SUBAT PER	NEO IN		
NOV	7 1939	N	
. #	\$ MET, D.O.		

LOC NO:	1123	<u>RD</u>
ACTION:		
FILE NO:		······································

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

ON THE

MASS PROPERTY

MASS 2 - 5 and SEL 1 - 4 Claims

Cariboo Mining Division

NTS 93 A/11,14

Latitude 52° 46' N Longitude 121° 22' W

Owners

Formosa Resources Corp./Golden Eye Minerals Ltd.

Operator

Formosa Resources Corporation

Lindsay S. Martin B.Sc.

November G7E &9890 GICAL BRANCH ASSECSMENT DFDORT

CONTENTS

1.	Summary	1
2	Introduction	2
<i>~</i> •	2.1 Logation And Aggess	2
	2.1 Docation And Access	2
		2
	2.3 Property History	4
	2.4 Previous Work	4
3.	Survey Methods, Results And Interpretation	5
	3.1 Geological Survey	5
	3.1.1 Regional Geology	5
	3.1.2 Property Geology	5
	3.1.3 Mineralization	7
	3.2 Geochemical Survey	7
	3.2.1 Sampling Methods	7
	3.2.2 Analytical Methods	8
	3.2.3 Soil Geochemistry Results	8
	3.2.4 Rock Geochemistry Results	10
	3.3 Geophysical Survey	12
	3.3.1 Magnetometer Survey	12
	3.3.2 VLM-EM Survey	14
4.	Itemized Cost Statement	15
5.	Author's Qualifications	20
6.	References	21

FIGURES

Figure	1	Mass Property Location Map	3
Figure	2	Geology Map	in pocket
Figure	3A	Copper Soil Geochemistry	**
Figure	3B	Lead Soil Geochemistry	61
Figure	3C	Zinc Soil Geochemistry	64
Figure	3D	Barium Soil Geochemistry	**
Figure	4 A	Total Field Magnetometer Survey -	
2		Profile Plot	**
Figure	4 B	Total Field Magnetometer Survey -	
2		Contoured Magnetic Susceptibility	11
Figure	5A	VLF-EM Survey - Profile Plot	11
Figure	5B	VLF-EM Survey -	
		Fraser Filtered In-Phase Component	17

TABLES

Page No.

TABLE	1	-	Mass Property Claims Data	2
TABLE	2		Soil Sample Statistical Summary	9
TABLE	3	-	Sulphide Boulder Assay Results	11
TABLE	4	-	Statistical Summary For Unit 1 Rock Samples	11
TABLE	5		Statistical Summary For Unit 2 Rock Samples	11
TABLE	6	-	Statistical Summary For Vein Samples	12

APPENDICES

APPENDIX I	Geochemical Survey - Analytical results
APPENDIX II	Rock Sample Descriptions
APPENDIX III	Total Field Magnetometer Survey Data
APPENDIX IV	VLF-EM Survey Data

MASS Property Likely, British Columbia

1. SUMMARY

The Likely Project involves exploration of the Mass property, a massive sulphide prospect located on the south side of Cariboo Lake, 90 kilometres northeast of Williams Lake, B.C. This area is readily accessible by road.

The property consists of eight claims (100 units) which cover an area of approximately 2,500 hectares. Claims are held through an option/joint venture agreement with Golden Eye Minerals Ltd.

The property is underlain by a suite of sedimentary and volcaniclastic rocks of late Proterozoic to Paleozoic age which have been intruded by a Devonian granitic stock. High-grade boulders occur as float on the Mass #5 claim. The mineralogy of these boulders suggests a volcanogenic massive sulphide origin.

The primary objective of the Likely Project is to find and evaluate the source of the mineralized boulders. In 1988, a program was carried out that consisted of line cutting and a geochemical soil survey followed by back-hoe trenching. During 1989, the grid was expanded considerably and the area was explored by a program of integrated geological, geochemical (soil) and geophysical (VLF-EM/Magnetic) surveys. Systematic soil sampling has been the primary exploration tool to date.

This work has resulted in the delineation of a number of exploration targets which are comprised of coincident soil and weak electromagnetic anomalies. One or more of these anomalies may relate to the source of the highly mineralized float boulders.

The next phase of work on the Likely Project should involve trenching to expose bedrock associated with the various anomalies, and the extension of the grid over unexplored areas with recently recognized exploration potential. Contingent upon the above, provision should be made for a drilling program.

2. INTRODUCTION

2.1 Location and Access

The MASS property is a massive sulphide prospect located on the south shore of Cariboo Lake, 90 kilometres northeast of Williams Lake, B.C. (Figure 1). Straddling Frank and Sellar Creeks, this area is readily accessible by all-weather logging road from Likely, B.C. The 8400 Road, which begins just south of the Cariboo River near the Weldwood logging camp, leads to spurs 8400C and 8400D which give direct access to the property. Elevation varies from 812 metres at Cariboo Lake to 1480 metres southwest of the grid.

The property is covered by a mixture of overgrown logging slash, fresh clearcuts, and subeconomic timber. Weldwood of Canada holds the tree farm licence.

2.2 Claim Information

The MASS property, or the MASS-SEL group, consists of eight contiguous claims (100 units) covering an area of approximately 2,500 hectares (see index map on Figure 2).

Claims are held under an option/joint venture agreement between Formosa Resources Corporation and Golden Eye Minerals Ltd. As the operator, Formosa Resources enlisted Boundary Drilling Inc. to undertake the exploration program.

The claim data is summarized as follows:

CLAIM	UNITS	RECORD NUMBER	RECORDED (m/d/y)	EXPIRY DATE (m/d/y)*
MASS 2	20	9363	09/26/1988	09/26/1993
MASS 3	10	9364	09/27/1988	09/27/1993
MASS 4	12	9365	09/28/1988	09/28/1993
MASS 5	10	9438	09/29/1988	09/29/1993
SEL 1	6	8883	11/18/1988	11/18/1993
SEL 2	18	8884	11/18/1988	11/18/1993
SEL 3	12	8885	11/18/1988	11/18/1993
SEL 4	12	8886	11/18/1988	11/18/1993

TABLE 1 - Mass Property Claims Data

*After acceptance of work documented in this report.

2.3 Property History

Frank Creek (also known as Goose Creek) has seen sporadic placer mining activity since the turn of the century. The most recent work on the creek was undertaken from 1984 to 1986 by the Rasmussen brothers. Massive sulphide boulders were uncovered in the course of sinking a 48 foot (14.6 metre) shaft on the east side of the creek. A hard rock claim named the Home Run (9 units) was staked, but little work was done and the property lapsed in 1987. This area was restaked as the MASS claim by Golden Eye Minerals in May, 1987 and incorporated into the MASS group in February, 1989.

Work on the property was undertaken on the assumption that the source of the boulders is within the Frank Creek watershed. While these boulders are obviously glacially transported, their angularity and size implies a short transport distance. Glacial striae are rare, but available evidence suggests that glacial movement was from the south to southwest.

2.4 Previous Work

Work in 1988 began in the vicinity of the massive sulphide boulders near the mouth of Frank Creek and was extended in the inferred up-ice direction. Approximately 22.4 linekilometres of grid was established in the overgrown logging slash above the 8400 Road and 629 soil samples were collected at 25 metre intervals (Figure 2). The grid lines trend 050°, and are spaced 50 metres apart with 25 metre stations. Based on anomalous results in the vicinity of line 500S 500W, approximately 100 metres of backhoe trenching was undertaken. This excavation revealed windows in the clay-rich till that allow groundwater to surface. No bedrock mineralization was observed. The 1988 soil geochemistry results are included in this report for the sake of completeness.

In the spring of 1989, a further 41 line-kilometres of grid was established. Lines in this portion of the grid trend 055°, have a line spacing of 100 metres, and 25 metre station intervals. This grid was used as a base for the geological, geochemical and geophysical surveys described in this report. 3. SURVEY METHODS, RESULTS AND INTERPRETATION

3.1 Geological Survey

The grid on the MASS property was mapped at a scale of 1:5000. Areas of the property accessible by logging road were mapped at a scale of approximately 1:16,100 using airphotos as a base. Figure 2 summarizes 1000 hectares of mapping and covers portions of the SEL 1, MASS 2 and MASS 3 claims.

3.1.1 Regional Geleogy

The MASS property lies within the Barkerville Terrane, one of four fault-bounded stratigraphic and tectonic terranes which comprise the Cariboo Gold Belt (Struik, 1988). These terranes are (from east to west):

Cariboo Terrane - Precambrian to Permo-Triassic continental shelf clastics and carbonates.

Barkerville Terrane - Precambrian and Paleozoic continental shelf and slope clastics, carbonates, and volcaniclastics.

Slide Mountain Terrane - Mississippian to Permian rift floor deposits of basalt and chert.

Quesnel Terrane - Upper Triassic and Jurassic island arc volcaniclastics and fine clastics.

These terranes were imbricated during the Mesozoic through the obduction of the island are (Quesnel) and rift-related (Slide Mountain) rocks onto the continental shelf and slope packages (Barkerville and Cariboo). The Barkerville terrane is structurally lowest; the east dipping Pleasant Valley thrust places Cariboo rocks on Barkerville; the shallow Pandata thrust places Slide Mountain rocks on Barkerville and Cariboo; and the Eureka thrust places Quesnel and Slide Mountain rocks over Barkerville.

3.1.2 Property Geology

Bedrock exposure varies from none north of the 8600D road, to 30 to 40 percent at the southwestern edge of the grid (Figure 2). According to Struik (1988), the Barkerville terrane underlying the MASS property is represented by five informal divisions of the Precambrian to Paleozoic Snowshoe Group. These are the Hadrynian Ramos and Keithley Successions (quartzites, phyllites and minor marble) and the Paleozoic Harveys Ridge (quartzites, grey phyllites, green metatuffs and minor limestones), Goose Peak and Agnes Successions (quartzites and conglomerates) (Struik, 1986, 1988). These rocks have been intruded by the Quesnel Lake Gneiss, a porphyritic granitic orthogneiss of suspected Devonian age.

The 1989 geological mapping revealed that the property is underlain by four distinct rock packages, named Units 1 to 4. Units 1 to 3 may correlate with Struik's Harveys Ridge Division.

The stratigraphically lowest package, Unit 1, consists of interbedded andesitic tuffs and tuffaceous sediments, minor porphyritic volcanic dykes or flows, and well banded andesite tuffs. Also contained within this package are one to ten metre thick shale and black, aphanitic to very finegrained quartzite beds that increase in volume upwards. The total thickness of this package is unknown but probably exceeds 85 metres.

Unit 1 grades up to Unit 2, consisting of thinly interbedded shale and jet black, aphanatic to very fine-grained quartzite. Thin (one to two metre) interbeds of tuffaceous rocks occur near the top of this unit. Total thickness is approximately 30 metres. Unit 2 represents a marker horizon that can be traced off the map area into the SEL 1 claim.

Unit 2 is conformably overlain by Unit 3, comprised predominantly of sand to grit sized greywacke with interbeds of steel grey phyllite on a scale of metres to tens of metres. Minor grey limestone beds to three metres thick and a quartzite cobble conglomerate of unknown thickness occur at the northwest extent of exposure. Unit 3 likely represents turbidite related deposits. Well developed graded bedding in the gritstones indicates that the entire volcanic and sedimentary package is overturned.

Units 1 and 2 are intruded along the western boundary of the map area by Unit 4, the Quesnel Lake Gneiss. This coarse grained megacrystic orthogneiss is of uncertain age, although N-Pb isotope studies indicate late Devonian (Montgomery, et al, 1989).

One particular rock type remains an enigma. A massive to weakly foliated fuchsite-ankerite+/-sericite-quartz rock occurs as rare, one to three metre bands within the greywacke grits and as one observed band within the volcanic package. This rock would appear to be a recrystallized, clean quartzite. However, its position within both the volcaniclastics and the sedimentary package is puzzling and suggests an intrusive origin.

Rocks have suffered variable degrees of strain, and in the property area have been subjected to greenschist grade metamorphism. Porphyroblasts of ankerite (siderite ?) altered to limonite are ubiquitous in Unit 1 and the finer grained portions of Unit 3. Most rock types display a weak to very pronounced bedding plane foliation, with the exception of the gritstones and the banded tuffs. Crenulation cleavages are locally well developed, especially in the pelites. No faults were mapped in the field, although they undoubtedly exist.

3.1.3 Mineralization

The massive sulphide boulders found near the mouth of Frank Creek consist of fine grained banded pyrite with associated galena, sphalerite and minor chalcopyrite, interbanded with layers of recrystallized quartz and white mica (Pell, 1989). These boulders range in size from 0.25 to 1.5 cubic metres and are subangular. The sulphide mineralogy, the banded texture, and the presence of barium suggest a volcanogenic origin for the mineralization.

3.2 Geochemical Survey

The geochemical survey consists of 1253 grid soil (B horizon) samples, 163 soil profile samples, and 66 rock samples. Soil profile samples were collected to test the validity of anomalous soil values. Rock sampling was primarily intended to identify background levels of base metals. All samples were analysed for a standard suite 30 elements and gold.

3.2.1 Sampling Methods

Soil samples were collected along grid lines at 25 metre intervals using a soil auger of a type utilized by Agriculture Canada in regional soil mapping. This auger allows the profiling of a continuous column of soil in 20 cm intervals. Unlike the constant depth method, this manner of sampling allows control over the horizon sampled. Wherever possible, samples were collected at the base of the B horizon. Notes on parent material, soil type and texture, and groundwater flow were recorded. Soil profiles were obtained in several areas of high values to test the validity of the results.

3.2.2 Analytical Methods

All soil and rock samples were analysed with JCP methods by:

Acme Analytical Laboratories Ltd. 852 East Hastings Vancouver, B.C. Phone: 253-3158

Soil samples were dried and seived to -80 mesh. Rock samples were crushed to -1/4 inch and pulverized. A 0.5 gram split of each sample type was digested with 3 millilitres of a 3:1:2 mixture of HCl-HNO₃-H₂O at 95° C for one hour. This mixture was then diluted to 10 millilitres with water. It should be noted that this leach is nearly total for base metals, only partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B, and W, and limited for K, Na, and Al.

The samples were analysed by ICP for a standard suite of 30 elements (Appendix I). As well, the soil samples were analysed for Au using the acid leach and Atomic Absorption method from a 10 gram sample. Rock samples were analysed for Au by fire assay and ICP from a 10 gram sample.

3.2.3 Soil Geochemistry Results

Anomalous values in copper, lead, zinc and barium have been returned from soil samples from several localities on the MASS property. Gold results are disappointing. Soil results are presented in map form for copper (Figure 3 A), lead (Figure 3 B), zinc (Figure 3 C), and barium (Figure 3 D). It should be noted that the digestion used for barium is only partial; therefore, these results are relative at best.

Table 2 summarizes the statistical data calculated for the four elements presented in Figures 3 A to 3 D. These values were obtained using the first pass grid soil results for a total of 1797 samples (the 1988 results included). Threshold values were chosen to approximate the mean plus one standard deviation level. These thresholds also represent the first contour level on Figures 3 A to 3 D. The contour interval on each map approximates one standard deviation. Note that not all high contours were plotted for the sake of clarity.

	MEAN	STD DEV	MEAN +1 SD	MEAN +2 SD	MEAN +3 SD	THRESHOLD VALPES
		<u>سريم</u>		mqq	mqq	meter
Cu	59.6	51.8	111.4	163.1	214.9	100
Pb	53.3	58.4	111.6	170.0	228.4	100
Zn	193.5	163.7	357.2	520.8	684.5	300
Ba	92.7	69.1	161.8	230.9	300.0	150

TABLE 2 - Soil Sample Statistical Summary (n=1797)

This statistical treatment is far from rigorous. However, cursory inspection of probability plots (not presented here) indicate that samples are most likely drawn from a single population.

In 1988, three trenches were excavated near 500S 500W, the site of a small copper-lead-zinc-barium soil anomaly. The soil profile in the trenches indicated permeable zones in the four metre thick basal till blanket. These windows allowed groundwater travelling downslope underneath the till cap to surface. Unmineralized greywacke grits were exposed in the base of the trenches.

The lead-zinc anomaly centred at 1200S 1550W includes a large number of samples with very high zinc values (to 2000 ppm). Lead and copper, while anomalous, do not display the same high values or areal extent. The zinc rich zone is elongate downslope in a northeasterly direction, and covers an area of 400 by 150 metres. The coincident lead anomaly occurs at the uphill extent of the zinc zone. About thirty soil profiles were obtained in this zone. These samples confirm the magnitude and extent of the anomaly (Clark, 1989). As well, many of the profiles indicate that lead and zinc values increase with depth (Appendix I).

Centred at grid station 1350S 750W, a copper-lead-zinc anomaly occurs down-slope from Trench 88-4, where a small gossan containing minor malachite mineralization is exposed. Several exceptional lead values (to 2892 ppm) were encountered. This anomaly trends in a southeasterly direction for about 300 metres, crosscutting both the stratigraphy and the hill slope.

The anomalies at 12008 1550W and 1350S 750W occur in permeable soils (sandy ablation tills), in areas of no outcrop, and on gentle slopes below a steep hillside (Clark, 1989). This suggests that these anomalies could be transported. As well, barium is conspicuous by its absence. Located at 1650S 1000W is a small zinc soil anomaly that coincides with chlorite schist interbeds within the coarse grained sedimentary package.

The copper-lead-zinc anomaly centred at 1900S 1800W coincides with a long, weak VLF-EM conductor trending parallel to bedding. The southwestern portion of this anomaly is located up-slope over intermediate volcanic rocks, approximately 75 metres from the volcanic-sediment contact.

A copper-lead-zinc anomaly, centred at 2300S 1350W, coincides with a volcanic-shale/siltstone contact. Lobes of this anomaly extend up-slope into the volcanic package. The lower, northeastern portion of this geochemical high is underlain by shale/siltstone and coincides with weak magnetic and VLF-EM anomalies.

The copper-lead anomaly centred near 1400S 2375W is underlain by well banded andesite tuffs of Unit 1. This zone is elongate parallel to stratigraphy and open to the northwest.

Anomalies centred at 2600S 1950W and 2400S 2000W are underlain by volcanic rocks. Both lack barium values which suggests that barium may be concentrated near the contact with the overlying shale/siltstone unit.

Anomalies located at 1750S 2150W and 2150S 2175W exhibit the copper-lead-zinc-barium signature characteristic of volcanogenic deposits but are underlain by Quesnel Lake Orthogneiss. Both anomalies occur in moist organic soils, and are suspected to be transported downslope from the volcanic package.

3.2.4 Rock Geochemistry Results

Rock samples were collected primarily to see if soil anomalies could be attributed to units with high background levels. Of particular interest was the mixed shale/jet black quartzite unit (Unit 2). Vein samples were also collected to see if a base metal/barium association occurs, as noted in the literature (Struik, 1988). Table 3 lists assay results from three representative massive sulphide boulders located near the mouth of Frank Creek:

SAMPLE	Cu	Pb	Zn	λq	Au	Ba
NUMBER	%	%	ន្ទ	oz/T	oz/T	%
Q 5351	0.45	3.91	3.48	3.50	0.001	0.75
Q 5352	0.07	3.81	5.44	4.24	0.001	3.08
Q 5353	1.38	2.13	2.24	1.96	0.004	0.32

TABLE 3 - Sulphide Boulder Assay Results

Table 4 sumarizes the statistical data for the volcaniclastic package (Unit 1). One sample (RR-7) with malachite mineralization was removed from this suite:

TABLE	4	-	Sta	tist	.i ca	¥ 1	Summary	For	Unit	1	Rock	Sampl	es
							•					•	

	Cu	Pb	Zn	Ag	Ba
	ात्वव्	pbw	$\mathbf{b}\mathbf{b}\mathbf{w}$	$\mathbf{b}\mathbf{b}\mathbf{m}$	6. bbw
Maximum:	435	365	1296	1.1	340
Minimum:	11	2	17	0.1	33
Mean:	125	45	237	0.2	140
Std. Dev:	113	98	512	0.3	97

· •

These values represent high background levels for igneous rocks. It is interesting to note that barium values are not as high as might be expected in a volcanic unit.

Table 5 summarizes the statistical data for Unit 2 (shale/quartzite). Two anomalous samples (LK89-1011 and - 1030) were omitted:

TABLE 5 - Statistical Summary For Unit 2 Rock Samples

NUMBER OF SA	MPLES: 20				
	Cu	Pb	Zn	Ag	Ba
	ppm	րրտ	$\mathbf{p}\mathbf{b}\mathbf{m}$	$\mathrm{b}\mathrm{b}\mathrm{m}$	DD
Maximum:	363	152	522	0.6	454
Minimum:	8	4	16	0.1	56
Mean:	89	45	1.60	0.2	213
Stđ. Dev:	166	427	179	0.2	102

NUMBER OF SAMPLES: 20

By way of comparison, average values in shales for copper, lead, zinc, silver and barium are 42, 25, 100, 0.19, and 550 ppm respectively (Rose, et al, 1979). Although the values reported for Unit 2 appear higher than average, it must be noted that the variability between samples is high. Eight of the 22 samples contain lead values over 50 ppm. Barium values are misleading due to the incomplete digestion; however, it is interesting to note that these values are higher than in the volcaniclastic package. Several of the soil anomalies are associated with this shale/siltstone unit.

Table 6 displays the statistical summary for the vein samples:

NUMBER OF S	SAMPLES: 14				
	Cu	Pb	Zn	λg	Ba
	ppm	ppm	ppm	րթա	ppm
Maximum:	3306	28313	46270	206.3	295
Minimum:	r,	21	3	0.1	1
Mean:	390	6814	4508	31.2	65
Std. Dev:	841	10195	11792	59.2	91

TABLE 6 - Statistical Summary For Vein Samples

The values returned indicate no base metal/barite association for vein samples. Therefore, veins are not a likely source for the lead-zinc-barium soil anomalies occurring between 1100W and 1900W.

3.3 Geophysical Survey

Approximately 30.3 line-kilometres of grid was surveyed along grid lines at 25 metre intervals using an OMNI-PLUS integrated proton precession magnetometer/VLF-EM instrument. This instrument, designed and manufactured by EDA Instruments of Toronto allows the simultaneous collection of the in-phase, guadrature and field strength components of a VLF-EM signal (in percent) and total field magnetometer data (in gammas). Provision is made for recording data from up to three VLF stations. Unfortunately, information from only one station (Hawaii, 23.4 kHz) was obtained over the entire survey area due to erratic transmitter operation.

3.3.1 Magnetometer Survey

Diurnal corrections for the magnetometer survey were performed using an OMNI-IV base station unit. This system collected total field readings from a stationary point every 30 seconds. At the completion of each day, the field unit and base station were connected and the data corrected automatically according to the following algorithm: Corrected Total Field Reading

[(Uncorrected Field Unit Reading - Datum Value) - (Base Station Reading - Reference Field)]

Where:

Uncorrected Field Unit Reading: the value recorded at each station by the field operator.

Datum Value: a value entered into the field unit to remove a base level from all readings. For this survey a datum value of 0 was used.

Base Station Reading: a value provided by the base station that coincides with the exact time of each field reading.

Reference Field: a value entered into the base station unit that allows data from different days to be used. This value remains the same for the duration of the survey. The value used in this survey was 56,700 gammas.

The results of these corrections are shown in Appendix III. Note that the "DRIFT" column lists the correction performed on each value.

The total field magnetometer data is presented as profiles in Figure 4-A, and contoured in Figure 4-B. The data was smoothed using a Hanning filter six times prior to contouring. Profiles represent unsmoothed data.

Several weakly anomalous features appear along the western portion of the grid between lines 1200S and 1700S. These anomalies correspond to the contact between Units 1 and 2. The strongest of these features represents a jump of approximately 225 gammas and exhibits a classic dipole profile. Farther south, between lines 2000S and 2200S, weak dipoles correlate with the contact between the volcanic package (Unit 1) and Quesnel Lake Gneiss.

A localized, sharp dipole occurs at 2200S 1300W. This 300 gamma jump occurs in an area where Unit 2 is well exposed, and features tuff interbeds.

By far the most significant magnetic feature is centred at line 1400S 1300W. This dipole anomaly occurs between two large soil anomalies in a area lacking outcrop. The trend of the dipole appears to parallel the stratigraphy exposed in the roadcut to the south. This anomaly cannot be explained by the geological information available.

3.3.2 VLF-EM Survey

VLF-EM data is presented in raw form in Appendix IV. Profiles of the in-phase and quadrature components (in percent) appear in Figure 5-A. In-phase component data in contoured Fraser filtered form appears in Figure 5-B.

Few classic crossover profiles were obtained since the transmitting station (Hawaii, 23.4 kHz) was weak, and the survey lines were not perpendicular to stratigraphy. An arcuate band of weak in-phase component spikes occurs along the western portion of the grid. This appears to correspond to two different contacts: the contact between the volcanic and sedimentary packages in the north, and the Quesnel Lake Gneiss/volcanic contact in the south.

Fraser filtered data reveals several subparallel anomalies that trend northeasterly. These features are roughly parallel to stratigraphy and correspond to contacts between the shale/black quartzite unit and overlying grits.

4. ITEMIZED COST STATEMENT

Wages and Professional Fees* including benefits	\$ 44,057.00
Truck Rental Two trucks @ \$40.00/day ea. for 46 days	\$ 3,680.00
Geochemical and Assay 1416 soil samples @ \$13.00 ea. 66 rock samples @ \$15.25 ea.	\$ 18,408.00 \$ <u>1,006.50</u> \$ 19,414.50
Meals and Accomodation 168.5 man-days @ \$45.00/man-day	s 7,414.00
Miscellaneous field supplies, office, fuel, maps, telephone, etc.	\$ 7,767.00
Geophysical Equipment Rental 1 month @ \$1500.00/month	\$ 1,500.00
Contract Engineering Charge	\$ 10,060.00
TOTAL	\$ 93,892.50

* Breakdown showing pay rates and days worked follows. This figure includes line cutting: 41 line-km @ \$125.00/line-km.

MARCH/APRIL

Year	1989	
i çai		

NAME	RATE	MONTH	1	2	3	4	5	6	; [7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Time Total
Leighton, D.	\$300.00	March April			-				-];	X	Ζ								X										X					4.5
Martin, L.	\$150.00	March April				-				-	_																				X	X			2
	*					-		-		-	_				-																				
						-	-	+	-	1			-	-	-	-	-												-	\square				-	
					$\left[\right]$	-		+							1						-	-							\vdash	\square					
							1	+	+		_				+	-		+							_				F		F				
			-					1-	-	1	_			<u> </u>	1							-							\vdash	—	-			-	
									+	_					+		<u> </u>													F	F			-	+
					<u> </u>	-			+												-									╞	F			F	+
					-			+	+	+				-	-														<u> </u>		 		-	F	+
Total chargeable	<u></u>	I								\dagger																				<u> </u>	T			 	

MAY/JUNE

Year _____ 1989 _____

NAME	RATE	MONTH	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	Time Total
Leighton, D.	\$300.00	May June	X	X										X	x	X								X	Х	X	X							10.5
Martin, L.	\$150.00	May June	x	X X					-		_													-				X			X	X		5
O'Neil, D.	\$125.00	May June	-						x	X	X	X	 X	X	 X	X	X								X	χ	X	X	x	X	X	X		17
Lu, H.	\$125.00	May June			-					$\overline{\mathbf{b}}$								-																5.5
Facchina, L.	\$125.00	May June		-						X	X	x	X	X	x	X	X	X	X	x	X	X	X	x	χ	X	X							17
Faiers, B.	\$150.00	May June	-							X	X	X	χ	x	X	X	X	X	X	x	X	X	X	x	X	x	 x		-					17
Knox, J.	\$200.00	May June		-								-						X												-				1
						-				\square		-																	-					
			-		-													i 											-					
						-																	_				 							
Total chargeable		L					Ì		Ī							-																		

JULY/AUGUST

Year	1989	
------	------	--

NAME	RATE	MONTH		1	2 :	3	4 5	6	7	8	9		10 1	1 1	2 1	3 14	4 1	5 1	6 1	7 1	8 1	9	20	21	22	23	24	25	26	27	28	29	30	31	Time Total
Clark, G.	\$160.00	July August	;	x i	x	X	 xix	X	×	()		x x	 (X	X	 X	X		x			-		-					X	X	X	X	X	X	X	22
Facchina, L.	\$125.00	July August	-	 x	x	X																						X	X	<u>х</u>	x 	x 	X	X	10
Faiers, B.	\$150.00	July August		x	X	x	1	-				-							+									X	X	X	X	X	X	X	10
Leighton, D.	\$300.00	July August	-	-					1	X		-	X	+	1				1	XI		1	<u>x </u>		+		_		-				-		4.5
Leighton, S.	\$125.00	July August		x	x	x	x i x	X	×		()	x	XIX	 X	 X	X		 X								_		X	X	X	X 	X	X	X	22
Martin, L.	\$150.00	July August		x i	X	 x >	(X	X	X	()	()	X	 X X	X	X	X		 X												X	X	x	;)	X	20
Pell, J.	\$275.00	July August	x	X	X									-		-	-			+			+	1		-					X	X 	X	X	7
			-						-	-		+		1	1		-			-	-														
			-		+	_						1			T				-							_							-		
			-	+	1	+			1	-	+	-	-				T		-											F	<u> </u>		F		
Total chargeable	l	-! <u></u>		Ì		Ì				T	İ																							İ	

SEPTEMBER/OCTOBER/NOVEMBER

NAME	RATE	MONTH	1	2	3	4	5	6	7	8	9	10	111	2 1	3 14	11	5 16	17	18	19	20	21	22	23	24 2	5 26	27	28	29	30	31	Time Totai
Martin, L.	\$150.00	September				 					 	1		i			1		-			Х	X		()	<u>(X</u>	1					5
		:							X	iχ	x	X	X X	X	<u>x</u>	X	X	X	x	X	X	х	X	xI	XI:	(X	X	1	1	X	X	
	-	October		1								1		1	1	ł						ļ			Ì	1	1	l				24.5
		November	X	X	X			X	Х	X	X	X	i	1	x x	X	X	X	<u> </u>	<u> </u>					1	1	<u> </u>	<u> </u>				14
	1	1								1	 				+-	 			<u> </u>					1			1					
			-							 				1	+	1											1					
			1									1	 	 		1	 	1	1						1	1	1	1			ĺ	
						1						Ī		!		Ì									1							
	1									1			İ	I			1		1						1	1						
			 									<u> </u>		;		1		<u> </u>	1	<u> </u>			1			<u> </u>	 					
			-			1						1	 	<u>,</u>		<u> </u>	-	 	1	1				<u> </u>			<u> </u> 				_	
	1	1	 				 				1	1 		!	<u> </u> 	1	+		<u>.</u>	<u> </u> 					+	;					ا ا	
		1											1		1	1	1	İ		Ī						!	1			1		
	1	į	[1			1		i		I		1					1	1	;	1					
		! :	į				ļ						1			1								!		1						
	1	1				1				i .	1	 :	į 		;	1	-	<u> </u>	1							 	<u> </u>				_	
		1)			-				1 	ł 					1	1	1	+					} 			1					
Total chargeable												1																				

5. AUTHOR'S QUALIFICATIONS

CERTIFICATE OF QUALIFICATIONS

- I, Lindsay S. Martin, do hereby certify that:
- I am a professional geologist with offices at 400-425 Burrard Street, Vancouver, B.C. V6C 2G8.
- I am a graduate of the University of British Columbia, B.Sc. (Geological Sciences), 1986.
- 3. I have practiced my profession as a geologist in British Columbia, Yukon and Northwest Territories, and Ontario since 1986.
- 4. I have personally examined the MASS property, performed the geological mapping, and supervised the exploration work carried out there.

Dated at Vancouver, British Columbia, this 17th day of November, 1989

Lucks

Lindsay S. Martin B.Sc.

6. REFERENCES

CLARKE, G. (1989) An Analysis of Mass Property Soils, Unpublished internal report.

MONTGOMERY, J.R. AND ROSS, J.V. (1989) A note on the Quesnel Lake Gneiss, Canadian Journal of Earth Sciences, Vol. 29, pp 1503-1508.

PELL, J. (1989) Personal communication.

ROSE, R.W., HAWKES, H.E., AND WEBB, J.S. (1979) Geochemistry in Mineral Exploration, Second Edition, London: Academic Press, pp 550-581.

STRUIK, L.C. (1986) Bedrock geology, Spanish Lake and ajoining areas, Geological Survey of Canada Open File No. 920.

STRUIK, L.C. (1989)

Structural geology of the Cariboo Gold Mining District, East-central British Columbia, Geological Survey of Canada Memoir 421, pp 2-8, 47-73. APPENDIX I

Geochemical Survey - Analytical results

ACME ANALYTICAL LABORATORIES LTD.

61 39 132 6.9

19

STD C

71

31 1039 4.15

44 18

8 40

50 19 17 19 61

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

(

(

(

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HHO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SE CA P LA CE NG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P12 SOIL P13 SILT P14 ROCK

16 |88 Hos DATE RECEIVED: AUG 8 1988 DATE REPORT MAILED: BOUNDARY DRILLING INC. PROJECT MASS /0/ File # 188-3397 Page 1 7h Cđ Sb ٧ Ca 2 Cr Мα Ba 7i Al Na ŝ ¥ SAMPLE Pb Zn λq Ni C٥ Mn 7e λs ۵ Au Sr 3i La 8 Жo Cu 3 PPM PPN PPN ррн PPN PPM PPN PPN 2 PPN PPN ł - PPV \$ PPH ł ł PPN PPN PPN 228 PPH PPN pou 201 1 PPN PPN 1 5.47 28 30 . 50 54 .01 2 2.04 .01 . 35 N 10+505 BL 1 15 22 97 .2 20 11 493 \$ Ş ND 10 Ŕ 2 2 24 .07 061 1 2 2.13 ND 10 5 13 .05 .052 24 29 .43 33 .01 .01 . 14 15 72 30 23 10 315 3.95 5 2 2 1 N L0+505 0+25E 1 . 5 ÷. 5 2 19 .04 .058 22 23 .31 39 .01 7 1.39 .01 . 04 M L0+505 0+50E 1 15 2: 73 .4 16 3 429 5.05 9 ND 3 2 1 22 .35 5 NÐ 9 6 2 2 19 . 06 .051 26 41 . 01 2 1.54 .01 .04 1 15 á 233 4.20 7 1 M L1+005 BL 1 13 19 őő .1 .03 .025 32 25 .43 62 .01 2 1.97 .01 . 94 M 11+005 0+25E 14 71 16 7 259 3.14 5 5 ND 9 4 2 , 16 1 1 4 .1 .01 .03 12 40 231 2.46 5 Xî 3 13 .02 .044 28 15 .24 39 . 31 2 1.14 1 M L1+00S 0+503 1 .1 6 1 ND .03 .010 26 3 .15 47 .01 2 .74 . 01 03 4 24 3 193 1.58 2 5 5 1 2 3 1 1 W L1+005 0+755 1 5 .1 4 22 2 1.55 .01 1 12 16 **á**1 .3 15 11 524 3.34 \$ 5 ND 10 1 1 2 2 13 .03 .031 31 . 38 38 .01 . 94 1 M L1+005 1+00E 28 11 .17 2 .32 .01 . 93 13 .03 .031 24 .01 187 2.30 5 ND 5 3 1 2 2 2 M L1+505 BL 6 15 29 . 6 5 3 4 1 5 .27 2 1.17 . 23 13 10 6 430 3.19 5 ХD ς 1 2 2 14 .05 .050 26 17 33 . 91 . 01 1 N L1+505 0+253 1 19 44 .1 21 300 3.44 5 ND 10 5 2 12 .07 . 944 33 21 .39 21 .01 4 1.41 .01 03 1 M L1+505 0+50E 30 18 58 .1 ą. 5 1 33 23 .49 42 .01 2 1.51 .01 . 34 428 3.65 ND 11 2 13 .05 . 033 1 N L1+505 0+75E 22 19 85 . 2 24 11 7 5 2 2 1 35 25 .50 50 .01 2 1.70 .01 .04 M L1+50S 1+00E 1 18 21 83 .1 20 11 413 3.99 7 5 ND 10 ş 1 2 2 14 .06 .047 1 XD 10 5 2 3 15 .06 .047 31 26 .51 44 .01 2 1.57 .01 . 05 7 5 2 1 N L1+505 1+25E 22 23 76 .3 21 10 403 4.15 1 34 23 .01 .05 17 15 92 .1 19 11 703 3.24 4 5 ND 11 5 2 2 2 14 . 06 .029 .44 75 .01 2 1.55 - 1 M L1+50S 1+50E 1 2 23 .18 .047 26 39 . 62 60 .01 2 1.58 .01 . 97 . 1 24 15 107 . 2 35 12 290 3.39 9 5 ND 7 12 2 N 13+005 1+75W 1 29 . 094 27 44 . 57 138 . 91 2 2.35 .01 .15 1 ND 29 3 .46 76 36 168 .1 46 13 708 4.55 14 5 1 1 H L3+005 4+50W 1 31 ND 3 29 3 2 21 . 52 .053 20 28 .41 181 . 02 2 1.59 .01 .07 1 N L3+005 4+25W 1 75 87 227 .1 32 15 931 3.84 5 1 520 4.30 10 5 ND 5 15 2 3 21 . 26 .051 25 27 .37 103 .01 2 1.85 .01 . 05 1 38 33 14 1 N L3+005 4+00W 1 35 112 .4 2 15 .07 .031 26 23 .40 33 .01 2 1.40 .01 .04 1 N L2+005 3+75W 1 23 17 63 . 2 20 8 206 3.28 5 5 XD. 8 5 2 3 3 15 .03 .020 26 17 . 22 29 .01 2 1.12 .01 .03 1 91 2.35 5 MB N L3+005 3+50V 1 11 12 38 .3 9 1 - 5 8 - 2 25 32 .49 43 .01 .01 . 05 ND 2 23 .06 .055 2 1.58 1 27 258 3.97 8 N L3+005 3+25W 1 22 17 77 . 2 8 1 5 246 2.90 6 5 ND 6 2 2 15 .05 .053 18 22 .27 33 .01 2 1.41 . 01 . 04 1 14 6 4 1 N L3+005 3+00W 1 20 56 .4 16 22 23 35 2 1.22 .04 27 68 18 1 473 4.35 12 5 ND 7 Ę 1 2 2 21 .04 .091 .30 .01 .01 1 N L3+005 2+75W 1 19 .1 ЯÐ 2 20 .04 .072 26 20 . 29 30 .01 2 1.11 . 01 . 03 2 22 10 525 3.98 4 9 H L3+005 2+50W 1 29 22 74 .1 -5 .15 22 17 . 39 30 .01 6 1.02 .01 .05 1 S 10 2 12 .048 67 23 10 385 2.76 5 ND 10 2 M L3+005 2+25W 1 21 19 . 2 11 .11 21 16 .36 22 .01 2 .98 01 05 1 276 2.49 5 ND 9 7 1 2 2 .044 M L3+005 2+00W 1 23 18 58 .1 20 8 5 27 20 .44 18 .01 2 1.03 .01 . 05 25 426 3.08 7 5 NÐ 10 14 1 2 2 10 . 30 .045 1 N L3+005 1+75W 67 31 14 1 24 .1 20 .37 37 2 1.12 .05 ЯD 6 10 2 2 2 13 .15 .075 19 . 91 .01 1 23 42 79 .5 24 17 969 3.52 9 5 M L3+005 1+50W 1 10 .16 .055 22 17 .32 36 .01 .91 .01 . 34 1 11 536 2.94 ND 6 10 2 4 22 4 5 M L3+005 1+25W 1 23 22 85 .2 4 1.08 .01 .04 10 .13 .053 28 18 .41 33 .01 1 10 741 2.99 5 ND 10 2 ? M L3+005 1+00W 20 13 70 .1 22 1 1 23 -38 . 31 5 . 73 .01 . 33 1 7 1 2 2 12 .11 .048 18 . 14 19 18 61 .2 20 9 648 2.56 3 5 ND N L3+005 0+75W 1 34 22 . 49 29 .01 2 1.24 .91 .04 1 2 2 12 .14 .055 28 22 83 27 12 527 3.48 9 5 ND 10 R 2 H L3+005 0+50W .3 1 17 .35 . 91 . 38 .01 . 01 1 2 .11 .068 30 19 2 M L3+005 0+25W 14 16 60 .1 17 7 214 2.73 5 5 ND 10 6 2 3 11 1 29 16 . 37 24 .01 2 . 39 .01 .03 - 3 ND 10 2 10 .15 .053 20 18 60 22 11 587 2.74 2 5 3 .1 M L3+005 3/L 0+00E 1 3 .98 .01 . 35 1 31 17 .40 .01 12 422 3.04 5 ND 11 9 2 2 2 - 9 .14 .048 26 73 .3 31 8 H L3+005 0+253 1 27 24

40

50 .89 .181 .08

37 2.08 .06

.14

13

.51 .089

BOUNDARY DRILLING INC. PROJECT MASS FILE # 88-3397

SAMPLE	No PPH	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Nİ PPN	CD PPM	Ma PPM	Fe 3	As PPH	U PPN	Au PPN	Th PPM	Sr PPM	Cd ?PM	SD PPM	Bi PPM	V P PN	Ca ł	P R	La PPN	Cr PPN	Ng t	Ba PPM	71 - 2	B PPN	л1 3	Na t	K ł	¥ PPM
M L3+005 0+75E M L3+005 1+00E M L3+005 1+25E M L3+005 1+50E M L3+005 1+75E	1 1 1 1	17 20 20 23 14	19 25 28 34 20	75 79 96 91 62	.1 .1 .2 .1	20 26 25 29 21	11 10 14 13 11	4278 343 805 637 458	2.83 3.96 3.09 3.23 3.11	6 9 9 9 8	5 5 5 5 5	ND ND ND ND ND	2 12 6 8 9	10 8 9 16 7	1 1 1 1	2 2 2 2 2	2 2 3 2	19 15 10 10 10	.14 .13 .17 .31 .11	.036 .057 .059 .052 .048	23 37 24 20 27	18 23 18 17 18	.36 .69 .42 .43 .44	105 35 33 33 31	.01 .01 .01 .01 .01	3 2 2 6 2	1.01 1.54 .38 .91 1.02	.01 .01 .01 .01 .01	.04 .03 .03 .04 .03	1 1 1 1
N L3+005 2+00H M L3+005 2+252 N L3+005 2+50X M L3+005 2+753 N L3+005 3+002	1 1 1 1 1	18 14 21 19 25	22 18 18 17 25	57 53 59 79 72	.1 .1 .1 .1 .2	22 17 23 24 27	11 5 12 12 11	350 192 411 510 337	2.71 3.57 3.01 3.23 2.75	6 7 5 9 7	5 5 5 5 5	ND ND ND ND ND	9 7 11 10 8	7 7 8 6 9	1 1 1 1	2 2 2 2 2	2 2 2 2 2	9 12 10 10 9	.11 .10 .12 .12 .14	.049 .048 .047 .053 .045	31 23 34 31 26	14 18 15 17 15	,34 ,39 .44 .44 .37	22 27 18 27 20	.01 .01 .01 .01	2 2 2 4 2	.81 1.03 .96 1.00 .80	.01 .01 .01 .01	.03 .02 .03 .04 .03	1 1 2 1 2
M L3+505 5+00W M L3+505 4+75W M L3+505 4+50W M L3+505 4-25W M L3+505 4+00W	1 1 1 1 1	44 166 73 60 48	25 33 47 25 37	104 163 230 115 111	.1 .8 .4 .4	37. 52 29 41 29	12 17 11 15 13	357 508 263 357 507	3.30 4.92 4.34 3.76 3.92	9 14 30 3 12	5 5 5 5 5	YD ND ND ND ND	8 9 4 6 8	15 20 17 17 13	1 1 1 1	2 2 2 2 2	1121221	21 31 21 21 15	.22 .28 .29 .29 .29 .25	.036 .039 .032 .052 .052	30 33 24 31 24	36 48 26 36 20	.72 .73 .41 .76 .44	55 147 110 130 72	.02 .01 .01 .01 .01	2 2 3 2 2	1.59 2.60 1.34 1.33 1.29	.01 .01 .01 .01 .01	.08 .13 .05 .07 .03	1 1 1 1
N L3+50S 3+75W N L3+50S 3+56W N L3+50S 3+25W N L3+50S 3+06W N L3+50S 2+75W	1 1 1 1 1	41 18 27 15 7	28 19 17 17 17	99 49 77 55 32	.2 .5 .3 .4	31 15 32 13 5	11 6 13 10 4	235 405 290 775 170	3.35 2.69 3.61 3.77 2.38	7 3 7 8 2	5 5 5 5 5	ND ND ND ND ND	9 6 11 3 6	9 5 6 7	1 1 2 1 1	2 2 2 2 2	2 2 2 3	14 15 14 25 18	.15 .08 .07 .09 .13	.350 .034 .033 .369 .013	28 29 30 26 25	20 9 22 17 9	.47 .17 .49 .29 .13	44 28 42 22	.01 .01 .01 .01 .02	5 5 4 3 3	1.41 .61 1.58 1.03 .66	.01 .01 .01 .01 .01	.04 .03 .03 .03 .02	1 3 1 1
M L3+505 2+50V N L3+505 2+25W N L3+505 2+00V N L3+505 1+75W N L3+505 B/L 0+002	1 1 1 1	9 17 17 22 26	17 20 14 20 22	75 66 37 75 74	.2 .2 .2 .2 .2 .3	13 16 13 20 28	8 3 5 9 12	375 400 135 479 451	2.90 3.08 2.20 2.55 3.18	5 6 7 9 7	5 5 5 5	ND HD ND ND ND	7 10 8 7 10	4 4 5 9 12	1 2 2 1 2	2 2 2 2 2 2	4 2 2 2 3	17 20 18 18 10	.05 .04 .05 .11 .22	.054 .074 .036 .101 .051	28 32 26 21 34	15 12 11 15 17	.25 .23 .13 .32 .49	32 31 31 37 28	.02 .01 .01 .02 .01	2 4 3 - 2 8	.96 .81 .71 .94 1.03	,01 .01 .01 .01 .01	.02 .03 .03 .06 .04	1 1 1 1 1
N L3+50S 0+25E N L3+50S 0+50E H L3+50S 1+25E N L3+50S 1+50Z N L3+50S 1+75E	1 1 1 1	17 23 19 17 17	19 25 23 16 23	67 65 63 57 73	.1 .3 .1 .1 .1	22 24 21 21 21 21	12 12 10 12 11	674 445 370 550 420	2.78 3.11 2.82 2.73 2.34	6 9 8 6 6	5 5 5 5 5	ND ND ND ND ND	9 10 10 9 10	8 7 8 5 8	1 1 1 1	2 2 2 2 2 2	2 2 2 3 2	9 9 8 8 10	.13 .12 .15 .11 .13	. 352 . 045 . 050 . 049 . 050	25 27 29 25 26	16 15 13 12 15	.42 .44 .38 .38 .43	24 19 15 16 21	.01 .01 .01 .01 .01	3 3 4 2	. 39 . 94 . 80 . 82 . 90	.01 .01 .01 .01 .01	.03 .03 .02 .02 .03	1 2 1 1 1
M L3+505 2+00E M L3+505 2+253 M L3+505 2+502 N L3+505 2+75E M L3+505 3+00E	1 1 1 1	23 17 13 16 17	21 12 19 17 23	58 57 57 60 69	.1 .4 .1 .2 .1	25 17 17 20 22	12 7 9 3 11	339 181 359 236 426	2.71 2.51 2.48 2.39 3.54	8 5 7 8 8	5 5 5 5 5	ND ND ND ND ND	11 7 9 6 10	6 5 12 6 8	2 1 2 2 1	2 2 2 2 2 2	2 5 3 2 2	9 12 8 11 13	.11 .05 .19 .11 .12	.044 .031 .062 .042 .045	29 26 25 23 31	15 14 13 13 19	.34 .29 .31 .31 .52	17 25 24 21 27	.01 .01 .01 .01 .01	5 3 4 3 2	.74 .75 .68 .79 1.29	.01 .01 .01 .01 .01	.02 .02 .03 .02 .04	1 1 1 2
N L3+505 3+258 STD C	1 19	19 62	19 44	79 132	.4 7.3	25 73	10 31	721	3.27	9 43	5 19	ND 8	5 40	16 50	2 20	2 18	3 22	13 61	. 26	.070 .090	24 41	17 58	.38 .96	41 182	.01 .08	4 34	.89 2.07	.01	.04 .15	ŧ 12

Page 2

1

€::-

BOUNDARY DRILLING INC. PROJECT MASS FILE # 88-3397

SAMP13‡	HO PPN	CU PPM	PD PPN	Zn PPN	Ag PPN	NI PPN	Co PPN	Nn PPN	Te Z	As PPN	U P?M	AU PPN	Th PPN	ST PPM	Cd PPM	SD PPM	Bİ P PN	V PPM	Ca %	P Z	La PPM	Cr PPM	Ng Z	Ba PPM	Ti ł	B PPM	A1 1	Na 3	Z Z	¥ PPN	
M 12+505 3+502 M 14+005 5+250 M 14+005 5+000 M 14+005 4+750 M 14+005 4+500	1 1 1 1	17 199 90 171 123	14 32 37 41 59	68 280 180 227 231	.1 .5 .4 1.0 .5	23 47 35 45 37	11 13 17 12 13	416 800 928 644 743	3.44 3.32 4.50 3.69 3.71	6 18 15 20 29	5 5 5 5 5	ND ND ND ND ND	10 3 8 5 6	11 31 19 24 17	2 2 1 1 1	2 2 2 2 2	2 2 2 2 2	13 25 27 22 17	.17 .49 .26 .42 .32	.046 .068 .051 .086 .052	36 32 39 31 29	23 39 40 36 25	.53 .58 .51 .48 .42	32 108 113 171 120	.01 .01 .02 .01 .01	7 2 4 5 2	1.32 1.94 2.14 1.39 1.31	.01 .01 .01 .01 .01	.05 .11 .10 .11 .07	1 1 1 1	
N 14+005 4+25N N 14+005 4+00W N 14-005 3+75N N 14-005 3+56W N 14-005 3+25N	1 1 1 1 1	23 36 9 21 45	23 25 12 15 26	73 104 35 61 92	.3 .1 .2 .1 .1	17 13 19 19 37	8 12 4 9 19	580 410 110 474 413	4.20 5.08 2.54 3.07 6.25	12 11 7 8 14	5 5 5 5 5	ND ND ND ND	3 11 10 9 15	7 6 3 5 5	1 1 1 1	2 2 2 2 2	2 2 2 3	23 18 15 15 13	.13 .08 .03 .07 .09	.099 .112 .076 .942 .117	29 34 37 36 42	18 26 10 15 27	.20 .38 .12 .23 .39	55 46 22 32 22	.02 .01 .02 .01	3 2 2 2 2 2	.\$1 1.60 .59 .36 1.22	.01 .01 .01 .01 .01	.04 .04 .02 .03 .03	1 - 1 - 3 - 1	
N 14-305 3+00W N 14-305 2+75W N 14-305 2+50W N 14-305 2+25W N 14-305 2+25W N 14-305 1+50W	1 1 1 1	17 33 12 27 18	16 25 11 19 18	75 103 - 49 98 60	.1 .1 .1 .1	13 27 14 15 19	9 15 9 11 8	519 1173 421 251 250	4.53 6.35 2.73 4.06 2.95	10 13 6 10 6	5 5 5 5	ND ND ND ND ND	7 11 11 12 5	10 5 7 4 16	1 1 1 1	2 2 2 2 2	2 2 4 2	22 25 18 17 21	.11 .05 .10 .03 .25	.137 .133 .070 .045 .027	39 31 40 35 21	18 28 15 21 20	.24 .37 .22 .35 .29	46 46 31 38 56	.02 .02 .02 .02 .01	2 2 3 2 2	.83 1.44 .94 1.25 1.15	.01 .01 .01 .01 .01	.05 .05 .03 .02 .05	1 1 1 1	
M 14-005 0+25W M 14-005 8/1 0+002 M 14-005 0+252 M 14-005 0+502 H 14-005 0+733	1 1 1 1 1	29 18 23 15 28	23 13 20 14 17	91 52 77 62 75	.3 .1 .1 .1	23 20 24 20 34	10 9 9 11 12	250 282 270 411 436	4.45 2.51 2.85 2.80 2.89	21 7 6 7 12	5 5 5 5 5	ND ND ND ND	7 12 10 11 11	3 7 8 7 12	1 1 1 2	3 2 2 2 2	2 2 2 2 2 2	25 8 10 10 10	.07 .12 .11 .13 .19	.039 047 046 .047 .052	24 36 32 34 34	30 15 16 17 21	.37 .33 .35 .40 .41	47 12 17 - 22 28	.04 .01 .01 .01 .01	4 2 3 5 2	1.30 .76 .32 1.01 .96	.01 .01 .01 .01 :01	.05 .02 .03 .03 .04	1 - 1 1 1 1	
M 14+00S 1+00E M 14+00S 1+253 M 14-00S 1+50E M 14+00S 2+00E M 14+00S 2+258	1 1 1 1	19 21 21 24 28	19 18 20 19 26	69 74 90 77 86	.1 .1 .1 .1	26 24 23 30 33	13 11 11 13 13	538 460 412 464 456	3.03 3.01 2.76 3.00 3.25	10 8 6 7 7	5 5 5 5 5	ND ND ND ND ND	10 8 9 11 10	10 7 17 10 13	1 1 1 1	2 2 3 2	2 2 2 2 2 2	10 9 8 10 11	.20 .12 .29 .18 .24	.054 .068 .055 .049 .051	35 30 31 39 37	19 17 17 22 21	.46 .36 .40 .45 .47	20 18 31 27 28	.01 .01 .01 .01 .01	2 4 2 2 2	.98 .83 .83 1.05 1.10	.01 .01 .01 .01 .01	.04 .03 .04 .04 .05	2 3 1 3 1	
M 14+00S 2+50B M 14+00S 2+731 M 14+00S 3+00B M 14+00S 3+251 M 14+00S 3+502	1 1 1 1 1	26 24 23 28 22	18 22 20 35 13	80 102 75 89 69	.1 .1 .1 .1	33 29 28 39 27	12 14 12 15 13	540 504 468 730 491	3.16 3.40 2.94 3.89 2.91	8 9 12 8	5 5 5 5 5	ND ND ND ND ND	10 9 12 11 12	12 13 9 14 9	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	11 12 10 13 10	.19 .21 .17 .22 .16	.052 .051 .052 .061 .050	39 35 37 45 39	23 23 21 28 18	.50 .54 .43 .59 .42	29 33 22 47 21	.01 .01 .01 .01 .01	3 2 4 2 3	1.14 1.25 .96 1.41 .95	.01 .01 .01 .01 .01	.04 .05 .04 .05 .04	1 1 3 3 2	
N 14-305 3+752 N 14-305 4+00R H 14-305 6+25W N 14-305 6+00W N 14-305 5+75W	1 1 1 1	25 31 21 19 26	18 25 88 26 31	77 99 135 104 114	.1 .1 .1 .1 .3	29 36 32 24 15	14 17 11 8 7	531 842 698 319 435	3.34 3.96 4.57 3.86 3.03	8 10 15 11 14	5 5 5 5	ND ND ND ND ND	12 11 5 7 5	11 14 12 13 18	2 2 1 1 1	2 2 2 2 2 2	2 2 2 2 2	12 14 20 20 23	.19 .23 .14 .22 .35	.054 .064 .043 .046 .029	45 45 36 28 27	23 29 37 31 21	.52 .65 .44 .46 .27	25 34 79 42 57	.01 .01 .01 .01 .02	3 2 2 2 2 2	1.21 1.54 1.50 1.34 1.14	.01 .01 .01 .01 .01	.05 .06 .06 .05 .04	2 1 1 1 1	
N 14-505 5+50W STD C	1 19	80 62	43 38	128 132	.5 6.9	29 72	11 30	470 1037	3.33 4.15	22 43	5 18	םא 7	9 40	13 50	1 19	2 18	2 19	18 61	.19 .50	.0 48 .088	35 40	26 61	, 38 . 88	44 180	.01 .08	2 36	1.29 2.07	.01 .06	.05 .15	1 12	

Page 3

BOUNDARY	DRILLING	INC.	PROJEC'	Ass	FILE	# 88-3397
----------	----------	------	---------	-----	------	-----------

١

SAMPLE#	No PPN	Cu PPM	Pb PPN	Zn PPM	Ag PPM	NI PPM	Co PPN	Na ?PN	?e 3	às ?Ph	U PPM	Au PPM	Th PPM	ST PPN	Cd PPM	Sb PPM	BÍ PPM	V PPN	Ca ł	P 2	La PPM	Cr PPM	Ng t	Ba PPN	Ti ł	- B PPN	Al ł	Na ł	K ł	W PPN
M L4+50S 5+25W M L4+50S 5+00W M L4+50S 4+75W M L4+50S 4+50W M L4+503 4+25W	1 1 1 1	116 497 217 20 35	93 77 92 27 27	291 928 324 72 103	1.0 .9 .9 .2 .4	90 65 47 16 27	23 16 11 8 12	987 930 568 382 331	5.33 4.39 3.38 5.00 6.16	27 52 46 9 13	5 5 5 5 5	ND ND ND ND ND	9 5 4 7 7	22 15 17 4 4	4 3 1 1	2 2 4 2 2	2 2 2 2 2 2	25 23 18 32 21	.42 .22 .32 .03 .05	.080 .054 .054 .163 .141	26 36 31 31 27	43 35 24 16 23	.71 .56 .46 .23 .40	119 336 165 36 39	.01 .01 .01 .03 .01	2 2 2 2 2	2.59 1.75 1.40 .93 1.35	.01 .01 .01 .01 .01	.16 .10 .08 .03 .02	1 1 1 1
N 14+505 4+00N N 14+505 3+75W N 14+505 3+50W N 14+505 3+25W N 14+505 3+00N	1 1 1 1 1	22 13 57 40 44	19 17 23 20 21	73 41 105 95 78	.4 .1 .2 .1 .2	17 11 41 30 24	3 5 15 11 10	543 199 345 208 173	3.00 3.82 5.05 5.14 6.64	7 5 8 8 12	5 5 5 5 5	ND ND ND ND ND	2 9 12 12 11	8 3 6 4 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2	16 20 14 17 28	.15 .02 .08 .03 .04	.057 .059 .071 .093 .163	27 30 34 33 32	14 13 23 20 23	.24 .18 .58 .47 .40	54 20 36 30 26	.01 .02 .01 .01 .02	6 4 5 3 5	.80 .73 1.46 1.35 1.31	.01 .01 .01 .01 .01	.04 .02 .03 .03 .02	1 1 1 1 1
N 14+505 2+75W N 14+505 2+50W N 14+505 2+25W N 14+505 2+00W X 14+505 1+75W	1 1 1 1	23 31 18 11 34	17 24 17 14 26	55 76 54 38 73	.1 .1 .1 .1	16 25 18 10 28	8 12 9 5 13	142 194 350 157 223	4.16 5.73 4.21 3.27 5.09	4 8 8 4 9	5 5 5 5 5	ND ND ND ND ND	10 12 10 3 13	3 5 3 4 5		2 2 2 2 2 2	2 2 2 2 2	19 30 19 21 16	.02 .05 .02 .03 .04	.055 .120 .075 .050 .074	31 37 33 29 32	15 21 19 14 22	.29 .37 .31 .22 .39	16 32 25 25 25 27	.02 .01 .01 .01 .01	2 2 2 6	.84 1.13 1.03 .94 1.20	.01 .01 .01 .01 .01	.03 .02 .02 .02 .02 .03	1 1 2 1
N L4+50S 1+50W N L4+50S 1+25W N L4+50S 1+00W N L4+50S 0+75W N L4+50S 0+50W	1 1 1 1	83 42 35 20 27	34 22 29 20 18	91 68 83 109 73	.1 .1 .2 .2	93 25 36 17 21	35 11 12 10 8	2169 167 275 428 698	5.35 4.66 4.39 5.17 3.52	20 12 10 5 11	55555	ND ND ND ND ND	3 10 10 8 1	44 5 5 6 14	2 1 1 1	2 2 3 2 2	2 2 2 2 3	24 18 19 27 23	.98 .05 .03 .05 .28	.098 .052 .052 .069 .099	44 31 29 25 23	46 19 25 23 14	.53 .34 .48 .28 .25	76 20 55 57 56	.01 .01 .01 .04 .02	3 2 2 2 2	1.30 1.13 1.52 1.32 .66	.01 .01 .01 .01	.06 .03 .05 .04 .05	1 1 1 1 1
N L4+50S 0+23W N L4+50S B/L 0+00E N L4+50S 0+25E N L4+50S 0+50E N L4+50S 0+75E	1 1 1 1	15 51 62 36 27	16 24 27 36 35	108 106 100 77 94	.3 .4 .3 .2 .2	16 29 28 26 22	8 14 15 10 10	314 1400 206 262 283	3.35 4.45 4.54 5.01 5.51	8 10 32 12 11	5 5 5 5 5	ND ND ND ND ND	1 6 4 10 5	4 8 6 10 6	1 1 2 1 1	2 3 2 2 2	2 2 2 2 2 2	21 15 24 20 26	.05 .10 .07 .13 .09	.072 .101 .110 .193 .127	22 32 21 25 22	16 20 17 24 22	.29 .42 .30 .40 .38	27 77 39 45 36	.02 .01 .02 .01 .01	4 2 5 3	.87 1.03 .89 1.53 1.18	.01 .01 .01 .01 .01	.03 .03 .04 .05 .04	1 1 2 1
N L4+50S 1+00B N L4+50S 1+25B N L4+50S 1+50B N L4+50S 1+50B N L4+50S 2+00B	1 1 1 1	38 30 50 27 32	29 19 32 30 23	93 59 89 82 91	.5 .4 .2 .5 .4	26 19 33 23 22	12 9 13 9 10	268 490 315 474 359	4.83 2.88 4.60 3.58 4.63	13 9 14 9 15	5 5 5 5 5 5	ND ND ND ND ND	9 7 7 4 6	9 5 5 8 5	1 1 2 2 1	2 2 2 2 2 2	2 2 2 2 2 2	18 17 16 24 27	.10 .05 .07 .11 .03	.081 .043 .071 .062 .072	26 27 25 23 23	21 13 21 21 21 21	.42 .21 .44 .38 .36	53 32 33 59 61	.02 .01 .01 .02 .02	2 2 7 3	1.09 .75 1.25 1.21 1.19	.01 .01 .01 .01 .01	.04 .03 .05 .06 .05	1 1 1 1
N L4+50S 2+752 N L4+50S 3+008 M L4+50S 3+252 N L4+50S 3+508 N L4+503 3+758	1 1 1 1	22 19 23 20 18	22 18 17 14 15	88 67 79 63 92	.1 .1 .1 .1	28 22 29 24 29	13 10 13 11 14	512 453 487 358 583	3.16 3.07 3.13 2.91 4.07	8 9 9	55555	HD ND ND ND ND	8 9 11 12 - 12	20 10 13 8 11	2123	2 2 2 2 2 2	2 2 2 2 2	11 12 11 9 15	.32 .16 .24 .15 .19	.063 .050 .056 .055 .053	35 36 38 35 35	19 17 18 14 25	.55 .52 .54 .40 .82	38 34 26 15 30	.01 .01 .01 .01 .01	6 2 3 2 5	1.03 1.08 1.02 .72 1.50	.01 .01 .01 .01 .01	.05 .04 .04 .03 .05	1 1 5 1
N L4+505 4+00E STD C	1 19	17 51	17 42	61 132	.1 6.9	21 71	10 31	358 1035	2.60 3.99	6 43	5 20	ND 8	11 39	8 50	1 13	2 19	2 19	9 61	.15 .51	.048 .093	32 39	15 58	.45 .96	14 180	.01 .08	4 34	.86 1.90	.01 .06	.03 .14	2 12

F 2 4

(-

BOUNDARY DRILLING INC. PROJECT MASS FILE # 88-3397

SAMPLE#	No PPN	Cu PPN	Pb ?PM	Zn PPM	Ag PPM	NI PPM	Co PPM	Ha PPN	Fe Z	As PPM	U PPN	Au PPM	Th PPH	Sr PPM	Cd PPM	SD PPM	Bİ PPN	V PPM	Ca 3	P	La PPH	Cr PPM	Hg L	Ba PPM	Ti ł	B PPM	A1 %	Na t	۲ ۲	W PPM
N L4+505 4+252 M L4+505 4+508 M L5+005 7+00W N L5+005 6+75W M L5+005 6+50W	1 1 1 1 1	22 28 22 33 32	12 29 57 48 41	60 96 108 106 101	.1 .1 .2 .3 .3	31 33 21 29 28	12 16 9 11 11	853 813 431 397 500	2.38 4.36 2.72 3.07 2.90	6 14 11 17 20	5 5 5 5 5	ND ND ND ND ND	10 10 4 6 5	8 14 13 16 14	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	3 16 14 17 18	.16 .24 .28 .29 .24	.047 .052 .049 .056 .041	25 30 19 26 25	12 30 19 21 21	.32 .69 .35 .45 .37	25 39 33 35 47	.01 .01 .01 .01 .01	3 2 4 3 3	.72 1.72 1.01 1.13 1.16	.01 .01 .01 .01 .01	.02 .06 .07 .06 .05	1 1 1 1
N L5+005 6+25W H L5+005 6+00W N L5+005 5+75W N L5+005 5+50W N L5+005 5+25W	1 1 1 1	19 33 8 54 150	32 38 9 57 165	127 114 57 147 535	.3 .2 .1 .5 1.3	22 28 10 29 35	10 9 4 12 14	266 327 149 502 563	3.65 3.58 1.45 3.15 4.02	12 12 6 23 100	5 5 5 5 5	ND ND ND ND ND	6 5 7	11 14 12 16 20	1 1 1 2	2 2 2 2 2	2 2 2 2 2 2	19 20 14 18 20	.19 .24 .19 .27 .30	.025 .029 .013 .049 .047	21 24 23 26 27	24 25 13 24 28	.40 .44 .23 .49 .50	44 46 44 60 85	.01 .02 .01 .01 .01	2 2 2 2 2 2	1.35 1.36 .70 1.45 1.65	.01 .01 .01 .01	.05 .05 .04 .05 .06	1 1 1 1
N L5+005 5+00W N L5+005 4+75W N L5+005 4+50W N L5+005 4+25W M L5+005 4+00W	1 1 1 1	403 85 38 29 35	195 101 24 32 15	589 274 138 91 93	2.5 .5 .3 .1 .1	75 26 34 25 27	17 9 11 15 12	582 313 305 322 381	4.17 3.17 2.75 3.27 4.71	37 78 12 13 10	5 5 5 5 5	ND ND ND ND ND	á 6 7 9 11	19 9 12 8 11	2 2 1 1	6 4 2 2 2	2 2 2 2 2	17 19 14 13 16	.34 .10 .17 .15 .13	.054 .025 .034 .040 .144	29 26 27 26 30	26 25 21 19 20	.54 .36 .44 .33 .36	159 111 182 56 98	.01 .01 .01 .01 .01	2 4 3 5 2	1.87 1.23 1.42 1.22 1.27	.01 .01 .01 .01 .01	.09 .05 .09 .04 .03	1 1 1 1
N L5+005 3+75W N L5+005 3+59W N L5+005 3+25W N L5+005 3+00W N L5+005 2+75W	1 1 1 1	15 20 32 17 25	11 11 17 16 11	42 68 85 128 77	.1 .1 .1 .1	13 18 27 23 20	6 8 12 11 8	93 148 191 715 250	2.22 3.98 4.14 3.10 3.31	5 5 7 4 6	5 5 5 5 5	ND ND ND ND	9 10 13 9 3	3 3 4 4	2 1 3 2 1	2 2 2 2 2 2	2 2 2 2 3	18 19 16 18 16	.02 .03 .04 .04 .05	.035 .056 .066 .067 .047	27 29 32 26 27	8 15 16 17 14	.13 .28 .33 .24 .29	13 20 33 71 30	.01 .01 .01 .01 .01	7 2 2 2 2 2	.57 1.22 1.22 1.60 1.12	.01 .01 .01 .01 .01	.02 .02 .03 .03 .02	3 1 2 1 1
N L5+00S 2+25W N L5+00S 2+00W N L5+00S 1+75W N L5+00S 1+50W N L5+00S 1+25W	1 1 1 1	61 44 15 29 50	45 41 21 40 20	111 113 64 114 102	.2 .3 .1 .1 .2	55 43 18 27 31	23 17 8 12 12	642 773 332 263 202	4.91 3.96 2.44 4.34 4.74	19 12 6 10 10	5 5 5 5 5	ND ND ND ND ND	15 11 6 3 11	19 9 10 5 4	2 2 1 1 3	2 2 2 2 2	2 2 2 2 2 2	22 14 9 18 15	.15 .14 .17 .06 .05	.049 .051 .046 .053 .070	42 31 24 21 27	28 21 14 19 19	. 64 . 40 . 34 . 32 . 38	123 49 21 34 31	.03 .01 .01 .02 .01	2 3 2 3 3	1.72 1.35 .82 1.28 1.41	.01 .01 .01 .01 .01	.11 .06 .03 .04 .03	1 1 1 1
N L5+005 1+00W N L5+005 0+75W N L5+005 0+50W N L5+005 0+25W N L5+005 BL	1 1 1 1 1	21 28 18 25 19	16 19 11 19 15	77 89 50 88 85	.1 .1 .4 .1	18 22 16 30 22	9 10 7 11 8	154 351 277 407 393	3.59 3.49 2.68 3.17 2.98	8 7 5 9 7	5 5 5 5 5	ND ND ND ND ND	9 9 7 5 6	4 5 10 30 8	2 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	22 17 15 18 15	.03 .05 .24 .45 .10	.056 .039 .026 .037 .025	25 25 23 24 18	15 16 14 25 19	.23 .29 .24 .54 .36	28 40 26 61 43	.01 .01 .01 .01 .01	5 5 2 2 2	1.11 1.12 .84 1.47 1.08	.01 .01 .01 .01 .01	.03 .04 .03 .10 .06	I 2 -3 1 1
N L5+005 0+252 N L5+005 0+508 N L5+005 0+752 N L5+005 1+008 N L5+005 1+252	1 1 1 1	19 24 19 18 27	11 15 19 14 13	50 31 69 58 68	.1 .2 .1 .2 .1	18 29 24 21 24	8 8 7 8	290 215 360 153 325	2.72 4.51 2.97 3.53 3.56	8 13 5 15 11	5 5 5 5 5	ND ND ND ND	5 8 7 5 8	3 4 4 4	1 1 1 1 1	2 2 2 2 2 2	2 2 3 2	16 23 17 25 22	.02 .03 .03 .04 .02	.033 .074 .033 .051 .058	24 20 18 21 25	14 31 22 21 20	.22 .40 .40 .31 .32	34 34 46 26 42	.01 .02 .01 .02 .01	2 2 4 2 2	.82 1.22 1.44 1.07 1.17	.01 .01 .01 .01 .01	.03 .05 .04 .04 .03	1 1 1 1
N L5+905 1+502 STD C	1	24	24 46	73 132	.4	23 73	8 31	351 1040	4.75	8 44	5 19	ND B	5 40	5 50	1 20	2 1.8	2 19	35 61	.05	.109	21 40	26 59	. 44	43 181	.01 .08	2 35	1.70	.01 .06	.05 .15	1 13

Page 5

C

£

BOUNDARY DRILLING INC. PROJEC. ASS FILE # 88-3397

SAMPLE #	No PPM	Cu PPM	Pb PPM	Za PPN	ÀG PPN	Nİ PPN	Co PPN	Na PPN	Fe	AS PPM	U PPH	Au PPM	Th PPN	ST PPM	Cđ PPM	SD PPN	Bİ PPM	V PPM	Ca ł	P 1	La PPM	CT PPM	Hg L	Ba PPM	Ti ł	B PPM	14 لا	Na 3	K ł	. ¥ PPM
N L5+00S 1+75E N L5+00S 2+30E N L5+00S 2+23E N L5+00S 2+50E N L5+00S 3+00E	1 1 1 1 1	15 22 18 24 18	14 20 12 28 13	66 85 39 103 71	.3 .2 .1 .1 .2	18 23 13 27 24	5 9 7 12 10	300 339 167 492 533	2.94 3.62 1.71 4.57 2.92	12 11 6 12 7	5 5 5 5 5	ND ND ND ND ND	4 8 5 7 8	5 6 4 14 12	1 2 1 2 2	2 3 2 2 2	2 2 2 2 2 2	23 26 16 16 12	.03 .04 .03 .26 .20	.049 .071 .025 .114 .051	22 22 24 21 25	21 23 9 25 22	.19 .33 .11 .42 .44	35 60 30 48 45	.02 .02 .02 .01 .01	2 2 3 3 2	.93 1.25 .54 1.24 1.15	.01 .01 .01 .01 .01	.04 .04 .03 .04 .06	1 4 2 1
M L5+005 3+25E M L5+005 3+50E M L5+005 3+75E M L5+005 4+25E M L5+005 4+303	1 1 1 1 1	20 26 13 21 23	20 26 30 19 21	93 91 101 90 38	.2 .1 .3 .3	25 28 21 26 27	10 11 10 10 12	531 454 522 444 492	2.84 2.88 3.96 3.16 3.14	9 8 15 4 5	5 5 5 5 5	ND ND ND ND ND	7 8 6 7 7	20 11 11 10 14	3 1 3 1 1	2 2 3 3 2	3 2 2 2 3	12 12 15 21 17	.33 .21 .11 .11 .21	.054 .049 .070 .045 .253	26 22 31 28 28	22 21 19 27 25	.44 .44 .21 .43 .47	50 36 42 68 51	.01 .01 .01 .02 .01	2 2 5 4 2	1.15 1.02 .84 1.69 1.39	.01 .01 .01 .01 .01	.09 .06 .97 .12 .10	I 1 1 1
N L5+005 4+752 N L5+005 5+008 M L5+505 7+50W N L5+505 7+25W N L5+505 7+25W H L5+505 7+00W	1 1 1 1	23 21 11 34 34	15 24 11 40 37	80 66 58 131 39	.2 .2 .1 .5 .4	25 23 13 33 28	10 9 4 11 10	425 425 87 455 300	2.73 2.37 1.59 3.59 2.84	5 5 8 15 10	5 5 5 5 5	חם סמ סמ סא סמ	9 9 5 5 5	16 13 10 25 23	32717	2 2 2 2 2 2	2 2 2 2 2 2	14 12 19 20 16	.27 .35 .16 .47 .61	.046 .042 .012 .051 .058	26 22 24 25 27	20 17 15 35 25	.45 .44 .23 .47 .46	45 39 35 80 49	.01 .02 .01 .01 .01	3 4 4 2 2	1.10 .35 .74 1.58 1.19	.01 .01 .01 .01 .01	.07 .07 .06 .08 .06	1 1 1 1
N L5+508 6+75W N L5+508 6+50W N L5+508 6+25W N L5+508 6+00W N L5+508 5+75W	1 1 1 1 1	51 14 27 38 13	44 26 28 28 19	151 75 121 175 92	1.1 .3 .4 1.3 .5	54 16 23 51 16	16 6 10 12 6	765 195 379 691 187	3.33 3.21 3.75 4.14 2.52	14 6 14 10 9	5 5 5 5	לא D D D ND	7 7 7 10 5	21 16 20 16 9	1 3 2 2 3	2 2 2 2 2 2	3 2 2 2 2 2	19 19 25 29 18	.38 .32 .37 .22 .13	.070 .029 .043 .064 .023	43 21 23 44 22	39 23 30 45 23	.54 .33 .49 .42 .30	95 50 67 122 53	.01 .01 .02 .03 .01	2 5 4 2 3	2.03 1.13 1.30 2.36 1.08	.01 .01 .01 .01 .01	.08 .05 .09 .09 .09	1 1 1 1
N 15+505 5+50W N 15+505 5+25W N 15+505 5+00W N 15+505 4+75W N 15+505 4+56W	1 1 2 1 1	14 44 127 140 73	20 89 192 233 116	98 181 345 363 191	.5 1.6 1.4 2.9 1.2	13 24 20 28 28	6 9 6 10 9	380 510 204 477 561	2.22 2.87 4.58 4.59 3.48	7 61 331 202 47	5 5 5 5 5	ND ND ND ND ND	4 7 7 7 7	11 11 11 10 18	1 1 3 2 2	2 3 21 11 5	3 3 4 2 2	16 19 21 19 17	.21 .15 .18 .13 .30	.032 .028 .046 .049 .065	19 32 31 27 28	21 27 30 34 28	.29 .37 .39 .41 .47	76 106 91 266 144	.01 .01 .01 .01 .01	2 2 3 3	1.00 1.41 1.23 1.52 1.48	.01 .01 .01 .01 .01	.07 .06 .07 .08 .07	1 1 1 1
N L5+50S 4+25W N L5+50S 4+00W N L5+50S 3+75W N L5+50S 3+50W N L5+50S 3+25H	1 1 1 1	9 21 34 29 11	14 20 19 17 6	43 92 102 84 39	.1 .1 .2 .2 .1	10 22 32 22 9	4 11 12 9 4	88 197 290 294 352	1.91 3.24 4.58 3.71 1.38	6 6 10 6 2	5 5 5 5 5 5	ND ND ND ND ND	8 11 13 9 6	3 4 5 4 6	2 2 3 2 2 2	2 3 2 2 2	2 2 2 2 2	18 15 17 16 10	.02 .04 .06 .06 .11	.030 .043 .075 .049 .032	31 30 34 25 25	9 21 23 20 7	.10 .28 .38 .34 .11	21 45 48 39 46	.02 .01 .01 .01 .01	3 3 2 2 5	.51 1.40 1.42 1.28 .65	.01 .01 .01 .01 .01	.03 .03 .04 .03 .05	2 1 1 1
M 15+505 3+00W M 15+505 2+75W M 15+505 2+50W N 15+505 2+50W M 15+505 2+25W	1 1 1 1	15 22 31 57 57	14 21 13 27 37	64 63 82 96 116	.2 .1 .1 .4 .2	13 25 21 64 41	6 9 9 19 15	355 211 219 708 595	2.58 3.42 4.01 3.97 3.87	7 6 7 13 11	5 5 5 5 5	ND KD ND ND ND	8 8 10 9 9	7 6 4 14 14	1 1 2 3 3	2 2 2 2 2	2 3 3 2 3	17 15 19 18 18	.12 .07 .04 .29 .22	.055 .057 .052 .046 .052	25 24 31 30 33	12 22 19 26 32	.19 .39 .31 .51 .55	51 46 28 70 77	.01 .01 .01 .01 .01	4 2 3 2 6	.93 1.29 1.10 1.49 1.34	.01 .01 .01 .01 .01	.04 .06 .03 .09 .07	1 2 1 1 1
N L5+50S 2+00¥ STD C	1 20.	34 62	19 40	82 132	.2 7.1	57 73	16 31	370 1046	3.67 4.17	5 40	5 17	ND B	7 40	23 50	2 19	2 19	3 22	41 61	.37 .51	.048 .090	28 40	83 60	.75 .88	92 182	.06 .08	7 36	1.80 1.95	.01 .06	.16 .15	1 13

)e 6

Ĺ

C

Ċ

1

£

(

€.

