
| 1381    | SUMMIT NO. 6         | 19.28        | 6089-7                           |                                 |                                       |                                  |
| 1382    | SUMMIT NO. 7         | 17.22        | 12908-9                          |                                 |                                       |                                  |
| 1383    | STAR OF EMORY NO. 5  | 13.63        | 6088-7                           |                                 |                                       |                                  |
| 1384    | SUN NO. 1            | 20.65        | 6088-7                           |                                 |                                       |                                  |
| 1385    | SUN NO. 2            | 20.28        | 6088-7                           |                                 |                                       |                                  |
| 1386    | SUN NO. 3            | 19.34        | 6088-7                           |                                 |                                       |                                  |
| 387     | SUMMIT NO. 1         | 20.82        | 6088-7                           | 5                               |                                       |                                  |
| 388     | SUMMIT NO. 2         | 20.47        | 12908-9                          |                                 |                                       |                                  |
| 389     | SUMMIT NO. 3         | 15.39        | 12908-9                          |                                 |                                       |                                  |
| .390    | APEX                 | 8.39         | 12908-9                          |                                 |                                       |                                  |
| 391     | PRIDE OF TEXAS       | 7.37         | 12980-9                          |                                 |                                       |                                  |
| 392     | COUGAR FRACTION      | 2.80         | 12980-9                          |                                 |                                       |                                  |
| .393    | BLACK BEAR FRACTION  | 0.40         | 12908-9                          |                                 | 1                                     |                                  |
| .395    | IDA                  | 10.15        | 12908-9                          |                                 |                                       |                                  |
| .396    | CLIMAX               | 7.48         | 6088-7                           |                                 |                                       |                                  |
| 1397    | AZDNE                | 9.88         | 12908-9                          |                                 |                                       |                                  |
| .398    | PIONEER              | 15.35        | 12908-9                          |                                 |                                       |                                  |
| .399    | DOLLY                | 18.69        | 12908-9                          |                                 |                                       |                                  |
| 400     | BLACK KNIGHT         | 17.33        | 12908-9                          |                                 |                                       | 1                                |
| 401     | FARIVIEW             | 18.02        | 12908-9                          |                                 |                                       |                                  |
| 1402    | NICKEL CORE FRACTION | 11.76        | 12908-9                          |                                 |                                       |                                  |
| 403     | ST. JUILIAN FRACTION | 1.12         | 12908-9                          |                                 |                                       |                                  |
| 1404    | DOME NO. 2           | 3.42         | 12908-9                          |                                 |                                       |                                  |
| 1406    | BAER FRACTION        | 0.21         | 12908-9                          |                                 |                                       |                                  |
| 1407    | DOME NO. 1           | 9.01         | 60887                            |                                 |                                       |                                  |
| 414     | STAR OF EMORY NO. 3  | 18.18        | 12908-9                          | 4                               |                                       |                                  |
| 1415    | STAR FRACTION        | 1.81         | 6088-7                           |                                 |                                       | 1                                |
| 416     | PRIDE FRACTION       | 0.74         | 12908-9                          |                                 |                                       |                                  |
| .417    | STAR OF EMORY NO. 4  | 16.37        | 12908-9                          |                                 |                                       |                                  |
| 1419    | LAST STRIKE          | 18.75        | 12908-9                          |                                 |                                       |                                  |
| i       | POIDE OF ENORY NO 1  | 1100         | 10                               |                                 |                                       | i                                |

Date Revised: 89.11.06

GIANT NICKEL 1028

| LOT NO.                                                                    | CLAIM NAME                                                                                                                                                                                         | ARCA<br>(ha)                                                                        | M(HERAL<br>LAND TAX<br>FOLIO NO.                                                                                      | UNDER-<br>SURCADE<br>CHARGE NU. | CERTIFICATE<br>OF TITLE<br>(SURFACE) | REGISTER<br>OWNER<br>(SURFACE |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------|-------------------------------|
| 1423<br>1424<br>1425<br>1426<br>1427<br>1429<br>1430<br>1431<br>793<br>793 | STAR OF EMORY NO. 1<br>STAR OF EMORY NO. 2<br>MAX FRACTION<br>EAGLE FRACTION<br>CHOATE NO. 7<br>SLIDE FRACTION<br>FALLS FRACTION<br>RAVEN FRACTION<br>PRIDE OF EMORY NO. 1<br>PRIDE OF EMORY NO. 1 | 16.32<br>3.79<br>4.91<br>8.33<br>19.46<br>19.55<br>15.33<br>12.59<br>15.61<br>15.61 | 12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9 |                                 |                                      |                               |
| 794<br>794<br>795<br>795<br>796                                            | PRIDE OF EMORY NO. 2<br>PRIDE OF EMORY NO. 2<br>PRIDE OF EMORY NO. 3<br>PRIDE OF EMORY NO. 3<br>PRIDE OF EMORY NO. 5                                                                               | 20.90<br>20.90<br>20.51<br>20.51<br>18.97                                           | 12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9                                                        |                                 |                                      |                               |
| 796<br>797<br>797<br>798<br>798<br>798                                     | PRIDE OF EMORY NO. 5<br>PRIDE OF EMORY NO. 6<br>PRIDE OF EMORY NO. 6<br>POLLY<br>POLLY                                                                                                             | 18.97<br>20.90<br>20.90<br>13.88<br>13.88                                           | 12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9                                                                   |                                 |                                      |                               |
| 799<br>800<br>800<br>801                                                   | BETTY<br>MOLLY<br>PROGRESS                                                                                                                                                                         | 15.18<br>15.18<br>7.48<br>7.48<br>9.33                                              | 12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9                                                                   |                                 |                                      |                               |
| 801<br>802<br>802<br>807<br>807                                            | PROGRESS<br>TED FRACTION<br>TED FRACTION<br>CHOATE VIEW<br>CHOATE VIEW                                                                                                                             | 9.33<br>1.28<br>1.28<br>4.77<br>4.77                                                | 12908-9<br>6012-7<br>6012-7<br>12908-9<br>12908-9                                                                     |                                 |                                      |                               |
| 808<br>810<br>811<br>812<br>813                                            | CHOATE VIEW NO. 2<br>RUBY<br>BLUE BIRD<br>NICKEL STAR<br>COPPER KING                                                                                                                               | 11.91<br>7.28<br>10.18<br>2.61<br>3.72                                              | 12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9<br>12908-9                                                        |                                 |                                      |                               |
| 814<br>815<br>816<br>817<br>818                                            | HEATHER NO. 1<br>HEATHER NO. 2<br>HEATHER NO. 3<br>HEATHER NO. 4<br>HILL TOP NO. 1                                                                                                                 | 14.84<br>15.24<br>19.49<br>16.45                                                    | 60127<br>60127<br>129089<br>60127<br>60127                                                                            |                                 |                                      |                               |
| 819<br>820<br>821<br>822                                                   | HILLTOP NO. 2<br>HILLTOP NO. 3<br>HILLTOP NO. 4<br>HILLTOP NO. 5                                                                                                                                   | 14.24<br>16.17<br>15.06<br>15.73                                                    | 6012-7<br>6012-7<br>6012-7<br>6012-7<br>6012-7                                                                        |                                 |                                      |                               |
| 823<br>824<br>825<br>826                                                   | HILLTOP NO. 6<br>HILLTOP NO. 7<br>HILLTOP NO. 8<br>LEONARDO                                                                                                                                        | 16.56<br>17.85<br>20.13<br>3.94                                                     | 5012-7<br>6029-1<br>6029-1<br>6029-1                                                                                  |                                 |                                      |                               |

Date Revised: 89.11.06

.

**.** 

**80** 

. '

÷

#### GIANT NICKEL 1028

| LOT NO. | CLAIM NAME            | AREA<br>(ha) | MINERAL<br>LAND TAX<br>COLIO NO. | UNDER-<br>Hurpage<br>Charst Nu. | CERTIFICATE<br>OF TITLE<br>(GDDVACE) | REGISTERE<br>OWNER<br>(SURFACE) |
|---------|-----------------------|--------------|----------------------------------|---------------------------------|--------------------------------------|---------------------------------|
| 827     | REED ROSE             | 10.59        | 12908-9                          |                                 |                                      |                                 |
| 828     | EAGEL                 | 10.28        | 12908-9                          |                                 |                                      |                                 |
| 829     | GOOD HOPE             | 10.67        | 12908-9                          |                                 |                                      |                                 |
| 831     | ELK FRACTION          | 0.38         | 5029-1                           |                                 |                                      |                                 |
| 832     | CHOATE NO. 1          | 2.83         | 12908-9                          |                                 | -<br>                                |                                 |
| 833     | CHOATE NO. 2          | 15.01        | 12908-9                          |                                 |                                      |                                 |
| 834     | CHOATE NO. 3 FRACTION | 10.99        | 12908-9                          |                                 |                                      |                                 |
| 836     | CHOATE NO. 5 FRACTION | 15.15        | 12908-9                          |                                 |                                      |                                 |
| 856     | ANTLER                | 7.66         | 12908-9                          |                                 |                                      |                                 |
| 857     | BLUE BIRD EXTENSION   | 5.66         | 12908-9                          |                                 |                                      |                                 |
| 861     | LAST CHANCE FRACTION  | 0.89         | 12908-9                          |                                 |                                      |                                 |
| 862     | OLD CROW              | 5.74         | 12908-9                          |                                 |                                      |                                 |
| 923     | SOUTH FORK            | 20.90        | 6029-1                           |                                 |                                      |                                 |
| 924     | CANION                | 20.90        | 6029-1                           |                                 |                                      |                                 |
| 925     | DONNA FRACTION        | 11.22        | 12908-9                          |                                 |                                      |                                 |
| 926     | ASTA FRACTION         | 15.00        | 6029-1                           |                                 |                                      |                                 |
| Total:  | 103 claims            | ,288         |                                  |                                 |                                      |                                 |

Date Revised: 89.11.06

PAGE 3 of 3

#### GIANT NICKEL 1028

| Province :B.C.                  | Owner :CORONA CORPORATION    |
|---------------------------------|------------------------------|
| Mining Division:NEW WESTMINSTER | Operator :CORONA CORPORATION |
| Land District :YALE             | J.V. Partners:               |
| Lat./Long. :49°27' /121°30'     | :                            |
| NTS :92H/5E,6W                  | :                            |
| Location: 10 km NNW. of Hope    | :                            |
|                                 | 1                            |

MINERAL LEASES

**6** 

1

(1

1

| LEASE                                                                                                                            | LEASE<br>NO. | LOT<br>NO. | AREA<br>(ha)                                           | RECORD<br>DATE                       | EXPIRY<br>DATE       | RENT                                                    | PAID<br>TO           |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|------------|--------------------------------------------------------|--------------------------------------|----------------------|---------------------------------------------------------|----------------------|
| MERCURY 2 FRACTION<br>VENUS FRACTION<br>MERCURY<br>MERCURY 1 FRACTION<br>MERCURY 3 FRACTION<br>GREG FRACTION<br>JUPITER FRACTION | M-32<br>M-33 | 365<br>366 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>13.22<br>54.97 | <br><br><br><br><br><br><br><br><br> | 92.11.15<br>92.11.15 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>70.00<br>275.00 | 90.11.15<br>90.11.15 |
| Total - 7 Leases                                                                                                                 |              |            | 68                                                     |                                      |                      | 345.00                                                  |                      |

Date Revised: 89.10.31

PAGE 1 of 1

**N** 

#### GIANT NICKEL 1028

| Province :B.C.<br>Mining Division:NEW WESTMINSTER | Owner<br>Operator | CORONA CORPORATION |
|---------------------------------------------------|-------------------|--------------------|
| Land District :YALE                               | J.V. Partners     |                    |
| Lat./Long. :49°27' /121°30'                       |                   | :                  |
| NTS :92H/5E,6W                                    |                   | :                  |
| Location: 10 km NNW. of Hope                      |                   | :                  |
|                                                   |                   |                    |

LOCATED MINERAL CLAIMS

| CLAIM             | UNITS | AREA<br>(ha) | RECORD<br>NO. | RECORD<br>DATE | RD EXPIRY<br>E DATE |    | WORK<br>QUIRED |
|-------------------|-------|--------------|---------------|----------------|---------------------|----|----------------|
| Burn              | 1     | 21.0         | 13819         | 64.11.26       | 99.11.26            | \$ | 200.00         |
| Burn Fraction     | 1     | 21.0         | 13822         | 64.11.26       | 99.11.26            | \$ | 200.00         |
| Deerfly Fraction  | 1     | 21.0         | 11363         | 61.07.26       | 90.07.26            | \$ | 200,00         |
| Far 1             | 1     | 21.0         | 29534         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 10            | 1     | 21.0         | 29543         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 11            | 1     | 21.0         | 29544         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 12            | 1     | 21.0         | 29545         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 2             | 1     | 21.0         | 29535         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 3             | 1     | 21.0         | 29536         | 74.10.05       | 99.10.04            | \$ | 200.00         |
| Far 4             | 1     | 21.0         | 29537         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 5             | 1     | 21.0         | 29538         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 6             | 1     | 21.0         | 29539         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 7             | 1     | 21.0         | 29540         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 8             | 1     | 21.0         | 29541         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Far 9             | 1     | 21.0         | 29542         | 74.10.04       | 99.10.04            | \$ | 200.00         |
| Hemlock           | 1     | 21.0         | 13821         | 64.11.26       | 99.11.26            | \$ | 200.00         |
| Mascot Fraction   | 1     | 21.0         | 11859         | 62.06.22       | 90.06.22            | \$ | 200.00         |
| Multi Nickel I    | 1     | 21.0         | 13416         | 64.08.05       | 90.08.05            | \$ | 200.00         |
| Pentax 1 Fraction | 1     | 21.0         | 21467         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pentax 10         | 1     | 21.0         | 21476         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pentax 2 Fraction | 1     | 21.0         | 21468         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pentax 3          | 1     | 21.0         | 21469         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pentax 4 Fraction | 1     | 21.0         | 21470         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pentax 5          | 1     | 21.0         | 21471         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pentax 6          | 1     | 21.0         | 21472         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pentax 7          | 1     | 21.0         | 21473         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pentax 8          | 1     | 21.0         | 21474         | 69.05.15       | . 90.05.15          | \$ | 200.00         |
| Pentax 9          |       | 21.0         | 21475         | 69.05.15       | 90.05.15            | \$ | 200.00         |
| Pete Fraction     | 1     | 21.0         | 12691         | 63.08.14       | 99.08.14            | \$ | 200.00         |
| Rany 1            | 1     | 21.0         | 11846         | 62.06.22       | 90.06.22            | \$ | 200.00         |
| Rany 2            | 1     | 21.0         | 11847         | 62.06.22       | 90.06.22            | \$ | 200.00         |
| Rum 2 Fraction    | 1     | 21.0         | 11362         | 61.07.26       | 90.07.26            | \$ | 200.00         |
| Sidehill          | 1     | 21.0         | 13820         | 64.11.26       | 99.11.26            | \$ | 200.00         |
| Slide Alder 1     | 1     | 21.0         | 13414         | 64.08.05       | 90.08.05            | \$ | 200.00         |
| Slide Alder 2     | 1     | 21.0         | 13415         | 64.08.05       | 90.08.05            | \$ | 200.00         |
| Spar              | 1     | 21.0         | 13823         | 64.11.26       | 99.11.26            | \$ | 200.00         |
| Spar Fraction     | 1     | 21.0         | 13824         | 64.11.26       | 99.11.26            | \$ | 200.00         |
| Sunray 1 Fraction | 1     | 21.0         | 11862         | 62.07.04       | 90.07.04            | \$ | 200.00         |
| Sunray 2          | 1     | 21.0         | 11863         | 62.07.04       | 90.07.04            | \$ | 200.00         |
| D                 | 1 1   | 21.0         | 11864         | 62 07 04       | 90 07 04            | \$ | 200 00         |

Date Revised: 89.08.13

,

-

PAGE 1 of 2

-

۳Ĩ

1

100

GIANT NICKEL 1028

| CLAIM             | UNITS | AREA<br>(ha) | RECORD<br>NO. | RECORD<br>DATE | EXPIRY<br>DATE | R  | WORK<br>EQUIRED |
|-------------------|-------|--------------|---------------|----------------|----------------|----|-----------------|
| Sunray 4          | 1     | 21.0         | 11865         | 62.07.04       | 90.07.04       | \$ | 200,00          |
| Tarfu 1           | 1     | 21.0         | 11851         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Tarfu 2           | 1     | 21.0         | 11852         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Tarfu 3           | 1     | 21.0         | 11853         | 62,06,22       | 90,06,22       | \$ | 200.00          |
| Tarfu 4           | 1     | 21.0         | 11854         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Tarfu 5           | 1     | 21.0         | 11855         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Tarfu 6           | 1     | 21.0         | 11856         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Tarfu 7           | 1     | 21.0         | 11857         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Tarfu 8           | 1     | 21.0         | 11858         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| TD 10             | 1     | 21.0         | 11336         | 61.07.06       | 90.07.06       | \$ | 200.00          |
| TD 11             | 1     | 21.0         | 16295         | 66.08.11       | 99.08.11       | \$ | 200.00          |
| TD 7              | 1     | 21.0         | 11333         | 61.07.06       | 90.07.06       | \$ | 200.00          |
| TD 8              | 1     | 21.0         | 11334         | 61.07.06       | 90.07.06       | \$ | 200.00          |
| TD 9              | 1     | 21.0         | 11335         | 61.07.06       | 90.07.06       | \$ | 200.0           |
| TD 12             | 1     | 21.0         | 16296         | 66.08.11       | 99.08.11       | \$ | 200.00          |
| TD 13             | 1     | 21.0         | 16297         | 66.08.11       | 99.08.11       | \$ | 200.0           |
| TD 14             | 1     | 21.0         | 16298         | 66.08.11       | 99.08.11       | \$ | 200.0           |
| TD 15 Fraction    | 1     | 21.0         | 23414         | 70.04.15       | 90.04.15       | \$ | 200.0           |
| TD 16 Fraction    | 1     | 21.0         | 23457         | 70.04.28       | 90.04.28       | \$ | 200.0           |
| TD 17 Fraction    | 1     | 21.0         | 26137         | 71.06.11       | 90.06.11       | \$ | 200.0           |
| TD 18             | 1     | 21.0         | 26138         | 71.06.11       | 90.06.11       | \$ | 200.0           |
| TD 19             | 1     | 21.0         | 26139         | 71.06.11       | 90.06.11       | \$ | 200.0           |
| TD 20             | 1     | 21.0         | 26140         | 71.06.11       | 90.06.11       | \$ | 200.0           |
| TD 21             | 1     | 21.0         | 26141         | 71.06.11       | 90.06.11       | \$ | 200.0           |
| Way 1             | 1     | 21.0         | 29495         | 74.09.09       | 99.09.09       | \$ | 200.0           |
| Way 2             | 1     | 21.0         | 29496         | 74.09.09       | 99.09.09       | \$ | 200.0           |
| Way 3             | 1     | 21.0         | 29497         | 74.09.09       | 99.09.09       | \$ | 200.0           |
| Way 4             | 1     | 21.0         | 29498         | 74.09.09       | 99.09.09       | \$ | 200.0           |
| Way 5             | 1     | 21.0         | 29499         | 74.09.09       | 99.09.09       | \$ | 200.0           |
| Wendy 1 Fraction  | 1     | 21.0         | 11836         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Wendy 2           | 1     | 21.0         | 11837         | 62.06.22       | 90.06.22       | \$ | 200.0           |
| Wendy 3           | 1     | 21.0         | 11838         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Wendy 4           | 1     | 21.0         | 11839         | 62.06.22       | 90.06.22       | \$ | 200.00          |
| Total - 73 claims | 73    | ,533.00      | )             |                |                | 1. | 4,600.0         |

Date Revised: 89.08.13

,

•

PAGE 2 of 2

1

| -        |                    |
|----------|--------------------|
|          |                    |
|          |                    |
|          | APPENDIX 2         |
| -        | GEOPHYSICAL REPORT |
|          |                    |
| -        |                    |
|          |                    |
| •        |                    |
|          |                    |
| <b>4</b> |                    |
|          |                    |
| •        |                    |
|          |                    |
| -        |                    |
|          |                    |
| •        |                    |
|          |                    |
|          |                    |
|          |                    |
| •        |                    |
|          |                    |
| -        |                    |
|          |                    |
| -        |                    |
|          |                    |
| -        |                    |
|          |                    |
| -        |                    |
|          |                    |
|          |                    |
|          |                    |
|          |                    |
| -        |                    |

#### APPENDIX REPORT ON

#### **GEOPHYSICAL SURVEYS**

#### ON THE GIANT NICKEL PROPERTY

1. INTRODUCTION

**1.1 SURVEY SPECIFICATIONS** 

Survey Parameters - survey line separation - reconnaisance - 500 ft. - normal - 250 ft. - detail - 125 ft. - survey station spacing - VLF EM and Magnetic survey - 50 ft. - Induced Polarization survey - 100 ft. - horizontal control - survey lines were located with flagging bearing station coordinates (felt marker pen) for VLF-EM and Magnetic survey - flagged lines were cut out for I.P. survey - baseline "7000 N" direction - east-west - survey lines were perpendicular to the baseline - survey totals - VLF EM survey and magnetic survey 44 miles - Induced Polarization survey 10 miles. Equipment Parameters VLF Electromagnetic Survey - EDA "Omni Plus" VLF EM/Magnetometer used for all survey - transmitting station - primary - Annapolis, Maryland - secondary - Seattle, Washington - anomalous inflection (facing) - northerly - in-phase (dip angle, %), out-of-phase (quadrature, %) and relative field strength components measured at each station Total Field Magnetic and Magnetic Gradiometer Survey - EDA "Omni Plus" VLF EM/Magnetometer used for all survey - EDA Omni IV automatic magnetic base station - measured total magnetic field and vertical magnetic gradient in gammas - magnetic variations controlled and corrected by automatic magnetic base station recording - instrument accuracy +/- 1 gamma - station repeatability better than +/- 3 gammas. Induced Polarization Survey - Huntec Mk II 2.5 kilowatt transmitter - Huntec Mk IV time domain receiver - apparent chargeability measured in milliseconds - potential electrode voltage measured in millivolts - time delay = 160 mSec., window width = 65 mSec. - apparent resistivity calculated in ohm-meters - dipole spacing "a" = 100 feet, n = 1 to 6 - pole-dipole method with pole southerly and dipole northerly except lines 500 E, 750 E, 1000 E, 10500 E, 10750 E and 11750 E where the pole was northerly and the dipole southerly. ...2

#### Calculations



#### 1.2 PRESENTATION

VLF Electromagnetic Survey

- VLF EM in-phase, out-of-phase and field strength readings are presented as tables in Appendix GP2 of this report showing values located with respect to line number and station number
- VLF EM in-phase, out-of-phase and field strength readings are presented in profile form on a plan map at a scale of 1 inch = 500 ft.