Ċ

(

(

BOUNDARY DRILLING INC. PROJECY MASS FILE # 88-3397

SAMPLE¥	No PPN	Cu PPN	?b ?PN	Zn PPM	λg PPM	NI PPM	Co PPN	Ma PPH	Fe t	As PPM	U PPM	Au PPN	Th PPN	ST PPN	Cđ PPN	SD PPN	Bİ PPM	V 1995 1995	Ca ł	2 \$	La PPN	Cr PPM	Hg L	Ba PPN	Ti ł	B PPN	Al ł	Na t	. К 1	¥ PPN
M L5+50S 1+75W M L5+50S 1+50W M L5+50S 1+25W M L5+50S 1+00W M L5+50S 0+75W	1 1 1 1	10 25 42 24 25	11 21 21 18 20	55 74 98 73 81	.1 .1 .1 .1 .1	11 20 38 19 22	4 9 14 7 10	101 151 218 146 218	2.16 5.01 4.51 3.73 4.14	3 6 8 9 5	5 5 5 5 5	ND ND ND ND ND	7 11 10 10 11	3 4 6 3 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	13 17 14 19 17	.04 .02 .08 .03 .04	.044 .046 .051 .051 .083	27 35 32 30 33	11 20 23 14 20	.17 .38 .45 .29 .31	13 25 35 12 25	.01 .01 .01 .01 .01	7 2 3 5	.67 1.19 1.32 .88 1.15	.01 .01 .01 .01 .01	.03 .03 .03 .03 .03	1 1 1 1
M L5+505 0+50W M L5+505 0+25W M L5+505 BL M L5+505 0+252 M L5+505 0+502	1 1 1 1 1	29 46 21 11 17	13 24 24 15 13	116 90 111 76 47	.3 .1 .4 .2 .1	25 28 22 10 14	11 12 16 5	472 236 405 482 256	4.50 5.36 4.28 2.83 2.37	6 10 9 4 10	5 5 5 6	ND ND ND ND ND	9 11 9 3 6	4 5 4 3 4	1 1 1 2	2 2 2 2 2	2 2 2 2 2 2	17 15 20 17 20	.05 .08 .05 .02 .05	.106 .120 .132 .111 .063	30 37 26 23 29	23 23 24 15 16	.38 .40 .33 .20 .24	39 27 45 38 27	.01 .01 .01 .01 .01	2 2 5 3	1.29 1.10 1.53 .90 .67	.01 .01 .01 .01 .01	.03 .02 .03 .02 .03	1 1 1 1
N L5+598 0+758 N L5+508 1+008 M L5+508 1+252 N L5+508 1+508 N L5+508 1+758	1 1 1 1	27 35 38 19 22	38 29 34 15 27	81 35 98 35 82	.5 .4 .5 .1 .1	21 27 28 28 27	8 9 11 8 8	321 257 339 535 242	5.19 5.60 4.71 3.91 3.37	17 14 14 10 9	5 5 5 5 5	ND ND ND ND ND	9 6 4 3 5	5 5 4 7 6	1 1 1 1	2 2 2 2 2	2 2 4 2 2	25 23 19 25 13	.06 .04 .04 .09 .09	.194 .143 .035 .051 .078	29 26 26 30 24	26 28 25 39 25	.34 .36 .37 .55 .42	35 45 36 121 48	.02 .01 .01 .01 .01	5 2 4 2 2	1.02 1.15 1.10 1.45 1.05	.01 .01 .01 .01	.05 .04 .03 .04 .04	2 1 1 1 1
N L5+50S 2+00E N L5+50S 2+23E N L5+50S 2+503 N L5+50S 2+75E N L5+50S 3+00B	1 1 1 1	25 22 10 29 15	42 35 18 35 19	139 111 96 104 92	.1 .5 .9 .1 .1	40 44 30 37 26	15 14 8 13 8	692 852 920 558 354	4.06 4.67 2.34 3.83 2.95	13 25 13 19 12	5 5 5 5	DK D D D D D	7 2 7 6 6	9 11 15 9 9	1 1 2 1 3	2 2 2 2 2 2	2 2 2 2 2 2	21 24 17 19 18	.09 .19 .39 .13 .12	.071 .087 .054 .054 .033	26 24 42 34 46	36 41 29 29 21	.56 .40 .36 .34 .26	75 80 98 54 49	.01 .01 .01 .01 .01	4 2 2 2 4	1.40 1.23 .87 1.00 .88	.01 .01 .01 .01 .01	.05 .04 .06 .04 .05	1 1 1 1 1
N L5+50S 3+25E N L5+50S 3+50E N L5+50S 4+00E N L5+50S 4+25E N L5+50S 4+50E	1 1 1 1 1	38 32 20 10 26	39 34 15 16 23	140 96 63 73 83	.1 .1 .2 .1 .1	42 42 20 17 31	12 11 7 6 12	372 241 265 263 553	5.21 4.48 2.77 2.48 3.57	22 11 8 5 5	5 5 5 5 5	ND Kd ND Kd Kd	7 9 4 2 4	13 9 10 12 15	2 1 2 1 1	3 2 2 2 2	2 2 2 2 2 2	15 14 16 16 21	.14 .09 .13 .16 .20	.078 .050 .052 .074 .106	42 34 27 23 30	30 30 20 19 30	.38 .53 .32 .37 .56	45 42 28 64 72	.01 .01 .02 .01 .01	2 2 2 4 3	1.07 1.52 .76 1.02 1.79	.01 .01 .01 .01 .01	.04 .04 .07 .09 .11	1 1 1 1
N L5+505 4+758 N L5+505 5+008 N L5+505 5+253 N L6+005 8+00W N L6+005 7+75W	1 1 1 1	6 14 28 42 37	18 13 16 26 29	49 74 83 119 125	.1 .1 .8 .1	10 21 33 45 47	4 6 10 13 13	185 200 281 1050 473	2.19 2.91 4.03 3.67 3.70	2 4 3 17 13	5 5 5 5 5	ND ND ND ND ND	1 5 11 4 7	6 9 5 26 17	1 1 1 1 1	2 2 3 2 2 2	2 2 2 2 3	20 21 15 23 21	.07 .11 .07 .56 .31	.058 .034 .054 .084 .058	22 24 32 28 38	15 25 27 40 47	.25 .51 .59 .64 .71	35 50 42 85 77	.02 .02 .01 .01 .01	2 3 2 4 2	.79 1.46 1.45 1.63 1.52	.01 .01 .01 .01 .01	.05 .05 .07 .09 .09	2 1 2 1 1
N L6+00S 7+50W N L6+00S 7+25W N L6+00S 7+00W N L6+00S 6+75W N L6+00S 6+50W	1 1 1 1	59 35 51 26 20	55 40 46 27 17	156 139 143 109 83	.4 .4 .2 .1	51 37 77 30 29	13 12 16 11 9	221 642 995 361 212	3.05 3.05 3.38 3.22 3.09	13 9 33 11 5	5 5 5 5 5	ND ND ND ND ND	3 4 3 5 8	27 29 32 17 9	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	19 19 19 17 19	.64 .73 .74 .32 .14	.078 .076 .062 .060 .029	28 24 21 28 31	40 35 76 33 34	.68 .59 .70 .61 .66	67 74 70 44 49	.01 .01 .01 .01 .01	2 2 2 3	1.46 1.36 1.27 1.33 1.45	.01 .01 .01 .01 .01	.08 .07 .07 .05 .05	1 1 1 1
N L6+005 6+25W STD C	1 19	24 62	33 40	142 132	.1 7.0	30 72	11 31	494 1023	3.76 4.18	13 42	5 17	ND 9	4 39	17 50	3 17	2 16	2 17	20 61	.32 .51	.043 .093	26 40	34 61	.55 .95	70 179	.01 .07	2 33	1.37 1.90	.01 .06	.07 .15	1 12

Page 7

r

BOUNDARY DRILLING INC. PROJECT MASS FILE # 88-3397

SAMPLE #	Ho PPM	Cu PPM	Pb PPH	Zn PPN	Ag PPN	NI PPM	Co PPN	Hn PPM	Fe 1	As PPH	U PPM	AU PPM	Th PPM	Sr PPN	Cd PPM	SD PPM	Bi PPM	V PPM	Ca ł	P ł	La PPH	CT PPH	Ng t	Ba PPM	Ti t	B PPM	A1 3	Na ł	K S	¥ PPN	
M L6+00S 6+00W M L6+00S 5+75W M L6+00S 5+50W M L6+00S 5+25W M L6+00S 5+00W	1 1 1 1	30 17 25 29 27	22 17 24 23 24	108 107 145 100 169	.2 .6 .5 .1 .2	32 27 33 34 29	9 7 10 11 9	258 231 450 440 458	3.78 3.40 3.23 3.17 3.02	10 5 10 12 11	5 5 5 5 5	ND ND ND ND ND	9 6 7 7 6	15 13 11 13 15	1 2 1 1 1	2 2 2 2 2	2 2 2 3	23 24 21 20 19	.24 .21 .16 .19 .24	.026 .043 .047 .054 .037	32 28 35 38 34	37 30 33 36 30	.68 .55 .63 .70 .61	79 70 82 62 74	.01 .01 .01 .01 .01	2 3 3 2 3	1.97 1.53 1.62 1.37 1.30	.01 .01 .01 .01 .01	.06 .06 .09 .08 .07	1 1 1 2 1	
N L6+00S 4+75W N L6+00S 4+50W N L6+00S 4+25W N L6+00S 4+00W N L6+00S 3+75W	1 1 1 1	30 36 10 22 20	32 39 7 12 10	179 91 43 74 72	.5 .3 .1 .1 .1	24 19 10 18 17	13 6 5 9 5	2810 214 265 481 556	3.47 2.73 2.66 2.73 2.57	25 42 5 7 5	5 5 5 5 5 5	ND ND ND ND NC	4 7 9 8	37 8 4 6 6	1 1 2 1	3 4 2 2 2	2 3 2 2 2	11 20 17 15 14	.76 .11 .02 .09 .09	.048 .101 .019 .038 .065	28 38 41 41 33	14 24 10 13 13	.32 .35 .17 .27 .31	101 73 17 38 57	.01 .01 .02 .01 .01	3 3 2 8 2	.76 .84 .52 .74 1.31	.01 .01 .01 .01	.05 .06 .03 .04 .03	1 1 2 1 1	
N L6+005 3+50W N L6+005 3+25W M L6+005 3+00W N L6+005 2+75W M L6+005 2+50W	1 1 1 1	33 41 41 34 25	15 16 21 27 26	94 39 81 94 79	.2 .1 .1 .2 .1	26 29 24 32 23	11 12 9 12 8	230 254 257 310 216	4.67 4.39 3.72 2.91 2.61	7 3 9 5 7	5 5 5 5 5	ND ND ND ND ND	12 12 11 8 5	3 4 7 9 7	2 1 1 1	2 2 2 2 2	2 2 2 2 2	17 15 14 17 15	.03 .04 .08 .11 .07	.052 .073 .048 .032 .035	37 35 36 34 27	20 19 16 23 19	.43 .40 .39 .65 .43	31 26 20 56 54	.01 .01 .02 .01	3 2 3 3 3	1.22 1.33 .93 1.35 1.20	.01 .01 .01 .01 .01	.02 .02 .02 .07 .09	1 1 1 1	•
N L6+00S 2+25W N L6+00S 2+00W N L6+00S 1+75W N L6+00S 1+75W N L6+00S 1+25W	2 1 1 1 1	33 66 69 18 30	29 40 29 9 12	73 384 106 42 61	.3 .1 .2 .1 .1	44 34 41 15 22	19 11 18 6 8	546 423 406 117 140	3.78 3.12 4.43 2.76 3.54	21 12 9 6 7	5 5 5 5 5	KD ND KD ND	4 11 13 10 11	279 6 5 3 3	2 2 1 1 2	4 2 2 2 2	2 2 3 2	9 1 16 14 20 17	.03 .03 .05 .01 .03	.071 .032 .051 .022 .045	25 31 37 40 38	12 21 20 14 17	.35 .47 .52 .27 .32	47 70 30 21 22	.01 .01 .01 .01 .01	2 2 2 2 3	.51 1.35 1.25 1.09 1.05	.01 .01 .01 .01 .01	.08 .07 .03 .02 .02	2 1 1 1 1	
N L6+0DS 1+00W N L6+00S 0+75W N L6+00S 0+50W N L6+00S 0+25W N L6+00S B/L 3+00B	1 1 1 1	52 26 15 42 21	21 15 12 16 15	95 112 84 82 67	.4 .5 .1 .1	34 24 16 24 16	14 14 8 10 7	361 554 358 313 277	5.05 5.22 3.75 4.40 3.55	9 8 7 6 5	5 5 5 5 5	ND ND ND ND ND	15 11 9 12 7	5 5 4 4 4	1 2 2 1 1	2 2 3 2 2	2 2 2 2 2 2	16 21 22 17 21	.07 .05 .03 .04 .03	.126 .144 .116 .102 .094	41 33 31 38 32	21 23 18 18 15	.41 .35 .29 .33 .27	22 49 32 30 25	.01 .01 .01 .01 .01	2 4 3 5 3	1.21 1.42 1.07 1.01 .83	.01 .01 .01 .01 .01	.03 .03 .03 .02 .03	1 2 1 1 2	
M L6+00S 0+252 M L6+0DS 0+502 M L6+00S 0+752 M L6+00S 1+00E M L6+00S 1+252	1 1 1 1	34 15 19 40 57	29 22 10 11 50	135 112 58 94 138	.1 .1 .1 .1 .2	43 30 23 31 75	12 9 7 11 15	232 253 156 698 275	4.07 3.31 2.29 3.48 5.80	18 18 11 13 36	5 5 5 5 5	ND ND ND ND ND	10 8 9 8	6 7 3 6 7	1 1 1 2 1	2 2 2 2 2	2 2 2 2 2	23 19 19 17 28	.04 .10 .02 .09 .08	.052 .069 .037 .054 .080	33 31 32 32 30	42 21 16 17 55	.55 .33 .21 .31 .61	82 74 22 67 112	.01 .01 .01 .01 .01	2 3 2 3 2	1.71 1.05 .58 .38 1.41	.01 .01 .01 .01 .01	.06 .04 .03 .03 .05	1 1 3 1 3	
M L6+005 1+50E M L6+005 1+75E M L6+005 2+00E M L6+005 2+25E M L6+005 2+50E	1 1 1 1	25 57 41 28 21	26 40 32 44 14	106 110 126 170 76	.1 .1 .3 .1	53 78 82 82 44	13 18 16 17 9	528 370 232 382 161	3.24 5.02 5.08 5.31 2.97	23 31 27 29 24	5 5 5 5 5	nd Nd Nd Nd Nd	5 11 9 4 7	8 10 5 15 5	1 3 1 1 2	2 3 2 3 3	2 2 2 2 2 2	27 24 28 32 30	.09 .13 .08 .26 .05	.052 .085 .078 .075 .031	29 43 40 26 41	50 55 56 50 34	.52 .61 .55 .53 .30	90 55 75 95 61	.01 .01 .01 .01 .01	2 2 3 4	1.15 1.13 1.35 1.37 .94	.01 .01 .01 .01 .01	.04 .05 .04 .06 .03	2 3 3 1 5	
N L6+00S 2+75E STD C	1 19	36 62	28 39	113 132	.1 7.2	47 73	17 31	656 1033	3.75 3.91	18 39	5 17	ND 8	12 40	22 50	2 20	2 18	2 20	13 61	.22 .50	.034 .088	57 40	24 58	.32 .96	70 181	.01 .08	5 37	.94 1.94	.01 .05	.06 .15	1 12	

Page 8

BOUNDARY DRILLING INC. PROJECT MASS FILE # 88-3397

SAMPLE‡	No PPM	Cu PPN	Pb PPN	Zn PPM	Ag PPN	NÍ PPM	Co PPN	Nn PPN	re t	λs PPM	U PPM	Au PPM	Th PPN	ST PPN	Cd PPN	SD PPM	BÍ PPN	V PPM	Ca t	P	La PPM	CT PPM	Hg t	Ba PPM	Ti ł	B PPN	A1 2	Na Z	r t	W PPN
N 16+005 3+00E N 16+005 3+253 N 16+005 3+507 N 16+005 3+757 M 16+005 4+008	1 1 1 1	32 28 23 28 41	19 15 21 32 23	97 107 77 91 88	.1 .1 .2 .1	37 32 25 27 37	12 10 8 10 13	345 297 387 315 520	3.89 4.19 3.49 4.14 3.25	13 13 11 11 7	5 5 5 5 5	ND ND ND ND ND	15 10 6 7 8	13 7 7 3 10	3 2 1 1 1	2 2 2 2 2	4 3 2 2 4	17 15 14 15 20	.09 .04 .04 .05	.031 .046 .050 .051 .046	57 49 41 44 32	31 25 22 23 24	.51 .33 .31 .29 .38	63 54 48 81 62	.01 .01 .01 .01 .02	2 2 7 3	1.73 1.46 1.14 1.25 1.96	.01 .01 .01 .01 .01	.08 .05 .05 .06 .09	1 1 1 1 1
N 16+005 4+25E N 16+005 4+503 N 16+005 4+752 N 16+005 5+002 N 16+005 5+252	1 1 1 1	17 28 15 34 6	12 17 17 23 7	66 95 63 94 37	.5 .1 .1 .1 .1	21 26 19 40 9	8 9 7 14 3	245 330 166 338 121	2.73 3.38 2.49 3.65 1.38	4 9 3 3 4	5 5 5 5 5	ND ND ND ND KD	5 5 3 10 2	9 13 14 37 9	1 1 1 1	2 3 3 3	2 2 4 3	25 16 23 24 24	.08 .21 .10 .75 .17	.059 .052 .045 .044 .012	23 25 23 35 23	26 23 23 33 12	.37 .38 .37 .53 .16	40 58 76 101 38	.03 .01 .02 .02 .01	2 2 2 2 2 2	1.66 1.43 1.50 2.00 .71	.01 .01 .01 .01 .01	.05 .07 .05 .12 .07	1 1 1 2
M L6+00S 5+503 N L6+00S 5+758 M L5+00S 6+003 N L5+50S 8+50W M L5-50S 3+00W	1 1 1 1	45 17 13 103 48	27 31 15 49 32	131 72 72 207 144	.3 .1 .2 1.6 .6	39 22 18 69 53	13 7 7 18 15	1540 216 312 1421 689	3.61 3.13 2.67 4.83 4.20	8 5 4 25 13	5 5 5 5 5	ND ND ND ND ND	7 5 3 8	50 10 7 44 17	1 1 2 3 1	2 2 2 2 2	2 2 4 2 2	25 20 18 24 26	1.10 .11 .07 1.00 .24	.072 .054 .062 .093 .036	30 22 23 31 34	30 24 19 44 49	.59 .40 .33 .55 .73	158 41 49 106 96	.02 .02 .02 .01 .01	3 2 4 2 4	1.85 1.49 1.15 2.10 2.29	.01 .01 .01 .01 .01	.15 .06 .05 .11 .13	1 2 1 1 1
N L6+50S 7+50W N L6+50S 7+00W N L6+50S 6+50W N L6+50S 6+00W N L6+50S 5+50W	1 1 1 1	140 58 10 15 18	57 30 7 14 22	217 150 70 74 101	1.3 .3 .1 .1 .3	96 56 17 21 32	22 16 5 7 13	2754 839 130 166 5183	4.87 3.99 2.77 3.49 3.89	27 19 9 6 9	10 5 5 5 5	ND ND ND ND ND	3 6 3 9 4	42 24 9 11 29	3 1 1 2 1	3 2 4 2 2	2 2 4 5 2	24 22 24 29 19	.90 .37 .11 .15 .52	.141 .048 .025 .028 .083	30 35 25 33 20	47 42 27 33 32	.65 .61 .40 .58 .55	125 89 41 65 144	. 01 . 01 . 01 . 01 . 01	4 3 3 2	2.40 1.93 1.34 1.90 1.72	.01 .01 .01 .01 .01	.15 .11 .04 .05 .06	1 1 1 1
M L6+505 5+00W M L6+505 4+50W M L6+505 4+00W M L6+505 3+50W M L6+505 3+00W	1 1 1 1	23 29 41 21 73	16 16 17 19 31	70 99 101 63 91	.1 .1 .1 .1	26 22 29 18 52	8 12 11 6 14	185 419 312 215 570	5.06 4.53 4.52 2.88 3.47	5 8 15 12	5 5 5 5 5	ND ND ND ND ND	10 11 12 9 5	7 4 5 9 18	1 1 2 1 1	3 2 2 3 2	3 2 2 3 2	18 21 15 19 19	.10 .03 .05 .12 .31	.048 .068 .037 .033 .055	29 31 32 32 26	32 26 25 19 27	.47 .32 .50 .34 .42	26 43 26 46 65	.01 .01 .01 .01 .01	5 2 3 2 4	1.96 1.40 1.42 1.24 1.52	.01 .01 .01 .01 .01	.03 .04 .04 .09 .10	1 2 1 1 1
N L6+50S 2+50W N L6+50S 2+00W N L6+50S 1+50W N L6+50S 1+00W N L6+50S 0+50W	1 1 1 1	32 12 32 25 21	213 10 15 15 12	90 36 84 104 93	.2 .1 .1 .1 .2	68 10 25 23 24	19 4 11 10 10	1529 95 262 333 333	5.08 2.07 4.72 3.53 4.42	14 3 8 7 13	5 5 5 5 5	ND ND ND ND	10 8 10 10 9	40 3 4 5 4	1 1 1 1 1	3 3 4 2 4	2 2 5 3	11 16 22 18 36	.60 .02 .02 .05 .04	.118 .014 .044 .074 .121	37 34 33 29 30	17 13 25 22 43	.21 .18 .42 .33 .34	92 19 26 32 24	.01 .01 .01 .01 .01 .02	8 28 2 2 2 2	1.23 .84 1.67 1.33 1.26	.01 .01 .01 .01 .01	.06 .03 .04 .03 .03	1 3 2 1 2
M 15+505 0+00W N 17+505 8+50W N 17+505 8+00W N 17+505 7+50W N 17+505 7+00W	1 2 1 1 1	18 118 154 25 75	22 90 42 24 38	111 407 380 175 216	.3 .5 1 .5 .5 .5	31 40 47 34 54	14 17 12 10 15	1036 507 1060 531 427	3.87 6.46 3.46 3.87 3.63	15 77 44 15 25	5 5 5 5 5	ND ND ND ND ND	2 3 1 6 5	7 28 71 20 25	2 3 3 2 2	2 3 3 3 3	2 2 4 4	23 40 21 21 21	.06 .46 1.72 .36 .55	.101 .054 .091 .043 .069	31 19 15 31 27	40 54 30 37 38	.30 .49 .49 .53 .55	82 93 95 66 71	.01 .04 .01 .01 .01	2 3 5 3 2	1.24 2.05 1.36 1.58 1.77	.01 .01 .01 .01 .01	.04 .07 .07 .08 .10	1 1 1 1
N L7+505 5+50W STD C	1 19	41 61	45 37	225 132	.1 7.1	35 72	13 30	301 1023	5.45 3.93	29 43	5 19	ND 7	6 40	10 50	2 20	4 18	2 19	22 51	.13 .51	.047 .089	29 41	39 60	. 36 . 89	55 180	.01 .08	3 34	1.68 1.96	.01 .06	.07 .14	2 13

Page 9

BOUNDARY DRILLING INC. PROJECT ASS FILE # 88-3397

SAMPLE‡	No PPN	Cu PPN	Pb PPM	Za P PN	Ag PPN	NI PPN	Co PPN	Ha PPN	Fe %	As PPM	U PPM	Au PPM	Th PPN	ST PPM	Cd PPM	SD PPN	Bi PPM	V PPN	Ca ł	P 1	La PPN	CT PPM	Ng t	Ba PPN	1i 3	B PPN	A1 3	Na ł	K ł	¥ PPN
M L7+50S 6+00W M L7+50S 5+50W M L7+50S 5+00W M L7+50S 4+50W M L7+50S 4+50W M L7+50S 4+00W	1 1 1 1 1	33 20 22 15 52	30 21 23 19 33	115 72 121 71 117	.5 .3 .2 .2	24 13 32 13 45	10 7 14 8 14	236 116 318 519 554	4.92 1.93 3.57 2.71 4.02	15 3 10 4 19	5 5 5 5 5	ND ND ND ND ND	6 7 11 9 13	9 8 5 4 9	2 3 1 2 3	3 2 2 2 2	2 2 6 2	17 11 15 15 16	.13 .14 .06 .04 .13	.055 .057 .051 .059 .048	25 28 27 30 45	22 22 26 13 36	.28 .49 .37 .20 .57	39 51 47 44 47	.01 .01 .01 .01 .01	3 2 2 2 6	1.32 1.45 1.83 1.08 1.55	.01 .01 .01 .01 .01	.04 .03 .03 .03 .06	1 2 1 1 1
M L7+503 3+50W M L7+503 3+00W N L7+503 2+50W M L7+503 2+50W M L7+503 1+50W	1 1 1 1	36 27 14 21 19	30 22 27 14 12	111 103 58 55 54	.4 .2 .1 .1	44 33 27 18 15	13 13 10 8 6	320 591 509 115 172	3.45 3.33 2.49 3.34 3.20	13 11 10 3 7	5 5 5 5	ND ND ND ND ND	8 7 6 10 8	19 10 16 3 3	2 2 1 2 1	2 2 2 2 2	2 2 3 2	13 10 13 15 19	.32 .14 .17 .02 .04	.054 .051 .039 .035 .090	30 24 18 29 26	19 18 21 14 12	.40 .44 .24 .25 .19	38 29 53 23 13	.01 .01 .01 .01 .01	2 3 3 3 2	1.16 1.01 1.13 1.02 .92	.01 .01 .01 .01 .01	.04 .05 .05 .03 .03	1 1 1 1
M 17+505 1+00W M 17+505 0+50W M 17+505 BL M 13+505 10+50W M 13+505 10+00W	1 1 1 1 1	16 29 11 67 57	19 13 9 44 53	72 53 41 197 2 39	.2 .2 .3 .8 .6	14 16 12 60 52	9 5 4 19 19	443 110 207 960 559	4.17 3.44 1.94 4.98 5.10	11 15 7 31 44	5 5 5 5 5	ND ND ND ND ND	8 10 8 7 4	4 5 3 20 21	1 2 2 4 1	2 2 2 2 2	2 2 3 2	31 22 14 26 25	.06 .07 .03 .36 .43	.279 .154 .049 .094 .095	23 30 26 31 22	19 14 15 40 40	.19 .19 .19 .57 .65	37 16 22 109 68	.01 .91 .01 .01 .01	2 4 8 4 2	1.50 .77 .82 2.17 1.49	.01 .01 .01 .01	.04 .03 .03 .11 .08	1 2 1 1
N L8+50S 9+50W N L8+50S 9+60W N L8+50S 8+50W N L3+50S 8+00W N L8+50S 7+50W	1 1 2 1 1	25 73 38 78 35	33 55 14 56 27	107 191 128 217 137	.1 .4 1.1 .8 .4	32 54 23 64 28	12 19 7 22 9	337 1398 195 861 305	3.14 4.69 4.99 5.46 3.42	12 36 43 29 33	5 5 5 5 5	ND ND ND ND ND	6 6 4 9 2	8 24 19 12 7	2 1 2 4 2	2 2 3 2 2	2 2 3 3	18 21 28 25 32	.12 .47 .37 .16 .10	.034 .069 .088 .074 .076	23 28 19 35 26	23 34 30 43 26	.48 .63 .43 .57 .29	53 79 62 110 55	.01 .01 .01 .01 .01 .02	3 2 2 4 4	1.44 1.53 1.43 2.53 .91	.01 .01 .01 .01 .01	.08 .11 .05 .15 .05	1 1 1 1 1
M L8+50S 7+00W M L8+50S 6+50W M L8+50S 6+00W M L8+50S 5+50W M L8+50S 5+00W	1 1 1 1	52 61 40 42 31	91 56 25 35 35	305 <u>412</u> 133 111 97	.7 1.7 .4 .4 .7	56 67 35 33 26	21 17 13 13 12	632 929 417 502 415	5.11 4.80 3.89 4.60 7.92	51 28 13 15 17	5 5 5 5 5	ND ND ND ND ND	4 3 6 7 4	26 39 20 10 5	4 3 1 2 2	2 2 2 2 2 2	2 2 2 5	25 20 15 21 42	.38 .87 .43 .17 .05	.076 .133 .055 .084 .272	24 21 22 26 28	35 29 22 24 28	.60 .49 .45 .43 .42	67 68 41 43 46	.91 .91 .91 .01 .01	2 5 4 2 2	1.57 1.63 1.41 1.40 1.60	.01 .01 .01 .01 .01	.07 .08 .05 .05 .04	1 1 1 1
N L3+505 4+50W N L8+505 4+00W N L8+505 3+50W N L8+505 3+00W N L8+505 2+50W	1 1 1 1 1	64 16 34 27 18	20 20 25 31 15	102 63 106 91 60	.2 .2 .1 .1	33 17 49 72 56	12 6 16 25 11	241 128 396 707 194	5.10 3.62 3.78 5.68 3.25	14 6 9 22 16	5 5 5 5 5	KD ND ND ND ND	8 8 5 7 7	6 5 21 33 6	3 3 2 2 2	2 2 2 2 2 2	5 2 4 2 2	14 19 17 24 27	.10 .02 .31 .49 .08	.071 .023 .038 .123 .024	26 28 26 26 25 27	17 19 26 53 53	.38 .33 .43 .42 .39	15 63 81 65 39	.01 .01 .01 .01 .01	2 2 4 2	1.12 1.42 1.50 1.47 1.59	.01 .01 .01 .01 .01	.03 .04 .06 .05 .03	1 1 1 1
M 18+505 2+00W M 18+505 1+50W M 18+505 1+00W M 18+505 0+50W M 18+505 31	1 1 1 1	52 11 32 25 30	25 12 22 12 18	96 36 84 97 101	.3 .1 .1 .3 .4	29 8 24 25 27	10 4 9 10 10	232 143 657 258 201	6.27 2.74 4.50 3.87 5.21	8 6 13 7 9	5 5 5 5 5	ND KD KD KD KD	9 7 13 11 10	4 3 5 4 4	1 1 2 2	2 2 2 2 2 2	5 2 3 3 2	18 25 18 14 17	.04 .03 .05 .03 .03	.150 .081 .153 .058 .083	18 26 35 25 24	23 10 20 18 24	.46 .12 .35 .36 .40	26 20 27 32 43	.01 .01 .01 .01 .01 .01	2 3 2 2 2	1.60 .80 1.24 1.37 1.66	.01 .01 .01 .01 .01	.04 .03 .03 .03 .03	1 1 1 1
N 19+505 11+50W STD C	2 19	68 60	58 44	181 132	.2 7.0	56 71	19 31	407 1020	7.53 4.17	74 40	5 18	ND 8	4 39	13 49	3 20	2 18	3 19	41 61	.13 .50	.092 .096	18 39	54 58	. 50 . 86	120 179	. 04 . 08	2 32	1.63 1.95	.01 .06	.05 .14	1 12

P.] 10

BOUNDARY DRILLING INC. PROJECT MASS FILE # 88-3397

SAMPLE:	MO PPM	CU. PPN	Pb PPN	Zn PPM	Ag PPN	NÍ PPM	CO PPN	Ha PPM	Fe 3	As PPM	U PPM	Au PPM	Th ?PH	ST PPH	Cd PPN	Sb PPH	Bi PPN	V PPN	Ca ł	Р 1	La PPM	CT PPM	Ng ł	Ba PPM	Ti ł	B PPM	ג ז	Na %	K Ş	¥ PPN
M L9+505 11+00W M L9+505 10+50W M L9+505 10+60W M L9+505 9+50W M L9+505 9+00W	1 1 1 1	21 34 29 97 59	15 40 24 48 49	136 223 105 161 188	.2 .4 .1 .3 .9	31 44 34 79 58	8 13 9 22 17	176 365 223 630 949	3.53 4.64 3.77 4.69 4.25	20 26 23 46 29	5 5 5 5 5	ND ND ND ND	6 8 9 10 5	10 13 12 28 18	1 2 1 1 1	3 2 2 3 3	2 2 2 2 2	24 29 21 30 26	.14 .19 .20 .68 .29	.030 .942 .025 .097 .052	33 35 37 37 36	34 38 36 49 37	.53 .55 .57 .99 .56	89 90 59 35 97	.01 .02 .01 .03 .01	2 2 2 2 2 2	1.50 2.02 1.50 1.54 1.80	.01 .01 .01 .01 .01	.08 .09 .10 .13 .11	1 1 1 1
N L9+50S 8+50W M L9+50S 8+00W N L9+50S 7+50W M L9+50S 7+00W N L9+50S 6+50W	1 1 1 1 1	47 51 47 51 58	63 47 37 33 59	561 214 157 228 285	2.0 4 .4 .7 .2 1.3	53 42 59 39 43	19 12 14 12 17	4019 347 494 321 401	4.07 3.89 3.51 3.71 5.23	45 30 19 24 46	5 5 5 5 5	ND ND ND ND	2 4 7 4 2	26 18 19 15 45	4 2 3 2 1	3 2 2 2 2	5 2 4 2 2	30 41 20 30 34	.38 .23 .25 .14 1.02	.075 .049 .046 .032 .069	29 32 39 36 24	50 42 33 30 34	.54 .43 .66 .42 .45	108 91 71 77 84	.03 .04 .01 .02 .02	2 2 3 2 2	1.95 1.71 1.57 1.54 1.76	.01 .01 .01 .01 .01	.06 .07 .09 .09 .08	1 1 1 1
N 19+505 6+00W N 19+505 5+50W N 19+505 5+00W N 19+505 4+50W N 19+505 4+50W N 19+505 4+00W	1 1 1 1	55 22 10 14 41	130 22 21 25 39	252 123 87 62 160	1.1 .3 .4 .2 .5	53 23 17 14 142	18 8 5 4 29	924 313 241 119 1991	3.86 4.32 2.32 2.74 5.26	27 14 11 10 38	5 5 5 5 5	ND ND ND ND ND	5 6 8 6 3	23 6 8 4 50	2 1 3 1 3	2 2 2 2 2	3 2 3 3 2	21 37 16 19 17	.40 .05 .07 .04 1.25	.049 .045 .038 .026 .107	36 37 61 34 28	32 56 22 18 25	.54 .32 .41 .22 .31	85 52 71 32 426	.01 .01 .01 .01 .01	2 2 3 4	1.55 1.32 1.09 .96 1.04	.01 .01 .01 .01 .01	.09 .04 .05 .03 .07	1 1 2 1
M 19+508 3+50W M 19+508 3+0CW M 19+508 2+50W M 19+508 2+00W M 19+508 1+50W	2 1 1 1 1	61 72 71 15 43	33 39 29 5 19	131 87 77 65 105	.3 .3 .2 .1 .1	113 100 91 15 46	26 30 28 6 18	597 592 457 128 261	5.01 5.04 4.65 3.64 3.44	62 15 16 6 10	5 5 5 5	ND ND ND ND ND	3 14 17 9 14	23 91 22 4 5	1 2 3 1 2	2 2 4 2	4 3 2 2 2	22 34 31 25 12	.39 2.13 .40 .02 .05	.075 .050 .023 .032 .032	30 52 61 33 39	47 99 30 19 21	.56 1.04 1.04 .30 .53	55 93 87 26 32	.01 .01 .01 .02 .01	2 2 4 5	1.63 2.03 2.19 1.19 1.57	.01 .01 .01 .01 .01	.06 .12 .10 .04 .03	1 1 2 1
N 19+505 1+00W N 19+505 0+50W N 19+505 0+00W N 19+505 0+50W N 110+505 10+50W	1 1 1 1 2	41 13 30 26 102	21 16 20 18 50	145 49 117 107 197	.5 .2 .1 .1 .7	60 11 54 38 101	19 5 13 14 23	392 120 268 291 548	3.86 3.54 3.82 4.17 6.59	13 6 13 5 82	5 5 5 5 5	HD HD HD HD	12 10 9 14 6	9 4 8 5 19	2 1 2 3 3	2 2 2 2 2	2 2 2 2 2 2	13 19 25 21 38	.13 .02 .10 .04 .31	.067 .055 .058 .041 .114	37 38 43 52 32	25 19 46 37 65	.48 .24 .65 .91 .80	52 34 75 61 119	.01 .01 .01 .01 .02	2 2 3 2 4	1.77 1.21 1.80 2.40 1.94	.01 .01 .01 .01	.05 .03 .06 .08 .08	1 2 1 1 1
N L10+50S 10+00W N L10+50S 9+50W N L10+50S 9+00W N L10+50S 3+00W N L10+50S 7+50W	1 1 1 1	129 64 41 12 58	59 51 53 15 52	191 167 102 65 164	.4 .7 .5 .3	81 57 61 12 63	25 17 9 5 17	486 940 767 487 586	6.96 4.14 2.96 1.12 4.19	64 27 28 7 30	5 5 5 5 5	KD ND ND ND ND	7 5 2 4 13	18 23 11 12 18	3 2 2 2 2	3 3 3 2 2	5 3 2 2 2	35 23 125 15 21	.31 .44 .17 .18 .22	.120 .069 .049 .022 .052	40 36 25 37 49	50 36 30 17 36	.99 .57 .24 .22 .66	94 85 79 90 87	.03 .01 .04 .01 .01	2 4 5 2 2	2.11 1.90 1.08 .77 1.75	.01 .01 .01 .01 .01	.08 .15 .06 .06 .17	1 1 1 1
N L10+505 7+00W N L10+505 6+50W N L10+505 6+00W N L10+505 5+50W N L10+505 5+00W	1 1 1 1 1	73 113 184 55 99	64 70 101 42 72	223 429 288 241 238	1.5 .8 .5 .9 .4	65 71 76 61 70	19 20 24 13 23	1580 1582 825 697 738	4.57 4.44 5.41 3.67 4.86	23 49 79 22 46	5 5 5 5 5	ND ND ND ND ND	4 6 10 7 10	37 35 21 20 20	4 3 2 3	2 3 3 2 2	2 2 3 2 2	25 21 24 25 25	.75 .76 .37 .34 .31	.069 .069 .085 .052 .076	40 36 41 38 43	38 33 41 37 44	.60 .59 .73 .65 .75	113 93 67 67 92	.01 .01 .02 .02 .01	7 6 3 2 2	2.00 1.45 1.45 1.74 1.53	.01 .01 .01 .01 .01	.18 .13 .08 .07 .11	1 1 1 1
M L10+50S 4+50W STD C	1 19	19 62	32 38	117 132	.3 6.9	18 71	5 30	112 1028	3.13 3.88	14 40	5 18	ND S	8 39	12 50	2 20	2 13	2 18	24 61	.14 .50	.039 .089	41 40	25 59	. 29 . 96	57 180	.01 .08	5 36	1.22 2.05	.01 .05	.06 .14	2 12

Page 11

.
BOUNDARY DRILLING INC. PROJEC' ASS FILE # 88-3397

SAMPLE ‡	No PPM	CU PPM	Pb PPM	Zn PPN	Ag PPM	NÍ PPM	CO PPN	HD PPM	re 3	As PPN	U PPM	Au PPM	Th 2PM	Sr PPN	Cd PPN	SD PPN	Bİ PPM	V PPN	Ca ł	P 3	La PPN	CT PPM	Ng ł	Ba PPM	Ti t	B PPN	31 2	Na t	E ł	W PPM
N L10+505 4+00W	1	41	38	146	.4	39	13	654	3.91	19	5	ND	6	17	1	2	2	18	.28	.049	32	30	. 56	74	.01	2	1.42	.01	.06	1
N L10+505 3+50W	ī	35	32	98		39	11	169	4.36	12	5	ND	1	11	i	2	3	24	.08	.046	25	22	. 29	92	.01	2	1.31	.01	.05	1
N L10+505 3+00W	1	25	21	86	.1	31	12	641	3.15	5	5	ND	7	13	1	2	2	10	.27	.057	32	18	. 46	30	.01	2	1.03	.01	.04	1
M L10+505 2+50W	1	56	39	112	.1	34	14	420	3.69	21	5	ND	11	12	1	2	2	17	.19	.055	38	21	. 58	38	.02	2	1.37	.01	. 09	1
H L10+505 2+00W	4	387	84	<u>417</u>	.8	60	9	197	3.35	28	5	ND	6	13	1	4	2	10	.26	.139	17	7	.07	44	.01	2	. 52	.01	.05	1
N L10+505 1+50W	1	27	21	\$1	.1	35	11	181	3.90	4	5	ND	10	5	1	2	2	18	.06	.020	38	30	. 65	58	.01	2	1.74	.01	.06	1
H L10+505 1+00W	1	31	70	109	.3	35	9	249	4.43	11	5	ND	6	5	1	2	2	21	.05	.091	26	25	.30	66	.01	2	-1.35	.01	.04	2
M L10+505 BL	1	17	21	108	.2	29	10	351	4.54	8	5	ND	10	6	2	2	2	25	. 09	.115	39	38	. 69	72	.01	2	1.34	.01	.07	1
N L11+005 9+50W	1	18	14	84	.1	17	5	448	1.54	13	5	ND	2	14	1	2	2	19	. 29	.028	21	16	.20	50	.01	2	.54	.01	.05	1
N L11+005 9+00W	1	167	72	198	1.2	84	26	913	6.54	38	5	ND	9	94	1	2	2	69	. 85	.190	32	78	2.02	77	.17	2	2.23	.01	.12	1
N L11+005 8+50W	1	54	51	142	.1	27	8	212	4.21	41	5	ND	3	11	1	3	2	19	.13	.033	28	24	.35	47	.01	2	1.04	.01	.06	2
M L11+005 7+50W	1	57	43	204	.5	32	9	278	4.10	49	5	ND	6	15	2	2	2	23	.22	.052	33	28	. 38	64	.01	2	.95	.01	.07	1
M L11+005 7+00W	2	119	59	210	. 5	91	23	704	6.15	51	5	ND	1	30	1	2	2	25	. 59	.215	27	50	.65	80	.02	2	1.33	.01	.09	1
N L11+005 6+00W	1	11	58	359	.2	136	21	496	6.36	86	5	ND	4	30	1	2	2	50	.56	.073	19	83	51	89	.0á	2	1.16	.01	.07	1
M L11+COS 5+50W	1	5	8	73	.4	8	3	125	.98	4	5	ND	3	22	2	2	2	17	.32	.012	21	16	.14	51	.08	2	.43	.01	.05	1
N L11+005 5+00W	1	54	44	175	1.9	52	15	594	5.13	42	5	ND	5	12	1	2	2	35	.20	.113	22	52	.55	133	.01	2	1.62	.01	.06	1
H L11+50S 8+00W	1	70	67	249	.4	50	23	1586	5.08	44	5	ND	3	16	1	2	2	24	.11	.131	35	41	. 48	128	.01	2	1.79	.01	.10	1
N L11+50S 5+50W	1	81	57	252	.1	54	15	645	4.55	47	5	ND	- 5	23	3	2	3	22	.45	.071	28	41	.52	79	.01	Z	1.42	.01	.10	1
M L11+50S 4+50W	1	61	31	186	1.4	54	13	453	5.10	39	5	ND	2	16	1	2	2	39	.35	.118	22	52	.76	153	.01	Z	1.52	.01	.06	1
N L11+50S 4+00W	1	10	21	68	.4	18	5	170	2.09	14	5	ND	4	8	I	2	3	28	.15	.037	28	32	.35	107	.01	2	1.17	.01	.04	1
M L11+505 3+50¥	4	125	32	184	.7	90	22	945	6.31	39	5	ND	5	21	1	3	2	14	.23	.065	30	21	.35	77	.01	2	1.20	.01	. 05	2
N L11+505 3+00W	2	39	48	123	.2	40	13	680	4.45	36	5	ND	4	15	2	2	2	16	.19	.111	30	20	. 29	67	.01	2	.95	.01	.07	1
M L11+50S 2+50W	1	24	14	78	.1	28	12	469	3.06	4	5	ND	9	13	1	3	3	10	.24	.058	33	18	.47	27	.01	2	1.03	.01	.04	1
N L11+50S 2+00W	1	55	29	99	.2	48	18	454	4.29	10	5	ND	12	16	2	2	2	15	.21	.052	40	26	.61	43	.01	2	1.50	.01	.08	1
N L11+505 1+50W	1	30	21	85	.1	33	10	189	3.34	5	5	ND	11	10	1	2	2	13	.05	.026	38	16	.37	46	.01	2	1.30	.01	.05	1
N L11+505 1+00W	1	31	24	74	.1	32	11	150	4.34	8	5	ND	11	4	2	3	2	17	.03	.033	39	27	.53	49	.01	2	1.66	.01	. 05	2
M L11+50S 0+50W	1	30	17	104	-1	53	13	276	4.38	22	5	ND	9	6	1	2	2	20	.05	.054	33	37	.51	80	.01	Z	1.53	.01	.05	I
M L11+50S BL	1	36	31	174	.4	51	16	398	4.79	11	5	ND	12	7	1	Z	2	20	.10	.085	40	37	. 63	76	.01	4	1.37	.01	.08	1
STD C	19	63	37	132	7.1	- 71	31	1037	4.11	42	18	8	39	50	20	15	19	51	. 53	. 097	40	23	. 59	181	.08	34	1.93	.46	.14	13

) P-je 12 Ċ

Ċ

r

C

(÷

(-

(.

Ċ

C

۲

- (#~~#)						I	BOUN	DARY	DR	ILLI	NG	INC.	PR	OJEC	: `)	ss	FI	LE #	ŧ 88-	-339	7									13
SAMPLE ‡	No PPN	Cu PPN	PD PPN	Zn PPM	Ag PPM	Nİ PPM	CO PPM	Mn PPN	re t	λs PPH	U PPM	Au PPM	Th PPN	Sr PPM	Cd PPN	SD PPM	Bİ PPN	V PPM	Ca t	P	La PPN	Cr PPH	Hg L	Ba PPN	Ti ł	B PPN	A1 %	Na ł	X Z	¥ PPN	
N-SS-1	1	24	18	69	.1	24	11	1422	2.98	9	5	ND	6	14	1	2	3	9	.23	.030	20	13	. 32	31	.01	2	.88	.01	.04	1	

.

•

,

• .

.

Ć

								BOU	NDAR	Y DR	ILL	ING	INC	. PF	OJE	CT 🔺	ASS	F	ILE	# 88	-33	97									Pau	Te 1
SANPLE#	HO	Cu PPM	Pb PPM	ZD PPM	Ag PPN	NÍ PPM	CO PPN	Na PPM	Te 3	As PPM	U PPM	Au PPH	Th PPN	Sr PPN	Cd PPM	PPM) _{Bi} PPM	V PPM	Ca 1	P	La PPN	CT PPN	Ng t	Ba PPN	Ti ł	B PPN	Al E	¥a t	K ł	¥ PPN	Au* PPB	J
N-BT-1 N-BT-2 N-BT-3 N-BT-4 N-BT-5	1 3 18 1	52 17 31 259 1151	115 26 17 91 516	6 151 40 95 1872	5.8 .2 .1 .4 5.5	12 12 13 254 110	5 3 3 39 87	53 251 266 880 3901	1.98 1.99 1.39 7.19 25.99	2 7 2 29 133	5 5 5 5 5	ND ND ND ND	1 1 4 8 12	1 4 47 47 4	1 1 1 4	5 3 2 2	108 3 2 3 5	1 2 18 20 3	.01 .03 .60 .38 .11	.002 .016 .226 .136 .011	2 2 13 20 3	3 5 9 37 1	.01 .05 .03 .09 2.83	4 20 110 138 23	.01 .01 .01 .01 .01	10 2 7 2 3	.02 .07 .34 .57 .21	.01 .01 .01 .01 .02	.01 .02 .12 .13 .09	1 3 1 1 1	325 1 4 10 19	
N-BT-6 NO NUMBER STD C/AU-F	1 5 17	52 823 60	2 1541 38	87 1093 133	.1 10.7 6.7	48 39 68	18 58 27	991 115 1064	6.71 27.35 4.16	2 6603 40	5 5 17	ND Dk 8	2 4 37	39 7 48	1 2 18	2 36 16	2 23 19	16 10 58	8.10 .07 .47	.094 .010 .087	11 2 40	7 10 58	2.29 .46 .94	123 13 179	.01 .01 .07	2 5 32	.57 1.03 2.01	.02 .01 .06	.09 .05 .14	1 1 11	1 76 485	

.

Ċ

(

(

(

(

(

.....

.

•

. . . .

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SOIL AU* AMALTSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

DATE RECEIVED: SHP 7 1988 DATE REPORT MAILED: Sept 9/85 ASSAYER.......D.TOYE OR C.LEONG, CERTIFIED B.C. ASSAYERS BOUNDARY DRILLING INC. PROJECT 101 File # 88-4272 Page 1

SAMPLE#	Ho PPN	Cu PPM	PD PPN	Zn PPN	ÂĢ PPM	Nİ PPM	CO PPM	MD PPM	Fe	AS PPM	U PPN	AU PPM	Th PPM	ST PPM	Cd PPM	SD PPM	Bİ PPM	V PPM	Ca t		La PPM	CT ??N	Ng K	Ba PPN	71	B PPM	¥1 \$	Na ł	I ł	W PPH	A6* PP3
LY 3+503 4+75W 20CM LY 3+503 4+75W 20CM LY 3+505 4+75W 20CM LY 3+505 4+75W 20CM LY 3+505 4+50W 40CM	1 1 1 1	224 55 33 228 82	32 25 21 40 71	202 151 95 112 202	.5 .1 .1 1.4 .6	55 41 30 29 30	18 16 12 6 14	750 453 374 200 447	4.74 3.37 2.84 1.83 3.31	17 13 13 15 38	5 5 5 5 5	ND ND ND ND ND	6 9 8 1 7	36 17 12 68 17	1 1 1 2	2 2 2 2 2	2 2 2 2 2 2	33 28 20 13 19	.54 .20 .15 1.37 .22	.063 .019 .030 .051 .040	33 34 29 28 30	48 43 32 15 26	.69 .73 .53 .23 .45	164 105 69 193 94	.02 .02 .02 .01 .01	2 2 3 2 5	2.35 1.87 1.27 .77 1.24	.01 .01 .01 .01 .01	.17 .19 .05	1 2 1 1 1	: 3 1 1 2
LY 3+505 4+56% 60CM LY 3+005 4+25% 20CM LY 3+035 4+25% 40CM LY 3+005 4+25% 60CM LY 4+005 5+00% 23CM	1 1 1 1	58 73 51 80 37	73 18 52 55 27	179 121 147 175 124	.3 .7 .3 .6 .2	30 22 27 30 22	16 7 15 16 10	599 312 567 719 533	4.05 1.54 3.70 3.94 2.67	35 12 25 27 12	5 5 5 5 5	ND ND ND ND ND	7 2 6 5 2	15 66 20 21 23	1 2 1 1 1	3 2 2 2 2	2 2 2 2 2 2	19 9 18 19 20	.20 1.46 .30 .33 .31	.047 .046 .070 .069 .041	28 16 28 29 20	28 16 23 26 24	.51 .31 .42 .44 .35	97 213 116 141 30	.02 .01 .01 .01 .01	2 5 3 2 2	1.25 .50 1.05 1.22 1.11	.01 .01 .01 .01 .01	.13 .24 .05 .27 .38	2 1 1 2 1	1 1 1 1
LY 4+005 5-00W 30CM LY 4+005 5+00W 45CM LY 4+005 4+75W 15CM LY 4+005 4+75W 25CM LY 4+005 4+75W 50CM	1 1 1 1	65 61 93 43 34	29 29 25 22 15	155 147 151 109 108	.6 .4 .2 .1 .2	32 33 28 23 21	13 13 10 9 9	874 756 377 279 167	3.57 3.61 2.48 2.32 2.35	15 16 12 10 9	5 5 5 5 5	ND ND ND ND	5 6 4 7 8	23 20 18 10 8	2 2 1 1 1	3 2 2 2 3	2 2 2 2 2 2	24 24 17 15 17	.30 .26 .26 .13 .10	.057 .057 .051 .029 .018	26 30 24 27 28	33 36 24 22 24	.47 .56 .39 .39 .39	108 100 111 74 83	.01 .02 .01 .01 .01	2 5 2 2 2	1.69 1.67 1.15 .99 1.07	.01 .01 .01 .01 .01	.11 .11 .07 .05 .05	1 1 1 1 1	1 1 1 2
LY 4+003 4+50W 20CM LY 4+005 4+50W 35CM LY 4+005 4+50W 75CM LY 4+505 5+25W 20CM LY 4+505 5+25W 40CM	1 1 1 1	102 110 62 29 51	52 57 31 30 42	223 200 127 93 132	.4 .6 .4 .3 .1	29 29 25 22 37	12 14 12 8 13	641 654 412 271 417	3.24 3.87 4.03 2.77 3.88	25 25 16 12 12	5 5 5 5 5	ND ND ND ND ND	5 6 9 6 10	18 15 10 9 8	2 2 1 3 1	2 2 3 2 2	2 2 2 2 2	16 18 15 18 25	.29 .23 .14 .13 .07	.063 .068 .057 .035 .025	22 25 26 24 32	20 22 19 25 39	.38 .37 .34 .44 .76	111 101 58 45 65	.01 .01 .01 .01 .02	2 2 5 4 4	1.02 1.11 1.06 1.08 1.91	.01 .01 .01 .01 .01	.07 .07 .04 .38 .12	1 2 1 2 2	1 1 1 1
LY 4+505 5+25W 60CM LY 4+505 5+00W 20CM LY 4+505 5+00W 40CM LY 4+505 5+00W 50CM LY 4+505 4-75W 20CM	1 1 1 1	75 304 246 132 238	35 48 54 24 94	137 682 631 321 377	.1 .7 .8 .3 .8	40 41 38 25 39	16 13 12 8 12	444 594 486 263 623	3.58 3.47 3.36 2.42 3.29	17 34 37 20 42	5 5 5 5 5	ND ND ND ND ND	9 6 8 4	8 12 14 8 18	2 3 3 3 2	2 2 3 2	2 2 2 2 2 2	22 21 20 16 18	.08 .14 .18 .09 .28	.025 .041 .040 .021 .052	32 30 28 29 28	38 28 28 21 24	.59 .43 .42 .37 .38	69 148 150 93 154	.02 .01 .01 .01 .01	2 2 4 5 2	1.58 1.39 1.35 .98 1.23	.01 .01 .01 .01 .01	.10 .03 .05 .05 .09	1 2 2 1 1	1 2 1 3 1
LY 4+505 4+75% 40CM LY 4+505 4+75% 60CM LY 5+003 5+50% 20CM LY 5+005 5+50% 60CM LY 5+005 5+50% 75CM	1 1 1 1 1	242 212 55 57 72	95 77 53 68 87	384 313 166 136 145	1.0 1.0 .3 .4 .7	39 35 22 29 33	12 12 9 11 13	630 603 509 1042 1206	3.35 3.77 2.72 3.03 3.50	45 44 15 17 23	5 5 5 5 5	ND D ND ND ND	5 5 7 8	18 18 14 14 15	2 3 1 3 3	2 7 2 2 2	2 2 2 2 2 2	18 19 15 15 17	.28 .28 .20 .19 .20	.052 .056 .055 .057 .057	28 28 28 31 34	25 24 19 18 22	.37 .39 .32 .39 .49	169 171 58 49 56	.01 .01 .01 .01 .01	4 2 8 5	1.24 1.30 1.07 .99 1.14	.01 .01 .01 .01 .01	.09 .03 .05 .05	1 1 1 2	1 3 1 1
LY 5+005 5+00W 20CM LY 5+005 5+00W 40CM LY 5+005 5+00W 60CM LY 5+005 4+75W 20CM LY 5+005 4+75W 40CM	1 1 1 1	383 341 336 42 134	237 199 217 64 147	594 599 564 139 287	2.5 2.6 2.6 .3 .8	68 67 59 11 32	17 16 15 4 11	669 594 513 465 317	4.31 4.31 4.24 1.55 3.81	82 91 55 86	5 5 5 5 5	ND ND ND ND ND	8 9 8 2 5	19 14 14 9 12	3 5 3 2 1	7 9 8 2 7	2 2 2 2 2	18 18 19 16 18	.27 .19 .18 .11 .17	.064 .055 .055 .023 .042	33 32 33 24 26	26 27 26 18 26	.48 .49 .51 .16 .38	163 148 141 85 124	.01 .01 .01 .01 .01	3 3 6 2 2	1.64 1.67 1.62 .53 1.21	.01 .01 .01 .01 .01	.11 .11 .10 .05 .06	2 3 2 1 2	4 2 7 1 1
LY 5+005 4+75W 60CM	1	352	311	458	3.0	65 67	19 32	4 55 1023	5.83 3.97	334 47	5 20	NC 8	8 41	17 50	2 20	15 16	2 21	20 63	.20	.052	27 42	33 60	. 43 . 84	177 186	.01	2 34	1.73 1.83	.01 .06	.11 .15	3 11	27 49

)							BC	UND.	ARY	DRII	LIN	G II	۹C.	PROJ	TE	Juon	F	ILE	# 8	8-42	272). Je
SAMPLE#	No PPM	Cu PPN	Pb PPM	Zn PPM	Âġ PPM	NÍ PPM	Co PPN	Nn Ppm	7e ł	As PPM	U PPM	Au PPM	Th PPN	ST PPM	Cd PPM	Sb ?PM	BÍ PPN	V PPM	Ca %	P	La PPN	CT PPN	Hg t	Ba PPM	Ti ''t	B PPM	21 2	Na ł	K Z	W PPN	λu≠ PPB
LY 5+505 5+00W 20CM LY 5+505 5+00W 40CM	2 2	180 267	348 719	479 719	2.2 5.1	22 30	8 12	227 424	5.22 5.73	255 276	5 5	ND ND	4 7	12 11	1 1	19 18	13 12	18 18	.18 .17	.052 .061	25 24	29 30	.48 .51	102 143	.01 .01	5 3	1.26 1.67	.01 .01	.05 .06	1 1	3 4
LY 5+505 5+00W 60CM LY 5+505 4+75W 20CM	2 1	463 90	847 164	840 224	4.5 1.3	47 13	16 6	520 340	6.03 3.55	261 174	5 5	ND ND	7 3	11 7	1 1	21 7	13 12	20 13	.16 .09	.067 .048	28 29	35 20	. 62 . 28	186 146	.01 .01	2 3	1.98 .94	.01 .01	.06 .06	1 1	12 1
LY 5+505 4+75W 40CM	1	83	135	247	1.0	21	8	328	3.35	61	5	ND	5	8	:	2	11	14	.11	.049	31	20	. 39	122	.01	3	1.11	.01	.08	1	4
LY 5+505 4+75W 60CM LY 6+0CS 8+00W 40CM	1	129 28	188	369 93	1.2	28 25	11 9	373 290	3.81	108	5	ND ND ND	3	9 15	1	2	2	14	.11	.030	31 20 26	23	. 44 . 55 70	120 53 71	.01	2	1.33	.01	.07	1	
LY 5+505 3+504 30CM LY 5+505 3+504 30CM	1	32 100 50	2t 54 47	101 179 131	1.2	33 50 37	11 16 12	333 915 479	3.40 4.41 3.77	24 13	5	ND ND ND	1	13 37 13	1 1	2	2 2 2	20 17	.85	.033 .089 .073	26 30	36 35	.55	88 53	.02	2 2 2	1.77	.01	.08 .07	1	5
LY 6+505 8+50W 80CM	1	52	37	130	.3	42	12	362	3.84	19	5	ND	6	15	1	2	2	17	. 29	.065	33	35	.65	51	. 01	3	1.40	.01	.07	1	4
LY 6+505 8+25W 35CM LY 6+505 8+25W 55CM	1 1	28 36	26 26	93 95	.1 .1	29 35	10 12	203 300	3.04 3.47	11 12	5 5	ND ND	7 9	10 11	1 1	2 2	2 9	17 19	.17 .18	.041 .051	33 34	34 38	.62 .69	53 60	.01 .02	4	1.33	.01 .01	.06 .07	1 1	1 2
LY 6+508 9+00W 25CM LY 6+508 9+00W 45CN	2 1	72 38	50 33	189 102	1.3 .2	74 36	19 12	1283 498	5.70 3.78	27 13	5 5	ND ND	5 11	24 11	1 1	2 2	2 2	27 18	.40 .14	.060 .031	28 40	42 34	.67 .70	136 63	.01 .01	3 2	2.43 1.48	.01 .01	.15 .09	1 1	2 1
LY 5+505 S+00W 60CM	1	41	26	105	.1	39	13	589	3.93	15	5	ND	13	12	1	2	2	18	.15	.040	40	33	.68	68	. 02	2	1.50	.01	.10	1	3
LY ROCK SAMPLS STD C/AU-S	1 18	71 59	113 44	دد 132	1.1 6.7	119 66	24 31	1352	4.13	39	3 19	мU 8	1 36	47	18	17	19	57	.48	.090	37	56	.92	173	.05	32	2.02	.06	.14	13	52

 \mathfrak{C}

2

1

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAN SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

BOUNDARY DRILLING INC. PROJECT 101 File # 88-5332' Page 1

SAMPLE#	MO PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Mn PPM	Fe %	As PPM	Ba PPM	W PPM	Au* PPB	
L5+505 12+00W MA	1	42	29	92	. 2	213	2.64	17	44	1	1	
L5+50S 11+75W MA	1	33	24	94	. 3	363	2.51	17	51	1	1	
1.5+50S 11+50W MA	1	45	39	167	. 2	523	3.75	21	69	1	5	
15+505 11+25W MA	1	40	32	115	1	507	3 36	18	66	1	1	
15+505 11+25W MA	1	40	20	123		390	3 34	10	65	1	76	
T2+202 11+00M WW	1		25	125	. J	200	2.24	19	05	1	. 70	
L5+50S 10+75W MA	1	43	27	110	. 1	418	3.04	16	65	1	2	
L5+50S 10+50W MA	1	30	29	120	.1	619	3.07	13	66	1	1	
L5+50S 10+25W MA	1	39	22	112	.1	330	3.15	18	75	1	1	
1.5+50S 10+00W MA	1	30	35	101	.1	524	3.09	17	50	1	1	
L5+50S 9+75W MA	1	48	36	149	.3	694	3.79	18	76	1	2	
TE	4	22	20	104	2	376	3 00	13	67	1	3	
L5+505 9+50W MA	1	32	20	104		220	3.00	10	62	-	15	
L5+50S 9+25W MA	1	32	29	108	. 1	38/	3.20	19	00	1	12	
L5+50S 9+00W MA	1	38	27	117	.4	403	3.36	16	95	1	3	
L5+50S 8+75W MA	1	22	21	81	. 2	289	2.53	13	47	1	1	
L5+50S 8+50W MA	1	27	24	92	. 2	241	2.99	13	53	1	1	
15+505 8+25W MA	1	29	26	100	.1	382	2.92	16	61	1	2	
1.5+50S 8+00W MA	1	31	31	104	.1	505	3.16	14	63	1	1	
15+505 7+75W MA	1	41	121	126	. 1	365	4.37	45	55	2	1	
10+000 11+05W MA	1	57	42	140		615	3 50	31	67	1	6	
L6+003 11+25W MA	1	50	42	150	• 1	015	1.04	22	70	1	1	
L6+005 11+00W MA	Ţ	23	42	122	• 1	830	4.04	22	19	1	1	
L6+00S 10+75W MA	1	43	30	117	. 2	494	3.61	25	52	2	5	
L6+00S 10+50W MA	1	32	24	112	.3	332	2.98	15	54	1	8	
L6+005 10+25W MA	1	49	28	137	. 4	406	3.86	24	72	1	4	
1.6+005 10+00W MA	1	39	41	114	. 2	646	3.21	21	64	1	1	
L6+00S 9+75W MA	1	45	33	135	.1	817	3.72	20	56	1	3	
TCODO DE ENUNA	4	40	20	124	2	500	2 27	17	66	1	1	
L6+005 9+50W MA	1	40	30	124	. 2	598	3.3/	1/ E1	50	2	1	
L6+00S 9+25W MA	1	36	24	94	• 1	538	3.11	21	59	2	I A	
L6+00S 9+00W MA	1	78	46	193	. /	1403	4.50	25	138	1	4	
L6+00S 8+75W MA	1	34	18	100	.1	148	2.57	11	71	1	1	
L6+00S 8+50W MA	1	48	36	149	. 5	602	3.86	19	83	1	1	
L6+005 8+25W MA	1	41	36	145	. 3	2945	3.65	16	123	1	2	
16+505 11+00W MA	1	78	29	95	.3	648	2.98	27	68	1	3	
161508 10175W MA	1	41	รัด	140		466	4 08	21	75	1	ĩ	
10+303 10+73W MA	1	<u> </u>	50	17/		3057	5 64	36	110	1	2	
L0+305 10+30W MA	1	04	40	170	• •	3037 67F	1 04	21	01	1	10	
L0+50S 10+25W MA	T	82	49	170	. 3	6/3	4.84	21	91	ĩ	10	
L6+50S 10+00W MA	1	83	52	164	.1	423	3.74	28	93	2	1	
STD C/AU-S	17	59	44	132	6.6	1017	4.08	41	178	11	50	

SAMPLE#	MO PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Mn PPM	Fe %	As PPM	Ba PPM	W PPM	Au* PPB
L6+50S 9+75W MA	1	78	26	172	. 9	488	3.81	25	74	1	2
L6+50S 9+50W MA	1	62	37	178	. 5	782	3.53	28	84	1	1
L6+50S 9+25W MA	1	38	13	157	. 5	586	1.36	7	79	1	1
L6+50S 9+00W MA	1	25	10	59	.2	173	1.96	7	34	ī	18
L7+005 11+00W MA	1	55	43	161	.2	1055	4.33	28	97	ī	1
	-									-	-
L7+00S 10+75W MA	1	63	33	140	.9	688	3.91	22	100	1	31
L7+00S 10+50W MA	1	85	30	131	. 8	369	4.01	26	78	1	6
L7+00S 10+25W MA	1	74	31	199	. 4	1373	3.68	25	92	1	1
L7+00S 10+00W MA	1	84	42	199	1.8	1079	3.71	23	93	1	3
L7+005 9+75W MA	1	39	41	261	.1	210	4.19	39	83	1	1
										-	-
L7+00S 9+50W MA	1	46	41	232	. 2	388	3.82	22	73	1	2
L7+00S 9+25W MA	1	106	60	391	1.1	1243	4.78	42	97	1	1
L7+00S 9+00W MA	1	42	15	117	. 4	278	1.59	10	64	1	1
L7+005 8+75W MA	1	68	40	195	1.1	698	5.39	37	111	1	1
L7+005 8+50W MA	1	45	23	123	.2	446	3.30	19	63	1	1
	_									-	-
L7+005 8+25W MA	1	37	24	98	. 1	261	3.35	16	37	1	1
L7+005 8+00W MA	1	101	30	116	2.0	465	2.36	14	84	1	2
L7+00S 7+75W MA	1	39	32	150	. 2	437	3.83	19	56	1	1
L7+005 7+50W MA	1	30	29	164	.2	289	3.66	20	51	1	1
L7+00S 7+25W MA	1	33	29	151	.1	263	4.04	15	62	1	6
	-									-	-
L7+005 7+00W MA	1	38	27	215	. 2	905	3.78	15	89	1	1
L7+005 6+75W MA	1	28	19	92	. 2	252	2.55	8	33	1	1
L7+00S 6+50W MA	1	33	20	113	. 2	580	3.44	15	60	1	1
L7+005 6+25W MA	1	11	9	75	.1	135	1.82	6	56	1	3
L7+005 6+00W MA	1	23	15	123	. 2	393	3.49	12	51	1	1
L7+00S 5+75W MA	1	22	24	76	. 9	310	3.63	10	81	1	2
L7+00S 5+50W MA	1	41	36	117	. 2	302	1.97	8	56	2	3
L7+50S 11+00W MA	1	49	49	202	1.0	797	4.37	29	93	1	3
L7+50S 10+75W MA	1	34	38	141	. 2	617	3.31	28	84	1	1
L7+50S 10+50W MA	1	51	40	137	. 1	471	3.70	33	79	1	8
L7+50S 10+25W MA	1	45	44	139	. 1	449	4.21	29	82	1	2
L7+50S 10+00W MA	1	34	42	76	.1	380	3.40	18	51	1	3
L7+50S 9+50W MA	1	75	60	168	.1	835	4.61	36	91	1	6
L7+50S 9+25W MA	1	33	30	134	. 2	365	3.93	28	68	1	7
L7+50S 9+00W MA	1	44	37	180	.1	994	4.02	27	73	1	2
L8+00S 11+00W MA	1	55	55	162	. 4	2156	4.75	43	106	1	3
STD C/AU-S	17	57	44	132	6.6	1017	4.08	42	173	11	47

)ge 2

ŕ

(

(

C

Ć

C

(

t

BOUNDARY DRILLING INC. PRO.) 101 FILE # 88-5332

SAMPLE ‡	Mo PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Mn PPM	Fe %	AS PPM	Ba PPM	W PPM	Au* PPB
T12+509 5+75W MA	1	30	46	170	1	337	4 15	33	45	1	Δ
112+508 5+50W MA	1	21	33	127		214	3 44	23	41	1	1
112+508 5+35W MA	1	42	30	127		405	3 11	25	57	-	È
112+505 5+25W MA	1	107	160	220		400	5.11	101	57	1	24
L12+505 5+00W MA	1	102	122	140	. 2	201	2.42	101	53	1	34 13
512+305 4+/3W MA	1	39	50	140	. 4	300	3.85	4:0	34	T	23
L12+50S 4+50W MA	1	20	32	96	.1	311	2.79	20	147	1	46
L13+50S 9+50W MA	1	50	51	146	. 2	535	3.69	30	85	1	6
L13+50S 9+25W MA	1	65	59	175	.1	917	5.32	47	90	1	11
L13+505 9+00W MA	1	59	70	191	. 9	1643	4.57	71	120	1	70
L13+505 8+75W MA	1	49	54	189	. 2	454	4.28	50	81	1	8
L13+50S 8+50W MA	1	328	2892	869	12.3	2430	8.02	788	162	1	17
L13+50S 8+25W MA	1	148	445	1298	4.1	5753	9.08	89	134	1	6
L13+505 8+00W MA	1	93	91	205	. 2	604	5.10	55	79	2	18
L13+50S 7+75W MA	1	527	285	441	.5	1079	11.64	265	71	1	24
L13+505 7+50W MA	1	148	103	187	3.0	229	6.52	120	25	1	12
L13+50S 7+25W MA	1	127	223	263	1.8	293	7.55	100	75	1	19
L13+505 7+00W MA	1	87	188	562	. 4	330	5.14	95	66	1	20
L13+50S 6+75W MA	1	74	102	343	. 2	408	5.14	76	76	1	14
L13+50S 6+50W MA	1	50	99	260	1.3	337	5.02	62	46	1	3
L13+505 6+00W MA	1	117	303	420	1.7	800	5.80	137	72	1	10
L13+50S 5+75W MA	1	74	63	294	1.3	663	4.14	60	41	1	5
L13+50S 5+50W MA	1	34	34	122	.1	294	3.63	29	54	2	1
L13+50S 5+25W MA	1	23	35	113	1.8	175	4.12	26	60	1	17
L13+50S 5+00W MA	1	181	148	279	1.9	745	5.39	152	72	1	23
L13+50S 4+75W MA	3	100	42	145	.1	1269	7.87	106	80	2	4
112 50C 4 50W MA	1	14	13	56	٦	156	2 0.8	16	41	1	25
CMD () /	10	57	10	122	6 7	1050	1 00	43	176	13	52
910 C/H0-9	10	. J /	** **	T C T	0./	T072	4.07		T / O	10	J 4

lage 4

 $t^{1,2}$

ł

ſ

C

1

852 E. HASTINGS ST. VANCUL /ER B.C. V6A 1R6

. €

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM PE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Neek

											/	,		1 -				('											
DATE RECEIVED: JUN 19 1989 DAT					DATE	REI	PORT	MAI	LED	: Jr	mi	22	89	. 5	IGN	ED E	Y.Y		· · · ·	70	.TOTE,	C.LEO	NG, J.	WANG;	CIRTII	IED B.	C. ASS.	ATERS		
	BOUNDAR						DR	ILL	ING	INC.	PR	OJE	T 1	01 I	LIKE	LY	Fi	le ‡	89	-15	6	Pá	age	1		÷		23		
SAMPLE#	NO PPN	Cu PPN	Pb PPN	Zn PPN	λợ PPN	NÍ PPM	Co PPM	Ma PPN	re t	As PPN	U PPN	Au PPM	Th PPN	Sr PPM	Cđ PPN	SD PPM	Bi PPN	V PPN	Ca %	Р ₹	La PPM	CT PPM	Ng	Ba PPN	71 - 2	B PPN	А1 १	Na t	K ł	W PPK
L11+00S 11+00W L11+00S 10+75W L11+00S 10+50W L11+00S 10+25W L11+00S 10+25W L11+00S 10+00W	1 1 2 1 1	90 51 44 55 61	42 34 33 34 38	234 168 138 108 127	1.0 .2 .5 .3 .4	81 48 38 48 40	22 14 13 15 15	1119 310 381 484 489	4.98 4.93 5.67 3.93 3.81	40 53 43 41 27	5 5 5 5 5	ND ND ND ND ND	3 3 3 5	24 14 12 15 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	25 36 33 23 20	.56 .20 .22 .32 .24	.092 .062 .096 .061 .034	20 19 17 21 30	39 42 34 28 24	.63 .51 .53 .53 .47	101 97 83 61 53	.02 .03 .02 .02 .01	5 3 5 4	1.72 1.41 1.45 1.18 1.43	.01 .01 .01 .01 .01	.08 .05 .05 .06 .07	1 1 1 1
L11+00S 9+75W L11+00S 9+50W L11+00S 9+25W L11+00S 9+00W L11+00S 8+75W	2 1 1 2 2	53 43 57 43 41	30 28 37 23 30	117 117 137 101 134	.2 .7 .5 .3 .6	40 33 42 38 42	13 11 17 11 11	217 292 762 293 304	5.12 3.99 4.17 3.82 4.33	53 35 35 36 36	5 6 5 5 5	ND ND ND ND ND	5 4 3 4 4	15 12 15 10 10	1 1 1 1	2 2 2 2 2	2 2 2 2 10	31 26 25 31 26	.25 .19 .25 .18 .14	.082 .067 .086 .064 .075	20 18 17 20 15	36 29 33 35 32	.42 .39 .56 .40 .45	52 79 83 78 67	.02 .02 .02 .02 .02	2 4 3 2	1.28 1.14 1.37 1.21 1.23	.01 .01 .01 .01 .01	.04 .04 .06 .04 .04	1 1 1 1
L11+00S 8+50W L11+00S 8+25W L11+00S 8+00W L11+00S 7+75W L11+00S 7+50W	1 2 1 1 2	18 193 40 60 53	20 85 26 44 28	103 236 119 135 144	.\$ 1.1 .4 .3 .5	20 96 37 40 51	9 37 11 14 17	237 892 458 424 458	2.70 8.40 3.76 5.32 5.09	10 116 35 52 46	5 5 5 5 5	ND ND ND ND ND	5 11 2 6 3	5 29 13 10 10	1 1 1 1 1	2 2 2 2 2 2	4 2 2 2 2	16 34 30 27 37	.08 .53 .25 .13 .16	.047 .155 .062 .091 .058	14 38 18 21 18	17 48 31 37 49	.24 1.04 .46 .52 .58	50 80 99 62 89	.01 .03 .02 .02 .03	2 5 3 3 5	1.06 1.80 1.11 1.33 1,39	.01 .01 .01 .01 .01	.04 .09 .06 .04 .04	1 1 1 1
L11+00S 7+25W L11+00S 7+00W L11+00S 6+75W L11+00S 6+50W L11+00S 6+25W	2 1 2 1 1	63 40 93 98 102	31 31 43 53 59	122 193 150 214 229	.3 1.1 .4 .5	47 46 58 61 45	15 16 18 20 17	327 422 307 635 537	4.82 5.22 6.44 5.26 4.86	50 40 67 58 57	5 5 5 5 5	ND ND ND ND ND	4 2 5 5 4	9 13 12 19 14	1 1 1 1	2 2 2 2 2	2 2 2 2 2	31 34 35 29 28	.13 .24 .20 .38 .25	.097 .114 .120 .100 .082	21 17 18 19 24	30 45 38 40 34	.48 .62 .71 .76 .60	90 109 75 77 83	.02 .02 .02 .01 .02	3 2 3 3 3	1.35 1.59 1.67 1.51 1.32	.01 .01 .01 .01	.04 .05 .04 .06 .05	-3 1 1 1 1
L11+00S 6+00W L11+00S 5+75W L11+00S 5+30W L11+00S 5+25W L11+00S 5+00W	1 2 1 1 2	60 63 41 25 68	42 36 28 14 47	239 134 108 125 245	.5 .2 .3 .8 2.0	46 47 40 30 88	17 15 11 12 24	808 244 307 793 426	4.10 5.80 4.55 3.82 7.20	32 56 43 22 92	5 5 5 5 5	ND ND ND ND ND	5 4 3 5	13 10 8 11 11	1 1 1 1	2 2 2 2 2 2	2 4 2 2 2	19 38 32 51 35	.24 .16 .11 .16 .21	.076 .103 .105 .080 .115	21 19 22 17 15	27 38 40 31 66	.56 .43 .55 .67 .82	52 78 66 135 133	.01 .02 .02 .04 .02	7 4 2 3 3	1.16 1.23 1.25 1.32 2.25	.01 .01 .01 .01 .01	.05 .04 .04 .10 .05	1 1 1 1
L11+00S 4+75W L11+00S 4+50W L12+00S 11+00W L12+00S 10+75W L12+00S 10+50W	1 1 1 1 1 1	30 48 45 30 90	21 39 34 26 67	123 140 131 108 197	.2 .1 .3 .1 1.1	28 56 41 29 85	13 16 15 12 21	499 331 519 272 1028	5.14 4.23 3.83 3.28 4.65	21 30 23 15 34	5 5 5 6	ND ND ND ND ND	3 B 7 7 5	12 9 16 10 20	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	27 18 18 17 17	.19 .14 .35 .16 .40	.058 .062 .059 .027 .065	19 28 26 25 38	26 41 26 20 24	.41 .65 .62 .39 .49	68 70 54 61 79	.03 .01 .01 .01 .01	3 4 7 5 6	1.28 1.44 1.47 1.33 1.70	.01 .01 .01 .01 .01	.04 .05 .11 .07 .10	1 1 1 1
L12+005 10+25W L12+005 10+00W L12+005 9+75W L12+005 9+50% L12+005 9+25W	1 1 1 1 1	51 48 32 64 48	48 34 27 45 34	135 135 117 271 145	.3 .5 .4 1.0 .3	30 31 23 51 19	11 11 10 15 9	259 777 616 530 901	3.56 3.27 3.30 4.30 2.95	44 31 23 31 32	5 5 5 5 5	ND ND ND ND ND	4 2 6 3	11 14 6 16 11	1 1 1 1	2 2 2 2 2	2 2 2 2 2	18 23 21 22 19	.22 .25 .06 .23 .13	.034 .037 .038 .052 .039	27 23 22 26 25	19 21 22 35 18	.23 .30 .31 .62 .20	40 54 79 80 67	.01 .02 .01 .01 .01	4 - 4 - 6 - 4 - 7	.77 .94 1.11 1.65 .73	.01 .01 .01 .01 .01	.04 .06 .04 .08 .05	1 1 1 2
L12+005 9+00W STD C	1 18	54 62	49 35	177 132	.1 7.1	38 73	16 30	397 1021	4.02 4.06	27 43	5 18	ND 6	5 37	8 49	1 17	2 17	2 22	19 57	.10 .52	.033 .086	25 37	24 55	.46 .90	74 173	.01 .07	6 33	1.46 1.99	.01 .06	.08 .13	1 11

SAMPLE	No PPN	Cu PPM	Pb PPN	Zn PPN	λg PPN	NÍ PPM	CO PPM	Mn PPM	Fe	as PPM	U PPN	Au PPN	Th PPN	ST PPN	Cd PPN	SD PPN	Bİ PPM	V PPN	Ça X	P t	La PPN	Cr PPM	Hg t	Ba PPM	7i 1	B PPN	Al 3	Na ł	K Ł	W PPN	
L12+005 8+75W L12+005 8+36W L12+005 8+25W L12+005 8+00W L12+005 7+75W	1 1 1 1	134 56 47 168 44	80 50 39 123 42	290 180 194 370 134	1.6 .3 .7 4.7 .4	80 32 34 90 25	21 12 14 25 9	2339 322 516 1784 226	5.43 3.71 3.90 6.74 3.24	41 31 24 58 47	5 5 5 5 5	ND ND ND ND ND	5 7 3 5 4	33 9 16 40 7	1 1 2 1	2 3 3 2 3	2 2 2 2 2	23 18 20 28 25	.40 .11 .24 .58 .10	.079 .036 .057 .105 .036	38 34 23 30 25	34 28 24 39 20	.55 .44 .44 .49 .22	172 54 67 224 64	.01 .01 .01 .01 .01	6 6 3 6 4	2.43 1.19 1.35 3.10 .83	.01 .01 .01 .01 .01	.18 .06 .07 .22 .04	1 1 1 2	÷
L12+00S 7+50W L12+00S 7+25W L12+00S 7+00W L12+00S 6+75W L12+00S 6+75W	1 1 1 1 1	72 93 159 78 41	65 93 84 45 45	238 398 628 347 185	.7 1.7 1.6 .8 .5	44 52 50 36 31	15 20 15 15 13	688 551 902 673 424	3.89 4.11 3.89 3.93 3.41	38 40 54 31 22	5 5 5 5 5	ND ND ND ND ND	3 5 2 2 5	20 15 40 26 11	1 1 2 1 1	2 2 2 2 2	2 2 3 2	19 19 17 19 17	.39 .30 1.00 .54 .17	.052 .055 .070 .049 .028	25 25 18 21 25	27 26 25 25 25 22	.43 .52 .48 .50 .44	87 73 86 63 50	.01 .01 .01 .01 .01	2 4 5 4 6	1.29 1.36 1.34 1.32 1.11	.01 .01 .01 .01	.07 .06 .07 .07 .06	-1 -1 -1 -1	
L12+005 5+25W L12+005 6+00W L12+005 5+75W L12+005 5+50W L12+005 5+25W	1 1 1 1	18 19 30 51 34	34 31 24 42 21	138 115 167 126 125	.5 .6 .9 .5 .4	16 15 26 32 29	8 7 12 12 9	176 275 432 596 185	3.21 3.59 2.99 4.03 3.71	14 18 19 24 18	5 5 5 5 5	ND ND ND ND ND	5 2 6 5 7	6 7 6 7 4	1 1 1 1	2 2 2 2 2	2 2 3 2 2	20 22 13 15 16	.08 .09 .11 .13 .04	.033 .075 .053 .066 .028	21 19 20 26 31	23 19 19 25 37	.29 .18 .31 .42 .59	46 45 30 47 42	.01 .01 .01 .01 .01	5 4 3 7 4	1.31 .87 1.21 .99 1.37	.01 .01 .01 .01 .01	.03 .04 .04 .04 .03	1 1 1 1	
L12+00S 5+00W L12+00S 4+75W L12+00S 4+50W L13+00S 11+00W L13+00S 10+75W	1 2 1 1	61 62 52 64 34	76 51 63 72 31	227 199 145 413 137	1.5 1.1 .6 .8 .7	28 30 24 65 33	13 12 11 25 12	398 293 242 506 281	5.61 4.56 4.57 4.47 4.31	62 59 37 34 30	5 5 5 5 5	ND ND ND ND ND	5 4 5 4 5	6 7 6 15 8	1 1 1 1	2 2 2 2 2	2 3 3 2 2	22 22 19 25 27	.08 .10 .09 .34 .13	.091 .061 .046 .064 .060	23 30 25 25 25	24 22 23 34 35	.33 .21 .29 .71 .62	45 59 64 76 99	.02 .01 .01 .02 .01	5 4 3 6 4	1.14 .65 1.14 1.60 1.38	.01 .01 .01 .01 .01	.04 .03 .03 .07 .04	1 - 1 1 - 1 1	
L13+00S 10+5DW L13+00S 10+25W L13+0DS 10+0DW L13+00S 9+75W L13+00S 9+50W	1 1 1 1	27 35 27 45 20	22 31 25 42 20	104 135 123 161 77	.2 .2 .1 .5	24 34 30 45 25	11 14 10 18 7	327 306 297 692 132	4.33 4.25 3.81 3.94 3.16	30 34 26 32 31	5 5 5 5 5	ND ND ND ND ND	5 6 6 4	5 6 4 7 6	1 1 1 1	3 2 2 2 2	2 2 2 3	33 29 20 21 23	.05 .07 .07 .11 .09	.079 .067 .055 .046 .033	26 22 25 29 26	30 36 33 40 28	.42 .49 .45 .55 .37	78 94 71 96 69	.02 .02 .01 .01 .01	5 3 4 4 2	1.17 1.56 1.19 1.39 1.01	.01 .01 .01 .01 .01	.04 .05 .05 .06 .04	1 1 1 1	
L13+00S 9+25W L13+00S 9+00W L13+00S 8+75W L13+00S 8+50W L13+00S 8+25W	1 1 1 1	48 35 78 47 79	53 31 63 39 71	137 129 221 174 229	.1 .9 1.3 .3	40 33 57 43 64	14 13 16 14 18	323 341 608 687 405	4.35 3.68 4.37 3.83 4.98	30 21 42 34 53	5 5 5 5 5	ND ND ND ND ND	7 6 5 7	6 6 16 8 6	1 1 1 1	2 2 2 2 2	2 2 2 2 3	16 20 18 19 19	.06 .06 .28 .10 .06	.044 .039 .058 .053 .042	32 28 29 29 32	25 32 35 33 60	.43 .53 .56 .44 .55	72 73 92 94 64	.01 .01 .01 .01 .01	2 2 7 6 4	1.27 1.41 1.54 1.21 1.38	.01 .01 .01 .01 .01	.05 .05 .08 .06 .05	1 1 1 1	
L13+00S 8+00W L13+00S 7+75W L13+00S 7+50W L13+00S 7+25W L13+00S 7+20W	2 2 1 1	50 212 276 201 82	63 360 214 104 106	316 549 832 690 411	.5 1.3 1.7 .7 .3	44 65 62 45 35	14 27 24 21 15	404 801 641 625 305	4.08 5.79 5.47 5.15 4,96	45 118 117 87 56	5 5 5 5 5	ND ND ND ND ND	6 4 8 7	13 18 18 8 9	1 2 1 2 1	2 2 2 2 2 2	2 3 2 3 2	19 23 22 18 19	.21 .33 .32 .12 .14	.047 .061 .070 .033 .045	32 25 24 30 27	35 36 33 28 34	.51 .56 .52 .47 .36	82 85 64 77 54	.01 .01 .01 .01 .01	5 4 7 6 4	1.36 1.47 1.53 1.69 1.38	.01 .01 .01 .01 .01	.06 .06 .07 .07 .04	1 1 1 1	
L13+005 6+75W STD C	1 17	135 62	107 38	494 132	1.4 7.0	50 72	18 31	700 1004	4.76 4.01	75 41	5 17	ND 6	7 36	12 48	1 17	2 14	2 20	17 56	.18 .52	.052 .085	29 36	29 55	. 47 . 88	61 172	.01 .06	4 34	1.39 1.95	.01 .05	.07 .14	1 11	

Page 2

1

÷

SAMPLE‡	NO PPN	Cu PPM	Pb PPM	Zn PPM	Ag PPN	Ni PPM	CO PPN	Nn PPN	re z	às PPN	U PPN	Au PPN	Th PPN	Sr PPM	Cd PPN	SD PPM	Bi PPM	V PPM	Ca ł	P ł	La PPN	CT PPN	Ng t	Ba PPN	Ti ł	B PPN	λ1 3	Sa S	K ł	¥ PPN
L13+00S 6+50W L13+00S 6+25W L13+00S 6+00W L13+00S 5+75W L13+00S 5+50W	1 1 1 1	120 64 29 43 51	108 51 31 47 61	298 247 123 182 167	.5 .1 .2 .1 .3	43 37 25 40 18	17 12 10 14 8	532 376 298 566 176	4.45 4.18 3.37 4.26 3.81	74 39 21 15 57	5 5 5 5 5	ND ND ND ND ND	8 8 8 7	12 8 7 10 4	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	19 17 15 27 17	.23 .13 .11 .10 .04	.051 .040 .037 .063 .048	31 26 25 28 25	24 36 26 39 15	.35 .44 .43 .63 .15	47 54 52 145 32	.02 .01 .01 .02 .01	7 7 5 4 3	.83 1.09 1.07 1.50 .65	.01 .01 .01 .01 .01	.04 .04 .05 .12 .02	2 1 1 1
L13+00S 5+25W L13+00S 5+00W L13+00S 4+75W L13+00S 4+50W L13+00S 4+25W	1 1 1 1 2	59 23 94 29 32	55 30 56 29 39	213 109 174 93 131	.5 .1 .8 .2 .1	29 16 46 19 22	12 8 19 8 9	815 211 651 213 191	4.00 3.69 4.23 3.08 4.47	42 22 25 27 20	5 5 5 5	ND ND ND ND ND	6 7 10 8 6	6 4 18 9 8	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	19 19 12 17 22	.07 .03 .27 .18 .14	.037 .025 .059 .026 .155	30 27 37 29 23	30 28 21 25 24	.42 .31 .36 .31 .37	64 43 86 60 33	.01 .01 .01 .01 .01	5 5 4 5 3	1.45 1.16 1.24 1.08 1.12	.01 .01 .01 .01 .01	.05 .04 .09 .04 .05	1 1 2 1
L13+00S 4+00W L14+00S 11+00W L14+00S 10+75W L14+00S 10+50W L14+00S 10+25W	1 1 1 1	17 33 45 53 38	26 54 47 46 38	82 178 249 345 166	.9 1.1 .8 .5 .1	13 32 44 43 38	7 10 16 15 13	184 416 366 791 247	2.93 3.97 4.37 4.17 5.32	7 45 35 39 44	5 5 5 5 5	ND ND ND ND ND	6 5 3 3 6	5 5 23 10 8	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	15 26 32 35 35	.08 .09 .55 .23 .13	.072 .049 .054 .059 .096	24 27 20 19 23	21 34 39 36 53	.25 .31 .58 .59 .43	49 82 102 128 81	.01 .01 .02 .03 .02	4 5 3 4 4	.87 .94 1.37 1.27 1.35	.01 .01 .01 .01 .01	.03 .04 .04 .04 .04	1 1 1 1
L14+00S 10+00W L14+00S 9+75W L14+00S 9+50W L14+00S 9+25W L14+00S 9+00W	1 1 1 1	44 62 64 54 27	54 76 55 67 10	153 287 163 172 101	.3 .2 .1 .3 .6	60 87 53 61 25	17 23 18 20 14	525 490 466 526 361	4.45 5.66 4.04 4.79 4.19	35 38 32 42 20	5 5 5 5 5	ND ND ND ND ND	4 6 10 12 3	8 8 12 13 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	24 41 18 18 50	.15 .12 .19 .23 .22	.066 .047 .046 .067 .032	21 23 32 37 15	41 57 36 48 26	.39 .95 .52 .64 1.01	78 145 79 67 265	.01 .02 .01 .01 .03	6 3 6 5 6	1.40 2.43 1.26 1.37 1.73	.01 .01 .01 .01 .01	.05 .05 .08 .07 .05	1 1 1 1
L14+00S 8+75W L14+00S 8+50W L14+00S 8+25W L14+00S 8+00W L14+00S 7+75W	1 1 1 2 2	52 40 112 41 208	65 46 88 68 103	193 152 576 298 274	.5 .4 1.2 1.1 1.8	46 42 143 26 27	16 17 23 10 14	696 550 2922 356 341	3.98 3.94 5.69 4.53 7.45	39 41 129 37 65	5 5 5 5 5	סא סא סא מא סא	5 3 3 10 8	13 14 27 15 6	1 1 4 1 1	2 2 2 2 2 2	2 2 2 2 2 2	20 16 35 15 30	.26 .26 .58 .22 .08	.050 .047 .062 .083 .079	23 26 17 38 28	36 23 78 19 32	.49 .21 .83 .28 .27	89 61 115 57 55	.01 .01 .01 .01 .01	6 3 5 4 2	1.20 .82 1.53 1.20 1.43	.01 .01 .01 .01 .01	.08 .04 .05 .03 .04	2 1 1 1 2
L14+00S 7+50W L14+00S 7+25W L14+00S 7+00W L14+00S 6+75W L14+00S 6+50W	2 1 2 1 3	89 166 179 169 134	108 126 144 111 195	250 376 335 296 428	.9 1.0 1.4 .5 1.7	30 32 40 26 50	13 16 20 12 19	289 507 1101 575 678	6.51 7.20 5.37 4.37 7.49	68 201 85 100 114	5 5 5 5 5	סא סא סא מא חס	10 5 5 7 7	5 5 10 9 9	1 1 1 1	2 2 2 4	4 12 2 2 2	19 19 20 17 29	.04 .07 .23 .14 .17	.055 .066 .072 .065 .085	35 29 24 32 25	28 24 24 20 41	.22 .22 .26 .25 .48	53 49 71 44 105	.01 .01 .01 .01 .01	2 5 8 6 2	1.15 1.00 .85 .73 1.46	.01 .01 .01 .01 .01	.03 .03 .04 .04 .05	1 1 2 1 1
L14+00S 6+25W L14+00S 6+00W L14+00S 5+75W L14+00S 5+50W L14+00S 5+25W	1 1 1 1	97 173 253 39 51	71 137 169 49 35	198 480 407 119 142	.3 2.2 2.5 .9 .4	25 47 52 16 28	10 19 18 7 10	711 628 1868 244 223	3.73 6.00 5.81 3.20 4.13	57 132 97 44 51	5 5 5 5 5	סא סא סא סא סא	4 8 4 6 3	8 8 15 6 7	1 1 1 1 1	2 2 2 2 2 2	2 5 2 2 2	16 13 19 19 20	.15 .12 .25 .07 .10	.083 .058 .077 .038 .074	25 34 25 29 29	18 25 30 26 26	.23 .40 .44 .25 .29	72 49 83 60 43	.01 .01 .01 .01 .01	4 6 5 3 7	.62 1.17 1.37 .91 .73	.01 .01 .01 .01 .01	.04 .04 .07 .04 .04	2 2 2 1 2
L14+005 5+00W STD C	1 18	83 50	73 39	217 132	.8 7.0	55 72	23 29	602 976	7.71 3.89	75 42	5 21	ND 7	5 36	13 47	1 17	2 14	2 18	20 55	.25 .50	.075 .082	20 35	49 55	.32 .86	43 173	.01 .06	2 32	.93 1.85	.01 .05	.04 .14	1 11

Page 3

SAMPLE	No PPH	Cu PPM	Pb PPN	Zn PPM	λg PPM	N1 PPH	Co PPN	HD PPH	Fe t	As PPN	U PPN	Au PPN	Th PPH	ST PPN	Cd PPH	SD PPN	Bİ PPM	V PPM	Ca t	P t	La PPN .	Cr 2PM	Hg ł	Ba PPM	Ti ł	B PPN	A1 3	Na ł	X X	W PPM
L14+00S 4+75W L14+00S 4+50W L14+00S 4+25W L14+00S 4+00W L14+00S 3+75W	1 2 1 1 1	66 167 57 90 26	46 67 282 77 35	216 250 214 191 131	.4 1.0 1.0 .6 .1	38 56 182 70 24	15 19 34 25 12	1389 430 850 830 175	4.10 5.72 8.43 5.94 4.48	26 60 151 49 13	5 5 5 5 5	ND ND ND ND ND	4 7 5 11 9	16 22 15 18 9	1 1 2 1 1	2 2 2 2 2	2 2 2 2 2 2	20 20 23 22	.24 .28 .42 .36 .11	.057 .066 .094 .064 .038	27 31 25 37 33	27 26 28 40 21	.42 .44 .33 .82 .22	78 71 110 92 108	.01 .01 .01 .01 .01	2 2 3 4 2	1.27 1.04 1.11 1.83 1.29	.01 .01 .01 .01 .01	.07 .06 .05 .10 .04	1 1 1 1
L15+00S 11+00W L15+00S 10+75W L15+00S 10+50W L15+00S 10+25W L15+00S 10+00W	1 1 1 1	50 59 50 27 85	50 67 63 28 113	160 204 211 117 464	.4 .5 1.0 .3 .6	46 55 44 25 122	15 17 16 9 31	485 279 558 193 511	4.62 5.54 4.71 3.88 6.54	30 46 56 27 60	5 5 5 5 5	ND ND ND ND ND	7 10 4 6 10	8 6 5 8	1 1 1 1	2 2 2 2 2	2 2 2 2 2	19 35 32 40 34	.17 .08 .10 .05 .12	.050 .049 .077 .048 .099	38 38 27 31 28	34 48 38 32 58	.46 .66 .44 .46 .67	79 163 94 103 195	.01 .02 .02 .03 .02	2 2 3 4 2	1.23 1.72 1.19 1.DB 2.69	.01 .01 .01 .01 .01	.05 .07 .05 .04 .08	1 1 1 1
L15+005 9+75W L15+005 9+50W L15+005 9+25W L15+005 9+00W L15+005 8+75W	1 1 1 1 1	78 57 73 66 61	87 46 70 62 64	376 176 253 170 173	.9 .5 .7 .4 .3	85 46 57 110 72	28 15 19 29 21	825 316 745 610 640	7.01 5.45 5.74 5.11 5.33	84 41 47 45 34	5 5 5 5 5	ND ND ND ND ND	5 7 4 8 7	12 7 14 12 23	2 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	52 54 40 24 22	.22 .16 .32 .19 .39	.096 .075 .060 .036 .049	24 27 24 45 34	66 52 49 78 40	1.13 .76 .75 .66 .43	173 96 175 128 93	.04 .05 .02 .01 .01	3 2 2 2 2 2	2.10 1.41 1.73 1.71 1.79	.01 .01 .01 .01 .01	.06 .04 .07 .08 .08	1 1 1 1
L15+00S 8+50H L15+00S 8+25W L15+00S 8+00W L15+00S 7+75W L15+00S 7+75W	1 1 1 1	73 18 29 55 86	74 10 52 58 89	209 88 140 187 237	1.0 .2 .4 1.4 .9	64 18 24 57 70	23 6 8 13 20	739 124 138 507 525	5.84 2.11 4.42 5.40 6.83	50 29 33 71 76	5 5 5 5 5	ND ND ND ND ND	5 3 10 3 8	27 7 7 7 8	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	26 24 21 34 31	.56 .11 .09 .10 .13	.093 .034 .047 .068 .067	29 43 48 28 28	40 17 29 45 54	.75 .12 .24 .37 .56	82 36 63 80 77	.02 .02 .01 .02 .02	10 3 2 4 3	1.44 .52 1.14 .92 1.41	,01 .01 .01 .01 .01	.07 .04 .05 .03 .05	1 1 1 1
L15+00S 7+25W L15+00S 7+00W L15+00S 6+75W L15+00S 6+50W L15+00S 6+25W	1 1 1 1	41 46 48 161 220	60 40 58 113 152	194 349 197 427 449	.8 .5 .2 2.5 1.6	29 27 34 48 48	11 9 11 16 17	439 579 416 654 569	4.36 3.76 4.70 5.55 6.46	49 50 50 95 136	5 5 5 5	ND ND ND ND ND	4 6 4 6	12 10 6 11 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	42 29 41 23 20	.17 .17 .11 .18 .19	.056 .066 .056 .054 .054	29 31 41 35 37	35 26 28 36 31	.55 .33 .28 .53 .47	104 106 79 107 91	.04 .02 .02 .01 .01	2 2 3 5	1.18 1.05 .87 1.35 1.29	.01 .01 .01 .01	.05 .04 .06 .06 .06	1 1 1 1
L15+00S 6+00W L15+00S 5+75W L15+00S 5+50W L15+00S 5+25W L15+00S 5+00W	1 1 1 2	147 141 84 200 206	95 110 59 124 131	315 385 216 326 339	1.3 1.5 .9 .4 .6	40 51 23 78 98	16 17 9 25 30	920 616 205 800 1037	5.31 5.59 4.09 6.18 6.69	121 118 77 115 107	5 5 5 5 5 5	ND Nd Nd Nd Nd	2 3 7 11 11	28 23 8 17 20	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	22 23 19 15 17	.61 .45 .11 .25 .32	.067 .050 .031 .070 .079	22 26 33 40 40	27 38 23 36 43	. 34 . 41 . 28 . 45 . 51	68 55 66 63 70	.01 .01 .01 .01 .01	6 8 3 2 3	.84 1.05 .91 .88 .99	.01 .01 .01 .01 .01	.05 .04 .04 .06 .07	1 1 1 1
L15+00S 4+75W L15+00S 4+50W L15+00S 4+25W L15+00S 4+00W L15+00S 3+75W	1 1 1 1	109 156 74 32 49	107 128 62 27 32	326 364 199 189 131	.2 1.0 .5 .5 .2	51 64 41 19 25	19 22 17 9 9	368 540 584 230 167	6.87 5.83 4.78 3.64 3.61	76 98 52 32 34	5 5 5 5 5	ND ND ND ND ND	8 8 6 8	8 14 13 9 11	2 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	23 19 21 22 19	.10 .29 .27 .15 .20	.045 .043 .061 .027 .025	32 33 29 32 35	36 33 27 20 26	. 39 . 47 . 33 . 28 . 34	76 73 58 47 67	.01 .01 .01 .02 .01	2 4 4 2 6	1.49 1.48 .97 .88 1.02	.01 .01 .01 .01 .01	.04 .07 .05 .05 .04	1 1 1 1
L15+005 11+00W	1	22 63	16 42	63 132	.1 6.6	35 68	9 31	401 960	3.18 4.17	46 40	5 20	ND 7	4 37	6 49	1 19	2 18	2 19	31 59	.15 .52	.046 .089	31 38	39 56	.29 .91	43 177	.02 .07	4 33	.78 1.82	.01 .06	.03 .13	1 12