Total Field Magnetic Survey

- Total field and vertical gradient magnetic readings are presented as tables in Appendix GP2 of this report
- Final total field magnetic values are presented as contours on a plan map at a scale of 1" = 500 ft.
- Final total field values and vertical gradient values are plotted in profile form on a plan map at a scale of 1" = 500 ft. A datum level of 59,000 gammas on the survey line was used for profiling total field values.

Induced Polarization Survey

- Pseudosections were plotted "westward looking" (south on the left hand side) for easy comparison with theoretical pseudosection plots computed with the pole to the left and dipole to the right
- Pseudosections are presented on Figures # PS 1 to PS 6 at a scale of 1" = 200 ft.
- Field readings and calculated values are listed in a data list in Appendix GP2 of this report
- IP anomalies are presented on the IP pseudosections as rectangles ....3

- Fraser Filter values for N = 1 to 6 of apparent chargeability and apparent resisitivty are presented as contours on a plan map at a scale of 1" = 500 ft.

Interpretation

- A composite interpretation map at a scale of 1" = 500 ft. presents the geophysical interpretation.

#### 2. DISCUSSION

VLF EM data profiles show the effect of steep topography in the form of a positive bias on in-phase readings when facing uphill and a negative bias when facing downhill. Topography effect and cultural objects caused spurious VLF EM anomalies in some areas otherwise VLF EM data from the Annapolis transmitter were mostly noise free. Seattle/Hawaii VLF EM data showed more noise than the primary frequency, Annapolis. Level changes at baseline 7000 N can be seen when the Hawaii transmitter was used during secondary frequency, Seattle, off times.

The field strength profile was used to recognize topography induced inflections caused by abrupt topographic changes. Very steep slopes, cultural objects such as buildings and other untraversable terrain were responsible for gaps in survey coverage on some lines. Overburden was not considered to be a problem in this area because of its shallow depth on steep slopes.

VLF EM results showed a full range of electromagnetic response from weak to strong. A number of conductive trends were discovered trending mainly easterly. Some conductive trends were proven to be due to cultural features such as metal buildings or pipes.

Magnetic results contained noise, in certain areas, from cultural features such as old metal mine buildings and pipes. Within the grid area large positive anomalies such as one over 62,000 gammas (relative to a 58,000 area range value) were observed. The higher magnetic activity containing large positive anomalies was evident mainly in the northwest quarter of the grid. Magnetic trends were not readily evident from the magnetic total field contours, however magnetic profiles suggested that some minor trends were roughly east-west.

Induced polarization survey was carried out on a portion of the main VLF EM and magnetic survey grid. Lines of various lengths in three portions of the grid were surveyed in an attempt to follow expected east- west mineralized trends. On some short lines only parts of anomalies were observed, indicating that additional anomalous values could be expected beyond I.P. coverage.

Induced polarization pseudosections showed that both apparent chargeability and apparent resistivity varied over a wide range of values. Apparent chargeability ranged from a background of less than 10 milliseconds to strong anomalous values of over 70 milliseconds.

...4

Anomalous threshold was considered to be 10 milliseconds with an "anomalous background" from 10 to 20 milliseconds. Significant anomalies were believed to be above 20 milliseconds. Apparent resistivity ranged from resistivity lows of 200 to 500 ohm-meters through a general background in the low thousands up to values over 20,000 ohm-meters in highly resistive regions. Data quality remain good with no observable noise. Fraser Filter contours of apparent chargeability and apparent resistivity showed a northeasterly chargeable trend related to a zone of low resistivity. A different trend, east of the major trend mentioned above, shows anomalous chargeability associated with higher resistivity rock. This more resistive trend also seems to strike northeast.

#### 3. CONCLUSIONS

A number of cultural VLF EM and magnetic anomalies have been indicated as spurious by describing them as "pipe", "buildings", etc. on the Annapolis VLF EM profile map and magnetic contour map. Conductor systems considered significant and believed to be related to bedrock conductivity have been delineated by drawing interpreted conductor axes on the VLF-EM profile map and on the Interpretation Map. As mentioned above, conductivity appears to trend roughly east-west. The conductors shown appear to form what might be called a "conductor swarm". Most interpreted bedrock conductors seem to occur in discontinuous groups which wind their way in an east-west direction through the grid. When magnetic contours are superimposed onto the conductive trends some conductors can be seen to be related to moderate strength magnetic highs. Adding the contoured values of the Fraser Filtered apparent chargeability from the I.P. survey shows some correlation between high chargeability and conductivity and, in some cases, conductivity that is magnetic.

Vertical gradient magnetic profiles are useful for determining relative depths and edges of magnetic bodies. A sharp positive vertical gradient will indicate that the magnetic body is near surface whereas a more broad gradient will reflect a greater depth of burial. A negative vertical gradient can help to determine the edge of a magnetic body or to indicate a separation between two magnetic bodies. A negative vertical gradient is caused by a greater depletion of magnetic flux lines closer to the ground. This results when a strong magnetic body "gathers" magnetic flux lines within itself, leaving the surrounding space depleted. When the body is near surface, or on surface, the depletion will be great near surface (causing a very low value of the magnetic total field) and the depletion will be less slightly farther from the surface (causing a value of the magnetic total field which is higher than that near surface). When the magnetometer records a reading the top sensor will record a higher total magnetic field than the lower sensor resulting in a negative vertical gradient. The present magnetic vertical gradient data were not rigorously interpreted due to the lack of geological and geochemical information required to perform a detailed study of the correlation between surface mineralization and magnetic bodies.

...5

Geophysical results have been divided into five "zones", shown on the interpretation map as "A" through "E", for discussion. Zone "A" was labelled for discussion only because I.P. survey was conducted over the area. It seems to be the least important, relative to the others, due to a lack of high apparent chargeability. This zone contains "high background" chargeability, a weak conductive trend and a relative large, discontinuous magnetic anomaly. The chargeability is believed to represent a background occurrence of sulphides. The conductor may be related to the "conductor swarm" mentioned earlier and is believed to be structural. The magnetic anomaly is probably caused by local occurrences of magnetite.

Zone "B" seems unique because much of it is comprised of high apparent chargeability associated with high apparent resistivity, is without conductivity and contains no significant magnetism. I.P. pseudosections show, however, that zone "B" has not been completely covered by the induced polarization survey. Line 7500 E was extended south beyond neighboring lines to 6000 N and shows a strong, wide apparent chargeability anomaly from 6300 N to 7300 N. This wide anomaly is believed to represent the missing southern portions of the apparent chargeability anomaly within zone "B". Closer examination of the wide anomaly reveals that only part of the chargeability anomaly (from 7000 N to 7300 N) is related to higher resistivity while the rest correlates with a resistivity low. This suggests that chargeable minerals such as sulphides may encompass a contact with a more resistive environment on one side and a less resistive environment on the other. The lack of conductivity in the more resistive portion may indicate that the sulphide particles are insulated by nonconductive minerals, possibly olivine. Although zone "B" seems to be a separate zone, comparison of line 7500 E pseudosection with that of line 5750 E, as well as the south extremities of the intermediate lines 6000 E to 7250 E, suggests that zone "B" may extend from line 8500 E all the way down to line 5750 E and, in fact, be part of zone "C".

According to apparent chargeability Fraser Filter contours, zone "C" exhibits the normal relationship between chargeability and resistivity. namely high apparent chargeability associated with low apparent resistivity. Examination of pseudosections reveals multiple chargeable anomalies correlating with higher and lower resistive environments forming a large anomalous zone which averages out on the Fraser Filter contours as a large highly chargeable zone. This large highly chargeable zone contains a number of the conductors from the "conductor swarm". Parts of some of the conductors seem to be associated with magnetic anomalies, possibly indicating spotty occurrences of magnetic pyrrhotite. Most of zone "C" seems to exclude the very high magnetic anomalies perhaps suggesting alteration of some of the magnetite to a nonmagnetic state. Conductors within the zone may relate to a massive sulphide core within a zone of disseminated sulphides or to structure which has provided a conduit for emplacement of mineralization. The very high apparent chargeability values observed, for example at about 6400 N on line 5250 E, indicate a high percentage of disseminated sulphides. The low apparent resistivity is believed to be due to the large amount of sulphides possibly coupled with a retrograde type of alteration such as chlorite alteration.

...6

Zone "D" is comprised of VLF EM conductors from the "conductor swarm". These conductors are believed to be similar to those within zone "C" and it is expected that if I.P. survey was to be performed in this region, apparent chargeability anomalies similar to those in zone "C" would be found. Some of the VLF EM conductors seem to correlate with magnetism and therefore magnetic pyrrhotite may contribute to conductivity. Three I.P. lines (500 E, 750 E, and 1000 E) were surveyed to the west of zone "D" and produced strong apparent chargeability anomalies on all three lines. These anomalies, as well as VLF EM conductors (again part of the "conductor swarm") have been grouped to form zone "E". Here again it appears that portions of the conductors may be magnetic and may be caused, at least partly, by magnetic pyrrhotite.

The conductors referred to as a "conductor swarm" are believed to represent conductive portions of an east-west structural zone. This structural zone may then have provided access for intruding mineralizing fluids which have deposited disseminated sulphides detected by the present induced polarization survey.

When viewing all I.P. pseudosections together and when considering the possible genetic relationship between the conductor swarm, interpreted as a structural feature, and dissemniated sulphide mineralization, it seems reasonable to speculate that zones "B" through "E" may be parts of one large mineralized body.

Total field and vertical gradient magnetic profiles were used to see how magnetism correlated with occurrences of disseminated sulphides interpreted from induced polarization data. In many cases near surface magnetism, probably due to magnetite, seems to occur contiguous to strongly anomalous apparent chargeability values. In some cases the high chargeability appears to be bounded by magnetism. This, then, may suggest some genetic relationship between sulphides and magnetite. More detailed geological information would be required to speculate further on the type of relationship between magnetite and sulphide mineralization.

#### 4. RECOMMENDATIONS

Induced polarization pseudosections show a number of strong near surface apparent chargeability anomalies which should be investigated on the ground. Inexpensive surface investigations using a back hoe or blasting is recommended on the following near surface anomalies in order to confirm the presence of sulphides and to test for the presence of economic minerals:

line 5250 E - station 6350 N line 5250 E - station 6650 N line 4500 E - station 7050 N line 5750 E - station 6650 N line 6000 E - station 7750 N line 5500 E - station 7200 N I.P. anomalies which are deeper, of the order of 100 to 150 feet, should be tested by drilling. They are as follows: line 5500 E - station 6750 N line 5250 E - station 7050 N line 5500 E - station 7100 N line 7500 E - station 6450 N line 5750 E - station 6800 N
Targets worthy of investigation from a geophysical standpoint which are interpreted to be between about 150 feet and 300 feet are as follows: line 5000 E - station 7100 N line 6250 E - station 8450 N line 7500 E - station 6650 N line 7500 E - station 6650 N line 7500 E - station 7100 N line 8250 E - station 7100 N line 8250 E - station 7400 N

If subsurface investigations of targets listed above provide indications of economic mineralization then additional induced polarization is recommended to more completely define the sulphide mineralization which is believed to continue from zone "B" through zone "E".

Interpretex Resources Ltd. Vancouver, B.C. Dec. 13, 1988 Respectfully Submitted

PERMIT TO PRACTICE INTERPRETEX RECOURCES ITD-2

PERMIT NUMBER: P 3100 The Association of Professional Engineers, Geologists and Geophysicists of Alberta

Signature

INTERPRETEX RESOURCES LTD.

Vancouver, British Columbia

Date \_ Oct. 12, 1989

E.R. ROCKEL

Consulting Geophysicist

#### CERTIFICATE

I, EDWIN ROSS ROCKEL, Geophysicist of Vancouver, British Columbia, Canada, hereby certify that:

- 1. I received a B.Sc. degree in Geophysics from the University of British Columbia in 1966.
- 2. I am a Consulting Geophysicist and owner of Interpretex Resources Ltd. of Box 48239, Bentall P.O., in the City of Vancouver, in the Province of British Columbia.
- 3. I currently reside at 6571 Cooney Rd., in the Municipality of Richmond, in the Province of British Columbia.
- 4. I have been practising my profession since graduation.
- 5. I am a Professional Geophysicist registered in the Province of Alberta.
- 6. I am a Professional Engineer registered in the Province of Saskatchewan.
- 7. I am a Certified Professional Geological Scientist registered in the United States of America.
- 8. Geophysical work described in this report, and the interpretation of data therefrom were performed by employees of Interpretex Resources Ltd., under my direct supervision.
- 9. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.
- 10. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Date: \_\_\_\_\_\_ 12,1983 Signed:

Vancouver, British Columbia

Edwin Ross Rockel B.Sc., P.Geoph., P.Eng.

#### APPENDIX GP1

1

ت ا ا

•••• ••• •••

1

### Equipment Specifications

|                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                     |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Specifications*                              |                                                                                                                                                                                                                                                                                           |
| Frequency Tuning Range                       | 15 to 30 kHz, with bandwidth of 150 Hz; tuning<br>range accommodates new Puerto Rico station<br>at 28.5 kHz                                                                                                                                                                               |
| Transmitting Stations Measured               | Up to 3 stations can be automatically measured<br>at any given grid location within frequency<br>tuning range                                                                                                                                                                             |
| Recorded VLF Magnetic<br>Parameters          | Total field strength, total dip, vertical<br>quadrature (or alternately, horizontal<br>amplitude)                                                                                                                                                                                         |
| Standard Memory Capacity                     | 800 combined VLF magnetic and VLF electric<br>measurements as well as gradiometer and<br>magnetometer readings                                                                                                                                                                            |
| <b>Display</b>                               | Custom designed, ruggedized liquid crystal<br>display with built-in heater and an operating<br>temperature range from – 40°C to + 55°C. The<br>display contains six numeric digits, decimal<br>point, battery status monitor, signal strength<br>status monitor and function descriptors. |
| RS232C Serial I/O Interface                  | 2400 baud rate, 8 data bits, 2 stop bits, no parity                                                                                                                                                                                                                                       |
| Test Mode                                    | A. Diagnostic Testing (data and programmable<br>memory)<br>B. Self Test (hardware)                                                                                                                                                                                                        |
| Sensor Head                                  | Contains 3 orthogonally mounted coils with automatic tilt compensation                                                                                                                                                                                                                    |
| Operating Environmental<br>Range             | – 40°C to  + 55°C;<br>0 – 100% relative humidity;<br>Weatherproof                                                                                                                                                                                                                         |
| Power Supply                                 | Non-magnetic rechargeable sealed lead-acid 18V<br>DC battery cartridge or belt; 18V DC disposable<br>battery belt; 12V DC external power source for<br>base station operation only.                                                                                                       |
| Weights and Dimensions<br>Instrument Console | 2.8 kg, 128 x 150 x 250 mm<br>2.1 kg, 130 dia. x 130 mm<br>1.1 kg, 40 x 150 x 250 mm<br>1.8 kg, 235 x 105 x 90 mm<br>1.8 kg, 540 x 100 x 40 mm<br>1.2 kg, 540 x 100 x 40 mm                                                                                                               |
| *Preliminary                                 |                                                                                                                                                                                                                                                                                           |

EDA Instruments Inc., 4 Thorncliffe Park Drive, Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR, Cables: Instruments Toronti (416) 425-7800

in USA, EDA instruments inc., 5151 Ward Road, Wheat Ridge, Colorado U.S.A. 80033 (303) 422-9112

Printed In Canada

#### **Specifications**

I

| Dynamic Range                       | <ul> <li>18,000 to 110,000 gammas. Roll-over display feature<br/>suppresses first significant digit upon exceeding 100,000<br/>gammas.</li> </ul>                                                    |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tuning Method                       | . Tuning value is calculated accurately utilizing a specially developed tuning algorithm                                                                                                             |
| Automatic Fine Tuning               | ± 15% relative to ambient field strength of last stored value                                                                                                                                        |
| Display Resolution                  | 0.1 gamma                                                                                                                                                                                            |
| Processing Sensitivity              | ± 0.02 gamma                                                                                                                                                                                         |
| Statistical Error Resolution        | 0.01 gamma                                                                                                                                                                                           |
| Absolute Accuracy                   | <ul> <li>± 1 gamma at 50,000 gammas at 23°C</li> <li>± 2 gamma over total temperature range</li> </ul>                                                                                               |
| Standard Memory Capacity            |                                                                                                                                                                                                      |
| Total Field or Gradient             | . 1,200 data blocks or sets of readings                                                                                                                                                              |
| Recine Points                       | 5 000 data blocks of sets of readings                                                                                                                                                                |
| Dientau                             | Custom-designed in poedized liquid costal display with an                                                                                                                                            |
|                                     | operating temperature range from -40°C to +55°C. The<br>display contains six numeric digits, decimal point, battery<br>status monitor, signal decay rate and signal amplitude                        |
|                                     | monitor and function descriptors.                                                                                                                                                                    |
| RS 232 Serial I/O Interface         | 2400 baud, 8 data bits, 2 stop bits, no parity                                                                                                                                                       |
| Gradient Tolerance                  | . 6,000 gammas per meter (field proven)                                                                                                                                                              |
| Test Mode                           | A. Diagnostic testing (data and programmable memory)<br>B. Self Test (hardware)                                                                                                                      |
| Sensor                              | . Optimized miniature design. Magnetic cleanliness is<br>consistent with the specified absolute accuracy.                                                                                            |
| Gradlent Sensors                    | 0.5 meter sensor separation (standard), normalized to gammas/meter. Optional 1.0 meter sensor separation available. Horizontal sensors optional.                                                     |
| Sensor Cable                        | Remains flexible in temperature range specified, includes strain-relief connector                                                                                                                    |
| Cycling Time (Base Station Mode)    | Programmable from 5 seconds up to 60 minutes in 1 second increments                                                                                                                                  |
| Operating Environmental Range       | -40°C to +55°C; 0-100% relative humidity; weatherproof                                                                                                                                               |
| Power Supply                        | Non-magnetic rechargeable sealed lead-acid battery<br>cartridge or belt; rechargeable NiCad or Disposable battery<br>cartridge or belt; or 12V DC power source option for base<br>station operation. |
| Battery Cartridge/Belt Life         | 2,000 to 5,000 readings, for sealed lead acid power supply, depending upon ambient temperature and rate of readings                                                                                  |
| Weights and Dimensions              |                                                                                                                                                                                                      |
| Instrument Console Only             | 2.8 kg, 238 x 150 x 250mm                                                                                                                                                                            |
| NiCad or Alkaline Battery Cartridge | . 1.2 kg, 235 x 105 x 90mm                                                                                                                                                                           |
| NiCad or Alkaline Battery Belt      | . 1.2 kg, 540 x 100 x 40mm                                                                                                                                                                           |
| Lead-Acid Battery Cartridge         | . 1.8 kg, 235 x 105 x 90mm                                                                                                                                                                           |
| Lead-Acid Battery Belt              | . 1.8 kg, 540 x 100 x 40mm                                                                                                                                                                           |
| Sensor                              | , 1.2 kg, 56mm diameter x 200mm                                                                                                                                                                      |
| Gradient Sensor                     |                                                                                                                                                                                                      |
| 10.5 m separation-standard          | 2.1 kg, 56mm dlameter x 790mm                                                                                                                                                                        |
| Gradient Sensor                     | 2.2 km ECmm diamotory 4700mm                                                                                                                                                                         |
|                                     | 2.2 kg, commini diameter x 1500mm                                                                                                                                                                    |
| standard system Complement          | sectional sensor staff, power supply, harness assembly,<br>operations manual.                                                                                                                        |
| Base Station Option                 | Standard system plus 30 meter cable                                                                                                                                                                  |
| Gradiometer Option                  | Standard system plus 0.5 meter sensor                                                                                                                                                                |

E D A Instruments Inc. 4 Thorncliffe Park Drive Toronto, Ontario Canada M4H 1H1 Telex: 06 23222 EDA TOR Cable: Instruments Toronto (416) 425 7800

**"** 

Sec. Barrow

In U.S.A. E D A Instruments Inc. 5151 Ward Road Wheat Ridge, Colorado U.S.A. 80033 (303) 422 9112

Printed in Canada

## M-4 SERIES M-4 Induced Polarization Receiver

#### DESCRIPTION

The Huntec M-4 is a microprocessor based receiver for time and frequency domain IP and complex resistivity measurement. It is:

**Easy to operate.** One switch starts a measurement, of up to 33 quantities simultaneously. The optional Cassette DataLogger records them all in seconds. Calibration, gain setting and SP buckout are all automatic.

**Reliable.** Using advanced digital signal processing techniques, the M-4 delivers consistently accurate data even in noisy, highly conductive areas. For mechanical reliability it is packaged in a rugged aluminum case for backpack or hand carrying.

Versatile. The operator may adjust delay and integration times, operating frequency and other measurement parameters to adapt to a wide range of survey conditions and requirements. An independent reference channel facilitates drillhole and underground work, and guarantees transmitter-receiver synchronization in highnoise conditions.

Highly accurate. With a frequency bandwidth of 100 Hz and noise-cancelling digital signal stacking, the M-4 delivers very precise results. The details are summarized in a table overleaf. Sensitive. The same features that make the M-4 accurate allow detection of very weak signals. The Huntec receiver requires lower transmitter power than any other, for a given set of operating conditions. Automatic correction for drifts in self-potential and gain allow long stacking times for significant signal-to-noise improvements.

Intelligent. Under the control of a powerful 16-bit microprocessor, the M-4 calibrates and tests itself between measurements. Coded error messages, flashed onto the display, inform the operator of any malfunction.

The M-4 Receiver is complemented by Huntec's new M-4 transmitters, which offer precisely timed constant-current output and both time and frequency domain waveforms, compatible with the receiver's accuracy and multi-mode measurement capabilities. The RL-2 Reference Isolator connects any IP transmitter to the receiver's reference channel.

Contact Huntec for more information on the benefits offered by the M-4 product line.