) Page 4

SAMPLE#	No PPN	Cu PPN	Pb PPM	Zn PPN	λg PPM	NI PPN	CO PPX	Mn PPN	Ie 3	As PPN	U PPM	Au PPN	Th PPM	Sr PPM	Cd PPM	SD PPM	Bİ PPM	V PPN	Ca %	P L	La PPM	CT PPN	Hg 2	Ba PPM	Ti t	B PPM	Al X	Na ł	K L	W PPH
115+005 10+758	1	22	63	156	1.6	64	14	673	4.28	93	5	ND	7	7	1	2	2	23	.11	.059	39	25	. 25	55	.01	2	1.24	. 01	.04	1
1161000 101500	1	20	15	55	1	14	÷	151	2 71	18	ç	ND	11	3	ī	2	,	12	.04	043	69	10	.10	28	.01	2	. 51	.01	. 03	ī
1101003 10130W	÷.	107	117	755	1 2	00	75	210	6 70	62	Ę	NR.	17	12	1	,	;	15	22	048	51.	46	64	63	.01	ī	1.79	. 61	.07	1
10+005 10+23W	1	107	111	1202	1.3	07	10	112	6 43	12	5	10 110	- 1 / A	17	÷	,	,	17	40	047	12	30	17	- 61		i	1 33	01	06	1
LISTOUS INTOON	1	10	31	1232	1.1	33	10	202	J.U.J. E 1E	23	J E	มม มห	3	17	1	5	,	41	. 10	035	20	10	06	87	02	;	2 10	01	05	i
116+005 9+75¥	1	53	98	333	. 3	38	20	720	3.13	29	3	RU	,	12	1	2	2	91	.23	. 033	7.5	17	. 70	94	. 02	4	2.10			1
116+005 9+50W	1	47	47	177	.1	36	17	289	5.72	38	5	ND	1	5	I	2	3	28	.08	.046	38	32	.48	58	.01	5	1.50	.01	.04	1
115+005 9+25W	1	39	35	155	.4	57	22	1448	4.74	42	5	ND	5	10	1	2	2	18	.23	.060	29	38	.41	88	.01	5	.93	.01	.05	1
115+005 9+00¥	1	73	52	168	.4	99	30	1265	5.50	43	5	ND	6	14	1	2	2	33	. 27	.051	34	72	. 82	125	.01	2	1.75	.01	.06	1
116+005 8+75W	1	42	37	171	.5	44	17	835	3.85	25	5	ND	4	19	1	2	2	37	.34	.046	28	34	.55	153	.02	3	1.64	.01	.05	1
115+00S 8+50W	1	45	36	152	.2	44	15	292	1.97	24	5	ND	10	6	1	2	2	22	. 09	.063	38	40	. 53	73	.01	6	1.45	.01	.05	1
							• •	•••		••			••			•	•		••				50	100	A1	1	2 52	01	56	1
118+005 8+25W	1	83	106	300	. 5	103	- 34	785	6.93	51	2	aD.	13	14	1	2	4	23	- 44	.0/4	33	23	. 36	100	.01	4	2.33	. 0 1	.00	
115+005 8+00W	1	23	24	109	.4	22	9	248	3.31	15	5	ND	7	6	1	2	2	Z 8	.11	.065	35	30	. 18	88	.02	1	1.09		.64	1
115+005 7+75W	1	35	33	210	.3	53	16	221	5.01	35	5	ND	12	6	1	2	3	25	. 97	.039	42	50	. 64	153	.01	5	1.84	.01	.05	1
115+005 7+50W	1	44	39	150	. 2	47	- 14	571	4.25	31	5	ND	1	9	1 '	2	2	21	.13	.043	39	44	. 53	132	.01	2	1.43	.01	.06	1
115+005 7+25W	1	41	50	174	.3	56	18	341	5.49	44	5	ND	7	9	1	2	2	22	.14	.041	36	49	.56	72	.01	2	1.40	.01	.05	1
111-008 7:00H	,	54	71	100		51	75	694	1 96	57	5	¥0	7	11	,	,	,	20	, , ,	043	37	19	.40	82	. 01	5	1.19	.01	.05	1
	1	20	11	251	1.6	11	20	1000	t.34	52	, r	110	, ,	28	;	,	,	14	57	086	21	34	13	47	01	Ę	1 57	01	05	1
1101UU3 01/3#	1	50	77	331	1.0	51	23	1030	0.JJ 5 71	60	2	80 80	1	20	÷	,	;	20	50	A71	22	41	A1	a1	A1	,	1 55	01	05	1
10+002 0+30W	1	20	100	231	. 0	30	41	133	3.71	30	1	10	2	17	1	- -		10			25	21	24	41	.01	;	1 45	01	05	1
15+005 5+25W	1	67	51	225	. 1	22	- 22	4/6	3.89	30	2	NU		11	1		4	10	. 43	. 030	33	71	- J 2 E E	01 CT			1.13		.03	1
115+005 6+00W	1	105	58	177	. 3	66	23	944	6.21	40	3	KD	8	19	1	2	1	10	. 30	.085	79	77	. 33	33	.01	4	1.34		. VJ	4
115+005 5+75W	1	150	99	259	1.2	63	25	860	5.32	63	5	ND	8	19	1	2	3	19	. 32	.061	37	40	. 53	63	.01	2	1.33	.01	.07	1
115+005 5+50W	4	171	154	309	. 2	75	23	412	7.13	82	5	ND	8	16	1	2	2	14	. 21	.062	39	28	.30	73	.01	6	1.09	.01	.05	1
115+005 5+25¥	1	231	182	405	2.4	108	29	2492	7.68	85	9	ND	5	28	2	2	3	24	.42	.107	27	- 44	.52	141	.01	2	2.16	.01	.11	1
115+005 5+00¥	Í	182	118	311	.2	43	15	365	6.04	131	5	ND	9	6	1	2	1	16	. 06	.059	43	36	.45	59	.01	2	1.21	.01	.05	1
115+005 4+75W	2	89	46	213	.4	84	20	463	6.25	93	5	ND	8	8	1	2	2	36	. 07	.071	36 -	79	.81	77	.01	2	1.51	.01	.04	1
	•		45	181		63	15	1100	c 23	63	ç	WR	ç	41	,	,	,	19	89	086	74	38	.42	118	.01	7	. 83	. 01	.04	1
510+000 4+20W	2	33	80	231	. 0	33	23	1130	1.13	70	5	10	,	12	4	,	,	15	75	080	27	37	20	47	01	Ġ	1 03	01	04	1
J16+005 4+25W	2	147	192	304		103	20	1330	3.33	10	2	110	, ,	10	•	2	1	24	10	066	22	11	51	0.7	01	å	1 95	01	05	t
116+005 4+00W	1	110	120	338	٤.	22	20	4/2	1.20	112	3	EU 	,	10		2	4	22	- 1 V A E		20	77		103			1.00			1
115+005 3+75W	2	147	80	334	1.6	50	15	765	5.45	87	2	ND	8	6	1	2	1	20	. 03	.015	33	38	. 11	102	.01	4	1.28	.01	.03	
116+005 3+50W	1	67	85	187	.4	34	14	358	5.16	95	5	ND	6	8	1	2	2	17	.11	.060	30	28	. 28	61	.01	3	1.12	.01	.01	Ţ
116+005 3+25¥	2	127	64	272	.6	65	20	521	6.71	72	5	ND	8	8	1	2	2	19	.07	. 066	35	32	. 39	82	.01	2	1.40	.01	.04	1
L15+005 3+00¥	2	104	63	195	.3	57	22	754	5.73	49	5	ND	5	11	1	2	3	18	.14	.102	33	27	. 29	63	.01	6	. 86	.01	.04	1
1164005 21758	ī	29	27	146	1 0	21	16	545	4.57	13	5	YD	10	5	1	2	2	17	.05	.049	31	24	.44	40	.02	2	1.52	.01	.04	1
1161000 2713M	•	74	53	107	2.0	10	10	190	6 16	15	ç	NU.	10	10	1	,	,	18	.09	070	34	28	. 37	71	.01	2	1.45	.01	.03	1
5197003 (TJUN	4	17	72	162	. 4	9 <i>F</i> 22	10	210	1 70	12	1	ND		č	Ť	;	,	35	55	047	31	45	43	204	.01	2	1.66	.01	.04	1
21140N2 1140NM	1	31	23	102	.4	33	10	719	1.13	13	J	av	•		1	-	4				41	17	114			•				•
117+005 10+75W	1	51	84	204	.4	72	24	1302	6.57	69	5	ND	5	9	1	2	2	37	.23	.111	23	79	.54	99	.01	8	1.32	.01	.04	1
C#N /	10	52	40	132	65	67	31	1037	4 16	37	21	1	37	48	18	18	20	58	.53	.086	38	56	.91	173	.07	34	Z.02	.06	.14	12

Page 5

(

SAMPLE#	No PPN	Cu PPN	Pb PPN	Zn PPM	Ag PPM	NI PPM	CO PPN	Hn PPN	Te t	às PPM	U PPN	Au PPM	Th PPM	ST PPN	Cd PPM	SD PPM	Bİ PPN	V PPN	Ca t	P	La PPN	Cr ?PH	Ng t	Ba PPN	Ti ł	B PPM	Al X	Na ł	K Ş	¥ PPH
L17+00S 10+50W L17+00S 10+25W L17+00S 10+00W L17+00S 9+75W L17+00S 9+50W	1 1 1 1	53 74 52 48 40	77 72 232 45 50	207 421 433 176 131	.5 .1 .4 .2 .1	61 67 39 27 30	17 20 12 11 10	442 579 618 225 180	4.56 4.92 4.81 4.29 4.21	49 52 53 19 36	5 5 5 5 5	ND ND ND ND ND	8 12 4 9 10	8 10 7 4 3	1 1 1 1	2 2 2 3	2 2 2 2 2	15 23 22 15 16	.14 .18 .14 .04 .02	.056 .053 .050 .030 .045	39 35 31 37 40	43 43 26 25 20	.37 .71 .23 .28 .19	91 75 50 69 41	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.20 1.38 .77 1.27 .81	.01 .01 .01 .01 .01	.05 .07 .03 .03 .04	1 1 1 1
L17+00S 9+25W L17+00S 9+00W L17+00S 8+75W L17+00S 8+50W L17+00S 8+25W	1 1 1 1	24 47 155 82 40	65 43 61 95 40	183 179 179 214 165	.1 .2 .1 .3 .1	23 55 340 145 58	9 18 46 33 19	176 309 1954 1763 385	3.43 5.78 7.70 7.95 4.27	84 23 82 95 30	5 5 5 5 5	ND ND ND ND ND	8 11 10 6 10	4 8 17 6	1 1 1 1	2 2 2 2 2	2 2 2 2 2	21 7 17 15 18	.04 .03 .10 .32 .08	.048 .036 .059 .059 .037	30 35 41 29 34	21 12 106 42 40	.23 .22 .48 .48 .48	53 52 104 81 70	.01 .01 .01 .01 .01	2 2 3 4 3	.97 .91 1.16 .99 1.46	.01 .01 .01 .01 .01	.03 .03 .04 .04 .04	1 1 1 1
L17+00S 8+00¥ L17+00S 7+75W L17+00S 7+50¥ L17+00S 7+25W L17+00S 7+00W	1 1 1 1	78 40 39 88 60	40 32 34 110 60	109 201 178 267 241	.2 .2 .7 .6 .6	88 55 56 71 104	15 16 15 25 29	765 306 338 818 1889	4.99 4.62 4.42 5.91 6.01	60 35 27 70 46	5 5 5 5 5	ND ND ND ND ND	6 9 5 7 4	8 4 12 16 19	1 1 1 1	2 2 2 2 2	2 2 2 2 2	30 28 23 14 18	.16 .05 .22 .27 .35	.097 .033 .041 .056 .042	30 34 33 33 20	95 57 42 34 61	.54 .66 .44 .43 .61	60 115 70 56 72	.01 .02 .01 .01 .01	2 2 2 2 2 2	1.08 1.60 1.47 1.23 1.19	.01 .01 .01 .01 .01	.04 .04 .05 .06 .04	1 1 1 1
L17+00S 6+75W L17+00S 6+50W L17+00S 6+25W L17+00S 6+00W L17+00S 5+75W	1 1 1 1	97 65 104 64 72	1 86 63 66 62 59	279 149 297 145 192	1.3 .1 .7 .1 .9	65 57 90 45 38	23 19 28 16 13	1196 551 2903 361 299	5.52 4.63 6.23 5.24 4.29	70 34 47 39 55	5 5 5 5 5	ND D D ND D D ND	4 11 5 11 10	17 8 23 6 5	1 1 1 1	2 2 2 2 3	2 2 2 2 2 2	16 13 21 14 14	.31 .07 .38 .05 .05	.055 .027 .074 .032 .031	26 42 27 36 38	39 29 51 29 40	.44 .41 .53 .26 .39	56 56 75 42 71	.01 .01 .01 .01 .01	2 5 2 2 2	1.26 1.11 1.56 .94 1.26	.01 .01 .01 .01 .01	.05 .06 .05 .04 .04	1 1 1 1
L17+00S 5+50W L17+00S 5+25W L17+00S 5+00W L17+00S 4+75W L17+00S 4+50W	1 1 2 3	64 182 84 57 56	22 36 74 51 89	122 161 185 225 243	.3 .7 .7 .9 1.5	57 67 38 37 42	13 20 14 12 15	279 521 385 318 279	5.00 5.10 5.24 4.39 6.54	43 34 40 36 58	5 5 5 5 5	DH DH DH DH DH DH	6 10 8 8 7	4 11 6 9	1 1 1 1	2 2 2 2 2 2	2 4 2 2 2	15 12 13 16 26	.03 .11 .07 .07 .08	.055 .074 .063 .073 .151	37 36 32 35 25	37 35 34 28 30	.28 .43 .32 .28 .22	58 58 76 78 57	.01 .01 .01 .01 .01	3 4 4 2 2	.96 1.33 1.16 1.25 1.26	.01 .01 .01 .01 .01	.04 .03 .03 .03 .03	1 1 1 1 1
L17+00S 4+25W L17+00S 4+00W L17+00S 3+75W L17+00S 3+50W L17+00S 3+00W	1 1 2 3 2	38 45 58 98 124	76 38 36 85 86	421 203 164 221 249	.8 .3 .5 .4	63 49 53 62 86	20 19 17 22 29	2289 745 725 663 1135	6.00 4.96 4.81 6.91 5.89	34 36 70 74 55	5 5 5 5 5	ND ND ND ND	10 4 5 10	24 56 13 10 21	3 1 1 1 1	3 2 2 2 2 2	2 2 3 2 5	13 21 24 24 16	.33 1.24 .23 .14 .44	.107 .102 .096 .160 .095	35 27 26 24 32	17 33 42 33 35	.23 .33 .21 .23 .43	118 85 98 78 80	.01 .01 .01 .01 .01	5 2 3 3 5	1.10 1.17 .89 .80 .98	.01 .01 .01 .01 .01	.04 .04 .04 .03 .05	1 1 1 1 1
L18+00S 11+00W L18+00S 10+75W L18+00S 10+50W L18+00S 10+25W L18+00S 10+00W	1 1 1 1	17 23 12 58 28	20 38 37 74 23	63 102 51 368 120	.2 .3 .4 .4 .1	16 24 12 56 28	6 10 3 29 12	117 378 86 914 508	2.08 3.52 1.29 5.08 4.72	29 30 18 40 20	5 5 5 5 5	ND ND ND ND	9 8 5 6 12	3 5 4 15 7	1 1 1 1	2 2 2 2 2 2	2 2 4 2 3	15 23 14 20 20	.02 .05 .05 .31 .16	.035 .070 .029 .066 .063	35 34 32 26 49	16 25 16 33 27	.13 .23 .07 .40 .63	28 64 50 56 53	.01 .01 .01 .01 .01	3 3 2 3 5	.78 1.01 1.00 1.38 1.72	.01 .01 .01 .01 .01	.03 .04 .04 .04 .04	1 1 1 1
L18+005 9+75W STD C	1 17	19 61	43 40	138 132	.4 7.1	18 72	8 31	176 1020	3.80 3.99	97 38	5 19	ND 6	8 37	7 49	1 17	2 14	3 22	26 57	.10 .52	.080 .085	33 37	22 55	.31 .89	31 175	.01 .07	4 34	1.09 1.91	.01 .06	.03 .13	1 12

Page 6

						BC	DUND	ARY	DRI	LLI	NG I	NC.	PRO	JEC	Ŷ	1 L)	[KEL	Y	FILE	:# 8	39-1	596								Page 7
SAMPLE	HO PPN	Cu PPN	Pb PPN	Zn PPN	λg PPN	Ni PPN	Co PPN	Mn PPN	Fe t	λs PPN	U PPW	AU PPN	Th PPM	ST PPN	Cd	SD PPN	Bi PPM	V PPN	Ca	P	La PPM	CT PPM	Hg 1	Ba PPH	Ti ł	B PPN	A1 2	lia Ł	K 1	V PPN
		••••		••••					•					••••				••••	•	•			•		•		•	•	•	•••
L18+005 9+50W	5	112	94	323	.1	78	17	782	5.35	108	5	ND	5	16	1	2	3	23	.33	.187	23	39	.45	88	.01	2	1.15	.01	.05	i
L18+005 9+25¥	1	27	72	109	.1	21	10	776	3.85	41	5	ND	4	5	1	2	2	21	.06	.069	25	19	.14	49	.01	2	. 72	.01	.03	1
L18+005 9+00W	1	46	116	219	.1	33	10	342	5.08	56	5	ND	9	5	1	2	2	20	.06	.095	36	21	. 22	39	.01	3	.92	.01	.03	1
L18+005 8+75W	1	24	28	110	.1	24	9	189	3.29	33	5	ND	9	5	1	2	2	14	.08	.046	44	17	.17	39	.01	2	. 80	.01	.03	1
L18+005 8+50W	1	18	20	67	.1	15	6	220	2.10	17	5	ND	6	5	1	2	2	B	.09	.039	43	10	.15	37	.01	2	. 59	.01	.03	1
L18+005 8+00W	1	51	38	171	.3	49	14	413	4.93	30	5	ND	12	9	1	2	2	14	.18	.047	48	30	. 64	30	.01	2	1.58	.01	. 02	1
L18+005 7+75W	1	70	60	215	.2	62	21	897	6.48	57	5	ND	9	10	1	2	2	20	.18	.071	38	46	. 69	50	. 01	2	1.74	.01	.03	2
L18+005 7+50W	1	65	52	163	1.	44	14	289	6.01	- 44	5	ND	9	4	1	2	2	13	.06	.044	37	35	. 39	43	.01	2	1.34	.01	. 02	1
L18+005 7+25W	1	18	25	102	.1	29	3	499	2.69	24	5	ND	4	10	1	2	2	22	.21	.035	32	38	. 29	52	.01	2	.79	.01	.03	1
L18+005 7+00W	1	131	74	306	1.0	66	21	813	5.22	44	5	ND	4	24	1	2	2	16	.52	.061	29	32	. 48	47	.01	2	1.26	.01	.04	1
L18+005 6+75W	1	64	77	244	.3	48	19	572	4.71	37	5	ND	6	14	1	2	2	15	.26	.051	30	28	. 53	36	.01	2	1.27	.01	.05	1
L18+005 6+50W	1	61	69	262	.1	51	23	646	6.07	55	5	ĦD	8	20	1	2	2	19	.35	.055	30	29	. 55	45	.01	3	1.44	.01	.04	1
L18+005 6+25W	1	5	11	43	.1	3	2	154	. 68	4	5	ND	7	4	1	2	2	7	.08	.014	40	4	.14	35	.02	3	.73	.01	.06	3
L18+005 6+00¥	1	34	16	97	.2	23	8	162	4.32	40	5	ND	9	1	1	2	2	19	. 09	.051	42	21	. 22	39	.01	3	.72	.91	.03	1

ł

(

< i

Ĉ

						BOU	JNDA	RY	DRIL	LING	IN	с. в	PROJ	EC.""	~~ 1	LII	KELY	F	ILE	# 8	9-15	96								Page	3
SAMPLE	No PPM	Cu PPM	PD PPM	Zn PPN	Ag PPN	NÍ PPM	CO PPM	Na PPM	Fe 2	As PPN	U PPM	Au PPN	Th PPM	ST PPM	Cd PPH	SD PPN	Bİ PPM	V PPN	Ca t	P %	La PPM	Cr PPM	Ng L	Ba PPM	Ti ł	B PPN	A1 \$	Na ł	K Z	¥ PPN	
LK L18+005 5+50W	1	115	16	155	.1	127	25	662	5.46	108	5	ND	3	10	1	2	11	71	.12	.058	20	267	1.07	51	. 02	2	1.92	.01	. 02	1	
LX L18+005 5+25W	1	30	13	106	.5	32	10	403	4.54	19	5	ND	8	10	1	2	2	11	. 21	.048	36	18	.13	37	.01	4	.34	.01	.04	1	
LK L19+00S 5+00W	4	22	116	237	.2	17	5	127	4.59	21	5	ND	9	9	1	3	5	6	.11	.084	29	8	.06	40	.01	3	.60	.01	. 02	1	
LK L18+00S 4+75W	1	45	32	92	.3	23	7	173	2.59	31	5	ND	6	6	1	2	2	15	. 08	.030	40	23	.19	45	.01	2	.76	.01	. 03	I	
LX L18+005 4+50W	2	77	54	176	.1	38	9	191	4.52	58	5	ND	9	9	1	2	2	18	.14	.057	4 1	38	.32	60	.01	2	1.00	.01	.03	2	
LK L18+005 4+25W	2	229	161	334	.1	69	21	592	5.90	94	5	ND	14	10	1	2	3	14	. 12	.048	40	31	.43	65	.01	2	1.04	.01	.06	1	
LK L18+005 4+00W	2	85	71	236	. 6	42	13	509	4.40	58	5	ND	5	19	1	2	4	15	.34	.057	27	25	.28	63	.01	3	1.01	.01	.04	1	
LK L18+005 3+75W	1	90	29	12	.3	62	25	502	4.99	24	5	ND	9	21	1	2	2	4	. 32	.063	40	1	.15	40	.01	2	. 57	.01	.04	1	
LK L13+005 3+50W	1	103	113	300	.1	73	22	682	5.89	47	5	ND	10	7	1	2	2	12	. 08	.046	40	28	.43	65	.01	2	1.46	.01	.04	1	
LK L18+005 3+25W	1	146	81	299	. 2	69	19	432	5.22	91	5	ND	12	9	1	2	3	15	. 12	.037	46	37	. 50	96	.01	2	1.35	.01	.05	1	
LT 119+005 11+03W	1	38	85	179	1.1	114	21	461	4.63	71	5	ND	4	18	1	2	4	26	.40	.044	23	"	. 35	72	. 01	2	1.94	. 01	. 03	1	
LK L19+005 10+75W	1	21	22	72	.1	20	1	158	3.01	32	5	ND	5	6	1	2	2	33	.05	.040	36	17	.19	35	.02	ī	. 70	.01	.03	1	
LE L19+005 10+50W	1	19	28	115	.1	21	ŝ	145	2.45	33	5	ND	9	5	1	2	3	19	.07	.027	39	17	.12	17	.01	4	.57	.01	.03	ī	
LK L19+005 10-00W	1	44	46	137	.1	52	15	293	4.11	39	5	ND	9	13	1	2	1	18	.22	.033	38	- 11	.50	95	.01	ž	1.57	.01	.05	1	
LK 119+005 9+50W	1	47	95	167	. 6	41	21	1207	4.01	28	5	ND	5	25	1	2	2	22	.47	.054	27	23	. 27	89	.01	2	1.58	.01	.06	1	
LK L19+005 9+25W	1	33	61	125	.1	36	13	312	4.28	56	5	מא	8	1	1	2	2	25	.07	.049	32	30	. 22	94	.01	2	1.16	.01	.04	1	
LK L19+005 9+00W	1	48	36	117	.1	29	3	292	3.78	33	5	ND	10	1	1	2	2	23	.07	.051	46	18	.20	38	.01	4	.74	.01	. 03	1	
LK L19+005 8+75W	1	37	46	134	.2	34	11	179	4.78	28	5	ND	14	6	1	2	2	16	.04	.040	59	26	.45	59	.01	2	1.39	.01	.03	ī	
LE L19+005 3+50W	1	24	31	149		17	11	245	3.53	35	5	ND	11	4	1	2	2	13	.04	.034	49	42	.46	53	.01	2	1.32	.01	.03	1	
LK L19+005 8+25W	1	39	85	167	. 2	36	17	433	4.50	51	5	ND	9	5	1	2	2	16	.05	.039	40	30	. 39	49	.01	3	1.36	.01	.03	1	
LK L19+005 8+00W	1	61	62	175	.4	43	15	865	4.19	39	5	ND	4	17	1	2	2	14	. 39	.046	31	28	.44	52	.01	4	1.08	.01	.04	1	
LE L19+005 7+75W	ī	67	68	210	. 9	60	21	461	5.52	44	5	ND	8	11	1	2	2	17	. 19	.045	40	39	.50	43	.01	2	1.53	.01	.04	1	
LK L19+005 7+25W	ĩ	108	105	376	. 8	79	21	399	5.60	54	5	ND	12	8	ī	2	2	22	.12	.047	42	65	. 56	56	.01	4	1.58	.01	.03	1	
LK L19+005 7+00W	1	84	126	412	2.0	104	23	720	5.79	59	5	ND	13	12	1	ž	2	17	.17	.035	42	- 44	.43	42	.01	i.	1.33	.01	.04	ĩ	
LK L19+005 6+75W	1	71	135	503	.2	73	24	407	6.24	101	5	ND	14	4	1	2	2	15	. 05	.044	43	46	. 39	40	.01	6	1.39	.01	.03	1	
LK L19+005 6+50W	1	82	179	350	.2	69	22	559	6.65	67	5	KD	13	7	1	2	4	15	.11	.053	40	57	.51	52	.01	2	1.28	.01	.03	1	
LE L19+005 6+25W	1	55	68	165	.3	57	19	315	5.02	49	5	ND	12	5	1	2	2	15	. 05	.034	48	50	.55	67	.01	2	1.41	.01	.04	1	
LE L19+005 6+00W	1	68	45	138	.2	76	25	508	5.88	38	5	ND	1	13	1	2	2	31	.20	.073	34	46	.85	62	. 01	2	1.82	.01	.04	2	
LK L19+005 5+75¥	1	40	- 44	176	.4	63	16	616	4.82	27	5	ND	8	11	1	2	2	17	.15	.045	33	41	.43	75	.01	4	1.44	.01	.04	1	
LK L19+005 5+50W	1	53	54	137	.3	48	16	315	4.96	36	5	ND	8	1	1	2	ž	18	.08	.044	36	41	. 46	78	.01	6	1.46	.01	.05	1	
LK L19+005 5+25W	1	70	51	142	.3	75	21	627	4.92	48	5	ND	10	15	1	2	2	15	. 25	.050	38	48	. 58	53	.01	2	1.13	.01	.05	1	
LE L19+005 5+00W	1	33	44	173	. 8	42	16	416	4.44	31	5	ND	9	5	1	2	2	21	.04	.043	34	45	.38	72	.01	2	1.55	.01	.04	I	
LE L19+005 4+75W	1	36	27	135	.1	32	10	358	4.28	34	5	ND	10	6	1	2	2	17	.07	.061	39	33	.33	74	.01	2	1.08	.01	.04	1	
LK L19+005 4+50W	ī	95	48	162	.1	82	18	526	4.91	45	5	ND	13	6	ī	ž	2	15	.03	.039	46	47	.56	76	.01	1	1.34	.01	.05	1	
LK L19+005 4+25W	2	89	67	181	.3	90	16	236	5.35	40	5	ND	16	1	1	3	2	11	.05	.056	39	34	. 32	73	.01	2	1.25	.01	.04	2	
LK 119+005 4+00W	3	127	75	456	.1	321	39	918	9.24	54	5	ND 7	12	5	1	2	4	12	.05	.056	34	75 55	.33	86	.01	2	1.49	.01	.04	1	
Div L	10	0.1	33	194		0/	34	220	1.14	74	12	1	- 1	17	10	11	44	12			90	10		414		41	7.20			44	

.

(

(

8

É

BOUNDARY DRILLING INC. PROJEC. D1 LIKELY FILE # 89-1596

SANPLES	No PPN	Cu PPM	PD PPN	Zn PPN	Ag PPN	Ni PPM	Co PPH	Nn F PPN -	As PPM	U PPN	Au PPM	Th PPN	ST PPN	Cd PPM	SD PPM	BÍ PPM	V PPM	Ca t	P \$	La PPM	CT PPM	Ng t	Ba PPM	Ti ł	B PPN	A1 \$	Na t	X ł	W PPN
LK L19+005 3+75W LK L20+005 11+00W LK L20+005 10+75W LK L20+005 10+50W	1 1 1 1	148 59 15 18	42 21 9 8	187 171 44 54	.1 .1 .2	323 62 25 65	55 15 5 9	3158 11.1 432 4.3 120 1.7 307 2.0	178 74 34 47	5 5 5 5	ND ND ND ND	4 9 4 5	19 5 3 4	1 1 1 1	2 2 2 2	2 3 4 2	8 21 20 28	.32 .06 .04 .09	.080 .038 .023 .024	26 43 34 28	20 33 25 117	.11 .18 .10 .37	91 40 21 31	.01 .01 .01 .01	4 2 5 5	.65 .74 .50 .68	.01 .01 .01 .01	.03 .04 .02 .03	1 2 1 1
LK L20+005 10+25W	1	55	48	166	.5	100	21	571 4.7	63	5	ND	5	12	1	2	2	25	.21	.047	31	63	.31	137	.01	2	1.39	.01	.04	1
LK L20+00S 10+00W LK L20+00S 9+75W LK L20+00S 9+50W LK L20+00S 9+25W LK L20+00S 9+00W	1 1 1 1	32 28 89 37 21	16 11 36 34 28	84 93 133 123 79	.2 .1 .4 .1 .5	42 25 86 41 24	8 7 15 11 9	191 3.04 111 2.66 526 4.01 257 5.01 199 3.91	49 32 38 34 24	5 5 5 5 5	ND ND ND ND ND	3 9 7 9 11	7 9 16 7 5	1 1 1 1	2 2 2 2 2	2 3 2 2 3	25 20 17 22 19	.12 .13 .33 .07 .03	.031 .026 .034 .049 .039	30 42 37 43 50	27 18 33 38 29	.12 .11 .35 .30 .28	55 70 65 72 68	.01 .01 .01 .01 .01	6 2 3 4 5	.58 .58 1.17 1.32 1.17	.01 .01 .01 .01 .01	.03 .04 .05 .04 .03	1 1 1 1
LK L20+00S 8+75W LK L20+00S 8+56W LK L20+00S 8+25W LK L20+00S 8+00W LK L20+00S 8+00W LK L20+00S 7+75W	1 1 1 1 1	57 26 51 83 88	54 23 79 32 26	140 94 303 161 89	.2 .1 .5 .2 .7	74 44 95 49 21	18 9 29 17 8	321 5.63 575 3.3 1393 6.43 342 5.66 173 3.79	48 51 84 41 28	5 5 5 5 5	ND ND ND ND ND	14 9 11 12 9	7 5 10 4 4	1 1 1 1	2 2 2 2 2	3 3 2 2 2	15 17 19 18 17	.08 .09 .19 .05 .03	.051 .050 .092 .052 .031	40 55 50 51 47	44 53 42 47 26	.55 .34 .56 .45 .20	70 47 52 40 41	.01 .01 .01 .01 .01	2 2 3 2 4	1.50 .86 1.75 1.31 .80	.01 .01 .01 .01 .01	.05 .05 .06 .04 .03	1 1 1 1
LK L20+00S 7+50W LK L20+00S 7+25W LK L20+00S 7+00W LK L20+00S 6+75W LK L20+00S 6+50W	1 1 1 1	124 62 43 33 18	52 97 75 33 61	184 169 167 131 134	.6 .1 .3 .2 .9	42 54 46 37 20	20 18 16 11 15	689 4.71 332 5.74 275 5.30 211 4.60 2267 2.80	53 38 25 28 14	5 5 5 5 5	HD HD HD HD HD	8 14 15 14 4	8 7 5 5 16	1 1 1 1	2 2 2 2 2 2	3 2 3 2	19 13 15 15 21	.11 .07 .04 .04 .32	.057 .055 .038 .031 .072	41 47 48 55 37	38 43 42 40 22	.33 .49 .48 .50 .27	61 73 66 66 102	.01 .01 .01 .01 .01 .02	4 2 5 2 7	1.23 1.54 1.59 1.30 1.03	.01 .01 .01 .01 .01	.05 .04 .04 .06 .08	1 1 1 1
LK L20+005 6+25W LK L20+005 6+00W LK L20+005 5+75W LK L20+005 5+50W LK L20+005 5+25W	1 1 1 1 1	116 35 49 78 89	338 42 43 48 58	436 173 156 164 165	1.5 .3 .1 1.3 .1	86 41 44 97 95	42 16 16 19 34	5316 14.02 747 4.42 384 5.12 1100 5.70 689 6.10	195 30 40 33 60	5 5 5 5 5	ND ND ND ND	6 10 11 6 13	28 12 6 16 6	2 1 1 1 1	2 2 2 2 2 2	4 2 4 2 2	37 18 15 17 10	.63 .20 .07 .28 .03	.126 .031 .032 .071 .033	20 41 47 36 52	87 35 37 43 45	.57 .44 .47 .51 .43	121 65 63 63 56	.02 .01 .01 .01 .01	2 6 3 4 3	1.51 1.11 1.08 1.51 1.10	.01 .01 .01 .01 .01	.07 .05 .05 .05 .05	1 1 1 1
LK L20+00S 5+00W LK L20+00S 4+75W LK L20+00S 4+50W LK L20+00S 4+25W LK L20+00S 4+00W	1 1 1 1	16 24 50 50 29	13 66 49 89 21	67 171 234 297 97	.2 .3 .8 .5 .1	19 63 56 59 28	6 15 19 25 8	224 2.31 292 5.03 684 5.83 683 8.77 173 3.13	17 28 40 44 21	5 5 5 5 5	ND ND ND ND ND	8 9 6 8 8	5 6 24 20 6	I 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	16 20 27 25 17	.06 .06 .37 .36 .06	.038 .030 .081 .165 .061	50 34 31 29 48	24 85 42 33 23	.17 .62 .28 .35 .13	42 96 89 140 35	.01 .01 .01 .01 .01	3 2 4 5 5	.61 1.63 1.43 1.63 .62	.01 .01 .01 .01 .01	.03 .05 .06 .05 .02	1 1 1 1
LK L20+00S 3+75W LK L21+00S 11+00W LK L21+00S 10+75W LK L21+00S 10+50W LK L21+00S 10+25W	2 1 1 1 1	126 29 57 57 32	55 45 75 67 27	213 112 223 204 122	.3 .2 .7 .6 .4	111 33 147 104 92	32 10 26 30 15	338 5.73 231 3.00 451 6.29 3732 4.99 459 3.87	38 34 103 54 78	5 5 5 5 5	סע סא סא KD סא	15 5 6 7 7	10 6 13 16 9	1 1 1 1	2 2 2 2 2 2	5 2 2 2 2 2	13 24 23 24 34	.08 .11 .24 .20 .15	.049 .038 .055 .042 .033	38 34 29 33 34	36 31 60 50 90	.30 .17 .29 .41 .36	91 70 95 120 75	.01 .01 .01 .01 .02	4 2 3 2 2	1.46 .93 1.71 1.62 .88	.01 .01 .01 .01 .01	.03 .04 .04 .06 .04	1 1 1 1
LK L21+005 10+00W STD C	1 18	52 62	43 35	249 132	.5 6.5	115 68	25 31	707 6.10 1044 4.20	86 38	5 18	ND 7	8 37	12 49	1 18	2 14	2 20	25 58	.23 .50	.050 .087	33 38	101 56	.60 .92	89 174	.01 .07	4 35	1.64 1.85	.01 .06	.05 .14	1 12

D_{Page 9}

SAMPLE#	No PPM	Cu PPN	Pb PPN	Zn PPN	Ag PPN	Ni PPN	Co PPN	Mn PPN	Fe t	As PPN	U PPM	Au PPH	Th PPM	ST PPM	Cd PPM	Sb PPM	BÍ PPN	V PPN	Ca ł	P t	La PPM	Cr PPN	Xg %	Ba PPN	Ti t	B PPN	A1 3	Na ł	1 1	V PPN
LX L21+00S 9+75W LX L21+00S 9+50W LX L21+00S 9+25W LX L21+00S 9+25W LX L21+00S 9+00W LX L21+00S 8+75W	1 1 1 1	20 44 32 60 35	16 25 26 84 35	61 123 98 172 125	.1 .3 .1 .5	36 73 44 161 53	6 13 10 25 12	103 206 255 239 172	2.71 5.83 3.52 6.67 4.53	53 36 41 242 47	5 5 6 5	ND ND ND ND ND	11 10 11 14 12	4 12 5 7 5	1 1 1 1	2 2 3 3	2 2 2 2 3	21 37 21 21 18	.03 .07 .05 .03	.025 .049 .042 .104 .054	56 37 49 41 49	41 95 37 100 53	.17 .70 .29 .42	51 173 67 96 137	.01 .01 .01 .01	3 2 2 4 2	.58 2.53 1.11 1.97 1.31	.01 .01 .01 .01	.04 .04 .06 .06	1 1 1 1
LK L21+00S 8+50W LK L21+00S 8+25W LK L21+00S 8+00W LK L21+00S 7+75W LK L21+00S 7+50W	1 1 1 1 1	31 19 26 150 49	45 15 26 38 21	447 100 100 214 36	1.7 2.8 .1 .3 .5	267 31 35 68 35	36 10 9 21 10	2219 1180 947 765 238	6.29 2.44 3.08 5.33 3.52	260 27 33 42 61	5 5 5 5 5	ND ND ND ND ND	7 10 12 10 8	12 6 6 18 5	2 1 1 1 1	2 3 3 2 3	2 2 2 3 3	25 18 19 25 35	.19 .08 .06 .33 .05	.057 .035 .032 .056 .042	35 64 54 36 46	160 23 46 57 48	.65 .14 .36 .54 .21	133 70 82 55 27	.01 .01 .01 .01 .02	2 4 2 3 5	1.53 .71 1.15 1.62 .75	.01 .01 .01 .01 .01	.05 .05 .06 .06 .03	1 1 1 1
LX L21+005 7+254 LX L21+005 7+004 LX L21+005 6+754 LX L21+005 6+754 LX L21+005 6+564 LX L21+005 6+254	1 1 1 1 1	147 96 61 71 35	50 26 68 27 18	167 131 178 114 125	.5 .4 .5 .2 .2	66 35 65 60 31	20 13 17 18 9	631 321 323 422 445	5.12 4.50 5.05 4.40 2.92	54 29 49 18 26	5 5 5 5 5	ND ND ND ND ND	9 6 13 14 10	8 7 7 8 14	1 1 1 1	2 2 2 2 3	2 3 2 2 2	22 29 14 16 18	.13 .10 .10 .11 .31	.059 .072 .041 .043 .056	40 39 50 52 47	51 50 47 37 38	.51 .30 .58 .82 .36	59 26 68 38 75	.01 .01 .01 .01 .01	2 4 2 5	1.26 .87 1.62 1.56 1.00	.01 .01 .01 .01 .01	.05 .03 .06 .04 .13	1 1 1 1
LX L21+00S 6+00W LX L21+00S 5+75W LX L21+00S 5+50W LX L21+00S 5+25W LX L21+00S 5+25W LX L21+00S 5+00W	2 1 1 1 1	49 81 117 29 35	33 77 151 29 29	133 227 427 113 117	.3 .6 3.6 .4 .2	43 104 200 36 42	25 28 31 9 10	561 493 9373 519 313	4.48 6.36 6.51 3.72 4.10	18 38 41 26 31	5 5 5 5 5	ND ND ND ND	5 9 2 8 10	22 24 44 5 4	1 1 5 1 1	2 2 2 3 2	2 2 2 2 2 2	16 14 31 15 19	.44 .34 .78 .06 .04	.044 .083 .094 .046 .054	35 50 20 42 47	29 48 49 44 68	.33 .61 .55 .36 .51	65 79 170 48 59	.01 .01 .04 .01 .01	6 2 3 2 2	1.08 2.12 2.91 1.05 1.20	.01 .01 .01 .01 .01	.04 .07 .08 .04 .05	1 1 1 1 1
LK L21+00S 4+75W LK L21+00S 4+50W LK L21+00S 4+25W LK L22+00S 11+00W LK L22+00S 10+75W	1 1 1 1	37 22 14 89 71	26 15 6 130 74	121 91 45 418 390	.8 .2 .3 .9 .9	44 35 13 131 110	10 8 4 39 39	481 119 178 803 1413	3.94 3.62 1.24 6.18 5.21	27 18 11 99 82	5 5 5 5 5	ND ND ND ND	10 10 4 7 5	10 6 11 34 32	1 1 2 3	2 2 2 2 2 2	2 2 2 2 2 2	15 21 21 21 21 20	.23 .06 .21 .51 .57	.046 .040 .024 .083 .077	46 44 35 34 29	50 41 16 57 40	.43 .33 .09 .53 .64	93 72 125 105 79	.01 .01 .01 .01 .01	3 2 5 6 2	1.13 1.15 .58 1.88 1.37	.01 .01 .01 .01 .01	.07 .05 .03 .09 .07	1 1 1 1
LK L22+00S 10+50W LK L22+00S 10+25W LK L22+00S 10+00W LK L22+00S 9+75W LK L22+00S 9+50W	1 1 1 1	52 76 45 61 71	53 89 66 140 92	184 290 303 274 372	.4 .5 1.4 .6	66 110 75 65 112	11 29 23 10 25	157 1062 796 451 1082	2.62 4.83 4.44 2.15 4.54	19 77 55 28 66	5 5 5 5 5	nd Nd Nd Nd	4 5 5 1 4	29 28 25 51 30	1 2 1 2 2	2 2 2 2 2	2 2 2 2 3	13 19 19 7 17	.63 .47 .46 1.47 .55	.086 .072 .050 .084 .091	25 30 27 8 25	27 43 40 21 46	.49 .56 .55 .43 .53	53 93 61 40 94	.01 .01 .01 .01 .01	2 2 6 2 5	.93 1.22 1.28 .68 1.28	.01 .01 .01 .01 .01	.04 .06 .04 .03 .05	1 1 1 1 1
LK L22+00S 9+25W LK L22+00S 9+00W LK L22+00S 8+75W LK L22+00S 8+50W LK L22+00S 8+25W	I 1 1 1	57 90 49 59 49	60 92 45 21 38	354 446 250 185 163	.4 1.2 .4 .3 .4	100 106 57 182 64	28 29 19 29 17	1372 2022 387 952 437	5.45 5.42 4.81 5.69 5.21	92 58 46 69 58	5 5 5 5 5	ND ND ND ND ND	6 3 6 6 12	22 39 27 16 9	2 3 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	21 20 17 48 23	.38 .89 .61 .33 .12	.044 .087 .047 .043 .039	35 21 31 26 43	49 48 44 238 60	.56 .61 .51 1.13 .43	84 96 64 59 61	.01 .01 .01 .01 .01	5 3 6 4 8	1.50 1.51 1.37 1.27 1.15	.01 .01 .01 .01 .01	.05 .06 .05 .03 .03	1 1 1 1
LE L22+005 8+00W STD C	1 17	47 60	22 38	146 132	.1 7.2	60 68	16 31	286 948	4.35 3.74	58 36	5 19	ND 7	10 35	8 48	1 18	2 19	2 20	21 58	.09 .53	.047 .087	39 38	60 55	.37 .92	53 171	.01 .07	2 34	. 88 1.82	.01 .06	.04	1 12

) Page 10

€∴.

e and the second						BC	UNI	DARY	DRI	LLII	NG I	NC.	PRO	JEC	**** \ 0	1 L:	IKEL	Y I	FILE	#	89-1	596								Page 11
SAMPLLY	No PPN	Cu PPN	Pb PPN	ZD PPM	λg PPN	Nİ PPN	Co PPN	Nn PPN	Fe	λs PPM	U PPN	Au PPM	Th PPM	ST PPN	Cd PPM	SD PPN	Bİ PPM	V PPM	Ca ł	P t	La PPN	Cr PPN	Ng t	Ba PPM	Ti t	B PPM	A1 \$	Na Š	r ł	PPM
122+005 7+75W	1	23	25	100	.2	73	14	870	3.74	155	5	ND	6	6	- 1	2	2	31	.05	.049	31	88	.33	39	.02	2	.17	.01	. 03	· •
L22+005 7+50W	1	24	19	202	.2	159	30	1908	5.15	126	5	ND	3	9	1	2	2	38	.16	. 358	25	187	1.02	17	.02	2	1.29	.01	.03	Ī
122+005 7+25W	1	38	27	115	.2	31	11	921	3.76	25	5	ND	4	8	1	2	2	21	.15	.036	35	35	. 29	62	.01	4	.91	.01	.04	1
L22+005 7+00W	1	81	31	167	.5	59	17	730	4.68	33	5	ND	6	14	1	2	2	15	.25	.053	38	38	. 57	50	.01	2	1.42	.01	.04	1
122+005 6+75W	1	209	41	203	.5	65	17	431	5.07	49	5	¥D	10	11	1	2	2	15	.15	.040	40	47	.61	51	.01	2	1.43	.01	.04	1
122+005 6+50W	1	51	36	160	.2	39	13	478	5.53	35	5	ND	9	6	1	2	2	23	.12	.045	39	50	.51	34	.01	2	1.30	.01	.04	1
L22+005 5+25W	1	61	38	134	.2	40	15	902	5.27	40	5	ND	1	4	1	2	2	34	. 06	.045	32	56	.50	29	.01	3	1.01	.01	.03	1
L22+005 5+00W	1	11	34	150	.6	108	22	737	5.97	79	5	ND	6	6	1	2	2	32	.12	.053	31	105	1.20	43	.01	5	.91	.01	.03	2
L22+005 5+50W	1	65	65	302	1.7	69	27	1749	6.38	57	5	ND	2	25	1	2	2	24	. 55	.102	17	77	.37	61	.01	2	1.13	.01	.04	:
STD C	18	61	42	132	6.6	67	30	1044	4.12	39	19	1	37	49	18	18	21	58	. 52	.087	38	56	.92	173	.07	33	2.03	.06	.14	13

,

(

ŧ

Ę

(

(

Ć

C

(

÷

٤

.

							BOU	NDA	RY D	RILL	,ING	INC	. P	ROJE	C	y1	LIK	ELY	FI	LE #	ŧ 89	-159	6								Page 12
SAMP LE #	No PPN	CU PPH	Pb PPN	Zn PPM	Ag PPN	NI PPM	Co PPN	Nn PPN	le 1	λs PPN	U PPN	Au PPN	Th PPN	ST PPN	Cd PPN	SD PPN	Bi PPM	V PPM	Ca t	P 1	La PPN	CT PPN	Ng t	Ba PPN	Tİ Z	B PPM	А1 Х	Ka t	E ł	W PPM	i selar
E 46851 R 46852	5	2255 7433	8075 5929	1373 948	49.9 44.3	23 9	12 25	69 27	18.42	504 432	6 8	2 ND	1	20 13	4 1	57 24	62 50	14 1	.07	.043	2	20 1	.01 .01	24 10	.01 .01	4	.11	.01 .01	.07	10 3	
E 45553	1	233	730	834	5.6	14	68	138	23.76	80	5	3	2	3	1	1	28	2	.04	.003	2	26	.01	4	.01	5	.28	.02	.04	1	

(*

.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HC1-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA F LA CR MG FA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPN. - SAMPLE TYPE: Soil -80 Mesh

June 31 /89 SIGNED BY. .D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: JUN 26 1989 DATE REPORT MAILED:

> BOUNDARY DRILLING INC. PROJECT 101 File # 89-1736 Page 1

SAMPLER	NC PPM	CU Pen	Pb PPM	22 PPM	AÇ PPN	N1 PPM	CC 2PM	HE PPH	Fé X	as PPM	U FPM	AC FPM	Th FPM	31 PPM	Cd PPM M99	SE PPM	E1 FPM	: PPM	ă) با	F	Lâ PPM	CI PPM	MÇ X	54 PPN	Ti X	E PPN	41 1	Ne K	E Ş	EPH.
LK 15+008 16-50W LK 15+008 16+05W LK 15-008 16+00W LK 15+008 15+75W LK 15+008 15+50W		41 118 111 115 123	14 41 31 41 31	146 030 064 065 205		37 71 115 66 101	9 18 16 16 24	263 643 717 703 1372	3.65 6.69 6.75 6.03 6.03			NI NI NI NI NI NI				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		40 55 60 45 60		.100 .124 .160 .108 .170	13 18 16 14		.63 .81 .47 .82 1.48	111 129 146 183 135	.53 .02 .04 .02 .01	3 4 6 6	1.43 1.72 2.22 1.41 2.94	.01 .01 .01 .01	.05 .06 .06 .06 .08	- - - - - - -
LX 15+00S 15+25W LX 16+00S 16+50W LK 16+00S 16+25W LK 16+00S 16+00W LK 16+00S 15+75W		150 105 68 135 102	27 43 +86 57 46	168 225 188 278 242		87 55 55 57	16 18 14 21 19	810 539 366 707 775	6.76 4.93 4.54 7.46 5.08	30 51 35 40		82 82 82 82 82 82	4	29 18 14 31 19	1 1 1 1	3 2 4 3		63 26 30 42 28	.49 .37 .45 .32	.143 .184 .109 .348 .136	23 19 22 15 24	61 30 37 53 36	1.57 .56 .62 .65 .62	155 67 89 136 92	.04 .01 .01 .01 .01	9 7 11 3 3	2.10 1.21 1.40 1.41 1.50	.01 .01 .01 .01 .01	.10 .05 .06 .06 .07	
LE 16+00S 15+50W LE 16+00S 15+25W LE 16+00S 15+00W LE 16+00S 14+75W LE 16+00S 14+50W	1 2 3 1	66 91 172 45 43	37 34 34 24 28	195 165 226 125 124	.2 1.4 .2 .1 .1	51 43 90 45 45	16 17 25 15 21	918 534 525 573 429	4.24 5.04 7.4E 4.18 4.4E	21 39 41 23 29		ND ND ND ND	2 1 1 3 11	15 21 26 13 12	1 1 1 1	2 1 4 2 2 2	3 2 2 2 2	25 33 62 31 17	.21 .35 .43 .20	.098 .154 .146 .066 .069	27 18 21 29 38	37 33 69 48 37	.60 .53 1.46 .90 .69	83 132 167 75 43	.01 .02 .03 .02 .01	2 4 5 2 4	1.48 1.31 2.44 1.71 1.35	.01 .01 .01 .01 .01	.08 .05 .06 .06 .06	
LK 16+005 14+25W LE 16+005 14+00W LK 16+005 13+75W LK 17+005 16+50W LK 17+005 16+25W	1 1 1 4 4	55 57 59 141 212	20 34 40 61 105	99 108 123 361 450	.1 .1 .5 3.0	46 50 47 81 106	18 15 17 24 25	694 571 553 668	4.35 3.96 4.13 6.02 6.89	14 21 25 76 92		KE KD KD KD	11 4 11 4 1	13 16 14 32 36	1 1 1 2	2 2 2 2 4	2 2 2 2 2	15 22 15 35 32	.18 .24 .54	.058 .071 .073 .223 .148	38 28 42 25 20	27 36 30 40 35	.61 .59 .57 .85 .56	53 79 45 92 114	.01 .01 .01 .02 .01	4 3 8 3 2	1.44 1.43 1.24 1.74 1.66	.01 .01 .01 .01 .01	.09 .07 .06 .06 .05	•
LK L7+005 16+00W LK L7+005 15+75W LK L7+005 15+50W LK L7+005 15+25W LK L7+005 15+00W	4 1 1 1 1	244 78 78 59 81	102 45 45 24 53	361 208 259 235 150	1.0 .6 .5 .4 1.1	104 59 63 54 56	25 16 17 17 14	589 703 8ED 320 572	6.74 4.25 4.49 6.98 5.65	96 32 35 30		ND ND ND ND	3 2 2 5 1	27 29 29 11 25	1 1 1 1	3 2 2 2 2	2 2 2 2 2	27 21 23 65 32	.40 .49 .44 .15 .35	.119 .096 .090 .061 .101	25 23 25 21 41	34 33 36 68 42	.60 .59 .61 1.28 .59	85 92 133 136 186	.01 .01 .03 .01	9 2 7 5 5	1.22 1.46 1.49 2.51 1.97	.01 .01 .01 .01 .01	.07 .09 .08 .05 .10	
LK 17+0CS 14+75W LK 17+0CS 14+50W LK 17+0CS 14+50W LK 17+0CS 14+25W LK 17+0CS 14+0CW LK 17+0CS 13+75W	1 2 1 2 3	38 85 35 104 169	27 35 27 30 62	123 178 101 167 207	.3 .4 .2 1.0 .6	46 60 42 65 118	14 17 14 25 42	465 475 377 559 1201	4.33 6.22 4.00 6.71 10.12	18 32 21 36 70		NE ND ND ND ND	4 1 2	17 33 13 32 27	1 1 1 1	2 2 2 5	2 2 3 2 2 2	22 37 21 50 59	.25 .61 .22 .53 .46	.064 .114 .073 .087 .188	33 21 31 31 23	42 43 35 58 54	.69 .85 .61 .99 1.22	109 199 55 137 516	.01 .01 .01 .02 .01	2 9 2 9 8	1.76 1.85 1.41 2.20 2.66	.01 .01 .01 .01 .01	.09 .08 .06 .07 .08	1 1 1 1
LK L7+005 13+50W LK L7+005 13+25W LK L7+005 13+00W LK L7+005 12+75W LK L7+005 12+50W	2 1 1 1 1	68 53 59 45 44	49 42 38 58 35	151 201 131 212 99	.1 .4 .3 .2 .1	42 54 34 43 52	13 16 10 17 15	213 720 240 440 565	5.64 4.26 4.85 5.40 4.38	41 25 29 42 20		NE ND NE ND	4 2 12	12 20 13 14 14	1 1 1 1	3 2 2 2 2	2 2 3 2	21 20 23 27 19	.18 .33 .23 .27 .22	.107 .051 .046 .050 .066	19 27 15 21 39	33 31 27 37 40	.40 .58 .36 .43 .70	81 116 78 82 62	.02 .01 .02 .01 .02	4 2 2 6 2	1.22 1.67 1.34 1.72 1.47	.01 .01 .01 .01 .01	.04 .10 .04 .07 .10	
LK L8+COS 16+50W STD C	3 19	153 63	52 41	268 132	.1 7.1	85 71	26 31	7C2 1032	6.00 4.11	60 43	5 20	SD 7	3 3€	33 51	2 20	2 15	2 22	39 60	.61 .52	.142 .095	25 39	45 57	.85 .91	100 175	.02 .07	2 36	1.73 2.06	.01 .06	.08 .14	1 11

SAMPLE:	HO PPN	Cu PPM	Pb PPN	II PPM	λg PPN	N1 PPM	Co PPM	ND PPN	Fe t	As PPN	U PPM	AU PPM	Th PPM	ST PPM	Cd PPH	SD PPK	B1 PPM	V PPM	Ca ł	P ł	La PPH	C: PPM	MÇ i	E é PPM	11 2	E PPN	4] 1	Na l	R Z	W Pen	
LF LE+CCS 16+CSW LK L3+30S 16+CCW LR L5+COS 15+75W LK L5+CCS 15+56W LK L5+CCS 15+56W LK L2+C2S 15+25W	1 1 1 :	-9 -4 -6 18			.1	64 94 95 19		730 900 301 1656 304		24 53 63 130 13	5 5 5 5	ND RT ND ND ND	10 - 1 - 1 - 1 - 1	36	1 1 1 1		2 3 2 2	28 25 29 29 17	,57 ,63 ,15 ,34 ,14	.093 .069 .085 .076 .076	24 11 15 19 31	34 38 35 124 21		93 116 83 121 73	.01 .01 .01 .01 .01	11	1,60 1,55 1,40 1,77 1,34	.01 .01 .01 .01	.01 .01 .01 .01 .02	•	
LE LS+CCS 15+0CM LE LS+CCS 14+75W LE LS+CCS 14+75W LE LS+CCS 14+5CW LE LS+CCS 14+15W LE L3+6CS 14+06W	. 1				.4	56 T E E E	11 10 11 11	839 601 566 465 540	4.32 2.67 3.48 2.56 3.86	29 E 14 1E 20	5, 2, 5, 5, 5,	NE NE NE NE	ديه ديد محم الله يده	16 16 14	1 1 1 1		222	21 16 11 15 19	.43 .31 .15 .16 .24	.142 .060 .040 .064 .064	19 19 26 35		55	96 91 	.01 .01 .01 .01 .01		1.25 1.65 1.61 1.52 1.65	.01 .01 .01 .01 .01	83. 99. 81. 80. 90.		
LE 15-005 13+75W LE 15+005 13+50W LE 15+005 13+15W LE 15+005 13+15W LE 15+005 13+75W	1 1 1 1	11 78 59 64 59	47.47.5 54.5 4.5	104 130 174 109		51 64 43 49 55	11 14 16 15 17	354 889 348 534 558	3.56 3.26 5.63 4.36 4.45	15 22 53 36 26	5 5 5	NC NE NE NE	(*) (*) (*) (*)	11 41 14 18	1 1 1		1 1 2 2 3	21 16 39 22 20	.16 .95 .27 .32 .40	.041 .074 .074 .058 .091	28 22 18 26 28	33 28 43 34 38	.43 .46 .68 .50 .62	87 99 99 99 99 99	.01 .01 .04 .01 .01		1.51 1.34 1.75 1.70 1.67	.01 .01 .01 .01 .01	.05 .09 .09 .08 .07	-	
LK 18+0CS 12+50W LK 18+0CS 12+25W LK 18+CCS 12+00W LK 18+CCS 11+75W LK 18+0CS 11+50W	1 1 1 1 1	66 69 34 41 93	49 35 19 98	134 134 131 55 173	. 8 . 3 . 1 . 2	50 52 43 45 67	19 17 16 14 25	502 84E 541 513 433	1.85 4.33 3.76 3.84 5.11	18 22 18 16 56	5 5 5 5 5	ND ND ND ND	4 3 4 11 10	19 27 11 13 18	1 1 1 1	2222	2222	20 23 21 19 19	.38 .54 .18 .21 .31	.079 .066 .041 .067 .075	43 28 26 38 41	39 25 37 32 31	.61 .55 .54 .61 .63	87 103 91 68 66	.0: .01 .01 .02 .01	3 5 2 2 2	1.80 1.9E 1.62 1.47 1.53	.01 .01 .01 .01 .01	.08 .10 .06 .11 .10	4	
LK L9+03S 16+50W LK L9+00S 16+25W LK 19+00S 16+00W LK L9+00S 15+75W LK L9+00S 15+50W	4 4 2 1 1	133 198 82 85 23	27 26 28 65 15	207 193 160 314 73	.1 .2 .3 .3	134 106 63 68 22	29 34 15 20 7	872 1915 332 653 172	E.76 8.87 5.48 5.03 2.62	114 45 46 49 22	5 5 5 5 5	ND ND ND ND	1 1 1 1 3	18 35 16 31 7	1 1 1 1	2 2 2 2 2	2 4 2 2 2	110 89 46 25 19	.33 .65 .26 .53 .08	.166 .156 .142 .095 .031	12 14 17 27 27	120 81 66 41 17	1.97 1.75 .71 .65 .22	139 139 149 133 42	.06 .02 .01 .01 .01	2 2 2 2 2	2.25 2.71 1.61 1.75 .71	.01 .01 .01 .01 .01	.13 .04 .05 .09 .04	•	
LK L9+00S 15+25W LK 19+0CS 15+0CW LK L9+0CS 14+75W LK 19+0DS 14+50W LK 19+0DS 14+25W	2 1 1 1 1	42 26 33 43 62	32 24 41 32 47	132 146 123 124 200	.1 .2 .1 .4	36 39 49 43 48	9 9 13 15 12	177 184 212 507 303	6.38 4.25 4.18 3.59 2.93	52 47 22 19 24	55555	ND ND ND ND ND KD	24753	8 7 11 13	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	36 30 18 19 20	.10 .09 .13 .15 .22	.073 .054 .070 .053 .071	19 19 26 29 22	43 43 42 28 31	.41 .36 .56 .51 .47	53 97 85 69 89	.02 .01 .01 .01 .01	2 3 2 2 3	1.38 1.51 2.03 1.39 1.37	.01 .01 .01 .01 .01	.06 .04 .06 .09 .07	•	
LR 19+005 14+00W LK 19+005 13+75W LK 19+005 13+50W LK 19+005 13+25W LE 19+005 12+00W	1 1 1 1 1	29 66 69 62 48	29 42 41 48 35	E1 123 131 239 149	.1 .1 .1 1.0 .6	35 62 £4 53 35	14 21 21 15 14	491 587 606 616 453	3.18 4.40 4.61 4.10 5.47	11 37 38 38 55	5 5 5 5	ND ND ND ND ND	8552	11 16 15 27 22	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	17 20 21 20 33	.16 .28 .27 .65 .43	.051 .074 .082 .070 .087	30 31 30 22 16	22 37 41 31 33	.46 .60 .65 .48 .45	61 85 77 81 62	.02 .01 .01 .01 .03	7 2 9 2 3	1.27 1.48 1.49 1.60 1.32	.01 .01 .01 .01 .01	.10 .10 .08 .09 .05	•	
LK 19+005 12+75¥ STD C	2 19	82 62	83 62	197 132	.9 7.0	70 72	23 31	524 1032	6.63 4.24	84 42	5 17	ND 7	3 36	20 51	1 19	2 14	2 21	29 61	.38 .53	.130 .096	26 39	48 57	.69 .91	125 179	.02 .07	3 34	1.86 1.96	.01 .06	.06 .14	1 11	

Page 2

€

€

C

€

€

€

(

SAMFLE+	NC	Cu PPM	FE PPM	2r PPM	Âġ PPN	NÍ PPH	Cc PPM	Mn PPM	ie :	As PPM	U PPM	Au PPM	Th PPM	51 PFM	Cđ FPM	SE PPM	E1 PFN	Y FPM	Ca 3	F Ļ	La PPM	CT PPH	Nç X	Ba PPM	71 %	5 PPM	л] к	Na	ī ?	W PPM	
18 15-005 12-500 18 19-005 12-050 18 19-005 12-060 18 19-005 12-060 18 19-005 12-500 18 15-005 12-500			65 74 46 43 44	131 199 161 135 140		37 60 47 50 50	12 16 14 16 16	196 581 331 401 817	5.11 6.43 4.54 3.96 4.31	42 74 57 13 34		ND ND ND ND ND								.116 .205 .069 .050 .109	16 15 19		.353 .739 .554	69 86 19 94 78	.02 .03 .02 .02 .01		1.81 1.49 1.55 1.63 1.11	.01 .01 .01 .11 .01	.04 .07 .04 .05 .05		
18 15-005 11-15W 18 15-005 11-00W 18 10-005 16-50W 18 110-005 16-15W 18 110-005 16-00W	1	116 95 75 61 60	44 17 67 94 62	170 228 151 174 205	.4 1.E .7 .1 .3	85 67 71 54 5e		234 834 491 327 787	4.47 6.14 5.02 4.74 5.04	17 54 61 54 54		NE ND Ke Ne Ne								.111 .110 .081 .055 .063	17 28 19 11	43 36 41 55 40	.65 .51 .56 .61 .51	54 102 92 115 68	.02 .02 .01 .02 .02		1.57 1.81 1.46 1.55 1.43				
LE 100-005 15-75W LE 100-005 15-50W LE 100-005 15+15W LE 100-005 15+15W LE 100-005 15+00W LE 100-005 14-75W	1 1 1 1	150 141 150 111 80	81 72 64 51	135 508 470 230 234	1.4 1.1 1.5 .3 1.2	58 87 95 80 55	26 20 23 25 18	1156 801 1261 431 416	5.66 4.97 5.56 7.11 4.54	64 67 51 52 43	*****	ND NC ND ND ND	1	41 49 35 26 21			4	28 20 29 65 37	.66 .57 .42 .36	.104 .111 .124 .132 .085	22 16 21 15 24	49 35 45 76 37	.73 .59 .74 1.39 .48	139 125 123 102 101	.01 .01 .01 .05 .02	3 5 4 3 5	1.79 1.07 1.61 2.35 1.57	.01 .01 .01 .01 .01	.15 .07 .08 .77 .05		
LK L10+005 14+50W LR L10+605 14+25W LK L10+605 14-00W LK L10+605 13+75W LK L10+605 13+50W	1 1 1 1 1	,119 -76 105 -68 -86	+51 46 114 62 48	618 183 235 175 225	.8 .5 .7 1.1 1.0	95 61 102 85 106	23 16 24 15 30	1425 527 743 709 862	5.11 4.31 6.64 4.75 7.23	34 20 115 3E 76		ND ND ND ND ND	2 5 4 5 1	18 15 23 17 21		2222		24 23 23 21 43	.30 .24 .39 .28 .35	.090 .071 .114 .074 .087	31 31 23 31 32	37 30 65 35 66	.59 .62 .50 .51 1.11	124 102 96 98 107	.02 .01 .01 .02 .04	14 6 1 2	1.85 1.75 1.09 1.65 2.33	.01 .01 .01 .01 .01	.16 .16 .26 .12 .09	1 2 1 1 1	
1E 110+005 13+25W 1E 110+005 13+00W 1E 110+005 11+75W 1E 110+005 11+75W 1E 110+005 11+50W 1E 110+605 11+25W	1 1 1 1	80 67 44 48 63	57 42 30 36 EC	273 128 189 130 173	.9 .5 .6 .4	63 97 60 57 69	17 21 20 16 22	467 716 523 543 613	4.07 4.27 4.83 4.58 5.34	45 35 18 29 41		ND ND ND ND ND	1 5 3 4 4	33 20 13 19 17	1	2 2 2 2 2	2 2 2 2	19 21 35 26 27	.76 .15 .23 .15 .26	.097 .075 .079 .081 .068	23 28 24 25 25	33 47 48 33 47	.52 .63 .78 .61 .76	88 73 81 75 83	.01 .02 .02 .01 .02	2 2 6 16 2	1.50 1.56 1.97 1.66 2.17	.01 .01 .01 .01 .01	.10 .12 .11 .11 .11	1 1 1 1	
LK L10+005 12+00W LK L10+0D5 11+75W LK L10+0D5 11+5CW LK L10+6D5 11+25W LK L10+6D5 11+00W	1 1 1 1	52 61 42 35 94	42 49 34 37 63	129 177 130 153 185	.1 .6 .4 .5 1.3	39 72 51 43 86	43 20 15 15 24	272 831 268 365 1323	4.38 4.63 3.72 3.96 6.29	45 36 26 25 57	5 5 5 5 5	ND ND ND ND ND	5 4 5 5	12 20 18 19 33	1	2 2 2 3		19 23 22 20 27	.18 .36 .34 .39 .69	.088 .061 .074 .050 .085	18 28 24 22 32	35 41 35 30 45	.50 .53 .61 .43 .54	50 97 64 95 152	.02 .01 .02 .01 .01	2 3 2 10 2	1.24 1.71 1.51 1.72 2.25	.01 .01 .01 .01 .01	.04 .12 .08 .29 .18	1 1 1 2 1	
LK L11+005 16+50W LK L11+005 16+25W LK L11+005 16+00W LK L11+005 15+50W LK L11+005 15+25W	2 1 1 1 1	81 142 121 28 90	67 72 66 15 35	223 215 530 249 47E	.€ .1 .3 .1 1.2	57 94 BE 40 162	18 37 24 9 25	584 984 874 195 793	6.17 8.27 5.55 3.45 7.17	73 131 65 39 198	5 5 5 5 5 5	ND ND ND ND ND	1 7 5 1 1	46 26 23 18 16	1 1 2 1 3	3 2 2 2 2	2 2 2 2 2 2	40 31 28 52 57	.85 .37 .36 .25 .24	.091 .104 .107 .026 .062	15 32 26 24 17	40 56 44 41 86	.56 .82 .81 .35 .77	119 102 100 95 174	.03 .02 .02 .03 .03	2 2 2 2 2 2	1.32 1.43 1.50 .96 1.23	.01 .01 .01 .01 .01	80. 93. 93. 94.	1 1 1 1	
LK L11+005 15+00W STD C	1 18	94 62	69 43	1104 132	.9 6.8	77 71	32 31	720 1031	6.25 4.21	68 42	5 17	ND 7	2 3e	21 51	4 19	2 15	2 18	31 60	.36 .51	.117 .097	20 39	48 57	.69 .88	96 179	.02 .07	11 34	1.69 2.05	.01 .06	.07 .14	1 12	

C

C

ſ

C

Page 3

C

SAMFLED	No PPH	Cu PPH	P5 PPK	IC PPM	Ag PPN	N1 PPM	CC PPN	Nn Ppn	Fe 7	As PPN	ë PPH	AC PPK	T). FPM	S: PPM	Cd PPM	Sb PPM	B1 PPN	V PPN	Ca १	P 2	La PPN	C1 PPM	Kg ł	Ba PPM	T: ?	B PPM	A] 1	Na ?	E t	N PPK	
1R 111+005 14+75N 1R 111+005 14+75N 1R 111+005 14+50N 1R 111+005 14+00N 1R 111+005 13+75N	1 : 1 : 1	105 225 123 42 40	60 100 60 32 30	111 377 161 163 137	.1 3.1 .5 .1	69 105 15 15	19 27 15 11	458 1590 1030 431 299	5.01 7.70 6.03 1.80	59 70 51 25		KC Ne Ki Ki Xi	6 1 2 4 1		•			26 32 26 24 20		.095 .142 .056 .058 .041			. 62 . 58 . 55 . 4(95 203 136 95 72	.01 .01 .01 .01 .01	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1.47 2.28 1.71 1.41 1.19	.01 .01 .01 .01 .01			
LK L11+00S 13+5CW LK L11+00S 13+25W LK L11+00S 13+00W LK L11+00S 12+75W LK L11+00S 12+50W	1 2 2 1	42 89 124 105 30	387 8377 83 7 83 77 83 7 83 77 83	133 361 221 157 149	.1 1.1 .3 .5 .4	46 55 61 64	18 14 21 19 11	47: 426 333 428 329	3.94 1.71 8.33 7.61 4.95	40 16 105 70 37		NE 912 N2 N2 N2	1 1 6 1 4	5 5 5 5 5 7 5 9	1			11 11 31 35		.037 .098 .097 .134 .096		15 16 16 16	.47 .65 .51 .41	78 97 86 123 55	.01		1.45 1.45 1.41	.01 .01 .01 .01	.11 .45 .03 .05		
LK 111+CGS 12+25W LK 111+CGS 12+00W LK 111+CGS 11+75W LK 111+CGS 11+75W LK 111+CGS 11+55W LK 111+CGS 11+25W	2 1 2 2	92 100 36 92 91	10E 72 22 35 71	124 196 196 174 200	.9 .6 .7 .8	66 102 42 83 69	22 24 15 22 19	463 389 318 381 519	5.17 8.60 5.51 8.07 8.17	117 121 29 87 127		ND NC ND ND	5 2 5 4			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 3 2 2	31 40 37 41 33	.11 .12 .18 .24 .31	.125 .174 .096 .123 .188		51 64 41 50	.55 .73 .63 .70 .52	8C 94 64 106 107	.02 .02 .01 .01 .01	66343	1.55 1.66 1.56 1.85 1.46	.01 .01 .01 .01		1	
LE L1:+005 11+0CW LK L12+0D5 16+75W LK L12+005 16+75W LK L12+005 16+25W LK L12+005 16+25W LK L12+005 16+00W	2 1 1 1 1	64 125 89 87 106	61 145 55 57 93	223 353 312 271 265	.1 .6 .5 .9 .1	59 87 97 87 87 87 87 87 87 87 87 87 87	16 25 22 20 19	412 855 745 891 559	6.55 6.00 5.57 4.11 5.31	67 90 62 46 51	5 1 1 1 1 1	KD NE ND NE	2 6 3 2	10 18 24 35 16	1 1 1 1	2 2 2 2 2	20042	33 28 37 19 26	.10 .26 .37 .65 .16	.095 .071 .084 .086 .046		46 60 56 37 48	.63 .81 .97 .51 .55	128 121 131 126 136	.01 .01 .01 .01 .01	3 4 1 E 2	1.48 1.55 1.68 1.12 1.50	.01 .31 .01 .01 .01	.05 .13 .15 .08 .09	2 1 1 1	
LK L12+0CS 15+75W LK L12+00S 15+50W LE 112+00S 15+25W LK 112+00S 15+25W LK 112+00S 15+00W LE 112+00S 14+75W	1 1 2 2 1	151 68 199 154 70	108 108 119 141 52	411 1045 2638 1110 318	1.3 .2 .4 .7 1.2	83 58 116 72 46	21 21 25 15 16	655 751 893 408 478	5.28 6.31 6.12 5.27 4.55	70 52 88 85 50	5 5 5 6	nd Kd Nd Kd Nd	2 3 5 2 2	33 17 21 20 14	1 2 2 1	2 2 2 2 2 2	2 3 2 5	23 30 32 20 25	.47 .25 .32 .23 .21	.085 .141 .121 .086 .070	23 20 31 27 29	43 32 51 29 34	.65 .37 .87 .40 .48	135 116 132 119 114	.01 .02 .02 .01 .01	7 5 2 5 3	1.39 1.16 1.57 1.24 1.24	.01 .01 .01 .01 .01	.10 .07 .12 .27 .07		
LK L12+00S 14+50W LK L12+00S 14+25W LK L12+00S 14+00W LK L12+00S 13+75W LK L12+00S 13+50W	1 1 1 1	84 70 56 37 128	63 55 57 44 76	150 154 193 159 241	.1 .1 .3 .7 .1	54 49 35 75	19 18 17 10 25	633 634 475 236 723	4.78 4.57 4.53 4.18 4.70	38 27 37 28 50	5 5 5 5	ND ND ND ND ND	13 13 6 4 6	11 10 13 9 17	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	17 18 22 25 24	.16 .14 .21 .10 .25	.053 .052 .073 .960 .084	35 42 34 25	30 30 35 34 39	.54 .61 .59 .42 .63	81 79 82 89 111	.02 .02 .02 .02 .02 .02	8 11 13 2 12	1.34 1.52 1.38 1.43 1.43	.01 .01 .01 .01 .01	.16 .17 .10 .0E .11	1 1 1 1	
LK L12+005 13+25W LK L12+005 13+00W LK L12+005 12+75W LK L12+005 12+50W LK L12+005 12+25W	1 1 1 1	116 28 43 36 71	92 27 53 34 72	256 124 259 167 165	.5 1.0 .6 .5 .3	69 25 48 39 54	15 10 18 13 17	399 282 407 540 211	5.18 3.16 4.92 3.72 4.76	72 14 44 14 53	5 5 5 5 5	ND ND ND ND ND	2 5 6 E	17 6 8 11 17	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	23 16 24 20 21	.22 .09 .12 .17 .33	.073 .040 .061 .037 .068	24 25 23 36 29	34 21 48 29 30	.61 .45 .44 .50 .5E	70 65 75 88 63	.01 .01 .02 .01 .02	3 6 7 2 3	1.32 1.38 1.48 1.60 1.32	.01 .01 .01 .01 .01	.06 .09 .05 .13 .13	1 1 1 1	
LK L12+0CS 12+00W STD C	1 19	46 61	52 37	18C 132	.4 6.9	45 70	17 30	696 1028	4.22 4.10	27 40	5 22	ND 7	6 36	14 45	1 19	2 15	2 19	22 61	.24 .51	.048 .094	34 3e	32 55	.59 .88	78 182	.02 .07	2 36	1.41 1.84	.01 .06	.12 .12	1 11	

Page 4

ſ.

SAMPLE;	NO PPN	Cu PPM	Pb PPM	Zr. PPM	ÅG PPN	N1 PPM	Co PPM	Nn FPN	Fe 1	λs PPN	U PPN	Au PPM	TE PPM	E: PPN	Cd PPN	SÌ PPM	E: PPM	V PPH	Ca ł	P }	La PPM	C: PPK	Kg	Sa FPM	11 - k	E PPN	Х :	Ka 1	K >	N PPM	
LR 112+015 11-75W LR 112+005 11+56W IR 112+015 11+05W LR 112+015 11+05W IR 116+005 5+25W	1 1 1 2	64 40 76 71 227	65 64 56 63 166	194 147 166 160 337	.6 .1 .5 1.0 1.7		19 14 15 17 25	1116 433 353 737 1401	5.15 4.14 4.31 4.35 6.50	31 22 35 33 96	5 5 5 5 5	ND NI ND ND NI	17 (7) (8) (1)		1 : : 1					.081 .051 .051 .059 .059						5, 5, 1, 10 7	1.7E 1.45 1.67 1.7E 1.6F	.81 .01 .01 .01 .01	.13 .09 .08 .10 .09	-	
1K 116+035 5+00W LK 115+005 4+75W LK 119+005 16+75W LE 119+005 16+56W LK 119+005 16+15W	1 2 1 2 1	217 130 115 182 82	128 67 111 166 77	336 276 235 210 108	.1 .2 .5 1.3 1.6	51 71 85 84 113	15 15 19 18 21	515 315 714 1353 790	5.64 5.75 4.57 4.55 4.55	125 95 54 76 45	5 5 5 5	NE NE NE NE	()		1			16 14 16 16		033 .057 .075 .114 .055			.43 .45 .46 .47		.01 .01 .01 .01 .01	6 5	1.23 1.42 1.55 1.12 1.54	.01 .61 .21 .21	.09 .05 .07 .05 .05		
1K L19+CCS 16+00W LK L19+00S 15+75W LK L19+CCS 15+56W LK L19+CCS 15+25W LK L19+CCS 15+00W	1 1 1 1	45 36 49 49 63	86 73 88 94 249	140 172 155 224 312	.9 .1 .4 .5 .7	40 52 E1 116 111	15 16 21 22 31	652 534 649 1636 875	4.25 4.79 4.33 4.59 6.24	44 54 53 62 70	5 5 5 5 5	ND ND ND ND ND			1			21 18 16 20	. 17 . 06 . 25 . 67 . 43	.064 .047 .062 .062 .062	4	31 37 35 37 45	. 14 . 47 . 39 . 49 . 51		.01 .01 .01 .01 .01	3 3 1 3 5	1.16 1.23 1.30 1.65 2.04	.01 .01 .01 .01 .01	.06 .05 .06 .06	1	
LK L19+0CS 14+75W LK L19+0CS 14+5EW LK L19+0CS 14+5EW LK L19+0CS 14+25W LK L19+0CS 13+75W	1 1 1 1	9 35 18 32 35	13 *52 27 24 110	41 158 108 97 133	.1 .4 .3 .2 1.8	12 70 111 46 75	3 16 14 9 18	56 328 353 206 454	1.13 4.10 4.29 2.61 4.57	22 51 170 52 135	5 6 5 5	ND ND ND ND ND			1 1 1 1			24 19 23 19 19	.04 .21 .07 .13 .21	.017 .035 .045 .036 .047	26 24 23 27 18	s 35 59 17 16	.04 .44 .31 .08 .16	38 • 47 • 90 • 43	.01 .01 .01 .01 .01	24 554	.63 1.40 1.09 .46 .82	.01 .01 .01 .01 .01	.02 .05 .04 .02 .04	4	
LK L15+005 13+50W LK L19+005 13+25W LK L19+005 13+10W LK L19+005 12+75W LK L19+005 12+50W	1 1 1 1	30 22 29 35 23	70 59 38 145 25	100 87 105 121 65	.2 .1 .1 .2 .2	42 46 42 49 26	10 9 10 13 6	308 309 208 245 169	3.77 3.34 4.04 5.83 3.11	74 112 77 113 47	5 5 5 5	ND ND ND ND ND	2 1 7 5 3	5 7 6 12	1 1 1 1 1			23 23 21 28 20	.06 .08 .08 .08 .04 .26	.056 .045 .047 .059 .035	25 23 25 22 21	26 22 19 29 13	.15 .11 .19 .25 .19	75 48 45 77 56	.01 .01 .01 .01	3 2 6 4 2	.91 .59 .79 1.41 .88	.01 .01 .01 .01 .01	.03 .01 .03 .05 .03		
LK L19+00S 12+25W LK L19+COS 12+0CW LK L19+OOS 11+75W LK L19+COS 11+50W LK L19+COS 11+25W	1 1 1 1	21 20 36 33 22	45 95 63 54 34	102 113 105 127 81	.1 .2 .1 .3 .4	49 41 41 41 29	10 11 10 12 7	204 718 275 946 309	4.5E 3.2E 3.95 4.5E 3.04	78 46 97 76 48	5 5 5 5 5	NC ND ND ND ND	4 3 5 2 3	5 13 5 6 4	1 1 1 1	2022	2 2 2 2 2	30 23 14 26 25	.07 .25 .03 .05 .03	.061 .043 .061 .082 .045	24 21 32 26 23	50 27 17 22 18	.21 .26 .09 .12 .15	55 50 48 54 37	.01 .01 .01 .01 .01	3 3 4 7 2	1.08 1.58 .60 .73 .78	.01 .01 .01 .01 .01	.03 .03 .03 .04 .03	1 1 1 2	
LK L20+005 16+90W LK L20+005 16+75W LK L20+005 16+50W LK L20+005 16+25W LK L20+005 16+60W	3 1 1 1	105 48 97 36 18	100 120 114 93 18	167 179 292 146 59	.5 .7 1.3 .3 .1	40 59 127 36 14	9 18 25 11 5	277 579 781 325 112	3.50 4.25 5.61 4.76 1.61	80 52 64 59 25	5 5 5 5 5	ND RC ND ND ND	1 3 1 1	26 25 19 10 6	1 1 1 1	2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	29 43 28 21 25	.12 .28 .21 .08 .06	.054 .057 .087 .070 .027	18 21 23 21 23	18 37 34 24 9	.15 .95 .54 .30 .09	150 153 171 121 50	.01 .02 .02 .01 .01	9 6 3 3 2	.59 1.68 1.71 1.02 .63	.01 .51 .01 .01 .01	.05 .08 .06 .04 .02	1 1 1 1	
LK L20+005 15+75¥ STD C	1 1e	46 61	52 43	140 132	.2 7.1	44 71	12 31	285 1031	5.11 4.14	50 43	5 21	ND 7	3 3E	9 50	1 19	2 15	2 21	24 61	.10	.045 .094	21 39	32 57	.52 .89	84 152	.01 .07	8 37	1.43 2.03	.01 .06	.05 .14	1 11	

Page 5

ť

SANPLE#	No PPN	Cu PPN	Pb PPM	Zn PPN	λg PPN	N1 PPN	Co PPM	No PPN	Pe 1	λs PPM	U PPN	Au PPK	Th PPN	ST PPK	Cd PPN	SD PPN	B1 PPM	V PPN	Ca 3	P R	La PPN	CT PPN	Kg t	Ba PPN	Tİ Z	B PPN	۸1 ۲	Na ł	K Ł	W PPN	
LK L20+00S 15+50W LK L20+00S 15+25W LK L20+00S 15+0DW LK L20+00S 14+75W LK L20+00S 14+5DW	1 1 2 1 1	34 25 69 49 35	49 63 73 114 50	190 181 492 344 234	.2 .2 1.0 2.1 .6	51 97 284 357 113	15 17 38 54 28	314 868 8549 6852 2215	4.46 4.28 12.62 9.73 4.55	46 209 335 529 41	5 5 7 5 5	ND ND ND ND ND	5 3 1 1 1	11 16 42 43 53	1 1 2 2 2	20232	2 2 2 2 2	31 26 21 33 18	.09 .17 .34 .66 .82	.029 .050 .099 .099 .134	29 25 19 13 15	37 47 36 227 28	.46 .43 .17 .59 .54	223 281 347 180 16B	.02 .01 .01 .02 .01	3 1. 2 1. 2 1. 2 1. 2 1. 2 1. 2 1.	68 26 53 74 52	.01 .01 .01 .01 .01	.11 .07 .07 .05 .07	1 1 1 1	
LK L20+00S 14+25W LK L2D+00S 14+0DW LK L20+00S 13+75W LK L2D+00S 13+55W LK L2D+00S 13+55W LK L20+00S 13+25W	1 1 2 1 1	30 53 42 11 9	44 39 28 10 17	152 157 145 44 54	.4 .3 .8 .1	73 463 90 13 9	18 50 14 2 2	1319 1407 304 103 84	4.00 5.45 5.27 1.36 1.09	30 1150 155 34 24	5 8 5 5 5	ND ND ND ND ND	3 1 4 5 5	21 6 8 3	1 2 1 1	2 2 2 2 2	2 2 2 2 2 2	23 73 25 17 8	.30 .05 .06 .03 .03	.048 .064 .070 .027 .018	23 13 25 22 34	39 504 30 4 3	.56 .80 .12 .03 .02	144 71 117 88 29	.01 .02 .01 .01 .01	2 1. 2 1. 2 . 2 . 2 .	.73 .51 .75 .37 .78	.01 .01 .01 .01 .01	.10 .02 .05 .02 .05	1 1 2 1	
LK L20+005 13+00W LK L20+005 12+75W LK L20+005 12+50W LK L20+005 12+50W LK L20+005 12+25W LK L20+005 12+00W	1 1 1 1	11 21 15 24 14	21 20 16 28 33	55 60 47 78 75	.1 1.5 .1 .1 .2	29 19 22 56 40	6 5 8 8	194 201 179 185 293	1.97 2.60 2.01 3.50 3.36	36 44 20 68 106	5 5 5 5 5	ND ND ND ND ND	5 3 1 6 3	4 5 5 4 5	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	23 13 32 41 30	.03 .08 .08 .04 .08	.033 .033 .019 .045 .041	27 34 25 28 29	24 6 10 82 30	.07 .03 .04 .37 .09	27 44 46 34 30	.01 .01 .01 .01 .01	2 . 2 . 2 1. 2 .	.64 .36 .62 .34 .79	.01 .01 .01 .01 .01	.03 .03 .02 .03 .04	4 80 1 1 1	
LK L20+00S 11+75W LK L20+00S 11+50W LK L20+00S 11+25W LK L21+00S 16+75W LK L21+00S 16+50W	1 1 1 2 1	21 10 61 61 42	43 + 53 52 190 56	99 107 317 191 168	.1 .1 .1 2.1 1.0	24 21 58 49 50	6 9 14 15	210 157 223 282 444	3.66 1.97 4.09 5.46 5.01	33 20 68 63 53	5 5 5 5 5	ND ND ND ND ND	7 6 4 5	6 5 6 12 7	1 1 1 1	2 2 2 2 2	3 2 2 2 2 2	20 19 30 26 27	.08 .07 .07 .11 .06	.039 .026 .053 .143 .089	33 33 32 25 24	24 26 56 35 33	.17 .26 .26 .49 .47	64 98 51 128 126	.01 .01 .01 .01 .01	2 1. 2 1. 2 1. 2 1. 2 1. 2 1.	.03 .35 .10 .71 .78	.01 .01 .01 .01 .01	.05 .05 .05 .07 .06	1 1 1 1	
LK L21+00S 16+25W LK L21+00S 16+00W LK L21+00S 15+75W LK L21+00S 15+50W LK L21+00S 15+50W LK L21+00S 15+25W	2 1 2 7 2	59 36 49 37 49	40 42 77 40 34	185 132 188 111 205	.5 .6 4.1 1.1 .3	70 35 40 20 46	11 9 10 3 6	209 143 190 81 152	4.70 4.76 6.80 2.87 3.77	97 53 93 103 74	5 5 5 5 5	ND ND ND ND	2 5 3 8 2	10 7 6 4 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	28 30 34 20 20	.03 .04 .03 .01 .02	.084 .100 .140 .045 .041	27 24 22 52 19	21 31 38 6 3	.21 .35 .40 .03 .01	178 169 100 169 757	.01 .01 .01 .01 .01	2 1 2 1 2 2 2 2 6 -	.21 .99 .04 .28 .22	.01 .01 .01 .01 .01	.05 .05 .04 .02 .02	1 1 1 1 1	
LK L21+00S 15+00W LK L21+00S 14+75W LK L21+00S 14+55W LK L21+00S 14+25W LK L21+00S 14+25W LK L21+00S 14+00W	2 2 1 2 3	78 43 165 49 35	50 100 182 132 141	99 47 292 143 134	4.1 12.1 .7 .3 2.7	19 11 76 31 97	6 - 2 19 4 13	77 45 1123 113 1044	5.51 3.32 8.08 3.50 6.15	93 190 141 175 130	5 5 5 5 5	ND ND ND ND ND	11 1 9 2 1	5 30 4 13 9	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	23 29 6 31 32	.01 .01 .02 .02 .04	.106 .094 .073 .059 .184	46 25 35 38 21	17 2 7 4 49	.12 .01 .02 .02 .19	261 58 77 92 125	.01 .01 .01 .01 .01	2 1 4 5 2 1	.28 .24 .39 .39 .04	.01 .01 .01 .01 .01	.04 .03 .04 .03 .03	4 1 1 1 19	
LK L21+00S 13+75W LK L21+00S 13+25W LK L21+00S 13+00W LK L21+00S 12+75W LK L21+00S 12+50W	4 1 2 1 2	174 39 58 26 60	114 59 27 56 68	461 144 105 81 185	.2 1.1 .8 2.1 .4	182 32 46 20 32	16 8 9 6 8	353 292 104 256 311	11.56 5.77 3.06 4.07 3.63	112 66 77 59 75	5 5 5 5 5	ND HD ND ND	8 4 1 3 13	4 6 4 6 7	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	4 27 33 44 14	.02 .05 .02 .05 .02	.081 .093 .043 .171 .051	29 29 54 26 47	8 27 4 17 2	.03 .30 .02 .14 .03	223 164 82 53 108	.01 .01 .02 .01	2 2 1 3 2 1 3	. 43 . 40 . 42 . 02 . 33	.01 .01 .01 .01 .01	.03 .03 .03 .03 .03 .04	1 6 7 3 1	
LK L21+005 12+00W STD C	1 19	41 61	38 43	130 132	.3 6.8	76 72	12 31	349 1030	4.63	121 45	5 22	¥D 7	6 37	5 50	1 19	2 15	2 22	33 60	.04 .52	.047 .096	30 38	58 55	.21 .90	45 179	.01 .07	2 34 2	.81 .04	.01 .06	.04 .14	1 12	

Page 6

C

C

(

C

C

C

C

(

ť.