#### **FEATURES**

- Time and Frequency domain IP and Complex Resistivity operation.
- Simultaneous Time domain and Complex Resistivity measurement.
- Automatic calibration gain setting SP cancellation
  - fault diagnosis
- Independent reference channel for drillhole and underground work.
- 42 quantities, displayable on large 3½ digit low-temperature liquid-crystal readout.
- Analogue meter for source resistance measurement.
- 10<sup>9</sup> ohms differential input resistance
- 8 hours continuous operation with replaceable, rechargeable nickel-cadmium battery pack (2 supplied).
- Optional Cassette DataLogger fits inside case, has read-after-write error checking. Up to 350 stations per tape.
- Conveniently packaged for backpacking or hand carrying.
- 100 Hz bandwidth, fine time-resolution.
- Advanced digital signal stacking.
- Delivers reliable, accurate data in noisy, highly conductive areas.

#### PECIFICATIONS

| Signal Channel       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b      |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Range:               | 5 x $10^{-5}$ to 10 volts. Automatic ranging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | b:     |
|                      | Overload indication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Č      |
| Bandwidth:           | 100 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | R      |
| SP Cancellation:     | -5 to +5 volts (automatic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E I    |
| Protection:          | Low-leakage diode clamps, gas discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | E1<br> |
| Beference Channel    | surge arrestors, replaceable fuses.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IE     |
|                      | 500 mV minimum 10 volts peak maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Н      |
|                      | overload indication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A      |
| Resistance:          | 2 x 10 <sup>5</sup> ohms differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SI     |
| CONTROLS AND FL      | INCTIONS IN THE REAL PROPERTY OF THE REAL PROPERTY |        |
| Operating Controls   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Keypad:              | 16 keys, calculator format, function associated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | г      |
| Peference Pogisters  | with each key.<br>Kourned may be used to store up to ten 316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|                      | digit numeric values with floating decimal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ľ      |
|                      | point to represent station number, line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S      |
|                      | number, operator, time, date, weather,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                      | cassette.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1     |
| - Programming Contro | ske                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Sub-nanel.           | All programming controls are on a covered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •      |
| und punct.           | sub-panel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2     |
| Thumbwheel           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3     |
| Switches:            | Select delay time to in milliseconds charge-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|                      | frequency; PFE frequency ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Displayable Quantiti | ies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |
| Time domain:         | Primary voltage; self-potential; chargeability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
|                      | (total or each of 10 windows of equal width);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
|                      | phases of odd harmonics 3 to 15; amplitudes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                      | repeating display of polarization potential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C      |
| ·                    | and total chargeability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Г      |
| Freq. domain:        | Primary amplitude; Percent Frequency Effect;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| Complex Resistivity: | Phases of odd harmonics 3 to 15: amplitudes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| ing .                | of odd harmonics 1 to 15; fundamental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
|                      | phase (with ref. input); cycle count.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| Any mode:            | Battery voltage, Frequency error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |
| OUTPUTS              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Displays             | DTZ dista lassa anno 11-14 - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Į      |
| Digital Display:     | 3/2 algit, low-temperature liquid crystal<br>display indicates measurement results and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                      | diagnostic error messages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| Analogue Meter:      | Ohms scale for source resistance; also gives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
|                      | qualitative indication of signal-to-noise ratio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| CASSETTE DATALOC     | GGER (OPTIONAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| Description:         | Accommodated within M-4 chassis. If not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
|                      | user at any time. Two recording modes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L      |
| Partial:             | All sub-panel settings, measurement results,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| }                    | and contents of reference registers are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| E.III.               | recorded (2 seconds recording time).<br>As in partial mode, but also recorded is one                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| ■ <sup>J</sup> run.  | cycle of averaged signal waveform (28 seconds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| ,                    | recording time). If external reference is used,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
|                      | one cycle of reference waveform is also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
|                      | recorded (60 seconds recording time). Extra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| -                    | and store the reference waveform for advanced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| ្នា                  | offline resistivity computation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| Format:              | ANSI/ECMA/ISO standard for saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |
| <b></b>              | recording: 80 bytes/record, all data recorded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| -verification        | Read-after-write data verification (automatic).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |
| I concution.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |

#### **MECHANICAL**

M-4 Receiver with battery pack: 45 cm x 33 cm x 14 cm, 10.0 kg. M-4 Receiver with battery pack and Cassette DataLogger: Dimensions as above, 11.0 kg. Replaceable 33 cm x 11 cm x 4.5 cm, 3 kg. Battery pack: ENVIRONMENTAL Operation: -20°C to +55°C. Temperature: Storage:  $-40^{\circ}$ C to  $+70^{\circ}$ c.

Humidity: Moisture-proof, operable in light drizzle. Altitude: -1,525 m to +4,775 m. Shock, Vibration: Suitable for transport in bush vehicles.

#### **OUTPUT ACCURACY AND SENSITIVITY**

|             | PHASES                | AMPLI-<br>TUDES          | Vp            | SP            | CHARGE-<br>ABILITY | PFE                   |
|-------------|-----------------------|--------------------------|---------------|---------------|--------------------|-----------------------|
| UNITS       | millradians           | volts                    | volts         | volts         | seconds            | ×                     |
| ACCURACY    | 2milli-<br>radians(1) | 1% to 40Hz<br>2% to 80Hz | ±1%           | ±1%           | 0.1%(2)            | 0.1%(3)<br>full scale |
| SENSITIVITY | 0.01<br>milliradians  | 10-6 volts               | 10-3<br>volts | 10-3<br>volts | 10-6<br>seconds    | 0.001%<br>full scale  |

| 1) | Frequency domain mode: at harmonic frequencies up to 15 Hz, increases to not more than 5 milliradians at 80 Hz. |
|----|-----------------------------------------------------------------------------------------------------------------|
|    | Time domain mode: at harmonic frequencies up to 7.5 Hz, increases to not more than 5 milliradians at 30 Hz.     |
| 2) | of total OFF time                                                                                               |
| 3) | Full scale defined as 100% PFE.                                                                                 |
| •  | Cassette Data: recorded in ASCII, 9 digits with decimal point fixed for four decimal digits                     |
|    | Display Data: 316 digits, floating desimal point                                                                |
|    | Display Data. 592 uigits, hoating decimal point.                                                                |
|    | one part in 40% x (square root of cycle count).                                                                 |
|    | Resolution of reference waveform (not averaged) limited by                                                      |
|    | averaging software available as option.                                                                         |
|    |                                                                                                                 |

#### CHARGEABILITY WINDOWS



HUNTEC 1750 Brimley Road, Scarborough Ontario, Canada M1P 4X7 Phone: (416) 299-4100 Telex: 06-963640 M-4 SERIES
 Induced
 Polarization/
 Resistivity
 2.5 kW
 Transmitter



#### DESCRIPTION

The HUNTEC M-4 2.5 kW Induced Polarization transmitter is designed for time domain, frequency domain (PFE) and complex resistivity applications. The unit converts primary 400 Hz ac power from an engine-alternator set to a regulated dc output current, set by the operator. Current regulation eliminates output waveform distortion due to electrode polarization effects. It is achieved in the transmitter by varying the alternator field currents. The transmitter is equipped with dummy loads to smooth out generator load variations.

#### FEATURES

- Solid-state switching for long life and precise timing.
- Open circuit during the "off" time ensures no counter current flow.
- Resistance measurement for load matching.
- Precision crystal controlled timing.
- Failsafe operation protects against short-circuit and overvoltage.
- Automatic regulation of output current eliminates errors due to changing polarization potential and load resistance.



#### **SPECIFICATIONS** M-4 2.5 kW Transmitter

| Power input:                | 96 — 144 V line to line 3 phase,<br>400 Hz (from Huntec generator set)                                                                                                                                                                                          |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output:                     | <ul> <li>Voltage: 150 — 2200 V dc in<br/>8 steps Current: 0.2 — 7 A regulated**</li> </ul>                                                                                                                                                                      |
| Current regulation:         | Less than ±0.1% change for ±10%<br>load change                                                                                                                                                                                                                  |
| Output frequency:           | 0.0625 Hz to 1 Hz (time domain,<br>complex resistivity)<br>0.0625 Hz to 4 Hz (frequency<br>domain) selectable from front panel<br>An additional range of frequencies<br>between 0.78 and 5.0 Hz is avail-<br>able and can be selected by an<br>internal switch. |
| Frequency                   |                                                                                                                                                                                                                                                                 |
| accuracy:                   | ±50 ppm 30°C to +60°C                                                                                                                                                                                                                                           |
| Output duty cycle:          | 0.5 to 0.9375 in increments of                                                                                                                                                                                                                                  |
| $I_{on}/(I_{on} + I_{off})$ | 0.0625 (time domain)                                                                                                                                                                                                                                            |
|                             | 0.3575 (complex resistivity)<br>0.75 (frequency domain)                                                                                                                                                                                                         |
| Output current              |                                                                                                                                                                                                                                                                 |
| meter:                      | Two ranges: 0-5 A and 0-10 A                                                                                                                                                                                                                                    |
| Ground resistance           |                                                                                                                                                                                                                                                                 |
| meter:                      | Two ranges: 0-10 kΩ, 0-100 kΩ                                                                                                                                                                                                                                   |
| Input voltage meter:        | 0-150 V                                                                                                                                                                                                                                                         |
| Dummy load:                 | Two levels: 500 kW and 1.75 kW                                                                                                                                                                                                                                  |
| Temperature range:          | -34°C to +50°C                                                                                                                                                                                                                                                  |
| Size:                       | 53 cm x 43 cm x 29 cm                                                                                                                                                                                                                                           |
| Weight:                     | 26 kg                                                                                                                                                                                                                                                           |

\*\*Smaller currents are obtainable, but outside the current regulation range the transmitter voltage is regulated, not the current.

#### **SPECIFICATIONS** M-4 2.5 kW Engine Driven Alternator

| Output:       | 120 V ac 400 Hz 3.5 kVA maximum                                                                     |
|---------------|-----------------------------------------------------------------------------------------------------|
| Engine:       | Briggs & Stratton 6 kW air cooled,<br>single cylinder four cycle piston<br>engine with manual start |
| Fuel:         | Regular grade gasoline, tank capa-<br>city 3.8 L to give 4 h duration                               |
| Alternator:   | Delta connected heavy duty auto-<br>mobile type, belt driven, air cooled                            |
| Construction: | Tubular protective carrying frame<br>with resiliently mounted engine<br>and alternator              |
| Size:         | 51 cm x 48 x 76 cm                                                                                  |
| Weight (dry): | 61 kg                                                                                               |





1750 Brimley Road, Scarborough Ontario, Canada M1P 4X7 Phone: (416) 299-4100 Telex: 06-963640

P.O. Box 851, Dartmouth Nova Scotia, Canada B2Y 3Z5 Phone: (902) 463-2380 Telex: 019-31446

**HUNTEC GEOPHYSICS** 

LOCATED AT: ARGO BUILDING, BEDFORD INSTITUTE OF OCEANOGRAPHY

APPENDIX 3

## STATEMENT OF EXPENDITURES

I

•

|                     |                                                     |                                            |                              |        | MAG/VL  | F          |        | IP       |                       |      |          |
|---------------------|-----------------------------------------------------|--------------------------------------------|------------------------------|--------|---------|------------|--------|----------|-----------------------|------|----------|
| DATE                | SOURCE                                              | RATE∕DAY<br>≸C                             | #DAYS                        | SURVEY | STANDBY | PROCESSING | SURVEY | STANDBY  | PROCESSING,<br>INTERP | MOB  |          |
| 1-14AUG88           | VLF/MAG<br>STANDBY<br>MOB                           | 685<br>495<br>FLAT                         | 10<br>Na                     | 6850   | 990     |            |        |          |                       | 1500 |          |
| 15-31AUG88          | VLFZMAG<br>STANDBY<br>N.P.                          | 685<br>495<br>N.C.                         | 13<br>3<br>1                 | 8905   | 1485    |            |        |          |                       |      |          |
| 22-25AUG88          | PROCESSING<br>IN TERP<br>REFLOTTING                 | 325<br>N.C.                                | 2.5<br>1.5                   |        |         | 812.50     |        |          |                       |      |          |
| 1-15SEPT88          | VLF/MAG<br>STANDBY<br>N.P.<br>IP<br>MOB             | 685<br>495<br>N.C.<br>1690<br>FLAT         | 8<br>4<br>3<br>1             | 5480   | 1980    |            | 1690   |          |                       | 1250 |          |
| 12,13SEPT88         | PROCESSING                                          | 325                                        | S                            |        |         | 650        |        |          |                       |      |          |
| 16-315EPT88         | IP<br>STANDBY<br>N.P.<br>VLF/MAG<br>STANDBY<br>N.P. | 1690<br>800<br>N.C.<br>6855<br>495<br>N.C. | 10<br>4<br>1<br>3<br>1<br>11 | 2055   | 495     |            | 16900  | 3200     |                       |      |          |
| 3,4,11,15DCT88      | PROCESSING                                          | 325                                        | 2.5                          |        |         |            |        |          | 812.50                |      |          |
| 1-1500788           | IP<br>STANDBY                                       | 1690<br>800                                | 12<br>3                      |        |         |            | 20280  | 2400     |                       |      |          |
| 16-23DCT88          | IP<br>Standby                                       | 1690<br>800                                | 5<br>3                       |        |         |            | 8450   | 2400     |                       |      |          |
| 16,1700788          | PROCESSING                                          | 325                                        | 5                            |        |         |            |        |          | 650                   |      |          |
| 7,8,9,14,15NOV88    | PROCESSING<br>INTERP                                | 325<br>325                                 | 2.25                         |        |         | 731.25     |        | •        | 731.25                |      |          |
| 16,18,25,26,27NDV88 | PROCESSING<br>INTERP                                | 325                                        | 2:25                         |        |         | 731.25     |        |          | 731.25                |      |          |
| 4-9,13,15DEC88      | PROCESSING                                          | 325<br>325                                 | 3.25<br>3.25                 |        |         | 1056.25    |        | <u> </u> | 1056.25               |      | TOTAL    |
|                     | * N.P.=<br>* N.C.=                                  | no produ<br>no charg                       | ction                        | 23290  | 4950    | 3981.25    | 47320  | 8000     | 3981.25               | 2750 | 94272.50 |

APPENDIX 4

#### PERSONNEL

The following personnel worked on the property and/or were engaged in supervision for all or part of the days noted (includes mobilization and demobilization):

| Name                           | Position               | Dates                                                              |
|--------------------------------|------------------------|--------------------------------------------------------------------|
| J.A. Martin<br>Vancouver, B.C. | Geophysical Technician | Aug. 1 - 20, 22 - 31<br>Sept. 1 - 3, 7 - 15,<br>17 - 22 & 24, 1988 |
| L.N. Bzdel<br>Saskatoon, Sask. | Geophysicist           | Sept. 14 - 16, 18 -<br>30, Oct. 1 - 23, 1988                       |
| J. McIntosh<br>Naramata, B.C.  | Geophysical Assistant  | Sept. 21 - 30 Oct. 1<br>- 23, 1988                                 |
| T.A. Iannone<br>Naramata, B.C. | Geophysical Assistant  | Sept. 14 - 16, 18 -<br>30, Oct. 1 - 23, 1988                       |
| D. Segal<br>Kamloops, B.C.     | Geophysical Assistant  | Sept. 14 - 16, 18 -<br>30, Oct. 1 - 23, 1988                       |
| B. McPhee<br>Penticton, B.C.   | Geophysical Assistant  | Sept. 14 - 16, 1988                                                |
| M. Gawne<br>Penticton, B.C.    | Geophysical Assistant  | Sept. 14 - 16, 1988                                                |
| L. Reed<br>Naramata, B.C.      | Geophysical Assistant  | Sept. 18 - 30, Oct.<br>1 - 23, 1988                                |

The following personnel were involved in data preparation or reporting of the project for part or all of the days noted:

| Nажө                          | Position                | Dates                                                  |
|-------------------------------|-------------------------|--------------------------------------------------------|
| E.R. Rockel<br>Richmond, B.C. | Consulting Geophysicist | Nov. 16, 18, 25 - 27,<br>Dec. 4 - 9, 13 - 15,<br>1988. |

f



|       | 1.000      |          |             |                         |  |
|-------|------------|----------|-------------|-------------------------|--|
|       | ٦          | T.D. 14  | T.D. 13     | T. D. 21                |  |
|       |            |          | T.D. 16 FR. | -T.D. 15 FR.<br>T.D. 20 |  |
| 7 0.  | T.D. 9     | T.D. 10  | T.D. 12     | T.D. 19                 |  |
| \$1.A | T.D. 7     | T.D. 8   |             |                         |  |
|       | 5          | <u>}</u> | TATTR       | T. D. 18                |  |
| (17   |            | 577      |             | 7                       |  |
| CR    | E C        |          |             |                         |  |
|       | \<br>      |          |             |                         |  |
|       | . <b>A</b> |          |             |                         |  |
|       | -          |          |             |                         |  |
|       | , ð        |          |             |                         |  |

| GIAN              | T NICKEL PRO | JECT        |
|-------------------|--------------|-------------|
| SURV              | EY COVE      | RAGE        |
| T S MAP INDEX NO. | SCALE        | DRAWING NO. |
|                   | 1: 30,000    | FIG. 5      |

| L 1000 W _                                                                                                                                                                                                         | L 2250 E<br>L 2000 E<br>L 1750 E<br>L 1500 E<br>L 1000 E<br>L 1000 E<br>L 250 E<br>L 250 E<br>L 250 W | L 3250 E<br>L 3250 E<br>L 4750 E<br>L 4250 E<br>L 3250 E<br>L 3250 E<br>L 2500 E<br>L 2500 E<br>L 2500 E | L 8750 E | L 12000 E<br>L 11750 E<br>L 11500 E<br>L 10500 E<br>L 10250 E<br>L 10250 E<br>L 9750 E<br>L 9250 E<br>L 9250 E |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|
| 10800 N<br>10600 N<br>10400 N<br>10200 N<br>9800 N<br>9600 N<br>9400 N<br>9000 N<br>9000 N<br>9000 N<br>8800 N<br>8600 N<br>8400 N<br>8200 N<br>8200 N<br>8000 N<br>7800 N<br>7600 N<br>7400 N<br>7200 N<br>7000 N |                                                                                                       |                                                                                                          |          |                                                                                                                |
| ARD N                                                                                                                                                                                                              |                                                                                                       |                                                                                                          |          |                                                                                                                |

a second second second balance in the second s

ىيە « «ئېرىرى»» ئىلىرى <mark>بىرىيە</mark> قىرىيە «ئەرىلىرى» ، «ئىلىرىيە ، ئەچىمە تورىرى ئىلىرىيە» ،

| 6600 N<br>6400 N<br>6200 N<br>6000 N<br>5800 N<br>5600 N<br>5400 N<br>5200 N<br>5000 N     |                                                                                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L 1000 W                                                                                   | L 2750 E                                                                                                                                  | L 5250 E<br>L 5250 E<br>L 4750 E<br>L 4250 E<br>L 4250 E<br>L 3750 E<br>L 3250 E<br>L 3250 E                                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Γ 1250 μ<br>Γ 1250 μ<br>Γ Ι250 μ<br>Ι Ι0800 Ν                                              | L 2750 E<br>L 2250 E<br>L 2250 E<br>L 1200 E<br>L 1375 E<br>L 1375 E<br>L 1000 E<br>L 1000 E<br>L 1000 E<br>L 250 E<br>L 250 E<br>L 250 W | <b>L 5</b> 250 <b>E</b><br>L 5250 <i>E</i><br>L 4750 <i>E</i><br>L 4250 <i>E</i><br>L 4250 <i>E</i><br>L 3750 <i>E</i><br>L 3250 <i>E</i> | L 112000 E L 1120000 E L 11200000 E L 1120 |
| 10600 N<br>10400 N<br>10200 N<br>10000 N<br>9800 N<br>9600 N<br>9400 N<br>9200 N<br>0000 N |                                                                                                                                           |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 9000 N                                                                                                     | I N<br>I N<br>I N<br>I N<br>I N<br>I N<br>I N<br>I N<br>I N<br>I N |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 6800 N<br>6600 N<br>6400 N<br>6200 N<br>6000 N<br>5800 N<br>5600 N<br>5400 N<br>5200 N<br>5000 N<br>5000 N | ) N<br>C N<br>O N<br>O N<br>O N<br>O N<br>O N<br>O N<br>O N        |
|                                                                                                            | <br>ł                                                              |

ASSESSMENT REPORT



1000 250 50 ET 1 **\_\_\_\_** ΣΣ Σ \_\_\_10800 N 10800 N \_\_\_\_ \_\_\_10600 N 10600 N \_\_\_\_ \_\_\_10400 N 10400 N\_\_\_\_ \_\_\_10200 N 10200 N \_\_\_\_ \_\_\_10000 N 10000 N \_\_\_\_ <u> 9800 N</u> 9800 N\_\_\_\_ \_\_\_\_9600 N 9600 N \_\_\_\_ \_\_\_\_9400 N 9400 N \_\_\_\_ \_\_\_9200 N 9200 N \_\_\_\_ \_\_\_9000 N 9000 N \_\_\_\_ \_\_\_8800 N 8800 N \_\_\_\_ \_\_\_8600 N 8600 N \_\_\_\_ \_\_\_\_8400 N 8400 N \_\_\_\_ \_\_\_8200 N 8200 N\_\_\_\_ \_\_\_8000 N 8000 N \_\_\_\_ \_\_\_\_7800 N 7800 N\_\_\_\_ \_\_\_7600 N 7600 N\_\_\_\_ \_\_\_7400 N 7400 N \_\_\_\_ \_\_\_\_7200 N 7200 N\_\_\_\_ \_\_\_7000 N 7000 N \_\_\_\_ \_\_\_6800 N 6800 N\_\_\_\_

......

| 6600 N<br>6400 N<br>6200 N<br>6000 N<br>5800 N<br>5600 N<br>5400 N<br>5200 N<br>5000 N     |                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L 1000 W<br>L 1250 W<br>L 1500 W                                                           | L 2750 E<br>L 2250 E<br>L 2250 E<br>L 1750 E<br>L 1750 E<br>L 1750 E<br>L 1000 E<br>L 1000 E<br>L 750 E<br>L 250 E                       | L 5250 E<br>L 4750 E<br>L 4250 E<br>L 4250 E<br>L 3750 E<br>L 3250 E             | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Γ 1250 μ<br>Γ 1250 μ<br>Γ Ι0800 Ν<br>Γ 10600 Ν                                             | L 2750 E<br>L 2500 E<br>L 2250 E<br>L 1200 E<br>L 1375 E<br>L 1375 E<br>L 1000 E<br>L 1000 E<br>L 250 E<br>L 250 E<br>L 250 E<br>L 250 W | L 5250 E<br>L 4750 E<br>L 4250 E<br>L 4250 E<br>L 3750 E<br>L 3250 E<br>L 3250 E | L 12000 E L 11750 E L 1175 |
| 10600 N<br>10400 N<br>10200 N<br>10000 N<br>9800 N<br>9600 N<br>9400 N<br>9200 N<br>9200 N |                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Total Field Magnetic Contours & Profiles Profiles (upper), Contours (lover) GIANT NICKEL PROJECT