Ć

6

C

C

C

sahfl e i	No PPM	CU PPH	PD PPM	20 PPH	Lg PPH	N1 PPM	CO PPH	ND PPH	Fe	AS PPM	U PPM	AU PPM	Th PPM	Sr PPM	Cđ PPM	SD PPM	BÍ PPM	V PPK	Ca 1	F Ş	La FPM	CT FPM	MÇ l	Ba PPM	T1 1	E PPM	X]	Na S	K ;	¥ PPN	
LK 111-0(S 11-75% LK 121-005 11-51W LK 121-005 11-53W LK 121-005 16-75W LK 121-005 16-50W	•••••••••••••••••••••••••••••••••••••••	41 8 13 8 14 3 13					31 40 52 51 44	1901 110 300 154	9.31 1.15 4.15 1.16	123 57 116 40 33		ND ND ND ND	: 5 6 4 4	10 4 5 31 16	1 1 1 1 1			51 25 24 21 36	.11 .83 .36 .48 .14	086 .035 .039 .123 .018		393 35 31 31	1.00 .04 .11 .72 .3E	87 34 51 139 217	.01 .01 .01 .01 .01	- 5 6 4 2	1.45 .61 1.26 1.24	.61 .61 .61 .61	.04 .03 .04 .05		
LK LCC+COS 16+25M LR LCC+C(S 16+56K LK LCC+COS 15+75M LR LCC+C(S 15+5(N LK LCC+C(S 15+55K		59 158 95 85 81	36 61 60 49			10 66 115 1223	10 9 15 16 146	137 309 333 497 3192	4.00 4.14 5.05 4.56 13.96	4 116 69 182 166		ND ND ND ND	1 1 1 1	13 19 11 32 12	1 1 1 1		tet dat ta da tea	44 27 25 76 89	.11 .11 .19 .41 .11	.022 .056 .113 .054 .058		10 10 11 11 11 10 10 10 10 10 10 10 10 1	.19 .05 .31 .57 4.64	660 274 176 183 74	.02 .01 .01 .01 .01	14034	1.81 .58 1.43 1.42 2.86	.01 .01 .01 .01 .01	.04 .04 .05 .07 .01		
1K 111-005 15-00W 1K 121-005 14-75W 1K 121-005 14-55W 1K 121-005 14-55W 1K 121-005 14-25W 1K 121-605 14-00W	1.5.1.6.5.	134 116 49 11		130 137 141	.1 1.4 .6 .4 1.5		33 66 19 6 21	391 638 611 434 347	7.91 9.88 6.81 1.44 6.35	30 100 55 22 39		ND Ne ND ND ND	1 1 2 3	25 18 20 6 13	1 I I 1		2 1 12 12 3	E3 103 99 40 88	.11 .25 .27 .07 .11	.051 .171 .126 .581 .212	5 5 14 15 12	25 96 106 19 81	4.20 3.54 1.70 .14 1.33	171 105 189 58 220	.01 .01 .01 .01 .01	2	4.38 3.8 5.31 .91 2.74	.01 .01 .01 .01 .01	.05 .03 .05 .05 .05		
LK 122+COS 13+75W LE 122+COS 13+56W LK 122+COS 13+56W LK 122+COS 13+COW LK 122+COS 13+COW LK 122+COS 12+75W		145 31 95 56 207	35 110 156 398 431	240 141 165 60 815	.3 1.7 1.1 6.3 2.3	58 21 47 24 115	37 8 13 7 16	1463 255 595 491 372	11.94 7.11 7.19 4.31 8.32	76 42 96 66 145	5 6 5 5	nd Nd Nd Nd Nd	1 7 6 5 2	27 14 21 13 8	1 1 1 1		2113 21 43 4	21 4E 35 54 42	.24 .17 .24 .07 .06	.155 1.319 .833 .494 .187	18 20 23 25 19	23 34 38 17 32	.41 .27 .30 .09 .10	173 203 159 95 63	.01 .03 .01 .02 .01	2 2 4 2 3	1.51 1.42 1.76 1.20 .67	.01 .01 .01 .01 .01	.04 .06 .06 .04 .04		
LK L22+005 12+50W LK L22+005 12+25W LK L22+C05 12+60W LK L22+005 11-75W LK L22+005 11+50W	9 3 1	32 32 28 28 23	58 109 54 44 44	181 171 156 111	1.1 1.5 1.0 .2 .7	45 55 35 26	11 8 7 9 8	282 120 377 341 227	5.40 3.12 3.97 3.77 3.00	68 147 69 35 33	5 6 5 5 5	ND ND ND ND ND	5 1 1 4 5	3 10 10 7 7	1 1 1 1		2 4 3 2 2	21 77 26 24 22	.03 .04 .08 .09 .06	.145 .127 .091 .064 .052	22 29 3E 34 34	26 30 10 14 19	.37 .10 .06 .14 .18	62 70 73 41 63	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.32 .97 .51 .78 .96	.01 .01 .01 .01 .01	.03 .03 .04 .03 .03	1 48 13 1	
LK L22+00S 11+25W LK L22+00S 5+25W LK L22+00S 5+00W LK L22+00S 4+75W LK L22+00S 4+75W LK L22+00S 4+50W	1]]]	92 8 6 137 58 35	91 90 121 62 34	409 272 296 154 126	1.4 .6 1.4 .5 .8	111 154 762 68 55	33 44 130 16 18	1134 1143 9028 512 401	7.65 9.61 14.95 6.85 6.56	96 E2 287 49 37	5555	ND ND ND ND ND	4 3 1 6 5	19 12 43 E 5	2 1 3 1 1	2 2 2 2 2	2 2 3 3	37 29 68 25 22	.27 .18 .70 .07 .06	.109 .DE9 .110 .093 .057	25 26 11 30 24	75 64 662 64 34	.53 .23 1.77 .31 .22	121 67 245 46 45	.01 .01 .01 .01 .01	22222	1.85 1.57 2.21 1.25 1.33	.01 .01 .01 .01 .01	.05 .04 .05 .05 .05 .04		
LK L23+00S 4+25W LK L23+00S 16+50W LK L23+00S 16+25W LK L23+00S 16+00W LK L23+00S 16+75W	1 4 2 1 1	22 34 46 72 49	16 2 3 22 23	92 78 82 181 184	.2 .1 .5 .1 .2	22 5 4 67 65	8 1 1 24 22	155 102 523 367 392	3.01 .01 .04 8.05 6.17	24 4 2 19 30	5 5 5 5 5 5	NC NC ND ND ND	5 1 1 2 3	8 252 167 20 8	1 1 1 1	2 2 2 2 2	2 2 2 2 2	2E 2 4 134 1DD	.13 5.15 3.13 .31 .22	.043 .048 .080 .062 .037	35 2 13 14	17 \$ 10 87 91	.02 .53 .70 2.88 1.95	20 153 141 159 177	.01 .01 .10 .22	3 6 8 3 2	.86 .12 .25 3.91 3.10	.01 .01 .01 .01 .01	.05 .01 .02 .07 .10	1	
LK L23+005 15+50W STD C	1 19	59 E2	17 40	185 132	.3 7.2	136 71	34 31	733 1032	6.94 4.20	14 45	5 18	ND 8	3 37	13 50	1 19	2 15	2 22	154 61	.43 .51	.066 .096	14 40	161 57	3.84 .88	294 179	.33 .07	5 38	3.91 2.04	.01 .06	.26 .14	1 12	

Page 7

SAMPLED	No PPM	Cu PFN	Pb FPM	ZD PPM	AG PPH	N1 PFM	CC PPN	KE FPM	Ie ۲	ÅE PPN	U PP y	AU PPM	Th PFM	SI FFN	Cd PPM	S <u>2</u> PPN	BÍ PPM	V PPH	Ca t	P 1	La PPM	Cr FPM	Kç i	Ea PPH	1 1 2	E PPM	A] }	Ná	E 1	W PPN	
18 110+665 15+15% 18 112+615 15+03% 19 113+018 14+75% 18 113+018 14+55% 18 113+018 14+55%	•	85 59 15 19	52 28 35 60 32	271 345 190 256 235	.9 .4	-s 53 41 41	21 16 12 9	197 681 111 171	6197 8144 5117 4181 3189	46 8 17 16 20	5555	NE RD RD RD RD RD		10 11 12 12 15 15 15 15 15 15 15 15 15 15 15 15 15				80 171 96 46 36	.31 .31 .36 .12	.065 .134 .055 .070 .077		75 38 50 45 39	1.55 4.36 .56 1.11 1.15	175 511 94 161 81			4.67 1.00 1.56 1.85	.01 .01 .51 .01		•	
1R 113+618 14+00¥ 1R 111+618 13+75¥ 1R 123+608 13+75¥ 1R 123+608 13+56¥ 1R 113+908 13+25¥ 1R 113+608 13+60¥	3 4 5 5 12	83 406 83 227 297	126 641 271 24E 174	631 822 258 350 738	.ć 5.0 1.1 2.4		18 31 11 16 24	213 414 145 153 220	5.76 10.65 1.99 2.27 9.11	111 278 150 150 105		ND ND ND ND ND		12 21 32 45 40				29 26 46 48	.14 .31 .17 .55	.097 .357 .131 1.176 .772	11 17 16	34 19 4 31 28	.64 .42 .04	170 163 113 362 194	.01 .01 .01 .01		1.95 .91 .43 1.74 1.85	.01 .01 .01 .01 .01	.01 .07 .06 .11		
LR L13+015 11-75W IR L13+015 11-56W IR L13+005 11-56W IR L13+005 11-60W IR L13+005 11-75W	51312	129 35 68 26 61	140 27 109 54 91	365 571 304 170 195	.1 1.4 .5 2.0 2.2	11 145 15 16 36	13 20 12 9 6	198 406 548 214 130	5,62 5,46 7,47 4,94 3,65	85 67 58 27 44	5 4 5 5	KC ND NC NC NC	2 3 6 4 6	15 10 5 9 10			2 2 2 2 2 2	45 53 39 33	.35 .12 .09 .09 .06	.361 .180 .276 .226 .337	21 12 23 26	31 193 36 29 21	.40 1.15 .21 .15	133 107 103 94 95	.01 .01 .01 .01 .02	7 4 6 5 2	1.07 2.09 1.30 1.42 1.66	.01 .01 .01 .01 .01	.06 .05 .04 .04 .04	1	
1R L23+005 11+50W UK L23+605 11+25W ' UK L23+005 11+25W (A) IR L23+005 11+00W UK L23+005 10+50W	2 5 5 1 1	31 98 235 46 145	168 96 103 45 129	151 305 630 183 336	2.4 6.8 1.5 .8 1.0	38 69 134 43 82	9 13 12 13 23	201 445 244 234 1401	5.81 6.92 6.84 4.95 6.30	81 122 135 29 80	5 8 5 5 5	ND ND ND ND	5 7 7 14 7	10 13 6 5 38		1 2 2 2	2 3 3 2 2	50 5e 24 14 41	.10 .08 .06 .02 .58	.305 .453 .127 .074 .137	24 18 27 51 15	67 41 6 22 53	.32 .16 .03 .33 .51	157 151 67 95 497	.01 .02 .01 .31 .01	2 3 6 2 24	1.97 2.95 .60 1.6E 2.34	.01 .01 .01 .01 .06	.04 .05 .04 .06 .45	1 3 1	
LK 123+005 10+25W SK 123+005 10+00W IK 123+025 9+75W SK 123+025 9+75W SK 123+005 9+50W SK 123+005 9+25W	4 2 1 2 1	116 50 17 33 39	28 136 37 37 48	341 224 95 171 248	.2 .4 .7 .8 .1	79 95 28 40 57	12 23 8 9 12	315 846 363 191 288	5.46 7.57 3.45 3.90 5.00	88 68 30 35 50	5 5 5 5 5	ND KD ND ND ND	9 5 4 6 7	34 12 7 12 11	1 1 1 1	2 2 2 2 2	2 3 2 2 2	35 26 24 22 23	.11 .15 .11 .06 .07	.163 .325 .144 .059 .086	35 27 32 36 33	32 38 29 33 41	.42 .27 .29 .37 .40	161 77 63 129 103	.01 .01 .02 .01 .01	12 4 2 5 2	1.52 1.50 1.08 1.28 1.46	.01 .01 .01 .01 .01	.10 .05 .04 .05 .05	1 1 1 1	
LX L23+005 9+00W LE L22+005 8+75W LX L23+005 8+59W LX L23+005 8+25W LX L23+005 8+25W LX L23+005 8+00W	1 2 2 1 1	19 50 59 26 14	31 57 70 26 46	96 245 217 254 110	.7 .4 .2 1.0 .4	18 79 63 70 41	. 8 15 14 12 10	233 395 267 821 630	3.35 5.53 4.77 3.72 4.62	30 68 55 23 45	5 5 5 5 5	ND ND ND ND ND	6 E 10 4	7 11 11 14 6	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	24 18 17 23 21	.06 .11 .05 .19 .06	.078 .113 .060 .068 .133	34 37 41 26 35	32 50 29 47 57	.24 .43 .43 .54 .35	49 119 114 136 69	.02 .01 .01 .01 .01	3 5 3 3 3	1.05 1.72 1.37 2.01 1.15	.01 .01 .01 .01 .01	.04 .05 .06 .07 .04	1 1 1 1	
LK L23+005 7+75W LK L23+005 7+50W LK L23+005 7+25W LK L23+005 7+06W LK L23+005 6+75W	1 1 1 1	79 24 78 30 55	66 26 70 29 37	154 108 174 101 149	.7 1.1 .1 .1 .2	63 35 62 37 47	20 11 14 10 10	700 1055 666 574 350	7.54 3.49 5.71 3.52 4.30	71 33 46 32 39	5 5 5 5 5	ND ND ND ND ND	5 4 5 7 7	6 7 7 5 7	1 1 1 1	2 2 2 2 2	2 2 2 2 3	22 20 15 26 19	.08 .11 .08 .06 .11	.136 .067 .089 .049 .038	32 32 31 35 40	56 44 46 38 46	.36 .35 .48 .29 .39	69 86 65 39 99	.01 .01 .01 .02 .01	4 6 4 7 2	1.31 1.24 1.31 1.01 1.33	.01 .01 .01 .01 .01	.06 .05 .06 .04 .05	1 1 1 1	
LK L23+005 6+25W STD C	1 16	109 61	71 42	233 132	1.3 7.0	101 70	26 30	1618 1024	5.73 4.12	53 43	5 19	ND 7	3 37	29 49	1 19	2 14	2 21	20 60	.59 .51	.067 .094	23 38	69 56	.62 .87	83 182	.01 .07	3 37	1.65 2.03	.01 .0E	.06 .13	1 11	

Page 8

C

•

BOUNDARY	DRILLING	INC.	PROJECT	101	FILE 4	89-1736

SAMPLE	No	Cu	Pb	Zn	λg	Ni	Co	Mn	7e	λs	U	λu	Th	Sr	Cđ	sb	Bi	V	Ca	P	La	Cr	Ng	Ba	Ti	3	X]	Na	K	V
	PPN	PPN	PPN	PPN	PPH	PPH	PPK	PPN	٤	PPN	PPM	PPN	PPN	PPN	PPN	PPN	PPN	PPN	٤	ł	PPN	PPN	1	PPK	ł	PPN	ł	ł	٤	PPN
LK L23+005 6+00W	1	55	34	162	. 2	57	20	543	4.33	35	5	ND	5	17	1	2	2	13	.33	.055	29	35	. 49	39	.01	4	1.31	.01	.04	1
LK L23+005 5+75W	1	64	60	194	1.0	114	31	1340	5.71	149	5	ND	4	22	1	2	2	20	.43	.049	23	48	.42	88	.01	1	1.57	.01	.06	1
LX 123+005 5+50W	1	50	82	226	.5	71	21	657	4.57	51	5	ND	10	13	1	2	2	18	.20	.041	34	46	. 50	60	.01	5	1.46	.01	. D E	1
LK L23+005 5+25W	1	42	42	178	.6	49	19	551	3.83	27	5	ND	6	14	1	2	2	17	.23	.039	31	32	. 37	70	.01	7	1.41	.01	.05	1
LK 123+005 5+00W	1	37	36	137	.1	42	12	321	3.99	30	5	ND	5	5	1	2	2	17	. 64	.041	35	34	. 31	49	.01	2	1.22	.01	.04	1
LK L23+005 4+75W	1	32	27	139	.1	45	16	753	4.10	27	5	ND	6	6	1	2	3	16	.07	.044	29	40	.44	47	.01	4	1.35	.01	.04	1
LK 123+005 4+50W	1	68	52	164	.6	84	21	771	4.76	26	5	ND	3	23	1	2	2	13	.35	.064	36	29	. 34	64	.01	2	1.57	.01	.06	1
LK L23+005 4+25W	1	45	28	125	.1	53	16	702	4.03	18	5	ND	5	14	1	2	2	14	.10	.042	33	25	. 36	53	.01	- 4	1.47	.01	.05	1
STD C	18	60	- 44	133	6.6	68	31	1111	3.72	41	16	6	37	50	18	14	17	60	.48	.091	39	55	. 83	183	.07	34	1.95	. 06	.13	12

.

.

Page 9

C

C

Ë.

F

£

C

C

C

C

E

C

£

.

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HH03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MM FE SR CA P LA CR MG BA TI B W AND LIMITED FOR MA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh

											/	Î	,10	9				(/											
DATE REC	EIVE	D:	JUN 29	9 1989	DA	TE	REPC	RT	MAIL	ED:	g	Ny	3/8	7	SI	GNEI	D BY				D.T	DYE, C.	LEONG	, J.WA	NG; CE	RTIFI	ID B.C.	ASSAY	125	
					B	OUNE	DARY	DRJ	LLI	NG I	NC.	PRO	JEC	r 10	1	Fil	.e #	89-	179	6	Pa	ge 1								
SAMPLE	No PPH	CU PPN	Pb PPM	Zn PPN	Ag PPM	NI PPN	Co PPM	ND PPN	re t	As PPN	U PPM	λu PPN	Th PPM	Sr PPN	Cd PPN	SD PPN	Bi PPM	V PPH	Ca ł	P %	La PPN	Cr PPN	Ng Z	Ba PPN	Ti %	B PPN	Al t	Na ł	K t	V PPN
LK L12+005 16+50V LK L13+005 16+25W LK L13+005 16+00W LK L13+005 15+75W LK L13+005 15+50W	1 1 1 1	55 65 67 37 51	74 73 67 53 118	216 282 243 269 590	.1 .9 .2 I.1 .7	47 41 51 33 62	21 13 17 10 14	708 855 739 388 454	4.77 4.61 4.09 3.39 4.54	45 55 50 61 100	5 5 5 5 5	HD HD HD HD HD	3 1 1 3 5	12 30 29 16 8	1 1 1 1 1	2 2 2 2 2	2 2 3 4 5	25 28 22 22 30	.11 .38 .34 .23 .14	.051 .083 .067 .060 .100	26 18 19 22 23	39 34 36 32 71	.50 .38 .42 .37 .56	123 146 121 114 111	.01 .02 .01 .01 .01	2 5 2 5 2	1.44 1.04 1.14 1.05 1.48	.01 .01 .01 .01 .01	.07 .08 .07 .05 .06	1 1 1 1 2
LX L13+00S 15+25W LX L13+00S 15+00W LX L13+00S 14+75W LX L13+00S 14+75W LX L13+00S 14+50W LX L13+00S 14+25W	1 1 1 1	93 48 75 80 46	386 59 123 69 84	744 332 516 288 206	.9 1.0 .8 .5 .1	47 28 38 39 35	16 7 15 17 14	775 197 418 739 574	4.59 4.06 5.30 4.45 3.72	83 51 106 33 24	5 5 5 5 5	ND ND ND ND ND	2 4 3 5	15 7 9 16 13	2 1 1 1 1	2 2 2 2 2 2	3 4 2 2 2	28 29 29 26 22	.29 .11 .14 .17 .19	.087 .042 .047 .043 .042	20 20 21 28 30	41 34 34 30 32	.54 .38 .44 .35 .56	132 86 102 108 71	.02 .02 .02 .02 .02	2 2 2 2 2 2	1.24 1.23 1.36 1.58 1.43	.01 .01 .01 .01 .01	.08 .05 .06 .09 .07	1 1 1 1
LX L13+005 14+00W LX L13+005 13+75W LX L13+005 13+50W LX L13+005 13+50W LX L13+005 13+25W LX L13+005 13+00W	1 1 1 1	23 43 40 39 21	24 35 34 40 19	114 148 112 119 63	.1 .1 .1 .3	22 37 26 24 13	9 11 11 10 5	294 284 483 315 129	2.30 3.78 2.64 3.01 2.73	13 24 11 19 13	5 5 5 5 5	ND ND ND ND ND	5 1 7 7 6	10 6 13 6 6	1 1 1 1	2 2 2 2 2	2 2 3 4 3	14 20 15 14 14	.15 .07 .20 .06 .05	.035 .048 .027 .030 .026	22 27 25 25 22	20 32 20 18 13	.34 .50 .39 .34 .22	51 75 66 45 39	.01 .01 .01 .01 .01	2 2 3 2 2	.96 1.38 1.19 1.18 .92	.01 .01 .01 .01 .01	.06 .08 .09 .06 .04	1 1 1 2
LK L13+00S 12+75W LK L13+00S 12+50W LK L13+00S 12+25W LK L13+00S 12+05W LK L13+00S 12+00W LK L13+00S 11+75W	I 1 1 1	31 59 55 42 52	24 43 41 42 50	96 177 187 188 156	.1 .6 .8 .9 .5	27 48 43 34 49	9 17 16 15 18	247 596 1429 614 683	2.93 3.96 4.10 4.10 4.09	10 33 23 23 27	5 5 5 5	ND ND ND ND ND	7 4 2 3 8	8 25 33 32 14	1 1 1 1	2 2 2 2 2	2 2 3 2	17 26 25 25 23	.11 .53 .71 .71 .22	.028 .054 .074 .060 .041	26 22 23 18 29	21 37 31 33 36	.42 .63 .55 .54 .59	52 97 132 77 75	.01 .02 .02 .01 .02	4 3 2 2 2 2	1.09 1.46 1.77 1.58 1.55	.01 .01 .01 .01 .01	.07 .08 .12 .08 .09	1 1 1 1
LX L13+005 11+50W LX L13+005 11+25W LX L14+005 16+50W LX L14+605 16+25W LX L14+605 16+25W LX L14+005 16+00W	1 1 1 1	41 43 30 42 63	44 43 64 58 81	150 139 146 165 220	.2 .1 .2 .2	31 38 34 44 53	12 14 13 16 19	509 378 416 606 393	3.24 4.00 3.39 3.80 4.14	24 26 35 40 45	5 5 5 5 5	ND ND ND ND ND	4 8 5 4 5	18 9 17 13 16	1 1 1 1 1	2 2 2 2 2 2	4 3 5 2 2	16 19 19 20 20	.39 .13 .27 .18 .20	.043 .040 .049 .043 .065	19 28 18 20 22	20 28 29 37 35	.36 .53 .35 .42 .40	58 62 61 104 125	.01 .01 .01 .01 .01	2 2 2 2 5	1.20 1.41 1.01 1.18 1.26	.01 .01 .01 .01 .01	.06 .06 .07 .05 .07	1 1 2 1
LK L14+00S 15+75W LK L14+00S 15+50W LK L14+00S 15+25W LK L14+00S 15+25W LK L14+00S 15+00W LK L14+00S 14+75W	1 1 1 1	101 43 59 21 49	83 44 89 24 57	302 245 303 100 158	1.0 .1 .6 .1 .1	120 42 50 30 61	26 12 18 7 17	907 333 849 231 424	5.11 3.72 5.84 3.39 4.60	124 71 94 39 45	5 5 5 5 5	ND ND ND ND ND	2 5 4 6 7	28 10 10 5 8	1 1 1 1	2 2 2 2 2	2 2 4 2	22 22 30 26 21	.38 .12 .17 .06 .11	.074 .031 .083 .027 .049	19 26 17 35 33	76 37 45 38 54	.61 .43 .54 .28 .52	137 109 127 133 86	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.34 1.02 1.22 .99 1.32	.01 .01 .01 .01 .01	.08 .05 .05 .03 .05	1 1 1 1
LK L14+005 14+50W LK L14+005 14+25W LK L14+005 14+00W LK L14+005 13+75W LK L14+005 13+50W	1 1 1 1	82 54 105 16 43	80 56 87 8 51	309 278 229 57 208	.5 .7 .6 .1 .3	72 55 65 14 39	20 18 22 5 14	911 633 698 119 421	4.74 4.38 5.68 1.74 3.89	62 46 70 22 34	5 5 5 5	HD ND ND ND ND	6 7 7 6 5	14 14 23 4 21	1 1 1 1	2 2 2 2 2 2	2 2 3 2	26 21 35 40 17	.23 .21 .38 .06 .44	.052 .054 .092 .017 .034	24 27 26 22 22	44 44 48 18 32	.59 .48 1.08 .27 .42	128 101 81 43 59	.01 .01 .03 .02 .01	2 4 3 2 2	1.35 1.41 1.50 .75 1.17	.01 .01 .01 .01 .01	.07 .08 .09 .03 .05	1 1 3 1
LK 114+005 13+25W STD C	1 18	20 57	40 38	96 132	.6 6.5	27 68	10 30	227 1045	3.12 4.03	21 40	\$ 22	ND S	7 37	25 49	1 18	2 14	2 21	20 59	.45 .48	.030 .086	24 38	27 55	.39 .85	59 177	.01 .07	4 34	1.33 1.86	.01 .06	.05 .14	1 11

SANFLE	NO PPM	CU PPM	Pb PPM	Zn PPN	Ag PPM	NI PPN	Co PPN	Mn PPM	۲e ۶	AS PPM	U PPM	Au PPN	Th PPM	Sr PPM	Cd PPM	SD PPN	Bİ PPM	V PPM	Ca ł	P %	La PPN	CT PPN	Ng %	Ba PPH	Ti %	B PPM	۸1 ۲	Na ł	K K	¥ PPN
LK L14+00S 13+00W LK L14+00S 12+75W LK L14+00S 12+75W LK L14+00S 12+50W LK L14+00S 12+25W LK L14+00S 12+00W	1 1 1 1	82 96 73 73 63	64 73 59 69 58	220 300 254 236 152	.6 1.9 .7 .6 .1	68 76 93 65 49	19 23 26 20 18	459 2047 910 576 766	4.56 5.51 5.24 4.75 3.99	48 55 71 53 33	5 6 5 5 5	ND ND ND ND ND	7 4 3 6 9	15 42 26 20 12	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	24 36 30 32 17	.30 .83 .48 .33 .19	.055 .072 .061 .054 .043	31 23 21 29 33	49 47 58 53 31	.66 .70 .68 .89 .50	112 168 118 97 87	.01 .02 .02 .02 .01	11 10 3 4 2	1.53 2.10 1.50 1.64 1.29	.01 .01 .01 .01 .01	.09 .13 .09 .08 .11	1 1 1 1
LK L14+00S 11+75W LK L14+00S 11+50W LK L14+00S 11+50W LK L14+00S 11+25W LK L15+00S 16+50W LK L15+00S 16+25W	1 1 1 1 1	54 47 60 23 64	49 48 58 20 59	114 134 245 109 181	.1 1.2 .7 .1 .3	35 42 61 30 49	15 13 15 16 13	865 445 738 439 337	3.49 4.19 3.73 2.58 3.55	22 27 46 34 53	5 5 5 5 5	ND ND ND ND ND	11 4 3 5 11	9 25 24 14 18	1 1 1 1	2 3 2 2 2	2 2 2 2 2	12 23 17 17 14	.12 .46 .47 .17 .25	.030 .048 .087 .021 .089	29 26 22 31 33	21 34 34 23 27	.39 .46 .41 .22 .38	59 63 79 66 76	.01 .01 .01 .01 .01	2 3 6 2 14	1.06 1.60 1.07 .88 .85	.01 .01 .01 .01 .01	.09 .07 .06 .04 .06	2 1 1 1
LX L15+0DS 16+00W LX L15+00S 15+75H LX L15+00S 15+75W LX L15+00S 15+25H LX L15+00S 15+00W	1 1 1 1	97 154 51 33 48	205 78 50 33 26	286 201 134 160 188	.1 1.0 .1 .2 .7	70 86 55 47 49	34 16 14 13 16	1015 573 306 405 348	6.40 4.52 4.31 3.75 5.20	105 56 76 36 27	5 5 5 5 5	ND ND ND ND ND	4 2 3 4 2	31 42 12 8 9	1 2 1 1	2 2 2 2 2	2 3 2 2 2	21 23 33 26 79	.37 .45 .15 .10 .11	.097 .057 .044 .060 .100	23 24 29 30 19	35 30 56 53 65	.44 .24 .47 .65 1.19	120 190 125 133 172	.01 .01 .01 .01 .04	3 5 2 2 2	1.26 1.16 1.18 1.31 2.06	.01 .01 .01 .01 .01	.07 .07 .04 .06 .05	1 1 2 1 1
LK L15+00S 14+75W LK L15+00S 14+30W LK L15+00S 14+25W LK L15+00S 14+25W LK L15+00S 14+00W LK L15+00S 13+75W	1 1 1 1	42 25 46 72 58	50 29 45 50 46	199 105 160 185 192	.5 .3 .2 .1 .4	41 24 45 58 55	13 7 12 17 15	488 153 252 443 258	5.27 3.19 3.97 4.58 4.89	53 36 36 50 57	5 5 5 5 5	ND ND ND ND ND	5 4 6 8	10 9 7 7 5	1 1 1 1	3 2 2 2 2	3 2 2 2 2	34 37 33 32 28	.18 .12 .09 .08 .04	.163 .084 .071 .071 .058	23 23 27 30 33	49 33 45 47 49	.49 .36 .55 .65 .61	145 125 132 131 182	.01 .01 .01 .01 .01	3 6 3 2 2	1.41 1.11 1.30 1.41 1.49	.01 .01 .01 .01 .01	.06 .04 .04 .05 .05	1 2 1 1 1
LK L15+00S 13+50W LK L15+00S 13+25W LK L15+00S 13+00W LK L15+00S 12+75W LK L15+00S 12+50W	1 1 1 1	47 92 30 59 94	51 52 23 73 66	230 205 109 240 235	.3 .1 .1 .3 2.1	49 68 32 54 99	15 18 10 13 24	401 482 313 314 2097	4.88 4.91 3.22 4.70 5.28	54 47 41 52 48	5 5 5 5 5	ND ND ND ND ND	7 5 3 5 3	6 9 8 10 32	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	38 36 46 27 38	.07 .18 .15 .16 .62	.058 .110 .061 .091 .076	29 26 24 28 24	46 52 32 45 58	.63 .55 .40 .53 .92	150 183 86 126 167	.02 .02 .03 .01 .01	5 7 2 2 3	1.55 1.28 .91 1.35 1.95	.01 .01 .01 .01 .01	.06 .05 .03 .07 .14	1 1 2 1 1
LX L15+00S 12+25W LX L15+00S 12+00W LX L15+00S 11+75W LX L15+00S 11+50W LX L15+00S 11+25W	1 1 1 1	28 15 67 41 43	30 24 46 43 57	131 62 131 139 157	.1 .1 .3 .2 .1	32 22 73 47 51	12 6 21 15 14	339 163 817 369 342	4.80 2.82 4.27 4.33 4.47	39 27 45 33 30	5 5 5 5 5	ND ND ND ND ND	5 4 6 9 11	10 5 14 7 5	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	34 24 19 30 16	.14 .07 .22 .10 .07	.073 .057 .040 .038 .063	27 37 31 37 45	34 28 52 38 35	.40 .22 .60 .48 .49	113 59 51 100 82	.01 .01 .01 .01 .01	4 2 4 7 2	1.26 .85 1.46 1.44 1.46	.01 .01 .01 .01 .01	.04 .04 .06 .04 .05	1 1 1 1
LK L16+00S 15+50W LK L16+00S 16+25W LK L16+00S 16+00W LK L16+00S 15+75W LK L16+00S 15+50W	1 1 1 1	51 74 83 70 40	70 79 84 86 58	172 221 182 196 143	.1 .7 .3 .1 .4	45 61 59 59 39	16 20 20 18 11	493 708 495 652 403	4.05 4.61 4.29 4.09 2.94	40 45 48 44 39	5 5 5 5 5	HD ND ND ND ND	2 3 1 1 1	32 27 36 36 18	1 1 1 1	2 2 2 2 2	2 2 2 2 2	15 19 18 17 18	.35 .29 .42 .42 .23	.057 .054 .058 .073 .051	25 27 23 20 20	30 33 31 29 28	.40 .45 .36 .40 .29	111 150 124 136 132	.01 .01 .01 .01 .01	2 2 3 2	1.09 1.42 1.25 1.30 .96	.01 .01 .01 .01 .01	.07 .08 .06 .07 .06	1 1 1 1
LK 116+005 15+25W	1 18	38 58	46 40	144 132	.2 7.2	32 68	8 31	197 1016	4.21 3.99	46 40	5 18	ND 6	5 36	16 50	1 18	2 14	2 20	20 60	. 23 . 48	. 087 . 089	27 39	27 55	.32 .85	107 180	.01 .07	3 36	1.03 1.82	.01 .05	.05 .13	1 11

/ Page 2

SANPLE#	NO PPN	Cu PPN	Pb PPN	Zn PPM	Ag PPN	NÍ PPM	Co PPN	Na PPK	Fe %	As PPN	U PPN	Au PPM	Th PPN	ST PPN	Cđ PPN	SD PPN	Bİ PPM	N da N da	Ca 1	P	La PPN	Cr PPN	Ng t	Ba PPN	Tİ Z	B PPH	A1 1	Na t	K ł	¥ PPK
LK L16+00S 15+00W LK L16+00S 14+75W LK L16+00S 14+50W LK L16+00S 14+25W LK L16+00S 14+00W	1 1 1 1	57 50 52 26 55	37 61 42 23 46	151 231 185 86 237	.1 .4 .1 .2	43 42 55 25 55	12 15 17 6 14	260 501 373 155 286	3.43 3.40 3.88 2.57 4.61	36 39 41 25 51	5 5 5 5 5	ND ND ND ND ND	2 2 5 2 8	14 16 7 4 7	1 1 1 1	2 2 3 2 2	2 2 2 2 2 2	19 17 20 23 21	.18 .19 .10 .05 .08	.047 .041 .059 .070 .079	28 23 26 20 28	30 26 39 22 41	.35 .22 .41 .21 .47	142 134 126 79 114	.01 .01 .01 .01 .01	2 2 3 2 4	1.13 1.13 1.36 .85 1.46	.01 .01 .01 .01 .01	.04 .06 .05 .03 .05	1 1 2 1
LK L16+00S 13+75W LK L16+00S 13+50W LK L16+00S 13+25W LK L16+00S 13+25W LK L16+00S 13+00W LK L16+00S 12+75W	1 1 1 1	46 31 30 63 39	41 57 37 62 53	161 132 116 206 122	.3 .3 .4 .1 1.2	43 30 38 71 34	12 8 10 17 9	367 235 569 631 381	3.84 3.61 3.01 4.85 3.45	39 28 34 63 50	5 5 5 5 5	ND ND ND ND ND	6 5 3 6 4	4 9 9 5	1 1 1 1	3 2 2 2 2	2 2 2 2 2	22 24 20 20 18	.05 .04 .18 .13 .08	.057 .060 .074 .067 .085	24 25 18 27 25	38 37 30 48 28	. 38 . 34 . 29 . 47 . 23	105 96 97 127 83	.01 .01 .01 .01 .01	3 2 2 2 2	1.21 1.24 .88 1.23 .82	.01 .01 .01 .01 .01	.04 .04 .05 .05 .04	1 2 1 1
LK L16+00S 12+50W LK L16+00S 12+25W LK L16+00S 12+25W LK L16+00S 12+00W LK L16+00S 11+75W LK L16+00S 11+50W	1 1 1 1	38 35 48 44 19	45 33 41 44 15	148 111 145 144 86	.2 .2 .1 .1	40 37 62 63 23	9 10 16 22 9	170 272 576 1056 1729	3.89 3.12 4.34 5.08 2.59	47 41 52 67 22	5 5 5 5 5	ND ND ND ND ND	11 5 2 1 2	5 9 9 12 12	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	17 28 31 26 22	.06 .12 .17 .27 .32	.056 .040 .065 .082 .047	32 28 19 13 16	30 36 56 43 21	.29 .34 .44 .34 .24	76 108 136 141 124	.01 .01 .01 .01 .01	4 4 2 2 2	.94 1.02 1.23 .93 .78	.01 .01 .01 .01 .01	.04 .04 .04 .04 .03	1 1 1 1
LK L16+00S 11+25W LK L17+00S 16+50W LK L17+00S 16+25W LK L17+00S 16+00W LK L17+00S 15+75W	1 1 1 1	55 49 62 59 75	45 56 69 59 32	173 169 154 165 192	.1 .4 .4 .4 1.2	61 46 42 52 65	13 11 12 14 14	285 648 376 576 598	4.10 3.28 3.03 3.44 3.47	51 34 37 38 39	5 5 8 5	ND ND ND ND ND	10 1 1 5 2	4 24 43 30 43	1 1 1 1	3 2 3 2 2	2 2 2 3	24 16 14 13 13	.04 .30 .58 .36 .56	.034 .065 .057 .062 .076	36 15 15 21 17	49 27 20 27 25	.53 .29 .34 .37 .34	106 108 109 115 163	.01 .01 .01 .01 .01	2 2 6 4	1.34 1.10 .95 1.05 1.22	.01 .01 .01 .01 .01	.05 .05 .05 .07 .07	1 1 1 1
LK L17+00S 15+50W LK L17+00S 15+25W LK L17+00S 15+00W LK L17+00S 14+75W LK L17+00S 14+75W LK L17+00S 14+50W	1 1 1 1	54 33 35 27 27	88 45 40 48 42	206 182 150 109 122	.6 .1 .1 .1	75 44 46 29 23	14 13 12 8 8	980 339 324 182 315	3.26 3.65 3.23 3.36 2.41	41 37 38 39 36	5 5 5 5 5	ND ND ND ND ND	1 3 6 7	38 16 11 5 12	1 1 1 1	3 2 2 2 2	2 2 3 2 2	12 14 11 14 13	.51 .21 .15 .04 .17	.080 .041 .036 .027 .035	15 22 28 28 24	25 30 30 28 18	.36 .33 .31 .22 .22	189 111 78 105 89	.01 .01 .01 .01 .01	2 2 3 2	1.29 1.08 .93 1.04 .84	.01 .01 .01 .01 .01	.08 .06 .05 .04 .05	1 1 1 1
LK L17+00S 14+25W LK L17+00S 14+00W LK L17+00S 13+75W LK L17+00S 13+50W LK L17+00S 13+25W	1 1 1 1	42 36 51 50 19	61 82 57 61 16	142 223 152 320 79	.1 .2 .2 1.5 .1	48 44 93 91 22	10 21 25 20 5	189 1198 554 3914 200	3.28 3.97 4.03 4.05 2.22	63 37 103 42 30	5 5 5 5 5	ND ND ND ND ND	2 1 4 2 5	9 19 8 29 4	1 1 2 1	2 3 2 2 2	2 2 2 2 2 2	18 17 18 19 15	.07 .27 .11 .57 .04	.036 .076 .042 .069 .037	23 17 25 18 38	32 27 77 34 21	.23 .38 .37 .44 .14	114 93 94 153 52	.01 .02 .01 .02 .01	2 2 4 5 2	.89 1.18 .96 1.43 .62	.01 .01 .01 .01 .01	.04 .07 .05 .08 .04	1 2 1 1
LK L17+00S 13+00W LK L17+00S 12+75W LK L17+00S 12+75W LK L17+00S 12+50W LK L17+00S 12+25W LK L17+00S 12+00W	1 1 1 1	33 81 13 36 40	39 91 21 32 47	153 246 77 134 288	.2 1.2 .1 .1 1.3	30 90 11 32 47	8 22 4 8 14	174 1527 112 178 1552	3.38 4.99 2.24 3.94 3.34	61 54 13 36 26	5 5 5 5 5	ND ND ND ND ND	8 7 10 7 5	9 24 23 4 22	1 1 1 1 2	2 2 3 2 2	2 2 2 3 2	15 18 10 17 19	.14 .43 .12 .03 .42	.073 .059 .090 .061 .047	30 25 25 29 17	22 35 13 27 25	.24 .43 .63 .30 .42	80 135 51 72 101	.01 .01 .04 .01 .01	6 4 5 4 6	.89 1.68 1.10 1.07 1.26	.01 .01 .01 .01 .01	.05 .11 .08 .04 .06	2 1 2 1 1
LK L17+005 11+75W STD C	1 17	34 57	37 38	182 132	.1 7.2	35 67	10 30	240 941	3.44 3.90	36 39	5 24	ND 7	5 37	11 48	1 18	2 15	2 21	16 58	.19 .46	.050 .085	24 37	26 56	.31 .82	77 174	.01 .07	2 40	.99 1.78	.01 .05	.04 .13	1 11

Page 3

1

19 **•** 11 11 14 •

SAMPLE#	No PPN	Cu PPN	Pb PPM	Zn PPM	Ag PPN	Nİ PPN	CO PPN	No PPH	Fe 1	As PPM	U PPN	Au ?PM	Th PPN	Sr PPN	Cđ PPM	Sb PPN	Bİ PPM	V PPM	Ca t	P t	La PPM	CT 2PM	Kg t	Ba PPM	Ti ł	B PPN	Al 3	Na t	K ł	¥ PPN
LX L17+005 11+50W	1	25	19	131	.1	31	9	271	3.09	38	5	ND	4	7	1	2	2	23	.10	.046	30	23	.21	56	.01	2	.79	. 01	.03	1
LK L17+005 11+25W	1	14	21	50	.2	19	5	170	2.03	34	5	ND	1	4	1	2	2	22	.04	.037	41	15	.12	64	.01	2	. 33	.01	.03	3
LK L18+005 16+50W	2	105	106	290	2.4	89	21	998	5.32	84	5	ND	1	59	2	6	2	16	.74	.112	18	24	. 42	172	.01	2	1.21	.01	.09	1
LK L18+005 16+25W	ī	38	35	115	.1	25	5	140	2.36	43	6	ND	1	12	1	2	3	21	.08	.029	29	16	.10	68	.01	3	. 52	.01	. 94	2
LK L18+005 16+00W	2	94	116	183	.4	41	12	434	4.23	67	5	NG.	2	20	1	2	2	23	.09	.048	29	27	.21	176	.01	7	1.09	.01	.05	1
LK L18+005 15+75W	1	97	101	199	.9	77	16	661	3.91	47	5	ND	1	31	1	2	2	17	.36	.082	21	26	. 13	184	.01	2	1.45	.01	.08	1
LK L18+005 15+50W	1	106	103	216	.9	92	19	888	3.62	47	5	XD.	1	47	3	2	3	18	. 54	.082	19	28	. 37	212	.01	2	1.35	. 91	.08	1
LK L18+00S 15+25W	1	34	71	227	.1	45	15	396	3.33	57	5	ND	3	22	1	4	2	16	. 29	.030	27	27	.44	121	.01	2	1.29	.01	.06	1
LK L19+005 15+00W	1	50	120	238	.5	52	13	568	3.36	54	5	NC	1	37	1	2	3	17	.51	.053	19	25	.34	114	.01	2	1.71	.01	. 98	1
LK L18+005 14+75W	1	61	165	359	1.2	120	13	355	3.55	55	5	ND	5	21	I	4	2	13	.27	.037	28	30	. 53	132	.01	3	2.07	.01	.12	1
LK L18+005 14+50W	1	25	60	267	.4	55	11	162	4.42	53	5	ND	4	18	1	5	2	21	. 23	.041	23	29	.44	113	.01	1	1.77	.01	.07	1
LK 118+005 14+25W	1	34	52	214	.1	35	10	265	2.96	35	5	ND	4	26	1	2	2	18	.44	.040	24	21	. 33	156	.01	7	1.32	.01	.07	I
LK L18+005 14+00W	1	24	63	143	.1	24	7	163	3.50	52	5	ND	1	10	1	2	2	23	.13	.058	27	24	. 30	98	.02	3	1.33	.01	.07	1
LK 118+005 13+75W	1	92	62	262	.6	486	89	5776	17.61	500	5	ND	2	12	1	10	2	26	.13	.095	8	154	.24	76	.01	1	1.29	.01	.02	1
LI L18+005 13+50W	1	23	46	184	. 2	29	1	254	2.23	21	5	ND	1	20	1	2	2	18	.40	.037	18	16	.21	85	.01	2	1.48	.01	.05	1
LK L18+005 13+25W	1	133	291	170	2.3	113	43	3532	6.58	74	5	XD	5	43	1	10	2	22	1.06	.167	25	41	.31	149	. 02	6	3.90	.01	.07	1
LK L18+005 13+00W	1	36	59	133	.1	71	19	852	1.05	61	5	ND	4	10	1	5	2	23	.24	.064	21	- 54	. 38	93	.01	1	1.42	.01	.05	1
LK L18+005 12+75W	1	16	64	150	.1	16	6	158	2.27	25	5	ЯD	3	5	1	2	2	17	.06	.033	34	12	.14	100	.01	2	1.02	.01	.04	1
LE L18+005 12+50W	1	22	56	129	. 5	22	8	197	3.54	27	5	ND.	5	5	1	2	2	21	.06	.064	31	15	. 23	55	.01	2	1.17	.01	.04	1
LE L18+005 12+25W	1	10	15	51	.1	14	4	92	1.46	25	5	ND	2	4	1	2	2	24	.04	.019	35	15	.09	39	.01	2	1.02	.01	. 42	1
LK L18+005 12+00¥	1	12	28	70	.1	15	6	512	1.81	22	5	ND	1	5	1	2	2	16	.11	.050	18	11	.11	68	.01	8	.71	.01	.04	2
LK L18+005 11+75W	1	22	17	101	.1	30	7	196	2.59	43	5	TD	4	4	1	2	2	23	.05	.038	34	23	.12	45	.01	2	.82	.01	٤U.	4
LK L18+005 11+50W	1	29	21	85	.5	23	10	728	3.08	30	5	Q K	5	4	1	Z	3	14	.10	.043	34	8	.06	70	.01	3	. 55	.01	.03	1
LK L18+005 11+25W	1	19	42	77	. 8	23	9	656	2.72	31	5	ND	3		1	2	3	11	.11	.048	34	5	.06	55	.01	8	. 42	.01	.04	1
STD C	18	60	- 44	132	6.8	70	30	1018	4.14	42	23	8	37	49	19	16	22	60	.50	.09Z	39	56	. 85	181	- 07	18	1.33	. 06	.13	14

Page 4

And Andrews

(

t i

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh AU* ANALYSIS BY ACID LEACE/AA FROM 10 GH SAMPLE. P - Fulvensed - -40 mesh

SAMP LE #	HO PPM	Cu PPM	Pb PPN	Zn PPM	Ag PPN	Nİ PPM	CO PPM	Hn PPN	Fe م	As PPN	U PPM	AU PPM	Th PPN	ST PPN	Cd PPM	SD PPM	Bi ?PN	V PPH	Ca %	P	La PPM	Cr ?PN	Ng S	Ba PPM	Ti %	B PPN	Al X	Na ł	K K	W PPN	Au* 228
LK L5+00S 19+00W LK L5+00S 13+75W LK L5+00S 13+75W LK L5+00S 13+25W LK L5+00S 13+25W LK L5+003 13+00W	1 1 1 1	55 70 67 76 28	30 35 33 34 15	144 141 144 187 113	.5 .6 .5 .9 1.1	42 47 50 53 24	17 15 19 17 9	497 615 690 612 967	4.26 4.17 4.70 4.65 2.24	25 28 34 35 13	5 5 5 5 5	ND ND ND ND ND	4 2 5 1 1	22 31 24 33 40	1 1 2 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 2 2 3	23 25 36 33 24	.47 .64 .48 .73 .72	.087 .087 .135 .098 .074	22 19 23 15 8	35 35 44 39 23	.64 .53 .94 .59 .41	75 111 73 135 181	.01 .01 .03 .02 .01	6 2 10 7 4	1.48 1.55 1.50 1.42 .83	.01 .01 .01 .01 .01	.05 .05 .05 .06 .06	2 1 1 1 1	7 6 8 4 2
LK L5+005 17+75W LK L5+005 17+56W LK L5+005 17+25W LK L5+005 17+60W LK L5+005 15+75W	2 6 2 7 5	45 170 50 34 74	22 76 19 56 23	126 343 296 261 347	1.4 3.3 3.0 .8 .9	39 65 49 48 63	10 12 11 18 16	299 443 1010 385 315	3.47 7.07 4.16 5.05 5.11	36 115 23 50 50	5 6 5 5 5	ND ND ND ND ND	1 1 2 3	12 24 23 29 22	1 2 3 2 1	2 2 2 2 2	2 3 2 2 2	41 38 38 29 50	.19 .48 .44 .54 .35	.146 .447 .118 .112 .229	16 11 13 19 14	36 28 36 32 45	.46 .33 .57 .52 .50	93 173 129 121 164	.02 .01 .02 .01 .91	2 5 3 2 4	.99 .86 1.69 1.46 1.76	.01 .01 .01 .01 .01	.05 .06 .06 .07 .04	1 1 1 1	3 11 2 9 5
LK L5+005 19+00W LK L5+005 13+50W LK L6+005 13+25W LK L6+005 13+00W LK L6+005 17+75W	1 1 2 9	71 50 38 31 79	33 38 22 15 25	144 209 142 100 196	.9 .4 .3 .5 1.0	50 50 38 25 59	13 24 16 7 16	743 1122 1978 281 553	4.75 4.87 4.26 2.73 5.60	25 23 22 22 40	5 5 5 5 5	ND ND ND ND ND	2 3 3 1 1	26 19 14 12 25	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	23 23 25 40 83	.59 .33 .23 .20 .46	.100 .058 .051 .054 .291	27 23 22 15 9	39 37 36 21 50	.50 .46 .46 .25 .84	87 76 38 99 201	.02 .03 .02 .03 .04	9 2 3 2 3	1.69 1.69 1.45 .64 1.44	.01 .01 .01 .01 .01	.07 .05 .05 .03 .05	1 1 1 1	5 1 3 7 17
LK L6+00S 17+50W LK L6+00S 17+25W LK L6+00S 17+00W LK L6+00S 16+75W LK L7+00S 19+00W	5 3 2 3 1	121 78 59 67 37	40 38 32 34 33	298 287 277 180 183	2.1 1.5 3.2 1.1 .1	60 91 49 36 38	12 27 18 11 13	392 4382 1527 601 270	5.37 5.41 4.33 4.04 4.45	70 103 45 43 30	5 5 5 5 5	ND ND ND ND ND	1 1 1 6	22 49 43 18 13	2 5 3 2 1	3 2 2 2 2 2	2 2 2 3	55 43 40 27 27	.35 1.10 .39 .40 .19	.283 .198 .192 .157 .043	11 8 6 11 20	39 57 37 20 45	.62 .75 .44 .24 .54	222 217 459 129 99	.02 .02 .02 .02 .02 .03	11 5 4 3 4	1.17 1.25 .94 .60 1.66	.01 .01 .01 .01 .01	.06 .04 .04 .04 .05	1 1 1 1	9 2 4 3
LK L7+00S 18+75W LK L7+00S 13+50W LK L7+60S 13+25W LK L7+60S 13+00W LK L7+00S 17+75W	1 1 1 3 5	64 34 75 86 239	40 33 42 22 86	175 128 210 145 429	1.1 .3 1.6 .4 1.0	56 46 55 50 106	18 19 24 14 23	612 489 905 344 757	4.63 4.17 5.37 4.90 6.53	28 28 28 34 105	5 5 5 5 5	ND ND ND ND ND	2 5 1 1 4	37 18 30 18 33	1 1 1 2	2 2 2 2 3	2 2 2 2 2 2	22 20 29 58 43	.84 .37 .61 .34 .55	.085 .083 .119 .117 .222	25 25 31 13 17	47 43 47 39 48	.61 .53 .48 .55 .81	111 63 124 111 157	.02 .01 .02 .03 .02	2 2 3 2	1.74 1.57 2.43 1.05 1.25	.01 .01 .01 .01 .01	.06 .06 .06 .04 .05	1 1 1 1	6 12 5 3 14
LK L7+00S 17+50W LK L7+00S 17+25W LK L7+00S 17+00W LK L7+00S 15+75W LK L8+00S 13+30W	3 3 4 6 2	108 68 30 74 62	28 31 57 42 17	243 234 247 254 201	1.1 2.2 1.8 .2 .6	65 57 49 45 54	15 15 15 14 37	314 1000 512 308 972	5.71 3.82 5.65 5.66 9.84	46 43 30 69 36	5 5 5 5 5	HD ND ND ND ND	1 1 1 1	14 28 22 10 31	1 2 2 1 2	2 2 2 2 2	2 2 2 2 2	62 39 56 66	.20 .71 .31 .13 .63	.226 .162 .229 .190 .126	14 9 15 14 12	54 40 38 20 55	.96 .60 .49 .16 1.09	157 229 155 65 131	.02 .01 .03 .08 .03	3 2 4 2 4	1.63 .97 1.22 .66 2.39	.01 .01 .01 .01 .01	.04 .05 .04 .03 .04	1 1 1 1	30 9 7 5 5
LK L8+005 18+75W LK L8+005 13+50W LK L8+005 18+25W LK L8+005 13+00W LK L8+005 17+75W	1 1 2 3	115 31 68 98 85	27 25 28 20 19	211 111 189 177 378	1.3 .1 .4 1.4 1.3	104 40 57 87 82	28 13 19 31 18	738 306 396 1234 584	6.68 3.92 7.32 6.75 6.16	48 35 33 37 41	5 5 5 5 5	ND ND ND ND ND	1 4 1 1 2	34 13 32 47 19	1 1 1 2 1	3 2 2 2 2	2 2 2 2 2 2	56 22 81 48 59	.73 .22 .62 1.14 .33	.150 .048 .164 .163 .223	28 26 13 14 14	94 41 78 76 68	1.17 .49 1.27 1.13 1.22	157 72 134 183 246	.03 .02 .04 .02 .02	3 2 2 3 2	2.82 1.16 2.56 2.14 2.08	.01 .01 .01 .01 .01	.07 .04 .06 .06 .05	1 1 1 1	11 17 4 9 4
LK 13+005 17-50W STD C/AU-5	3 18	42 57	33 38	207 132	1.1 6.9	33 68	9 30	424 1053	4.43 4.25	41 44	5 19	ND 7	1 36	16 47	1 19	2 14	2 23	51 58	. 27 . 51	.136 .094	11 38	31 56	. 36 . 98	174 175	.02 .07	2 33	.99 2.08	.01 .06	.05 .14	1 11	7 48

	γ						B	NUO	DARY	DRI	LLI	NG :	INC.	PRO	JEC	т. –)1	FILE	#	89-	2912										F
SAMPLE#	NO PPN	Cu PPN	Pb PPN	Zn PPN	Ag PPM	NI PPM	Co PPN	HB PPH	Fe 3	AS PPM	U PPM	AU PPN	Th PPN	ST PPM	Cđ PPM	SD PPN	Bi PPN	V PPM	Ca ł	P t	La PPN	CT PPM	Ng t	Ba PPN	71 1	B PPN	Al S	Na %	K ł	W PPN	Au* PPB
LK 18+005 17+25W	4	166	114	355	1.4	81	22	862	£.17	98	5	ND	1	34	2	2	3	30	. 48	.116	13	36	.65	124	.01	4	1.14	.01	.04	1	12
LX 18+005 17+00W	1	57	41	146	.1	54	19	576	4.13	28	5	ND	10	27	1	:	2	19	. 66	.072	27	41	.12	67	.01	2	1.29	.01	.10	2	14
LK L8+005 15+75W	5	304	31	376	. 9	81	26	718	5.91	90	5	ND	6	38	1	2	2	27	.58	.237	20	30	.00	83	.01	2	1.09	.01	.05	1	19
LX L9+005 19+00W	5	140	73	349	1.3	51	16	495		84	2	ND	1	23	1	-	4	40	.34	.201	17	17	. 10	100	.01	4	1.97	.01	.01	1	12
LK 19+005 18+75¥	4	59	27	150	1.9	30	6	134		48	3	ND	1	12	1	-	6	71	. 17	. 030	11	14	.03	10		7	2	.01		•	1
LX 19+005 18+50W	8	139	40	277	. 8	58	12	283	4.32	87	5	ND	1	25	1	2	2	39	.40	.353	13	29	.40	127	.01	2	. 99	.01	.05	1	3
LK 19+005 18+25W	1	43	44	281	1.8	30	11	728	3.59	40	ć	ND	1	17	1	4	4	21	-18	.131	13	11	1 02	30	.01	5	1.41	.01	.02	1	163
LK 19+005 13+00#	3	114	36	204	. 8	50	19	550	2.38	/1	3	80	1	42	4	:	ź	00 46	. 42	210	12	20	1.04	146	.01	2	1 54	01	05	1	101
LK 19+005 17+75W	2	65	79	327	- 1	54	44	909	1.43 5.55	14	1	10 10	1	93 22	1	÷	, ,	10	.00	. 110	17	16	75	47	.01	,	1.71	.01	. 04	i	52
LE 19+005 17+50W	1	50	58	324	. 3	46	21	831	2.21	48	3	NU	1	23	1	-	4	11		.030	• •	ŤŬ	. / 4			•				•	
LK 19+005 17+25W	1	81	31	195	.4	41	20	530	4.44	44	5	ND	1	20	1	2	2	37	.37	.097	14	37	.34	79	.03	2	1.45	.01	.05	1	9 10
LK 19+005 17+00W	1	79	49	246	.6	53	18	709	4.36	46	5	NO	1	4J 20	1	2	4	10	. 19	.100	10	23	. 03	103	.01	2	1.17	.01	.00	1	178
LE 19+005 15+75W	1	71	59	217	.1	54	16	133	4.08	39	3	NU	1	29	1	4	3	19	. 10	104	10	19		27	07	ŝ	50	.01	04	1	3
LK L10+005 19+00W	3	48	17	118	.4	23	24	297	1.34	51	נ ג	עוק אח	1	22	1	2	2	13	13	168	21	59	1 10	114	02	ĥ	1.80	.01	.07	i	11
SK L10+005 18+/5%	2	124	20	211	. 3	11	24	123	3.34	71		πŲ	1	23	•	•	•	13	.13		**			•••		•				-	
LX L10+005 18+50W	2	129	42	216	. 6	61	24	902	5.10	37	5	ND	1	25	1	1	2	55	.47	.204	15	58	1.05	173	.02	2	1.97	.01	.06	1	3
LK L10+005 18+25W	2	120	40	223	1.1	54	28	8Z7	2.03	40	3	ND	1	22	1	ź	2	09 65	. 4.) 0 t	170	11	21	35	165	. U.J. 11	1	1 27	01	.05	1	75
1X L10+00S 13+00W	2	96	23	211	1.2	94	32	382	3.33	10	2	ND ND	1	21	1		2	13	. 10	144	77	57	94	134	02	,	1 87	01	05	1	17
LK L10+005 17+75W	1	141	31	196	1.4	51	20	592	2.03	34	2	10 110	,	22	1	,	;	10	.02	111	23	45	.31	87	.02	9	1.59	.01	.07	1	16
LX L10+005 17+50%	1	19	41	189	. 8	00	19	100	1.11	44	1	AU			1	•	4	50						••		·					
LK L10+005 17+25W	1	59	33	180	.6	47	15	445	4.53	43	5	ND	1	32	1	2	2	35	. 57	.068	18	39	.63	119	.02	3	1.39	.01	. 05	1	9
LK 110+005 17+00W	1	45	46	183	.1	33	13	334	5.58	45	5	ND	2	8	1	-	2	32	.10	. 096	15	47	. 31	74	.03	2	1.55	. 91	.04	1	17
LK L10+008 15+75W	1	80	74	258	. 6	62	21	731	4.36	65	5	NÐ	2	31	1	2	2	23	- 52	. 895	19	40	.63	83	.01	4	1.11	.91	. 07	1	1/
LX L11+005 19+00W	1	161	55	305	1.7	76	23	1594	5.46	46	5	ND	1	31	Z	1	Z	31	.57	. 132	23	44	. 50	232	.01	4	1.34	.VI 01	.10	1	0 10
LE L11+005 13+75W	3	137	42	173	.3	49	11	250	5.36	45	5	ND	1	36	1	2	3	36	. 19	. 204	12	18	.19	113	.01	3	1.19		. 03	1	10
LK L11+005 19+50W	1	48	53	245	. 2	35	16	640	4.21	35	5	ND	3	20	1	2	3	24	.35	.067	21	35	. 58	90	.01	2	1.59	.01	.06	1	4
LK L11+005 18+25W	1	63	48	203	. 8	42	17	769	2.96	33	5	ND	1	28	1	2	2	- 24	.52	.082	20	33	.52	105	.01	2	1.35	.01	.07	1	5
LK L11+005 13+00W	1	61	50	165	.1	48	19	835	3.39	38	5	ND	5	17	1	2	2	21	.31	.086	28	36	. 62	81	. DZ	3	1.34	.01	.06	1	3
LK L11+005 17+75W	1	66	51	200	.3	45	17	688	3.59	40	5	ND	5	16	1	2	2	24	. 29	.081	24	- 31	.00	55	.01	2	1.40	. 91	. 30	1	13
LE L11+005 17+50W	1	76	61	198	.9	50	21	805	4.25	45	5	ND	3	19	1	2	2	27	.35	.108	22	41	. 54	101	.92	3	1.41	.01	.07	1	0
LK L11+005 17+25W	1	48	49	215	.7	46	17	407	5.23	62	5	ND	2	25	1	2	2	51	.39	.096	17	55	.93	98	.04	2	1.55	.01	.06	1	3
LE L11+005 17+00W	1	47	19	102	1.4	31	10	151	3.45	29	5	DK	1	43	1	2	2	41	. 59	.045	13	22	. 25	124	.03	3	1.05	.01	.03	1	0
LK L11+005 15+75W	1	68	43	240	.1	51	19	757	3.58	35	5	ND	1	64	1	2	2	20	1.35	.105	14	31	.56	50	.02	ц	1.29	.01	.06	1	5
LE L12+005 19+00W	1	59	71	221	.3	37	18	736	3.38	37	5	ND	4	21	1	Z	2	21	. 38	.071	25	31	. 60	86	.01	4	1.4/	.91	.03 07	1	0 5
LK L12+005 18+75W	1	37	55	198	.4	24	10	458	4.13	34	5	ND	1	11	1	2	2	34	.15	. 044	24	33	. 36	73	.03	2	1.34	.01	. U J	i	,
LK L12+005 18+50W	i	29	42	151	. 6	25	9	738	2.35	28	5	ND	I	16	1	2	2	22	. 29	.041	22	35	.36	129	.01	4	. 90	.01	.05	1	6
STD C/AU-S	17	63	38	132	6.7	71	31	1000	4.05	43	18	7	36	48	18	14	19	58	.51	.094	38	55	. 87	172	.07	34	2.07	.05	.14	12	34

	~` \						B	OUN	DARY	DRILLING INC.			PROJECT			٦	FILE #		89-2	2912										P~) ³		
SAMPLEŧ	Ho PPN	Cu PPM	Pb PPM	Zn PPM	Ag PPM	NÍ PPM	CÓ PPN	Ha PPH	Fe t	As PPN	U PPN	Au PPN	Th PPM	ST ?PM	Cd PPM	SD - PPN	Bi PPM	V PPM	Ca %	? \$	La PPN	CT PPM	Kg ł	Ba PPN	Ti š	B PPN	A1 3	Na १	K Z	W PPM	λu* ?PB	•
LK 112+005 13+25W LK 112+005 13+00W LK 112+005 17+75W LK 112+005 17+55W LK 112+005 17+25W	1 1 1 1	47 50 24 32 37	65 53 40 35 51	100 208 115 130 177	.4 .5 .1	31 40 29 24 44	14 16 7 9 18	580 781 249 212 448	3.80 3.73 3.14 3.48 5.04	34 34 75 29 37	5 5 5 5 5	ND ND ND ND ND	5 3 3 4 5	12 25 10 4 6	1 1 1 1	2 2 2 2 2	2 3 2 2 2	20 19 14 20 20	.20 .40 .16 .03 .08	.047 .060 .041 .025 .049	26 19 22 23 22	27 26 19 31 31	.53 .52 .34 .44 .51	83 98 61 59 88	.01 .01 .01 .01 .01	4 3 2 2	1.30 1.19 .74 1.27 1.34	.01 .91 .01 .01 .01	.06 .07 .06 .04 .04	2 1 1 1 1	2 10 5 2 44	
LK 112+005 17+00M IK 112+005 16+75W IK 113+005 19+00M IK 113+005 18+75W IK 112+005 19+50W	1 1 1 1	33 45 63 66 46	36 52 31 45 50	178 203 300 191 229	.5 .2 1.0 1.2 .6	30 34 45 41 32	12 17 30 12 18	1223 462 1265 371 548	3.62 4.12 5.51 4.70 4.33	30 35 32 48 39	5 9 5 5	ND ND ND ND	1 4 1 1 3	13 16 38 9 19	1 1 1 1	2 2 2 2 2	2 3 2 2 2	27 20 58 41 29	.14 .28 .71 .14 .34	.044 .075 .111 .090 .072	21 21 15 15 19	34 29 56 42 35	.40 .52 1.27 .62 .71	151 72 105 105 117	.01 .01 .03 .02 .02	2 2 3 2 3	1.16 1.28 2.57 1.35 1.52	.01 .01 .01 .01 .01	.06 .05 .05 .05 .05	1 1 1 1	4 1 13 4	
LK L13+005 13+25W LK L13+005 18+00W LK L13+005 17+75W LK L13+005 17+5CW LK L13+005 17+25W	1 1 1 1	25 55 25 70 63	23 55 40 59 37	103 248 153 235 195	.4 1.2 .4 1.2 .4	13 36 23 41 43	4 13 9 17 18	119 699 307 1002 732	1.91 3.50 3.96 4.73 4.25	24 52 29 41 42	5 5 5 5 5	ND ND ND ND ND	1 5 3 5	14 42 11 36 17	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 2 2 3 3	29 26 22 25 21	.23 .66 .15 .51 .22	.022 .078 .039 .072 .052	20 18 20 23 25	17 27 31 34 32	.23 .55 .49 .56 .56	59 135 74 129 90	.02 .01 .01 .02 .01	2 5 2 4 2	.60 1.22 1.29 1.53 1.37	.01 .01 .01 .01 .01	.05 .08 .05 .08 .08	1 1 1 1	2 6 1 5 4	
LK L13+00S 17+00W LK L13-00S 15+75W LK L14+00S 19+00W LK L14+00S 13+75W LK L14+00S 13+50W	1 1 1 1	58 58 25 93 29	55 48 21 46 22	104 173 106 214 127	.4 .9 1.7 1.0 .4	40 40 21 55 24	16 12 9 20 10	580 392 469 879 245	4.14 3.30 2.79 5.09 3.55	41 44 23 49 37	5 5 5 5 5	ND ND ND ND ND	4 2 1 2 4	20 47 11 15 5	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	22 21 42 46 27	.25 .86 .17 .30 .05	.048 .064 .059 .100 .066	23 14 15 18 22	34 29 28 50 32	.49 .55 .39 .93 .41	80 73 236 190 114	.01 .01 .03 .03 .01	2 7 3 5 3	1.30 1.01 .91 1.64 1.22	.01 .01 .01 .01 .01	.06 .05 .04 .06 .03	1 1 1 1 1	5 3 94 4 10	
LK L14+005 13+25W LK L14+005 13+00W LK L14+005 13+00W LK L14+005 17+75W LK L14+005 17+50W LK L14+005 17+25W	1 1 1 1	48 37 42 52 54	55 43 49 55 61	171 160 141 139 198	1.7 .5 .2 .5	33 36 43 40 43	10 12 12 17 16	273 476 221 512 524	4.95 3.37 3.54 4.37 4.20	75 35 39 45 46	5 5 5 5 5	ND ND ND ND ND	3 4 6 4 4	10 27 10 25 16	1 1 1 1	2 2 2 2 2	2 2 3 3	25 15 16 20 20	.13 .39 .10 .39 .23	.122 .053 .037 .069 .051	21 21 31 21 24	31 26 33 32 32	.46 .46 .43 .50 .50	73 66 78 101 109	.01 .01 .01 .01 .01	2 4 3 2 2	1.17 1.06 1.17 1.28 1.23	.01 .01 .01 .01 .01	.05 .07 .05 .09 .06	1 1 1 2 1	58 3 16 7 31	
LK L14+005 17+00W LK L14+005 15+75W LX L15+005 22+00W LK L15+005 21+75W LK L15+005 21+75W	1 1 1 2 3	48 54 22 24 63	52 58 23 27 50	169 197 130 157 160	.2 .7 .2 2.0 .7	38 55 22 23 37	14 17 9 11	546 641 434 398 236	4.92 4.35 3.08 4.13 5.18	47 53 25 33 76	5 5 5 5 5	ND ND ND ND ND	2 3 5 2 4	11 28 6 10 8	1 1 1 1	2 2 2 2 2 2	2 3 2 3 2	24 18 18 23 26	.15 .37 .07 .15 .13	.054 .069 .050 .126 .202	24 22 20 17 21	32 28 23 20 29	.53 .41 .37 .24 .25	61 90 154 110 101	.02 .01 .01 .01 .01	2 4 2 3 2	1.14 1.26 1.71 1.22 1.12	.01 .01 .01 .01 .01	.06 .07 .05 .06 .04	1 1 1 1	20 13 6 18	
LK L15+005 21+25W LK L15+005 21+00W LK L15+005 20+75W LK L15+005 20+75W LK L15+005 20+50W LK L15+905 20+25W	19 11 2 1 4	441 370 53 152 103	96 61 177 68 101	784 541 306 569 244	2.8 2.3 .6 .5 1.1	140 179 49 106 53	29 38 22 37 14	545 996 440 546 276	8.85 9.34 8.55 3.15 6.94	223 211 20 22 124	10 10 5 5 7	ND ND ND ND ND	3 1 2 2 4	84 66 18 13 14	6 5 1 1 1	2 2 4 5 2	2 3 2 2 2	21 33 77 152 34	1.96 1.35 .22 .37 .26	.334 .405 .190 .108 .246	10 12 8 12 16	16 46 60 105 36	.43 .37 1.89 3.75 .56	99 147 226 143 92	.01 .01 .02 .15 .02	8 3 3 2 5	.52 .89 2.87 3.89 1.64	.01 .01 .01 .01 .01	.05 .05 .03 .03 .04	1 1 1 1 1	26 25 18 2 24	
LK 115+005 20+00W	2 17	50 56	45 36	161 132	1.8 5.8	31 65	10 31	221 1053	5.01 4.30	52 45	5 21	ND 7	6 36	9 48	1 18	2 15	2 2 D	26 58	.15 .51	.141 .093	22 38	32 55	.47 .88	93 172	.02 .07	2 35	1.42 1.90	.01 .06	.04 .14	1 11	56 51	

ŧ

£

t

í.