GEOLOGICAL BRANCH ASSESSMENT REPORT











GEOLOGICAL BRANCH ASSESSMENT REPORT







F



L



ş

+



F

L

\*

GEOLOGICAL BRANCH ASSESSMENT REPORT

![](_page_42_Figure_3.jpeg)

![](_page_42_Figure_4.jpeg)

![](_page_42_Figure_5.jpeg)

![](_page_42_Figure_6.jpeg)

![](_page_42_Figure_7.jpeg)

+ L

![](_page_42_Figure_9.jpeg)

![](_page_42_Figure_10.jpeg)

![](_page_42_Figure_11.jpeg)

![](_page_42_Figure_12.jpeg)

![](_page_42_Figure_13.jpeg)

| SURVEYED BY: INTERPRETEX RESOURCES LTD.  | DRAWN BY: INTERPRETEX |                    | GIANT NICKEL GRID - I.P. PSEUDOSECTIONS                                           | SCALE: 1" = 200 FT. |             |  |
|------------------------------------------|-----------------------|--------------------|-----------------------------------------------------------------------------------|---------------------|-------------|--|
| RESISTIVITY CONTOUR INT = 250 OHM-METERS | DATE: NOV. 8, 1988    | CORONH CORPORATION | HUPE HEEH, NEW WESTMINSTER MINING DIVISION, BRITISH COLUMBIH $L - 4500E$ TO 5750E | PROJECT NO. :       | CORONA 6828 |  |
| CHARGEABILITY CONTOUR INT = 2.5 MSEC.    | FIGURE # P5 - 2       | VANCOUVER, B.C.    | REPORT BY: E.R. ROCKEL<br>DATA COMPILATION BY: INTERPRETEX RES.                   | N.T.S. NO.;         | 92 H/6      |  |

+

# 

| N1 |     |     |     |     |     | 16.8 |      | <b>12</b> .7 | 14.Ø        |      | 12_5 | 12.1 |
|----|-----|-----|-----|-----|-----|------|------|--------------|-------------|------|------|------|
| N2 |     |     |     |     | N/R |      | 15.5 |              | 16.0        | 14.2 | 14.  | .4   |
| N3 |     |     |     | N/R |     | N/R  |      | 18.1         | ر<br>15.5 ک |      | 16.0 | 12.9 |
| N4 |     |     | N∕R |     | N/R |      | N/R  | -            | _)17.ø      | 17.1 | 14.  | .1   |
| N5 |     | N/R |     | N/R |     | N/R  |      | N/R          | 7.5         |      | 14.9 | 14.5 |
| N6 | N/R |     | N/R |     | N/R |      | N/R  |              | N/R         | 15.3 | 15.  | 3    |
|    |     |     |     |     |     |      |      |              |             |      |      |      |

GIANT NICKEL - LINE 10000 E - SCALE: 1" = 200 FT.

ł

|     | 7500               | 7500       | 7700 | 7800     | 7900   | 8000   | 8100           | 8200                  | 8300     | 8400     | 8500         | 8600         | 8  |
|-----|--------------------|------------|------|----------|--------|--------|----------------|-----------------------|----------|----------|--------------|--------------|----|
| N 1 | SOUTH              |            |      | <b>L</b> |        |        | . <u> </u>     |                       |          | <u>L</u> |              |              | -  |
| N1  |                    |            |      |          | 7005.0 | 4114.8 | 4192.2         | 5247.8                | 7581.8   | 17186    | A 16215      | P 21181.8    | ł  |
| N2  |                    |            |      |          | N/R    | 5662.0 | 3/00.0 =       | 9150.0                | 585.8    | 1767     | IDIGS DO     | Litte . The  |    |
| N3  | <b>51 50</b> 10    |            |      | N∕R      | N/F    | 4254.8 | 1 \$275.2      | 1521.8                | JI 1456T | 8 8857.0 | 9346.0       | 5,55,60.0    |    |
| N4  | C1 5001            | (HUF P1.P2 |      | N/R      | N∕R    | N/R    | 4724.0         | 7553.8                |          | 292      | 3833 g       | 56200 18 251 |    |
| N5  |                    |            | N∕R  | N/R      | N/F    | R N⊿/# | H              | 11950.1<br>D. 11950.1 | 10498    | 0 2.03   | 0 5000       | 2565.0       | )  |
| N6  |                    |            | N∕R  | N/R      | N/R    | N/R    | N/R            | 11886.0-1             | 1100.0   | 10530.0  | 5647.8       | 2549.0 375   | .0 |
|     | 7500<br>L<br>SOUTH | 7600<br>I  | 7700 | 7800     | 7900   | 8000   | 8100           | 8200                  | 8300     | 8400     | 8500         | 8600         | 8  |
| N1  |                    |            |      |          | 13.    | .2 16. | 4 19.          | 1 14.0                | 14.      | 7 _12.   | <u>ه</u> 14. | 4 14.4       |    |
| N2  |                    |            |      |          | N/R    | 18.5   | 18.2           | 13.9                  | 15.4     | 16.8     | 14.8         | 14.5         | 1  |
| N3  | C1 50U             | (HOF P1,P2 |      | N/R      | N/F    | 20.    | Э <u>(</u> 13. | .4 23.6               | 5) yr.   | 8 18.    | 8 16.        | 8 14.8       |    |
| N4  |                    |            |      | N/R      | N/R    | N/R    | 15.0           | 13.9                  | 16.3     | 18.7     | 18.6         | 16.6         | 1  |
| N5  |                    |            | N∕R  | N/R      | N∕ F   | R N∕F  | 15.            | 16.2                  | 2 18.    | Ø 16.    | .6 16.       | 3 17.8       |    |
| N6  |                    |            | N/R  | N/R      | N/R    | N/R    | N∕R            | 16.7 -                | 18.2     | 17.8     | 19.1         | 18.1         | ì  |

ular ⊨ internet

۴ ۲

GIANT NICKEL - LINE 9750 E - SCALE: 1" = 200 FT.

| 7600<br>L                    | 7700                     | 7800        | 7900             | 8000                                         | 8100                                                                                                                                        | 8200                                         | 8300                                     | 8400                                                            | 8500                                                        | 8600<br>l             |
|------------------------------|--------------------------|-------------|------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|-----------------------|
| SOUTH                        |                          |             |                  |                                              |                                                                                                                                             |                                              |                                          |                                                                 |                                                             | <b>-</b>              |
|                              |                          |             |                  | 4489.8                                       | 11662                                                                                                                                       |                                              | <u> </u>                                 | 1349.1                                                          | *<br>////////////////////////////////////                   |                       |
|                              |                          |             |                  | N∕R :                                        | 55.15.2                                                                                                                                     | 6575.0                                       | 5411.00                                  | 7460.0                                                          | 6063.0                                                      | 3634.0                |
| C1 SOUTH OF P1.P2            |                          | N/R         | N/7              | ( GI)                                        | 6 5833                                                                                                                                      | 6706.1                                       | 7785.                                    | 1/////////////////////////////////////                          | 8 54                                                        |                       |
|                              |                          |             | N∕/R             | N/∕R                                         | N∕R                                                                                                                                         | 579.8                                        | 1668.8                                   | 7347.8                                                          | 6033.0                                                      | 6583.0                |
|                              |                          | N/R         | N/R              | N ZE                                         |                                                                                                                                             |                                              | 11165                                    |                                                                 | a 1145                                                      | A BE                  |
|                              |                          | •••         |                  | 1961                                         | • • • •                                                                                                                                     | A 0084.1                                     |                                          | Allaria                                                         | ///////////////////////////////////////                     |                       |
| 7600                         | 7700                     | N/R<br>7800 | N/R<br>7900      | N/R<br>8000                                  | N∕R<br>8100                                                                                                                                 | N/R<br>8200                                  | 8300                                     | 8400                                                            | 8500                                                        | 862                   |
| 7600                         | 77ØØ                     | N/R<br>7800 | N/R<br>7900      | N/R<br>8000                                  | N/R<br>8100                                                                                                                                 | N/R<br>8200                                  | 8300                                     | 8420                                                            | 8520                                                        | 860                   |
| 7600<br>L<br>SOUTH           | 7700                     | N/R<br>7800 | N/R<br>7900      | N/R<br>8000<br>1                             | N/R<br>8100<br>                                                                                                                             | N/R<br>8200                                  | 8300<br>.1 15                            | 8400<br>.6 15                                                   | 8500<br>.7 17                                               | 860                   |
| 7600<br>South                | 7700                     | N/R<br>7800 | N/R<br>7900      | N/R<br>8000<br>1<br>18,<br>N/R               | N/R<br>8100<br>8 17.7                                                                                                                       | N/R<br>8200<br>.8 16<br>15.2                 | 6300<br>                                 | 8400<br>.6 15<br>17.5                                           | 8500<br>.7 17<br>18.7                                       | 860<br>.3             |
| 7600<br>Lsouth               | 7700<br>                 | N/R<br>7800 | N/R<br>7900<br>1 | N/R<br>8000<br>1<br>18.<br>N/R               | N/R<br>8100<br>1<br>17.7<br>17.7<br>2 - 15                                                                                                  | N/R<br>8200<br>.8 16<br>15.2<br>.0 15        | 8300<br>.1 15<br>.1 15                   | 8400<br>.5 15<br>17.5<br>.3 19                                  | 8500<br>1<br>.7 17<br>18.7<br>.5 29                         | 860<br>.3<br>.4       |
| 7600<br>L<br>SOUTH<br>C1 SOU | 7700<br>1                | N/R<br>7800 | N/R<br>7900<br>1 | N/R<br>8000<br>1<br>18,<br>N/R<br>N/R        | N/R<br>8100<br>1<br>                                                                                                                        | N/R<br>8200<br>16.2<br>16.2<br>14.7          | 8300<br>.1 15<br>.1 15<br>.14.8<br>.16.5 | 8400<br>1<br>.5 15<br>17.5<br>.3 19<br>19.7                     | 8500<br>                                                    | 860<br>.3<br>.4<br>.4 |
| 7600<br>South<br>C1 500      | 7700<br>1<br>TH OF P1.P2 | N/R<br>7800 | N/R<br>7900<br>1 | N/R<br>8000<br>1<br>18.<br>N/R<br>N/R<br>N/R | N/R<br>8100<br>1<br>1<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>17.7<br>1.5<br>N/R | N/R<br>8200<br>.8 16<br>15.2<br>.4.7<br>R 17 | 8300<br>                                 | 8400<br>6334.0<br>8400<br>1<br>17.5<br>19.7<br>18.7<br>.8<br>21 | 8500<br>.7 17<br>.5 22.4<br>.7 17<br>.5 29<br>21.4<br>.5 19 | 860<br>.3<br>.4<br>.6 |

| RESISTIVITY CONTOUR INT = 250 OHM-METERS | DATE: NOV. 8, 1988 | CORONA CORPORATION |
|------------------------------------------|--------------------|--------------------|
| CHARGEABILITY CONTOUR INT = 2.5 MSEC.    | FIGURE # PS - 5    | VANCOUVER, B.C.    |