÷
							BO	UND	ARY	DRII	.LING	G IN	IC.	PROJ	ECT	<u>ر الم</u>	F	ILE	# 8	9-29	12										P 🔨
EAHPLE#	HO PPN	Cu PPM	Pb PPM	Zn PPN	Ag PPN	NI PPM	CO PPN	No PPH	Fe ł	As PPH	U PPM	Au PPN	Th PPN	Sr PPN	Cd PPN	Sb PPM	BÍ PPN	V PPN	Ca ł	P	La PPN	Cr PPN	Hg t	Ba PPN	Ti ł	B PPN	Al 3	Na S	X Z	¥ PPN	Au* PPB
LK 115+005 19+78W LK 115+005 19+30W LK 115+005 19+23W LK 115+005 19+00W LK 115+005 19+00W LK 115+005 15+73W	2 2 2 1	66 57 48 37 85	42 75 52 40 47	159 172 165 151 430	.3 .4 .4 .8 .5	40 43 31 26 77	12 12 11 8 18	250 267 384 277 684	1.34 4.38 5.34 4.32 4.65	38 55 59 46 39	5 5 5 5 5	ND ND ND ND ND	5 5 4 1 4	8 13 12 13 11	1 1 1 1 2	2 2 2 2 2	5 2 2 2 6	20 30 24 34 24	.14 .14 .21 .21 .13	.100 .176 .188 .153 .074	24 20 20 15 29	35 33 30 32 35	.55 .49 .44 .49 .52	78 162 101 108 134	.01 .01 .01 .02 .01	2 2 4 2 2	1.53 1.52 1.27 1.29 2.05	.01 .01 .01 .01 .01	.04 .04 .05 .05 .07	1 1 1 1	43 10 21 15 18
LK 115+008 13+50# IK 115+008 13+23W LK 115+008 13+00W LK 115+008 17-73W LK 115+008 17-70W	2 1 1 1	192 75 54 52 36	63 58 73 70 47	1773 255 248 261 150	1.4 .3 .5 .2 .2	200 60 51 51 36	38 20 15 16 12	2271 871 496 505 346	5.37 4.54 4.27 4.57 2.93	55 46 51 50 34	5 5 5 5 5	ND ND ND ND ND	1 8 3 2 2	31 18 14 11 25	5 1 1 1	2 2 2 2 2	2 2 2 2 2	22 17 16 22 12	.44 .25 .18 .13 .36	.086 .061 .061 .064 .050	18 33 23 21 19	30 30 26 31 20	.29 .59 .37 .14 .35	109 94 99 76 49	.01 .01 .01 .01 .01	2 2 3 2 3	1.65 1.56 1.29 1.68 1.01	.01 .01 .01 .01 .01	.06 .12 .06 .07 .05	1 2 1 1 1	19 32 22 8 10
1X 115+005 17-25W 1X 115+005 17+00W 1X 115+005 17+00W 1X 115+005 11+50W 1X 116+005 11+50W 1X 116+005 11+50W(A)	1 1 1 1	49 33 40 12 10	53 40 48 26 6	195 136 180 72 46	1.0 .3 .2 .1	36 27 40 11 4	13 13 15 4 1	475 365 596 32 62	3.73 1.39 1.30 1.75 75	38 25 40 20 6	5 5 5 5 5	ND ND ND ND ND	2 1 3 5 2	34 31 36 6 9	1 1 1 1	2 2 2 2 2 2	2 3 2 2 2	15 18 15 22 9	.52 .49 .53 .05 .10	.077 .039 .049 .023 .023	21 16 20 27 25	22 28 36 18 5	.37 .47 .53 .20 .95	95 31 64 65 122	.01 .01 .01 .02 .01	2 2 2 2 3	1.30 1.05 1.23 .99 .58	.01 .01 .01 .01 .01	.08 .05 .07 .05 .06	1 1 1 1	11 2 6 2 1
LX 116+005 11-15W LX 116+005 13+25W LX 116+005 13+00W LX 116+005 13+75W LX 116+005 13+59W	1 2 3 1	11 47 117 52 82	25 32 33 104 64	63 109 404 135 188	1.8 .6 .7 1.7 .2	10 17 55 23 38	3 5 18 5 11	62 98 350 117 130	1.31 1.57 4.34 4.40 4.13	30 70 71 88 56	5 5 5 5 5	ND ND ND ND ND	4 1 3 7	10 6 20 10 8	1 1 1 1	2 2 2 2 2 2	2 5 2 2 2	23 18 24 30 16	.13 .06 .22 .04 .07	.088 .103 .094 .335 .069	24 27 21 18 27	14 9 19 20 25	.13 .12 .55 .14 .37	57 58 96 75 107	.02 .01 .03 .01 .01	2 2 2 2 3	.99 .84 1.99 1.04 1.47	.01 .01 .01 .01 .01	.05 .04 .06 .04 .04	1 2 1 1 1	12 4 11 148 16
IX 115+005 13+25W LX 115+005 17+75W LX 115+005 17+75W LX 115+005 17+35W LX 116+005 17+03W	1 1 1 1	32 59 35 30 48	54 62 44 51 63	121 208 140 139 173	.8 .7 .1 .2 .5	39 52 39 33 40	12 11 14 11 15	25D 756 418 291 508	4.13 3.48 3.72 4.12 3.32	84 60 33 36 39	5 5 5 5 5	ND ND ND ND ND	3 1 7 4 4	6 30 7 8 14	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	15 13 13 15 15	.08 .39 .09 .09 .14	.060 .063 .028 .039 .043	25 19 34 28 25	20 17 30 37 31	.26 .30 .44 .39 .38	79 61 63 46 69	.01 .01 .01 .01 .01	2 3 2 2 2	1.28 .92 1.26 1.17 1.37	.01 .01 .01 .01 .01	.04 .05 .06 .05 .06	1 1 2 1 1	32 14 3 4 13
LX L16+00S 15+75W LX L17+60S 21+59W LX L17+00S 20+75W LX L17+00S 20+75W LX L17+00S 20+00W	1 1 1 1 1	40 181 3 7 3	51 452 13 9 17	153 721 58 37 24	.2 1.4 .6 .8 .7	36 79 8 1 2	14 17 2 1 1	429 1025 102 69 94	3.96 5.23 .95 .24 .90	36 42 9 2 4	5 5 5 5 5	ND ND ND ND ND	5 3 4 1 2	20 26 4 9 4	1 5 1 1 1	2 2 2 2 2 2	2 2 2 2 2	16 29 9 3 8	.24 .27 .04 .13 .04	.043 .083 .038 .023 .078	26 18 25 20 24	29 38 10 4 5	.45 .58 .10 .03 .05	63 196 45 100 56	.01 .02 .01 .01 .01	7 2 2 2 2	1.41 3.19 .70 .35 .67	.01 .01 .01 .01 .01	.06 .08 .05 .06 .05	1 1 2 1	7 5 1 2 2
LK L17+00S 19+75W LK L17+00S 19+00W LK L17+00S 13+75W LK L17+00S 13+50W LK L17+00S 13+25W	1 5 1 1 1	4 96 14 15 31	8 221 56 72 88	28 212 209 119 176	.1 1.1 .1 .3 .4	2 28 17 14 21	1 5 4 8	123 123 75 107 231	.41 4.03 1.29 3.57 5.11	5 145 33 23 36	5 5 5 5 5	ND ND ND ND ND	4 1 5 7 4	4 15 13 14 15	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	4 20 15 20 14	.06 .09 .14 .12 .14	.030 .171 .087 .209 .131	28 20 30 20 23	5 12 24 28 24	.05 .10 .43 .47 .42	41 116 86 103 67	.01 .01 .01 .01 .02	3 2 2 2 5	.51 .85 1.50 2.16 1.47	.01 .01 .01 .01 .01	.05 .05 .07 .07 .07	1 1 1 1	3 5 3 22 3
LK L17+005 13+00W	1	121	73 42	426 132	1.5 7.0	110 72	17 30	703 1017	4,04 4,12	78 42	5 18	ND 6	3 37	36 48	1 19	2 14	3 21	15 59	.45 .50	.115 .095	21 38	29 56	.60 .92	79 174	.02 .07	2 37	1.40 1.97	.01 .06	.07 .13	1 12	18 53

	~~~						B	OUN	DARY	DR	LLI	NG 🗄	INC.	PR	OJEC	ייי ייז ר:	1	FILI	E #	89-	2912										P
SANPLET	HO PPN	Cu PPM	Pb PPN	20 PPN	Ag PPN	NI PPH	Co PPM	Nn PPN	Fe 1	As PPM	U PPM	Au PPN	Th PPM	ST PPN	Cđ PPH	SD PPN	B1 PPM	V PPN	Ca ł	P %	La PPN	CT PPN	Ng t	3a PPM	Ti ł	B PPM	Al ł	Na ł	K ł	W PPM	AU* PPB
LK 117-005 17-75W	2	118	101	391	1.7	89	13	359	4.30	61	5	ND	3	21	1	2	2	19	.21	.073	23	28	. 47	70	.01	3	1.45	.01	.06	1	1
LK 117+005 17+50W	1	108	95	257	.5	54	13	363	3.85	53	5	ND	- 4	11	1	2	2	14	.11	.067	27	23	. 39	71	.01	2	1.16	.91	.06	- 1	1
LK 117+005 17+25W	1	26	57	100	.5	18	1	239	2.62	34	5	ND	1	9	1	2	3	19	.05	.056	24	16	.22	77	.01	3	. 86	.01	.04	1	4
LE 117+005 17+00W	1	51	59	124	.3	46	14	429	3.71	36	5	ND	6	21	1	2	2	14	.24	.079	31	29	. 48	74	.01	3	1.35	.01	.08	1	3
LK L18+005 22+00W	1	33	77	129	.3	15	5	95	2.87	31	5	ND	5	11	1	2	2	14	.09	.032	22	16	.30	198	.01	2	1.37	.01	.06	1	3
18 1101000 211008	•	168	291	545	, 1	34	:9	2800	5.29	46	19	ND	2	105	5	2	2	23	1.94	.194	13	36	.65	189	.01	2	2.32	.01	.08	1	1
TE TID ODE 33-754	1	185	553	316	1 9	11		589	.79	3	39	ND	1	163	4	2	2	4	3.18	.091	9	11	.35	116	.01	7	. 79	.01	.03	1	1
PE 110-006 00-024	1	101	111	110	1.6	10	ç	127	4 15	26		ND	6	4	t	2	3	19	. 09	.181	21	25	.29	105	.01	2	1.95	.01	.07	1	1
FK 7194009 TA453M			50	113	1.0	20	5	120	2 63	20		ND.	ĥ	16	1	,	3	10	.15	.068	28	20	.42	131	.01	2	1.38	.01	.11	1	1
FE FI3+002 T0+00M	-	32	37	144	1.0	20	,	30	1 04	10	;	งก	,	5	1	,	1	14	.03	.041	30	11	.11	71	.01	2	. 35	. 91	.04	2	1
LX L18+905 19+25%	4	0	12	41	. 4	1	4	11	1.04	ĨV	-	AD	4	-	•	•	•	••								-					
LE 118+005 19+00W	4	432	335	1517	3.0	208	15	444	4.44	102	17	ND	1	50	5	2	4	14	.55	.171	21	23	.50	118	.01	2	1.38	.01	.07	1	4
18 1194005 13475W	;	51	79	319	.1	27	5	133	3.50	41	5	ND	6	12	3	2	2	17	, 09	.117	27	17	. 25	150	.01	3	1.60	.01	. 06	1	1
TA TIDTUUG JOTZUM	2	24	173	:16	5	49	14	306	4.60	79	5	ND	4	15	1	2	2	14	.15	.134	23	31	. 42	87	.01	2	1.59	.01	. 07	1	2
LA LIDTUUS 13-JJ#	,	50	67	100	,	26	ç	157	1 00	59		ND	1	10	1	2	2	21	.04	.082	30	14	.10	98	.01	3	. 63	. 91	.04	1	4
LE LIGTUUS ISTLIN	2	114	137	1466	1 2	171	15	768	4 45	68		NÐ	2	40	4	2	2	17	. 14	.084	22	30	.45	109	.01	2	1.51	.91	. 07	1	1
FV 7184002 124004	4	114	132	1100	1.5	1/1			1.1.2		•		-		-	-															_
LK L13+005 17-75W	1	17	42	140	.3	19	4	118	2.37	35	5	ND	4	15	1	2	2	16	.14	. 201	25	19	.31	130	.01	3	1.23	.01	.07	2	4
LK L18+005 17+50W	2	126	141	283	1.1	43	11	265	6.57	134	5	ND	5	16	1	2	2	15	.14	. 222	21	- 11	.28	117	. 91	2	1.33	. 91	. U 3	1	3
LX L13+005 17+25W	2	192	143	279	.1	57	12	348	4.15	70	5	ND	11	19	1	2	2	14	.18	.103	34	28	.47	129	.01	2	1.22	.01	. 89	1	1
LX L18+005 57+00V	:	75	112	255	.2	44	13	293	4.36	63	5	ND	7	15	1	2	2	14	.12	.092	30	32	.43	155	.01	2	1.87	. 91	.08	1	4
LE L19+005 11+25W	2	223	68	381	2.2	92	19	3121	5.26	46	- 24	ND	2	105	3	2	3	27	1.64	.191	22	37	. 58	244	.02	3	2.59	.01	.10	1	1
	•	•••			-										_	_											1 5 5	01	07	,	,
LK L19+005 21+00W	1	104	50	383	1.2	61	13	701	2.56	19	5	ND	1	82	2	2	2	23	1.54	.141	12	- 34	. /4	152	.02	3	1.39	.01	.07	1	1
LK L19+005 10+75W	1	6	4	53	.3	3	1	45	. 27	2	5	ND	2	8	1	2	2	4	.13	.018	20	4	.05	12	. 01	6	. 14	.01	.04	1	i 1
LK L19+005 20+50W	1	10	34	32	1.0	1	1	49	.22	2	5	ND	1	8	1	2	2	5	. 97	.012	23	4	.04	92	.01	2	. 58	.91	.05		1
LK L19+005 20+00W	1	3	9	31	2.6	1	1	22	.14	2	5	ND	2	3	1	2	2	2	. 02	.013	25	2	.03	44	.01	4	.63	.01	. 05	1	1
LK L19+005 19+75W	1		10	34	.1	1	1	91	.26	2	5	ND	1	5	1	2	2	4	.06	.023	23	3	.04	123	.01	3	.73	.01	.04	2	22
	-	-														_	-				••	•			A1	,	1 02	41	64	,	11
LK L19+005 13+25W	1	17	186	39	1.8	1	3	437	1.44	11	5	ND	3	12	Z	2	2	10	.15	.081		8	.13	443		4	1,02	.01	.00	1	
LE L19+005 19+00W	1	78	176	275	2.0	18	7	423	3.32	27	5	ND	5	23	1	2	2	9	.23	.150	25	14	.32	118	.01	4	1.90	.91	. U 3	1	د ۲
LK L19+005 13+75W	1	25	74	127	1.7	15	4	118	2.91	28	5	ND	4	13	1	3	2	17	.12	.171	25	15	.26	129	. 91	2	1.13	.01	. 09	4	4
LK L19+005 18+50W	2	95	205	335	1.0	24	6	101	2.98	39	5	ND	8	28	1	2	2	9	.26	.158	27	16	.35	163	.01	3	1.99	.01	.10	1	50
LE 119+005 19+25W	3	161	85	223	. 3	38	4	80	2.57	106	5	ND	1	7	1	3	2	14	. 05	. 133	25	9	.09	98	.01	4	1.17	,01	.04	1	3
	•	••••																													
LK L19+005 17+75W	1	120	89	328	1.7	73	17	849	4.15	36	5	ND	1	45	4	2	3	27	.43	. 058	13	32	.64	126	. 02	2	1.58	.01	.06	1	3
LE L19+005 17+50W	1	30	56	244	.4	29	9	289	3.83	39	5	XD	1	17	1	2	2	26	.15	.040	22	29	.42	130	.91	2	1.31	.01	.03	1	1
LE L19+005 17+75¥	1	61	86	484	. 5	74	11	479	3.87	27	5	ND	5	31	2	2	2	11	.32	. 083	25	27	.86	190	. 03	2	1.78	.01	.16	1	1
LE 119+005 17+00W	1	72	88	251	.8	81	13	624	4.05	35	5	ND	4	24	1	2	2	16	. 23	.071	27	30	.48	178	.01	2	1.75	.01	.11	1	1
LE 119+605 14+754	i	82	52	311	.2	120	26	816	6.00	95	5	ND	11	20	1	2	2	18	.23	.059	39	43	.55	120	.01	3	1.50	.01	.14	1	10
RE RELACE TALLES	•			•••	••													~~			10		6.8	174	67	10	2 Ng	66	17	17	50
STD C/311-5	18	58	41	132	6.9	12	31	1016	4.33	44	13	8	37	48	19	15	- 21	27	. 51	. 095	73	20		114		79	4,00		1 2 4	**	

• •

ŧ

(

5

Ċ

(

	······						в	OUN	DARY	DRI	LLI	NG 1	INC.	PR	OJEC	יייי די	}	FILE	5 #	89-3	2912										F 6
SANPLE#	No PPN	Cu PPN	Pb PPN	Zn PPM	Ag PPM	Ni PPN	CO PPN	Mn PPN	Fe X	AS PPM	IJ PPM	ÀU PPN	Th PPM	Sr ?PN	Cd PPM	SD PPM	BI PPM	V PPM	Ca ł	P %	La PPN	CT PPM	Xg ۶	Ba PPN	Ti X	B PPN	Al X	Na t	K z	¥ PPN	AU* PPB
LK 120+005 22+00W LK 120+005 21+75W LK 120+005 21+75W LK 120+005 21+25W LK 120+005 21+25W	1 1 1 1	14 33 123 190	17 43 30 32 38	56 112 142 211 305	.1 .2 .6 1.3	9 20 54 54 59	3 5 17 13 16	99 162 984 733 2814	1.04 3.12 3.89 2.31 3.60	11 36 20 22 23	5 5 5 21 15	ND ND ND ND ND	2 2 1 1 1	8 10 51 124 138	1 1 3 1 3	2 2 2 2 2 2	3 2 5 4 2	8 23 95 38 25	.08 .06 .52 2.82 2.72	.040 .088 .067 .154 .155	29 25 20 32 11	10 24 75 55 34	.13 .32 1.31 1.15 .35	58 139 182 127 192	.01 .01 .13 .02 .01	2 2 4 4	.79 1.33 1.87 2.04 1.50	.01 .01 .01 .01 .01	.07 .09 .07 .07 .08	1 2 1 1 1	1 21 1 1 3
LK L20+003 21+75W LK L20+003 20+75W LK L20+005 20+56W LK L20+005 20+25W LK L20+005 20+25W LK L20+005 19+50W	1 2 1 1	45 166 12 7 5	20 22 12 35 10	35 405 55 48 42	.8 1.0 .3 .2 .9	12 101 12 7 4	8 10 4 2 2	432 242 140 81 102	1.40 1.74 1.47 1.58 1.05	5 12 7 6 2	5 72 5 5 5	ND ND ND ND ND	1 1 1 2	48 194 3 7 4	1 4 1 1 1	2 2 2 2 2 2	2 2 2 2 2	28 14 40 36 12	.82 4.26 .15 .11 .06	.079 .133 .041 .064 .035	16 7 20 22 22	18 20 23 17 5	.33 .72 .39 .35 .07	323 91 203 161 196	.04 .01 .05 .04 .01	2 5 2 2 2	.92 1.29 1.51 1.55 .80	.01 .01 .01 .01 .01	.07 .04 .04 .05 .04	1 1 1 1	14 1 1 3
LX L20+60S 19+25W LX L20+00S 19+00W LX L20+00S 19+00W LX L20+00S 19+00W LX L20+00S 13+00W LX L20+00S 17+75W	1 1 2 1 2	32 32 41 59 81	34 52 30 74 69	100 159 138 648 495	.7 .9 .4 .8 .5	18 41 26 30 128	6 11 6 21 24	124 261 148 525 684	3.92 5.22 2.98 4.51 6.13	14 27 32 55 67	55555	ND ND ND ND ND	2 3 3 3 5	11 22 11 21 15	1 1 1 2 1	2 2 2 2 2 2	3 4 2 2 2	65 49 32 26 35	.15 .23 .13 .25 .20	.128 .201 .116 .121 .161	20 21 29 27 26	3? 47 28 40 61	.53 .96 .43 .70 .79	158 163 144 113 148	.03 .02 .02 .01 .02	2 4 2 2 2	1.95 1.97 1.49 1.75 2.11	.01 .01 .01 .01 .01	.06 .08 .05 .07 .10	2 1 1 2	15 2 6 4
LK L20+00S 17+50W LK L20+00S 17+25W LK L20+00S 17+00W LK L21+00S 21+75W LK L21+00S 21+50W	2 1 1 1	69 47 132 2 4	30 64 103 5 3	322 210 195 37 24	.6 .3 1.3 .1 .1	56 46 77 13 2	15 15 21 3 1	450 361 735 79 45	4.85 4.97 4.95 1.08 .33	44 50 55 10 2	5 5 5 5 5 5 5 5 5	ND ND ND ND ND	2 6 5 1 3	18 14 39 7 4	1 1 1 1	2 2 2 2 2 2	4 2 4 2 4	41 37 57 15 3	.23 .18 .39 .05 .03	.107 .108 .082 .017 .014	29 30 25 37 33	47 49 55 21 6	.97 .92 1.46 .25 .07	157 127 217 72 37	.03 .03 .05 .01 .01	4 2 3 2 2	1.35 2.06 1.97 .75 .70	.01 .01 .01 .01 .01	.08 .09 .10 .05 .04	1 1 1 1	2 1 31 3
LK 121+005 21+230 LK 121+005 20+750 LK 121+005 20+250 LK 121+005 20+000 LK 121+005 19+250	1 3 1 1 1 1 1 2	7 294 45 62 27	14 33 4 45 39	48 235 307 153 99	.3 2.3 .8 1.3 .2	10 83 43 48 22	3 8 2 19 6	70 209 418 541 183	1.74 1.03 .50 3.57 2.54	20 19 3 26 40	5 185 26 5 5	ND ND ND ND ND	3 3 1 1 4	4 183 224 74 8	1 4 18 2 1	2 2 2 2 2 2	2 2 2 2 2 2	31 15 6 33 39	.03 3.68 4.59 1.27 .11	.029 .172 .116 .091 .065	31 12 3 11 31	18 26 11 50 21	.21 .47 .81 1.13 .23	47 121 88 144 118	.02 .01 .01 .02 .01	3 6 7 2 2	.93 1.46 .50 1.92 1.20	.01 .01 .01 .01 .01	.05 .05 .02 .09 .06	3 1 1 1	3 2 1 3 2
LK L21+00S 19+00 LK L21+00S 18+75 LK L21+00S 18+75 LK L21+00S 18+50 LK L21+00S 18+25 LK L21+00S 18+00		66 63 52 71 69	28 363 37 42 31	179 159 175 213 157	.4 .5 .1 .2 .4	53 46 48 62 61	14 13 17 20 27	252 229 306 372 352	5.07 5.11 4.58 4.68 6.46	92 47 37 38 151	5 5 5 5 5 5	ND ND ND ND ND	5 5 7 8 2	14 11 9 12 10	1 1 1 1	2 2 2 2 2 2	2 3 2 2 3	44 46 41 36 39	.16 .13 .10 .16 .10	.074 .072 .057 .054 .097	28 27 27 32 20	49 46 48 47 23	.98 .94 1.00 1.00 .40	220 200 189 193 218	.02 .03 .04 .03 .02	2 4 2 2 2 2	2.36 2.28 2.26 2.29 1.60	.01 .01 .01 .01 .01	.07 .07 .07 .10 .04	1 1 1 1	3 4 4 1 2
LK L21+00S 17+751 LK L21+00S 17+501 LK L21+00S 17+251 LK L21+00S 17+251 LK L21+00S 17+001 LK L22+00S 21+251	1 1 1 1 4 1 1 1 1 1	17 75 82 42 94	30 43 61 62 45	83 187 194 192 225	.3 .4 .4 1.0 .5	20 70 71 48 50	6 20 28 13 16	137 260 402 339 548	3.29 5.53 8.50 3.64 4.33	36 86 221 55 31	5 5 5 5 8	ND ND ND ND ND	5 5 1 5 4	6 10 14 45 30	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	46 28 24 23 19	.06 .09 .12 .15 .31	.051 .057 .144 .063 .066	30 30 19 28 32	30 37 16 33 36	.41 .76 .20 .36 .58	136 212 240 356 115	.03 .01 .02 .01 .01	4 2 3 2 5	1.61 1.79 .95 1.11 1.50	.01 .01 .01 .01 .01	.04 .06 .04 .05 .09	1 1 1 1	5 1 1 12 1
LE L22+005 21+00 STD C/AU-S	W 2 18	486 61	45 36	218 132	3.5 6.9	86 73	23 30	1880 959	4.24 4.09	29 44	32 16	XD 7	1 36	102 48	5 18	2 15	2 22	30 58	1.82	.136	17 38	40 57	. 73 . 88	235 172	.02 .07	3 38	1.84 2.08	.01 .06	.11 .13	1 12	1 51

£

(.

(

	·····																TEC			FIL	E #	89	-29:	12										Par	⁷
	J							BC	UN	DARY	DRI	LL.	ING	INC	;. r	RUG		• . 	· ر			63	P	La	Cr	Mg	Ba	Ti	В	Al	Na	K	¥	Ya,	
SAMPLE	Мо		Cu	Pb	21	Ag	Ni	CO	N D	in E	'e As > ppw	2	U PM P	Au PM	Th PPM	ST PPM	CC PPM	a sd 4 ppm	P PN B I	L P!	PN	ž	ł	PPN	PPN	*	PPM	٤	PPN	\$	ŝ	\$	PPN	228	
	9 P %	P	PN	PPN	PPN	22M	rrn	rra		а • • •	· · · ·		5	ND	3	1	1	1 2	3	3	23	.08	.043	28	34	.38	151	.01	2	1.45	.01	.06 .04	2	2	
LK L22+005 20+75W	1		40 18	42 37	145 143	.2 .1	37 39	10 11	11	19 i. 11 i.	3 3]	5	ND	5	1	1	1 2	-	3	23 31	.10 .07	.080 .039	29 31	33 27	. 49 . 34	93	.02	2	1.68	.01	.04	1	3	
LK L22+005 20+50W LK L22+005 10+15W	1		34	33	104	.2	25 48	8 38	12 7	24 3. 59 5.	77 2 35 3.	6 3	5	ND ND	3	38		1		2	39	.53	.053	27 30	36 33	. 19 . 66	952 182	.01 .02	2	1.64	.01	.06	1	3	
LK L22+005 19+75W LK L22+005 19-50W	1		89 52	32	158	.4	49	20	5	86 i .	49 4	2	5	ND	5	20			•	-	25		060	25	25	. 30	154	.01	3	1.39	.01	.04	1	3	
t# 1224005 19+00%	1		35	18	127	.4	31	17	3	67 S.	50 5	3	5 5	ND ND	4	6 6		1 1	2	2 2	25 34	.10	.072	22	25	.33	93 97	.01	3	1.21	.01 .01	.03 .04	1	. 7 15	
LK 122+005 18+75W		l	43 22	15 15	8 8 71	. 5 . 2	21	1	1	14 3.	40 2	9	5	ND	8	4		1	2	2	35 33	.04 .05	.049 .045	38 28	25	.40	156	.02	2	1.68	.01	.04	1	5	
LK 122+005 13+15W		1	37	17	103 127	.6 .5	32 28		8 1	177 - 4 161 - 5.	96 59 3	1	5	ND	3	11		1	2	3	33	.19	.099	19	31	. 43	103	.01	•	1.07				, ,	
LI 122+005 13-00W			14	17	113	1	3	1 1	2 1	161 3	.10	36	5	ND	8	1		1	2	2	35 17	.06	.046	34 19	31 28	.53 .44	273 114	.01 .01	2	1.37	.01	.04	1	1 17	
LK L22+005 17-75W LK L22+005 17-50W		1	38 72	21	126	.8	43	2 1	8 1	177 S	.10	50 52	5 5	ND ND	3	16	i	1	2	2	34	.12	.037	23	38 41	. 17	185 175	.01 .01	2	1.92	.01 ,01	.04		1 5	1
LK 122+005 17-15W		1 1	39 115	42 30	138	. 4	4		ŝ	315 5	.63	15	5 79	D מא	3 1	14 170)	1 4	2 2	2 3	44	2.84	.065	7	6	.25	59	.01	. :	3 .39	.01	.01		1	•
LK 123+005 11+30W	P	1	152	9	211	1.7	2 2	4	4	104		-	45	*0	ç	39	}	12	2	2	25	1.20	.166	35	38	. 55	153	.01	1	2 1.65	.01	.11	, }	1 11 11 11 11 11 11 11 11 11 11 11 11 1	; :
LE 123+005 11+15W		1	335 37	527 32	326 211	5.	1 1 1 2	1 2 .9 1	.5 1 10	921 5 276 3	.19	39	5	ND	3	3	4	1	2	2	30 29	.45	.090 .055	24 29	23 31	. 14	32	. 01		2 1.73	.01	.03		1 1 ¹	1
LK 1234008 11+39W		1	32	19	179		2 2	9 1 6	.0 20	182 389	.96 5.41	34 48	ז 5	ND ND	1	2	0	1	2	3	29 29	.17	.078	28 32	32 13	.47 .19	159	0 .0	1 l	2 .1	01	. 01	3	1	2
LK L23+005 11+00W LK L23+005 10+75W		1 1	8 4 17	12	103		3 1	.8	1	102	.94	23	5	ND	5	1	1	•	•			10	080	33	17	.23	6	7.0	1	2 1.2	2.0	0	6	1	:
T.K. 1.23+005 10+75W	(A)	1	25	22	11	L.	3	20	7	203	4.08	35 41	5 5	ND ND	5		6 4	1 1	2 2	2	28	.03	.114	29	33	.47	6).0 7.0	1 1	2 1.6	5.01 5.0		4 5	1 1 2	9 .6
LK L23+005 13+50W		1	35 35	34 43	12 10	8. 6.	8. 4.	19 19	6	143	4.04	35	5	ND	:	3	9 5	1 1	2 2	2 2	40 30	.04 .05	.150	28	32	.45	12	0.0	1	2 2.0	5.0°	i.0 1.0	5	1	3 1
LK 123+005 12+00W		2	86	19	16 5 20	6. 4.	3.8	60 65	20 11	234 784	5.89 5.36	35 445	5	ND		1 7	20	1	2	4	40	.56	.135	i 1:	1 15	.1	1 13	6 .u					5	1 :	:5
LK 123+005 19+/0W		3						41	15	415	3.13	91	5	ND		3	1	1	2	2	44	.08	.076 0.042	i 21 2 2	38 5 11	.4:	510 75	0.0 5.0	z)1	2 1.8	3.0 .3.0	1.0)2	1	10
LE L23+005 13+25W	Ī	1 1	86 33	2	9 8	2	.1	20	10	333	3.14	43 42	5	ND ND		1 4	6	1	2	2	29	.01	.042	2 3	2 18 9 22	.2	45 49	7.0	1 21	2 1.9	6.0 17.0	1.u	14 03	1	-
LE 123+005 13+750	[2	1 1	23 19	1	7 17 2 7	9	.1	21	1	177	3.89	34	5	ND ND)	3 2	7 19	1 1	2 2	2	42	.2	6 .051	1 2	1 39	.5	7 32	6.6)1	2 1.6	8.0	1.()5	1	-
LE L23+005 13+250	i i	1	35	3	0 17	22	.3	36	16	978	4.33						23	1	2	2	41	.2	6.06	0 2	4 4!	5.6	9 1	33.	02	3 2.	18 .1 1a ()1 .	07 15	1 1	1 5
LK 123+005 13+001	Ŵ	1	47	1	8 1 9 1	54 16	.2 .3	44 22	18 12	325 611	5.31 3.60	42 51	5	ND)	1	46	1	2	2	97 73	1.0	1 .13 2 .05	8 1 5 1	0 30 .5 61), 5 5 1.2	18 44 26 1	57 .	27	2 2.	36 .)1 .	06	1	:
LK 123+005 17-75 LK 123+005 17+50	W.	1	37	2	4 1	36	.2	40	14 15	341 277	5.77	31 33	5	NI NI	0	3	16	1	2	2	128	.1	9.06 6.03	2 1 4 1	5 71 7 6	1 2.0 1 1.0)5 21 16 2)1	11 30	2 2.	62 .	01 .	05	1	:
LE L23+005 17+25	W W	1 1	41	6	16 1 23	12 74	.2	72	32	352	5.20	59	5	N	D	1	91	I	2	2	19	1.1	.u .uu		a c	1	88 1	76.	07	37 2.	07.	06.	13	12	43
STD C/MI-5		18	5	7	37 I	32	1.0	66	31	1014	4.35	41	18		1	37	49	19	15	22	59		11 .03		., ,		•• •								

STD C/AU-5

	······												110	ממ	י זיד ר	ייייאן ר ר זיי	1	FTLE	#	89-	2912	2									P
SAMPLE:	Но	Cu	Pb	20	Ag	Ni	E CO	OUN Mn PPN	DARY 78	λs PPM	للطط. ت PPM	AU PPM	Th PPN	SI PPN	Cđ PPN	Sb PPM	Bi PPM	y PPN	Ca %	P	La ?PM	Cr PPN	Ng 3	Ba PPN	Ti ł	B PPN	Al X	Na ł	K K	W PPM	Au* PPB
LK L24+005 22-COW LK L24+005 21-25W LK L24+005 21+00W LK L24+005 20+75W	2 1 1	46 25 28 31	67 43 37 33	261 215 180 185	.2 .3 .4 .2	37 22 29 23	13 8 12 13	226 150 280 611	5.56 4.99 4.34 4.14 5.27	38 32 31 34 31	13 5 5 5	ND ND ND ND	1 5 5 3 4	23 7 5 14 4	1 1 1 1	2 2 2 2 2 2	7 2 2 2 2 2	34 29 25 24 31	.31 .05 .07 .17 .03	.050 .039 .075 .068 .049	15 22 35 40 35	38 27 30 25 30	.60 .41 .51 .58 .53	142 94 92 111 53	.01 .01 .01 .01 .01	3 3 4 2 2	2.02 1.91 2.11 1.65 1.96	.01 .01 .01 .01 .01	.08 .05 .06 .06 .05	1 1 1 1	32743
LK L24+00S 20+30W LK L24+00S 20+25W LK L24+00S 20+00V LK L24+00S 13+00W LK L24+00S 13+30W LK L24+00S 12+73U		30 87 29 178 28	31 723 99 171 16	697 271 358 80 39	.2 2.3 .5 .8 .1	41 12 40 23 49	20 7 29 11	674 306 412 389 529	5.04 3.75 10.98 3.09 4.97	41 41 200 20 9	5 5 5 5 5 5	ND ND ND ND	4 6 3 5 2	36 12 6 7 7	4 1 2 1 1	3 2 2 2 2	2 2 2 2 2 2	36 35 30 49 94	.43 .14 .05 .11 .14	.064 .029 .232 .056 .086	15 39 21 30 15	34 13 16 21 90	.54 .14 .11 .39 1.55	151 121 60 60 153	.01 .01 .01 .02 .08	5 3 6 2 4	2.67 1.32 1.04 1.13 2.82	.01 .01 .01 .01 .01	.08 .04 .05 .05 .07	1 1 1 1	33 20 26 510 5
LK L24+00S 13+307 LK L24+00S 13+251 LK L24+00S 13+001 LK L24+00S 17-75 LK L24+00S 17-75 LK 124+00S 17-55	1 1 1 2 1 2 1 2 1 1	23 30 41 243	31 36 211 140 5 52	193 119 373 1777 274	.5 .2 2.0 4.5 .8	59 27 38 244 39	24 10 18 43 13	777 183 405 2412 301	6.52 3.09 7.23 6.14 4.47	\$3 65 95 121 38	5 5 5 10 5	DN DN DN DN ND	1 3 1 2 1	15 10 23 57 12	1 1 2 11 1	2 2 2 2 2 2	2 2 3 2 2	48 35 40 42 34	.18 .10 .29 .67 .12	.095 .090 .175 .134 .071	20 33 13 13 23 24 25	34 17 36 48	.50 .20 .71 1.02 .88	163 61 133 120 139	.01 .01 .01 .03 .03	2 2 2 3 2	1.52 .92 2.01 2.48 1.69	.01 .01 .01 .01 .01	.04 .03 .05 .07 .05	1 1 1 1	1 5 4 11 5
LK L24+005 17+00 LK L24+005 17+00 LK L24+005 15+75 LK L24+005 15+50 LK L24+005 15+25	* 1 W 1 W 2 W 2	3:	1 77 2 83 2 101 2 62	335 428 401 310	1.9 .6 .2 .6	46 63 63 37	18 20 20 13 15	407 358 144 167 254	7.75 7.31 5.33 7.4.59 5.44	20 76 71 91 66	5 5 5 5	DN DN DN DN DN	3 5 7 7	11 16 19 15 15	1 1 1 2	2 2 2 2 2 2	2 2 2 2 2 2 2	119 36 29 27 25	.13 .25 .18 .13	.114 5 .15 1 .09 8 .09 5 .08	1 19 7 20 9 30 1 31	91 5 64 6 41 8 24 8 41	1.55 1.47 	191 300 165 137 156	.10 .10 .01 .01 .01	4 2 2 2 2	3.15 2.45 2.12 1.29 2.13	.01 .01 .01 .01 .01	.08 .22 .05 .05 .06	1 1 1 1	1 3 2 7 5
LK L24+00S 15+75 LK L24+00S 15+75 LK L24+00S 15+56 LK L24+00S 15+25 LK L24+00S 15+00		5	4 17! 8 189 2 17! 1 7!	5 1194 9 592 5 365 9 303	1.1	6 65 5 68 3 31 5 41 7 25	27 27 1 16 11	89 39 35 22 13	4 5.57 7 5.08 8 5.55 0 5.05 3 4.02	75 97 65 65 2 56	5 5 5 5 5	NC ND NI ND ND) 3) 8) 7) 5 D 5	44 38 19 18	3 1 1 1	2	2	2 25 19 2 24 36 2 37	.4: .3: .1: .1:	3 .06 2 .08 9 .12 7 .10 8 .14	7 2 4 31 5 3 6 31 7 3	4 3 7 3 4 2 0 3 1 2	5 .90 5 .74 8 .51 8 .78 3 .34	127 125 136 111 122	.01 .01 .01 .01 .01	2 2 10 2	1.67 1.64 1.64 1.79 1.39	.01 .01 .01 .01 .01	.06 .08 .06 .07 .05	1 1 1 1	3 3 1 4
LK L24+005 14+7 LK L24+005 14+5 LK L24+005 14+2 LK L24+005 14+0 LK L24+005 13+5	5 W 5 5 W 5 0 W 5 0 W	j 26 2 ! 4 10	11 J 16 12 16 17 16 11 57 13	0 409 6 471 2 511 6 44		6 85 2 65 0 91 3 6 4 6) 19 5 19 0 23 7 20 2 11	26 28 22 29 29	2 7.4/ 0 5.3 6 6.2 9 5.3 9 5.3	4 139 8 74 1 87 4 96 2 85	5	NC NI NI S NI	D 5 D 8 D 3 D 9 D 9	15 21 21 11	1 2 1 3 2 6 1		2	2 24 2 24 2 31 2 18 2 23	.1 .1 .2 .1	2 .25 9 .12 0 .19 7 .11 5 .14	0 1 1 3 2 2 5 3 2 3	9 2 7 4 9 5 6 3 2 3	5 .32 2 .92 1 1.06 2 .63 6 .72	120 184 187 125 149	.01 .01 .01 .01		1.22 1.91 2.22 1.77 1.85	.01 .01 .01 .01 .01	.05 .07 .06 .06 .07	1 1 1 1	I 1 5 6 5
LX L24+005 13+2 LX L24+005 13+0 LX L24+005 12+7 LX L24+005 12+7 LX L24+005 12+2 LX L24+005 12+2	ow Sw ow Sw	3 1 2 1	70 18 53 10 64 9 49 8 59 11	1 54 5 38 12 41 11 42	2 1. 3 . 4 . 5 .	1 7 3 5 6 6 5 6	7 2. 9 1 [°] 6 1 4 1 0 1	2 31 7 36 5 27 8 21 5 21	.2 5.0 1 5.2 15 4.7 1 5.0 16 5.2	3 70 3 51 9 51 6 61) 3 1	5 N 5 N 5 N 5 N 5 N	D 8 D 10 D 5 D 9	8 1 9 1 9 2 9 2 9 1	9 8 4 0 5	1 1 1 1	2 2 2 2 2	2 31 2 20 2 26 2 27 2 25	.1 .1 .1 .1	5 .11 8 .14 6 .14 6 .14 6 .14	12 1 12 4 11 1 18 3 17 1	1 3 15 4 13 5	5 1.20 8 .33 6 .99 0 1.20 11 .8	i 210 162 143 194 194	. 01 . 01 . 01 . 01 . 01		2 2.53 2 1.80 2 2.04 2 2.16 2 1.89	.01 .01 .01 .01 .01	.07 .07 .07 .07 .07	1 1 1 1 1	9 2 3 4 5
LK L24+005 11+0 LK L24+005 11+7 STD C/AU-5	оя (514 1	3	66 11 61 4	18 31 41 13	9	.6 5 .7 1	4 1 5 3	3 23 1 104	81 5.0 47 4.3	8 71 10 31	0 9 1	5 X 9	D 7 3	7 2 6 4	4 7 1	i 9 1	3 5 2	2 33 10 58	1.	13 .14 50 .0	18 3 94 3	11 3 8	11 .5: 55 .8	5 175 7 175	. 01 . 0	1 7 3	3 1.58 4 2.05	.01 .06	.05 .14	12	26 ! 47

BOUNDARY DRILLING	INC.	PROJECT)	FILE	#	89-2912	
-------------------	------	---------	---	------	---	---------	--

SANPLE#	HO ?PM	Cu PPN	Pb ?PM	2a PPN	Ag PPH	Nİ PPN	CC PPN	Hn PPN	Fe 3	AS PPN	U PPM	Au PPN	Th PPM	ST PPN	Cđ PPM	Sb PPN	Bİ PPM	V PPM	Ca %	₽ ₹	La PPN	CT PPN	Ng ł	Ba PPN	Ti ł	B ?PN	Al १	Na %	K ł	W PPN	Au* PPB
LK 124+035 11+50W LK 124+005 11+35W LK 124+005 11+00W LK 124+005 10+75W LK 124+005 10+50W	2 4 2 2 1	55 65 54 72 44	42 59 65 114 47	179 256 252 333 247	.4 .5 .5 .2 .7	44 50 45 67 48	10 8 10 14 12	168 143 192 205 281	3.95 3.38 4.38 4.63 3.46	44 70 54 49 37	5 5 5 5 5	ND ND ND ND ND	10 5 6 5 5	15 13 15 13 21	1 1 1 1	2 2 2 2 2 2 2	2 4 2 2 4	16 18 21 26 19	.05 .05 .12 .20 .23	.062 .131 .170 .103 .063	40 34 29 28 31	24 15 19 34 23	.50 .14 .21 .56 .45	100 131 130 121 117	.01 .01 .01 .01 .01	2 2 5 2 2	1.38 .57 1.00 1.62 1.43	.01 .01 .01 .01 .01	.05 .04 .04 .06 .05	1 1 1 1	12 40 165 8 7
LK 124+005 10+25N LK 124+005 10-00N LK 124+005 9+75W LK 124+005 9-50W LK 124+005 9+25W	2 2 1 1 2	42 53 32 50 90	53 44 35 46 74	274 207 178 189 248	1.9 .2 .6 .2	39 55 44 56 67	10 15 12 12 15	259 335 217 214 275	5.43 4.22 3.53 4.42 5.19	59 47 32 40 75	5 5 5 5	ND ND ND ND ND	4 9 9 8 10	20 18 10 12 12	1 1 1 1		2 2 2 2 3	22 19 19 20 17	.27 .17 .09 .10 .10	.223 .056 .064 .090 .142	21 32 35 33 34	29 32 32 33 28	.43 .73 .63 .50 .24	119 74 75 99 97	.01 .01 .01 .01 .01	2 2 2 2 2	1.52 1.54 1.57 1.33 1.00	.01 .01 .01 .01 .01	.05 .05 .05 .05 .05	1 1 1 1	24 13 8 6 31
LK 124+005 9-00W LK 125+005 21-50W LK 125+005 20+00W F LK 125+005 19-00W LK 125+005 13-75W	1 1 1 1	30 39 20 35 31	27 31 32 40 64	200 137 229 166 169	1.0 1.2 .1 .5 .6	40 22 25 45 31	11 3 8 13 12	199 157 166 214 198	5.99 4.51 4.02 4.71 4.54	34 44 34 51 64	5 5 5 5 5	ND ND ND ND ND	8 7 7 10 5	9 4 6 9 10	1 1 1 1 1	2 2 2 2 2	2 3 2 3 2	28 30 18 19 22	.11 .04 .08 .13 .12	.196 .122 .030 .052 .068	28 33 37 37 39	43 19 22 25 20	.40 .29 .59 .58 .39	90 55 128 75 88	.01 .01 .01 .01 .01	3 2 2 2 2	1.86 1.30 1.81 1.59 1.43	.01 .01 .01 .01 .01	.04 .05 .10 .05 .05	1 1 1 1	6 4 5 1
LK L25+00S 13+30W LK L25+0US 13-15W LK L25+0US 13-05W LK L25+00S 13-00W LK L25+00S 17+5W LK 125+00S 17+5W	1 1 1 1	25 26 22 26 35	75 21 30 29 41	185 113 127 166 185	1.1 .1 .1 .2	28 25 21 36 50	10 8 3 12 15	136 109 130 126 164	3.97 3.61 4.21 4.54 5.44	75 72 64 46 33	5 5 5 5 5	ND ND ND ND ND	5 3 6 9 7	6 5 9 11	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2	22 23 23 24 37	.06 .06 .05 .06 .17	.077 .064 .063 .044 .060	39 46 38 40 24	17 14 18 31 51	.15 .17 .21 .51 1.94	61 43 67 95 116	.01 .01 .01 .01 .06	2 2 2 2 2	.99 .83 1.04 1.65 2.75	.01 .01 .01 .01 .01	.04 .03 .04 .05 .08	1 1 1 3	3 3 5 2 2
LK L25+005 17-25W LK L25+005 17-25W LK L25+005 17+00W LK L25+005 15-50W LK L25+005 15+25W LK L25+005 15-60W	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 42 22 28 42	39 37 32 27 42	294 218 292 250 257	.2 .1 .6 .3	75 53 45 57 80	19 17 15 16 20	199 182 243 188 338	5.04 5.71 5.15 5.17 4.92	19 43 25 40 21	5 5 5 5 5	HD ND ND ND ND	7 9 6 6 8	19 9 20 21 23	1 1 2 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2	57 34 37 46 48	.34 .13 .20 .22 .29	.074 .067 .045 .064 .049	19 30 22 23 26	91 56 51 68 74	2.00 1.79 1.44 2.04 2.44	75 104 215 120 83	.13 .06 .04 .08 .11	2 3 2 7 3	3.20 2.69 2.51 2.57 2.83	.01 .01 .01 .01 .01	.10 .10 .06 .07 .09	1 2 1 1 2	2 7 7 3
LK 125+005 15+75W LK 125+005 15+75W LK 125+005 15+15W LK 125+005 15+15W LK 125+005 15+10W LK 125+005 15+10W	1 1 1 2 3	39 32 56 79 61	28 34 59 119 39	187 295 367 593 406	. 2 . 3 . 2 . 8	57 72 70 92 84	14 18 19 23 22	197 193 284 309 339	4.27 5.56 5.01 5.42 5.12	40 29 59 60 54	5 5 5 5 5	HD HD HD HD HD	6 7 8 6 7	15 12 17 29 29	1 1 1 2 2	2 2 2 2 2 2	2 2 3 2 3	41 48 31 34 40	.16 .19 .20 .33 .37	.099 .085 .105 .212 .124	26 25 31 24 29	55 90 46 41 58	1.34 2.58 1.14 .75 1.25	137 105 134 162 143	.05 .11 .02 .02 .02	2 11 4 2 2	1.93 3.21 1.97 2.21 2.13	.01 .01 .01 .01 .01	.07 .09 .06 .06 .06	1 1 1 1 1	3 4 4 4
LK L25+005 14+50W LK L25+005 14+55W LK L25+005 14+15W LK L25+005 14+00W # LK L25+005 12+75W	1 7 1 2 1	45 39 39 54	29 36 25 39 35	316 252 208 264 295	.5 .4 .6 .9	6B 76 50 57 62	19 18 13 14 16	212 203 200 193 200	4.72 4.93 4.72 4.67 4.72	42 39 37 40 41	5 5 5 5 5 5	ND ND ND ND	7 7 8 9 9	15 13 13 15 15	1 1 1 1	2 2 2 2 2	2 2 4 2 4	37 42 33 31 31	.21 .17 .19 .19 .18	.107 .084 .127 .113 .118	29 29 29 31 31	67 93 52 56 64	1.55 1.98 1.14 1.13 1.22	132 131 125 134 132	.05 .05 .03 .03 .03	6 2 2 2 5	2.37 2.57 2.14 2.15 2.13	.01 .01 .01 .01 .01	.07 .06 .06 .05 .05	1 1 1 2	31 10 4 3 6
LE 125+005 13+35W	2 19	55 63	39 40	217	.5 5.8	54 75	13 31	250 956	4.55	41 42	5 17	ND 7	3 37	15 48	1 19	2 15	2 23	35 58	.18 .51	.102 .095	30 38	47 56	, 99 . 88	152 173	.03 .07	3 35	1.98 2.05	.01 .06	.06 .14	1 13	4 51

Р 9

- - -	$\mathbf{}$						в	OUNI	DARY	DRI	LLI	NG I	INC.	PRO	JEC	T)	FILE	ŧ	89-2	2912										F) 10
SANP LE#	MO PPM	Cu PPN	Pb PPM	ZO PPN	Ag PPN	NI PPM	Co PPN	Na PPM	Fa N	As PPN	U PPN	Au PPM	Th PPN	ST PPM	Cd ?PM	Sb PPM	Bi PPN	V PPM	Ca ł	P t	La PPM	CT PPN	Ng ł	Ba PPM	Ti %	8 99%	Al %	Na %	K Z	W PPN	Au* PPB	
LK 125+003 13-00W LK 125+063 12+75W LK 125+063 12+75W LK 125+063 12+60W LK 125+063 12+60W LK 125+065 11+75W P	2 1 2 2 2	42 59 60 69 54	47 43 71 691 57	218 312 286 391 439	1.0 1.9 .6 2.3 1.2	43 49 53 58 99	10 12 11 12 19	322 185 156 144 534	3.94 4.17 4.89 4.45 4.22	46 47 68 246 52	5 5 5 5 5	ND ND ND ND ND	6 9 7 7 2	19 22 23 22 39	1 1 1 2	2 2 2 3 2	2 4 2 2 2	26 24 28 11 20	.21 .21 .13 .05 .71	.171 .234 .305 .060 .070	29 26 26 33 22	31 28 30 15 31	.50 .46 .43 .18 .61	141 121 165 93 114	.01 .01 .01 .01 .01	3 6 2 2 2 2	1.55 1.37 1.45 .82 1.32	.01 .01 .01 .01 .01	.05 .04 .04 .04 .04	3 1 3 1 1	2 45 5 9 4	
LK 125+005 11+50W LK 125+005 12+75W LK 125+005 12+50W LK 125+005 12+15W LK 125+005 12+00W	1 1 1 1	33 34 47 25 15	23 28 72 24 16	178 258 143 115 33	.2 .2 .1 .1	43 67 40 30 22	13 19 10 9 7	155 187 191 131 115	5.05 5.03 4.07 3.41	21 30 32 15 13	5 5 5 5 5	ND ND ND ND	8 7 7 7 7	19 15 9 8 7	1 1 1 1	2 4 2 2 2	2 2 3 2 2	11 50 19 15 19	.33 .23 .10 .11 .12	.031 .057 .050 .030 .036	25 23 24 41 29	19 75 24 20 19	.42 2.35 .47 .46 .34	56 122 74 50 41	.01 .09 .01 .01 .01	3 2 2 2 4	1.07 2.79 1.32 1.19 1.16	.01 .01 .01 .01 .01	.04 .07 .05 .04 .05	1 1 1 1	1 1 2 3 1	
LK LIS+008 9+75W LK LIS+008 9+50W LK LIS+008 9+35W LK LIS+008 9+00W LK LIS+008 9+00W LK LIS+008 01-00W	1 I I 1	35 16 24 28 21	44 12 27 20 24	137 76 122 116 167	.2 .1 .1 .1 .2	36 20 34 33 35	11 6 10 10 10	203 144 142 237 262	2.32 1.74 4.15 3.52 4.11	38 17 22 22 22	5 5 5 5 5	ND ND ND ND ND	6 4 7 14 7	7 5 6 7 7	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2 2	13 9 14 10 33	.09 .05 .07 .13 .11	.039 .031 .040 .031 .063	39 40 38 45 24	17 13 22 19 45	.32 .19 .40 .40 1.45	45 31 36 64 134	.01 .01 .01 .01 .05	2 2 4 2 2	1.10 .69 1.30 1.14 2.42	.01 .01 .01 .01 .01	.04 .04 .03 .05 .08	1 1 1 1 1) 1 2 1 3	
LK 126+005 11+75W LK 126+005 11-50W P LK 125+005 11-15W SK 126+005 11-10W P LK 126+005 11-10W P LK 126+005 10+75W P	1 1 1 1 1	38 25 60 29 20	28 10 38 22 23	205 119 256 137 184	.9 .3 .5 .3 1.1	42 38 104 43 35	17 9 27 14 :2	1721 257 310 267 613	3.62 3.77 5.69 3.13 4.33	35 31 95 29 20	6 5 5 5 5	ND ND ND ND	2 2 5 7 4	61 9 9 5 8	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 6 2 2	20 45 47 29 51	1.23 .17 .15 .09 .15	.113 .050 .091 .069 .077	18 19 20 29 21	31 72 99 46 66	.74 1.11 1.90 .96 1.39	111 132 120 138 152	.01 .08 .04 .02 .06	5 2 2 2 3	1.77 1.80 2.95 2.50 2.46	.01 .01 .01 .01	.07 .11 .08 .06 .12	1 1 1 2	3 : 3 1	
LK L26+005 20-50W LK L26+005 20+25W P LK L26+005 20+25W P LK L26+005 19+75W LK L26+005 19+50W	1 1 1 1 1	28 37 17 17 98	49 53 17 24 595	202 138 309 293 1239	.7 1.6 .9 .5 .9	39 36 34 24 120	12 14 10 9 24	226 354 323 210 530	4.83 5.22 3.39 3.14 4.62	34 31 10 18 97	5 5 5 5 6	ND ND ND ND ND	7 3 5 2 5	7 31 39 55 41	1 2 1 1 2	2 2 2 2 2 2	2 2 2 2 2 2	36 36 23 33 31	.11 .45 .54 .62 .63	.077 .069 .059 .043 .064	24 25 24 19 31	55 41 42 35 117	1.17 .34 1.05 .72 1.75	119 147 75 129 163	.03 .02 .02 .03 .05	2 2 2 2 3	2.53 2.50 2.02 1.89 3.01	.01 .01 .01 .01 .01	.05 .10 .07 .05 .06	1 1 2 1	23 2 1 2 1	
LK L26+COS 19+15W LK L26+OOS 19+9CW LK L26+OOS 19+9CW LK L26+OOS 18+75W LK L26+OOS 18+35W LK L26+OOS 18+25W	1 1 1 1	22 47 37 38 44	20 27 23 20 28	249 362 227 220 355	.6 .5 2.1 1.0 .7	142 99 56 49 61	29 24 17 16 19	374 389 292 252 299	5.92 5.54 5.36 5.75 5.59	40 41 36 38 51	5 5 5 5 5	ND ND ND ND ND	3 7 7 8 7	20 28 8 10 15	1 1 1 1	3 2 2 2 2	2 2 2 2 2 2	79 47 43 40 41	.32 .37 .16 .13 .23	.043 .078 .099 .064 .156	13 32 26 30 27	332 101 62 50 67	2.55 1.60 1.25 1.02 1.34	72 112 120 138 140	.11 .06 .05 .04 .03	2 2 4 2 2	3.73 2.96 2.63 2.48 2.35	.01 .01 .01 .01	.04 .07 .05 .05 .05	1 1 1 1	2 1 1 3 1	
LK L26+005 13+004 LK L26+005 17+75W LK L26+005 17-50W LK L26+005 17-50W LK L25+005 17+75W LK L25+005 15+75W	1 1 3 1	107 46 163 39 38	29 21 32 31 34	246 326 320 191 250	. 2 . 6 . 1 . 2 . 4	116 96 102 47 46	29 22 24 15 13	379 328 393 292 231	6.12 5.48 6.13 5.13 4.71	96 43 118 276 46	5 5 5 5 5 5	ND ND ND ND ND	7 5 8 4 5	20 10 19 10 11	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	47 48 42 52 50	.27 .20 .24 .14 .15	.067 .087 .121 .123 .121	31 20 30 13 20	140 154 61 63 69	2.18 1.93 1.35 1.22 1.39	118 106 122 145 165	.04 .06 .01 .04 .06	2 4 2 2 2	2.73 2.78 2.34 2.17 2.24	.01 .01 .01 .01 .01	.04 .05 .05 .05 .05	1 1 1 2 1	4 2 33 1	
LE 126+008 15+304	4	137 59	49 41	329 132	.2 6.7	79 68	19 30	336 939	5.69 4.11	117 39	5 18	ND B	9 37	20 47	1 18	2 15	2 22	30 57	.30 .50	.173 .092	29 37	36 55	.70 .88	142 175	.01 .07	2 35	1.86 1.95	.01 .06	.05 .14	1 13	5 49	

(_____

)						в	OUN	DARY	DRJ	LLI	NG :	INC.	PRC	JEC	, ^{am} T)	FILE	: #	89-3	2912										F
SANPLE#	HO PPN	Cu PPM	?b PPM	ID PPN	Ag PPH	NÍ PPM	Co PPN	Mn PPN	Fe %	As PPM	U PPN	λu ?PM	Th PPM	ST ?PM	Cd PPN	SD PPN	Bİ PPM	V PPN	Ca %	P %	La PPN	Cr PPM	Kg १	Ba PPN	Ti ł	B PPN	Al %	Na 3	K %	¥ PPN	10 * 298
LK L25+005 15+15V LK L26+005 15+00W LK L25+005 15+75W LK L25+005 15+50W LK L26+005 15+25W	3 3 2 1 3	101 111 96 32 85	49 50 42 21 41	217 299 260 136 224	.3 1.3 .5 .3 .7	63 96 77 28 55	15 25 17 9 15	248 769 384 170 213	5.71 5.53 4.32 3.49 4.85	90 173 73 23 54		ND ND ND ND ND	7 6 7 5 7	19 14 20 12 13	1 2 1 1 1	2 2 2 2 2	2 2 2 2 2	35 19 24 30 27	.27 .19 .29 .15 .19	.194 .113 .130 .099 .141	28 24 31 29 29	40 41 29 27 33	. 57 . 52 . 58 . 49 . 56	151 123 89 105 97	.01 .01 .01 .01 .01	3 5 2 2 2 2	1.96 2.15 1.74 1.43 1.74	.01 .01 .01 .01 .01	.05 .05 .05 .04 .05	1 1 1 1	5 5 3 3 8
LK L26+095 15+03M LK L26+005 14+73M LK L26+005 14+73M LK L26+005 14+23M LK L26+005 14+23M	33242	88 80 76 108 60	78 31 31 47 43	252 342 323 319 151	.9 1.5 .7 .2 .1	73 54 61 71 47	22 15 16 19 17	342 261 330 355 553	4.73 4.43 4.31 5.14 4.73	42 43 45 65 40		ND ND YD ND ND	8 5 7 10	16 30 20 24 10	1 1 1 1	2 2 2 2 2	2 2 2 2 2	21 27 34 30 17	.28 .43 .36 .35 .13	.138 .134 .091 .160 .079	27 25 24 31 48	29 29 38 36 22	.54 .53 .78 .69 .50	99 137 146 178 105	.01 .01 .01 .01 .01	2 2 2 2 2	1.73 1.68 2.00 1.83 1.27	.01 .01 .01 .01 .01	.05 .05 .04 .05 .04	1 1 1 1	4 10 4 1
LK L26+00S 13+75W LK L26+00S 13+25W LK L26+00S 12+00W LK L26+00S 12+75W LK L26+00S 12+50W	1 2 3 3 5	60 74 72 44 83	56 41 27 41 175	159 252 213 119 390	.4 .9 1.1 .6 .7	58 52 102 59 144	22 13 24 19 37	68C 186 1009 375 1214	4.95 4.33 5.72 5.00 6.30	49 50 59 30 212		ND ND ND ND ND	11 5 3 17 13	21 18 32 11 21	1 1 2 1 1	2 2 2 2 2 2	2 2 2 2 2 2	17 23 41 8 13	.29 .17 .58 .14 .25	.086 .131 .084 .050 .069	35 27 20 56 45	26 28 56 10 44	.60 .45 .73 .23 .43	189 102 156 52 72	.01 .01 .01 .01 .01	2 2 3 3 2	1.49 1.52 1.58 .64 1.06	.01 .01 .01 .01 .01	.08 .04 .04 .05 .05	1 1 1 1	4 19 7 10
LK 126+005 12+25W LK 126+005 12+25W LK 126+005 12+15W LK 126+005 12+55W LK 126+005 12+35W	1 2 1 1 1	33 57 65 34 35	37 132 119 36 41	232 335 429 240 213	.1 1.0 1.2 .1 .4	47 81 89 43 49	19 23 18 11 16	410 1037 376 170 312	3.93 4.88 4.42 3.57 3.55	21 46 42 50 24	5 11 5 ²⁰ 5	ND ND ND ND ND	3 2 3 5	13 57 38 9 27	1 3 2 1 1	2 2 2 2 2	2 2 2 2 2	15 12 13 13 12	.14 1.19 1.00 .12 .48	.036 .118 .061 .032 .032	37 20 21 45 34	20 19 32 18 17	.38 .44 .35 .23 .34	92 115 67 57 78	.01 .01 .01 .01 .01	2 4 2 5	1.48 1.15 1.24 .89 1,00	.01 .01 .01 .01 .01	.05 .06 .05 .04 .05	1 1 1 1	1 11 8 2 4
LK L26+005 11+00W LK L26+005 10+75W LK L26+005 10+75W LK L26+005 0+75W LK L26+005 9+75W	1 1 1 1	12 35 33 17 14	25 24 34 14 20	37 132 101 104 34	.1 .2 .1 .2 .7	17 43 37 27 19	7 14 13 9 7	154 317 390 135 169	2.24 2.75 3.22 3.35 4.60	12 18 16 9 12	50 H 10 H 10	ND XD XD XD XD ND	6 13 12 5	6 7 10 6 7	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	10 11 8 11 17	.07 .11 .19 .08 .09	.035 .031 .057 .046 .050	42 44 41 36 32	11 23 16 20 15	.23 .40 .41 .41 .28	37 40 29 51 43	.01 .01 .01 .01 .01	2 4 4 2 2	.77 1.26 1.02 1.40 1.15	.01 .01 .01 .01 .01	.05 .04 .03 .03 .03	1 1 1 1	1 7 1 9
LK L26+005 9+25W LK L26+005 9+0CW LK L27+005 22+00W LK L27+005 21+75W LK L27+005 21+50W	1 P 1 P 1 1	22 35 18 13 14	19 26 11 8 10	145 135 96 52 56	.6 .2 .3 .4 .1	30 39 20 13 15	11 13 8 5 6	250 273 249 222 525	3.72 4.38 3.30 2.23 3.47	8 22 15 14 25	5555	ND ND ND ND ND ND	7 10 6 3 3	5 6 4 3 3	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	16 14 25 23 29	.07 .07 .05 .02 .04	.072 .068 .067 .053 .108	30 35 30 32 35	25 23 23 14 13	.46 .45 .44 .15 .22	70 45 85 56 37	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.69 1.57 1.68 1.07 1.09	.01 .01 .01 .01 .01	.03 .04 .04 .03 .05	1 1 1 1	1 1 1 1
LK 127+00S 21+25W LK 127+00S 21+00W LK 127+00S 20+75W LK 127+00S 20+75W LK 127+00S 20+25W LK 127+00S 20+25W	P 1 1 1	11 8 2B 21 29	15 14 15 28 13	70 147 133 135 107	.4 .3 1.2 .7 .3	14 24 35 27 40	5 11 12 9 12	211 460 209 199 324	3.45 5.08 5.81 4.91 4.12	9 44 27 22 34	55555	ND ND ND ND ND	6 4 5 5 3	3 4 3 5 4	1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	29 17 27 31 45	.03 .08 .03 .15 .05	.056 .067 .109 .122 .095	30 29 26 25 21	20 10 30 31 52	.27 .14 .47 .59 .92	60 67 93 123 74	.01 .01 .01 .01 .01	2 2 4 2 2	1.72 1.03 1.80 1.88 1.74	.01 .01 .01 .01 .01	.03 .03 .04 .04 .03	1 1 1 1	2 1 12 112 2
LK 127+005 20+00W	1 1B	32 53	7 37	12 4 132	.3 5.8	49 74	11 31	238 956	4.38 4.18	22 38	5 19	ND B	2 36	5 48	1 18	2 15	2 19	64 58	.07 .50	.097 .095	20 38	60 53	. 3 9 . 87	57 172	.01 .07	2 36	1.81 2.04	.01 .06	.03 .14	1 12	1 49

) 11

t .

							B	OUN	DARY	DRI	LLI	NG 🗄	INC.	PRC	JEC	T)	FILE	5 #	89-	2912										F)
SAHPLE#	Mo M99	Cu PPN	Pb PPM	Zn PPN	Ag PPM	NI PPM	Co PPM	HN PPM	Fe ३	AS PPN	U PP N	Au PPM	Th PPM	ST PPM	Cđ PPM	Sb PPM	Bi PPM	V PPM	Ca t	P %	La PPM	CT PPN	Ng %	Ba PPM	Ti %	B PPN	21 2	Na %	R %	K 29N	Au* PPB	
TK 127+005 19+75W	1	22	29	125	.1	26	9	212	4.595	21	5	ND	5	4	1	2	2	42	.07	.170	22	38	. 61	80	.01	2	1.98	.01	.04	2	4	
TE 1274085 194589	1	30	28	130	. 8	61	11	151	5.48	41	5	ND	3	5	1	2	2	50	.07	. 093	21	70	1.11	104	.01	2	2.36	.01	.03	2	2	
TE 1274605 194258	1	25	19	137	. 8	37	B	130	3.71	28	5	ND	4	8	1	2	2	51	.11	.152	21	47	. 55	116	.02	2	1.66	.01	.03	1	3	
18 1271000 12120W	1	146	33	414	2.0	114	26	1591	3.56	102	5	ND	4	15	2	2	2	46	. 29	. 279	13	67	1.17	121	.01	2	2.33	.01	.03	1	24	
LA L27+005 13+75W	8	183	41	513	1.2	90	15	384	5.33	96	5	ND	4	55	2	2	2	108	1.07	.603	19	51	.63	190	.01	1	2.06	.01	.06	1	1	
TE 1071005 121508	,	67	4	103	. 9	74	18	579	7.13	81	5	ND	3	12	2	2	2	76	.20	. 517	16	75	. 37	133	.01	3	2.10	.01	.04	1	9	
18 1071008 18136W		78	46	546	5	53	12	267	5.46	59	5	ND	4	21	2	2	2	54	.33	.252	24	34	.48	58	.01	2	1.70	.01	.04	1	11	
LE LLITUUS ISTLAN	2	174	10	663	1.6	44	19	360	5 63	36	5	ND	4	56	2	2	2	39	. 94	.353	25	32	. 66	88	.01	2	1.81	.01	.05	1	25	
LE 12/ 4003 134000	3	100		123	1.0	26	10	300	6 77	103	Ę	ND	6	41	1	,	2	49	.17	.415	23	40	.72	143	.01	2	2.12	.01	.06	1	15	
14 12/1003 1/1/JW	,	100	17	162	1.2	30	11	100	5 15	17	Ę	ND	6	11	1	,	,	40	.15	.155	23	38	. 56	139	.02	5	2.13	.01	.05	1	7	
LK 127+005 17+50W	1	21	17	132	. 1	33	11	192	3.13	72	-	30	Ŷ	••	÷	-	-		•••													
1K 127+005 17+25W	5	137	29	415	1.3	84	16	274	5.56	62	5	ND	7	26	1	2	2	40	.39	.231	25	35	.67	146	.01	2	2.04	.01	.05	1		
LE 127+005 17+00W	2	106	48	351	1.2	12	19	354	5.03	59	5	ND	5	14	1	2	2	39	. 27	.201	24	44	1.04	137	.01	6	2.17	.91	. 05	1	12	
1X 127+005 15+75W	3	144	53	365	.7	80	19	421	5.12	68	5	ND	7	14	1	2	2	33	.26	.166	26	39	.91	115	.01	5	1.99	.01	.05	1	10	
TT 1274005 16+50W	,	56	40	232	1.1	49	12	175	4.92	64	5	ND	6	13	1	2	2	36	.18	.197	21	59	. 94	115	.03	2	1.92	.01	. 05	1	3	
LK L27+005 16+25W	1	80	20	170	.9	130	29	1051	7.57	61	5	ND	6	11	1	2	2	34	.20	.087	25	55	.55	129	.01	3	1.51	.01	.04	1	5	
TT 111000 16-004	1	1 2 2	25	112	5	77	19	105	\$ 19	66	۲	ND	a	23	1	2	2	30	. 17	.173	34	34	. 77	125	.01	2	1.93	.01	.05	1	1	
TH FT14009 TEACOM	J 1	123	20	1-2		70	25	765	5 61	97	, 5	VD.	10	17	1	2	2	21	.24	.069	40	33	.71	92	.01	2	1.74	.01	.05	1	11	
12 L27+005 15+73W		70	33	1,9	• • •	61	20	043	2.72	24		ND	11	19	1	,	,	20	.30	.075	31	31	. 65	101	.01	11	1.54	.01	.06	1	9	
LK 1274005 12+59W	1	18	10	202	.1	77	14	1000	5 21	59	:	ND.	,	30	÷	,	;	20	58	087	79	27	. 60	139	.01	2	1.42	.01	.08	1	11	
LK 1274005 15+25W	4	00	30	195	. 1	13	49	1147	0.31	0.0 6.2		30 10	ź	20	;	;	;	25	50	127	11	17	.56	122	.01	4	1.72	.01	.07	1	19	
LE L27+005 15-00W	2	104	19	271	. 3	82	24	523	3.24	37	3	30	9		-	÷	-	23				••				-				-		
LK L27+005 14+75W	1	58	34	143	.3	136	33	864	5.78	102	5	ND	12	23	1	2	2	17	.34	.056	35	96 21	.75	98 159	.01	9	1.33	.01	.04	1	27	
LK L27+005 14+50W	1	34	27	145	. 5	52	20	368	4.92	45	5	ND.	1	20	1	4	4	20	. 30	.033	23	00	. 30 75	171		5	1 07		. 0 3	1		
LK L27+005 14+25W	1	46	38	192	. 2	93	21	517	5.73	74	5	ND	8	8	1	2	3	24	.08	.033	14	30	.15	176	. 01	1	1 57	.01		1	14	
LE 127+005 14+00W	1	55	53	193	. 4	65	20	461	5.25	63	5	ND	4	29	1	2	2	19	. 46	.080	21	38	.00	220	.01		1.32	.01	20.	1	12	
LK L27+005 13+75W	2	63	56	220	. 8	61	20	1467	5.13	54	5	ND	4	37	1	2	2	22	. 58	.091	21	32	.10	343	.01	2	1./9		. 03	1	14	
LE 127+005 13+50W	1	50	73	182	. ó	55	18	894	4.59	38	5	ND	5	33	1	2	2	22	. 38	.058	31	29	. 57	325	.01	2	1.72	.01	.05	1	13	
LX L27+005 13+25W	1	58	174	197	.1	50	15	254	4.32	48	5	ND	9	12	1	2	2	11	. 18	.069	32	15	. 33	76	.01	12	1.31	.01	.04	1	25	
LK L27+005 13+00W	1	28	33	110	.1	28	8	188	3.30	30	5	ND	8	10	1	2	2	15	.12	.052	36	17	. 29	56	.01	Z	1.05	.01	.04	1	10	
SK 127+005 12+75%	1	33	31	182	. 2	39	10	182	4.24	25	5	DK	9	10	1	2	2	11	.13	.043	48	16	.30	100	.01	2	1.30	.01	.03	1	-	
LK L27+005 12+50W	1	64	73	215	.3	61	23	898	5.35	51	5	HD	11	14	I	2	2	13	.18	.072	40	24	. 46	73	.01	2	1.23	.01	.05	1	1	
** *********	1	17	25	160	1	64	15	467	4.71	23	5	ND	10	14	1	2	2	21	.18	.063	37	39	.80	113	.01	2	1.98	.01	. 05	1	1	
14 1271000 12:207	1	1) 51	31	100		10	11	583	1 40	75	Ę	ND	5	9	1	2	2	18	.11	.075	34	23	.41	73	.02	10	1.37	.01	.04	2	3	
LE 527+003 11+008	1	41	4J 22	200	.a 2	17	14	100	1 27	22	ç	110	ą	ii	1	2	2	16	.20	.120	37	22	.50	50	.01	9	1.48	.01	.04	2	2	
LE LZ/+905 11+/5W	1	51	01	200		11	12	100	1.04	11	ç	្រ អា	á	10	i	,	;	15	.13	.100	41	29	.41	80	.01	4	1.34	.01	.03	1	1	
LK 127+005 11+50W	1	13	22	210	.]	94 72	13	103	1./3	25	2	มกั	7	2	1	,	,	16	09	078	38	50	.48	71	.01	2	1.32	.01	.04	1	9	
LK 127+005 11+25W	1	76	/3	271	.1	13	10	3/3	2.7/	30	3	πv	1	9	ł	•	-	10			••	••				-						
LE 127+005 11+00W	I	24	19	140	.2	37	15	241	4.61	11	5	HD	11	1	1	2	2	18	.07	.040	35	26 5 5	. 59 9 8	54 176	.02 07	2	1.91	.01 .06	.04	1	1 51	
370 0/311-5	18	67	11	137	6.7	74	30	997	4.20	40	19	1	36	4/	15	10	44	28	. 30	. 472	20			*14		41				••		

) 12

¢.

)						BOU	NDAR	Y D	RILL	ING	INC	. PF	ROJE	CT)	FII	.E #	89	-291	2									P) 13
SAMPLEŧ	Ho ?PM	Cu PPN	Pb PPN	Zn PPH	Ag PPN	NÍ PPN	CO 2PM	Na PPN	Fe %	AS PPN	U PPM	AU PPN	Th PPH	Sr PPM	Cđ PPM	SD PPM	Bİ PPN	V PPM	Ca %	?	La PPN	CT PPN	Xg Z	Ba PPM	Ti %	B PPM	Al 3	Na Z	K १	¥ PPN	998 201
LX 127+005 10+75W LX 127+005 10+50W LX 127+005 10+25W LX 127+005 10+25W LX 127+005 10+63W LX 127+005 9+75W	1 1 1 2	39 46 59 60 43	15 21 23 16 12	104 145 110 121 103	.1 .2 .1 .1 .1	34 29 49 41 47	13 12 16 19 15	213 1143 362 441 444	4.20 4.33 4.62 4.57 4.40	6 9 13 10 9	5 5 5 5 5 5	ND ND ND ND ND	9 7 12 14 11	6 18 7 7 8	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	16 20 19 14 20	.08 .51 .08 .11 .11	.048 .108 .052 .074 .058	25 21 29 41 40	20 17 27 24 32	.47 .41 .54 .58 .83	47 136 70 36 45	.02 .02 .02 .01 .02	2 2 6 2 4	1.55 1.37 1.80 1.54 1.92	.01 .01 .01 .01 .01	.03 .06 .04 .04 .04	2 2 2 2 2 2 1	1 1 4 1
LK 127+005 9+50W LK 127+005 9+25W LK 127+005 9+00W LK-C 113+005 15+75W 40CM LK-C 113+005 15+75W 40CM	1 1 1 1 1	25 39 21 37 36	17 21 3 44 43	138 155 67 240 252	.3 .2 .1 1.2 1.3	43 44 16 33 32	16 16 6 10 10	505 306 154 353 474	4.34 5.78 2.71 3.59 3.48	9 14 10 70 56	5555	ND ND ND ND ND	9 10 5 4 3	8 7 4 14 23	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2	19 16 22 23 21	.11 .09 .04 .23 .40	.073 .074 .057 .066 .068	31 25 29 22 17	32 30 10 33 32	.69 .55 .15 .39 .37	59 47 29 118 140	.02 .01 .01 .01 .01	2 2 2 2 2 2	2.14 2.25 .39 1.12 1.06	.01 .01 .01 .01 .01	.04 .03 .03 .06 .06	2 1 1 1	1 1 1 8
LK-C L13+00S 15+50W 40CM LK-C L13+00S 15+25W 40CM LX-C L13+00S 15+25W 55CH LX-C L13+00S 15+05W 43CM LK-C L13+00S 15+00W 43CM LK-C L13+00S 15+00W 63CM	1 1 1 1	51 113 117 73 156	75 403 387 69 111	544 786 791 329 660	1.2 .8 .3 1.1	56 55 57 24 31	17 16 18 8 13	602 601 634 149 480	4.49 4.96 5.18 5.22 7.04	105 93 92 109 323	5 5 5 5 5	ND ND ND ND ND	6 3 5 2 4	8 13 13 14 12	1 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2 2	30 29 30 23 27	.11 .26 .24 .26 .20	.058 .095 .093 .074 .069	25 22 24 17 19	57 43 47 32 39	.55 .64 .69 .31 .35	136 114 118 109 114	.01 .02 .02 .02 .01	2 4 2 2 2	1.77 1.40 1.52 1.04 1.54	.01 .01 .01 .01 .01	.06 .08 .07 .05 .05	1 1 2 1	6 17 14 3 13
IX-C L13+003 14+754 40CM IX-C L13+003 14+754 40CM IX-C L13+003 14+754 60CM IX-C L13+003 14+504 40CM IX-C L14+003 15+754 40CM IX-C L14+003 15+754 60CM	1 1 1 1 1	132 192 54 120 115	211 142 48 101 85	756 509 219 291 301	2.2 1.8 .5 1.5 1.1	94 57 38 90 34	22 19 14 24 23	365 655 391 631 744	6.82 7.79 4.29 5.36 5.25	130 152 34 102 100	5 5 5 5 5	ND ND ND ND ND	4 3 5 4 1	24 14 12 30 26	2 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	23 25 13 23 22	.41 .21 .18 .40 .36	.102 .081 .049 .085 .096	22 19 27 23 24	47 31 26 46 42	.50 .27 .47 .54 .59	150 101 74 165 138	.02 .02 .01 .01 .01	5 4 3 2 2	2.05 1.35 1.58 1.64 1.55	.01 .01 .01 .01 .01	.14 .08 .03 .09 .10	1 1 3 2	199 780 9 19 22
LE-C L14+005 15+50N 20CH LE-C L14+005 15+50N 40CN LE-C L14+005 15+25N 20CH LE-C L14+005 15+25N 40CN LE-C L14+005 10+25N 40CN P	1 1 1 1	34 68 71 75 41	43 44 109 111 79	168 245 369 369 253	.4 .3 .8 .8 .5	36 41 66 65 40	11 10 35 26 25	433 203 2345 1220 402	3.34 3.94 5.77 5.64 5.56	48 90 79 97 30	5 5 5 5	ND ND ND ND ND	3 4 4 4	15 12 13 11 5	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	19 30 32 35 96	.19 .12 .23 .20 .08	.033 .030 .080 .098 .098	24 33 17 19 13	30 36 53 55 49	.32 .41 .64 .71 1.15	75 166 168 154 206	.01 .01 .01 .02 .05	3 3 2 2 2	.90 1.23 1.43 1.51 3.12	.01 .01 .01 .01 .01	.06 .05 .05 .05 .03	1 1 1 1	101 17 5 3
LL-C L15+00S 10+25W 60CM LL-C L15+00S 10+25W 80CM LL-C L15+00S 10+12.5W 40 LL-C L15+00S 10+00W 35CM LL-C L15+00S 9+87.5W 40C	1 2 1 1 1	44 54 20 31 52	69 69 20 11 56	254 324 70 78 272	.4 .8 .5 .1 1.5	45 55 15 77 63	22 24 5 11 22	384 598 736 1201 413	5.12 6.09 1.66 2.72 8.06	35 61 19 36 42	5 5 5 5 5	ND Yd ND ND ND	5 5 1 3 4	5 27 10 6 8	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	92 69 24 40 106	.08 .41 .27 .11 .13	.052 .184 .040 .034 .096	14 15 19 20 15	49 50 16 138 94	1.11 .94 .13 .43 1.94	190 199 105 80 134	.05 .05 .01 .02 .10	2 6 3 3 2	2.93 2.63 .63 .84 3.14	.01 .01 .01 .01 .01	.04 .06 .03 .02 .03	1 1 1 1 1	5 5 11 1 9
LI-C L15+005 9+75W 40CM P LI-C L16+005 10+37.5W 40 LI-C L16+005 10+37.5W 50 LI-C L16+005 10+25W 40CM LI-C L16+005 10+25W 40CM LI-C L16+005 10+25W 60CM	1 1 1 1	70 32 30 57 73	102 20 9 71 103	192 259 280 225 248	.4 .8 .7 .7 .8	60 72 75 51 64	27 15 18 25 30	971 1402 1215 615 572	7.46 5.25 5.64 7.35 8.23	122 19 18 70 84	5 5 5 5 5	ND ND ND ND ND	3 8 11 8 9	15 16 14 9 10	1 1 1 1	2 2 2 2 3	2 2 2 2 2	37 23 21 31 28	.17 .33 .32 .18 .20	.114 .091 .105 .093 .088	13 32 38 33 33	60 35 36 46 46	.61 .70 .85 .49 .54	149 89 89 39 88	.02 .03 .02 .01 .01	2 2 3 2 2	1.49 2.75 3.04 2.33 2.45	.01 .01 .01 .01 .01	.09 .04 .04 .04 .04	1 1 1 1	51 3 1 5 12
LE-C 116+005 10+25W 80CM STD C/AU-S	1 18	72 64	73 41	237 132	.7 6.9	58 74	28 30	650 960	7.81 4.27	72 43	5 20	ND 8	10 37	10 48	1 18	2 15	2 17	29 59	.20 .50	.083 .095	37 38	40 56	.57 .88	85 173	.01 .07	2 36	2.31 2.07	.01 .06	.04 .14	1 12	9 53

(

ŧ

١

÷...

í

4

i.

		BOUI	NDAR	Y DI	RILL	ING	INC	. PI	ROJE	CT "		FII	LE #	89	-291	2									F) 1	. 4					
AMPIE:	Mo ?PN	Cu PPN	PL Sem	2n PPN	Ag ?PM	Nİ PPM	CO PPH	Nn PPN	?a }	As PPN	U PPM	Au PFM	Th PPN	ST PPN	Cd 29M	Sb PPN	Bi PPM	V PPM	Ca %	2 }	La ?PN	Cr PPN	<u>Mg</u> ⊰	BE Mgg	Ti ≹	B PPM	AI 3	Na %	3 8	¥ PPX	11# 229	
X-C 1164808 10-12.5W 35	1	35	242	351	.1	29	13	325	5.59	32	5	UD	5	ş	1	2	2	25	.19	.074	27	25	.25	11	.01	2	1.54	.91	.03	1	:	
X-0 116+008 10+12.5¥ 55	1	42	320	436	. 2	41	17	680	5.82	33	5	ND	7	:	1	:	2	20	. 11	.075	26	25	.21	44	.01	4	1.65	. 91	.03	-		
X-C 116+005 10+008 50CM	1	33	55	555	. :	48	12	275	4.71	21	5	ND	5	8	1	2	2	15	.15	.050	29	25		:4	.01	2	1.60	.01	.03	-	1	
T-C 116-005 10+00% 65CH	1	48	54	548	.5	62	15	374	4.51	25	5	NÐ	6	10	1	2	2	16	.19	. 344	29		.31	- 13	.01	4	1.55	.11	.04	i	3	
X-C 116+003 10+00W 73CM	:	91	52	396	.3	56	19	592	4.79	32	5	ND	11	10	1	2	2	12	.19	.043	37	30	.44	51	.01	2	1.33	.91	.95	1	ł	
TLA TICLING 0147 50 400	1	68	38	1017	1.1	79	13	1228	5.01	32	5	NE	3	18	1	2	2	23	.40	.064	19	34	. 48	73	. 01	2	1.71	.01	.05	2	7	
T-0 1154000 0487 5W 400		16	:4	-00	.3	55	16	645	4.47	32	5	ND	:	14	1	2	2	14	. 29	. 046	28	23	.38	52	.91	2	1.28	.01	.04	1	:	
	7 1	51	50	195	,	50	11	190	5.47	29	5	ND	ŝ	9	1	2	2	47	. 13	.037	25	47	.95	73	.02	2	2.17	.01	.04	1	£	
THE TRAINS OF IN SOCK -	1	19	\$2	157		60	19	385	5.15	28	5	ND	5	10	1	2	2	47	.16	. 037	23	46	.94	69	.02	2	2.13	. 01	.64	1	34	
AND DIGITUD STICK LOOM	1	24	38	510	1		13	1157	5.02	31	5	ND	4	12	I	2	2	30	. 25	.053	24	36	. 50	94	.01	2	2.04	.01	. 05	:	4	
7-0 712-000 3107134 330	1	**																														
R-C 117-905 10+55W 40CH	I	13	17	115	.4	22	7	202	2.22	20	5	ND	3	11	1	2	2	15	.15	.031	23	21	.23	82	.61	2	.79	.01	.03	1		
K-C 117+005 10+50W 60CM	1	20	27	145	.1	31	10	202	3.11	24	5	ХD	3	10	1	2	2	13	.15	.036	31		.21	:4	.01	4	1.09	. 01	.03	•		
X-0 117-008 10+56W 80CH	1	49	54	168	.3	64	15	367	4.12	49	5	ND	10	8	1	2	2	13	-12	.041	35	35	. 38	71	.01	4	1.44	.01	.03	1		
X-C 117+005 10+37W 40CM	1	66	70	274	1.3	115	12	625	5.37	55	5	ND	5	12	1	2	1	26	.20	.050	- 16	19	. 46	133	.01	4	1.11	.91	.98	•		
I-C 117-005 10+37W 60CH	1	61	50	241	.9	99	21	546	5.45	54	5	ND	£	12	1	2	2	23	.23	. 345	28	47	. 13	111	.01	2	2.06	.01	.00	1	••	
																															•	
X-0 1174005 10437W 70CH	1	62	67	210	.1	35	20	607	5.22	51	5	ЯD	•	13	1	1	:	20	.24	. 051	31	44	. 50	98	.01	2	1./8	.01	.05	•		
2-0 117-005 10+25W COCN	1	154	<u>99</u>	1196	.5	36	25	712	7.18	70	5	ND	3	16	3		4	28	.34	. 091	30	20	.83	30	.01	2	1.24	.01	.05	•		
R-C 117-005 10-158 40CM	:	137	\$2	1209	.:	33	17	317	5.43	63	5	ЯD	:0	15	3	2	:	23	.30	.085	12	24	. 59	37	.01	4	1.59	.01	.03	-	••	
X-0 117-005 10-15W 50CM	1	123	36	1243	.2	39	- 15	706	5.65	50	5	ND	10	14	2	2	2	22	.25	.576	31	52	. 5 3		.01	*	1.31	.01	.03	1		
T-C 117-R65 10+82.5K 40	:	40	69	695	.2	40	12	244	5.46	54	5	NÐ	ś	÷	!	:	:	38	. 05	.055	31	39	.37	77	.01	2	1.59	. 51	.94	i		
LX-C 117-305 10+12.5W 60	1	44	58	733	. 2	11	13	258	5.49	73	5	ND	6	5	1	2	2	33	.06	.057	33	37	.37	75	.01	2	1.41	.01	.UJ 07	1	:	
LK-C 117-305 10+008 40CM	1	34	190	341	.1	33	11	500	5.27	44	5	ND	3	3	I	2	-	10	.13	.946	20	23	111	51	. V 1 11		1 10	. 41	.02	1	••	
LX-C 117+005 10+00W 60CH	1	45	151	375	.2	35	13	615	5.35	4E	5	AD	4	8	1	2	2	26	.15	.943	19	- 4	.12	51	.01	4	1.10	.01	.03	1	;	
17-C 117-DDS 9+87.5W 40C	1	28	93	454	1.2	19	12	193	4.70	25	5	НĎ	ł	3	1	2		25	.14	.039	- 25	15	. 19	22	.01		1.0/	.01	.03	.,		
570 0/20-5	18	63	42	:32	6.8	74	31	1007	1.21	41	18	3	37	49	18	14	21	59	.50	. 093	39	23	. 35	[]3	.07	13	1.95	.82	.19	-4	7	

Ċ.

GEOCHEMICAL ANALYSIS' CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SE CA P LA CE MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SAMPLE#	Ho PPN	Cu PPM	Pb PPN	Zn PPN	Ag PPN	NI PPN	CO PPN	HA PPH	Fe t	A5 PPM	U PPN	Au PPM	Th PPM	Sr PPN	Cd PPN	SD PPM	Bİ PPM	V PPM	Ca %	P t	La PPN	CT PPM	Hg ł	Ba PPN	Ti ł	B PPN	Al १	Na 3	K Z	W PPN	Au* 29B
R 9+005 18+04W	11	60	18	79	.3	34	2	26	1.71	42	5	ND	5	20	1	3	2	27	.28	.140	10	10	.03	135	.01	4	.36	.01	.16	1	9
B 151259 71548	1	810	133	482	1.5	37	38	2470	16.29	762	5	ND	3	4	1	2	2	5	.14	.020	4	6	1.92	35	.01	5	. 35	.92	.10	1	5
2 151755 7450W	ī	1306	481	549	5.2	51	101	1128	21.14	50	7	ND	5	2	1	3	19	1	.02	.005	2	1	.30	10	.01	2	.15	.01	.05	1	27
0 151005 71115W	16	179	23	292	. 6	45	1	138	1.74	76	5	ND	4	66	4	2	2	64	1.19	. 490	12	10	.05	208	. 01	4	.45	.01	.21	1	7
R 15+005 20+51A	5	34	74	80	.1	26	8	346	3.32	2	5	ND	2	53	1	2	2	35	1.18	. 108	6	15	1.39	165	.01	4	1.35	.01	.07	1	1
R 15+005 20+618	16	123	21	91	.1	11	6	154	5.01	6	5	ND	1	29	1	2	4	69	. 48	. 249	9	26	2.22	295	.01	3	2.24	.01	.12	1	1
R 16+305 18+75W	3	5	23	3	. 3	6	1	16	.36	2	5	ND	2	1	1	2	2	3	.01	.005	10	7	.01	57	.01	2	.11	.01	.07	1	42
9 22+805 13+00%	1	45	10	64	.1	276	51	1266	5.68	470	5	ND	1	403	1	2	2	11	5.80	.038	5	39	5.02	303	.01	5	.24	. 91	.07	1	4
B 224055 234258	2	173	21	165	.1	125	28	389	5.45	6	5	ND	6	19	1	2	15	99	. 69	.168	28	258	3.31	64	. 26	7	3.79	.01	.14	1	1
R 23+355 24+32W	3	6	25	27	.3	11	1	59	. 38	9	5	ND	1	2	1	2	2	1	. 03	.001	2	1	.01	1	.01	2	.01	.01	.01	1	1
R 25+755 23+23¥	1	32	7	30	.1	17	6	347	1.02	5	5	ND	12	262	1	2	2	5	8.26	. 027	33	9	. 57	104	.10	2	.70	.01	.18	1	1
R 25+725 22+20W	1	215	2	109	.1	18	25	473	7.27	10	5	ND	1	45	1	2	3	184	. 92	.065	3	21	2.74	15	.35	3	3.11	. 31	.04	1	1
R 8402.2	3	174	4	88	.3	25	1	113	1.07	72	5	ND	3	4	1	2	2	- 4	.06	.013	10	7	.02	56	.01	5	.15	.01	.08	1	1
STD C/AII-R	19	54	40	132	á.8	66	31	1036	4.14	42	24	1	40	51	19	16	22	63	.51	.095	41	58	.91	180	.07	39	2.08	.06	.14	12	180

1 ...

. .

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** AWALISIS BY FA/ICP FROM 10 GM SAMPLE.

SAMPLE#	Ho ?PN	Cu PPM	Pb PPM	Zn PPM	Ag PPN	NI PPN	CO PPM	Hn ?PM	Fe X	As Ppu	U 2 2 M	ha PPH	Th PPN	Sr P PN	Cd PPM	SD 2PM	Bİ PPM	V PPN	Ca t	P S	La PPN	Cr PPN	Xg t	Ba PPM	Ti t	B PPM	A1 %	Na S	R z	N PPN	20** 228
R18-005 10+00W R13+205 10+10W R19+455 13+10W R20+005 12+55W R21+525 12+75W	1 1 2 1 1	25 9 30 5 59	26 39 23313 429 190	89 72 2223 103 201	.3 .1 46.1√ 1.0 .8	95 13 9 364 21	10 5 3 32 2	574 724 343 1302 283	3.48 1.50 1.55 4.30 .57	21 9 13 241 12	85565	ND ND ND ND	7 6 1 2 1	14 6 20 127 13	1 1 22 1 2	2 2 34 4 2	2 2 2 2 2 2	20 2 2 11 2	.49 .27 .73 5.30 .20	.024 .015 .067 .038 .022	13 10 2 3 7	149 28 34 595 41	1.70 .15 .22 4.37 .09	30 20 11 21 74	.01 .01 .01 .01 .01	2 2 5 2 2	1.96 .27 .03 1.56 .06	. 01 . 01 . 01 . 01 . 01	.06 .04 .01 .01 .C3	1 1 1 1	29 6 606 9 8
R21+755 19+12W R22+655 19+65W R22+755 19+09W R22+005 14+52W RP-7	1 4 1 15 1	127 37 34 555 5483	21451 / 78 1999 25614 / 5478	8936 54 1030 46270 1058	128.0 4 .6 9.7 205.9 7 15.9	10 8 9 24	3 2 3 5 13	145 328 438 83 1938	1.05 1.07 1.46 1.62 10.31	17 24 3 22 10	5 5 5 7	ND ND ND	1 1 1 10	14 138 17 57 80	61 1 11 412 5	17 2 688 14	215 2 18 352 35	3 2 4 1 32	.25 1.93 .25 .02 2.52	.015 .015 .015 .003 .044	2 2 2 2 23	34 29 46 19 45	.32 .83 .10 .11 3.49	26 46 70 17 220	.01 .01 .01 .01 .04	2 2 3 7 2	.07 .03 .05 .01 5.41	.31 .31 .31 .31 .31	. 92 . 91 . 93 . 91 . 94	1 1 1 1	50 14 6 215 94
STD C/AU-R	18	59	40	133	6.9	67	31	994	3.85	45	21	6	37	48	19	15	20	61	. 47	.097	38	55	.90	175	.07	36	1.93	.05	.14	12	510

- ASSAY REQUIRED FOR CORRECT RESULT -

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER C. V6A 1R6

11

M.A.

an á

51.15

2 344

6

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GEAN SAMPLE IS DIGESTED WITH 3NL 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 NL WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR HG BA TI B W AND LIMITED FOR WA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh AU* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE. P- pulver 2004, -40 mesh.

SAMPLE;	HO PPM	CU PPM	PD PPN	al Nec	29 29M	X1 PPM	00 1994 1995	994 PPM	79 }	AS 29M	9PM 2PM	AU P PH	72 ?PM	26 999	ea PPN	DD PPM	31 PPM	PPN	La ३	P -{	EBN PPN	29N	 	29N	ł	PPN	3	ла 3	ź,	PPM	998 1
LK 1103 03-73W LK 1103 03-53W LK 1103 03-25W LK 1105 03-25W LK 1105 03-90W LK 1105 00-75W	2 1 1 2	67 29 11 8 63	43 13 9 20	192 73 41 31 113	1.4 .4 .3 .1 .2	47 27 5 6 27	14 5 3 1	200 102 79 27 183	4.50 1.73 .97 .53 4.27	37 25 10 5 25	5555	ND ND ND ND ND	4 1 2 1 2		1 1 1 1		2222	19 21 18 10 61	.33 .09 .07 .06 .08	.135 .037 .019 .013 .091	17 21 22 21 17	31 25 12 3 34	.40 .17 .10 .07 .90	190 62 56 58 119	.01 .01 .02 .01 .04	3 2 4 2 3	1.46 .63 .64 .43 1.49	.01 .01 .01 .01 .01	.05 .03 .03 .03 .03	1 2 2 1	23 35 3 1 6
UX 1115 11-15W UX 1105 11-05W UX 1105 11-56W UX 1105 11-15W UX 1105 11-15W UX 1105 11-06W		49 160 132 59 35	7 177 45 17	161 108 179 190	.2 .2 .9 .3 .5	43 100 81 35 13	19 31 10 10 9	1113 953 1915 125 228	5.13 6.31 4.21 4.27 3.55	12 29 51 27 22	5 5 21 5 3	ND ND NC ND ND	10054	19 24 34 11 9	1		2 2 2 2 2 2	55 164 32 30 45	.55 .63 1.69 .23 .15	.102 .106 .130 .144 .043	9 15 13 25 23	72 146 36 34 38	3.13 3.31 .14 .12	142 136 157 57 151	.01 .16 .01 .01 .34	36795	3.37 3.91 1.41 1.13 1.27	.01 .01 .01 .01 .01	.03 .12 .05 .06 .05	1 1 1 :	: 1 24 7
LX LIDS 10-15W LX LIDS 10+15W LX LIDS 10+55W LX LIDS 20+65W LX LIDS 20+66W LK LIDS 19+15W	1	53 71 49 51 75	45 50 41 43 61	119 149 218 213 205	.4 .5 .5 .5	31 47 40 46 52	15 24 15 17 23	425 1592 459 611 598	3.24 5.06 3.93 3.99 4.95	29 53 36 39 46	5 5 5 5 5	NC XD ND ND ND	5 2 4 4 1		1 1 1 1	3 <u>2</u> 2 2 2 2	2 2 2 2 2 2	17 23 25 27	.28 .27 .19 .29 .52	. 396 . 073 . 035 . 062 . 103	24 22 23 23 17	23 36 40 39 41	.47 .51 .72 .75 .71	75 161 129 119 132	.91 .02 .02 .02 .02 .01	15 3 5 4 4	1.05 1.39 1.49 1.39 1.41	.01 .01 .01 .01 .01	.05 .06 .06 .05 .05	2 1 1 1 1	19 7 5 10 124
LX L105 19+36W LX L105 19-25W LX L105 22+80W LX L105 22+75W LX L105 22+75W	1 1 1 2 1	54 51 15 25 76	43 33 17 34 27	194 135 62 124 112	.3 .2 .1 .2 .4	39 41 17 25 51	15 13 4 3 15	434 529 125 430 193	3.91 3.20 2.02 3.58 4.53	32 28 14 42 31	5 5 5 5	ND ND ND ND ND	! 2 1 5	32 27 7 9 5	1 1 1 1	n 2 n 2 n 1	2 2 2 2 2	25 19 20 23 35	.58 .50 .09 .12 .05	.055 .080 .078 .171 .123	15 20 21 19 18	33 30 25 29 35	.49 .57 .12 .26 .52	119 58 93 93 78	.01 .01 .01 .01 .01	2 5 3 7 5	1.46 1.03 .81 .93 1.23	.01 .01 .01 .01 .01	.04 .05 .04 .06 .05	1 1 1 1	5 2 19 4 3
LX L135 21+00W LK L135 20+75W LK L135 20+56W LK L135 20+25W LK L135 20+26W	2 1 1 1 1	127 54 30 34 47	175 44 29 28 23	355 215 126 345 125	1.4 .3 .4 .1 .3	59 18 22 60 37	17 14 8 15 12	1614 265 171 1280 839	3.62 4.50 3.94 2.33 3.38	36 42 30 5 28	12 5 5 5 5 5	ND ND ND ND ND	1 6 3 1 1	111 9 6 45 10	4 1 2 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 4 2 2	29 23 40 37 32	2.16 .13 .11 .96 .17	.127 .082 .113 .086 .063	10 23 18 12 17	29 44 34 47 36	.64 .66 .49 1.17 .63	227 150 146 100 185	.02 .01 .03 .02 .02	7 2 4 5 3	1.28 1.73 1.20 1.50 1.22	.01 .01 .01 .01 .01	.06 .05 .04 .03 .94	1 1 2 3 1	5 22 4 3 10
LK 1135 19+75W LK 1135 19+35W LK 1135 19+35W LK 1135 19+35W LK 1145 10+35W LK 1145 11+35W	1 3 1 1 1	41 37 39 98 56	19 22 18 12 5	172 1858 132 192 124	.5 1.0 .5 1.4 .1	25 843 35 36 65	9 233 12 26 22	325 11146 304 403 325	3.00 20.58 4.11 8.23 5.23	24 38 22 20 30	5 8 5 5 5	ND ND ND ND ND	1 4 1 2 3	29 37 9 11 5	1 10 1 1 1	3 1 1 1 2	2 2 2 2 2	39 32 50 173 122	.63 .38 .17 .19 .12	.045 .061 .064 .099 .101	10 15 15 14	30 26 47 195 103	.54 .33 .37 3.54 2.33	200 136 100 1347 189	.03 .02 .03 .14 .05	4 5 2 4	1.24 1.57 1.65 4.59 3.15	.01 .01 .01 .01 .01	.03 .04 .04 .05 .04	1 1 1 1 1	5 9 5 11 8
LX 1145 21-50W LX 1145 20+73W LX 1145 20+56W LX 1145 20+25W LX 1145 20+25W LX 1145 20+00W	1 4 3 2 3	47 259 190 39 138	56 11 13 15 65	195 209 253 114 246	.1 .7 .4 .1 1.2	42 101 76 21 56	15 41 33 6 13	222 344 943 128 246	5.55 8.85 9.45 2.23 6.74	27 90 35 30 80	5 5 5 5	ND ND ND ND ND	2 1 1 3	55 73 71	1 1 1 1	2 4 7 1 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	93 38 49 11 50	.09 1.19 .41 .17 .09	.096 .166 .196 .033 .179	13 7 9 17 17	65 25 43 22 60	1.31 .37 .84 .33 1.51	171 197 278 113 152	.03 .01 .01 .01 .02	7 5 3 4 4	2.26 1.08 1.84 .79 1.82	.01 .01 .01 .01 .01	.03 .03 .03 .02 .05	2 1 1 1 1	6 15 15 3
LK L145 19+75W STD C/AU-9	: 18	44 52	19 38	117 132	.9 6.7	44 75	14 30	237 1047	5.11 4.06	31 41	5 13	פא 7	5 38	3 49	1 18	2 14	2 21	55 59	.13 .49	.114 .085	17 39	57 58	1.11 .91	205 176	.02 .07	: 34	2.17 1.97	.01 .06	.03 .13	: 13	5 47

	~~``\					I	BOUN	DAR	Y DR	ILLI	NG 1	INC.	PRC	JEC	T MA	(°''')	#101	F	ILE	# 8	9-30	54									P
SAMPLE#	NO PPN	CU PPN	Pb PPM	2n PPN	Ag PPN	NI PPM	CO PPM	Ma PPN	Fe 3	às PPM	U PPM	Au PPM	Th PPN	ST PPN	Cđ PPN	SD PPM	Bi PPN	V PPN	Ca %	P L	La PPN	Cr PPN	Ng t	Ba PPN	Ti ł	B PPH	A1 3	Na X	K Z	¥ PPN	Au* PPB
LX L14S 19+50W LX L14S 19+25W LX L21+50S 15+00W LX L23+35S 14+25W	1 1 44 1	25 85 65 1	23 51 9 6	99 255 1540 44	.7 .2 .1 .1	22 55 871 6	6 21 132 1	263 672 2428 15	2.47 4.53 54.97 .64	20 56 2567 41	5 5 6 5	ND ND ND ND	2 4 6 10	10 13 23 4	1 I 1 I	2 2 2 2	3 2 2 2	40 25 1 10	.15 .24 .20 .03	.088 .081 .055 .024	22 30 2 45	30 39 1 7	.45 .76 .07 .07	224 107 151 84	.03 .01 .01 .01	4 4 2	1.01 1.45 .12 .94	.01 .01 .01 .01	.06 .09 .01 .04	1 1 1	4 5 2 2

(

C

Ċ

(

Υ.

	\sim					BC	UND	ARY	DRI	LLIN	IG II	NC.	PRO	JECT	MAS	Ĩ	101	FI	LE	7 89	-30	54									P
SAMPLE#	Xc 2PM	21 224 224	Pb PPM	Ia PPM	Ag PPN	N1 PPM	Co PPN	Mn PPN	Fe	As PPM	U PPM	Au PPM	Th PPN	Sr PPM	Cd PPN	SD PPM	Bİ PPM	7 797	Ca X	P	La PPN	Cr ?PN	Хg %	Ba ??M	Ti 3	В ??¥	A1 *	Na X	K ł	¥ PPN	Au* 225
LX-C 1105 15+75% 50CM LX-C 1105 15+50% 40CM LX-C 1105 15+50% 70CM LX-C 1105 15+15% 40CM LX-C 1105 15+15% 40CM LX-C 1105 13+15% 50CM	1 1 1 P 1 P 2	111 146 135 347 109	63 56 75 59 28	212 399 352 657 265	1.0 .9 1.2 3.8 1.0	62 72 91 131 35	28 14 21 21 13	1127 571 355 1177 554	5.47 3.17 4.25 4.13 3.48	61 14 55 48 23	10 y 9 y 10	ND ND ND ND ND	3 1 1 2	21 57 35 36 37	1 2 2 4 1	2 2 2 2 2	8 4 7 2 6	24 15 23 19 19	.45 1.27 .59 1.44 .50	.379 .370 .084 .159 .070	20 14 19 31 16	42 29 48 38 29	.67 .55 .65 .57 .84	120 105 119 181 30	.01 .01 .01 .01 .02	2 2 2 4 4	1.45 .92 1.33 1.58 1.37	.01 .01 .01 .01 .01	.08 .05 .08 .09 .07		7 24 12 20 8
1X-C 1103 15+00% 30CM 1X-C 1105 14+75% 40CH 1X-C 1105 14+75% 55CM 1X-C 1105 14+55% 30CM 1X-C 1105 14+50% 40CM	P 1 1 1 1	78 31 74 98 135	30 15 48 44 43	177 103 192 572 530	.4 .5 .6 .7 .7	40 23 46 69 31	12 6 16 17 17	252 556 593 704 750	1.30 1.69 4.45 4.50 4.37	25 15 43 28 27	55555	ND NC ND ND ND	4 1 3 5 5	19 21 20 21 17	1 1 1 1	131111	5 2 5 3 5	23 21 22 24 23	. 29 . 43 . 36 . 34 . 26	.076 .030 .092 .071 .068	14 15 19 31 40	35 18 46 39 35	.55 .13 .47 .59 .55	75 108 106 113 125	.02 .03 .04 .02 .02	4 2 5 4	1.03 .38 .99 1.77 1.79	.01 .01 .01 .01 .01	.05 .05 .06 .15 .14	****	3 3 19 6 7
LR-C L105 14+50% 550M LR-C L103 14+15% 500M LR-C L105 14+15% 500M LR-C L105 14+15% 500M LR-C L115 16+25% 500M LR-C L115 16+25% 500M	1	145 139 65 196 210	48 60 29 77 48	535 330 139 136 170	.7 1.5 .3 .4 .3	92 90 51 95 98	18 24 16 38 24	369 694 468 704 655	4.55 4.97 3.55 5.50 5.73	30 41 15 97 58	5555	ND ND ND ND ND	1 3 6 8	19 29 13 24 27	1 1 1 1	2 2 2 2 2	9 2 2 2 2	23 27 20 25 22	.28 .33 .21 .36 .28	.075 .081 .062 .104 .108	39 13 30 31 29	38 41 28 44 43	.58 .57 .54 .53 .59	133 131 30 39 36	.02 .02 .02 .02 .02 .02 .02	2 2 4 3	1.98 1.89 1.36 1.13 1.05	.01 .01 .01 .01 .01	.15 .14 .12 .06 .07		9 19 10 12
LK-C 1115 16+15% 60CM LK-C 1115 16+00% 13CM LK-C 1115 15+00% 13CM LK-C 1115 15+51% 40CM LK-C 1115 15+25% 30CM		155 111 117 13 44	50 93 57 57 21	153 917 392 387 367	.9 .4 1.2 .6	81 78 98 59 43	31 23 27 23 11	560 346 361 534 301	5.93 4.66 5.69 7.02 1.13	31 51 75 67 41		UN CK Ck ND ND	9 3 3 3	24 12 11 23 27	1 4 1 2 8	2 2 2	4 4 2 4 7	23 22 30 36 42	.35 .32 .30 .32 .45	.100 .071 .089 .081 .352	27 26 17 11	39 41 51 66 45	.55 .61 .30 .49 .40	73 111 109 173 134	.02 .01 .02 .02 .03	53222	.94 1.22 1.52 1.93 .80	.01 .01 .01 .01 .01	.07 .07 .08 .06 .34		47 47 3 36
LE-C 1118 15+25% 50CM IK-C 1118 15+00W 20CM IX-C 1118 15+00W 23CM IX-C 1118 14+75W 40CM IK-C 1118 14+75W 45CM	2 1 1 1	50 91 91 70 105	29 49 50 58 46	395 1311 1345 291 325	.4 .7 .8 .3 .7	43 119 103 47 50	16 36 36 17 22	373 1450 1124 346 401	3.60 5.53 5.51 5.29 5.22	53 112 93 54 61	5 5 5 5 5	HD ND ND ND ND	3 2 4 2	14 22 23 15 17	2 7 6 1 1	20222	3 2 2 2 5	57 42 41 32 28	.22 .37 .28 .21 .27	.065 .105 .110 .063 .059	15 21 22 24 25	55 129 84 40 42	.69 1.15 1.22 .46 .48	90 123 111 31 100	.05 .02 .03 .02 .01	2 2 3 2 2	1.31 1.97 2.05 1.44 1.69	.01 .01 .01 .01 .01	.04 .08 .08 .06 .06	-	13 21 12 7 11
1K-C L113 14+75W 75CM LK-C L113 14+55W 50CM LK-C L113 14+50W 75CM LK-C L113 14+50W 30CM LK-C L113 14+50W 30CM LK-C L123 17+25W 20CM	: 1 1 1 1	103 147 117 105 174	51 64 67 57 71	307 304 273 253 390	.6 1.8 1.3 1.2 2.4	63 79 70 55 39	24 25 25 24 22	489 1115 1133 1097 1891	5.11 5.34 5.51 5.13 5.54	58 56 50 43 47	5 5 5 5 5	ND ND ND ND	3 4 3 3	19 29 22 22 42	1 1 1 3	2 2 2 2 2	6 4 2 2 2	23 31 27 26 20	.31 .46 .34 .34 .78	.067 .127 .078 .072 .069	29 29 28 28 19	39 43 41 39 32	.53 .72 .65 .53 .44	106 169 133 126 121	.01 .02 .02 .02 .01	2 4 2 2 2	1.63 2.17 1.82 1.68 1.28	.01 .01 .01 .01 .01	.07 .15 .12 .10 .06	1	3 30 9 6 4
LK-C L125 15+50W 30CM LK-C L125 16+50W 50CM LK-C L125 16+50W 30CM LK-C L125 16+50W 30CM LK-C L125 16+25W 40CM LK-C L125 16+25W 40CM	1 1 1 1	94 114 99 71 62	93 93 110 56 50	270 299 331 260 217	.3 .3 1.1 .5 .6	52 62 90 56 45	22 22 27 20 14	676 552 1071 1153 505	5.03 5.32 5.87 3.78 3.50	53 61 72 40 40	5 5 5 5 5	ND ND ND ND ND	4 4 5 1 1	18 17 24 40 38	1 1 1 1	2 2 2 2 2 2	2 2 2 2 5	23 27 34 19 21	.20 .19 .30 .67 .62	.042 .044 .067 .071 .058	28 28 23 15 15	45 50 67 37 40	.52 .64 1.02 .54 .57	123 123 151 126 113	.01 .01 .01 .01 .01	2 2 6 4	1.43 1.47 1.80 .97 .98	.01 .01 .01 .01 .01	.06 .06 .08 .07 .05		10 6 5 9 4
LK-C 1125 15+25W 50CM STD C/AU-5	1 17	57 64	51 36	237 132	.3 7.1	47 70	15 31	396 1030	4.29 3.95	48 37	5 22	ND 7	3 36	19 48	1 18	2 13	5 20	26 58	. 24 . 48	.351 .086	23 38	47 56	.62 .89	100 175	.01 .07	3 35	1.25 1.91	.01 .06	.08 .14	1 12	14 51

3

الترمي وا

(

1	γ					BC	UND	ARY	DRI	LLIN	IG II	NC.	PRO	JECI	' MA	Ţ	101	FI	LE	# 8 9	9-30	54									P/ ""
SANPLE#	Xo PPM	Cu PPM	Pb PPM	22 228	Ag ?Ph	N1 PPM	CO PPM	ND PPN	?e ≹	As PPM	IJ PPN	Au P?M	tt ?Pu	ST ?PM	Cđ PPM	' SD' PPM	81 ?PM	V PPM	Ca %	F %	La PPM	CT PPN	₩g ₹	Ba PPN	71 %	B PPM	Al 3	Na %	R	¥ PPN	ли*- // РРЭ
LE-C 1103 134734 LE-C 1103 154504 9004 LA-C 1103 134304 7004 LA-C 1103 154304 7004 LE-C 1103 154304 1004 LE-C 1103 154304 4004	1 1 2 1 1	114 77 115 126 101	98 96 125 70 61	044 1159 1815 1898 1578	.5 .3 .5 .1	53 58 91 93 95	20 14 19 21 22	595 307 459 929 355	4,58 5,09 5,25 1,93 5,22	59 62 75 39 52	3 5 5 5 5	HD ND ND HD ND	40000	26 17 21 14 9	1 3 5 5		2 4 2 2	22 21 27 26 24	.30 .21 .25 .23 .14	.071 .057 .067 .084 .059	27 20 22 37 36	38 34 36 46 53	.62 .42 .54 .34 .37	121 123 129 97 106	.01 .02 .02 .02 .01	2 3 2 2 2	1.40 1.41 1.50 1.46 1.36	.01 .01 .01 .01 .01	.09 .05 .07 .09 .11	1	1 3 5 4
LX-C L125 15+50W 40CM LX-C L125 15+60W 50CM LX-C L125 14+75W 40CM LX-C L125 14+75W 40CM LX-C L125 14+75W 50CM LX-C L125 7+15W 40CM	1 1 1 1 1	100 138 45 96 115	30 112 31 67 101	625 330 150 166 239		41 54 16 41 68	9 12 3 18 22	103 428 101 513 590	1.44 4.12 2.75 3.31 5.00	63 79 35 42 49	5555	ND ND ND ND ND		18 10 10 15			4 5 1 2	13 16 22 24 24	.22 .24 .15 .23 .27	.059 .066 .038 .054 .066	22 22 27 29 33	13 20 21 30 51	.27 .31 .29 .41 .56	111 104 91 125 53	.01 .01 .11 .01	2 6 2 2 2	.79 .87 .72 1.14 1.27	.01 .01 .01 .01 .01	.05 .05 .04 .06 .08		6 12 1 2
LI-C 1105 6+754 50CM IX-C 1103 8+004 30CM IX-C 1103 8+004 30CM IX-C 1105 8+004 30CM IX-C 1105 7+964 30CM	1 1 2 1 1	72 57 69 127 70	48 37 57 140 71	198 128 134 128 128	.0 .5 .6	44 15 49 51 32	17 11 14 17 9	711 344 364 435 176	4.10 3.57 4.14 4.53 4.55	29 40 48 124 60	5555	HD ND ND ND ND		20 19 15 12	1 1 1 1	2222	4 3 2 2	20 20 20 23 21	.25 .29 .24 .15 .15	.046 .046 .043 .056 .030	28 35 34 29 34	23 31 34 33	.55 .29 .43 .29 .31	57 79 30 59 46	.01 .01 .01 .01 .01	2 2 2 2 2 2	1.32 1.09 1.25 1.17 1.19	.01 .01 .01 .01 .01	.09 .05 .05 .05 .05		
1X-C 1133 7+00% 50CM 1X-C 1103 5+50% 50CM 1X-C 1108 5+50% 50CM 1X-C 1148 3+50% 40CM 1X-C 1148 3+00% 30CM	1 1 1 1	102 176 154 47 101	116 139 131 30 38	156 151 155 183 589	.: .: 1.0 .: .:	48 70 51 76 62	19 23 21 17 13	404 832 900 452 1614	5.19 5.61 5.05 5.12 4.59	91 98 92 51 43	5 5 5 5 5	ND ND ND ND ND		11 17 20 11 20	1 1 1 1	1 2 1 3 1	4 2 3 2	13 17 19 21 21	.15 .33 .41 .15 .30	.041 .071 .066 .048 .058	37 33 31 35 34	43 34 35 43 37	.51 .51 .51 .35 .52	55 56 68 75 91	.91 .91 .81 .91 .91	2 4 3 2	1.42 .99 1.08 1.10 1.35	.01 .01 .01 .01 .01 .01	.05 .05 .05 .05 .05		
1X-C 1145 8+108 45CH 1X-C 1145 7+258 10CM 4 1X-C 1145 7+258 10CM 4 1X-C 1145 7+758 40CH 1X-C 1145 5+758 60CH	7 1 1 1 1	109 79 54 364 395	111 34 25 213 247	772 190 161 514 352	.9 .9 2.7 .5 .9	71 12 19 29 49	23 7 6 28 29	1058 324 283 1293 1105	5.69 3.08 2.29 7.53 3.29	50 46 41 254 292	5 5 5 5 5 5	ND ND ND ND ND	9 4 1 5 6	17 3 11 19 12	1 1 1	(1) () (1) (1) (1) (1)	2 2 2 2 2 2	21 21 16 20 27	.23 .10 .21 .14 .17	.077 .036 .033 .122 .107	38 39 31 33 22	40 14 5 28 31	.11 .11 .10 .51 .57	71 61 53 99 89	.01 .01 .01 .01 .01	2 2 5 2 2	1.71 .62 .36 1.12 1.30	.01 .01 .01 .01 .01	.06 .10 .03 .07 .06	1	4 3 35 3
1X-C 1145 5+758 80CN 1X-C 1145 6+258 40CM 1X-C 1145 6+258 55CN 1X-C 1145 6+258 55CN 1X-C 1145 5+758 80CM 1X-C 1145 5+758 40CN	7 5 4 1	280 277 394 246 198	152 1117 1079 117 102	496 511 548 144 364	.3 10.5 9.0 2.7 2.5	57 46 56 51 49	21 15 23 15 14	711 521 757 1413 624	5.30 3.32 9.03 5.15 5.11	134 220 224 81 76	5 5 5 5 5	ND ND ND ND ND	7 3 3	9 9 11 19 14	1 1 1 1	1 2 3 2 2	2 2 2 2 2 2	29 23 17 24 21	.12 .98 .12 .29 .21	.062 .061 .072 .087 .069	33 17 19 25 34	31 26 30 31 35	.53 .18 .29 .32 .55	62 54 64 121 72	.91 .01 .91 .01 .01	2 5 5 2 2	1.29 .65 .99 1.55 1.48	.01 .01 .01 .01 .01	.05 .08 .09 .08 .08	1	13 1 3 5
LK-C L155 6+75W 30CM LK-C L155 6+75W 30CM LK-C L155 6+75W 50CM LK-C L155 6+25W 40CM LK-C L155 6+25W 30CM	1 1 1 1	72 88 127 214 219	75 105 81 168 154	272 314 318 471 485	1.1 1.4 .6 1.3 1.2	197 179 25 50 51	25 42 10 21 19	754 1024 221 563 554	7.17 7.52 4.70 5.97 5.83	245 146 147 144 144	5 5 5 5 5	NÐ ND ND ND ND	4 5 7 5 6	11 9 10 11 10	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 4	70 67 21 19 20	.19 .15 .14 .15 .14	.080 .093 .027 .042 .037	23 25 41 37 37	281 159 24 33 31	1.00 .73 .29 .44 .45	168 204 72 90 80	.02 .02 .01 .01 .01	2 10 2 2 2	1.51 1.75 .94 1.49 1.40	.01 .01 .01 .01 .01	.05 .05 .04 .04 .05	1 1 1	3 53 2 22 1
LX-C LISS 5+15W 10CN STD C/AU-S	1 18	199 51	121 38	321 132	.3 7.2	73 65	24 31	836 965	5.91 4.01	103 38	5 18	ם א 7	10 38	17 19	1 18	2 15	2 17	16 60	. 24 . 48	.063 .086	37 39	40 55	.45 .91	69 181	. 31 . 97	6 33	1.00 1.93	.01 .06	.05 .13	- 13	2 49

4

ť

(

Ć

17)					BC	DUND	ARY	DRI	LLIN	G II	1C.	PRO	JECT	MA	۲	101	FI	LE	# 89	-30	54									P 5	
AMPLE\$	No PPN	Cu ?Pu	Pb PPN	In PPN	Ag PPM	NI PPH	CO PPH	MD PPN	Fe	AS PPM	0 899	AU PPM	Th PPM	sr PPN	Cd PPM	Sb ?PM	Bİ PPN	7 229	Ca १	P 3	La PPN	CT PPM	Hg S	3a PPN		B 28M	Al z	Na 3	K Ş	¥ PPN	Au* PPB	
A-C 1135 5+000 100M A-C 1155 5+000 400M P A-C 1155 4+750 800M A-C 1155 4+750 800M A-C 1155 4+750 800M A-C 1155 4+750 800M	1211	167 101 125 147 135	123 62 53 142 104	325 179 222 355 324	.5 .1 .1 .1	67 65 50 69 66	22 19 15 26 21	777 100 194 471 421	5.74 1.69 5.36 6.34 5.54	100 37 71 91 71	5 5 5 5 5 5	ND ND ND NC ND	17487	21 14 5 8 9	1 1 1 1	111222	2 2 2 2 2	17 14 15 19 19	.25 .17 .07 .09 .10	.058 .053 .039 .044 .041	24 25 28 23 23	33 59 29 35 33	. 13 . 28 . 28 . 40 . 45	59 53 44 75 74	.01 .01 .01 .01 .01	3 3 5 2 2	1.19 .63 .98 1.64 1.56	.01 .31 .01 .01 .01	.05 .03 .03 .34 .04	1 2 1 1	1 3 13 1	
K-C 1153 64580 300N K-C 1165 5-300 300N K-C 1165 5-730 400N K-C 1165 5-150 300M K-C 1165 5-150 300M	1	67 69 113 130 165	120 101 71 67 100	297 273 249 238 237	.5 .4 1.1 1.2 1.2	65 69 95 74 104	27 23 28 19 26	2069 1309 1294 736 971	5.49 5.50 5.63 4.75 5.30	61 59 60 50 80	5 5 5 5 5	ND HD NC ND ND	1 1 1 E 4	30 24 41 16 19	1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2	19 19 17 19 13	.56 .42 .65 .21 .26	.029 .075 .083 .054 .061	21 23 20 29 29	42 41 45 41 55	.40 .45 .67 .50 .53	32 64 147 78 91	.01 .01 .01 .01 .01	1 2 2 2 2	1.64 1.41 1.52 1.43 1.35	.01 .01 .01 .01 .01	.04 .04 .07 .06 .05	1 1 1 1	41 11 5 4 3	
.R-C 1155 5-368 300M .R-C 1225 12+758 300M .R-C 1225 12+758 460M .R-C 1225 12+598 300M P .R-C 1225 12+508 300M P		320 38 150 72 93	145 136 276 53 80	350 368 598 233 146	10.2 .6 .8 .6 .5	124 30 126 77 100	30 11 18 20 26	2290 231 616 644 651	7.05 4.54 7.09 5.50 7.17	75 104 134 90 103	5 5 5 5 5 5	NC ND ND ND ND	3 2 3 5 7	73 7 12 9 7	2 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	23 47 44 20 20	1.18 .09 .19 .15 .08	.135 .132 .217 .142 .155	24 20 18 13 20	42 39 61 32 39	. 42 . 12 . 24 . 49 . 33	182 69 97 201 121	.01 .01 .01 .01 .01	3 3 3 2 2	2.20 .70 .92 1.12 1.29	.01 .01 .01 .01 .01	.10 .03 .03 .08 .03	1	12 12 15 1	
IX-C 1008 11+50% 40CM IX-C 1008 11+50% 55CM IX-C 1008 11+60% 55CM IX-C 1008 11+60% 45CM IX-C 1008 10+50% 35CM P		43 57 46 50	25 48 52 38 34	144 111 211 239 94	.4 .6 1.0 1.3	54 70 57 100 99	10 15 11 24 5	438 610 156 401 936	3.73 4.97 4.22 5.22	73 94 55 57 15	555555	YD Yd Yd Nd Yd	3 5 1 7 1	7 9 20 40 109	1 1 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 3		.11 .11 .31 .71 3.01	.053 .074 .050 .051 .127	27 21 24 22 7	20 31 54 74 18	.07 .12 .17 .32 .63	51 53 122 108 94	.01 .01 .01 .01 .01	1 1 2 3 4	.25 .48 1.10 1.74 .39	.01 .01 .01 .01 .01 .01	.03 .03 .03 .04 .04	1	29 4 4	
IX-C 1225 10400W 70CM IX-C 1225 9450W 20CM IX-C 1225 9450W 40CM IX-C 1225 9400W 50CM IX-C 1225 9400W 50CM	1 1 1 1	34 63 91 108 171	42 70 71 92 114	265 239 317 486 483	.3 .4 .1 1.6 2.8	61 87 130 126 141	15 21 26 20 23	516 344 1515 3291 3569	4.07 4.01 5.15 3.91 4.59	41 69 91 35 47	5 5 5 5	NC ND ND ND ND	533	13 24 24 75 30	1 1 2 6 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	19 15 21 17 13	.28 .51 .43 2.00 2.05	.036 .070 .073 .097 .121	25 19 19 15 18	32 46 97 36 38	.51 .44 .56 .50 .64	48 68 31 113 118	.01 .01 .01 .01 .01	2 7 5 8	1.29 .39 1.25 1.39 1.82	.01 .01 .01 .01 .01	.04 .06 .05 .07 .06	1 1 1 1	9 13 1 1	
IX-C L235 14+25W 20CM IX-C L235 14+25W 40CM IX-C L235 14+25W 55CM IX-C L235 13+75W 40CM IX-C L235 13+25W 40CM	12234	76 52 50 460 59	58 76 87 482 169	319 458 572 429 91	.3 .2 .3 .2 2.4	33 44 54 95 26	14 17 19 10 6	309 235 234 102 54	4.09 5.53 5.93 5.13 1.42	23 34 34 159 58	5 5 5 5 5	ND ND ND ND ND	3 4 3 7 6	15 15 16 79 14	1 1 1 2 1	2 2 2 2 2 2	2 4 2 2 3	19 52 49 65 57	.27 .25 .25 1.27 .12	.105 .151 .137 .548 .501	15 17 19 24 19	26 41 49 14 24	.80 1.17 1.27 .09 .14	87 120 128 179 175	.02 .02 .02 .01 .01	2 2 3 7 2	1.22 1.94 2.21 .59 1.05	.01 .01 .01 .01 .01	.06 .06 .12 .04	1 1 1 1	15 - - - - - - -	
X-C 1235 12+758 30CM X-C 1235 12+758 30CM X-C 1235 11+508 30CH X-C 1235 11+508 40CM X-C 1235 11+808 10CM	2 2 3 4 1	50 62 40 61 28	130 84 43 67 32	254 339 124 177 100	.4 .2 1.2 1.4 .7	37 51 33 48 22	11 14 8 12 8	139 162 205 372 221	3.57 5.35 2.36 4.42 3.11	51 38 66 103 22	5 5 5 5 5	ND ND ND ND ND	4 6 7 8 7	12 12 11 15 6	1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	60 50 37 43 29	.15 .15 .05 .05 .03	.425 .258 .117 .198 .163	17 21 31 29 25	35 42 18 16 21	.34 .58 .12 .17 .23	132 106 74 106 44	.01 .02 .01 .01 .01	2 2 2 2 2 2	1.70 2.02 .65 .74 .95	.91 .01 .91 .01 .01	.04 .03 .03 .03 .03	1 1 2 1	2 1 23 10 1	
x-C 1235 11+004 40CM P	1 18	31 65	32 39	127 132	.3 6.7	28 56	10 31	218 1013	4.58 4.00	24 42	5 18	ND 7	9 39	7 49	1 1 8	2 15	2 19	27 50	.06 .49	.12?	28 39	25 53	. 29 . 90	69 181	.01 .07	2 36	1.22 1.98	.01 .06	.03 .13	1 11	2 50	

(

€...

٢.

)					BC	DUND	ARY	DRI	LLIN	IG I	NC.	PRO	JECI	MA,	~`}	101	FI	LE	# 89	9-30	54									Pro e
SAMPLE	HO PPN	Cu PPN	Pb PPM	ZB PPN	Ag PPN	Nİ PPN	CO PPN	MU PPM	7e %	As PPN	U PPN	Au PPN	Th PPN	Sr PPH	Cd PPN	SD PPM	BÍ PPN	V PPM	Ca ł	P t	La PPN	CT PPN	Ng Z	Ba PPN	Ti ł	B PPN	Al 3	Na X	K ł	W PPN	Au- PPB
LK-C L23S 10+25W 20CM LK-C L23S 10+25W 40CM LK-C L23S 10+25W 50CM SYD C/AU-S	1 3 3 19	31 62 119 62	98 95 72 37	108 205 230 133	.7 .8 .8 6.9	25 45 73 75	6 10 14 31	91 178 325 1017	3.72 4.93 5.20 4.15	38 62 84 40	5 5 5 19	ND ND ND 6	6 8 9 39	19 28 33 50	1 1 18	3 2 3 14	2 2 2 21	35 40 33 61	.12 .13 .10 .50	.407 .407 .185 .089	33 37 41 40	30 34 30 55	.24 .36 .45 .90	156 156 157 182	.01 .01 .01 .07	2 1 8 1 2 1 36 2	09 .34 38 07	.01 .01 .01 .06	.05 .06 .06 .13	1 1 1 12	4 2 7 49

í.

i :

ſ

(

(

6.,

C

ŧ,

ACME ANALY AL LABORATORIES LTD.

852 E. HASTINGS ST. VAN VVER B.C. V6A 1R6

PHONE (604) 253-3158 FAX (6' >253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: ROCK AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE.

SAMPLE#	Mo PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe %	AS PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca %	P %	La PPM	Cr PPM	Mg %	Ba PPM	Ti %	B PPM	Al %	Na %	к %	W. PPM	Au** PPB
RR-34 RR-39 RR-39A LK89-1001 LK89-1002	4 1 9 8 1	108 203 83 37 143	5 6 8 9 5	30 85 67 20 17	.2 .1 .1 .1 .2	47 85 47 9 255	13 17 16 2 46	115 897 562 22 162	2.69 8.62 5.28 2.40 3.68	2 4 13 4 15	5 5 5 5 5	ND ND ND ND ND	6 7 7 6 2	30 18 35 6 50	1 1 5 1	2 2 3 2 2	2 2 2 2 2	24 92 70 38 32	.65 .47 .48 .19 1.01	.070 .131 .072 .091 .129	14 9 11 7 4	48 212 92 10 83	.49 2.53 1.75 .05 .92	128 340 226 176 33	.26 .19 .21 .23 .19	3 2 2 3 12	.88 4.32 2.75 .27 1.05	.01 .01 .01 .01 .01	.18 .22 .14 .13 .03	1 2 2 2 1	6 21 26 357 15
LK89-1003 LK89-1004 LK89-1005 LK89-1006 LK89-1007	1 1 2 4 3	69 119 30 39 19	7 13 17 26 11	98 97 112 157 56	.1 .1 .1 .1	74 87 26 72 12	24 28 3 6 1	921 1068 121 160 31	6.13 9.82 1.66 2.00 1.91	33 14 85 43 87	5 5 5 5 5	ND ND ND ND	2 3 3 3 3	99 36 2 23 2	1 2 1 1 1	2 2 2 3 2	2 2 2 2 2	80 94 10 22 10	3.00 3.02 .02 .05 .01	.094 .056 .018 .024 .017	9 8 16 8 13	78 115 7 13 7	3.49 2.69 .02 .04 .01	194 49 204 186 277	.01 .01 .01 .01 .01	2 4 3 2 3	3.06 3.17 .14 1.46 .12	.01 .01 .01 .01 .01	.05 .06 .05 .04 .04	1 1 1 1 1 1	21 10 27 20 36
LK89-1008 LK89-1009 LK89-1010 LK89-1011 LK89-1012	3 3 4 7 5	10 38 55 785 83	10 37 38 1907 64	63 118 127 273 75	.1 .1 .1 29.1 .1	23 31 37 59 38	3 3 21 2	59 89 80 266 635	1.40 2.61 2.77 10.81 1.74	66 78 95 330 30	5 5 5 5 5	ND ND ND ND	4 3 4 6	2 1 2 52 32	1 1 1 1 1	3 2 2 2 2	2 2 72 2	10 9 10 53 76	.01 .01 .39 .77	.013 .027 .033 .894 .319	17 12 15 10 14	9 10 12 15 21	.01 .01 .01 .02 .06	256 212 309 255 271	.01 .01 .01 .01 .01	2 3 3 3 4	. 15 . 16 . 18 . 31 . 44	.01 .01 .01 .01 .01	.07 .06 .06 .13 .17	1 1 1 1	22 18 86 207 18
LK89-1013 LK89-1014A LK89-1014B LK89-1015 LK89-1016	3 9 10 2 1	435 73 66 73 26	365 152 141 15 21	1926 185 198 182 225	1.1 .2 .2 .2 .1	169 57 57 69 73	27 7 7 28 29	1322 131 131 849 1098	13.06 3.60 3.33 8.10 11.45	68 107 93 56 10	5 5 5 5 5	ND ND ND ND ND	3 6 7 3 3	7 70 42 58 49	5 1 1 3	2 3 2 2 2	10 2 2 2 2	52 36 18 51 186	.10 .42 .20 1.25 .88	.081 .499 .193 .099 .118	3 13 14 6 7	130 13 8 27 90	2.16 .05 .04 4.32 4.39	46 314 248 72 44	.01 .01 .01 .01 .01	2 4 3 2 2	2.80 .36 .27 1.72 5.84	.01 .01 .01 .02 .01	.08 .18 .13 .06 .02	1 1 1 2 1	37 27 15 11 19
LK89-1017 LK89-1018 LK89-1019 LK89-1020 LK89-1021	3 2 1 1	142 14 63 44 90	12908 4051 15 14 30	1530 1096 65 61 64	23.3 7.9 .1 .2 .2	14 12 504 653 240	2 1 52 50 44	195 132 1312 1255 790	1.28 .83 4.44 5.42 5.76	15 5 725 153 107	5 5 5 5 5	ND ND ND ND ND	1 1 2 2 2	25 21 220 165 92	13 13 1 1 1	24 3 2 2 2	4 2 2 2 2	2 21 43 7	.56 .43 9.23 4.90 6.73	.007 .006 .037 .033 .043	2 2 3 3 2	10 8 467 786 27	.41 .22 5.63 9.49 3.22	20 8 39 23 26	.01 .01 .01 .01 .01	2 5 2 3	.05 .03 .70 1.34 .26	.01 .01 .01 .01 .03	.02 .01 .02 .01 .02	11111	77 36 22 16 24
LK89-1022 LK89-1023 LK89-1024 LK89-1025 LK89-1026	2 1 1 3 3	8 79 11 14 77	24 8 73 8	16 432 110 25 143	.1 .1 .1 .1 .2	9 121 90 9 42	1 31 31 1 11	34 921 927 17 280	.51 7.32 7.63 .46 3.25	20 129 26 13 48	5 5 5 5 5	ND ND ND ND ND	3 2 3 2 3	3 71 82 4 14	1 3 2 1 1	2 3 2 4	2 2 2 2 2	4 12 182 5 39	.03 3.74 2.78 .01 .27	.002 .116 .132 .008 .153	9 7 6 11 6	6 29 142 9 28	.02 2.24 5.32 .02 1.76	70 46 310 89 121	.01 .01 .24 .01 .01	3 2 2 10 2	.12 .28 5.77 .14 1.70	.01 .04 .01 .01 .01	.06 .03 .27 .09 .06	1 1 2 1 1	66 11 8 82 30
LK89-1027 LK89-1028 LK89-1029 LK89-1030 LK89-1031	1 1 3 2 3	65 125 60 210 9303	4 9 27 969 167	75 105 202 765 603	.1 .1 .1 1.3 3.0	85 294 47 53 56	30 42 4 7 37	832 764 61 1588 1827	7.23 6.93 2.26 3.74 6.71	127 121 44 18 112	5 5 5 5 5	ND ND ND ND ND	2 2 5 9 4	105 74 5 6 4	1 1 1 2	3 2 2 2 2	2 2 2 7	11 52 6 2 23	3.38 2.48 .02 .04 .05	.105 .061 .047 .021 .027	6 5 14 22 6	13 374 9 7 33	2.56 5.08 .02 .04 .34	95 43 130 81 41	.01 .01 .01 .01 .01	2 2 8 3 2	.33 1.79 .19 .20 1.43	.01 .01 .01 .01 .01	.06 .03 .06 .06 .04	1 1 1 1	22 30 50 22 103
LK89-1032 STD C/AU-R	1 18	4443 58	45 41	2299 131	2.2	65 67	47 28	1174 977	21.41 3.82	378 40	5 19	ND 7	5 36	4 48	5 17	2 15	3 21	6 55	.09 .45	.041 .093	3 35	15 52	.67 .87	22 172	.01 .06	2 31	.60 1.85	.01 .06	.06 .13	1 12	170 480

	.*						Bc	und	ary	Dri	i11i	ing	Ind	3.]	Pr 7	[EC]	10)1	FIL	E #	89-	-454	4						Pa	ıge	2
SAMPLE#	Mo PPM	Cu PPM	PĐ PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe X	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Ca PPM	Sb PPM	Bi PPM	V PPM	Ca %	P %	La PPM	Cr PPM	Mg %	8a PPM	Ti X	B PPM	Al %	Na %	к Х	₩ . PPM	Au** PPB
LK89-1033	3	243	437	652	4.5	27	4	579	7.02	74	5	ND	2	2	8 1 1	4	4	46	.02	.017	9	37	.52	9	.01	6	1.03	.01	.02	1	4
LK89-1034	5	2625	653	4391	5.9	65	23	1784	7.58	68	5	ND	3	3	15	2	15	126	.05	.026	11	90	1.63	4	.01	2	2.61	.01	.01	1	19
LK89-1035	8	152	68	288	.5	73	15	307	4.40	32	5	ND	4	- 77	-81 -1 -	2	2	68	1.20	.591	10	41	1.05	220	.01	5	1.32	.01	.14	1	3
LK89-1036	3	259	45	355	.4	72	17	335	2.70	120	5	ND	9	46	1	2	4	9	.58	.273	18	9	- 18	322	-01	3	.47	.01	.16	1	- 2
LK89-1037	11	363	50	447	.6	83	16	376	3.89	169	5	ND	9	130	3	2	2	42	1.84	.845	22	15	.12	414	.01	6	.77	.01	.24	1	8
LK89-1038	6	218	141	600	.5	92	17	357	2.52	108	5	ND	7	74	1	2	2	40	.95	.433	15	14	.15	269	.01	5	.61	.01	.16	2	3
LK89-1039	12	167	113	522	.5	64	9	159	2.27	147	5	NÐ	9	217	1	2	2	85	3.57	1.584	23	16	.10	454	.01	8	.93	.01	.33	1	6
STD C/AU-R	18	62	42	137	8.0	69	- 31	1030	4.23	38	17	7	35	47	19	15	23	59	.48	.099	36	58	.87	174	.06	39	1.95	.06	.14	13	480

ACME ANALYTICAL LABORATORIES LTD. DATE RECEIVED: OCT 852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6 PHONE(604)253-3158 FAX(604)253-1716 DATE REPORT MAILED:

ASSAY CERTIFICATE

- SAMPLE TYPE: ROCK BA - LIBOZ FUSION, ANALYSIS BY ICP. D.TOYE, C.LEONG, J.WANG; CERTIFIED B.C. ASSAYERS SIGNED BY. Formosa Exploration Inc. FILE # 89-4290 Cu Pb Ag Ba SAMPLE# Zn Au OZ/T 8 ₹ ક્ર OZ/T 8 Q 5351 .45 3.91 3.48 3.50 .001 .75 4.24 Q 5352 .07 3.81 5.44 .001 3.08 2.13 2.24 1.96 .004 .32 Q 5353 1.38

oct 16 1989 Oct 20/19 APPENDIX II

.

Rock Sample Descriptions

- R9+00S 18+04W COMPOSITE GRAB SAMPLE SUBCROP Well laminated, jet black quartz quartzite. Very fine quartzofeldspathic laminae to 1 mm thick. Locally graphitic, occationally phyllitic. Background sample.
- R15+008 20+61A

GRAB SAMPLE - OUTCROP

Strongly sheared, rusty weathering sericite-chloritefeldspar schist. Foliation is strongly contorted. Predominantely chloritic and feldspathic laminae to 1 mm, with occational sericitic laminae.

- R15+00S 20+61B GRAB SAMPLE OUTCROP Quartz blow/sweat with minor chlorite and hematite stain. Blow is 30 cm wide. Contains trace euhedral pyrite to 8 mm.
- R15+008 21+45W GRAB SAMPLE OUTCROP Strongly cleaved, "poker chip" black shale with graphitic laminae and ocationally quartzofeldspathic laminae. Background sample.
- R16+30S 18+75W GRAB SAMPLE OUTCROP Fine grained white quartz vein (3x35 cm) in jet black, well laminated quartzite. Quartzofeldspathic laminae (20 - 25 %) to 2 mm wide in quartzite. Quarz vein contains boxworks to 9 mm after pyrite with graphite and graphitic selvages. Multiple quartz stringers occur subparallel to foliation.
- R18+00S 10+00W GRAB SAMPLE OUTCROP Located upslope of a narrow, strong zinc anomaly. Interbanded (on a cm scale) layers of green phyllite, minor gold phyllite, and 1 - 5 mm shaley interbeds (often graphitic), with boudins of grey quartz (rectystallized chert ?) and tan sandy grits. Pyrite (5 %) occurs as cubes to 1.5 cm.
- R18+20S 10+10W GRAB SAMPLE SUBCROP Grey to milky white quartz sweats in a shiny green phyllite interbed within sericite-chlorite-quartz grit sandstone. Contains 3 - 4 % limonite (after siderite ?) with chlorite. Sweats (boudins ?) to 4 cm wide.

R19+45S 13+10W

GRAB SAMPLE - SUBCROP Milky white quartz vein (width possibly 30 cm) with 7 -10 % siderite crystals to 1 cm. Locally vuggy with pyrite boxworks. Contains 3 % coarse grained subhedral galena. Hosted in chlorite-sericite-feldspar-sideritequartz schist (Arkose Sandstone ?) near contact with grey phyllites.

R20+00S 12+55W

GRAB SAMPLE - OUTCROP Rusty weathering, weakly foliated chlorite-sideritequartz rock with 3 - 4 % bright green mica (chrome mica ?), 7 - 10 % dark green chlorite, 60 % guartz, and 26 % rusty siderite +/- dolomite (?). Cut by numerous quartz veinlets 1 - 10 cm wide, often with a siderite selvage. Weathers to produce a brick red soil.

R21+528 12+75W

GRAB SAMPLE - SUBCROP

Milky white quartz vein 15 cm wide in black quartzite. Selvage of chlorite and limonite (after siderite ?). One 1 cm subhedral crystal of black sphalerite observed. Rock is shot full of anastomizing quartz stringers.

R21+658 18+50W

GRAB SAMPLE - SUBCROP Large blocks (to 0.5x1x2 metres) of rusty brown to milky white quartz. Ripped out of road bed by cat ? Quartz is locally vuggy with euhedral siderite crystals (altered to limonite) to 1 cm. Cut by several later stages of glassy clear white veinlets to 1 cm wide. Pyrite (2 %) occurs as euhedral to subhedral cubes to 6 mm. Boxworks after pyrite occur locally to 7.5 mm.

R21+75S 19+09W

GRAB SAMPLE - FLOAT Appears to be a block from a 4 cm wide quartz vein (4x8x10 cm) bounded by 1 cm wide limonite (after siderite ?) selvages. Selvages contain 1 % fine grained galena as subhedral crystals and trace fine grained chalcopyrite.

R21+758 19+12W

GRAB SAMPLE - OUTCROP Milky white, coarse grained quartz vein with a maximum width of 19 cm. Contains 3 - 5 % coarse grained galena, trace medium grained (3 mm) chalcopyrite and 1 % pink siderite (with euhedral quatrz in vugs). There is abundant barren quartz float nearby over an area of 25 sqaure metres.

R23+008 14+52W

GRAB SAMPLE - FLOAT ? Milky white quartz block 13x15x30 cm containing 15 - 20 % coarse grained galena. Galena occurs as a 1 cm wide band within a 2 cm wide band of limonite. A fine grained boxwork after pyrite is developed in the limonite. Both The float block is bands appear to be gently folded. located between the roots of a stump - untravelled? The block is located 2.2 metres from soil sample L23S 14+00W. Note that a flagging error puts the true position of the soil sample at station 14+50W. The block is located 2 metres from outcrop of chlorite-sericite-siderite spotted schist.

R23+25S 24+32W GRAB SAMPLE - OUTCROP Milky white quartz vein 30 cm wide in grey weathering Quesnel Lake Gneiss. Quartz is coarse grained, opaque and contains wispy strands of sericite along the vein selvage. Contains 2 % pyrite as weathered subhedral crystals, one 3 mm cube of galena, traceamounts of a steel grey, stiated or twinned metallic mineral (oxideized galena ?) and trace very fine grained (to 2 mm long) tourmaline. Vein trends 142/48.

R25+058 23+25W COMPOSITE GRAB -SUBCROP Felty textured, weakly foliated, fine grained choritic rock with 2 % pyrrhotite as disseminated blebs to 2 mm and trace euhedral pyrite to 1mm. Rusty weathering.

R25+258 23+23W

GRAB SAMPLE - SUBCROP Well foliated, partly silicified chlorite schist (andesite tuff ?) cut by a 1 - 1.5 cm quartz vein with 3

- 4 % euhedral pyrite to 4 mm. Veinlet has a chlorite selvage. Sheared tuffs ?

R25+72S 22+20W

GRAB SAMPLE - SUBCROP

Fine grained, rusty weathering, pale grey to green massive calcite-chlorite-epidote (?) rock containing 3 -5% fine grained disseminated pyrrhotite.

COMPOSITE GRAB SAMPLE - SUBCROP Located at the junction of the 8400C road and the spur leading to the southwest portion of the grid. Well laminated, dark green weathering quartz-calcite-feldspar -chlorite schist (Calcareous Andesite Tuff). Composed of thin lenses (1x4 mm) of sauseritized feldspar (10 %), milky white quartz augens to 2 mm (3 %), and clots and laminae of yellow to pink calcite (5 %). Rock contains 0.5 - 1 % chalcopyrite as very fine grained disseminated grains with calcite, trace bornite (with chalco and calcite) and 1 % malachite/azurite on foliation plains. Rock is thinnly bedded and fissile.

R8402.3

GRAB SAMPLE - OUTCROP Located on 8400 road at kilometer 2.3, approximately 500 metres north of the junction of the 8400 and the 8400 C Well foliated, often well laminated grey-black road. weathering interbedded quartzite and graphitic shale. Approximately 50 % of the rock is well laminated quartzite with quartzofeldspathic laminae to 3 mm. The remainder of th rock is black, locally graphitic shale. Background sample.

LK89-1001

GRAB SAMPLE - OUTCROP Fine grained, weakly to well foliated sericite-chloritequartz tuff (?), with shale laminae and lenses to 2 mm. Contains trace pyrrhotite as very fine grained disseminated blebs.

LK89-1002

GRAB SAMPLE - SUBCROP Rusty weathering, well indurated, medium to dark green silicic (?) volcanic with bands of very fine grained disseminated pyrrhotite to 7 mm wide. Pyrrhotitie also occurs as lenses of disseminated grains. Trace chalcopyrite as blebs to 1 mm. Rock overall is moderately magnetic.

LK89-1003

GRAB SAMPLE - SUBCROP Well foliated, laminated black shale. Contains 20 % quartzofeldspathic laminae to 4 mm in a soft, dull black shale matrix. Contains 1 - 2 % limonite after ankerite. Background sample. So: 151/29.

RR - 7

ı.

GRAB SAMPLE - SUBCROP Weakly foliated, orange-brown weathering, highly altered limonite-ankerite rock. Locally exhibits a pale white coating - $PbSO_4$? Where unaltered, rock is pale green and weakly laminated. Contains trace chalcopyrite and 0.5 % pyrite as very fine grained euhedral grains. Possibly a tuff?

LK89-1005

COMPOSITE GRAB - SUBCROP Black, occationally rusty weathering, well indurated massive to well laminated quartzite. Feldspathic Locally contains 1 mm black laminae (10 %) to 0.5 mm. phyllite laminae. Background sample.

LK89-1006

GRAB SAMPLE - SUBCROP Pale tan weathering, well indurated aphanitic silicic rock - chert? A faint colour banding is visible with 3 -10 mm bands of grey/blue colour alternating with tan/brown bands. Rock is translucent and appears to be recrystallized. Pyrite (3 %) occurs as very fine grained (to 0.25 mm) disseminated euhedral cubes, as anhedral blebs to 3 mm, and as subhedral blebs filling fractures.

TK89-1007

GRAB SAMPLE - FLOAT Very well indurated, laminated black quartzite. Weathers with an irradescent purple to blue sheen and locally with a white coating - PbS0₄? Wavey quartzofeldspathic laminae (15 %) to 0.5 mm. Shaley laminae to 2 mm wide contain fine grained pyrite boxworks. Translucent grey quartz veinlets to 5 mm parallel lamination.

2 METRE CHIP SAMPLE - OUTCROP LK89-1008 Black weathering, well laminated quartzite. Quartzofeldspathic laminae (20 %) to 2 mm, and shaley layers to 5 mm. Banding is wavey and contorted. Irregular boxworks are visible in quartz rich areas. Background sample.

LK89-1009 0.8 METRE CHIP SAMPLE - OUTCROP Rusty weathering, well laminated black quartzite. Quartzofeldspathic laminae (15 %) to 0.5 mm. Quartz bands to 10 mm parallel to lamination - concordent veinlets. Background sample.

3 METRE CHIP SAMPLE - OUTCROP Rusty weathering, well laminated black quartzite. Banding is strongly contorted with quartzofeldspathic bands and lenses to 10 mm. Numerous, crosscutting quartz veinlets to 5 cm wide. Background sample.

LK89-1011

GRAB SAMPLE - FLOAT

2201.5s 1301.5w

Blue/grey to black weathering, locally rusty, well laminated black shale. Rock consists of laminae of rusty brown quartzofeldspathic material, shiny black pyllite, dull black shale, and occational silvery/yellow sericitic material. Laminae average 1 mm thickness. Pyrite (5 %) occurs as subhedral cubes to 5 mm. Possibly sheared black quartzite. Background sample.

LK89-1012 0.7 METRE CHIP SAMPLE - OUTCROP Predominantly jet black shale, with graphitic laminae and black phyllite laminae to 1 - 2 mm. Trace pyrite boxworks occur to 0.5mm. Laminated black quartzite occurs locally as bands to 2 cm. Contains limonite spots (15 %) after ankerite to 5 mm. Background sample.

LK89-1013

1.1 METRE CHIP SAMPLE - OUTCROP Weakly foliated, pale yellow/green weathering, well indurated sericite-ankerite-chlorite-feldspar tuff. Composed of a felty fine grained chloritic groundmass with quartzofeldspathic laminae to 1 mm. Contains 15 -20 % ankerite spots (altered to limonite) to 5 mm. One discontinuous rusty brown siliceous lens 1.5 cm wide contains 40 % pyrite as euhedral cubes to 1mm.

LK89-1014A

GRAB SAMPLE - SUBCROP

2300s 1400w Chips of fissile, black graphitic shale with 5% boxworks after pyrite to 2 mm. Sample collected from the bottom of anomalous sil sample site (see sample L23S 14+00W).

LK89-1014B

GRAB SAMPLE - SUBCROP

2300s 1400w

Interbedded black phyllite and graphitic shale with quartzofeldspathic laminae to 1 mm.

GRAB SAMPLE - FLOAT

24+025 17+79W

Unfoliated, buff to brown weathering chlorite-sericiteankerite tuff. Displays wispy chlorite-milky white quartz patches to 1X3 cm that contain rare jet black guartz eyes to 4mm. Contains 1 % pyrite as cubes to 2 mm and 1 % chalcopyrite as irregular blebs to 1.5 mm associated with chlorite-quartz patches.

LK89-1016

GRAB SAMPLE - OUTCROP

24085 1773W

Green weathering feldspar-ankerite-chlorite dyke. Contains 3-5% feldspar phenocrysts to 1 mm and 15% ankerite porphyroblasts to 4 mm in a fine grained, chloritic groundmass. Dyke attitude: 189/73.

LK89-1017

GRAB SAMPLE - FLOAT Milky white, coarse grained quartz vein with 10% galena occurring as anhedral masses to 1 cm. Trace pyrite Also contains trace occurs as subhedral cubes to 1 mm. malachite as coatings on quartz.

LK89-1018

GRAB SAMPLE - SUBCROP Sample collected from the north end of a 30-50 cm wide by 20 metre opaque, milky white quartz vein. At this locality, the vein pinches where it crosses from the jet black quartzite to the volcanics. Contains 5% galena as subhedral cubes to 4 mm.

LK89-1019

GRAB SAMPLE - FLOAT

GRAB SAMPLE - FLOAT

1016S 1625W

Weakly foliated, rusty brown weathering fuchsiteankerite-sericite-quartz rock. Fuchsite (5%) occurs as anhedral grains to 1 mm. Ankerite porphyroblasts (10%) occur to 2 mm in the quartz-sericite groundmass.

LK89-1020

1048s 1523W

Rusty brown weathering, well indurated, unfoliated ankerite-sericite-quartz rock. Fresh surfaces are dark grey in colour. Ankerite (15%) occurs as fresh, pale yellow to brick red porphyroblasts to 5 mm.

GRAB SAMPLE - FLOAT

1032S 1570W

Rusty weathering, faintly banded fuchsite-ankeritechlorite-sericite-quartz rock. Fuchsite (3-5%) occurs as irregular paches 1-4 mm in size. Ankerite occurs as patches and lenses to 5X10 mm. Contains 5% pyrite as cubes to 5 mm.

LK89-1022

GRAB SAMPLE - FLOAT

10478 1570W Well laminated, weakly fissile black guartzite/shale. Quartzofeldspathic laminae (20%) to 0.5 mm separated by graphite and black phyllite laminae to 1 mm.

LK89-1023

COMPOSITE GRAB SAMPLE - FLOAT

11238 1505W Sample collected from five one cubic metre subangular boulders. Well indurated, rusty weathering, massive fuchsite-ankerite-sericite-quartz rock. Fuchsite (3-10%) occurs as anhedral grains 1-5 mm. Contains 3% pyrite as cubes to 4 mm.

LK89-1024

GRAB SAMPLE - OUTCROP Green to brown weathering feldspar-chlorite schist (tuff). Weakly foliated chloritic groundmass contains feldspar grains to 0.5 mm. Trace pyrite as anhedral blebs to 1 mm.

LK89-1025

GRAB SAMPLE - OUTCROP Interbedded (mm scale) graphitic grey phyllite and dull black shale. Quartzofeldspathic, crenulated laminac to 0.25 mm.

LK89-1026

GRAB SAMPLE - OUTCROP Rusty brown weathering, fissile, strongly sheared fine grained black quartzite. Quartzofeldspathic laminae to 0.5 mm. Displays a sugary, silica rich texture. Boxworks after pyrite (5%) to 6 mm.

LK89-1027

GRAB SAMPLE - OUTCROP Rusty weathering, locally sheared fuchsite-ankeritequartz rock. Ankerite (15-20%) blebs to 2 mm. Fuchsite is rare.

Rusty weathering fuchsite-ankerite-feldspar-quartz rock. Contains 25% fresh brick-red ankerite pophyroblasts to 3 mm, which are alligned to form a crude banding. Fuchsite occurs as flecks to 0.5 mm.

LK89-1029

GRAB SAMPLE - OUTCROP Predominantly dull black shale with 2-3 cm bands of black quartzite and minor shiny black phyllite. Outcrop is sheared and is rusty weathering.

LK89-1030

GRAB SAMPLE - OUTCROP

GRAB SAMPLE - SUBCROP

2398s 1227W

Black, very fine grained quartzite with minor black phyllite laminae to 1 mm. Conspicuous absence of the characteristic quartzofeldspathic laminae. Ankerite porphyroblasts (20%) alterd to limonite.

LK89-1031

GRAB SAMPLE - SUBCROP

Rusty weathering, well indurated black shale. Contains laminae of greenish yellow phyllite and local graphitic laminae to 1 mm. Pyrite (1-2%) occurs as cubes to 3 mm. Malachite (3-4%) is assocciated with shearing.

LK89-1032

GRAB SAMPLE - SUBCROP

Strongly sheared black shale with grey quartz veins to 1 cm occuring parallel to bedding. Pyrite (15%) occurs as aggregates of cubes parallel to quartz veins. Trace malachite.

LK89-1033

GRAB SAMPLE - SUBCROP

Well indurated, jet black aphanitic quartzite. Contains 3% pyrite as disseminated cubes to 0.5 mm. Yellow to red quartzofeldspathic laminae to 2 mm comprise 40% of the rock.

LK89-1034

GRAB SAMPLE - SUBCROP

1500s 763W

Rusty weathering black shale with malachite coating. Very finely laminated and locally graphitic. Sample is a high grade grab of malachite bearing rock.

LK89-1035 GRAB SAMPLE - OUTCROP 2008 1905W Finely laminated, black and rusty weathering interbedded black shale and black quartzite. Contains graphitic laminae to 2 mm. Trace pyrite occurs as cubes to 2 mm.

LK89-1036

Featureless shiny grey phyllite.

LK89-1037

GRAB SAMPLE - OUTCROP Black shale interbedded with minor grey phyllite.

GRAB SAMPLE - OUTCROP

LK89-1038

GRAB SAMPLE - OUTCROP Predominantly rusty weathering black shale. Contains two decomposed quartz veinlets 3 cm wide,

LK89-1039

GRAB SAMPLE - OUTCROP Finely laminaed, fissile dull black shale.

APPENDIX III

Total Field Magnetometer Survey Data

OMNI-IV Tie-line MAG Ser #26102 EDA TOTAL FIELD DATA (Base stn. corrected) Date: 27 JUL 89 **Operator:** 3000 field: 56700.0 Reference Datum subtracted: 0.0 Records: 165Bat: 17.2 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 7/28 6:58:51 Start of print: Base stn. Pos: -650 Line: -1600 7/07 9:39:00 Last time update: print: 7/28 7:00:00 Start of Line: -2700Date: 27 JUL 89 #2 POSITION DRIFT FIELD ERR TIME DS -90056725.8 .02 1157.9 9:03:39 88 -925 56743.8 .03 1158.0 9:05:01 88 -950 56720.9 .02 1158.1 9:06:10 88 -975 56729.0 .03 1156.8 9:07:38 88 .03 -100056727.5 1156.3 9:08:35 88 -102556712.5 .02 1155.6 9:09:56 88 -105056723.1 .03 1154.5 9:11:02 88 -1075.03 56747.2 1153.7 9:11:48 88 -110056729.7 .03 1152.9 9:13:00 88 -112556734.8 .03 1152.2 9:14:02 88 -115056728.4 .03 1152.4 9:15:05 88 .03 -117556714.0 1153.0 9:16:28 88 -120056703.6 .02 1152.7 9:18:55 88 -122556706.5 1152.8 9:20:31 88 .03 -125056710.9 .02 1152.3 9:22:09 88 -127556733.7 .03 1152.0 9:24:34 88 -130056695.6 .03 1151.9 9:28:10 88 56687.2 -1325.03 1150.5 9:29:27 88 -135056699.9 .03 1148.7 9:31:20 88 -137556694.4 .07 1148.3 9:33:29 88 56698.2 .03 -14001148.5 9:35:08 88 .02 -142556691.3 1150.0 9:36:50 88 -145056682.9 .02 1149.4 9:39:18 88 -147556689.1 .03 1149.2 9:40:31 88 56702.0 -1500.03 1149.9 9:42:51 88 -152556691.4 .03 1152.7 9:45:11 88 -155056707.0 .04 1152.2 9:46:27 88 56673.4 .03 9:47:58 88 -15751151.0 .06 -160056680.5 1154.5 9:51:20 88 -162556696.9 .03 1155.5 9:53:25 88 -1650.02 9:55:08 88 56698.2 1154.5 -167556712.3 .03 1155.5 9:56:27 88 -170056710.8 .02 1153.1 9:57:44 88 56708.6 .02 1152.5 -17259:58:56 88 56719.9 .03 1152.5 10:00:13 88 -175056723.6 .02 1152.0 10:01:56 88 -1775-180056730.6 .03 1150.7 10:03:50 88

POSITION	FIELD	ERR	DRIFT	TIME	DS
-1825	56697.1	.03	1150.7	10:06:21	88
-1850	56709.6	.02	1156.0	10:10:15	88
-1875	56716.2	.02	1154.8	10:11:47	88
-1900	56715.7	.03	1154.0	10:14:48	88
			a a		
Line: -2	2600	Date	: 27 JUI	5 89 #4	13
POSITION	FIELD	ERR	DRIFT	TIME	DS
-1900	56/01.8	.02	1148.8	10:21:52	88
-1873	56703.0	.02	1148.4	10:23:48	88
-1825	56703.0	.03	1140.2	10:24:50	00
-1023	56605 0	.02	1147.0	10:25:59	00
-1775	56706 9	.02	1147.0	10.27.12	00
-1750	56711 7	.03	1147.4	10:20:13	00
-1725	56652 4	.03	1147.0	10:29:22	00
-1700	56676 3	.03	1140.0	10.32.13	88
-1675	56716 3	.03	1145.0	10.32.13	88
~1650	56697 6	03	1147.0	10.34.34	88
-1625	56708.9	.03	1149 8	10.30.30	88
-1600	56698.4	.03	1150.7	10.30.10	88
-1575	56691.0	.03	1152.6	10:35.30	88
-1550	56675.6	.02	1154.8	10:41:20 10:44:19	88
-1525	56680.5	.03	1155.0	10:45:16	88
-1500	56673.9	.03	1154.8	10:46:28	88
-1475	56681.8	.02	1154.5	10:48:02	88
-1450	56692.0	.03	1153.7	10:49:09	88
-1425	56671.6	.02	1153.4	10:50:42	88
-1400	56656.3	.03	1153.9	10:52:50	88
-1375	56690.8	.02	1153.8	10:54:45	88
-1350	56697.7	.03	1154.9	10:55:47	88
-1325	56710.2	.03	1155.5	10:59:34	88
-1300	56689.6	.02	1156.3	11:03:53	88
-1275	56696.4	.03	1155.6	11:05:55	88
-1250	56685.3	.03	1155.7	11:08:07	88
-1225	56721.3	.04	1156.0	11:09:59	88
-1200	56717.2	.04	1156.0	11:11:35	88
-1175	56693.4	.03	1156.4	11:13:18	88
-1150	56703.4	.03	1156.3	11:15:34	88
-1125	56696.6	.03	1156.6	11:17:13	88
-1100	56693.1	.03	1156.7	11:20:29	88
-1075	56700.2	.02	1156.6	11:22:03	88
-1050	56700.6	.03	1156.5	11:23:32	88
-1025	56672.5	.03	1156.4	11:25:11	88
-1000	56714.5	.06	1156.5	11:35:14	88
-975	56717.2	.03	1156.4	11:36:43	88
-950	56706.1	.03	1155.8	11:37:59	88
-925	56709.4	.03	1155.9	11:39:10	88
-900	20/08./	.02	TT22.3	11:40:10	88
	•				

 \sim
\frown		Line: -2	2500	Date:	27 JUI	5 89 #	84
$F \rightarrow F$		POSITION	FIELD	ERR	DRIFT	TIME	DS
		-900	56735.3	.03	1150.8	12:46:42	88
		-925	56730.6	.03	1149.4	12:49:08	88
	•	-950	56704.4	.02	1149.3	12:50:28	88
		-975	56714.0	.03	1148.3	12:51:39	88
		-1000	56723.9	.03	1148.7	12:52:40	88
		-1025	56720.5	.03	1149.2	12:54:16	88
		-1050	56718.3	.03	1149.4	12:55:56	88
		-1075	56712.6	.03	1149.0	12:57:34	88
		-1100	56720.0	.03	1148.5	12:58:08	88
		-1125	56720.1	.03	1148.1	12:58:56	88
		-1150	56706.4	.03	1148.1	13:00:38	88
		-1175	56738.6	.04	1147.1	13:01:59	88
		-1200	56699.5	.02	1149.3	13:03:25	88
		-1225	56728.6	.03	1151.1	13:05:23	88
		-1250	56708.7	.03	1152.4	13:07:12	88
	-	-1275	56707.8	.03	1152.6	13:08:33	88
		-1300	56716.3	.03	1151.9	13:09:37	88
		-1325	56709.0	.03	1151.8	13:11:00	88
		-1350	56718.2	.03	1152.3	13:12:07	88
		-1375	56699.8	.03	1152.6	13:13:10	88
		-1400	56695.8	.02	1152.9	13:14:20	88
		-1425	56689.9	.03	1153.5	13:15:41	88
\sim		-1450	56693.8	•03	1154.1	13:16:42	88
		-1475	56684.6	.03	1156.0	13:1/:58	88
		-1500	56685.6	.03	1156.8	13:19:08	88
		-1525	566/5.1	.03	1158.4	13:20:10	88
		-1550	566//.5	.03	1158.6	13:21:18	88
		-15/5	56/15.6	.02	1157.4	13:22:16	88
		-1600	56/10.3	.03	1156.9	13:23:57	88
		-1625	56728.9	.03	1156.0	13:25:32	88
		-1650	56718.2	.03	1156.0	13:26:57	88
		-16/5	56716.9	.03	1156.6	13:28:42	88
		-1700	56700.9	.03	1155.9	13:35:07	88
		-1725	56705.0	.03	1155.3	13:30:43	88
		-1750	56705.9	.02	1150.8	13:39:25	88
		-1//0	50000.3	•03	1160 2	12.41.45	00
·		-1000	56/08.0	.03	1161 2	13,42,27	00
		-1820	5009/.1	.03	1160 0	12,42:3/	00
		-1030	56701.4	• 03	1160 7	13:43:52	00
		-18/5	56566./	.03	1100./	13:45:05	00
		-1900	56/04.5	.02	1100.9	13:46:14	88

Line: -2	2400	Dates	: 27 JU	L 89 #1	25
POSITION	FIELD	ERR	DRIFT	TIME	DS
-1900	56680.7	.03	1161.6	14:05:21	88
-1875	56688.6	.02	1161.9	14:08:15	88
-1850	56695.3	.03	1161.9	14:10:54	88
-1825	56701.5	.04	1161.9	14:11:50	88
-1800	56680.2	.03	1162.2	14:12:55	88
-1775	56681.3	.03	1162.0	14:14:33	88
-1750	56676.9	.03	1162.4	14:15:39	88
-1725	56687.5	.03	1162.8	14:16:35	88
-1700	56695.0	.05	1162.7	14:17:32	88
-1675	56726.4	.46	1162.1	14:18:57	88
-1650	56689.4	.04	1162.3	14:20:16	88
-1625	56681.7	.03	1162.7	14:21:26	88
-1600	56674.7	.03	1164.7	14:26:18	88
-1575	56675.2	.03	1164.5	14:27:05	88
-1550	56676.7	.03	1164.9	14:28:06	88
-1525	56678.1	.03	1165.0	14:29:49	88
-1500	56670.5	.02	1165.4	14:30:57	88
-1475	56672.2	.02	1165.8	14:32:42	88
-1450	56676.3	.03	1165.9	14:34:02	88
-1425	56685.0	.04	1165.3	14:35:03	88
-1400	56671.6	.03	1165.2	14:36:25	88
-13/5	56686.2	.04	1159.1	14:56:46	88
-1350	56/14.4	.04	1158.5	14:57:43	88
-1325	56695.8	.03	1158.0	14:58:59	88
-1300	56698.8	.03	1157.5	15:00:12	88
-1275	56693.5	.03	1157.0	15:01:18	88
-1250	56695.4	.03	1156.8	15:02:16	88
-1220	56692.4	.03	1156.5	15:03:16	88
-1200	56691.0	.03	1155.6	15:04:44	88
-11/0	56705.3	.04	1156.0	15:06:13	88
-1150	56675.9	.02	1156.4	15:07:31	88
-1123	20001.8	.03	1156.4	15:09:02	88
-1075	56695.9	.03	1157.2	15:10:06	88
-1075	56600 0	.03	1157.4	15:11:16	88
-1025	56701 6	.03	1150.1	15:12:33	88
-1025	56704 0	•U3 03	1150 2	15:13:29	88
-975	56600 0	•U3	1157 A	15,14:55	88
-950	56709 5	.03	1150 0	15,17,00	88
-925	56709.0	.03	1150 1	15,10,07	88
-900	56712 5	•03 0/	1150 1	15.10.20	00
- 500	20112-2	• 0 4	TT0A*T	10:19:29	88

Tie-line EDA OMNI-IV MAG Ser #26102 TOTAL FIELD DATA (Base stn. corrected) Date: 28 JUL 89 **Operator:** 3000 Reference field: 56700.0 Datum subtracted: 0.0 Records: 215 Bat: 17.0 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 7/29 6:55:46 Base stn. Pos: -650 Line: -1600 Last time update: 7/07 9:39:00 Start of print: 7/29 6:56:56 Line: -2300Date: 28 JUL 89 #2 POSITION FIELD ERR DRIFT TIME DS -40056713.6 .02 1158.8 9:36:14 88 -425 56738.7 .52 1155.7 9:39:59 88 -45056703.6 .02 1155.1 9:43:11 88 -475 56776.9 .14 1154.6 9:45:19 78 -500 56702.3 .02 1154.2 9:47:36 88 -525 56750.9 .04 1154.0 9:49:17 88 -550 56721.1 .03 1154.2 9:51:37 88 -575 56723.2 .03 1154.4 9:54:24 88 -60056749.9 .06 1154.3 9:56:25 88 -62556717.2 .03 1152.1 10:01:35 88 -65056739.3 .03 1151.9 10:03:16 88 -675 1152.4 10:08:24 56705.3 .03 88 -70056723.2 .03 1151.6 10:10:33 88 -725 56720.3 .03 1151.1 10:12:26 88 -75056723.1 .03 1149.0 10:17:30 88 -775 56725.0 .03 1148.9 10:18:21 88 -800 56716.5 .03 1148.9 10:19:26 88 -825 56720.8 .03 1149.2 10:20:24 88 -850 56715.8 1149.4 10:22:31 .03 88 -875 56730.2 .03 1148.5 10:24:28 88 -900 56711.0 .03 1148.1 10:25:15 88 -925 56712.5 .02 1148.1 10:26:14 88 -950 56757.9 .05 1147.9 10:29:38 88 -975 56732.0 .04 1148.1 10:30:19 88 -100056716.6 .03 1148.8 10:32:05 88 -102556705.7 .03 1147.9 10:33:25 88 -105056773.7 .07 1147.6 10:35:30 88 -107556703.8 .03 1147.3 10:36:08 -88 -110056709.8 .03 1147.3 10:37:15 88 -112556718.4 .04 1146.3 10:40:33 88 -115056738.5 .03 1146.1 10:41:17 88 56728.1 .04 -11751145.3 10:42:40 88 -120056695.1 .03 1145.4 10:47:03 88 -122556659.3 .02 1144.9 10:49:46 88 -125056716.6 .03 1144.0 10:51:28 88 -127556732.2 .02 1143.0 10:52:52 88 -130056773.0 .13 1141.5 10:54:15 78

FIELD	ERR	DRIFT	TIME	DS
56695.5	.02	1140.3	10:55:54	88
56701.3	.03	1139.3	10:57:13	88
56686.6	.04	1138.6	10:58:39	88
56705.1	.03	1137.9	10:59:45	88
56687.8	.04	1137.1	11:00:46	88
56682.4	.03	1136.9	11:01:43	88
56707.0	.03	1136.6	11:02:51	88
56711.9	.04	1136.6	11:03:46	88
56740.2	.04	1136.6	11:07:28	88
56742.0	.03	1136.9	11:08:18	88
56733.0	.03	1137.0	11:08:55	88
56743.2	.05	1136.9	11:09:49	88
56747.3	.10	1137.3	11:10:56	78
56695.6	.03	1136.8	11:12:45	88
56693.1	.03	1136.4	11:13:47	88
56688.1	.03	1136.4	11:15:10	88
56701.4	.03	1136.3	11:16:51	88
56630.4	.03	1136.2	11:18:02	88
56693.9	.03	1134.9	11:20:30	88
56704.0	.03	1133.5	11:21:50	88
56701.1	.03	1132.9	11:22:51	88
56709.2	.04	1132.9	11:23:42	88
56714.4	.03	1132.3	11:24:47	88
56701.0	.03	1132.1	11:25:49	88
	FIELD 56695.5 56701.3 56686.6 56705.1 56687.8 56682.4 56707.0 56740.2 56740.2 56740.2 56742.0 56743.2 56743.2 56743.2 56743.3 56695.6 56693.1 56693.1 56688.1 56693.1 56693.9 56701.4 56693.9 56704.0 56701.1 56709.2 56714.4 56701.0	FIELDERR56695.5.0256701.3.0356686.6.0456705.1.0356687.8.0456682.4.0356707.0.0356740.2.0456742.0.0356743.2.0556747.3.1056693.1.0356693.1.0356693.1.0356693.1.0356693.1.0356693.1.0356693.1.0356693.9.0356701.4.0356701.1.0356701.1.0356701.2.0456714.4.0356701.0.03	FIELDERRDRIFT56695.5.021140.356701.3.031139.356686.6.041138.656705.1.031137.956687.8.041137.156682.4.031136.956707.0.031136.656711.9.041136.656740.2.041136.656742.0.031136.956743.2.051136.956747.3.101137.356695.6.031136.456693.1.031136.456693.1.031136.456693.9.031136.356693.9.031133.556701.1.031132.956714.4.031132.356701.0.031132.1	FIELDERRDRIFTTIME56695.5.021140.310:55:5456701.3.031139.310:57:1356686.6.041138.610:58:3956705.1.031137.910:59:4556687.8.041137.111:00:4656682.4.031136.911:01:4356707.0.031136.611:02:5156740.2.041136.611:07:2856742.0.031136.911:08:1856733.0.031137.011:08:5556743.2.051136.911:09:4956747.3.101137.311:10:5656693.1.031136.411:13:4756688.1.031136.411:15:1056701.4.031136.211:18:0256693.9.031133.511:22:5156701.1.031132.911:22:5156701.2.041132.911:22:5156701.4.031132.911:24:4756701.0.031132.111:25:49

-

Line: -	2200	Date:	28 JUI	L89 #6	53
POSITION	FIELD	ERR	DRIFT	TIME	DS
-1900	56698.2	.05	1133.0	11:36:40	88
-1875	56656.6	.02	1133.7	11:38:07	88
-1850	56690.8	.03	1133.5	11:39:07	88
-1825	56681.8	.03	1133.1	11:39:57	88
-1800	56719.0	.12	1133.1	11:41:09	84
-1775	56705.0	.06	1132.6	11:42:07	88
-1750	56702.6	.05	1132.3	11:43:40	88
-1725	56697.7	.02	1132.7	11:44:54	88
-1700	56681.2	.03	1132.8	11:46:06	88
-1675	56678.3	.03	1132.3	11:46:57	88
-1650	56691.6	.03	1131.6	11:47:58	88
-1625	56682.5	.03	1130.9	11:49:04	88
-1600	56670.0	.02	1131.1	11:50:10	88
-1575	56661.1	.03	1131.2	11:51:24	88
-1550	56739.4	.04	1137.0	13:53:48	88
-1525	56741.6	.04	1137.3	13:55:14	88
-1500	57326.9	1.1	1136.8	13:56:37	78
-1475	56768.6	.03	1137.1	13:57:37	88
-1450	56687.6	.03	1137.2	13:59:11	88
-1425	56696.1	.04	1137.3	14:00:41	88
-1400	56624.0	.03	1137.5	14:01:45	88
-1375	56723.9	.06	1137.4	$14 \cdot 03 \cdot 31$	88
-1350	56720.5	.05	1137.5	14:05:18	88
-1325	56731.3	.04	1138.5	14.07.08	88
-1300	56736.4	.04	1138.8	14:09:06	88
-1275	56992.1	.04	1140.6	14:10:54	88
-1250	56607.7	.07	1140.3	14:13:34	88
-1225	56650.9	.24	1139.8	14:16:36	78
-1200	56726.9	.05	1139.7	14:18:11	88
-1175	56682.6	.06	1141.3	14:56:45	88
-1150	56713.7	.04	1142.8	14:57:49	88
-1125	56705.5	.03	1141.1	14:58:55	88
-1100	56700.0	.03	1139.8	14:59:52	88
-1075	56718.7	.04	1137.4	15:00:57	88
-1050	56712.7	.03	1134.9	15:02:10	88
-1025	56711.0	.03	1135.0	15:03:00	88
-1000	56723.6	.03	1134.6	15:04:12	88
-975	56736.6	.03	1136.3	15:05:16	88
-950	56713.3	.03	1139.3	15:06:21	88
-925	56726.5	.04	1142.4	15:07:18	88
-900	56748.0	.06	1143.4	15:08:14	88
-875	56717.3	.03	1142.8	15:09:09	88
-850	56732.8	.04	1142.4	15:10:01	88
-825	56725.8	.04	1143.0	15:10:55	88
-800	56720.0	.03	1142.9	15:12:06	88
-775	56724.4	.03	1143.1	15:13:26	88
-750	56739.0	.04	1144.1	15:14:45	88
-725	56710.7	.03	1145.3	15:16:03	88
-700	56697.1	.02	1148.4	15:18:00	88
-675	56/19.4	.03	1148.6	15:19:09	88
-650	56725.3	.03	1149.2	15:20:04	88
-625	20/18.0	.03	1149.7	15:21:17	88

•

POSITION	FIELD	ERR	DRIFT	TIME	DS
-600	56732.1	.03	1150.6	15:22:22	88
-575	56713.7	.03	1152.3	15:24:14	88
-550	56722.9	.02	1155.9	15:26:32	88
-525	56767.3	.03	1157.9	15:28:22	88
-500	56791.0	.03	1159.6	15:29:51	88
-475	56747.5	.03	1159.9	15:30:58	88
-450	56711.5	.06	1158.4	15:32:52	88
-425	56689.8	.03	1157.1	15:34:34	88

Line: -	2100	Date:	28 JU	L89 #1	23
POSITION	FIELD	ERR	DRIFT	TIME	DS
-425	56728.7	.03	1185.0	19:17:41	88
-450	56763.9	.07	1184.9	19:19:47	88
-475	56779.7	.07	1184.5	19:23:03	88
-500	56776.7	.06	1184.3	19:24:00	88
-525	56737.5	.03	1184.2	19:25:05	88
-550	56753.2	.03	1183.7	$19 \cdot 26 \cdot 11$	88
-575	56734.3	.03	1183.7	19.27.29	88
-600	56716.0	.03	1182 3	19.29.11	88
-625	56731.4	02	1181 1	19.30.54	00 00
-650	56739 2	02	1190 5	10.22.06	00
-675	56700 2	.03	1170 0	10.22.00	00
-700	56711 0	•00	1177 0	19:33:30	00
-700	56710 5	•03 na	1175 7	19:34:45	88
-723	56712 0	.03	1170./	19:43:36	88
-730	56713.0	.00	11/4.4	19:46:07	88
-775	56732.0	.03	11/4./	19:47:24	88
-800	56716.4	.02	11/4.3	19:49:13	88
-825	56713.0	.03	1174.2	19:50:07	88
-850	56718.3	.03	1174.3	19:51:15	88
-875	56720.4	.03	1174.1	19:52:48	88
-900	56750.3	.03	1174.1	19:54:40	88
-925	56739.7	.03	1174.3	19:55:47	88
-950	56756.4	.03	1175.0	19:56:51	88
-975	56731.8	.03	1175.5	19:57:44	88
-1000	56732.7	.03	1175.6	19:58:26	88
-1025	56747.5	.03	1175.5	19:59:11	88
-1050	56715.6	.03	1175.7	19:59:56	88
-1075	56720.7	.03	1175.9	20:00:50	88
-1100	56715.4	.02	1176.8	20:02:38	88
-1125	56738.6	.03	1177.6	20:03:57	88
-1150	56723.4	.03	1178.5	20:05:00	88
-1175	56708.8	.02	1178.4	20.06.03	88
-1200	56709.4	.03	1178 7	20.00.03	88
-1225	56703.4	.02	1180 1	20.00.37	00 00
-1250	56696 0	03	1190 1	20.00.20	00
-1275	56712 5	.03	1100.1	20:10:00	00
-1300	56712.5	•03	1101.4	20;11;31 20,12,44	00
-1325	56726 0	.03	1102.0	20:12:44	00
-1350	56700 1	.03	1102.1	20:15:55	00
-1275	56700.1	.03	1103.2	20:15:32	88
-1375	56709.5	.02	1102.4	20:17:18	88
-1400	56706.7	.02	1181.9	20:18:51	88
-1420	56709.1	•03	1180.5	20:20:23	88
-1450	56690.3	.02	11/8.3	20:22:17	88
-14/5	56725.5	.04	1176.2	20:24:05	88
-1500	56/14.9	.03	1175.6	20:25:00	88
-1525	56731.3	.02	1174.8	20:25:46	88
-1550	56699.8	.02	1173.5	20:27:04	88
-1575	56696.6	.03	1171.9	20:28:50	88
-1600	56706.1	.03	1169.5	20:32:19	88
-1625	56705.0	.03	1169.4	20:33:35	88
-1650	56707.9	.02	1168.6	20:36:03	88
-1675	56700.6	.02	1168.9	20:37:16	88
-1700	56725.3	.03	1168.7	20:38:04	88

 $\sum_{i=1}^{n}$

 \cap

 \bigcirc

POSITION	FIELD	ERR	DRIFT	TIME	DS
-1725	56686.0	.03	1168.8	20:39:02	88
-1750	56685.6	.02	1168.6	20:40:12	88
-1775	56705.5	.03	1168.8	20:41:05	88
-1800	56677.2	.03	1169.0	20:42:05	88
-1825	56654.1	.02	1169.3	20:43:36	88
-1850	56713.0	.03	1169.5	20:45:19	88
-1875	56764.7	.03	1169.0	20:46:26	88
-1900	56786.2	.02	1168.7	20:47:36	88

Line: -	2000	Date:	28 JUI	589 # 1	L83		
POSITION	FIELD	ERR	DRIFT	TIME	DS		
-1900	56720.1	.03	1168.9	20:50:49	88		
-1875	56653.1	.02	1168.8	20:51:40	88 (
-1850	56687.0	.03	1168.6	20:52:16	5 88		
-1825	56681.4	.03	1168.6	20:53:02	2 88		
-1800	56689.5	.03	1168.5	20:53:45	5 88		
-1775	56696.4	.03	1168.2	20:54:23	8 88		
-1750	56692.6	.03	1168.0	20:54:57	7 88		
-1725	56701.5	.03	1167.9	20:55:31	88		
-1700	56700.3	.03	1167.6	20:56:10	88		
-1675	56694.5	.03	1167.6	20:56:48	388		
-1650	56694.2	.03	1167.6	20:57:38	8 8 8		
-1625	56707.9	.03	1167.5	20:58:43	8 8 8		
-1600	56697.9	.03	1167.4	20:59:28	3 <u>8</u> 8		
-1575	56716.1	.04	1167.1	21:00:20	88 (
-1550	56694.1	.03	1166.4	21:01:16	5 88		
-1525	56697.9	.03	1166.2	21:02:27	788		
-1500	56693.2	.03	1165.8	21:03:59	88		
-1475	56702.5	.03	1165.5	21:05:06	5 88		
-1450	56690.2	.02	1164.6	21:06:48	88 8		
-1425	56698.8	.03	1164.4	21:07:52	88 2		
-1400	56708.0	.03	1163.9	21:08:40	88 (
-1375	56698.8	.03	1163.8	21:09:32	2 88		
-1350	56700.3	.03	1163.8	21:10:51	88		
-1325	56690.9	.02	1163.9	21:12:04	88		
-1300	56708.0	.03	1164.0	21:13:14	88		
-1275	56708.7	.02	1163.9	21:14:16	5 88		
-1250	56705.9	.03	1165.1	21:16:07	88 '		
-1225	56718.4	.03	1165.5	21:16:54	88		
-1200	56716.7	.03	1166.2	21:18:13	8 8 8		
-1175	56711.5	.03	1166.9	21:19:10	88		
-1150	56709.0	.03	1167.3	21:20:09	88		
-1125	56723.1	.03	1167.7	21:21:14	88		
-1100	56701.9	.03	1168.2	21:22:21	. 88	*	

•

.

OMNI-IV EDA Tie-line MAG Ser #26102 TOTAL FIELD DATA (Base stn. corrected) Date: 29 JUL 89 3000 **Operator:** Reference field: 56700.0 Datum subtracted: 0.0 Records: 47 Bat: 17.7 Volt Lithium: 3.48 Volt Last time update: 7/12 11:52:00 7/31 18:52:42 print: Start of Pos: Base stn. -650 Line: -1600 Last time update: 7/07 9:39:00 7/31 18:53:52 Start of print: Line: -2000Date: 29 JUL 89 #2 POSITION FIELD ERR DRIFT TIME DS -110056712.1 .03 1148.3 9:08:33 88 -107556711.7 .03 1146.7 9:10:42 88 -105056710.4 .03 1145.0 9:13:11 88 56741.1 .04 -10251144.9 9:14:10 88 -100056719.1 .02 1144.2 9:14:58 88 -975 56732.1 .04 1144.0 9:15:52 88 56677.0 -950 .82 1143.6 9:16:56 78 -925 56715.7 .02 1142.6 9:17:59 88 -900 56701.9 .03 1141.8 9:19:16 88 -87556721.3 .03 9:21:29 88 1141.1 -85056743.1 .04 1144.3 9:23:23 88 -825 56716.7 .03 1148.7 9:30:21 88 -800 56703.8 .03 1149.3 9:33:37 88 -775 56714.2 .03 1147.8 9:35:03 88 -750 56718.2 .03 1147.3 9:36:06 88 -72556709.7 .03 1146.2 9:37:03 88 -700 56707.3 .03 1144.4 9:38:18 88 56714.5 .03 -675 1144.0 9:39:58 88 -650 56706.4 .03 1141.4 9:41:37 88 -625 56705.1 1140.3 .02 9:42:51 88 -600 56713.2 .03 1139.7 9:44:40 88 .03 -575 56718.2 1140.0 9:46:35 88 -550 56723.8 .03 1138.7 9:47:48 88 -52556726.9 .04 1137.5 9:48:43 88 -500 56710.5 .03 1136.8 9:49:30 88 -475 56725.6 .03 1134.7 9:50:49 88 -45056720.9 1135.3 .03 9:54:27 88 -425 56729.6 .03 1137.0 9:55:46 88 -40056717.9 .02 1137.6 9:56:55 88 -375 56735.0 .03 1136.1 9:58:30 88

EDA OMNI-IV Tie-line MAG Ser #26102 TOTAL FIELD DATA (Base stn. corrected) Date: 5 AUG 89 **Operator:** 3000 Reference field: 56700.0 Datum subtracted: 0.0 Records: 263 Bat: 17.2 Volt Lithium: 3.48 Volt Last time update: 7/12 11:52:00 Start of print: 8/06 7:38:42 Base stn. Pos: -650 Line: -1600 Last time update: 7/07 9:39:00 Start of print: 8/06 7:39:52 Line: -800Date: 5 AUG 89 #3 POSITION FIELD ERR DRIFT TIME DS -115056701.9 .05 1160.7 8:53:30 88 -1175 56712.1 .04 1160.6 8:55:55 88 -120056754.0 .04 1160.9 8:56:52 88 -122556730.7 .03 1160.6 8:57:57 88 -1250 56723.8 .02 1160.7 8:58:44 88 -127556742.4 .02 1160.5 8:59:37 88 -130056748.0 .03 1160.5 9:00:40 88 -132556742.0 .03 1160.3 9:01:36 88 -135056738.9 .03 1160.2 9:02:31 88 -137556719.8 .02 1160.3 9:03:46 88 -140056713.8 .03 1160.5 9:04:41 88 -142556712.2 .02 1160.3 9:05:42 88 -145056723.2 1160.2 .03 9:06:33 88 -147556704.6 .02 1160.2 9:07:34 88 -150056695.9 .02 1160.1 9:08:33 88 -152556742.0 .02 1160.0 9:09:28 88 -155056716.7 .03 1159.7 9:10:33 88 -1575 56689.8 .03 1159.5 9:11:36 88 -160056726.0 .03 1159.5 9:15:14 88 -162556745.0 .02 1159.2 9:16:25 88 -165056778.6 .03 1159.2 9:17:23 88 -1675 56781.7 .04 1159.1 9:18:09 88 -170056778.1 .03 1159.0 9:18:46 88 -172556747.8 .02 1158.7 9:19:45 88 -175056726.8 .02 1158.5 9:20:44 88 -177556756.6 .09 1158.2 9:21:50 88 56726.8 -18001158.3 .03 9:22:49 88 -182556708.8 .02 1158.2 9:23:46 88 -185056725.8 .03 1157.7 9:25:19 88 -187556701.9 .03 1157.6 9:26:15 88 -190056693.7 .03 1157.4 9:27:17 88

	Line:	-900	Date:	: 5 AUC	389 #	34 '	
	POSITION	FIELD	ERR	DRIFT	TIME	DS	
	-1900	56702.1	.02	1154.8	9:35:40	88	
	-1875	56730.8	.04	1154.5	9:38:36	88	
	-1850	56706.2	.03	1154.7	9:39:33	88	
	-1825	56695.9	.02	1154.4	9:40:37	88	
	-1800	56678.1	.03	1154.3	9:41:31	88	
	-1775	56667.8	.02	1154.0	9:42:44	88	
	-1750	56716.7	.03	1153.7	9:43:56	88	
	-1725	56705.4	.02	1153.4	9:45:00	88	
	-1700	56695.7	.02	1153.2	9:46:13	88	
	-1675	56712.4	.02	1152.6	9:47:43	88	
	-1650	56720.1	.02	1152.9	9:48:54	88	
	-1625	56722.1	.03	1152.5	9:50:37	88	
	-1600	56713.0	.02	1152.5	9:51:45	88	
	-1575	56700.0	.03	1152.5	9:52:50	88	
	-1550	56719.5	.02	1152.5	9:53:51	88	
	-1525	56734.7	.03	1152.2	9:54:39	88	
	-1500	56706.0	.03	1152.2	9:55:30	88	
	-1475	56698.5	.02	1152.0	9:56:22	88	
	-1450	56683.8	.02	1151.9	9:57:14	88	
	-1425	56686.5	.02	1151.9	9:58:17	88	
	-1400	56687.7	.03	1152.0	9:59:06	88	
	-1375	56690.4	.02	1151.9	10:00:03	88	
	-1350	56700.3	.03	1151.8	10:00:50	88	
· · ·	-1325	56686.7	.02	1151.6	10:01:39	88	
	-1300	56682.2	.02	1151.3	10:03:08	88	
	-1275	56717.1	.02	1151.6	10:04:07	88	
	-1250	56723.3	.03	1151.5	10:05:17	88	
	-1225	56691.3	.02	1151.6	10:06:16	88	
	-1200	56701.5	.03	1151.3	10:07:34	88	
	-1175	56690.7	.03	1151.4	10:08:58	88	
	-1150	56701.0	.03	1151.3	10:10:09	88	
	-1125	56720.1	.02	1151.1	10:11:02	88	
	-1100	56706.6	.02	1151.0	10:12:08	88	

.

• • • •

					•
				i	
					.:
Line: -1	L000	Date:	: 5 AUÇ	389 #	67 📩
POSITION	FIELD	ERR	DRIFT	TIME	DS
-1100	56698.5	.02	1147.8	10:35:53	88
-1125	56716.2	.03	1147.6	10:36:57	88
-1150	56712.4	.02	1147.4	10:37:59	88
-1175	56738.6	.03	1147.1	10:39:04	88
-1200	56733.9	.02	1146.1	10:42:15	88
~1225	56/31.4	.03	1145.9	10:43:21	88
-1250	56739.1	.03	1145.8	10:44:24	88
-1275	56/41.2	.05	1145.6	10:45:42	88
-1300	56698.4	.03	1144.8	10:49:28	88
-1325	56706.3	.02	1144.4	10:50:42	88
-1330	56707.8	.02	1144.1	10:51:48	88
-1375	56701 6	.04	1143.8	10:53:07	88
-1400	56701.6	.03	1143.6	10:54:19	88
-1423	56735.8	.04	1142.9	10:56:05	88
-1430	56755 1	.03	1142.8	10:57:06	88
-1475	56707 0	.05	1142.7	10:58:16	88
-1500	56720 9	.02	1142.3	10:59:22	88
-1550	56725 0	•02	1142.1	11:00:20	88
-1575	56727 0	.03	1141.7	11:02:12 11:02:42	88
-1600	56740 9	.03	1141.2	11:03:42 11:05:12	88
-1625	56720 5	.02	1140.5	11:05:13	88
-1650	56729.1	03	1130 0	11.07.17	00
-1675	56746 3	.03	1120 2	11.00.20	00
-1700	56717 2	.03	1138 0	11.11.01	00 00
-1725	56711 5	.03	1138 9	11:11:01 11.11.54	00
-1750	56721 0	02	1138 /	11.12.10	00
-1775	56758 3	.03	1138 2	11,15,49	00
-1800	56743.6	03	1137 3	11.19.20	00
-1825	56711.3	.03	1137 1	11.10.27	00 QQ
-1850	56715.7	.03	1136.5	11.20.16	88
-1875	56724-5	.03	1136 3	11.20.10	00 88
-1900	56703.4	.03	1135.7	11.22.02	88
1000		.05	TT22 • 1	11.23.02	00

Line:	-1100	Date:	5 AU	G 89	#10	0	
POSITIO	N FIELD	ERR	DRIFT	' TII	ME	DS	
-1900	56697.9	.03	1133.8	11:28	8:58	88	
-1875	56704.9	.02	1132.9	11:30	0:55	88	
-1850	56708.5	.03	1132.5	11:3	1:59	88	
-1825	56697.0	.03	1132.5	11:32	2:45	88	
-1800	56695.8	.03	1132.6	11:33	3:58	88	
-1775	56704.5	.03	1132.4	11:3	5:32	88	
-1750	56708.0	.02	1131.9	11:30	6:36	88	
-1725	56696.0	.03	1131.9	11:3	7:31	88	
-1700	56707.3	.03	1131.7	11:38	8:19	88	
-1675	56707.4	.02	1131.0	11:39	9:13	88	
-1650	56719.3	.03	1130.8	11:40	0:26	88	
-1625	56710.2	.03	1130.5	11:42	2:38	88	
-1600	56704.2	.02	1130.8	11:43	3:35	88	
-1575	56713.4	.03	1130.3	11:4	4:30	88	
-1550	56704.8	.03	1130.3	11:4	5:50	88	
-1525	56708.6	.02	1130.3	11:40	6:42	88	
-1500	56704.2	.03	1129.7	11:4	7:33	88	
-1475	56711.9	.02	1129.7	11:48	8:15	88	
-1450	56693.1	.03	1129.7	11:49	9:07	88	
-1425	56701.0	.03	1129.3	11:50	0:10	88	
-1400	56688.2	.03	1129.2	11:5	1:12	88	
-1375	56667.1	.03	1129.1	11:52	2:01	88	
-1350	56671.5	.03	1129.2	11:52	2:47	88	
-1325	56665.2	.02	1128.9	11:53	3:56	88	
-1300	56685.5	.03	1128.7	11:5	5:29	88	
-1275	56690.8	.03	1128.5	11:50	6:37	88	·
-1250	56692.3	.03	1128.8	11:5	7:58	88	
-1225	56691.0	.03	1128.4	11:59	9:05	88	
-1200	56706.4	.03	1128.2	12:0	1:28	88	
-1175	56700.4	.03	1128.0	12:02	2:42	88	
-1150	56707.4	.03	1128.0	12:04	4:20	88	
-1125	56709.9	.03	1127.9	12:00	6:24	88	
-1100	56722.1	.03	1127.8	12:0	7:26	88	
-1075	56704.6	.03	1128.5	12:12	2:30	88	
-1050	56712.6	.03	1128.5	12:13	3:05	88	
-1025	56712.4	.03	1128.4	12:13	3:37	88	