L

|                                                                                                                                              |                                                                          |                                                                          |                                                                                                                                       |                                              | +                                                     |                                                 |                                                       |                                              |                    |                               |                  |                           |     |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|----------------------------------------------|--------------------|-------------------------------|------------------|---------------------------|-----|
| ØFT                                                                                                                                          |                                                                          |                                                                          | RES                                                                                                                                   | Ιστινιτγ                                     | (CHM-M)                                               |                                                 |                                                       |                                              |                    |                               |                  |                           |     |
| 500<br>3581_0<br>66655_0<br>4<br>4<br>66655_0<br>4<br>4<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 | 6620<br>6739 8<br>777.0 365<br>3355 8<br>3355 8<br>5458 8<br>5458 8      | 8700<br>2708.0<br>5.0<br>5.0<br>5.0<br>N/R                               | 8800<br>2445.0<br>51.0<br>N/R                                                                                                         | 8900<br>                                     | 9000 910                                              | Ø                                               |                                                       |                                              |                    |                               |                  |                           |     |
| 500<br>12_5<br>4.2<br>7.1<br>14.9<br>5.3                                                                                                     | 6600<br>1<br>14.4<br>14.4<br>14.5<br>15.3                                | 8700<br>5.3<br>5.8<br>19.6<br>19.6<br>N/R                                | CHARGE<br>8800<br>1<br>7.9<br>9.2<br>N/R                                                                                              | EABILJTY<br>8900<br>1<br>N/R<br>N/R          | (MSEC5)<br>9000 910<br>NDRTH                          | <pre> LINE 10250.00 + </pre>                    |                                                       |                                              |                    |                               |                  |                           |     |
|                                                                                                                                              | 86.00 8<br>211.01 6<br>211.01 6<br>555.0<br>2555.0<br>49.0 3754          | 3700<br>1<br>200<br>201<br>201<br>201<br>201<br>201<br>201<br>201<br>201 | 8822<br>2394.8<br>35.8<br>35.7<br>35.7<br>35.7<br>35.7<br>35.7<br>35.7<br>35.7<br>35.7                                                | RESJ<br>B900<br>N/R<br>N/R                   | ISTIVITY (OHM<br>9000 910)<br>1 1 1<br>N/R<br>N/R     | I-M)<br>Д 9200<br>North                         |                                                       |                                              |                    |                               |                  |                           |     |
| 14.4<br>16.8<br>16.8<br>15.3                                                                                                                 | 8600 6<br>14.4<br>14.5<br>14.8<br>16.6<br>17.8<br>18.1                   | 3700<br>1<br>12,5<br>13.1<br>13.7<br>15.6<br>16.5                        | 8820<br>13.3<br>14.8<br>16.2<br>N/R                                                                                                   | CHARGEI<br>B920<br>I<br>N/R<br>- 12.7<br>N/R | ABILITY (MSE)<br>9000 9101<br>1 III<br>N/R<br>N/R     | 25)<br>8 9200<br>North                          | LINE 1000.00                                          |                                              |                    |                               |                  |                           |     |
| 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                           | 8620 5<br>3686.8<br>5411.0<br>55411.0<br>5541.1.0<br>5541.1.0<br>55508.8 | 37.00<br>-1<br>                                                          | RES<br>6800<br>1<br>5362.0<br>1<br>7.0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1571V17Y<br>8900<br>                         | +<br>(CHM-M)<br>9000 9100<br>NORTH                    | 2                                               |                                                       |                                              |                    |                               |                  |                           |     |
| 17.3<br>1.7<br>29.4<br>19.5                                                                                                                  | 8600 6<br>1<br>15.7<br>20.2<br>18.6<br>18.9<br>19.1<br>19.7              | 3700<br>15.1<br>16.6<br>16.9<br>18.5<br>N/R                              | CHARGE<br>8820<br>14.8<br>14.8<br>N/R<br>N/R                                                                                          | RBILITY<br>8900<br>N/R                       | (MSECS)<br>9000 910<br>NORTH                          | LINE 9750.00                                    |                                                       | GEO<br>ASS                                   | LOGI<br>ESSM       | CALI                          | BRA<br>REP       | n c h<br>o r t            |     |
|                                                                                                                                              |                                                                          | GI                                                                       | ANT N<br>HOF                                                                                                                          | IICKEL<br>'e area,                           | GRID -<br>NEW WESTMI<br>L - 9<br>REPORT B<br>DATA COM | I.P.<br>NSTER MI<br>75ØE<br>Y: E.R.<br>PILATION | PSEUDO<br>NING DIVIS<br>TO 102<br>ROCKEL<br>BY: INTER | SECTION<br>SION, BRITI<br>SODE<br>PRETEX RES | IS<br>ISH COLUMBIA | SCALE:<br>PROJECT<br>N.T.S. N | 1" = 200<br>NO.: | FT.<br>CORONA 6<br>92 H/6 | 328 |

![](_page_44_Figure_0.jpeg)

![](_page_44_Figure_1.jpeg)

GIANT NICKEL - LINE 10500 E - SCALE: 1" = 200 FT.

![](_page_44_Figure_3.jpeg)

GIANT NICKEL - LINE 10750 E - SCALE: 1" = 200 FT.

+

Ł

+

+

+

|                                          |                       | 9300 9200 9100 9200 6900 6800 6<br>NORTH<br>N1<br>N2<br>N3<br>C1 NORTH OF P1.P2<br>N4<br>N5<br>N/R<br>N/R<br>N/R<br>N/R<br>N/R<br>N/R<br>N/R<br>N/R | 37203       86203       85203       84203       83203       8203       8120       8203       7920       7803       7720         8.3       8.4       15.6       21.1       19.4       16.7       12.3       15.1       N/R         8.3       16.8       21.3       22.4       16.8       15.5       19.1       N/R       GEOD LOGFCAL BRANCH         8.3       16.9       21.3       15.1       N/R       GEOD LOGFCAL BRANCH         8.3       15.2       19.1       15.3       15.8       19.3       N/R         9.3       16.9       21.5       10.7       N/R       GEOLOGFCAL BRANCH         9.3       15.2       19.1       15.3       15.8       19.3       N/R         17.5       18.2       15.2       14.6       21.5       N/R       ASSESSINGENT         V/R       19.5       17.8       15.2       13.7       28.6       N/R       ASSESSINGENT |
|------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SURVEYED BY: INTERPRETEX RESOURCES LTD.  | DRAWN BY: INTERPRETEX |                                                                                                                                                     | GIANT NICKEL GRID - I.P. PSEUDOSECTIONS SCALE: 1" = 200 FT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RESISTIVITY CONTOUR INT = 250 OHM-METERS | DATE: NOV. 8, 1988    | CORONA CORPORATION<br>VANCOUVER, B.C.                                                                                                               | L = 10500E  TO  11750E  PROJECT NO.: CORONA 6828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CHARGEABILITY CONTOUR INT = 2.5 MSEC.    | FIGURE # PS - 6       |                                                                                                                                                     | REPORT BY: E.R. ROCKEL<br>DATA COMPILATION BY: INTERPRETEX RES. N.T.S. NO.: 92 H/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

![](_page_45_Figure_0.jpeg)

۴. F

![](_page_45_Figure_3.jpeg)

ASSESSMENT REPORT

5600 57ØØ 58ØØ 5900 6000 NORTH N--1

-/-

1379.0 N--2 1030.0 1956.0 1950.0 6813.0 5330.0 3187.0 2143.0 2451.0 2271.0 2638.0 2884.0 1096.0 / 8801.0 8564.0 1105.8 1678.Ø 1587.8 2664.8 N/R 2183.0/ 2036.p-N∕R

N--3 C1 NORTH OF P1.P2

| RESISTIVITY CONTOUR INT ≓ 250 OHM-METERS                                            | DRTE: NOV. 8, 1988                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I = 7500 TO 8500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PROJECT NO. CO                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SURVEYED BY: INTERPRETEX RESOURCES LTD.<br>RESISTIVITY CONTOUR INT = 250 OHM-METERS | DRAWN BY: INTERPRETEX<br>DATE: NOV. 8, 1988                                                                                                                                                           | CORONA CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GIANT NICKEL GRID - I.P. PSEUDOSECTIONS<br>HOPE AREA, NEW WESTMINSTER MINING DIVISION, BRITISH COLUMBIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                             |
|                                                                                     |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SCALE: 1" = 200 FT                                                                                                                                                                                                          |
| ل<br>ا                                                                              | UR 17.9 21.8 29.6 37.1 34.2 27.6 29.3<br>N/R 19.1 26.5 36.1 37.5 33.6 34.4 3<br>UR N/R 26.1 35.5 35.1 36.0 40.1 37.9<br>N/R N/R 31.6 34.1 33.2 40.1 41.9 3<br>SURVEYED BY: INTERPRETEX RESOURCES LTD. | VR       17.8       21.5       28.6       37.1       34.2       27.6       28.3       28.5       25.2       18.3       18.3         N/R       18.1       26.5       56.1       37.5       33.6       34.4       33.8       31.1       26.2       25.1       27.5       24.8       18.3         VR       N/R       26.1       35.5       35.1       36.8       48.1       37.9       33.6       31.2       31.8       33.8       28.4       18.2         N/R       N/R       34.1       33.2       48.1       41.9       36.4       34.8       35.5       35.5       35.5       35.3       23.1       19.2         N/R       N/R       34.1       33.2       48.1       41.9       36.4       34.8       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5       35.5 | VR 17.8 21.8 29.6 37.1 34.2 27.8 29.6 25.2 19.6 18.3 16.1 12.5 16.5 12.8 9.2 9.3 9.3 7.8 8.7<br>NR 18.1 26.5 56.1 23.6 56.1 23.6 9.2 9.3 9.3 7.8 8.7<br>VR NR 26.1 35.5 35.1 36.8 18.1 37.9 33.8 31.2 25.1 22.5 24.8 19.3 14.4 11.2.7 12.1 11.5 9.2 18.7 9.1<br>NR NR 31.8 34.1 33.2 49.1 41.9 36.4 34.8 35.5 36.5 37.3 23.1 29.1 19.8 16.6 16.4 17.6 14.2 13.6 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 18.1 11.8 9.8 18.1 11.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 9.8 18.1 11.8 18.1 11.8 9.8 18.1 11.8 18.1 11.8 9.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 11.8 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 18.1 | VR - 17.0 21.5 50.6 77.1 21.7 20.6 75.2 20.6 75.2 20.6 75.2 20.6 75.2 20.6 75.2 20.6 75.2 20.6 75.2 20.6 75.2 20.6 75.2 20.6 10.3 10.1 12.5 10.6 10.4 11.3 10.1 10.5 0.3 10.1 0.5 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 |

![](_page_46_Figure_0.jpeg)

+ • 4

+

F

![](_page_46_Figure_3.jpeg)

![](_page_46_Figure_4.jpeg)

![](_page_46_Figure_5.jpeg)

+

+ +

![](_page_46_Figure_6.jpeg)

![](_page_46_Figure_7.jpeg)