-1000	56701.1	.03	1128.3	12:1	5:08	88	
-975	56714.8	.03	1128.2	12:10	6:00	88	
-950	56707.4	.03	1128.4	12:1	7:13	88	
-925	56715.3	.03	1128.4	12:18	8:22	88	
-900	56716.7	.04	1128.5	12:2	1:23	88	
-875	56743.5	.02	1128.3	12:22	2:46	88	
-850	56683.8	.03	1127.8	12:30	0:51	88	
-825	56679.1	.03	1127.8	12:32	2:19	88	

Line: -	1150	Date:	5 AUG	389 # 2	44
POSITION	FIELD	ERR	DRIFT	TIME	DS
-750	56698.6	.03	1126.3	13:46:43	3 88
-725	56709.4	.03	1126.0	13:49:19	9 88
-700	56716.9	.03	1126.1	13:51:42	L 88
-675	56707.4	.03	1126.0	13:53:16	5 88
-650	56711.5	.03	1126.2	13:56:20) 88
-625	56716.3	•03	1125.6	13:57:39	9 88
-600	56716.0	.03	1126.9	13:58:48	3 88
-575	56726.3	.03	1126.3	13:59:53	3 88
-550	56719.5	.03	1127.1	14:01:28	8 8 8
Line: -:	1200	Date:	5 AUG	389 # 1	53
POSITION	FIELD	ERR			
-550	56722.6	.03	1127.0	14:07:25	7 88
-575	56717.8	.03	1126.7	14:11:11	88
-600	56741.3	.03	1126.4	14:12:18	8 8 8
-625	56728.1	.03	1126.6	14:13:09	88
-650	56731.0	.04	1126.8	14:14:14	88
-675	56723.6	.03	1126.9	14:16:10	88
-700	56724.1	.04	1127.1	14:17:38	8 8 8
-725	56706.5	.03	1127.0	14:19:06	5 88
-750	56690.7	.03	1127.0	14:20:23	8 8 8
-775	56724.8	.04	1127.0	14:21:39	88
-800	56735.2	.03	1126.5	14:23:19	88
-825	56778.8	.09	1126.6	14:24:34	78
-850	56747.9	.03	1126.7	14:25:54	88
-875	56738.0	.03	1126.2	14:27:18	8 8 8
-900	56705.3	.03	1125.8	14:28:34	88
-925	56695.6	.03	1126.0	14:30:05	88
-950	56/21./	.03	1125.8	14:31:23	88
-975	56722.9	.03	1127.0	14:37:54	88
-1000	56704.0	.03	1127.1	14:40:22	88
-1025	56712.3	•06	1126.9	14:43:01	. 88
-1050	56644.4	•03	1126.8	14:45:01	. 88
-1075	56631 7	•03	1126.9	14:47:23	88
-1125	56701 0	•03 02	1127.4 1120.1	14:49:58	88
-1150	56681 0	03	1131 3	15-26-50	
-1175	56685.3	.04	1131.5 1131 6	15.20.50	88
-1200	56681.5	.03	1131.5	15.29.56	88
-1225	56666.3	.03	1131.4	15.31.05	88
-1250	56663.1	.03	1131.5	15:32:21	88
-1275	56655.5	.03	1131.5	15:33:19	88
-1300	56615.9	.03	1131.0	15:34:33	88
-1325	56652.9	.04	1131.2	15:35:34	88
-1350	56652.1	.03	1131.3	15:37:33	88
-1375	56681.7	.03	1131.0	15:38:56	88
-1400	56704.2	.03	1131.2	15:40:20	88
-1425	56705.8	.03	1131.8	15:41:19	88
-1450	56714.0	.03	1132.1	15:42:15	88
-1475	56720.3	.03	1132.1	15:43:22	88
-1500	56705.2	.03	1132.9	15:45:12	88
-1525	56742.6	.03	1133.0	15:46:37	88

 \cap

POSITION	FIELD	ERR	DRIFT	TIME	DS	
-1550	56719.8	.03	1133.5	15:47:36	88	
-1575	56721.0	.03	1133.6	15:49:04	88	
-1600	56728.8	.03	1134.0	15:50:16	88	
-1625	56738.9	.03	1134.5	15:51:07	88	
-1650	56738.3	.03	1134.8	15:52:06	88	
-1675	56753.0	.05	1135.1	15:53:45	88	
-1700	56736.8	.03	1135.4	15:54:52	88	
-1725	56746.1	.03	1136.5	15:56:03	88	
-1750	56754.6	.03	1137.1	15:58:25	88	
-1775	56760.0	.02	1137.1	16:00:10	88	
-1800	56746.4	.03	1137.9	16:01:42	88	
-1825	56711.2	.03	1139.3	16:07:24	88	
-1850	56703.7	.03	1139.7	16:08:31	88	
-1875	56713.5	.03	1139.8	16:09:51	88	
-1900	56708.5	.03	1140.5	16:10:53	88	
-1925	56698.0	.03	1141.0	16:12:12	88	

.

Line:	-1300	Date:	5 AU	G 89	#20)9
POSITIC	N FIELD	ERR	DRIFT	TIME		DS
-1900	56710.5	.03	1142.6	16:16:	55	88
-1875	56707.5	.03	1142.6	16:18:	25	88
-1850	56691.8	.02	1143.1	16:19:	10	88
-1825	56711.3	.02	143.3	16:20:	17	88
-1800	56700.5	.03 1	1143.5	16.21.	38	88
-1775	56711.7	.03 1	143.3	16.22.	27	88
-1750	56703.5	.03 1	1143.1	16.22.	21	99
-1725	56712 5	03 1	11/2 0	16.24.	31 31	00
-1700	56706 5	03 1	112 1	16.25.	21 05	00
-1675	56707 5	02 1		16.25	05 4 E	00
-1650	56706 5	•0J 1	L 4 3 • 4	16:25:	40	00
-1625	56760.3	.03 1		16:26:	23	88
-1600	56760.0	.03 1	L143.4	16:29:	03	88
-1575	56760.9	•02 1	143.3	16:30:	13	88
-1575	56754.5	.03 1	.143.5	16:31:	12	88
-1550	56683.0	.03 1	143.9	16:32:	13	88
-1525	56702.6	.03]	144.5	16:33:	09	88
-1500	56729.4	.03 1	145.1	16:34:	28	88
-1475	56741.4	.03 1	145.7	16:35:	31	88
-1450	56740.2	.02 1	145.9	16:36:	38	88
-1425	56751.7	.02 1	146.0	16:37:	31	88
-1400	56787.3	.03 1	146.1	16:38:	23	88
-1375	56815.4	.03 1	146.2	16:39:	11	88
-1350	56860.5	.03 1	146.5	16:40:	06	88
-1325	56929.5	.03 1	146.2	16:40:	56	88
-1300	57018.0	.02 1	146.1	16:42:	06	88
-1275	56881.8	.02 1	146.3	16:44:	43	88
-1250	56888.7	.03 1	147.1	16:45:	45	88
-1225	56934.7	.03 1	146.9	16:46:	41	88
-1200	56797.4	.03 1	147.0	16:47:	30	88
-1175	56716.9	.03 1	147.7	16:48:	26	88
-1150	56689.4	.03 1	146.6	16.49.	46	88
-1125	56643.5	.03 1	149.0	16.50.	47	88
-1100	56675.3	.03 1	149.2	16.51.	52	88
-1075	56675.9	.03 1	152 1	16.51.	40	00
-1050	56677 4	03 1	152 0	16.55.	4 U D A	00
-1025	56689 8	02 1	152 /	16.56.	244 วา	00
-1000	56666 0	03 1	15/ 1	16,50:	່ວວ	00
-975	56667 1	0.0 1	154 1	16.50.	JU 31	00
-950	56603 2	02 1	154 2	10:59:	21	00
-925	56697 5	+U3 L	154.2	17:00:	34 11	88
-900	56714 0	•03 I	154.0	17:02:0	JZ	88
-900	56602 0	•U3 1	154.2	17:04:0	J4	88
-073	56600 4	•03 I	154.4	17:05:1	L 3	88
-030	56602 5	.02 1	154.1	17:06:		88
-025	50093.5	•03 I	154.4	1/:0/:5	54	88
-800	56718.0	•03 I	154.2	17:09:0)0	88
-//5	50/02.6	.03 1	154.1	17:10:0)2	88
-/50	56691.8	.03 1	154.8	17:10:5	53	88
-/25	56/07.6	.03 1	155.0	17:11:5	54	88
-/00	56696.4	.03 1	155.0	17:12:4	17	88
-6/5	56693.5	.02 1	155.8	17:13:4	13	88
-650	56715.7	.03 1	156.6	17:15:2	23	88
-625	56/17.5	.03 1	157.4	17:17:1	6	88

	POSITION	FIELD	ERR	DRIFT	TIME	DS	
	-600	56726.9	.03	1157.6	17:18:05	88	
	-575	56712.0	.03	1158.4	17:19:05	88	
	-550	56709.6	.03	1158.0	17:20:08	88	
,							

.

•

OMNI-IV Tie-line EDA MAG Ser #26102 TOTAL FIELD DATA (Base stn. corrected) Date: 6 AUG 89 **Operator:** 3000 Reference field: 56700.0 Datum subtracted: 0.0 Records: 138 Bat: 17.4 Volt Lithium: 3.48 Volt Last time update: 7/12 11:52:00 Start of 8/06 18:52:02 print: Base stn. Line: -1600 Pos: -650 Last time update: 7/07 9:39:00 Start of print: 8/06 18:53:12 Line: -1400Date: 6 AUG 89 #2 POSITION FIELD ERR DRIFT TIME DS -190055240.9 .00 1128.8 11:27:08 88 -190056718.5 .03 1128.2 11:28:13 88 -187556699.9 .02 1126.6 11:31:10 88 -185056686.5 .04 1127.7 11:32:09 88 -182556702.5 .02 1125.6 11:34:15 88 -180056706.2 .03 1126.0 11:35:30 88 -1775 56718.6 .03 1130.4 11:39:35 -88 -175056716.7 .03 1131.2 11:40:40 - 88 -172556726.6 .04 1131.4 11:42:26 88 -170056698.1 .02 1130.8 11:43:59 88 -167556713.2 .03 1130.2 11:45:10 88 -165056718.8 .03 1129.1 11:46:32 - 88 -162556748.8 .03 1128.3 11:53:05 -88 -160056739.1 .03 1127.6 11:54:59 88 56722.6 .02 -15751126.7 11:56:04 88 -155056718.2 .03 1126.6 11:57:28 88 -1525 56720.4 .03 11:58:27 88 -150056721.7 .03 1125.3 11:59:34 88 -1475 56735.0 .02 1124.6 12:00:38 88 -145056736.6 .03 1124.9 12:01:33 88 -142556757.1 .02 1122.4 12:03:05 88 56768.3 .02 -14001121.2 12:04:26 88 -137556783.9.02 1119.4 12:06:00 88 -135056829.0 .03 1118.5 12:07:26 88 56855.2 .02 -13251117.4 12:08:34 88 -130056913.0 .02 1117.4 12:09:53 88 -127556946.5 .03 1117.5 12:11:18 88 -125056922.1 .03 1117.9 12:12:23 88 -122556905.6 .03 1117.4 12:14:18 88 -120056852.2 .03 1117.0 12:15:30 88 56784.6 .03 -11751116.7 12:16:26 88 -11501116.4 12:17:38 88 56763.3 .02 -1125 56742.8 .03 1116.2 12:18:55 88 -110056742.6 .03 1115.2 12:20:15 88 -107556765.7 .03 1113.3 12:23:44 -88 -1050.03 56776.4 1112.8 12:27:01 88 -102556759.8 .02 1113.9 12:28:36 88

POSITION	FIELD	ERR	DRIFT	TIME	DS
-1000	56807.8	.03	1114.4	12:30:23	88
-975	56701.2	.03	1114.9	12:31:51	88
-950	56670.7	.02	1113.9	12:34:18	88
-925	56707.0	.04	1114.8	12:35:17	88
-900	56712.2	.02	1115.6	12:36:43	88
-875	56710.6	.03	1116.7	12:38:19	88
-850	56738.5	.03	1116.7	12:40:18	88
-825	56705.8	.02	1117.1	12:41:28	88
-800	56723.5	.02	1117.8	12:42:38	88
-775	56725.3	.04	1118.8	12:44:21	88
-750	56709.0	.03	1118.6	12:45:27	88
-725	56702.9	.03	1120.4	12:48:42	88
-700	56695.7	.02	1117.9	12:50:07	88
-675	56726.2	.04	1118.9	12:52:13	88
-650	56710.6	.03	1119.9	12:53:21	88
-625	56719.9	.04	1120.3	12:54:19	88
-600	56695.8	.02	1119.0	12:55:16	88
-575	56704.3	.03	1118.6	12:56:39	88
-550	56718.2	.03	1117.2	12:57:35	88
-525	56721.7	.03	1117.1	12:59:17	88
-500	56716.1	.03	1117.0	13:00:39	88
-475	56715.6	.03	1116.9	13:01:51	88
-450	56717.8	.03	1116.7	13:03:06	88
-425	56730.9	.02	1116.3	13:04:33	88
-400	56723.9	.03	1116.1	13:05:41	88
-375	56752.4	.04	1116.1	13:07:22	88

Line:	-1500	Date:	6 AU	G 89 💠	#65
POSITIC	N FIELD	ERR	DRIFT	TIME	DS
-375	56730.8	.03	1116.5	13:12:50	88 0
-400	56733.7	.02	1120.5	13:20:4	3 88
-425	56729.3	.03	1122.3	13:22:03	3 88
-450	56750.0	.04	1122.0	13:23:2	1 88
-475	56738.6	.03	1123.0	13:24:2	7 88
-500	56553.1	.02	1122.3	13:26:00	5 88
-525	56739.5	.03	1122.4	13:26:58	88 6
-550	56729.9	.03	1122.3	13:28:2	3 88
-575	56712.8	.03	1122.4	13:29:4	3 88
-600	56727.7	.03	1125.0	13.30.4	7 88
-625	56715.8	.03	1127.0	13.30.4	2 88
-650	56729.0	.03	1127.2	13.32.56	5 88
-675	56728.0	.03	1126.8	13.32.30	2 2 2 2
-700	56713.4	.03	1124 7	13.37.49	
-725	56753.5	.04	1124.7	13.40.50	
-750	56735 1	03	1125.0	12.40.50	, 00 , 00
-775	56717 0	.03	112/ 0	12,42,50	00
-800	56760 4	.03	1124.0	13:42:50	1 88
-825	56765 6	.03	1124.4	13:43:30	1 88
-850	56733 9	.03	1122.9		5 88
-030	56716 1	.03	1124 4	13:45:41	88
-075	56720 5	.03	1124.4	13:46:49	88
-900	56729.5	.03	1120.3	13:47:54	88
-925	56722.2	.03	1126.5	13:49:20	88
-900	56756.8	.05	1125.5	13:50:58	8 8 8
-975	56763.2	•03	1123.0	13:58:37	88
-1000	56810.0	.03	1123.9	13:59:37	88
-1025	56792.8	.04	1123.8	14:00:36	5 88
-1050	56739.5	.04	1123.6	14:01:47	88
-1075	56757.2	•03	1123.7	14:02:45	68
-1100	56807.7	.03	1124.3	14:03:46	88
-1125	56796.6	.02	1124.0	14:05:14	88
-1150	56789.5	• 0 3	1124.3	14:06:29	88
-1175	56771.8	.02	1123.4	14:07:38	88
-1200	56779.8	.03	1123.6	14:08:44	88
-1225	56786.3	.03	1123.8	14:09:53	88
-1250	56792.1	.03	1123.0	14:11:02	88
-1275	56779.2	.03	1123.4	14:12:10	88
-1300	56760.0	.02	1124.7	14:13:50	88
-1325	56767.1	.03	1124.9	14:15:23	88
-1350	56755.6	.03	1124.7	14:16:47	88
-1375	56732.4	.03	1124.6	14:18:23	88
-1400	56750.5	.03	1124.8	14:19:51	88
-1425	56744.3	.04	1124.0	14:21:03	88
-1450	56739.1	.03	1120.9	14:23:52	88
-1475	56733.1	.03 1	1121.0	14:25:13	88
-1500	56717.1	.03	1121.4	14:26:24	88
-1525	56716.7	.04 1	1122.8	14:27:28	88
-1550	56753.7	.03 1	L124.0	14:28:50	88
-1575	56727.2	.03 1	1129.3	14:31:07	88
-1600	56744.5	.05 1	1125.0	14:34:31	88
-1625	56702.4	.03 1	124.1	14:35:21	88
-1650	56724.0	.04 1	123.5	14:37:01	88

 \cap

POSITION	FIELD	ERR	DRIFT	TIME	DS
-1675	56712.5	.03	1126.7	15:40:54	88
-1700	56714.3	.03	1126.8	15:41:34	88
-1725	56725.3	.03	1127.7	15:42:43	88
-1750	56744.4	.07	1128.3	15:44:00	88
-1775	56721.2	.03	1129.0	15:44:58	88
-1800	56727.0	.03	1129.8	15:46:22	88
-1825	56722.2	.03	1129.9	15:47:32	88
-1850	56711.3	.03	1130.3	15:48:21	88
-1875	56701.7	.03	1131.0	15:50:52	88
-1900	56693.4	.03	1131.9	15:54:08	88
-1925	56723.3	.04	1133.7	15:57:22	88
-1950	56691.2	.03	1135.5	15:59:50	88
-1975	56675.5	.03	1136.4	16:01:14	88
-2000	56702.7	.06	1137.3	16:02:51	88
-2025	56670.1	.03	1138.0	16:05:02	88
-2050	56664.0	.03	1138.5	16:07:07	88
-2075	56742.8	.05	1139.5	16:10:40	88
-2100	56673.0	.02	1140.3	16:15:38	88
-2125	56648.8	.02	1141.3	16:18:36	88
-2150	56740.3	.03	1142.9	16:23:44	88
-2175	56679.3	.03	1143.4	16:25:31	88
-2200	56645.3	.03	1143.6	16:28:18	88

.

EDA OMNI-IV Tie-line MAG Ser #26102 TOTAL FIELD DATA (Base stn. corrected) Date: 7 AUG 89 **Operator:** 3000 Reference field: 56700.0 Datum subtracted: 0.0 Records: 153 Bat: 17.3 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 8/08 7:28:48 Base stn. Pos: -650 Line: -1600 Last time update: 7/07 9:39:00 Start of print: 8/08 7:29:48 -1600 Line: Date: 7 AUG 89 #3 POSITION FIELD ERR DRIFT TIME DS -220056723.8 .02 1144.8 9:53:59 88 -217556707.5 .02 1143.8 9:57:28 88 56720.6 .02 -2150 1144.8 9:58:23 88 -212556570.9 .03 1144.5 9:59:56 88 -210056447.2 .03 1143.7 10:04:58 88 -207556676.0 .02 1141.9 10:10:38 88 56708.3 .03 -2050 1144.6 10:13:11 88 -202556700.4 .03 1138.1 10:23:56 88 -200056627.1 .03 1137.4 10:24:55 88 -197556689.9 .03 1137.5 10:25:55 88 -195056657.8 .03 1136.8 10:28:44 88 -192556670.2 .03 1136.5 10:30:35 88 -190056685.1 .02 1135.8 10:32:57 88 -187556689.5 .03 1135.7 10:34:50 88 -185056683.8 .02 1134.3 10:37:29 88 -182556712.3 .03 1131.9 10:40:36 88 -180056695.5 .03 1135.9 10:44:50 88 -177556702.9 .02 1135.0 10:46:37 88 -175056690.0 .03 1135.4 10:48:28 88 -172556689.4 1134.6 10:50:28 88 .02 -170056693.0 .03 1132.3 10:54:11 -88 -167556702.2 .03 1132.2 10:55:33 88 -165056700.1 .02 1131.3 10:56:29 88 -1.62556708.6 .03 1131.3 10:57:30 88 -160056728.8 .03 1131.3 10:58:23 88 -157556725.6 .03 1131.0 10:59:15 88 -155056711.3 .03 1130.1 11:00:41 88 -152556712.5 .03 1129.5 11:01:52 88 -150056710.3 .03 1128.2 11:02:46 88 -147556713.1 .03 1127.1 11:05:04 88 -145056710.1 .03 1126.3 11:06:37 88 -142556706.1 .02 1125.4 11:07:53 -88 -140056702.6 .03 1124.0 11:09:43 88 -137556717.4 .03 1122.9 11:10:57 88 -135056711.7 .03 1122.7 11:12:01 88 -132556716.9 .03 1123.0 11:13:05 -88 -130056716.6 .02 1123.5 11:14:38 88

POSITION	FIELD	ERR	DRIFT	TIME	DS
-1275	56721.4	.03	1123.7	11:16:30	88
-1250	56715.9	.02	1123.6	11:17:51	88
-1225	56742.8	.03	1124.0	11:19:20	88
-1200	56742.3	.03	1123.4	11:20:20	88
-1175	56742.8	.03	1122.3	11:21:35	88
-1150	56737.4	.04	1122.4	11:23:12	88
-1125	56748.2	.03	1122.3	11:24:46	88
-1100	56739.3	.03	1121.7	11:26:48	88
-1075	56725.3	.03	1119.0	11:33:38	88
-1050	56740.1	.03	1118.4	11:35:01	88
-1025	56732.8	.03	1118.1	11:36:13	88
-1000	56720.2	.03	1117.2	11:37:36	88
-975	56716.0	.03	1117.1	11:38:46	88
-950	56685.3	.02	1117.2	11:40:32	88
-925	56707.0	.03	1116.4	11:41:47	88
-900	56706.4	.03	1115.4	11:44:25	88
-875	56699.6	.03	1114.6	11:46:04	88
-850	56704.5	.02	1114.5	11:47:31	88
-825	56708.1	.03	1114.2	11:48:41	88
-800	56710.2	.02	1114.8	11:49:48	88
-775	56706.0	.03	1114.6	11:51:12	88
-750	56717.2	.02	1115.3	11:52:29	88
-725	56678.5	.03	1115.8	11:53:44	88
-700	56696.0	.03	1115.4	11:55:02	88
-675	56712.1	.03	1113.6	12:02:31	88
-650	56701.6	.02	1113.2	12:03:43	88
-625	56722.1	.04	1113.9	12:05:02	88
-600	56708.8	.04	1115.1	12:06:16	88
-575	56717.0	.02	1115.4	12:07:35	88
-550	56731.0	.03	1115.8	12:08:48	88
-525	56704.5	.02	1115.3	12:09:53	88
-500	56705.3	.03	1114.1	12:11:08	88
-475	56712.2	.03	1113.3	12:12:17	88
-450	56711.0	.03	1113.9	12:13:04	88
-425	56730.0	.04	1114.6	12:14:54	88
-400	56709.7	.03	1114.9	12:16:09	88
-375	56763.9	.03	1115.5	12:17:44	88
-350	56707.5	.02	1116.2	12:18:52	88

••• •• ••

•

Line: -	1700	Date:	7 AUG	G 89 #	78
POSITION	FIELD	ERR	DRIFT	TIME	DS
-325	56726.1	.04	1113.8	12:46:31	88
-350	56718.6	.03	1115.5	12:51:05	88
-375	56752.4	.03	1115.8	12:54:59	88
-400	56751.5	.03	1115.4	12:57:01	88
-425	56757.0	.03	1113.7	12:59:05	88
-450	56726.7	.02	1113.0	13:01:00	88
-475	56724.3	.03	1112.9	13:02:22	88
-500	56731.8	.03	1112.0	13:03:30	88
-525	56711.5	.03	1112.2	13:05:10	88
-550	56714.0	.03	1112.9	13:06:28	88
-575	56732.9	.04	1113.1	13:07:29	88
-600	56729.1	.03	1112.9	13:08:24	88
-625	56715.3	.03	1112.6	13:09:26	88
-650	56712.1	.03	1113.3	13.10.43	88
-675	56696.2	.03	1113.3	13.11.36	88
-700	56737.6	.03	1112.9	$13 \cdot 13 \cdot 01$	88
-725	56745.2	.04	1112.7	13:14.04	88
-750	56735.8	.03	1111.2	13.15.56	88
-775	56713.5	.03	1111.9	13.17.33	88
-800	56739.6	.04	1111.0	$13 \cdot 18 \cdot 48$	88
-825	56744.1	.05	1110.2	$13 \cdot 20 \cdot 50$	88
-850	56709.4	03	1110.2	13.20.50	88
-875	56693 2	03	1110.0	13.21.33	88
-900	56715 0	03	1108 7	13,26,51	00
-925	56689.8	.03	1107 0	13.20.31	88
-950	56704.2	.03	1107.0	13.31.10 13.31.15	88
-975	56728 3	•03 n3	1105 3	13.34.15	20
-1000	56723 8	03	1106 7	13.30.33	00 90
-1025	56724 6	.03	1106.9	12.20.26	00
-1050	56750 2	01	1100.9	12.40.17	00
-1075	56711 2	.04	1108.0	12.41.22	00
-1100	56706 9	.03	1109 5	13,41,22	00
_1100	56725 2	.02	1110 2	12,40,10	00
-1125	56722.3	.03	1100.5	12,50,25	00
-1175	56741 5	.03	1109.5	13:50:25	00
-1175	56715 7	.03	1100.5	13:32:03 13:54:41	00
-1200	56710 5	.03	1102 2	13:34:41	00
-1225	56701 9	.03	1000 0	13:33:30	00
-1230	56721 0	.03	1099.9	13:30:09	00
-1300	56733 5	.03	1100 2	14:00:03	00
-1325	56710 8	.04	1100.3	14:01:20	00
-1325	56725 6	.03	1100.0	14:02:40	00
-1375	56712 1	.03	1100.3	14:04:11	00
-1375	56700 0	.02	1104 5	14:00:09	00
-1400	56722.0	. 03	1104.5	14:00:04	00
-1425	56711 2	• U S 0 S	1104 0	14:10:04	00 00
-1430	56700 1	•03		14:1/:23	00
-14/J	56712 0	•03	1105 2	14:10:44	00
-1500 -1505	56715 0	•04 02	1105 4	14:20:01	00 00
-1550	56710 0	.03	1105 6	14:21:32	88
-1575	56712 0	•U3	1104 0	14:23:13 14:24:00	88 88
-1600	JU/43.8 56700 0	.07	1105 2	14:24:08 14:25:12	88
-1000	30720.9	• 0 4	1103.2	14:20:13	00

 \square

 \int_{Ω}

POSITION	FIELD	ERR	DRIFT	TIME	DS	
-1625	56746.6	.45	1104.6	14:26:48	88	
-1650	56803.6	.03	1104.9	14:27:41	88	
-1675	56720.3	.04	1106.3	14:28:33	88	
-1700	56698.1	.03	1107.2	14:30:19	88	
-1725	56711.4	.03	1107.2	14:31:51	88	
-1750	56692.8	.02	1107.5	14:32:59	88	
-1775	56700.4	.03	1108.2	14:33:59	88	
-1800	56692.5	.03	1109.5	14:35:56	88	
-1825	56698.5	.03	1110.9	14:38:47	88	
-1850	56703.6	.03	1110.2	14:40:46	88	
-1875	56728.3	.07	1108.9	14:43:00	88	
-1900	56681.8	.03	1106.6	14:46:16	88	
-1925	56686.2	.03	1106.9	14:48:58	88	
-1950	56694.2	.03	1108.7	14:51:24	88	
-1975	56690.3	.02	1109.5	14:53:57	88	
-2000	56697.1	.03	1110.1	14:55:13	88	
-2025	56680.1	.03	1110.5	14:56:35	88	
-2050	56701.7	.03	1110.8	14:57:43	88	
-2075	56713.7	.03	1110.4	14:59:34	88	
-2100	56744.0	.04	1111.3	15:01:24	88	
-2125	56702.3	.03	1111.0	15:03:48	88	
-2150	56711.1	.03	1111.2	15:05:16	88	
-2175	56728.2	.04	1112.4	15:07:11	88	
-2200	56738.1	.05	1112.8	15:08:15	88	

EDA OMNI-IV Tie-line MAG Ser #26102 TOTAL FIELD DATA (Base stn. corrected) 8 AUG 89 Date: **Operator:** 3000 Reference field: 56700.0 Datum subtracted: 0.0 Records: 170 Bat: 17.1 Volt Lithium: 3.48 Volt Last time update: 7/12 11:52:00 Start 8/08 20:55:31 of print: Base stn. Pos: -650 Line: -1600 Last time update: 7/07 9:39:00 Start of print: 8/08 20:56:37 Line: -1800Date: 8 AUG 89 #3 POSITION FIELD ERR DRIFT TIME DS 56695.4 .03 1139.7 11:46:01 88 -220056690.9 .03 -21751139.8 11:48:11 88 -215056688.9 .03 1139.4 11:48:59 88 -212556680.7 .02 1139.5 11:50:13 88 -210056687.9 .03 1139.7 11:51:33 88 -2075 56673.3 .03 1139.9 11:52:42 88 -2050 56706.0 .03 1139.3 11:54:17 88 -202556688.9 .03 1139.1 11:55:15 88 56695.4 .03 -20001139.2 11:56:59 88 -197556703.6 .05 1138.8 11:58:11 88 -195056677.9 .03 1138.8 12:00:04 88 -192556677.1 .04 1138.5 12:03:21 88 -190056703.2 .04 1138.1 12:06:49 88 -187556696.5 .03 1138.7 12:09:02 88 56688.3 .02 -18501138.6 12:11:22 88 -1825 56702.2 .03 1138.1 12:12:35 88 -180056691.1 .03 1138.2 12:13:58 88 -177556694.1 .02 1137.9 12:15:34 88 56689.6 .04 -17501138.1 12:17:32 88 -172556700.3 .03 1137.8 12:20:06 88 -170056701.5 .03 1137.1 12:24:29 88 -167556702.2 .03 1136.9 12:27:34 88 -165056708.8 .03 1136.7 12:29:20 88 -1625 56731.8 .05 1137.9 12:40:13 88 -160056699.2 .03 1138.1 12:41:18 88 -157556721.2 .04 1138.5 12:42:35 88 -155056694.7 .02 1138.3 12:43:56 88 -152556712.4 .03 1139.0 12:45:56 88 -150056701.4 .03 1139.0 12:47:53 88 -147556717.2 .03 1140.0 12:50:18 88 -145056701.3 1141.0 12:51:16 .03 88 1142.2 12:52:43 -142556707.9 .03 88 56715.3 -1400.03 1143.3 12:54:15 88 -137556711.4 .03 1143.0 12:55:40 88 -135056727.2 .04 1141.8 12:57:36 88 -132556711.8 .03 1141.0 12:58:57 88 -130056720.7 .03 1140.2 13:02:12 88

FIELD	ERR	DRIFT	TIME	DS
56752.7	.06	1140.1	13:04:17	88
56723.7	.04	1140.5	13:07:03	88
56709.9	.02	1140.3	13:09:16	88
56723.5	.03	1140.8	13:10:31	88
56707.1	.03	1142.1	13:12:05	88
56712.5	.03	1142.9	13:14:56	88
56728.8	.04	1142.9	13:15:59	88
56727.9	.04	1142.7	13:17:54	88
56709.1	.03	1142.0	13:19:15	88
56703.0	.03	1141.7	13:20:49	88
56719.0	.03	1141.8	13:22:30	88
56728.5	.03	1141.3	13:24:15	88
56728.8	.04	1142.1	13:27:11	88
56723.0	.04	1142.2	13:29:26	88
56705.8	.03	1142.2	13:30:46	88
56726.5	.04	1142.3	13:31:59	88
56718.0	.03	1140.4	13:33:55	88
56732.0	.04	1139.8	13:35:37	88
56707.4	.03	1140.2	13:37:29	88
56736.7	.08	1140.9	13:39:23	88
56714.2	.03	1140.6	13:42:30	88
56707.5	.04	1140.5	13:43:36	88
56710.2	.04	1140.1	13:44:40	88
56726.0	.05	1139.7	13:46:10	88
56706.9	.03	1139.6	13:47:07	88
56717.5	.03	1138.8	13:48:10	88
56721.7	.03	1139.4	13:49:34	88
56713.2	.03	1140.0	13:50:49	88
56725.5	.03	1137.6	13:51:59	88
56726.8	.03	1137.7	13:53:54	88
	FIELD 56752.7 56709.9 56723.5 56707.1 56712.5 56728.8 56728.8 56729.1 56709.1 56709.1 56703.0 56728.5 56728.5 56728.8 56728.8 56726.5 56726.5 56718.0 56726.5 56714.2 56707.4 56707.4 56776.7 56714.2 56707.5 56714.2 56707.5 56716.7 56716.7 56716.7 56717.5 56726.0 56726.0 56725.5 56725.5 56726.8	FIELDERR 56752.7 .06 56723.7 .04 56709.9 .02 56723.5 .03 56707.1 .03 56712.5 .03 56728.8 .04 56727.9 .04 56709.1 .03 56703.0 .03 56728.8 .04 56703.0 .03 56728.5 .03 56728.5 .03 56726.5 .04 56705.8 .03 56726.5 .04 56707.4 .03 56774.2 .03 56707.5 .04 56707.5 .04 56707.5 .04 56706.9 .03 56721.7 .03 56725.5 .03 56725.5 .03 56726.8 .03	FIELDERRDRIFT 56752.7 .06 1140.1 56723.7 .04 1140.5 56709.9 .02 1140.3 56723.5 .03 1142.3 56723.5 .03 1142.1 56707.1 .03 1142.1 56712.5 .03 1142.9 56728.8 .04 1142.9 56727.9 .04 1142.7 56709.1 .03 1141.7 56703.0 .03 1141.8 56728.5 .03 1141.3 56728.5 .03 1142.2 56726.5 .04 1142.2 56726.5 .04 1142.2 56726.5 .04 1142.3 56718.0 .03 1140.4 56707.4 .03 1140.4 56707.5 .04 1140.5 56710.2 .04 1140.5 56710.2 .04 1140.5 56710.2 .04 1140.5 56710.2 .04 1140.5 56710.2 .04 1140.5 56710.2 .04 1140.5 56710.2 .04 1140.5 56710.2 .03 1139.7 56706.9 .03 1139.4 56713.2 .03 1137.6 56726.8 .03 1137.7	FIELDERRDRIFTTIME 56752.7 .06 1140.1 $13:04:17$ 56723.7 .04 1140.5 $13:07:03$ 56709.9 .02 1140.3 $13:09:16$ 56723.5 .03 1142.1 $13:10:31$ 56707.1 .03 1142.9 $13:14:56$ 56712.5 .03 1142.9 $13:14:56$ 56728.8 .04 1142.9 $13:15:59$ 56727.9 .04 1142.7 $13:17:54$ 56709.1 .03 1141.7 $13:20:49$ 56719.0 .03 1141.8 $13:22:30$ 56728.5 .03 1141.3 $13:24:15$ 56728.6 .04 1142.2 $13:29:26$ 56726.5 .04 1142.2 $13:30:46$ 56726.5 .04 1142.2 $13:30:46$ 56726.5 .04 1142.2 $13:33:55$ 56732.0 .04 1139.8 $13:35:37$ 567677.4 .03 1140.4 $13:33:55$ 56736.7 .08 1140.9 $13:39:23$ 56714.2 .03 1140.6 $13:42:30$ 56707.5 .04 1140.5 $13:43:36$ 56710.2 .04 1140.5 $13:43:36$ 56710.2 .04 1140.5 $13:43:36$ 56717.5 .03 1139.6 $13:47:07$ 56726.0 .05 1139.7 $13:46:10$ 56726.7 .03 1139.4 $13:49:34$ 56713.2 .03 1140.0 $13:50:49$ 56726.5 <t< td=""></t<>

T	1000	D 1	• • • •	~	
Line: -	1900	Date	: 8 AU	G89 #	70
POSITION	FIELD	ERR	DRIFT	TIME	DS
-550	56710.7	.02	1141.5	14:17:13	88
-575	56725.7	.03	1141.3	14:19:36	88
-600	56733.8	.03	1142.3	14:21:06	88
-625	56717.9	.02	1141.7	14:22:27	88
-650	56709.4	.02	1142.3	14:23:43	88
-675	56710.9	.02	1141.3	14:25:05	88
-700	56722.6	.03	1143.0	14:26:11	88
-725	56718.3	.03	1142.3	14:27:37	88
-750	56848.5	.09	1142.9	14.28.47	78
-775	56732.4	.03	1142.5	14.30.47	88
-800	56734.3	04	11/2 0	11.30.47	00
-825	56706 1	0.2	1142.0	14:32:43	00
-850	56704 5	•02		14:34:20	88
-030	56712 0	•03			88
-075	50713.9	.03	114/.1	14:38:53	88
-900	56590.3	.03	1147.2	14:40:58	88
-925	56729.1	.03	1148.3	14:43:14	88
-950	56/51.5	.03	1147.4	14:44:32	88
-975	56740.6	.03	1147.9	14:46:28	88
-1000	56722.4	.03	1147.8	14:47:23	88
-1025	56725.9	.03	1147.9	14:48:42	88
-1050	56730.0	.03	1145.8	14:51:53	88
-1075	56717.9	.03	1144.9	14:53:10	88
-1100	56711.5	.03	1144.8	14:55:40	88
-1125	56715.1	.03	1144.4	14:58:02	88
-1150	56744.5	.05	1144.3	14:59:13	88
-1175	56712.3	.03	1143.6	15:01:04	88
-1200	56726.5	.03	1145.2	15:03:08	88
-1225	56734.3	.03	1145.8	15:04:36	88
-1250	56751.8	.29	1145.7	15:07:20	88
-1275	56742.6	.04	1146.2	15:08:30	88
-1300	56702.6	.03	1146.8	$15 \cdot 10 \cdot 03$	88
-1325	56716.5	.03	1147.2	15.11.19	88
-1350	56779.6	13	11/18 3	15,12,52	70
-1375	56738 8	•13	1140.5	15.14.12	/0
-1400	56712 0	.00	1147.9		88
-1400	56761 5	.03	1140.2	15:15:57	88
-1450	56710 0	•09	1149.1	15:1/:1/	88
-1430	56724 6	.03	1150.9	15:19:10	88
-1475	50724.0	.03	1151.9	15:21:41	88
-1500	56729.0	.04	1151.9	15:23:07	88
-1525	56728.5	.04	1152.0	15:24:43	88
-1350	56/15.5	.03	1152.7	15:26:09	88
-15/5	56697.6	.03	1153.0	15:27:57	88
~1600	56702.7	.03	1153.2	15:29:11	88
-1025	56709.5	.03	1153.6	15:30:08	88
-1650	56/08.5	•03	1154.3	15:31:13	88
-10/5	56/05.2	.03	1154.6	15:32:26	88
-1700	56703.3	.02	1154.2	15:34:05	88
-1/25	56/11.1	•04	1154.4	15:35:03	88
-1/50	56708.8	.03	1152.7	15:36:29	88
-1775	56714.9	.04	1152.1	15:37:35	88
-1800	56711.9	.03	1151.5	15:38:51	88
-1825	56692.0	.03	1149.5	15:42:24	88

 \frown

 \sim

 \cap

POSITION	FIELD	ERR	DRIFT	TIME	DS
-1850	56696.3	.03	1149.8	15:44:36	88
-1875	56707.3	.04	1149.8	15:45:28	88
-1900	56707.0	.03	1149.8	15:46:21	88
-1925	56690.7	.03	1159.7	16:12:42	88
-1950	56686.7	.03	1160.5	16:14:09	88
-1975	56712.5	.03	1160.7	16:15:27	88
-2000	56695.9	.03	1161.9	16:16:30	88
-2025	56707.1	.04	1162.4	16:18:13	88
-2050	56731.6	.05	1163.1	16:19:24	88
-2075	56694.4	.03	1163.5	16:20:28	88
-2100	56725.5	.09	1162.8	16:21:36	88
-2125	56672.8	.03	1161.9	16:23:29	88
-2150	56666.6	.03	1161.8	16:24:41	88
-2175	56693.2	.04	1161.6	16:25:45	88
-2200	56709.7	.04	1161.7	16:26:26	88

N

ŗ

.

Line: -2	2000	Date:	8 AUC	3 89 #13	37
POSITION	FIELD	ERR	DRIFT	TIME	ÐS
-2200	56717.9	.04	1161.9	16:29:12	88
-2175	56748.0	.05	1161.3	16:31:42	88
-2150	56654.2	.03	1161.4	16:32:52	88
-2125	56707.0	.03	1161.1	16:33:33	88
-2100	56649.1	.03	1161.2	16:34:27	88
-2075	56664.9	.03	1161.0	16:36:03	88
-2050	56679.3	.03	1160.8	16:37:21	88
-2025	56679.9	.03	1160.9	16:38:31	88
-2000	56675.9	.03	1161.0	16:39:27	88
-1975	56683.4	.03	1160.9	16:40:29	88
-1950	56717.4	.03	1160.5	16:41:26	88
-1925	56803.7	.03	1161.9	16:43:18	88
-1900	56728.6	.03	1162.2	16:44:51	88
-1875	56653.8	.03	1162.6	16:45:38	88
-1850	56684.5	.03	1162.3	16:46:41	88
-1825	56681.0	.03	1162.5	16:47:31	88
-1800	56689.4	.03	1163.0	16:48:16	88
Line: -2	2100	Date	• 8 Δ Π	2 89 #1 ¹	54
Line: -2 POSITION	2100 FIFLD	Date:	BAUC	G 89 #15	54
Line: -2 POSITION -1800	2100 FIELD 56683.2	Date: ERR	8 AUC DRIFT	G 89 #15 TIME 16:53:47	54 DS 88
Line: -2 POSITION -1800 -1825	2100 FIELD 56683.2 56655.4	Date: ERR .03	8 AUC DRIFT 1164.3	G 89 #15 TIME 16:53:47 16:55:35	54 DS 88 88
Line: -2 POSITION -1800 -1825 -1850	2100 FIELD 56683.2 56655.4 56704.2	Date: ERR .03 .02	8 AUC DRIFT 1164.3 1164.8 1165.7	G 89 #15 TIME 16:53:47 16:55:35 16:57:04	54 DS 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875	2100 FIELD 56683.2 56655.4 56704.2 56764.2	Date: ERR .03 .02 .03 .04	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2	G 89 #15 TIME 16:53:47 16:55:35 16:57:04 16:58:14	54 DS 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5	Date: ERR .03 .02 .03 .04 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55	54 DS 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6	Date: ERR .03 .02 .03 .04 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20	54 DS 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2	Date: ERR .03 .02 .03 .04 .03 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23	54 DS 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2	Date: ERR .03 .02 .03 .04 .03 .03 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.7	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07	54 DS 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56730.7	Date: ERR .03 .02 .03 .04 .03 .03 .03 .04 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.7 1167.3	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:04:04	54 DS 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56730.7 56686.1	Date: ERR .03 .02 .03 .04 .03 .03 .03 .04 .03 .04 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.7 1167.3 1168.6	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:04:04 17:05:00	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56730.7 56686.1 56676.6	Date: ERR .03 .02 .03 .04 .03 .03 .04 .03 .04 .03 .04 .02	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.7 1167.3 1168.6 1169.1	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:03:07 17:04:04 17:05:00 17:05:50	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050 -2075	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56689.2 56686.1 56676.6 56679.7	Date: ERR .03 .02 .03 .04 .03 .03 .03 .04 .03 .04 .03 .04 .02 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.3 1168.6 1169.1 1169.3	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:03:07 17:04:04 17:05:50 17:05:50 17:06:42	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050 -2075 -2100	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56686.1 56676.6 56676.6 56679.7 56689.9	Date: ERR .03 .02 .03 .04 .03 .03 .03 .04 .03 .04 .02 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.3 1167.3 1168.6 1169.1 1169.3 1169.8	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:04:04 17:05:00 17:05:50 17:05:50 17:06:42 17:07:40	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050 -2075 -2100 -2125	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56689.2 56686.1 56676.6 56676.6 56679.7 56689.9 56691.9	Date: ERR .03 .02 .03 .04 .03 .03 .03 .04 .03 .04 .02 .03 .03 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.3 1168.6 1169.1 1169.3 1169.8 1170.4	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:04:04 17:05:00 17:05:50 17:06:42 17:07:40 17:08:45	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050 -2075 -2100 -2125 -2150	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56686.1 56676.6 56676.6 56679.7 56689.9 56691.9 56736.3	Date: ERR .03 .02 .03 .04 .03 .03 .04 .03 .04 .02 .03 .03 .03 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.3 1168.6 1169.1 1169.3 1169.8 1170.4 1171.2	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:04:04 17:05:50 17:05:50 17:05:50 17:06:42 17:07:40 17:08:45 17:09:38	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050 -2075 -2100 -2125 -2150 -2175	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56689.2 566730.7 56686.1 56676.6 56679.7 56689.9 56691.9 56736.3 56774.9	Date: ERR .03 .02 .03 .04 .03 .03 .04 .03 .04 .02 .03 .03 .03 .03 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.7 1167.3 1168.6 1169.1 1169.3 1169.8 1170.4 1171.2 1172.2	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:04:04 17:05:50 17:05:50 17:05:50 17:05:50 17:05:42 17:07:40 17:08:45 17:09:38 17:10:48	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050 -2075 -2100 -2125 -2150 -2175 -2200	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56689.2 56686.1 56676.6 56676.6 56679.7 56689.9 56691.9 566736.3 56774.9 56737.1	Date: ERR .03 .02 .03 .04 .03 .03 .03 .04 .03 .04 .02 .03 .03 .03 .03 .03 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.3 1167.3 1167.3 1169.3 1169.3 1169.8 1170.4 1171.2 1172.2 1172.6	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:04:04 17:05:50 17:05:50 17:05:50 17:05:50 17:07:40 17:08:45 17:09:38 17:10:48 17:12:06	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88
Line: -2 POSITION -1800 -1825 -1850 -1875 -1900 -1925 -1950 -1975 -2000 -2025 -2050 -2075 -2100 -2125 -2150 -2175 -2200	2100 FIELD 56683.2 56655.4 56704.2 56764.2 56780.5 56726.6 56684.2 56689.2 56689.2 56686.1 56676.6 56676.6 56679.7 56689.9 56691.9 566736.3 56774.9 56737.1	Date: ERR .03 .02 .03 .04 .03 .03 .03 .04 .03 .04 .02 .03 .03 .03 .03 .03 .03	8 AUC DRIFT 1164.3 1164.8 1165.7 1166.2 1167.1 1167.2 1167.4 1167.3 1168.6 1169.1 1169.3 1169.8 1170.4 1171.2 1172.2 1172.6	G 89 #19 TIME 16:53:47 16:55:35 16:57:04 16:58:14 16:59:55 17:01:20 17:02:23 17:03:07 17:04:04 17:05:50 17:05:50 17:06:42 17:07:40 17:08:45 17:09:38 17:10:48 17:12:06	54 DS 88 88 88 88 88 88 88 88 88 88 88 88 88

OMNI-IV Tie-line MAG EDA Ser #26102 TOTAL FIELD DATA (Base stn. corrected) Date: 10 AUG 89 **Operator:** 3000 Reference field: 56700.0 Datum subtracted: 0.0 Records: 103 Bat: 17.8 Volt Lithium: 3.48 Volt Last time update: 7/12 11:52:00 Start of print: 8/10 18:43:20 -650 Base stn. Pos: Line: -1600 Last time update: 7/07 9:39:00 Start of print: 8/10 18:44:31 Line: -2200Date: 10 AUG 89 #2 POSITION FIELD ERR DRIFT TIME DS -1800.03 56716.3 1084.6 9:18:30 88 -182556718.4 .03 1084.8 9:19:24 88 -185056695.7 .02 9:20:40 88 1084.2 -187556676.7 .02 1082.2 9:21:30 88 -190056708.0 .02 1082.4 9:22:19 88 -1925 56729.6 .03 1085.8 9:23:26 88 -195056718.5 .03 1088.0 9:24:21 88 -197556699.6 .03 1088.5 9:25:51 88 -200056715.0 .03 1089.0 9:26:42 88 -202556709.4 .02 9:27:34 1090.1 88 -2050 56719.6 .04 1091.6 9:28:24 88 -2075 56708.8 .02 1095.3 9:29:40 88 -210056705.9 .02 1093.8 9:30:29 88 -2125 56771.3 .03 1094.9 9:31:19 88 -215056746.3 .02 1097.9 9:32:10 88 -217556720.0 .02 1102.3 9:33:08 88 -2200 56707.9 .02 1103.6 9:34:31 88 -2300Line: Date: 10 AUG 89 #19 POSITION DRIFT FIELD ERR TIME DS 1114.1 -220056693.8 .02 9:39:14 88 -217556696.1 .02 1115.3 9:41:34 88 -215056689.5 .02 1117.1 9:43:24 88 -212556683.2 .02 1117.9 9:44:24 88 -210056694.2 .02 1117.9 9:45:15 88 -2075 56701.0 .03 1118.1 9:46:36 88 -2050 56698.1 .02 1118.1 9:47:33 88 -202556726.8 .03 1118.8 9:48:38 88 -2000 56677.7 .03 1120.8 9:49:39 88 -197556681.1 .02 1123.8 9:50:45 88 -195056685.6 .02 1125.0 9:51:50 88 -192556694.2 .02 1125.3 9:52:50 88 -190056694.6 .02 1127.0 9:54:01 -88 -187556690.3 .02 1128.2 9:55:03 88 -185056688.7 .02 1129.8 9:57:14 88 -1825 56703.7 .02 1129.9 9:58:03 88 -180056696.7 .03 1129.9 9:59:01 88

Line: -2	2400	Date:	10 AUG	389	#36
POSITION	FIELD	ERR	DRIFT	TIME	DS
-1800	56691.9	.03	1132.6	10:03:1	4 88
-1825	56693.5	.02	1133.7	10:04:3	88 88
-1850	56720.8	.04	1135.1	10:05:5	51 88
-1875	56713.2	.02	1136.3	10:06:4	0 88
-1900	56688.8	.02	1136.7	10:07:2	23 88
-1925	56706.5	.02	1137.7	10:08:2	88 88
-1950	56702.5	.02	1138.6	10:09:2	2 88
-1975	56725.9	.05	1139.9	10:10:1	8 8 8
-2000	56710.8	.03	1140.6	10:11:2	25 88
-2025	56702.1	.02	1142.0	10:12:1	.3 88
-2050	56725.7	.08	1142.8	10:13:0	4 88
-2075	56707.0	.02	1143.1	10:14:1	3 88
-2100	56692.8	.02	1144.2	10:15:3	83 88
-2125	56686.6	.02	1145.8	10:17:4	9 88
-2150	56686.0	.03	1147.9	10:20:3	88 08
-2175	56702.9	.06	1150.0	10:22:4	4 88
-2200	56763.6	.03	1149.4	10:28:2	8 88
Line: -2	2500	Date:	10 AUG	3 89	#53
Line: -2 POSITION	2500 FIELD	Date: ERR	10 AUC DRIFT	G 89 TIME	#53 DS
Line: -2 POSITION -2200	2500 FIELD 56726.4	Date: ERR .02	10 AUC DRIFT 1149.4	5 89 TIME 10:32:4	#53 DS 788
Line: -2 POSITION -2200 -2175	2500 FIELD 56726.4 56692.9	Date: ERR .02 .02	10 AUC DRIFT 1149.4 1152.8	5 89 TIME 10:32:4 10:35:4	#53 DS 788 488
Line: -2 POSITION -2200 -2175 -2150	2500 FIELD 56726.4 56692.9 56682.1	Date: ERR .02 .02 .03	10 AUC DRIFT 1149.4 1152.8 1154.4	5 89 TIME 10:32:4 10:35:4 10:37:1	#53 DS 788 488 888
Line: -2 POSITION -2200 -2175 -2150 -2125	2500 FIELD 56726.4 56692.9 56682.1 56677.9	Date: ERR .02 .02 .03 .03	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9	G 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5	#53 DS 7 88 4 88 8 88 60 88
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5	Date: ERR .02 .02 .03 .02 .02	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2	G 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2	#53 DS 7 88 4 88 8 88 0 88 21 88
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8	Date: ERR .02 .02 .03 .02 .02 .02 .02	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0	5 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2	#53 DS 788 488 88 088 188 2188
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3	Date: ERR .02 .02 .03 .02 .02 .02 .02 .03	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1	5 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3	#53 DS 788 488 888 088 188 2188 588 988
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56670.9	Date: ERR .02 .02 .03 .02 .02 .02 .02 .03 .02	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4	G 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:43:3	#53 DS 788 488 888 988 588 588
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56682.3 56670.9 56668.8	Date: ERR .02 .02 .03 .02 .02 .02 .03 .02 .03	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4 1152.9	5 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:43:3 10:45:1	#53 DS 788 488 88 988 588 988 588 588 88 88
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56670.9 56668.8 56683.3	Date: ERR .02 .02 .03 .02 .02 .02 .02 .03 .02 .03 .02	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4 1152.9 1152.6	G 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:42:3 10:43:3 10:45:1 10:46:2	#53 DS 7 88 4 88 8 88 0 88 1 88 5 88 5 88 5 88 5 88 8 88 8 88 8
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56670.9 56668.8 56683.3 56683.3	Date: ERR .02 .02 .03 .02 .02 .02 .02 .03 .02 .03 .02 .03	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4 1152.9 1152.6 1154.0	5 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:43:3 10:43:1 10:45:1 10:46:2 10:48:0	#53 DS 788 488 88 088 188 588 588 588 588 588 588 588 588 5
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56682.3 56688.8 56683.3 56683.3 56683.3	Date: ERR .02 .02 .03 .02 .02 .02 .03 .02 .03 .02 .03 .02 .03 .02	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4 1152.9 1152.6 1154.0 1156.3	5 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:43:3 10:43:1 10:45:1 10:46:2 10:48:0 10:49:1	#53 DS 788 488 88 988 588 988 588 588 888 688 888 688 888 588 888 588 888 588 888 8
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56682.3 56683.3 56683.3 56683.3 56682.0 56689.7 56684.2	Date: ERR .02 .02 .03 .02 .02 .02 .03 .02 .03 .02 .03 .02 .03	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4 1152.9 1152.6 1154.0 1156.3 1157.9	5 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:43:3 10:45:1 10:46:2 10:48:0 10:49:1 10:50:0	#53 DS 788 488 888 988 588 588 588 688 688 688 788 588 588 588 588 588 588 588 588 5
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900 -1875	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56682.3 56683.3 56683.3 56683.3 56683.3 56683.3 56683.3 56683.4	Date: ERR .02 .02 .03 .02 .02 .02 .03 .02 .03 .02 .03 .02 .03 .02 .03 .03	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4 1152.9 1152.6 1154.0 1156.3 1157.9 1159.5	5 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:43:3 10:45:1 10:46:2 10:48:0 10:48:0 10:49:1 10:50:0 10:51:1	#53 DS 788 488 88 988 588 588 588 588 588 688 788 588 588 588 588 588 588 588 588 5
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900 -1875 -1850	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56682.3 56682.3 56683.3 56683.3 56683.3 56683.3 56684.2 56684.2 56681.4 56690.9	Date: ERR .02 .02 .03 .02 .02 .03 .02 .03 .02 .03 .02 .03 .03 .03 .03	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4 1152.9 1152.6 1154.0 1156.3 1157.9 1159.5 1160.0	<pre>G 89 TIME 10:32:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:43:3 10:45:1 10:46:2 10:48:0 10:48:0 10:49:1 10:50:0 10:51:1 10:52:1</pre>	#53 DS 788 488 88 988 588 588 588 588 688 788 588 588 588 588 588 588 588 588 5
Line: -2 POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900 -1875 -1850 -1825	2500 FIELD 56726.4 56692.9 56682.1 56677.9 56674.5 56673.8 56682.3 56682.3 56683.3 56683.3 56683.3 56683.3 56683.3 56684.2 56684.2 56681.4 56690.9 56685.4	Date: ERR .02 .02 .03 .02 .02 .03 .02 .03 .02 .03 .02 .03 .03 .03 .03 .03	10 AUC DRIFT 1149.4 1152.8 1154.4 1153.9 1153.2 1153.0 1153.1 1153.4 1152.9 1152.6 1154.0 1156.3 1157.9 1159.5 1160.0 1160.2	5 89 TIME 10:32:4 10:35:4 10:35:4 10:37:1 10:38:5 10:40:2 10:41:2 10:42:3 10:43:3 10:45:1 10:46:2 10:48:0 10:49:1 10:50:0 10:51:1 10:52:1 10:53:2	#53 DS 788 488 88 188 588 588 588 588 588 588 588 58

Line: -	2600	Date	: 10 AUG	389 #	70	
POSITION	FIELD	ERR	DRIFT	TIME	DS	
-1800	56718.9	.02	1162.2	11:01:21	88	
-1825	56727.4	.03	1163.3	11:02:33	88	
-1850	56709.7	.02	1163.8	11:03:44	88	
-1875	56701.4	.03	1162.9	11:04:47	88	
-1900	56712.5	.02	1162.3	11:05:54	88	
-1925	56729.0	.03	1162.0	11:07:50	88	
-1950	56696.3	.02	1160.2	11:10:08	88	
-1975	56713.4	.03	1158.4	11:11:39	88	
-2000	56705.2	.03	1162.9	11:22:20	88	
-2025	56704.5	.03	1164.3	11:23:16	88	
-2050	56690.0	.03	1167.9	11:26:32	88	
-2075	56699.9	.02	1167.5	11:27:39	88	
-2100	56706.1	.02	1167.4	11:28:34	88	
-2125	56702.0	•03	1166.9	11:29:22	88	
-2150	56712.6	.03	1166.7	11:30:10	88	
-2175	56690.4	.03	1166.9	11:31:01	88	
-2200	56648.4	.02	1166.7	11:33:16	88	
Line -	2700	Data	· 10 AUC	بر <u>مو</u>	- -	
Line: -: POSITION	2700 ETELD	Date	: 10 AUG	; 89 #{	37	
Line: -: POSITION -2200	2700 FIELD 56712 1	Date ERR 02	: 10 AUG DRIFT	; 89 #8 TIME	37 DS	-
Line: -: POSITION -2200 -2175	2700 FIELD 56712.1	Date ERR .02	: 10 AUG DRIFT 1162.4	89 #8 TIME 11:45:24	37 DS 88	~
Line: -: POSITION -2200 -2175 -2150	2700 FIELD 56712.1 56685.9 56694.5	Date ERR .02 .02	: 10 AUG DRIFT 1162.4 1162.8	5 89 #8 TIME 11:45:24 11:46:49	37 DS 88 88	-
Line: -: POSITION -2200 -2175 -2150 -2125	2700 FIELD 56712.1 56685.9 56694.5 56708.3	Date ERR .02 .02 .03	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8	5 89 #8 TIME 11:45:24 11:46:49 11:47:40	37 DS 88 88 88	-
Line: -: POSITION -2200 -2175 -2150 -2125 -2100	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4	Date ERR .02 .02 .03 .03	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:48:36	37 DS 88 88 88 88 88	-
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3	Date ERR .02 .03 .03 .03 .03	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161 9	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:48:36 11:49:23	37 DS 88 88 88 88 88 88 88	-
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7	Date ERR .02 .02 .03 .03 .03 .03	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159 8	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:48:36 11:49:23 11:50:09	37 DS 88 88 88 88 88 88 88 88	
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5	Date ERR .02 .02 .03 .03 .03 .03 .03 .02	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158 0	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:48:36 11:49:23 11:50:09 11:51:09	37 DS 88 88 88 88 88 88 88 88 88	-
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5 56682.8	Date ERR .02 .02 .03 .03 .03 .03 .03 .02 .02	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156 3	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:48:36 11:49:23 11:50:09 11:51:09 11:52:12 11:53:22	37 DS 88 88 88 88 88 88 88 88 88 88	-
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5 56682.8 56682.6	Date ERR .02 .03 .03 .03 .03 .03 .02 .02 .02	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156.3 1156.5	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:48:36 11:49:23 11:50:09 11:51:09 11:52:12 11:53:22	37 DS 88 88 88 88 88 88 88 88 88 88 88	 -
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5 56682.8 56682.6 56689.4	Date ERR .02 .03 .03 .03 .03 .03 .02 .02 .03 .03 .03	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156.3 1156.5 1157.8	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:48:36 11:49:23 11:50:09 11:51:09 11:52:12 11:53:22 11:54:24 11:55:25	37 DS 88 88 88 88 88 88 88 88 88 88 88 88 88	
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5 56682.8 56682.6 56682.6 56689.4	Date ERR .02 .03 .03 .03 .03 .02 .02 .03 .03 .03 .02 .02	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156.3 1156.5 1157.8 1160.0	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:49:23 11:50:09 11:51:09 11:52:12 11:53:22 11:54:24 11:55:25 11:57:28	37 DS 88 88 88 88 88 88 88 88 88 88 88 88 88	
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5 56682.8 56682.8 56682.6 56689.4 56700.0 56702.2	Date ERR .02 .03 .03 .03 .03 .02 .02 .03 .03 .02 .02 .02	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156.3 1156.5 1157.8 1160.0 1158.2	5 89 #8 TIME 11:45:24 11:46:49 11:47:40 11:48:36 11:49:23 11:50:09 11:51:09 11:52:12 11:53:22 11:54:24 11:55:25 11:57:28	37 DS 88 88 88 88 88 88 88 88 88 88 88 88 88	-
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900 -1875	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5 56682.8 56682.8 56682.6 56682.6 56689.4 56700.0 56702.2 56714.5	Date ERR .02 .03 .03 .03 .03 .03 .02 .02 .03 .02 .02 .02 .02	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156.3 1156.5 1157.8 1160.0 1158.2 1155 8	5 89 #8 TIME 11:45:24 11:45:24 11:46:49 11:48:36 11:49:23 11:50:09 11:51:09 11:52:12 11:53:22 11:54:24 11:55:25 11:57:28 11:59:18 12:00:28	37 DS 88 88 88 88 88 88 88 88 88 88 88 88 88	-
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900 -1875 -1850	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5 56682.8 56682.8 56682.6 56682.6 56689.4 56700.0 56702.2 56714.5 56712.7	Date ERR .02 .03 .03 .03 .03 .02 .02 .02 .03 .02 .02 .03 .02 .03	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156.3 1156.5 1157.8 1160.0 1158.2 1155.8 1153.4	5 89 #8 TIME 11:45:24 11:45:24 11:46:49 11:47:40 11:48:36 11:49:23 11:50:09 11:51:09 11:52:12 11:53:22 11:54:24 11:55:25 11:57:28 11:59:18 12:00:28 12:01:32	37 DS 88 88 88 88 88 88 88 88 88 88 88 88 88	
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900 -1875 -1850 -1825	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56796.3 56796.3 56783.7 56691.5 56682.8 56682.6 56682.6 56689.4 56700.0 56702.2 56714.5 56712.7 56692.3	Date ERR .02 .03 .03 .03 .03 .03 .02 .02 .03 .02 .03 .02 .03 .02 .03 .02	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156.3 1156.5 1157.8 1160.0 1158.2 1155.8 1153.4 1151.8	5 89 #8 TIME 11:45:24 11:45:24 11:46:49 11:47:40 11:49:23 11:50:09 11:51:09 11:51:09 11:52:12 11:54:24 11:55:25 11:57:28 11:59:18 12:00:28 12:01:32 12:04:07	37 DS 88 88 88 88 88 88 88 88 88 88 88 88 88	
Line: -: POSITION -2200 -2175 -2150 -2125 -2100 -2075 -2050 -2025 -2000 -1975 -1950 -1925 -1900 -1875 -1850 -1825 -1800	2700 FIELD 56712.1 56685.9 56694.5 56708.3 56739.4 56796.3 56783.7 56691.5 56682.8 56682.6 56682.6 56682.6 56689.4 56700.0 56702.2 56714.5 56712.7 56692.3 56716.8	Date ERR .02 .03 .03 .03 .03 .02 .02 .03 .02 .02 .03 .02 .03 .02 .03 .02 .02	: 10 AUG DRIFT 1162.4 1162.8 1163.3 1163.8 1163.4 1161.9 1159.8 1158.0 1156.3 1156.5 1157.8 1160.0 1158.2 1155.8 1153.4 1151.8 1151.5	<pre> 89 #8 TIME 11:45:24 11:45:24 11:46:49 11:49:23 11:50:09 11:51:09 11:52:12 11:52:12 11:55:25 11:57:28 11:57:28 11:59:18 12:00:28 12:01:32 12:04:07 12:05:31 </pre>	37 DS 88 88 88 88 88 88 88 88 88 88 88 88 88	

EDA OMNI-IV Tie-line MAG Ser #26102 TOTAL FIELD DATA (Base stn. corrected) Date: 13 AUG 89 Operator: 3000 Reference field: 56700.0 Datum subtracted: 0.0 Records: 57 Bat: 17.1 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 8/13 19:59:24 Base stn. Pos: -650 Line: -1600

Last time update: 7/07 9:39:00 Start of print: 8/13 20:00:29

Line: -	-1400	Date:	13 AUG	G 89	#4
POSITION	FIELD	ERR	DRIFT	TIME	DS
-2200	56748.5	.03	1171.9	15:46:28	88
-2175	56796.6	.03	1173.0	15:48:42	88
-2150	56650.6	.03	1174.0	15:50:33	88
-2125	56607.3	.03	1174.4	15:53:55	88
-2100	56629.3	.05	1175.2	15:57:42	88
-2075	56662.8	.03	1175.2	15:59:27	88
-2050	56687.2	.05	1177.4	16:01:52	88
-2025	56713.1	.02	1177.0	16:04:07	88
-2000	56715.8	.03	1175.7	16:05:54	88
-1975	56708.5	.02	1174.9	16:07:53	88
-1950	56718.2	.03	1175.4	16:09:54	88
-1925	56722.8	.03	1173.0	16:12:44	88
-1900	56708.3	.02	1172.8	16:14:41	88
-1875	56698.5	.02	1171.9	16.16.34	8.8

Line: -	1300	Date	: 13 AUG	G 89	#18
POSITION	FIELD	ERR	DRIFT	TIME	DS
-1875	56739.8	.03	1169.7	16:25:2	3 88
-1900	56716.1	.03	1168.4	16:27:3	8 88
-1925	56709.3	.02	1167.7	16:29:5	4 88
-1950	56678.1	.03	1167.0	16:31:0	8 8 8
-1975	56710.8	.03	1167.6	16:32:1	7 88
-2000	56683.4	.03	1166.8	16:33:2	3 88
-2025	56708.7	.02	1165.3	16:34:3	8 8 8
-2050	56721.0	.03	1162.9	16:38:1	1 88
-2075	56743.8	.03	1161.5	16:41:0	88 0
-2100	56738.0	.03	1165.6	16:44:3	4 88
-2125	56686.0	.03	1164.9	16:47:1	7 88
-2150	56650.0	.02	1165.5	16:49:2	5 88
-2175	56665.6	.03	1166.4	16:52:0	8 8 8
-2200	56676.2	.03	1165.7	16:55:2	6 88
-2225	56643.8	.02	1166.8	17:02:0	0 88
-2250	56686.4	.02	1167.3	17:03:4	6 88
-2275	56711.8	.03	1168.3	17:04:5	8 8 8
-2300	56948.4	.02	1169.2	17:06:4	0 88

 Line -	1200	Data	12 311	~ 00 #	26
POSITION	FIFLD	FDD	- IJ AU(303 #. 	30
-2400	567/9 7	15	1172	TIME 17,15,20	00
-2375	56567 1	•10	1171 0	17:10:38	88
-2375	56707 2	.02	11/1.8	17:18:03	88
-2330	56767.3	.04	11/2.1	17:19:49	88
-2323	56701.3	•03	1169.3	17:21:03	88
-2300	56684.3	.03	1170.4	17:22:45	88
-22/5	56625.0	.03	1172.3	17:24:33	88
-2250	56662.8	.03	1173.9	17:26:35	88
-2225	56609.8	.05	1175.4	17:35:08	88
-2200	56693.7	.03	1175.7	17:38:36	88
-2175	56692.3	.02	1176.5	17:40:53	88
-2150	56706.3	.02	1178.0	17:42:44	88
-2125	56714.0	.02	1179.1	17:44:19	88
-2100	56745.8	.03	1181.7	17:45:58	88
-2075	56719.7	.03	1183.2	17:47:29	88
-2050	56683.4	.03	1185.0	17:48:39	88
-2025	56712.3	.03	1188.7	17:50:35	88
-2000	56725.5	.02	1191.6	17:52:01	88
-1975	56719.6	.03	1196.9	17:54:24	88
-1950	56709.0	.02	1200.9	17:56:23	88
-1925	56697.4	.02	1203.4	17:57.46	88
-1900	56689.1	.02	1207.3	18.01.49	88
-1875	56697.5	.02	1208.3	18:03:03	88
APPENDIX IV

VLF-EM Survey Data

OMNI-PLUS Tie-line MAG/VLF R22K Ser #26102 VLF TOTAL FIELD DATA (uncorrected) Date 27 JUL 89 **Operator:** 3000 Records: 165 17.2 Volt Bat: Lithium: 3.50 Volt Last time update: 7/12 11:52:00 7/28 7:29:39 Start of print: Line -2700 Date 27 JUL 89 23.4 #2 QUAD T.FLD CULT S POSITION I/P TILT TIME DIR 4-FRA 5-FRA -900 5.09 -7.8 -2.5 -4.4 9:03:39 71 -67.1 -925 -7.1 5.49 -2.6 -4.09:05:01 72 -73.8 -950 -8.0 -4.1 5.10 -4.5 9:06:10 71 -73.2 -5.7 -975 -10.85.34 9:07:38 61 -78.6 -6.2 -2.3 -1000-14.6-7.8 4.95 -8.3 9:08:35 61 -83.3 -6.0 -4.2 -5.1 -6.0 9:09:56 -1025-10.5 6.01 61 -72.4 -3.6 -4.8 -1050-13.8 -7.1 5.54 -7.8 9:11:02 73 -77.2 0.7 -1.5 -14.1-10755.44 -8.0 9:11:48 72 -77.0 -6.1-1.5 -0.462 -82.6 -1100-15.3-9.6 5.46 -8.7 9:13:00 -2.9 -2.2 -1125-14.7 5.37 -8.3 72 -76.9 -7.4 9:14:02 -1.2 -2.1 -7.2 -1150-12.6 -5.5 6.02 9:15:05 62 -71.0 1.2 0.0 -1175-16.3 5.30 -9.2 -6.5 9:16:28 62 -75.0 0.6 0.9 -1200-14.9-4.8 5.42 -8.49:18:55ROAD 62 -80.0 -2.1-0.8 -1225-17.6 -6.0 5.31 -9.9 9:20:31 61 -71.1 -1.9-2.0-1250-5.3 -29.2 -6.35.04 -16.39:22:09 61 -80.5 -8.6 -1275-20.4-7.5 5.39 -11.5 9:24:34 62 -81.2 -9.5 -9.1 -1300-26.5 -12.0 5.64 -14.8 9:28:10 62 -76.3 -0.1-4.8 -1325-30.0 -13.2 5.95 -16.7 9:29:27 61 -89.2 -3.7 -1.9 -1350-33.5 -9.0 6.14 -18.5 9:31:20 62 -77.2 -8.9 -6.3 -1375-37.0 -6.6 6.64 -20.3 9:33:29 62 87.3 -8.1 -7.3 -1400-39.4 6.48 -21.5 9:35:08 -7.2 72 -85.4 -6.6 -7.0 -44.8 -14256.51 9:36:50 -3.2 -24.1 72 -88.2 -6.7 -6.8 -1450-58.1 7.45 -30.1 9:39:18 -0.452 -86.6 -12.4-9.6 -1475-52.3-2.6 8.30 -27.6 9:40:31 53 84.5 -12.1 -12.3 -1500-12.3 -2.011.35 -7.0 9:42:51 73.2 63 19.6 3.7 -1525-10.59.75 -6.0 -7.5 9:45:11 63 78.4 44.7 32.1 -1550-13.59.26 -7:6 -4.4 9:46:27 64 -89.4 21.0 32.8 -1575-14.5-3.8 8.69 -8.2 9:47:58 73 75.8 -2.8 9.1 -1600-14.7 8.40 -3.8 -8.4 9:51:20 73 89.5 -3.0 -2.9 -1625-16.6 -4.2 8.62 -9.4 9:53:25 63 86.6 -2.5 -2.08.41 -1650-14.7 -5.0 -8.3 9:55:08 74 -89.2 -1.1 -1.6 -1675-13.7 8.67 -7.8 -3.6 9:56:27 89.2 62 1.7 0.3 -1700-13.8 -4.6 8.87 -7.8 9:57:44 64 -77.7 1.9 2.1 -1725-17.5 -5.7 8.79 -9.9 9:58:56 64 87.2 0.2 -1.6 -5.8 -1750-20.4-4.9 8.77 -11.5 10:00:13 63 -89.1 -3.7 -1775-14.6 -0.48.83 -8.3 10:01:56 -4.0 53 78.8 -2.1 -1800-13.7 2.6 8.84 -7.7 10:03:50 74 84.3 5.4 1.6 -1825-19.45.3 9.20 -10.9 10:06:2162 71.2 1.2 3.3 -1850-24.08.79 -13.5 10:10:15 6.0 83.1 63 -8.4 -3.6 -18757.1 -34.3 9.40 -18.9 10:11:47 63 82.3 -13.8 -11.1 -1900-33.8 9.4 11.38 -18.7 10:14:48BASE 73 77.3 -13.2 -13.5

Line -260	0 Da	ate 27	JUL 89	9 23.4	4 #43				
POSITION	I/P	QUAD	T.FLD	$T \Gamma T T$	TIME C	CULT S	DIR	4 - FRA	5-FRA
-1900	-2.0	-4.5	12.11	-1.1	10:21:52	74	76.6		
-1875	-12.9	-3.4	12.41	-7.3	10:23:48	74	82.3		
-1850	-10.4	0.3	12.32	-5.9	10:24:50	74	82.2		
-1825	-49.3	12.0	14.31	-26.2	10:25:59	75	78.3	23.7	
-1800	-59.5	15.1	10.92	-30.7	10:27:12	73	-85.4	43.7	33.7
-1775	-38.3	13.7	9.24	-20.9	10:28:13	74	88.3	19.5	31.6
-1750	-35.0	8.9	8.96	-19.3	10:29:22	63	-79.5	-16.7	1.4
-1725	-28.4	9.0	8.46	-15.8	10:31:11	74	87.3	-16.5	-16.6
-1700	-31.9	10.7	8.78	-17.7	10:32:13RC	DAD 62	-84.0	-6.7	-11.6
-1675	-22.0	7.4	8.44	-12.4	10:34:34	73	-75.0	-5.0	-5.9
-1650	-18.7	9.1	8.75	-10.6	10:36:38	62	89.2	-10.5	-7.8
-1625	-18.5	7.3	8.38	-10.4	10:38:10	72	-83.2	-9.1	-9.8
-1600	-19.0	4.3	8.86	-10.7	10:39:38	74	-77.4	-1.9	-5.5
-1575	-23.7	0.7	8.72	-13.3	10:41:26	72	-85.7	3.0	0.5
-1550	-23.1	-1.0	8.64	-13.0	10:44:19	73	-80.7	5.2	4.1
-1525	-18.8	-1.5	7.95	-10.6	10:45:16	73	-83.9	-0.4	2.4
-1500	-21.0	-4.4	8.12	-11.8	10:46:28	72	-72.7	-3.9	-2.2
-1475	-17.9	-2.7	7.96	-10.1	10:48:02	64	89.5	-1.7	-2.8
-1450	-20.9	-3.0	7.78	-11.8	10:49:09	73	-74.3	-0.5	-1.1
-1425	-20.4	-3.1	8.09	-11.5	10:50:42	72	84.9	1.4	0.4
-1400	-23.7	-1.0	8.28	-13.3	10:52:50	72	-81.8	2.9	2.1
-1375	-29.0	2.4	9.58	-16.2	10:54:45	74	-83.5	6.2	4.5
-1350	-46.4	2.8	10.15	-24.9	10:55:47	69	-68.1	16.3	11.2
-1325	-47.9	2.9	9.13	-25.6	10:59:34	62	-56.9	21.0	18.6
-1300	-36.2	2.1	9.17	-19.9	11:03:53	73	-76.3	4.4	12.7
-1275	-39.9	-2.2	9.07	-21.7	11:05:55	7 2	-67.8	-8.9	-2.3
-1250	-47.4	-11.3	9.13	-25.3	11:08:07	72	-68.1	1.5	-3.7
-1225	-45.2	-9.9	9.27	-24.3	11:09:59	62	-51.7	8.0	4.7
-1200	-40.2	-9.5	8.99	-21.9	11:11:35	72	-59.4	-0.8	3.6
-1175	-34.0	-10.1	9.03	-18.8	11:13:18	62	-55.8	-8.9	-4.9
-1150	-30.1	-13.0	8.66	-16.7	11:15:34	73	-65.0	-10.7	-9.8
-1125	-28.4	-12.1	8.52	-15.9	11:17:13	74	-75.5	-8.1	-9.4
-1100	-24.5	-11.7	8.51	-13.8	11:20:29BA	ASE 73	-73.4	-5.8	-7.0
-1075	-35.9	-15.2	8.81	-19.7	11:22:03RC	DAD 71	-79.1	0.9	-2.5
-1050	-28.6	-13.4	8.45	-15.9	11:23:32	73	-68.0	5.9	3.4
-1025	-35.3	-18.1	9.27	-19.4	11:25:11	52	-63.7	1.8	3.8
-1000	-27.7	-12.7	8.69	-15.5	11:35:14	63	-67.0	-0.7	0.5
-975	-28.4	-12.7	8.83	-15.8	11:36:43	62	-63.9	-4.0	-2.4
-950	-27.0	-11.6	8.64	-15.1	11:37:59	62	-75.4	-4.0	-4.0
-925	-26.9	-11.5	8.40	-15.0	11:39:10	72	-75.8	-1.2	-2.6
-900	-26.0	-11.3	8.33	-14.5	11:40:10BA	ASE 74	-83.3	-1.4	-1.3
Line -250	0 Da	ate 27	JUL 89	9 23.4	4 #84				_
POSITION	I/P	QUAD	T.FLD	TILT	TIME C	CULTS	DIR	4 - F'RA	5-FRA
-900	-17.4	-9.3	10.52	-9.8	12:46:42	83	-75.9		
-925	-18.5	-8.5	10.75	-10.4	12:49:08	64	89.3		
-950	-18.7	-8.0	10.55	-10.5	12:50:28	63	-/8.0	~ -	
-975	-18.4	-9.3	10.35	-10.4	12:51:39	63	-/5.5	-0.7	0.0
-1000	-20.3	-11.3	10.06	-11.5	12:52:40	64	-/9.2	-1.0	-0.9
-1025	-20.9	-11.6	9.92	-11.8	12:54:16	73	-81.8	-2.4	-1.7
-1050	-25.3	-12.5	10.05	-14.1	12:55:56	63	-88.2	-4.0	-3.2
-1075	-24.9	-11.3	10.46	-13.9	12:57:34	64	-82.1	-4.7	-4.4
-1100	-23.9	-9.9	10.58	-13.4	12:58:08BA	ASE 64	-68.0	-1.4	-3.1

 \frown

•

 \bigcirc

 \cap

-1125	-28.3	-11.3	10.25	-15.8	12:58:56ROAD	63	-72.3	-1.2	-1.3
-1150	-28.8	-12.3	10.90	-16.0	13:00:38	73	-80.9	-4.5	-2.9
-1175	-38.6	-10.9	11.11	-21.1	13:01:59	63	-77.4	-7.9	-6.2
-1200	-36.6	-1.3	10.89	-20.1	13:03:25	63	-76.5	-9.4	-8.7
-1225	-44.4	0.2	10.68	-23.9	13:05:23ROAD	63	-84.5	-6.9	-8.2
-1250	-48.8	-0.7	11.95	-26.0	13:07:12	73	89.9	-87	-7 8
-1275	-26.4	2.8	11.93	-14.8	13:08:33	63	-86.3	3.2	-2.8
-1300	-24.3	0.0	10.89	-13.6	13.09.37	63	-95 7	21 5	12.0
-1325	-22.0	-1.3	10.82	-12.4	13.11.00	71	-85 2	21.J	10 1
-1350	-23.7	-0.7	10.56	-12.4	13.12.07	62	-05.2	24.0	10.1
-1375	-22.8	-0.8	10.90	-12 8	13.12.10	51		2.7	0./
-1400	-31 6	2 8	11 24	_10 1	12.14.20	51	-04.1	-0.1	1.3
-1425	-12 1	2.0	10 11	-13.1	13:14:20	02	-01.0	-0.2	-3.2
-1425	- 44 + 4	14 0	10.10	-23.0	13:13:41	62	89.1	-10.0	-11.1
-1450	-JI•3	14.9	10.19	-2/.1	13:10:42	62	-86.4	-18.2	-1/.1
-14/5	-30.3	14.1	10.10	-29.4	13:17:58	62	-89.9	-14.4	-16.3
-1500	-02.9	19.5	9.81	-32.1	13:19:08CROP	52	86.6	-11.4	-12.9
-1525	-60.0	23.3	9.96	-30.9	13:20:10	62	82.9	-6.5	-9.0
-1550	-62.8	19.6	10.42	-32.1	13:21:18	72	84.3	-1.5	-4.0
-15/5	-61.6	22.5	10.71	-31.6	13:22:16	72	81.9	-0.7	-1.1
-1600	-63.7	22.7	11.72	-32.4	13:23:57	73	82.0	-1.0	-0.9
-1625	-76.6	29.2	12.60	-37.4	13:25:32	62	84.2	-6.1	-3.6
-1650	-78.7	22.9	15.67	-38.2	13:26:57	62	67.8	-11.6	-8.9
-1675	-12.1	4.8	15.76	-6.9	13:28:42	64	68.8	24.7	6.5
-1700	1.0	-3.5	14.35	0.6	13:35:07	64	71.6	69.3	47.0
-1725	3.2	-10.6	13.62	1.8	13:36:43	53	77.1	47.5	58.4
-1750	3.0	-10.8	13.12	1.7	13:39:25	64	72.1	9.8	28.6
-1775	3.3	-10.0	12.51	1.9	13:40:36	63	69.1	1.2	5.5
-1800	3.8	-10.6	12.02	2.1	13:41:45	62	72.7	0.5	0.8
-1825	3.2	-13.9	11.52	1.8	13:42:37	62	79.2	0.3	0.4
-1850	0.4	-14.2	11.80	0.2	13:43:52	72	81.1	-2.0	-0.9
-1875	-0.4	-17.4	11.34	-0.2	13:45:05	62	86.5	-3.9	-3.0
-1900	-1.7	-15.3	11.52	-0.9	13:46:14BASE	64	77.1	-3.1	-3 5
		2010		0.5	101401140406	0-1	//•1	-2.1	-3+3
Line -2400) Da	nte 27	JUL 89	23.4	L #125				
POSITION	T/P		T.FLD	· 2013 TTLT	- #125 ጥኘለፍ ሮሀኒጥ	c	מזח	/X	5-503
-1900	7.1	2.4	13.93	4.0	14.05.21	52	01 C	4-CKA	J-r KA
-1875	12.7	7 2	12 50	7 2	14.09.15	62			
-1850	10 6	1 8	12 22	6 0	14.00:13	40	11.4		
-1825	-0.6	_3 2	12.00	-0.2	14:10:54	42	00.2	• •	
-1800	-4 5	-5.2	11 76	-0.5	14:11:30	24	8/.2	5.5	10.0
-1775	0 1	-4.6	11 50	-2.0		42	79.0	10.1	10.8
-1750	0.1	-4.0	11 00		14:14:33	44	85.8	8.3	12.2
-1730	0.9	-3.0	11.00	0.5	14:15:39	44	86.5	-3.4	2.4
-1720	0.7	-4.3	11.35	0.4	14:16:35	42	84.7	-3.5	-3.5
-1/00	-0.2	-5.0	11.00	-0.1	14:17:32	52	74.5	0.2	-1.7
-16/5	-1./	-6.0	12.30	-1.0	14:18:57	53	78.7	2.0	1.1
-1650	-3.1	-9.8	12.32	-1.7	14:20:16	52	78.5	3.0	2.5
-1025	0.9	-6.3	11.85	0.5	14:21:26	52	84.6	0.1	1.5
-1000	-0.7	-2.6	12.44	-0.4	14:26:18	43	80.3	-2.8	-1.4
-1575	-5.9	-1.7	12.51	-3.4	14:27:05	52	83.7	2.6	-0.1
-1550	-10.2	-6.4	13.01	-5.8	14:28:06	35	82.3	9.3	5.9
-1525	-8.7	-4.3	13.40	-4.9	14:29:49	52	88.7	6.9	8.1
-1500	-11.6	-2.0	14.48	-6.6	14:30:57	53	78.9	2.3	4.6
-1475	-16.4	-3.6	15.53	-9.3	14:32:42	52	65.1	5.2	3.7
-1450	-25.5	-3.7	12.87	-14.3	14:34:02	42	82.6	12.1	8.6

 \frown

 \cap

 \cap

,

-1425	-29.0	-1.0 12.79	-16.2 14:35:	:03 42	87.2	14 6	12 2
-1400	-26.9	-2.2 13.12	-15.0 14:36:	25 62	-74.6	7 6	11 1
-1375	-27.5	-2.4 12.81	-15.3 14:56:	46 53	88.4	~0.2	27
-1350	-32.6	-2.7 11.71	-18.0 14:57	43 52	82.8	2.1	n.9
-1325	-26.9	-2.7 12.12	-15.0 14:58:	59 42	89.6	2.7	2.4
-1300	-20.6	-1.5 12.07	-11.6 15:00:	12 63	-82.7	-6.7	-2.0
-1275	-14.4	0.1 12.70	-8.2 15:01:	18 62	-87.4	-13.2	-10.0
-1250	-19.6	-5.2 13.86	-11.0 15:02:	16 63	-83.4	-7.4	-10.3
-1225	-24.5	-10.8 14.09	-13.7 15:03:	16 53	81.1	4.9	-1.3
-1200	-17.3	-6.1 13.58	-9.8 15:04:	44 72	-89.1	4.3	4.6
-1175	-15.9	-7.6 14.48	-9.0 15:06:	13 43	87.3	-5.9	-0.8
-1150	-16.3	-9.1 14.55	-9.2 15:07:	31 44	77.9	-5.3	-5.6
-1125	-15.7	-6.7 13.74	-8.9 15:09:	02 49	64.2	-0.7	-3.0
-1100	-18.3	-3.6 14.43	-10.4 15:10:	06 44	-89.2	1.1	0.2
-1075	-32.8	-7.1 15.22	-18.1 15:11:	16 52	-80.8	10.4	5.7
-1050	-30.8	-6.0 14.92	-17.1 15:12:	33 73	86.3	15.9	13.1
-1025	-33.9	-5.6 13.19	-18.7 15:13:	29 62	83.0	7.3	11.6
-1000	-33.4	-2.1 12.43	-18.4 15:14:	55 52	-89.8	1.9	4.6
-975	-31.7	-2.3 11.13	-17.6 15:16:	14 52	-80.4	0.2	1.0
-950	-29.0	-3.9 11.20	-16.1 15:17:	06 45	78.9	-3.4	-1.6
-925	-27.7	-3.7 11.36	-15.5 15:18:	27 43	79.4	-4.4	-3.9
-900	-25.1	-2.1 11.91	-14.1 15:19:	29 43	-80.7	-4.1	-4.3

 \bigcirc

VLF TOTAL FIELD DATA (uncorrected) Date 28 JUL 89 Operator: 3000 Records: 215 Bat: 17.0 Volt Lithium: 3.50 Volt Lask time update: 7/12 11:52:00 Start of print: 7/29 7:13:17 Line -2300 Date 28 JUL 89 23.4 #2 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -400 1.5 -1.9 9.39 0.9 9:36:14 54 -78.1 -425 5.8 -2.0 9.18 3.3 9:39:159 45 82.0 -475 1.7 -3.5 9.02 0.9 9:45:19 55 -63.3 0.0 -500 4.0 -3.7 8.86 2.3 9:47:36 66 69.2 -3.4 -1.7 -555 6.7 -2.5 9.63 3.8 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 -3.5 9:54:24 46 e.99.4 -4.0 -0.7 -600 -13.1 0.6 10.00 -7.4 9:56:25 39 -85.5 -16.7 -10.4 -625 4.1 -3.6 10.00 2.3 10:01:35 55 81.4 -5.4 -11.1 -650 6.7 -4.6 9.67 3.8 10:12:16 33 7 -83.2 -6.2 1.9 -720 -2.2 -3.5 9.88 -1.2 10:10:33 7 -83.2 -6.2 1.9 -725 -85 -2.4 9.85 -4.8 10:12:26 49 -80.8 10.9 -8.6 -750 -13.7 -3.6 9.90 -7.8 10:18:21 46 -78.9 -10.1 -11.3 -800 -17.0 -2.1 10.36 -12.7 10:20:24 49 83.5 -6.2 -5.8 -850 -27.9 -2.2 10.61 -15.6 10:22:31 49 -83.5 -10.2 -5.18 -875 -22.5 -2.2 10.36 -12.7 10:20:24 49 -83.5 -11.7 -11.1 -900 -36.1 -2.2 11.87 -19.8 10:25:15 44 -89.8 -9.9 -10.8 <	OMNI-PLUS Tie-line MAG/VLF R22K Ser #26102										
Date 28 JUL 89 Operator: 3000 Records: 215 Bat: 17.0 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 7/29 7:13:17 Line -2300 Date 28 JUL 89 23.4 #2 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -400 1.5 -1.9 9.39 0.9 9:36:14 54 -78.1 -425 5.8 -2.0 9.18 3.3 9:39:59 45 82.0 -450 5.8 -1.3 9.09 3.3 9:43:11 34 82.9 -475 1.7 -3.5 9.02 0.9 9:45:19 55 -63.3 0.0 -500 4.0 -3.7 8.86 2.3 9:47:36 66 66:2 -3.4 -1.7 -525 6.7 -2.5 9.63 3.8 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 -3.5 9:54:24 46 -89.4 -4.0 -0.7 -600 -13.1 0.6 10.00 -7.4 9:56:25 39 -85.5 -16.7 -10.4 -625 4.1 -3.6 10.00 -2.3 10:01:35 55 81.4 -5.4 -11.1 -650 6.7 -4.6 9.67 3.8 10:03:16 56 -89.8 17.0 4. -625 4.1 -3.6 10.00 -2.3 10:01:33 37 -83.2 -6.2 1.9 -725 -8.5 -2.4 9.85 -4.8 10:12:26 49 9.08.8 -10.9 -8.6 -750 -13.7 -3.6 9.80 -7.8 10:17:30 35 74.5 -12.5 -11.7 -725 -48.5 -2.2 10.36 -1.2 10:10:33 37 -48.2 -12.5 -11.7 -725 -22.5 -2.2 10.36 -1.2 10:10:33 37 4.5 -12.5 -11.7 -725 -22.5 -2.2 10.36 -1.2 10:19:26 39 -80.9 -5.3 -7.7 -825 -22.5 -2.2 10.36 -1.2 10:10:33 57 4.5 -12.5 -11.7 -725 -22.5 -2.2 10.36 -1.2 10:10:23 47 -86.3 -10.4 -8.3 -875 -22.5 -2.2 10.36 -1.2 10:20:24 49 -83.5 -10.4 -8.3 -875 -22.5 -2.2 10.36 -12.7 10:20:24 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -18.4 10:24:18 35 88.4 -11.7 -11.1 -900 -36.1 -2.2 11.87 -19.6 10:25:15 44 -89.8 -9.9 -10.8 -925 -28.9 -1.7 12.35 -16.1 10:26:14 39 86.8 -1.9 -5.9 -950 -3.8 -3.3 11.166 -2.2 10:29:38 47 -85.2 13.1 22.5 -1025 0.9 -3.7 11.73 0.5 10:33:25 47 89.3 3.6 8.8 -10.75 -1.6 -7.2 11.97 -0.9 10:36:108ROAD 59 89.2 -0.3 1.9 -9100 -36.1 -2.9 11.23 -10:10:33 57 82.5 5.5 2.6 -1150 1.1.5 -6.9 13.71 6.5 10:41:17 59 87.8 10.4 .9 -91075 -1.6 -7.2 11.97 -0.9 10:36:08ROAD 59 89.2 -0.3 1.9 -91075 -1.6 -7.2 11.97 -0.9 10:36:08ROAD 59 89.2 -0.3 1.9 -1125 6.1 -8.7 12.25 1.3 5 10:40:33 57 82.5 5.5 2.6 -1150 1.1.5 -6.9 13.71 1.5 5.9 10:37:15 39 83.7 -0.3 -0.3 -1225 0.8 -3.8 13.00 0.4 10:51:28 58 77.0 -4.2 0.3 -1225 0.8 -3.8 13.00 0.4 10:51:28 57 58 83.7	VLF TOTAL	FIELD	DATA	(uncor:	rected)					
Operator: 3000 Records: 215 Bat: 17.0 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 7/29 7:13:17 Line -2300 Date 20 JUL 89 23.4 #2 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -400 1.5 -1.9 9.39 0.9 9:36:14 54 -78.1 -425 5.8 -2.0 9.18 3.3 9:39:59 45 82.0 -450 5.8 -1.3 9.02 0.9 9:45:19 55 -66.3 0.0 -500 4.0 -3.7 8.86 2.3 9:47:36 66 69.2 -3.4 -1.7 -555 6.7 -2.5 9.63 3.8 9:51:37 55 -80.5 2.6 1.3 575 -6.2 0.1 9.78 -3.5 9:54:24 46 6.89.4 -4.0 -0.7 -600 -13.1 0.6 10.00 -7.4 9:56:25 39 -85.5 -16.7 -10.4 -625 4.1 -3.6 10.00 2.3 10:01:35 55 81.4 -5.4 -11.1 -650 6.7 -4.6 9.67 3.8 10:103:16 56 6.89.8 17.0 5.8 -700 -2.2 -3.5 9.86 -1.2 10:10:3 37 7.45.2 -6.2 1.9 -725 -8.5 -2.4 9.85 -4.8 10:12:26 49 -80.8 -10.9 -8.6 -750 -1.7 -2.5 9.95 -8.3 10:18:21 46 -78.9 -10.1 -11.3 -775 -14.7 -2.5 9.95 -8.3 10:18:21 49 -80.5 -6.2 -5.8 -850 -2.2 10.36 -12.7 10:20:24 49 -80.8 -1.9 -9.5 -7.7 -805 -2.2 10.36 -12.7 10:20	Date 28 J	UL 89									
Records: 215 Bat: 17.0 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 7/29 7:13:17 Line -2300 Date 28 JUL 89 23.4 \ddagger 2 POSITION J/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -400 1.5 -1.9 9.39 0.9 9:36:14 54 -78.1 -425 5.8 -2.0 9.18 3.3 9:39:59 45 82.0 -450 3.8 -1.3 9.09 3.3 9:43:11 34 82.9 -475 1.7 -3.5 9.02 0.9 9:45:19 55 -63.3 0.0 -500 4.0 -3.7 8.86 2.3 9:49:17 56 59.5 0.1 -1.7 -525 3.5 -5.6 8.76 2.0 9:49:17 56 59.5 0.1 -1.7 -555 6.7 -2.5 9.63 3.8 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 -3.5 9:54:24 46 -89.4 -4.0 -0.7 -600 -13.1 0.6 10.00 -7.4 9:56:25 39 -85.5 -16.7 -10.4 -625 4.1 -3.6 10.00 2.3 10:01:35 55 81.4 -5.4 -11.1 -650 6.7 -4.6 9.67 3.8 10:03:16 56 -89.8 17.0 5.8 -700 -2.2 -3.5 9.88 -1.2 10:10:33 37 -83.2 -6.2 1.9 -725 -8.5 -2.4 9.85 -4.8 10:12:26 49 -80.8 -10.9 -8.6 -750 -13.7 -3.6 9.80 -7.8 10:17:30 35 74.5 -12.5 -11.7 -775 -14.7 -2.5 9.95 -8.3 10:18:21 46 -78.9 -10.1 -1.1.3 -800 -17.0 -2.1 10.30 -9.6 10:17:30 35 74.5 -12.5 -11.7 -775 -14.7 -2.5 9.95 -8.3 10:18:21 49 -83.5 -6.2 -5.8 -850 -27.9 -2.3 10.6 1-15.6 10:22:31 49 -83.5 -6.2 -5.8 -850 -27.9 -2.3 10.6 1-15.6 10:22:31 49 -83.5 -6.2 -5.8 -875 -33.3 -3.1 11.04 -18.4 10:24:28 35 88.4 -11.7 -11.1 -900 -36.1 -2.2 11.87 -19.8 10:25:15 44 -83.5 -6.2 -5.8 -990 -3.8 -3.3 11.86 -2.2 10:29:38 47 -85.2 19.9 9.0 -975 -4.6 -4.7 12.25 -10.1 10:26:14 39 86.8 -1.9 -5.9 -950 -3.8 -3.3 11.86 -2.2 10:29:38 47 -85.2 19.9 9.0 -975 -4.6 -4.7 12.25 -1.7 10:32:05 49 -80.2 14.0 22.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -80.2 14.0 22.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -80.2 14.0 22.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -80.2 14.0 22.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -80.2 14.0 22.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -80.2 14.0 22.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -80.2 14.0 22.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -80.2 14.0 22.5 -1000 -3.0 -2.9 12.54 -3.6 10:35:15 39 83.7 -0.3 -6.2 -7.3 -1250 0.8 -3.8 13.00 0.4 10:51:28 57 44 -80.8 -1.9 -7.3 -1250 0.8 -3.8 13.00 0.4 10:51:28 57 44 -80.8 -4.2 3.9 -1075 -	Operator:	3000								1	
Bat: 17.0 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 7/29 7:13:17 Line -2300 Date 28 JUL 89 23.4 #2 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -400 1.5 -1.9 9.39 0.9 9:36:14 54 -78.1 -425 5.8 -2.0 9.18 3.3 9:39:59 45 82.0 -475 1.7 -3.5 9.02 0.9 9:45:19 55 -63.3 0.0 -500 4.0 -3.7 8.86 2.3 9:47:36 66 69.2 -3.4 -1.7 -525 3.5 -5.6 8.76 2.0 9:149:17 56 59.5 0.1 -1.7 -525 3.5 -5.6 8.76 2.0 9:149:17 56 59.5 0.1 -1.7 -550 6.7 -2.5 9.63 3.8 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 -3.5 9:54:24 46 -89.4 -4.0 -0.7 -600 -13.1 0.6 10.00 -7.4 9:56:25 39 -85.5 -16.7 -10.4 -625 4.1 -3.6 10.00 2.3 10:01:35 55 81.4 -5.4 -11.1 -650 6.7 -4.6 9.67 3.8 10:03:16 56 89.8 17.0 5.8 -700 -2.2 -3.5 9.88 -1.2 10:10:3 37 -83.2 -6.2 1.9 -725 -86.5 -2.4 9.85 -4.8 10:12:26 49 -80.8 17.0 -5.8 -750 -13.7 -3.6 9.80 -7.8 10:17:30 35 74.5 -12.5 -11.7 -775 -14.7 -2.5 9.95 -8.3 10:18:21 46 -78.9 -10.1 -1.1 -860 -17.0 -2.1 10.3 0 -9.6 10:19:26 39 -80.5 -6.3 -7.7 -825 -22.5 -2.2 10.36 -12.7 10:20:24 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -18.4 10:24:28 35 88.4 -11.7 -11.1 -900 -36.1 -2.2 11.87 -19.8 10:25:15 44 -89.8 -9.9 -10.4 -8.3 -875 -21.9 -2.3 13.1 1.04 -18.4 10:24:28 35 88.4 -11.7 -11.1 -900 -36.1 -2.2 11.87 -19.8 10:25:15 49 -88.5 -2.58 -850 -27.9 -2.3 10.61 -15.6 10:22:31 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -18.4 10:24:28 35 88.4 -11.7 -11.1 -900 -36.1 -2.2 11.87 -19.8 10:25:15 44 -89.8 -9.9 -10.8 -925 -22.9 -1.7 12.35 -10.1 10:32:15 49 -80.5 -5.2 -2.5.8 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -80.2 19.9 9.0 -975 -4.6 -7.2 11.97 -0.9 10:36:08NAD 59 89.2 -0.3 1.9 -975 -4.6 -7.2 11.97 -0.9 10:36:08NAD 59 89.2 -0.3 1.9 -91100 0.9 -8.6 12.27 0.5 10:37:15 39 83.7 -0.3 -0.3 -1125 6.1 -8.7 12.51 3.5 10:40:13 57 82.5 5.5 2.6 -1100 -3.0 -2.9 12.53 -1.7 10:42:40 49 -81.8 1.8 6.1 -1200 -0.8 -4.6 12.76 -0.4 10:47:03 47 79.5 -11.1 -4.7 -1225 0.8 -3.8 13.00 0.4 10:51:28 58 77.0 4.2 0.3 -1275 -1.4 -6.7 12.43 -1.4 10:52:45 59 -80.2 -3.3 0.4 -3300 -6.1 -9.3 12.13 -3.4 10:54:15 27 -80.4 -7.6 0.3 -7.3 -1225	Records:	215									
Last time update: $7/12$ 11:52:00 Start of print: $7/29$ 7:13:17 Line -2300 Date 28 JUL 89 23.4 #2 POSITION I/P QUAD T.FLD TLUT TIME CULT S DIR 4-FRA 5-FRA -400 1.5 -1.9 9.39 0.9 9:36:14 54 -78.1 -425 5.8 -2.0 9.18 3.3 9:39:59 45 82.0 -450 5.8 -1.3 9.09 3.3 9:43:11 34 02.9 -475 1.7 -3.5 9.02 0.9 9:45:19 55 -63.3 0.0 -500 4.0 -3.7 8.86 2.3 9:47:36 66 69.2 -3.4 -1.7 -525 3.5 -5.6 8.76 2.0 9:49:17 56 59.5 0.1 -1.7 -525 3.5 -5.6 8.76 2.0 9:49:17 56 59.5 0.1 -1.7 -550 6.7 -2.5 9.63 3.8 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 3.6 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 3.6 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 3.6 9:51:37 55 -81.4 -5.4 -11.1 -650 6.7 -4.6 9.67 3.8 10:03:16 56 -89.8 17.0 5.8 -675 2.0 -5.4 9.91 1.1 10:08:24 47 86.1 10.0 13.5 -700 -2.2 -3.5 9.88 -1.2 10:10:33 37 -83.2 -6.2 1.9 -725 -8.5 -2.4 9.85 -4.8 10:12:26 49 -80.8 -10.9 -8.6 -750 -13.7 -3.6 9.80 -7.8 10:17:30 35 74.5 -12.5 -11.7 -775 -14.7 -2.5 9.95 -8.3 10:18:21 46 -78.9 -10.1 -11.13 -800 -17.0 -2.1 10.30 -9.6 10:19:26 39 -80.9 -5.3 -7.7 -825 -22.5 -2.2 10.36 -12.7 10:20:24 49 -83.5 -6.2 -5.8 -750 -33.3 -3.1 11.04 -18.4 10:24:28 35 88.4 -11.7 -11.1 -900 -36.1 -2.2 11.67 -19.8 10:25:55 44 -89.8 -9.9 -10.8 -975 -33.3 -3.1 11.04 -18.4 10:24:28 58 84.4 -11.7 -11.1 -900 -3.6 -2.9 12.53 -1.7 10:32:05 49 -89.3 5.10 -10.8 -975 -3.8 -3.3 11.86 -2.2 10:29:38 47 -85.2 19.9 9.0 -975 -4.6 -4.7 12.25 -10:36 10:22:14 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -18.4 10:24:28 35 88.4 -11.7 -11.1 -900 -3.6 -2.9 12.53 -1.7 10:32:05 49 -89.2 14.0 22.5 -1025 0.9 -3.7 11.73 0.5 10:33:25 47 89.3 3.6 8.8 -1050 -1.1 -6.6 11.88 -0.7 10:42:40 49 -81.5 2.1 9.9 9.0 -975 -4.6 -7.2 11.97 -0.9 10:36:08ROAD 59 89.2 -0.3 1.9 -1100 0.9 -8.0 12.29 0.5 10:37:15 39 8.3.7 -0.3 -0.3 -1125 6.1 -8.7 12.51 3.5 10:40:33 57 82.5 5.5 2.6 -1105 -1.1 -6.6 11.88 -0.7 10:42:40 49 -81.8 1.8 6.1 -1220 0.0 -8.4 612.97 2.7 10:49:46 47 81.9 -3.5 -7.3 -1225 0.8 -3.8 13.00 0.4 10:51:28 59 49.2 14.0 22.5 -1425 -9.8 -3.2 12.7 -7.8 12.7 -7.8 14.0 -7.9	Bat: 17.	0 Volt	Li	thium:	3.50	Volt					
Start of print: 7/29 7:13:17 Line -2300 Date 28 JUL 89 23.4 #2 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -400 1.5 -1.9 9.39 0.9 9:36:14 54 -78.1 -425 5.8 -2.0 9.18 3.3 9:39:59 45 82.0 -450 5.8 -1.3 9.09 3.3 9:43:11 34 82.9 -475 1.7 -3.5 9.02 0.9 9:45:19 55 -63.3 0.0 -500 4.0 -3.7 8.86 2.3 9:47:36 66 69.2 -3.4 -1.7 -552 3.5 -5.6 8.76 2.0 9:49:17 56 59.5 0.1 -1.7 -555 6.7 -2.5 9.63 3.8 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 -3.5 9:54:24 46 -89.4 -4.0 -0.7 -600 -13.1 0.6 10.00 -7.4 9:56:25 39 -85.5 -16.7 -10.4 -625 4.1 -3.6 10.00 2.3 10:01:35 55 81.4 -5.4 -11.1 -650 6.7 -4.6 9.67 3.8 10:03:16 56 -89.8 17.0 5.8 -675 2.0 -5.4 9.91 1.1 10:08:24 47 86.1 10.0 13.5 -700 -2.2 -3.5 9.88 -1.2 10:10:33 37 -83.2 -6.2 1.9 -725 -8.5 -2.4 9.85 -4.8 10:12:26 49 -80.8 -10.9 -8.6 -750 -13.7 -3.6 9.80 -7.8 10:17:30 35 74.5 -12.5 -11.7 -755 -2.2 0.1 0.36 -12.7 10:20:24 49 -80.8 -10.9 -8.6 -750 -13.7 -3.6 9.80 -7.8 10:17:30 35 74.5 -12.5 -11.7 -775 -14.7 -2.5 9.5 -8.3 10:18:21 46 -78.9 -10.1 -11.3 -800 -17.0 -2.1 10.30 -9.6 10:19:26 49 -80.8 -10.9 -8.6 -850 -27.9 -2.3 10.61 -15.6 10:22:31 49 -83.5 -6.2 -5.8 -850 -27.9 -2.3 10.61 -15.6 10:22:31 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -18.4 10:24:28 35 88.4 -11.7 -11.1 -900 -36.1 -2.2 11.87 -19.8 10:25:15 44 -89.8 -9.9 -10.8 -925 -28.9 -1.7 12.35 -16.1 10:26:14 39 86.8 -1.9 -5.9 -950 -3.8 -3.3 11.66 -2.2 10:29:38 47 -85.2 19.9 -5.9 -950 -3.8 -3.3 11.66 -2.2 10:29:38 47 -85.2 19.9 -30.6 -925 -28.9 -1.7 12.25 -16.1 10:26:14 39 86.8 -1.9 -5.9 -905 -3.4 6 -4.7 12.26 -2.6 10:30:19 47 -83.5 31.1 25.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:05 49 -89.2 14.0 22.5 -1025 0.9 -8.7 12.71 7.7 0.51 033:25 47 89.3 3.6 8.8 -1050 -1.1 -6.6 11.88 -0.6 10:35:30 48 -88.5 4.2 3.9 -1075 -1.6 -7.2 11.97 -0.9 10:36:080AD 59 89.2 -0.3 1.9 -1100 0.9 -8.0 12.29 0.5 10:37:15 39 83.7 -0.3 -0.3 -1250 0.8 -3.8 13.00 0.4 10:57:13 57 83.3 -3.9 -6.0 -1350 -5.5 -5.4 13.74 -5.10:41:17 59 88.7 -0.3 -5.9 -1250 -0.8 -3.8 13.00 0.4 10:57:13 57 88.3 -0.9 -10.4 -1300 -6.1	Last time	update	: 7/	12 11:	52:00						
Line -2300 Date 28 JUL 89 23.4 #2 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -400 1.5 -1.9 9.39 0.9 9.36:14 54 -78.1 -425 5.8 -2.0 9.18 3.3 9:39:59 45 82.0 -450 5.8 -1.3 9.09 3.3 9:43:11 34 82.9 -475 1.7 -3.5 9.02 0.9 9:45:19 55 -63.3 0.0 -500 4.0 -3.7 8.66 2.3 9:47:36 66 69.2 -3.4 -1.7 -525 3.5 -5.6 8.76 2.0 9:49:17 56 59.5 0.1 -1.7 -555 6.7 -2.5 9.63 3.8 9:51:37 55 -80.5 2.6 1.3 -575 -6.2 -0.1 9.78 -3.5 9:54:24 46 -89.4 -4.0 -0.7 -600 -13.1 0.6 10.00 -7.4 9:56:25 39 -85.5 -16.7 -10.4 -625 4.1 -3.6 10.00 2.3 10:01:35 55 81.4 -5.8 -675 2.0 -5.4 9.91 1.1 10:08:24 47 86.1 10.0 13.5 -700 -2.2 -3.5 9.88 -1.2 10:10:33 37 -83.2 -6.2 1.9 -725 -8.5 -2.4 9.85 -4.8 10:12:26 49 -80.8 10.9 -8.6 -750 -13.7 -3.6 9.00 -7.8 10:17:30 35 74.5 -12.5 -11.7 -775 -14.7 -2.5 9.95 -8.3 10:18:21 46 -78.9 -10.1 -11.3 -800 -17.0 -2.1 10.30 -9.6 10:19:26 39 -80.9 -5.3 -7.7 -825 -22.2 10.36 -12.7 10:20:24 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -18.4 10:24:28 35 88.4 -1.9 -18.3 -875 -33.3 -3.1 11.04 -18.4 10:24:28 35 88.4 -1.9 -10.8 -925 -22.5 -2.2 10.36 -12.7 10:20:24 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -15.6 10:22:31 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -15.6 10:22:31 49 -83.5 -10.4 -8.3 -875 -33.3 -3.1 11.04 -15.6 10:22:31 49 -83.5 -10.4 -8.3 -875 -33.3 -1.1 1.04 -15.6 10:22:31 49 -83.5 -10.4 -8.3 -875 -33.3 -1.1 1.04 -15.6 10:33:15 44 -89.8 -9.9 -10.8 -925 -28.9 -1.7 12.35 -16.1 10:26:14 39 86.6 -1.9 -5.9 -925 -28.9 -1.7 12.35 -16.1 10:33:15 44 -89.8 -9.9 -10.8 -925 -28.9 -1.7 12.35 -16.1 10:33:19 47 -83.5 31.1 25.5 -1000 -3.0 -2.9 12.53 -1.7 10:32:55 44 -89.8 -9.9 -10.8 -925 -28.9 -1.7 12.35 -16.1 10:33:19 47 -83.5 31.1 25.5 -1025 0.9 -3.7 11.73 0.5 10:33:25 47 89.3 3.6 8.8 -1050 -1.1 -6.6 11.88 -0.6 10:35:30 48 -88.5 4.2 3.9 -1107 0.9 -8.0 12.29 0.5 10:37:15 39 83.7 -0.3 -0.3 -1125 6.1 -7.2 11.97 -0.9 10:36:08ROAD 59 89.2 -0.3 1.9 -1100 0.9 -8.0 12.29 0.5 10:37:15 39 83.7 -0.3 -0.3 -1125 0.0 8 -7.8 12.97 2.7 10:49:46 47 81.9 -3.5 -7.3 -1225 4.8 -7.8 12.97 2.7 10:49:46	Start of	print	: 7/3	29 7:	13:17						
		±									
POSITION $1/P$ QUAD T.FLDTILTTIMECULT SDIR4-FRA5-FRA-4001.5 -1.9 9.390.99:36:1454 -78.1 -4255.8 -1.3 9.093.39:39:594582.0-4751.7 -3.5 9.020.99:45:1955 -63.3 0.0-5004.0 -3.7 8.862.39:47:366669.2 -3.4 -1.7 -5253.5 -5.6 8.762.09:49:175659.50.1 -1.7 -5506.7 -2.5 9:633.89:51:3755 -80.5 2.61.3-575 -6.2 -0.1 9.78 -3.5 9:54:2446 -89.4 -4.0 -0.7 -600 -13.1 0.610.00 -7.4 9:56:2539 -85.5 -16.7 -10.4 -625 4.1 -3.6 10.002.310:01:3555 81.4 -5.4 -11.1 -650 6.7 -4.6 9.673.810:03:31656 -89.8 17.0 5.8 -700 -2.2 -3.5 9.88 -1.2 10:10:3337 -83.2 -6.2 1.9 -725 -8.5 -2.4 9.85 -4.8 10:12:2649 -80.8 -70.9 -7.7 -725 -8.5 -2.4 9.85 -4.8 10:12:2649 -80.5 -6.2 -5.8 -700 -2.2 -2.5	Line -230	0 Da	te 28	JUL 89	9 23.	4 #2					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	POSITION	I/P	QUAD	T.FLD	TILT	TIME	CULT S	DIR	4-FRA	5-FRA	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-400	1.5	-1.9	9.39	0.9	9:36:14	54	-78.1		• • • • • • •	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-425	5.8	-2.0	9.18	3.3	9:39:59	45	82.0			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-450	5.8	-1.3	9.09	3.3	9:43:11	34	82.9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-475	1.7	-3.5	9.02	0.9	9:45:19	55	-63.3	0 0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-500	4.0	-3.7	8.86	2.3	9:47:36	66	69 2	-3 1	-17	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-525	3.5	-5.6	8.76	2.0	9.49.17	56	59.2	- 3 • 4	-1.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-550	6.7	-2.5	9.63	3.8	9.51.37	55	-80 5	26	-1.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-575	-6.2	-0.1	9.78	-3.5	9.54.24	16	-80.1	-4 0	-07	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-600	-13.1	0.6	10 00	-7 1	0.56.25	20	-05.5	16 7	-0.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-625	A 1	-3 6	10.00	2 2	10.01.25	55	01 4	-10./	-10.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+650	67	-1 6	0.67	2.5	10:01:33	55	01.4	-0.4	-11.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-675	2 0	-4.0	9.07		10:03:10	00	-89.8	1/.0	5.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-075	-2.0	-2.5	9.91		10:00:24	4/	80.1	10.0	13.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-700	-2.2	-3.3	9.00	-1.2	10:10:33	37	-83.2	-6.2	1.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	750	10.0	-2.4	9.00	-4.8	10:12:26	49	-80.8	-10.9	-8.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-750	-13.7	-3.0	9.80	-/.8	10:17:30	35	/4.5	-12.5	-11.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-//5	-14./	-2.5	9.95	-8.3	10:18:21	46	-78.9	-10.1	~11.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-800	-17.0	-2.1	10.30	-9.6	10:19:26	39	-80.9	-5.3	-7.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-825	-22.5	-2.2	10.36	-12.7	10:20:24	49	-83.5	-6.2	-5.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-850	-27.9	-2.3	10.61	-15.6	10:22:31	49	-83.5	-10.4	-8.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-875	-33.3	-3.1	11.04	-18.4	10:24:28	35	88.4	-11.7	-11.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-900	-36.1	-2.2	11.87	-19.8	10:25:15	44	-89.8	-9.9	-10.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-925	-28.9	-1.7	12.35	-16.1	10:26:14	39	86.8	-1.9	-5.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-950	-3.8	-3.3	11.86	-2.2	10:29:38	47	-85.2	19.9	9.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-975	-4.6	-4.7	12.26	-2.6	10:30:19	47	-83.5	31.1	25.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1000	-3.0	-2.9	12.53	-1.7	10:32:05	49	-89.2	14.0	22.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1025	0.9	-3.7	11.73	0.5	10:33:25	47	89.3	3.6	8.8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1050	-1.1	-6.6	11.88	-0.6	10:35:30	48	-88.5	4.2	3.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1075	-1.6	-7.2	11.97	-0.9	10:36:08RC	DAD 59	89.2	-0.3	1.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1100	0.9	-8.0	12.29	0.5	10:37:15	39	83.7	-0.3	-0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1125	6.1	-8.7	12.51	3.5	10:40:33	57	82.5	5.5	2.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1150	11.5	-8.9	13.71	6.5	10:41:17	59	87.8	10.4	1.9	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1175	-1.3	-13.8	13.85	-0.7	10:42:40	49	-81.8	1.8	6.1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1200	-0.8	-4.6	12.76	-0.4	10:47:03	47	79.5	-11.1	-4.7	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1225	4.8	-7.8	12.97	2.7	10:49:46	47	81.9	-3.5	-7.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1250	0.8	-3.8	13.00	0.4	10:51:28	58	77.0	4.2	0.3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1275	-2.4	-5.6	12.43	-1.4	10:52:52	59	-89.2	-3.3	0.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1300	-6.1	-9.3	12.13	-3.4	10:54:15	27	-86.1	-7.9	-5.6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1325	-9.8	-8.2	12.84	-5.6	10:55:54	44	82.1	-8.0	-8.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1350	-5.5	-5.4	13.74	-3.1	10:57:13	57	83.3	-3.9	-6.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1375	-8.3	-4.1	14.10	-4.7	10:58:39	47	82.1	1.2	-1.4	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-1400	-8.4	-2.3	13.61	-4.8	10:59:45	49	-88.8	-0.8	0.2	
-1450 -9.4 -0.2 13.41 -5.4 $11:01:43$ 48 -88.6 -1.5 -2.1	-1425	-9.9	-0.3	12.98	-5.6	11:00:46	48	84.6	-2.6	-1.7	
	-1450	-9.4	-0.2	13.41	-5.4	11:01:43	48	-88.6	-1.5	-2.1	

•

-1475 -1500 -1525 -1550	-2.1 2.6 -1.5 -3.5	0.9 2.6 1.9	13.11 12.34 11.43 11.02	-1.2 1.5 -0.8 -2.0	11:02:51 11:03:46 11:07:28	56 38 46	77.5 -87.0 -88.5	3.8 11.3 7.3	1.1 7.5 9.3
-1575 -1600 -1625	-6.5 -7.8	-0.1 -0.4	10.96	-3.7	11:08:55 11:09:49	47 46 45	87.4 85.4	-3.1 -6.4 -5.3	-4.8 -5.9
-1650 -1675 -1700	-2.0 7.9 7.9	5.2 10.0	11.24 11.88 11.77	-4.7 -1.1 4.5	11:10:56 11:12:45 11:13:47	39 47 57	-84.3 -88.2 82.5	-3.4 2.3 12.5	-4.4 -0.6 7.4
-1725 -1750 -1775	6.1 4.7	1.9 -0.4	11.20 11.04 11.15	4.5 3.4 2.7	$11:15:10 \\ 11:16:51 \\ 11:18:02 \\ 11:20:20$	56 37 46	80.2 83.2 85.5	14.8 4.5 -2.9	13.6 9.6 0.8
-1800 -1825 -1850	61.3 18.2	-5.5	1.36 6.70	31.5 10.3	11:20:30 11:21:50 11:22:51	46 51 33	78.1 35.8 79.4	1.8 32.4 32.1	-0.6 17.1 32.2
-1875 -1900	23.5 27.0	3.2 3.8	10.24 10.34 10.15	13.2 15.1	11:23:42 11:24:47 11:25:49E	44 44 BASE 44	-81.7 87.3	-15.7 -16.1 5.5	8.2 -15.9 -5.3
Line -220 POSITION -1900	0 Da I/P 4 9	te 28 QUAD	JUL 89 T.FLD	23.4 TILT	4 #63 TIME	CULT S		4-FRA	5-FRA
-1875 -1850 -1825	13.6 14.2	5.5	10.42	7.7	11:30:40 11:38:07 11:39:07 11:39:57	55 49 45	-74.9 89.2 84.2		
-1800 -1775 -1750	12.4	7.0	10.03 10.77 11.26	7.0 5.2	11:39:57 11:41:09 11:42:07	49 58 49 55 56	-84.1 -84.7 87.3	-5.9 0.3 4.2	-2.8
-1725 -1700	-6.5 -11.1 -2.1	0.8	12.36 13.21	-3.7 -6.3	11:43:40 11:44:54 11:46:06	40 54 46	-87.9 88.0	14.6 16.5	6.5 11.7 15.5
-1650 -1625	-2.1 3.9 7.4	1.2 6.0	14.37 13.41 14.34	-1.2 2.2 4.2	11:46:57 11:47:58 11:49:04	47 49 37	-80.8 -89.4 88.7	5.1 -11.0 -13.9	10.8 -3.0 -12.5
-1575 -1550 -1525	-26.6 -24.9	4.5	16.07 15.69	-14.9 -13.9	11:50:10 $11:51:24$ $13:53:48$ $12:55:14$	48 46 66	86.4 -86.3 -88.0	-8.9 15.6 38.7	-11.4 3.3 27.1
-1525 -1500 -1475 -1450	-16.1 -9.2 -4.2	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 0 \\ 0 \end{array} $	15.46 15.12 14.63	-12.3 -9.1 -5.3	13:55:14 13:56:37 13:57:37 12:50:11	76 75 68	-82.0 -86.1 89.0	17.0 -7.4 -11.8	27.8 4.8 -9.6
-1425 -1400 -1375	-4.2 0.6 4.3 5.1	-0.7 -0.8	14.60 14.48 15.06	-2.4 0.3 2.4	13:59:11 14:00:41 14:01:45 14:02:216	67 65	87.8 88.1 88.3	-13.7 -12.3 -10.4	-12.8 -13.0 -11.4
-1350 -1325 -1300	-2.6 -3.1 -2.6	0.3 -0.2	15.00 15.79 15.90	-1.5	14:05:18C 14:05:18C 14:07:08	ROP 74 ROP 75 76	81.4 87.3 -88.9	-7.4 1.3 8.5	-8.9 -3.1 4.9
-1275 -1250 -1225	-0.3 11.7 53 8	-2.2 -4.3 -8.1	14.83 16.85	-1.5 -0.2 6.6 28.2	14:10:54 14:13:34	74 85 75	-0/./ -71.2 -78.6	4.6 -1.5 -9.6	6.5 1.5 -5.6
-1200 -1175 -1150	36.1 - 23.1 - 14.9	-13.0 -12.1	13.49 12.89	20.3 19.8 13.0	14:18:11 14:56:45	64 69 74	-89.5 -83.3 75.2	-36.6 -41.7 2.1	-23.1 -39.2 -19.8
-1125 -1100	14.9 - 11.5 9.2	-9.1 -7.8	12.70 12.72 12.71	8.4 6.6 5.2	14:57:49 14:58:55 14:59:52	75 74 66	79.9 81.4 83.0	26.7 17.8 9.6	14.4 22.2 13.7

6.8	-7.3 13.44	3.9	15:00:57	76 85.9	5.9	7.7
7.8	-5.1 13.77	4.4	15:02:10	57 -85.8	3.5	4.7
7.7	-5.2 13.50	4.4	15:03:00	65 75.5	0.3	1.9
4.1	-7.5 13.46	2.3	15:04:12	76 86.9	1.6	0.9
7.1	-3.9 13.63	4.0	15:05:16	65 -89.6	2.5	2.0
10.9	-0.7 13.93	6.2	15:06:21	65 -87.3	-3.5	-0.5
8.0	-0.2 14.10	4.5	15:07:18	74 76.4	-4.4	-4.0
3.4	-0.1 14.94	1.9	15:08:14	65 -82.4	3.8	-0.3
-2.7	-1.1 14.76	-1.5	15:09:09	65 -87.6	10.3	7.0
-1.8	-0.2 14.71	-1.0	15:10:01	76 -86.4	8.9	9.6
3.4	4.0 14.68	1.9	15:10:55	76 -83.5	-0.5	4.2
3.8	3.7 14.31	2.1	15:12:06	77 -84.3	-6.5	-3.5
-0.3	3.1 14.58	-0.2	15:13:26	75 -86.2	-1.0	-3.8
-7.3	1.6 14.80	-4.2	15:14:45	67 -89.1	8.4	3.7
-8.1	1.0 14.22	-4.6	15:16:03	75 -88.6	10.7	9.5
-3.5	1.2 13.85	-2.0	15:18:00	76 -87.7	2.2	6.4
1.3	0.6 13.19	0.7	15:19:09	75 -81.9	-7.5	-2.7
2.0	-1.1 12.86	1.1	15:20:04	65 -78.9	-8.4	-8.0
1.9	-0.5 12.99	1.1	15:21:17	75 -85.7	-3.5	-6.0
4.0	1.3 12.80	2.2	15:22:22ROAD	75 86.7	-1.5	-2.5
10.3	3.7 13.23	5.9	15:24:14ROAD	75 -85.0	-5.9	-3.7
2.3	-4.7 12.95	1.3	15:26:32	63 -87.1	-3.9	-4.9
-5.6	-1.3 13.16	-3.2	15:28:22	73 -80.8	10.0	3.0
-13.8	-3.8 11.44	-7.8	15:29:51	75 -71.3	18.2	14.1
-7.6	-2.4 11.54	-4.3	15:30:58CROP	75 -89.8	10.2	14.2
-6.4	-4.1 11.61	-3.6	15:32:52	66 -84.9	-3.1	3.5
0.9	-2.7 11.32	0.5	15:34:34CROP	75 -80.9	-9.0	-6.1
	$\begin{array}{c} 6.8\\ 7.8\\ 7.7\\ 4.1\\ 7.1\\ 10.9\\ 8.0\\ 3.4\\ -2.7\\ -1.8\\ 3.4\\ 3.8\\ -0.3\\ -7.3\\ -8.1\\ -3.5\\ 1.3\\ 2.0\\ 1.9\\ 4.0\\ 10.3\\ 2.3\\ -5.6\\ -13.8\\ -7.6\\ -6.4\\ 0.9\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

.

Line -210	0 Da	ate 28	JUL 89	9 23.	4 #123				
POSITION	I/P	QUAD	T.FLD	TILT	TIME	CULT S	DIR	4-FRA	5-FRA
-425	-10.0	-1.2	9.58	-5.7	19:17:41	75	-88.6		0 1 1111
-450	-18.3	-3.0	10.03	-10.3	19:19:47	77	-88.0		
-475	-15.9	-0.6	11.81	-9.0	19:23:03	64	81.0		
-500	6.7	-6.3	10.50	3.8	19:24:00	65	76.5	10 8	
-525	21.6	-10.5	11.78	12.2	19.25.05	55 65	70.5	25 2	22.0
-550	13.8	-7.2	10.43	7 9	19.26.11	55 05 1/7	. 00 0	JJ+J 15 J	23.0
-575	8.1	-1.1	10.70	4 6	19.27.200	03D 76	-00.2	20.3	30.3
-600	6.7	-0 6	10.70	2 g	10.20.11	55 74	-09.0	-3.3	10.9
-625	47	-3 1	11 05	2.0	19:29:41	JJ 74 77	-00.0	-11./	-/.6
-650	я./	-2 0	11 22	27	10.22.060	// קר תורי	89.8	-6.0	-8.9
-675	8 2	-0.8	11.22	4.0	19:32:0080	UAD 75	89.7	-0.9	-3.5
-700	8 8	-0.0	11.30	4.0	19:33:30	00	-83.4	2.9	1.0
-725	11 0	1.4	11.11	5.0	19:34:45	/5	-89.4	2.1	2.5
-750	7 5	4.J	10.20	0./	19:43:36	55	69.2	2.3	2.2
-730	57	1.2	10.40	4.3	19:46:07	55 65	74.5	1.4	1.8
-773	2.7	0.0	10.33	3.3	19:47:24	56	87.2	-4.1	-1.4
-000	4./	0.4	10.32	2.1	19:49:13	65	-83.9	-5.0	-4.6
-020	7.0	-0.9	10.11	4.0	19:50:07	66	88.6	-0.9	-3.0
-850	11.6	-1.2	10.56	6.6	19:51:15	65	85.6	4.6	1.8
-875	13.8	-3.2	10.05	7.8	19:52:48	56 75	67.8	7.7	6.1
-900	10.1	-4.3	10.25	5.7	19:54:40	66	85.1	2.9	5.3
-925	9.4	-6.6	10.25	5.4	19:55:47CI	ROP 65	85.4	-3.3	-0.2
-950	12.5	-3.7	10.16	7.1	19:56:51	65	80.0	-1.0	-2.2
-975	13.1	-4.1	9.98	7.4	19:57:44	75	86.2	3.4	1.2
-1000	10.6	-7.5	10.26	6.0	19:58:26	后件	86.1	0.9	2.1
-1025	13.5	-4.3	9.67	7.6	19:59:11	66	82.8	-0.9	0.0
-1050	12.8	-6.3	9.50	7.3	19:59:56	67	83.0	1.5	0.3
-1075	14.2	-7.1	9.53	8.0	20:00:50	66	87.0	1.7	1.6
-1100	9.1	-10.7	9.59	5.2	20:02:38	64	82.1	-1.7	0.0
-1125	7.2	-13.0	9.12	4.1	20:03:57	75	77.8	-6.0	-3.9
-1150	6.8	-12.6	9.10	3.9	20:05:00	65	81.7	-5.2	-5.6
-1175	6.4	-14.3	9.26	3.6	20:06:03	65	80.9	-1.8	-3.5
-1200	8.5	-15.7	9.14	4.8	20:06:57	56	68.9	$\overline{0.4}$	-0.7
-1225	14.9	-15.7	9.34	8.5	20:08:20CF	ROP 66	74.2	5.8	3.1
-1250	21.1	-14.2	9.55	11.9	20:10:06	67	71.7	12 0	8 9
-1275	20.3	-11.5	9,98	11.5	20:11:31	72	86 0	10 1	11 0
-1300	18.2	-10.2	9.95	10.3	20:12:44	64	77 4	1 1	57
-1325	39.7	-12.1	9.61	21.6	20:13:55	65	70 1	2.5	1 9
-1350	64.3	-12.8	9.87	32.7	20:15:32CF	20P 74	80.5	22 5	20 5
-1375	76.3	-12.1	10.17	37.3	20.17.18	74	76 1	32.5	20.3
-1400	85.5	-16.8	9.83	40.5	$20 \cdot 18 \cdot 51$	73	70.7	22 5	30.8
-1425	82.7	-16.7	10.06	39.6	20.20.23	63	82 0	10 1	16 9
-1450	81.9	-17.1	10.10	39.0	20.20.25 20.22.17	62	79 7	10.1	10.0
-1475	74.0	-16.1	10.29	36 5	20.22.17	02	70.7 00.0		0.0 1.C
-1500	59.2	-18.5	10.82	30.5	20.24.000	10F 03 76	00.0	-4.5	-1.0
-1525	58.5	-9.9	10.78	30.0	20.25.46	70 63	72 1	-14 0	-0.1
-1550	73.0	-10 2	10 95	26 1	20.23.40	03	14.1 01 0	-14.9 0 7	-13.4
-1575	88 Q	-12 2	11 27	11 L	20:27:04	04	01.9	-0./	-/.8
-1600	78 /	-16 1	12 02	30 U	20;20;30	19	83.3 77 7	10.8	8.0
-1625	10.7	_10 · I	12 60	30.0 22 1	20:32:19	02	-/3./	13.2	12.0
-1650	28 0	_5 0	10 65	22•1 16 1	20:33:33	70	-80.1	-1/.0	-2.2
-1675	20.7	-J.Z	TO*02		20:30:03	/4	-/0.4	-41.4	-29.5
-T017	22.T	-1.1	2,00	10.3	20:3/:10	73	-19.6	-25.7	-33.6

 \bigcap

·

(

-1700	40.5	0.6	9.80	22.0	20:38:04	73	-77.0	2.1	-11.8
-1725	17.4	2.9	10.61	9.9	20:39:02	64	-63.5	-2.5	-0.2
-1750	8.4	5.0	9.51	4.8	20:40:12	56	-71.2	-25 6	-1/1 1
-1775	5.1	8.3	8.61	2.9	20:41:05	64	-76 6	-24 2	-21 0
-1800	5.5	10.1	8.00	3.1	20:42.05	64	-82 6	-97	-16 5
-1825	7.2	14.1	7.78	4.1	20.42.35	7/	-97 2	-0.5	-10.5
-1850	9.2	16.1	7.93	5.2	20.45.19	73	-95 6	-0.0	-4.0
-1875	13.0	18.7	7.31	7 4	20.45.15	73	-00.0	3.3 E 4	1.4
-1900	18.7	19.2	7 40	10 5	20.40.20	62	-09.0	5.4	4.3
1900	10.7	17.2	7.40	10.0	20:47:30	03	88.3	8.6	/.0
Line -2000	Da	ate 28	JUL 89	23.4	4 #183				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CUL	тя	DTR	4-FRA	5-FDA
-1900	9.5	6.5	8.96	5.4	20:50:49ROAD	64	81 7		JERA
-1875	3.5	12.7	10.32	2.0	20.50.491.040	71	-86 1		
-1850	7.1	12.1	9.57	4.1	20.52.16	65	-70 7		
-1825	17.9	7.7	9.38	10.1	20.52.10	71	-75-7	6 0	
-1800	21.1	6.6	9.17	11 0	20.53.02ROAD	74	75.2	15.0	11 4
-1775	20.2	1.0	9 04	11 1	20.55.4JROAD	75	-/3.0	-15.9	-11.4
-1750	29.8	-6 6	7 97	16 6	20: J4: Z3ROAD	74	-12.2	-9.1	-12.5
-1725	22.3	-2 1	7 55	12.6	20:54:57ROAD	70	-/1.3	-6.0	-/.6
-1700	15 3	-6.8	9 21	12.0	20:55:51ROAD	15	-84.2	-5.9	-6.0
-1675	19.9	-32 0	0.21	26 0	20:50:10ROAD	64	-69.4	6./	0.4
-1650	62 7	-32.0	9.23	20.0	20:56:48	64	-65.3	-5.5	0.6
-1625	11 6	-39.4 20 C	0.99	32.1	20:57:38	62	79.3	-36.8	-21.2
-1600	44.0	-29.0	0.94	24.0	20:58:43	53	78.8	-21.4	-29.1
-1000	40.9	-24.7	6.90	22.2	20:59:28	73	81.0	11.9	-4.8
-1070	42.0	-19.3	6.91	23.0	21:00:20	63	-86.0	10.9	11.4
-1550	30.1	-19.1	6.24	19.8	21:01:16	72	-76.3	3.4	7.1
-1525	30.9	-1/.4	6.66	20.2	21:02:27	72	86.6	5.2	4.3
-1500	37.2	-15.7	6.46	20.4	21:03:59	63	86.4	2.2	3.7
-14/5	35.6	-15.7	6.81	19.6	21:05:06	62	78.0	0.0	1.1
-1450	39.6	-12.2	6.78	21.6	21:06:48	72	67.5	-0.6	-0.3
-1425	37.4	-9.0	6.73	20.5	21:07:52BOG	63	75.1	-2.1	-1.4
-1400	35.1	-9.8	6.86	19.3	21:08:40	52	88.5	1.4	-0.4
-1375	29.0	-10.8	6.88	16.2	21:09:32	63	80.0	6.6	4.0
-1350	30.7	-9.0	7.08	17.0	21:10:51	63	83.2	6.6	6.6
-1325	27.5	-8.6	6.88	15.4	21:12:04	62	72.9	3.1	4.8
-1300	23.6	-5.2	6.98	13.3	21:13:14	62	78.8	4.5	3.8
-1275	18.6	-4.2	7.19	10.5	21:14:16	63	72.8	8.6	6.5
-1250	14.6	-3.3	7.35	8.3	21:16:07CROP	63	84.2	9.9	9.2
-1225	11.9	-3.9	7.33	6.8	21:16:54	73	86.2	8.7	9.3
-1200	10.2	-2.9	7.35	5.8	21:18:13	73	88.0	6.2	7.4
-1175	8.0	-2.9	7.42	4.6	21:19:10	73	88.9	4.7	5.4
-1150	6.5	-4.6	7.55	3.7	21:20:09	73	-88.4	4.3	4.5
-1125	5.5	-5.1	7.58	3.1	21:21:14	72	-85.6	3.6	3.0
-1100	6.5	-6.5	7.60	3.7	21:22:21BASE	73	-81.2	1.5	2.5
						-		- • •	

 \bigcirc

OMNI-PLUS	Tie-J	ine M	AG/VLF	R22K	Ser #26102				
VLF TOTAL	FIELD	DATA	(uncorr	ected)					
Date 29 JI	UL 89								
Operator:	3000								
Records:	47								
Bat: 17.3	7 Volt	Li	thium:	3.48	Volt				
Last time	update	e: 7/	12 11:5	2:00					
Start of	print	: 7/	31 19:0	0:39					
Line -2000	0 Da	te 29	JUL 89	23.4	#2				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CUL	TS	DTR	4-FRA	
-1100	4.4	-6.8	8.57	2.5	9:08:33BASE	75	-84.6	7 11/1	
-1075	9.8	-3.3	8.22	5.6	9:10:42	77	85 2		
-1050	7.8	-4.6	8.09	4.5	9:13:11	77	87.1		
-1025	9.5	-4.3	8.13	5.4	9:14:10	86	84.7	-1.8	
-1000	11.2	-2.5	8.04	6.4	9:14:58	77	83.7	-1 7	
-975	12.0	-0.8	8.12	6.8	9:15:52	76	87.1	-3.3	
-950	12.5	0.0	8.07	7.1	9:16:56	76	82.6	-2.1	
-925	12.9	0.8	8.07	7.3	9:17:59	76	89.0	-1.2	
-900	14.5	2.5	8.22	8.2	9:19:16	76	-88.8	-1.6	
-875	9.9	2.1	8.35	5.6	9:21:29	77	-82.9	0.6	
-850	5.0	2.4	8.34	2.9	9:23:23	86	89.4	7.0	
-825	6.1	1.2	8.60	3.5	9:30:21	76	83.4	7.4	
-800	12.2	5.2	8.78	7.0	9:33:37	77	-83.4	-2.0	
-775	10.2	2.6	9.14	5.8	9:35:03	77	80.5	-6.4	
-750	10.7	-1.1	9.34	6.1	9:36:06	77	87.3	-1.4	
-725	18.3	0.7	9.28	10.3	9:37:03	76	81.6	-3.6	
-700	16.4	0.3	9.29	9.3	9:38:18	76	85.7	-7.7	
-675	14.3	-2.1	9.20	8.1	9:39:58	87	88.2	-1.0	
-650	16.1	-0.6	8.95	9.1	9:41:37	77	88.3	2.4	
-625	16.9	0.0	9.11	9.6	9:42:51	77	75.8	-1.3	
-600	6.2	-3.4	9.10	3.5	9:44:40	76	80.4	4.1	
-575	2.4	-4.0	8.87	1.4	9:46:35	77	89.7	13.8	
-550	10.0	-2.0	8.76	5.7	9:47:48	77	83.3	6.0	
-525	6.9	-10.2	8.58	3.9	9:48:43	76	-88.2	-4.7	
-500	18.4	-7.1	8.50	10.4	9:49:30ROAD	6 7	89.4	-7.2	
-475	19.4	-3.2	8.97	11.0	9:50:49	76	74.8	-11.8	
-450	4.0	-2.6	9.04	2.3	9:54:27	76	78.8	1.0	
-425	2.7	-0.2	9.60	1.5	9:55:46	68	86.5	17.6	
-400	4.5	3.1	9.68	2.5	9:56:55	67	86.4	9.3	
-375	-7.0	-1.4	10.07	-4.0	9:58:30	77	-78.4	5.3	

 $\bigcap_{i=1}^{n}$

,

OMNI-PLUS Tie-line MAG/VLF R22K Ser #26102 VLF TOTAL FIELD DATA (uncorrected) Date 5 AUG 89 **Operator:** 3000 Records: 263 17.2 Volt Bat: Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 8/06 8:05:42 -800 Line 5 AUG 89 Date 23.4 #3 POSITION I/P T.FLD QUAD TILT TIME CULT S DIR 4-FRA 5-FRA -1150-2.9 7.9 5.27 -1.6 8:53:30ROAD 72 -85.0 -1175 -0.88.1 5.19 -0.48:55:55 73 -86.5 -12001.9 5.33 7.1 1.1 8:56:52 64 -89.1 -12255.4 6.9 5.36 3.1 8:57:57 74 89.8 6.2 -12509.2 6.0 5.39 5.2 8:58:44 64 85.7 7.6 6.9 -127514.1 5.5 5.44 8.0 8:59:37 73 -87.2 9.0 8.3 -130015.9 -0.65.49 9.0 9:00:40 54 84.6 8.7 8.8 -132516.4 9.3 -2.6 5.53 9:01:36 74 -88.5 6.9 5.1 -135014.9 -4.1 5.60 8.5 9:02:31CREC 63 -89.1 0.8 2.9 -137518.5 -0.5 5.58 10.5 9:03:46 63 79.3 0.7 0.7 -140020.0 2.2 5.70 11.3 9:04:41 64 -88.5 4.0 2.3 -142521.3 4.5 5.76 12.0 9:05:42 63 84.9 4.3 4.1 -145020.5 6.0 5.79 11.6 9:06:33 64 84.8 1.8 3.0 -147522.0 5.4 5.83 12.4 9:07:34 64 82.9 0.7 1.2 -150025.3 5.7 5.84 9:08:33 14.2 64 78.9 3.0 1.8 -152532.5 5.7 5.51 18.0 9:09:28 63 79.0 8.2 5.6 -155036.1 6.2 5.41 19.8 9:10:33 64 81.2 11.2 9.7 -157535.2 6.2 5.46 19.4 9:11:36 53 87.5 7.0 9.1 -160035.8 5.1 5.97 19.7 9:15:14 74 85.8 1.3 4.1 -1625 35.7 2.0 6.27 19.6 9:16:25 75 84.8 0.1 0.7 -165031.7 10.8 6.42 17.6 9:17:23BASE 64 82.2 -1.9-0.9-167533.6 7.3 6.29 18.6 9:18:09 65 83.5 -3.1 -2.5 -170034.8 5.4 6.42 19.2 9:18:46 64 87.8 0.6 -1.3 -172533.0 2.2 6.65 18.2 9:19:45 55 89.0 1.2 0.9 -175029.7 5.1 6.85 16.5 9:20:44 89.7 64 -3.1 -1.0-177526.2 6.5 7.10 14.6 9:21:50 75 -86.5 -6.3 -4.7 -180027.5 0.5 6.92 15.4 9:22:49 -82.9 64 -4.7 -5.5 -182525.4 2.1 6.89 14.2 9:23:46 67 85.2 -1.5 -3.1 -185027.1 4.8 6.90 15.1 9:25:19 64 -89.1 -0.7 -1.1 -187529.5 6.97 3.8 16.4 9:26:15 64 -89.3 1.9 0.6 -190032.7 1.8 6.96 18.1 9:27:17TIE 54 -86.5 5.2 3.5 -900 Line 5 AUG 89 Date 23.4 #34 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -190013.6 -3.3 7.38 7.7 9:35:40TIE 64 -88.8 -1875-0.3 21.2 8.06 11.9 9:38:36 64 -83.3 -185030.7 -8.2 8.08 17.0 9:39:33 73 -83.9 -182529.8 -10.17.04 16.6 9:40:37 53 87.1 -14.0-180018.4 -7.0 7.16 10.4 9:41:31 73 76.8 1.9 -6.1 -1775 13.4 -9.5 6.91 7.6 9:42:44 63 86.2 15.6 8.7 -175014.6 -6.9 6.87 8.3 9:43:56 63 85.8 11.1 13.3 18.0 -1725-6.2 6.66 10.2 9:45:00 63 -87.1 -0.5 5.3 -170020.4 -4.2 6.42 11.5 9:46:13 62 89.1 -5.8 -3.2

-1675	17.3	-5.4	6.91	9.8	9:47:43RAV	63	84.5	-2.8	-4.3
-1650	20.6	-4.3	7.24	11.6	9:48:54	53	82.2	0.3	-1.3
-1625	23.9	-3.9	7.45	13.4	9:50:37	63	84.1	-3.7	-1.7
-1600	21.1	-2.9	7.19	11.9	9:51:45	64	81.8	-3.9	-3.8
-1575	21.8	-3.2	7.06	12.3	9:52:50CREC	63	78.3	0.8	-1.6
-1550	17.2	-3.5	6.71	9.7	9:53:51	63	80.9	3.3	2.0
-1525	16.1	-2.6	6.61	9.1	9:54:39	64	84.3	5.4	4.3
-1500	16.2	-3.0	6.55	9.2	9:55:30	63	81.6	3.7	4.5
-1475	14.8	-2.0	6.51	8.4	9:56:22	64	87.1	1.2	2.4
-1450	12.2	-1.5	6.40	6.9	9:57:14	54	82.9	3.0	2.1
-1425	11.8	2.2	6.18	6.7	9:58:17	63	-87.6	4.0	3.5
-1400	13.6	6.2	6.37	7.7	9:59:06	54	87.9	0.9	2.4
-1375	19.8	7.6	6.45	11.1	10:00:03	63	76.4	-5.2	-2.2
-1350	17.8	7.3	6.39	10.1	10:00:50	64	81.8	-6.8	-6.0
-1325	16.7	5.7	6.47	9.5	10:01:39	54	74.4	-0.8	-3.8
-1300	14.0	3.5	6.51	8.0	10:03:08	54	76.4	3.7	1.4
-12/5	13.0	0.9	6.64	7.4	10:04:07	64	76.2	4.2	3.9
-1250	1/.3	-1.4	6.74	9.8	10:05:17	54	85.2	0.3	2.2
-1225	21.5	0.6	6.60	12.1	10:06:16	54	82.7	-6.5	-3.1
-1200	18.2	1.5	6.51	10.3	10:07:34	54	79.4	-5.2	-5.9
-11/5	17.5	3.8	6.50	9.9	10:08:58	64	72.2	1.7	-1.8
-1150	16.5	/.4	6.23	9.4	10:10:09	64	78.8	3.1	2.4
-1125	9.7	5.5	6.37	5.5	10:11:02	64	84.4	5.3	4.2
-1100	7.9	9.8	6.59	4.5	10:12:08BASE	55	74.8	9.3	7.3
Line -1000	Da	ata 5	AUG 89	22	1 #67				
POSITION	1/P		T.FLD	23 TLT	TIME CULT	r s	DTR	4-FRA	5-503
-1100	29.5	0.4	7.28	16.4	10:35:53BASE	64	-86.3	4 1 MA	JINA
-1125	23.3	-2.8	7.05	13.1	10:36:57	64	-83.4		
-1150	19.7	-2.8	7.10	11.1	10:37:59	74	-86.9		
-1175	19.9	-4.1	7.25	11.2	10:39:04	65	78.6	-7.2	
-1200	21.9	2.3	7.70	12.3	10:42:15	64	89.8	-0.7	-4.0
-1225	15.9	3.5	7.42	9.0	10:43:21	64	-88.7	-1.0	-0.9
-1250	18.6	7.3	7.24	10.5	10:44:24	64	85.4	-4.0	-2.5
-1275	23.8	7.6	7.17	13.4	10:45:42	54	83.8	2.6	-0.7
-1300	24.3	5.8	7.40	13.7	10:49:28	74	83.6	7.6	5.1
-1325	26.2	3.5	7.30	14.7	10:50:42	74	85.6	4.5	6.0
-1350	26.3	3.6	7.28	14.7	10:51:48	64	89.2	2.3	3.4
-1375	26.3	3.3	7.34	14.7	10:53:07	74	86.6	1.0	1.6
-1400	24.6	3.6	7.47	13.8	10:54:19	64	-88.4	-0.9	0.0
-1425	28.4	1.3	7.24	15.8	10:56:05	64	-87.8	0.2	-0.4
-1450	24.0	2.5	7.61	13.5	10:57:06	74	-87.3	0.8	0.5
-1475	21.5	0.0	7.71	12.1	10:58:16	54	-85.8	-4.0	-1.6
-1500	19.8	-1.6	7.56	11.2	10:59:22	64	-89.1	-6.0	-5.0
-1525	21.1	-2.1	7.31	11.9	11:00:20	44	-88.6	-2.5	-4.3
-1550	24.4	-1.4	7.10	13.7	11:02:12	63	88.8	2.3	-0.1
-1575	26.9	-0.5	7.21	15.0	11:03:42	64	-88.8	5.6	3.9
-1600	28.1	-4.7	7.23	15.7	11:05:13	64	89.7	5.1	5.3
-1625	31.3	-7.3	7.16	17.4	11:06:18	64	-84.9	4.4	4.7
-1650	37.1	-9.9	7.08	20.3	11:07:47TIE	63	-88.6	7.0	5.7
-1675	41.8	-14.3	7.40	22.7	11:09:38	64	83.7	9.9	8.4
-1/00	47.9	-10.4	7.69	25.6	11:11:01	63	-83.8	10.6	10.2
-1725	55.8	-6.2	8.05	29.1	11:11:54	63	-88.3	11.7	11.1
-1/50	58.6	-7.4	8.97	30.3	11:13:49	73	85.8	11.1	11.4

 \bigcap

.

 \bigcap

-1775	47.0	-6.4	10.24	25.1	11:15:21	63	-87.3	0.7	5.9
-1800	28.8	1.1	9.02	16.0	11:18:28	74	-86.4	-18.3	~8.8
-1825	29.4	0.5	8.68	16.4	11:19:27	64	-78.1	-23.0	-20.7
-1850	22.8	-3.1	8.57	12.8	11:20:16	64	-83.0	-11.9	-17 5
-1875	14.0	0.2	8.07	8.0	11.20.10	66	-82 5	_11 6	_11 9
-1900	18 3	1 9	7 64	10 1	11.21.12	65	-02.0	-11.0	-11.0
1000	10.3	1.7	/.04	10.4	11:23:0211E	05	-03.3	-10.0	-11.2
Line -1100	Da	to 5	AUC 90	22	4 #100				
			T ETD	23.4 TTT		n 0	DTD	4 1000	C 001
_1000	1/F 26 1			11 01		1 5		4-FRA	3-FRA
-1900	20.1	-0.9	7.31	14.0	11:28:58TIE	68	85.6		
-1875	23.9	-0.2	7.59	13.4	11:30:55	/5	84.3		
-1850	21.2	-1.1	7.78	.11.9	11:31:59	75	83.5	_	
-1825	19.6	-1.0	7.95	11.0	11:32:45	75	84.7	5.1	
-1800	18.9	-1.5	8.03	10.7	11:33:58	77	-87.1	3.6	4.3
-1775	13.8	-2.0	8.18	7.8	11:35:32	66	86.4	4.4	4.0
-1750	17.0	-2.1	8.66	9.6	11:36:36	66	-83.7	4.3	4.3
-1725	22.1	-0.6	9.01	12.4	11:37:31	66	-84.9	-3.5	0.4
-1700	20.8	1.3	9.40	11.7	11:38:19	65	83.2	-6.7	-5.1
-1675	17.6	-1.7	9.87	9.9	11:39:13CREC	78	-84.4	0.4	-3.2
-1650	31.6	1.0	9.40	17.5	11:40:26TIE	66	-88.0	-3.3	-1.5
-1625	8.1	-3.0	8.25	4.6	11:42:38	75	-78.9	-0.5	-1.9
-1600	36.2	-6.0	8.86	19.9	11:43:35	74	-84.1	2.9	1.2
-1575	30.9	-6.1	7.86	17.1	11:44:30	74	85.8	-14.9	-6.0
-1550	27.5	-2.3	7.65	15.3	11:45:50	75	88 2	-7 9	-11 A
-1525	23.2	-2.0	7 56	13.0	11.46.42	70	-96 5	9 6	-11.4
-1500	$23 \cdot 2$	-1 3	7.30	12.1	11.47.22	76	-00.5	0.0 6 0	0.3
-1475	20.4	-0.8	7 60	12.5	11.47.55	70	00.0	0.0	56
-1450	20.4	0.0	7.05	11.0	11,40,17	73 CA	00.0	4.4	0.0
-1405	10 7	1 0	7 51	10 6	11:49:07	04	04.2	2.2	3.3
-1425	10.7	1.9	7.51	10.0	11 50:10	04	-80.0	1.5	1.8
-1400	10 1	2.0	7.53	10.1	11:51:12	/5	81.7	2.7	2.1
-1375	10.1	4.6	7.49	10.3	11:52:01	/5	-84.7	2.1	2.4
-1350	18.5	5.1	7.31	10.4	11:52:47	/5	-86.1	0.0	1.0
-1325	16.5	6.4	1.36	9.3	11:53:56	75	88.6	0.7	0.3
-1300	16.5	6.6	7.49	9.4	11:55:29	65	83.3	2.0	1.3
-1275	15.3	8.2	7.54	8.7	11:56:37	75	-89.5	1.6	1.8
-1250	12.0	9.9	7.70	6.8	11:57:58	66	89.2	3.2	2.4
-1225	12.6	9.7	7.86	7.1	11:59:05	65	-88.8	4.2	3.7
-1200	13.5	8.5	7.97	7.7	12:01:28	76	-85.4	0.7	2.4
-1175	9.3	8.5	7.98	5.3	12:02:42	56	-87.8	0.9	0.8
-1150	12.4	10.9	8.09	7.0	12:04:20	76	85.2	2.5	1.7
-1125	11.2	15.8	7.88	6.3	12:06:24	75	-89.5	-0.3	1.1
-1100	2.0	11.0	7.89	1.1	12:07:26BASE	65	-85.7	4.9	2.3
-1075	9.6	13.5	7.68	5.5	12:12:30	64	88.3	6.7	5.8
-1050	7.0	12.7	7.77	4.0	12:13:05	56	-84.7	-2.1	2.3
-1025	4.4	12.5	7.78	2.5	12:13:37	56	-85.3	$\tilde{0.1}$	-1.0
-1000	1.0	6.2	8.31	0.5	12:15:08	65	-83.9	6.5	3.3
-975	24.3	-1.0	8.41	13.6	12:16:00	75	-81 8	-7 6	-0.6
-950	24.1	2.5	7.83	13.5	12.17.13	61	-88 /	-24 1	-15 0
-925	20.4	5.3	7 97	11 5	12.18.22	7/	-77 0	_10 0	_17 F
-900	16.8	8 J	7 AQ	11.J Q K	12.10.22	76	97 0	-10.9 6 1	-2 4 -T1+3
-875	12 0	7 /	7.03 8.03	7.2	12.21.23	70	96 1	0.1	-2.4
-850	12+7 Q /	۲•4 ۲۰۹	0.02 8 60	1.3	12:22:40	14 6 A	00.1	0.2	/•1 0 E
	10 0	1 2	0.07	4.0	10,00,000	04	-04.0	8.9	8.5
-025	TA • 2	1.03	ン・ハイ	0.2	IZ: JZ: I 9KUAD	00	-04.9	5.B	1.3

 \bigcirc

 \bigcap

 \bigcirc

.

Line -1150	Da	te 5	AUG 89	23.	4 #144				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CUL	r s	DIR	4-FRA	5-FRA
-750	13.0	-7.2	10.96	7.4	13:46:43ROAD	84	-75.7		
-725	35.8	-5.4	10.54	19.7	13:49:19	83	-76.3		
-700	31.7	-4.0	9.42	17.6	13.51.41	71			
-675	24.8	-3.8	9 1 9	13 9	12.52.16	62	95 0	- A A	
-650	25 3	-3.8	9 40	11 2	13.56.20	63	00.5	-4.4	24
-625	21 3	-0.3	9 55	12 0	13.57.20	71	09.0	5.2	2.4
-600	16 5	-2 0	0 03	12.0	12.50.40	74	-00.1	5.5	1.2
-575	13 1	_1 5	9.03	7 1	12,50,52	72	-09.3	0.0	0.0
-550	15 2	-1.0	9.40	/•4 0 C	14.01.000000	73	-79.9	9.0	8.1
550	13.2	-0.0	9.30	0.0	14:01:20BASE	14	-52.8	5.3	/.4
Line -1200	Da	te 5	AUG 89	23.	4 #153				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CULT	r s	DIR	4 - FRA	5-FRA
-550	19.0	-3.6	9.68	10.7	14:07:27BASE	63	-80.5		• • • • • •
-575	17.9	-4.6	9.65	10.1	14:11:11	73	-83.7		
-600	18.1	-3.5	9.82	10.2	14:12:18	64	-82.1		
-625	23.1	-3.0	9,99	13.0	14.13.09	63	-80 8	2 1	
-650	32.0	-2.6	10.17	17.7	14.14.14	71	-86 1	10 4	6 1
-675	34.4	-5.4	10.85	18 9	14.16.10	61	_70 7	13 /	11 0
-700	14.2	-3.4	10,00	8 0	14.17.380010	63	-67 3		11.9
-725	15.2	29	9 27	8 6	14.10.06	72	-07.5 05 5	-3.0	4.0
-750	12 7	6 0	9.73	7 2	14.19.00	6 A	-70 6	-20.0	-11.9
-775	1 0	12 0	9.75	2 9	14,20,23	72	-79.0	-11.1	~13.0
-800	15.9	14 5	9.24	2.0	14:21:39	13	-00.5	-0.0	-8.9
-825	22.0	14.J	0.71	7.0	14:23:19	12	89.0	-4.0	-5.3
-850	17 6	J•4 2 6	0.07	12.0	14:24:34	13	-80.8	11.8	3.9
-030	17.0	0.0	0.94	9.9	14:20:04	13	81.9	10.9	11.3
-075	21.1	0.9	9.11	11.9	14:27:18	63	84.2	0.0	5.4
-900	31.9	~0.1	9.19	1/./	14:28:34	13	-85.8	6.9	3.4
-925	41.4	-0.7	9.70	22.0	14:30:05	62	-61.8	18.4	12.6
-930	22.1	2.0	9.27	12.4	14:31:23	63	-/8./	5.3	11.8
-975	30.0	7.9	8.32	16./	14:37:54	83	-81.5	-11.1	-2.9
-1000	42.0	1.2	8.36	23.0	14:40:22	72	-78.2	4.8	-3.2
-1025	28.2	-1.9	9.31	15./	14:43:01	62	-79.4	9.6	7.2
-1050	20.3	-2.0	9.15	11.4	14:45:01	53	-77.2	-12.6	-1.5
-1075	21.8	1.0	8.63	12.3	14:47:23	63	-84.2	-15.0	-13.8
-1100	31.8	6.6	8.30	1/.6	14:49:58BASE	73	75.8	2.8	-6.1
-1125	23.4	8.0	8.58	13.1	15:20:39	62	80.8	7.0	4.9
-1150	21.3	6.5	8.24	12.0	15:26:50	73	78.3	-4.8	1.1
-11/5	25.0	7.0	7.92	14.0	15:27:58	62	89.8	-4.7	-4.8
-1200	31.2	6.3	7.88	17.3	15:29:56	72	59.8	6.2	0.7
-1225	37.2	7.3	7.85	20.4	15:31:05	73	-74.5	11.7	8.9
-1250	48.1	9.9	8.07	25.6	15:32:21	72	-70.3	14.7	13.2
-1275	51.0	12.1	8.34	27.0	15:33:19	62	-74.4	14.9	14.8
-1300	40.8	11.9	8.80	22.2	15:34:33	62	-69.3	3.2	9.0
-1.325	36.1	4.3	8.54	19.8	15:35:34	72	-75.9	-10.6	-3.7
-1350	32.5	2.4	8.60	18.0	15:37:33	72	-60.5	-11.4	-11.0
-1375	29.2	-1.7	8.78	16.3	15:38:56	63	-82.5	-7.7	-9.6
-1400	31.8	0.6	8.94	17.6	15:40:20	72	-77.8	-3.9	-5.8
-1425	34.6	0.1	8.77	19.1	15:41:19	62	-62.1	2.4	-0.8
-1450	38.2	-1.9	8.75	20.9	15:42:15	72	-77.2	6.1	4.2
-1475	39.7	0.6	9.14	21.6	15:43:22	62	-84.2	5.8	5.9
-1500	41.8	2.2	9.59	22.7	15:45:12	52	-67.5	4.3	5.0
-1525	41.8	6.5	10.54	22.7	15:46:37	72	-80.8	2.9	3.6

 \cap

 \cap

 \bigcirc

-1550	47.4	5.0	10.90	25.3	15:47:36	62	-79.4	3.7	2 2
-1575	43.7	11.5	9.49	23.6	15.49.04	72	88 1	3 5	3.6
-1600	40.3	0.6	9 66	20.0	15.50.16	62	-00.0	J.J J.5	0.5
-1625	28 2	n 0	9.00	15 7	15.51.07	72	70.0	-2.5	0.0
-1650	20.2	1 6	9 60	11 1	15.52.06	72		-11.3	-0.9
-1030	20.5	1.0	0.00	10 7	15:52:00	12	-84.5	-18.4	-14.9
-10/3	19.0	2.7	8.29	10.7	15:53:45	62	-/9.3	-15.5	-17.0
-1700	18.1	3.9	8.36	10.2	15:54:52	63	86.8	-6.2	-10.9
-1/25	17.9	3.1	8.38	10.1	15:56:03	63	-87.7	-1.8	-4.0
-1750	16.5	4.4	8.41	9.3	15:58:25	62	-85.5	-1.5	-1.7
-1775	21.5	4.5	8.26	12.1	16:00:10	62	-88.2	1.1	-0.2
-1800	21.6	5.6	8.32	12.1	16:01:42CREC	73	83.2	4.8	2.9
-1825	22.8	3.7	8.12	12.8	16:07:24	63	84.0	3.5	4.1
-1850	25.4	3.9	7.95	14.2	16:08:31	73	87.0	2.8	3.1
-1875	34.8	5.0	7.84	19.1	16:09:51	62	83.0	8.4	5.6
-1900	40.2	1.1	7.97	21.9	16:10:53	63	80.3	14.0	11.2
-1925	48.0	-1.2	8.12	25.6	16:12:12TIE	62	84.5	14.2	14.1
Line -1300	Da Da	nte 5	AUG 89	23.4	4 #209				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CUL'	ΓS	DIR	4-FRA	5-FRA
-1900	42.3	-20.1	9.59	22.9	16:16:55TIE	72	84.9		
-1875	38.9	-13.4	9.04	21.2	16:18:25	62	84.6		
-1850	36.4	-7.1	8.60	20.0	16:19:10	72	69.5		
-1825	30.6	1.1	8.46	17.0	16:20:17	73	68.4	7.1	
-1800	26.6	6.7	8.15	14.9	16:21:38	72	88.0	9.3	8.2
-1775	24.7	7.7	8.28	13.8	16:22:37	62	78.9	8.3	8.8
-1750	25.5	11.2	7.81	14.3	16:23:31	72	-89.1	3.8	6.0
-1725	26.3	14.3	7.57	14.7	16:24:21	72	86.2	-0.3	1.7
-1700	27.0	9.4	7.63	15.1	16:25:05	72	79.6	-1.7	-1.0
-1675	24.4	7.1	7.80	13.7	16:25:45	72	82.5	0.2	-0.8
-1650	28.8	9.0	8.19	16.0	16:26:23TIE	71	67.7	0.1	0.1
-1625	10.2	26.1	9.09	5.8	16:29:03	72	69.3	7.0	3.5
-1600	-13.1	22.4	8.44	-7.5	16:30:13	71	80.0	31.4	19.2
-1575	-4.3	23.0	8.14	-2.4	16:31:12	63	-89.0	31.7	31.5
-1550	-2.4	19.2	8.47	-1.4	16:32:13	63	84.1	2.1	16.9
-1525	0.1	13.8	8.84	0.0	16:33:09	74	79.7	-8.5	-3.2
-1500	7.8	11.6	9.19	4.4	16:34:28	71	-89.1	-8.2	-8.4
-1475	14.7	8.9	9.54	8.3	16:35:31	74	86.2	-14.1	-11.2
-1450	19.2	5.2	9.67	10.8	16:36:38	73	-85.3	-14.7	-14.4
-1425	24.8	1.7	9.48	13.9	16:37:31	62	-89.8	-12.0	-13.4
-1400	21.0	-2.3	9.54	11.8	16:38:23	73	81.0	-6.6	-9.3
-1375	24.7	-3.0	9.67	13.9	16:39:11	73	85.5	-1.0	-3.8
-1350	32.5	-11.2	9.20	18.0	16:40:06	62	73.0	-6.2	-3.6
-1325	29.1	0.3	10.08	16.2	16:40:56	72	80.3	-8 5	-7 A
-1300	36.6	0.3	9.42	20.1	16:42:06	62	80.0	- 1 1	-65
-1275	28.9	2.3	9,29	16.1	16.44.43CRFC	62	88 3	-2 0	-3.3
-1250	24.0	5.0	9,23	13.5	$16 \cdot 45 \cdot 45$	63	72 8	67	-3.2
-1225	21.4	7.5	9.02	12.1	16.46.41	61	87 2	10 6	8 6
-1200	23.6	8.0	9.20	13.3	16.47.30	63	81 7	10.0	7 4
-1175	29.0	6.0	9.34	16.1	16:48:26	7)	-89 5		(• 4 ())
-1150	43.2	10.4	8.48	23.3	16:49:46	71	85 8	-14 0	
-1125	36.7	11.0	8.39	20.1	16:50.47	67	82 /	-11 0	-1/ 0
-1100	25.9	9.4	8.33	14.5	16.51.52220	62	70.2	Δ Λ Γ	_1 K
-1075	25.1	6.7	8,32	14.0	16:54:40	72	76 5	1/ 0	0.4 ⁻
-1050	19.6	10.2	7.96	11.1	16:55:24	71	77.7	9.5	12 2
-								2.0	

 \bigcap

 \cap

1005	10 1	2 0	0 (1		70	00 5	11 6	10 5
-1025	10.1	2.9	8.64	5.8 16:56:33	13	-88.5	11.6	10.5
-1000	9.3	-1.1	9.50	5.3 16:58:00	62	-79.8	14.0	12.8
-975	46.9	6.3	9.88	25.1 16:59:21	72	85.5	-13.5	0.2
-950	34.7	2.7	8.65	19.1 17:00:34	73	76.2	-33.1	-23.3
-925	30.2	-0.6	8.74	16.8 17:02:02	73	-84.1	-5.5	-19.3
-900	54.1	-0.9	8.88	28.4 17:04:04	61	-75.4	-1.0	-3.3
-875	51.9	1.7	8.60	27.4 17:05:13	62	84.8	-19.9	-10.5
-850	30.1	4.6	8.84	16.7 17:06:17	62	77.8	1.1	-9.4
-825	24.7	3.5	8.71	13.8 17:07:54	72	80.1	25.3	13.2
-800	23.5	16.2	9.22	13.2 17:09:00	72	71.2	17.1	21.2
-775	14.4	8.0	8.82	8.2 17:10:02	73	-87.1	9.1	13.1
-750	14.3	5.2	8.76	8.1 17:10:53	53	80.7	10.7	9.9
-725	9.0	5.9	9.04	5.1 17:11:54	74	83.3	8.2	9.4
-700	5.9	7.1	9.68	3.3 17:12:47	54	78.7	7.9	8.0
-675	12.9	9.5	9.61	7.3 17:13:43	63	-88.1	2.6	5.2
-650	9.4	3.0	9.72	5.3 17:15:23ROAD	72	-76.8	-4.2	-0.8
-625	19.3	1.2	9.46	10.9 17:17:16	73	-83.1	-5.6	-4.9
-600	17.7	-1.2	9.28	10.0 17:18:05	72	-89.5	-8.3	-7.0
-575	18.4	-0.2	9.98	10.4 17:19:05	73	-89.3	-4.2	-6.3
-550	21.1	-0.9	9.99	11.9 17:20:08BASE	73	-86.3	-1.4	-2.8

.

OMNI-PLUS Tie-line MAG/VLF R22K Ser #26102 VLF TOTAL FIELD DATA (uncorrected) Date 6 AUG 89 3000 **Operator:** Records: 138 Bat: 17.4 Volt Lithium: 3.48 Volt Last time update: 7/12 11:52:00 Start print: 8/06 19:04:57 of Line -1400 6 AUG 89 Date 23.4 #2 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -190070.8 0.2 3768. 11.0 11:27:08 55 99 0.0 1 -190027.4 1.5 7.71 15.3 11:28:13 84 81.6 # -187529.6 4.3 7.92 16.5 11:31:10 64 77.5 17.6 11:32:09 -185031.7 3.0 7.97 53 86.3 -182533.5 9.2 8.43 18.5 11:34:15 63 -87.1 -180041.7 15.8 8.53 22.6 11:35:30 73 -84.3 -7.0-177539.0 8.33 13.8 21.3 11:39:35 74 -84.3 -7.8 -7.4 -175035.7 14.7 8.25 19.6 11:40:40 80.5 0.2 -3.8 63 -172532.5 13.5 8.31 18.0 11:42:26 74 84.1 6.3 3.2 -170027.0 8.55 9.0 15.1 11:43:59 74 79.6 7.8 7.0 -167527.5 7.2 8.69 15.4 11:45:10 87.5 85 7.1 7.4 -1650 32.6 8.89 9.0 18.0 11:46:32TIE 85 82.4 -0.3 3.4 -162526.5 20.1 8.85 14.8 11:53:05 74 -2.3 81.6 -1.3-1600 20.7 25.7 8.12 11.7 11:54:59 74 82.8 6.9 2.3 -157517.4 25.5 7.92 9.8 11:56:04 74 80.7 11.3 9.1 -15508.9 17.5 8.27 5.0 11:57:28 74 79.6 11.7 11.5 -1525 9.5 8.95 13.0 5.4 11:58:27 75 85.3 11.1 11.4 -15005.9 8.4 9.11 3.3 11:59:34 75 82.7 6.1 8.6 -1475 14.1 10.9 10.00 8.0 12:00:38 75 -89.7 2.6 -0.9-145026.5 17.8 9.75 14.8 12:01:33 87.2 65 -14.1 -7.5 -142523.0 12.9 9.28 12.9 12:03:05 74 -16.4 85.4 -15.3-140023.3 8.0 9.36 13.1 12:04:26CREC 75 89.8 -3.2 -9.8 -13758.99 32.2 14.8 17.8 12:06:00 75 88.6 -3.2 -3.2 -135029.4 15.6 8.54 16.4 12:07:26 74 -8.2 85.9 -5.7 -132525.7 13.4 8.64 14.4 12:08:34 74 85.2 0.1 -4.1 -130021.3 9.0 8.79 12.0 12:09:53 75 80.3 7.8 3.9 -127523.1 3.5 8.89 13.0 12:11:18 75 86.3 5.8 6.8 -125012.6 12:12:23 22.4 1.6 8.82 74 81.8 0.8 3.3 -122520.2 3.3 8.91 11.4 12:14:18 82.9 75 1.0 0.9 -12009.11 20.4 5.4 11.5 12:15:30 75 87.7 2.7 1.8 -1175 20.4 5.6 9.18 11.5 12:16:26 74 82.5 1.0 1.8 -115023.8 4.4 9.10 13.3 12:17:38 76 -86.9 -1.9 -0.5 -112530.1 4.2 9.10 16.7 12:18:55 72 -89.2 -7.0 -4.5 -110047.5 11.5 8.90 25.4 12:20:15BASE 63 87.6 -17.3 -12.2-107543.5 10.5 9.77 23.5 12:23:44 -18.964 -85.5 -18.1-105040.4 12.9 8.62 22.0 12:27:01 -3.4 74 82.2 -11.2 -102527.3 11.2 8.41 15.2 12:28:36 63 71.6 11.7 4.1 -10006.9 8.57 15.4 8.7 12:30:23 63 88.6 21.6 16.6 -975 7.2 2.6 9.01 4.1 12:31:51 75 -89.9 24.4 23.0 -950 20.0 -4.2 10.65 12:34:18 -81.4 11.3 74 8.5 16.4 -925 37.7 20.6 12:35:17 10.22 0.8 74 -87.9 -19.1 -5.3 -90026.0 -1.7 9.47 14.5 12:36:43 77.1 -19.7 74 -19.4-875 26.3 -1.8 9.80 14.7 12:38:19 73 75.7 2.7 -8.5

-850	0.9	1.1	9.01	0.5	12:40:18	74	70.3	19.9	11.3
-825	-2.9	-3.9	9.39	-1.7	12:41:28	64	88.5	30.4	25.1
-800	10.5	1.0	9.22	6.0	12:42:38	63	-86.4	10.9	20.6
-775	34.9	-6.1	9.27	19.2	12:44:21	73	-72.2	-26.4	-7.8
-750	38.3	4.8	8.49	20.9	12:45:27	63	-85.5	-35.8	-31.1
-725	27.0	4.6	8.33	15.1	12:48:42	73	86.5	-10.8	-23.3
-700	20.3	5.4	8.30	11.4	12:50:07	63	-89.1	13.6	1.4
-675	16.9	4.4	8.51	9.6	12:52:13	74	78.8	15.0	14.3
-650	20.3	3.8	8.73	11.4	12:53:21	74	-89.1	5.5	10.2
-625	23.8	2.1	8.98	13.4	12:54:19	63	81.7	-3.8	0.8
-600	18.1	-5.5	9.33	10.2	12:55:16ROAD	64	86.2	-2.6	-3.2
-575	27.8	-3.2	9.02	15.5	12:56:39	74	81.0	-0.9	-1.8
-550	18.9	3.4	10.09	10.7	12:57:35BASE	74	73.2	-2.6	-1.8
-525	-3.8	1.4	10.59	-2.2	12:59:17	66	75.4	17.2	7.3
-500	-3.1	1.1	10.36	-1.8	13:00:39	75	-88.7	30.2	23.7
-475	9.6	4.6	11.21	5.5	13:01:51	65	85.7	4.8	17.5
-450	-15.9	9.7	11.33	-9.0	13:03:06	75	89.8	-0.5	2.1
-425	-22.5	9.8	10.25	-12.7	13:04:33	75	84.9	25.4	12.4
-400	-5.5	8.5	9.20	-3.1	13:05:41	75	87.4	12.3	18.8
-375	-1.1	2.8	8.83	-0.6	13:07:22	74	81.9	-18.0	-2.9
Tipe 150	0 0-	+ 6	AUC 00	22	465				
Line -150	U Da		AUG 89	23.4 mit m		R 0	DID	4 003	E DDA
275	1/1	QUAD		12 0	12,12,50	r 5	DIK	4 - f'KA	3-FRA
-375	22.0	4.7	9.03	14.0	13:12:30	13	-02.0		
-400	25.0	2.0	9.31	14.0	13:20:43	74	04.0		
-425	29.1	2.0	0.00	10.2	12,22,03	02 61	00.4	6 1	
-430	20.1	-1 5	0.10	10.7	12.24.27	62	00./	0.1	1 1
-4/5	20.2	-1-0	0.94	17.0	13:24:27	63	-09.9	2.2	4.1
-500	32.4	-3.0	9.04	20 1	13:20:00	63	00.9	0.7	1.4
-525	20.0	-/.0	0.57	20.1	13:20:30RUAD	62	00.0	2.0	5.1
-330	39.2	-0.2	10 53	21.4	13:20:23	63		6 7	0./ 7.2
-373	43.1	-4.9	10.33	23.3	13:29:43	03	-00.0	0./	/.3
-625	19.4	-4.9	10.04	10.9	12.21.42	54	-02.2		-0.3
-620	20 6	-0.0	10.42	11 6	13:31:42	54	00.2	-20.4	-10.9
-675	20.0	-0.0	10.43	11.0	12,24,22	00	02.2	-10.2	-20.8
-075	22.5	-12 7	10.22	12 2	12.27.40	71	00.0	2.9	-0.2
-700	23.3	-13.7	12 /0	12.2	13.10.5000AD	54	70 6	3.0	3.3
-725	22.3	-0.4	12.49	5 2	13:40:30ROAD	55	-80 3	-5 0	4.1
-775	-6.7	-16 5	10 93	-3.8	$13 \cdot 42 \cdot 50$	65	80.3	-24.2	-14 6
-800	11 6	-5 2	9 92	5.0	13.42.50	63	60.3	-15 0	-19.6
-825	32 6	-8 4	9.92 9.31	18 1	13.43.30	71	71 S	22.0	<u> </u>
-850	53.3	-9.3	9.73	28 1	13.45.41	62	86 9	23.2 A3 A	
-875	28.8	0.0	10.37	16.1	13.46.49	75	77.4	19.5	31 A
-900	34.5	-4.8	9.80	19.0	13.47.54	22	83.5	-11.1	4.2
-925	17.6	-2.1	9.71	10.0	13.49.20	53	-86.0	-15.2	-13.2
-950	18.4	4.3	9.15	10.4	13.50.58	64	84.1	-14.7	-15.0
-975	21.7	9.5	9.69	12.2	13:58:37	63	66.5	-6.4	-10.6
-1000	31.4	12.2	9.48	17.4	13:59:37	53	82.3	9.2	1.4
-1025	40.2	12.1	10.47	21.9	14:00:36	63	-83.7	16.7	12.9
-1050	17.4	2.3	10.75	9.8	14:01:47	54	-86.5	2.1	9.4
-1075	15.0	2.3	10.49	8.5	14:02:45	63	-87.2	-21.0	-9.5
_1100	10.0	ل ہ سہ		U•J	*******	00	01.4		J . J
	18.2	3.5	9.67	10.3	14:03:46BASE	64	85.6	-12.9	-17.0

 \cap

 \cap

-	1150	17.9	0.5	10.22	10.1	14:06:29	63	-87.0	6.3	6.6
-	1175	19.3	1.1	9.88	10.9	14:07:38	74	-87.8	-4.3	1.0
-	1200	19.4	1.0	9.51	11.0	14:08:44	62	89.3	-3.2	-3.8
-	1225	19.3	3.5	9.90	10.9	14:09:53	63	89.8	0.9	-1.2
-	1250	19.9	3.4	9.56	11.2	14:11:02	63	-89.3	0.2	0.5
_	1275	20.4	5.8	9.13	11.5	14:12:10	62	86.2	0.8	0.5
-	1300	20.0	8.0	9.11	11.3	14:13:50	53	-86.5	0.7	0.7
-	1325	18.0	8.7	8.81	10.2	14:15:23	63	79.1	-1.2	-0.3
	1350	17.7	9.6	8.57	10.0	14:16:47	63	87.7	-2.6	-1.9
	1375	20.1	13.1	8.52	11.3	14:18:23	73	-89.1	-0.2	-1.4
-	1400	17.9	10.8	9.01	10.1	14:19:51	63	-83.0	1.2	0.5
-	1425	18.8	11.6	8.93	10.6	14:21:03	54	-83.2	-0.6	0.3
-	1450	20.6	13.8	9.00	11.6	14:23:52	64	-85.3	0.8	0.1
-	1475	26.4	14.9	8.57	14.8	14:25:13	63	-82.6	5.7	3.2
-	1500	25.3	13.5	8.68	14.2	14:26:24	63	-83.9	6.8	6.2
-	1525	25.9	13.4	8.79	14.5	14:27:28	63	89.9	2.3	4.5
-	1550	25.2	10.0	9.24	14.1	14:28:50	63	89.3	-0.4	0.9
-	1575	31.0	7.6	9.11	17.2	14:31:07	63	-87.2	2.6	1.1
	1600	25.2	9.6	10.00	14.1	14:34:31	73	-89.2	2.7	2.6
	1625	24.5	8.6	9.76	13.8	14:35:21	63	-86.1	-3.4	-0.4
	1650	18.2	4.4	10.11	10.3	14:37:01TIE	63	89.7	-7.2	-5.3
-	1675	21.5	6.6	9.71	12.1	15:40:54	74	89.8	-5.5	-6.4
-	1700	20.3	6.4	9.85	11.5	15:41:34	64	-89.6	-0.5	-3.0
-	1725	19.6	3.7	9.79	11.1	15:42:43	74	83.1	0.2	-0.2
	1750	17.6	5.3	9.76	10.0	15:44:00	65	79.2	-2.5	-1.2
-	1775	20.1	5.4	9.73	11.4	15:44:58	54	83.7	-1.2	-1.9
_	1800	25.2	9.3	9.60	14.1	15:46:22	63	81.1	4.4	1.6
-	1825	28.2	17.9	9.98	15.7	15:47:32ROAD	63	82.5	8.4	6.4
-	1850	36.6	11.8	9.58	20.1	15:48:21ROAD	63	75.8	10.3	9.3
-	1875	39.1	7.3	9.37	21.3	15:50:52	62	83.8	11.6	10.9
-	1900	48.2	15.6	9.19	25.7	15:54:08	73	76.7	11.2	11.4
	1925	48.0	12.7	9.86	25.6	15:57:22	72	-87.3	9.9	10.5
-	1950	56.0	4.6	9.38	29.2	15:59:50	62	-84.9	7.8	8.8
-	1975	38.8	0.0	10.71	21.2	16:01:14	62	-76.1	-0.9	3.4
	2000	21.7	1.2	10.08	12.2	16:02:51	62	-81.2	-21.4	-11.2
-	2025	28.6	13.3	9.56	16.0	16:05:02	64	-89.4	-22.2	-21.8
	2050	35.6	13.1	9.30	19.6	16:07:07	52	84.8	2.2	-10.0
	2075	45.1	9.8	9.65	24.3	16:10:40	62	-85.6	15.7	8.9
-	2100	56.7	0.4	10.69	29.5	16:15:38	73	80.1	18.2	16.9
	2125	73.9	2.0	12.28	36.4	16:18:36	62	-84.9	22.0	20.1
-	2150	49.6	3.1	16.29	26.4	16:23:44	73	-70.3	9.0	15.5
-	2175	20.0	0.0	18.80	11.3	16:25:31	65	-80.0	-28.2	-9.6
	2200	4.4	4.5	15.50	2.5	16:28:18	75	-80.4	-49.0	-38.6

 \bigcirc

Ser OMNI-PLUS Tie-line MAG/VLF R22K #26102 VLF TOTAL FIELD DATA (uncorrected) Date 7 AUG 89 **Operator:** 3000 Records: 15317.3 Volt 3.50 Volt Bat: Lithium: 7/12 11:52:00 Last time update: Start of print: 8/08 7:36:05 Line -1600 7 AUG 89 23.4 #3 Date POSITION I/PQUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -22000.7 8.8 7.08 0.4 9:53:59TIE 63 87.9 -21750.1 11.2 7.55 9:57:28 0.1 65 -67.8 -21500.1 13.7 7.88 0.0 9:58:23 64 -63.2 -21253.4 7.3 8.64 1.9 9:59:56 74 -50.9 -1.4-210014.4 3.9 10.61 8.2 10:04:58CROP 75 -74.6 -10.0 -5.7 -207533.7 -8.4 10.34 18.6 10:10:38 68 -69.9 -24.9 -17.5 -205050.0 -4.6 9.66 26.5 10:13:11 76 -61.8 -35.0 -30.0 -202560.6 0.4 8.62 31.2 10:23:56 73 -79.0 -30.9 -33.0 -200054.1 0.1 8.15 28.4 10:24:55 74 -80.1 -14.5 -22.7 -197549.7 -1.07.80 2.9 26.4 10:25:55 73 82.2 -5.8 -195037.7 2.5 7.90 20.6 10:28:44 63 -89.0 12.6 7.7 -192534.5 3.9 8.54 19.0 10:30:35 83 -79.8 15.2 13.9 -1900 45.4 0.7 8.24 24.4 10:32:57TIE 74 -87.0 3.6 9.4 -187559.0 -0.17.94 30.5 10:34:50 63 85.1 -15.3 -5.9 5.2 23.3 10:37:29 -185043.1 7.46 84.7 -10.473 -12.97.49 8.4 -182534.9 19.2 10:40:36 64 72.0 12.4 1.0 -18009.8 9.1 7.81 5.6 10:44:50 65 74.7 29.0 20.7 -1775 2.4 2.1 8.18 1.4 10:46:37 89.0 35.5 76 32.2 -175026.2 7.58 14.7 10:48:28 82.7 11.5 74 8.7 22.1 -172522.2 9.8 7.48 12.5 10:50:28CREC 73 -89.4 -20.2 -5.8 -170021.1 13.8 4.33 11.9 10:54:11 62 -75.1 -8.3 -14.3-1675 22.4 11.8 5.61 12.6 10:55:33 73 -65.3 2.7 -2.8 -165021.1 10.2 7.73 11.9 10:56:29ROAD 74 88.8 -0.1 1.3 19.6 7.96 11.1 10:57:30ROAD -16259.0 76 88.6 1.5 0.7 -160019.1 5.8 8.15 10.8 10:58:23ROAD 77 88.8 2.6 2.0 -15755.2 7.93 20.4 11.5 10:59:15 65 -89.8 0.7 1.6 -1550 24.9 7.99 14.0 11:00:41 6.6 76 -82.8 -3.6 -1.5 -15257.97 15.7 11:01:52 28.2 9.4 74 -89.5 -7.4 -5.5 -15008.03 32.1 10.7 17.8 11:02:46 72 -8.089.7 -7.7 27.7 9.5 8.33 -147515.4 11:05:04 73 -87.7 -3.5 -5.8 -145029.7 11.4 8.44 16.5 11:06:37 85 -82.7 1.6 -1.0-14258.13 31.3 12.4 17.3 11:07:53 73 89.2 -0.6 0.5 13.3 -140029.2 8.29 16.3 11:09:43 63 87.9 -1.7-1.2 -137529.3 13.7 8.24 16.3 11:10:57 73 80.7 1.2 -0.3-135028.4 14.1 8.43 15.8 11:12:01 73 84.3 1.5 1.3 14.9 8.50 -1325 28.7 16.0 11:13:05 83.2 74 0.8 1.1 27.0 16.2 8.55 0.9 -130015.1 11:14:38 73 82.8 1.0 26.2 17.3 8.57 2.0 -127514.7 11:16:30 75 84.9 1.5 -125020.3 8.70 13.9 11:17:51 24.9 73 87.7 2.5 2.2 19.1 8.90 -122516.7 10.8 11:19:20 74 89.1 5.1 3.8 -120015.3 11.9 9.00 8.7 11:20:20 75 -87.9 9.1 7.1 -1175 16.3 8.6 9.00 9.3 11:21:35 62 87.5 6.7 7.9 21.8 12.2 11:23:12 2.3 -11505.2 9.13 73 -76.4 -2.0

-1125	22.3	3.4	8.88	12.5	11:24:46	75	-89.3	-6.7	-4.4
-1100	21.7	3.1	8.90	12.2	11:26:48BASE	54	-84.8	-3.2	-5.0
-1075	25.2	5.6	9.24	14.1	11:33:38ROCK	75	-86.7	-1.6	-2.4
-1050	25.3	4.8	9.20	14.2	11:35:01	73	-89.9	-3.6	-2.6
-1025	30.2	4.3	9.58	16.8	11:36:13	74	87.0	-4.7	-4.2
-1000	31.4	4.7	9.61	17.4	11:37:36	64	89.5	-5.9	-5.3
-975	29.5	3.4	9.75	16.4	11:38:46	63	87.2	-2.8	-4.4
-950	24.7	2.6	9.96	13.8	11:40:32	64	81.2	4.0	0.6
-925	19.4	2.6	9.87	11.0	11:41:47	77	-86.3	9.0	6.5
-900	9.4	-0.L	9.84	5.3	11:44:25	65	80.2	13.9	11.4
-875	3.9	-2.5	10.53	2.2	11:46:04	63	-89.4	17.3	15.6
-850	13.5	-1.9	9.82	/.6	11:47:31	54	76.8	6.5	11.9
-825	-1.6	-4.1	9.78	-0.9	11:48:41	66	-89.0	0.8	3.6
-800	-4.7	-5.0	10.04	-2.7	11:49:48	67	-83.7	13.4	7.1
-7750	0.3 5.4	11 1	10.84	3.0	11:51:12	65	-80.5	5.8	9.6
-730	0.4 02 0	-47	12.42	12 0	11:52:29	6/	-86.9	-10.3	-2.3
-725	23.2	-4.7	12.00	10 0	11,55,00	04	-82./	-15.2	-12.8
-675	21.7	1.3	11 22	12.2	12:02:02	04 54	-86.0	-24.5	-19.9
-650	23.3	0.2	10 95	12.2	12.02.31	54	-00.9	-14.3	-19.4
-625	28.4	0.8	10.64	15.8	12.05.02	43	-86 4	1 5	-4.2
-600	35.0	-0.1	10.53	19.2	12:05:02 12:06:16	52	89.9	-9.7	-4 1
-575	47.6	-2.5	12.03	25.4	12:07:35	63	89.7	-15.7	-12.7
-550	30.4	4.1	10.29	16.9	12:08:48BASE	63	86.7	-7.3	-11.5
-525	36.4	5.9	8.90	20.0	12:09:53	53	89.3	7.7	0.2
-500	37.6	4.5	8.58	20.6	12:11:08	63	81.4	1.7	4.7
-475	36.5	4.5	9.13	20.0	12:12:17	63	80.2	-3.7	-1.0
-450	22.6	7.7	11.01	12.7	12:13:04ROAD	64	82.4	7.9	2.1
-425	-12.6	-7.6	11.06	-7.2	12:14:54	69	86.8	35.1	21.5
-400	-8.9	-9.8	9.94	-5.1	12:16:09	63	-86.9	45.0	40.0
-375	20.0	1.4	10.21	3.8	12:17:44	64	-53.8	6.8	25.9
-330	30.0	J•2	10.70	10./	12:10:52	03	88.0	-32.8	-13.0
Line -170	0 Da	te 7	AUG 89	23.4	#78				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CULT	r s	DIR	4–FRA	5-FRA
-325	2.7	-0.6	11.89	1.5	12:46:31	64	-81.0		
-330	11.3	2.4	12.38	9.8	12:51:05	/5	57.8		
-375	41.5	-0.0	11.04	22.0	12:54:59 12:57:01000	09	50.0	20.1	
-425	40.0	-0.9	11 12	24.9	12:57:01CROP	19	74.3	30.1	771
-450	40.0	-5.7 -6 A	11 90	23.0	12:39:03	03 72	-72.2	10.2	27.1
-475	30.8	-0.4	12 92	17 1	13.01.00	13	-69 7	-10 2	9.8
-500	26.5	5.6	12.79	14.8	13.02.22	61	-70 /	-10.2	-12 6
-525	5.0	2.8	14.83	2.8	13:05:10	64	-69 9	-22 7	-10.8
-550	-0.9	4.8	12.60	-0.5	13:06:28	75	-67.7	-29.6	-26.2
-575	7.4	3.9	12.33	4.2	13:07:29	63	-80.0	-13.9	-21.8
-600	2.3	5.6	11.67	1.3	13:08:24	74	85.4	3.2	-5.4
-625	5.5	5.2	11.65	3.1	13:09:26	75	78.4	0.7	1.9
-650	13.6	7.9	11.60	7.7	13:10:43	62	-88.6	5.3	3.0
-675	16.3	8.3	11.42	9.3	13:11:36ROAD	55	85.9	12.6	8.9
-700	14.4	7.3	10.97	8.2	13:13:01	62	79.5	6.7	9.6
-725	15.6	12.0	10.45	8.8	13:14:04	54	-89.8	0.0	3.3
-750	10.7	8.3	10.39	6.1	13:15:56	7 3	-88.8	-2.6	-1.3
-775	15.5	7.4	11.06	8.8	13:17:33	72	85.4	-2.1	-2.4

 \bigcap

 \square

-800	35.1	3.7 10.3	4 19.3	13:18:48	74	80.8	13.2	5.5
-825	55.9	5.8 10.1	8 29.2	13:20:50	63	81.4	33.6	23.4
-850	47.1	-7.0 12.3	0 25.2	13:21:55	72	-75.5	26.3	29.9
-875	28.3	-0.3 10.7	1 15.8	13:23:28	63	-72.3	-7.5	9.4
-900	31.5	1.4 10.5	7 17.4	13:26:51	63	-86.9	-21.2	-14.4
-925	28.4	1.4 10.7	9 15.8	13:31:16	62	-80.5	-7.8	-14.5
-950	22.8	-0.3 11.0	9 12.8	13:34:15	82	81.0	-4.6	-6.2
-975	21.9	0.3 11.1	9 12.3	13:36:35	62	-87.4	-8.1	-6.4
-1000	31.3	11.9 11.3	4 17.4	13:37:29	62	86.6	1.1	-3.5
-1025	32.3	8.3 11.4	4 17.9	13:38:36	62	83.9	10.2	5 6
-1050	30.2	12.0 11.5	0 16.8	13:40:17ROAD	62	76 7	5 0	76
-1075	30.1	11.3 11.3	9 16.7	13:41·22CBOP	62	-79 1	-1 8	1 6
-1100	23.1	13.1 12.0	9 13.0	13.41.22CROP	72	85 0	-5.0	-3 1
-1125	23.1	14.3 11 1	3 13 0	13.18.10	52	-79 7	-7.5	-0.4
-1150	27 6	16 1 12 6	3 15 4	13.50.25	72	-70.7	-7.5	-0.5
-1175	20 5	16 5 17 2	7 16 4	12.52.02	75	-02.0	-1.3	-4.4
_1200	27.0	11 5 17 1	1 10.4	12.54.41	74	03.3	2.8	2.2
-1200	27.0	11 0 17 1	4 10+1 0 10-0	13.55.50	74	-84.5	3.1	4.4
-1225	24.J 26 A	11.0 1/.1	2 13.0	13:35:38	74	-82.2	-2.9	0.1
-1230	20.4		0 14.7	13:38:09	63	-87.9	-3.0	-3.0
-1275	20.3	10.4 10.7	/ 14./	14:00:03	63	-83.1	0.5	-1.3
-1300	27.0	10.3 10.3	0 15.3	14:01:25	63	-82.7	1.5	1.0
-1323	20.0		1 15.9	14:02:40	83	-87.5	1.8	1.6
-1350	30.1	8.0 15.4	4 16.7	14:04:11	/9	-86.8	2.6	2.2
-13/5	33.0	10.2 15.0	8 19.6	14:06:09	63	-88.9	5.1	3.8
 -1400	3/.1	6.3 14.3	3 20.3	14:08:04	63	-76.1	7.3	6.2
-1425	44.8	6.8 12.4	4 24.1	14:16:04	62	87.6	8.1	7.7
-1450	44.1	6.6 12.0	4 23.8	14:17:23	64	88.6	8.0	8.0
-1475	43.6	7.0 11.9	1 23.5	14:18:44	75	-86.8	2.9	5.4
-1500	43.3	5.0 11.7	4 23.4	14:20:01	72	-78.5	-1.0	0.9
-1525	36.7	1.0 11.2	2 20.1	14:21:32	65	-84.9	-3.8	-2.4
-1550	33.8	0.6 10.9	3 18.7	14:23:13	73	-75.7	-8.1	-6.0
-1575	31.4	0.1 10.6	9 17.4	14:24:08	63	-73.8	-7.4	-7.8
-1600	30.6	0.8 10.4	4 17.0	14:25:13	73	-73.2	-4.4	-5.9
-1625	31.5	-0.2 9.8	1 17.5	14:26:48	72	-82.5	-1.6	-3.0
-1650	29.6	-1.9 9.4	8 16.4	14:27:41	72	-86.7	-0.5	-1.1
-1675	29.3	-4.8 8.9	5 16.3	14:28:33	73	-82.8	-1.8	-1.2
-1700	36.2	0.3 8.9	0 19.9	14:30:19	73	83.7	2.3	0.2
-1725	43.4	2.3 8.6	5 23.4	14:31:51	72	89.1	10.6	6.4
-1750	55.0	3.8 8.9	1 28.8	14:32:59	61	-81.0	16.0	13.3
-1775	46.8	-5.2 9.4	6 25.1	14:33:59	73	-88.1	10.6	13.3
-1800	42.5	-6.5 9.8	8 23.0	14:35:56	73	-83.9	-4.1	3.2
-1825	66.2	-5.9 11.8	6 33.5	14:38:47	72	-83.4	2.6	-0.8
-1850	44.7	-0.4 13.0	7 24.0	14:40:46	72	-67.2	9.4	6.0
-1875	25.0	1.6 12.7	1 14.0	14:43:00	83	-79.3	-18.5	-4.6
-1900	41.7	15.2 13.0	1 22.6	14:46:16TTE	72	-80.0	-20.9	-19 7
-1925	29.8	18.7 13.9	6 16.6	14.48.58	73	-56 9	1 2	_9 9
-1950	31.6	14.1 12.6	5 17.5	14.51.24	73	-51 1	-2 5	_0.7
-1975	39.8	15.2 12.2	4 21.7	14.52.57	73	-75 5	-2.5	-0.7
-2000	31.5	13.6 12 0	6 17 5	14.55.12	70	-75 6	5 1	-1+3 2 K
-2025	25.4	15.6 11 6	Q 1/ 0	14.56.25	62	-72 0	_7 F	2.0
 -2050	17.0	11.5 11 9) 0 A	14.57.42	ບວ 7 ວ	-66 0	-15 1	-11 5
-2075	12 0	6.5 10 5	0 7 0	1 <u>1</u> •50•21	72	-90.2	-11 2	-11 0
-2100	10 1	5 0 0 0	ノー・フ つーに コ	15.01.04	13 67	-04.0 .77 0	-10 2	-14.0
-2100	1U•1 Ω 1	210 219	2 0.7 0 A C	15.02.70	ບຽ ເກ	-11.2	-10.2	-12.2
-2123	0.1	J.4 9.0	<u>4.0</u>	13:03:40	02	-37.8	-1.2	-ø./

.

 \mathbf{c}

 \bigcirc

-2150	10.0	4.8	9.61	5.7 15:05:16	63 -84.6	-3.3	-5.3
-2175	11.1	1.8	9.81	6.3 15:07:11	73 -82.2	1.7	-0.8
-2200	10.1	5.4	9.36	5.7 15:08:15T1	IE 82 -63.5	1.7	1.7

 $\sum_{i=1}^{n}$

 \square

.

OMNI-PLUS Tie-line MAG/VLF R22K Ser #26102 VLF TOTAL FIELD DATA (uncorrected) 8 AUG 89 Date **Operator:** 3000 Records: 170 17.1 Volt 3.48 Volt Bat: Lithium: 7/12 11:52:00 Last time update: Start of print: 8/08 21:12:23 Line -1800 8 AUG 89 23.4 Date #3 POSITION I/P QUAD T.FLD TILT TIME CULT S DIR 4-FRA 5-FRA -220014.1 8.73 65 -71.3 -1.68.0 11:46:01TIE -2175 13.4 -1.8 8.65 7.6 11:48:11 73 -69.9 -215014.2 1.0 9.03 8.1 11:48:59 74 -61.7 -2125 14.2 2.5 8.94 8.0 11:50:13 74 -78.3 -0.5 13.5 -21009.13 4.8 7.6 11:51:33 73 -78.8 0.1 -0.2-20759.34 12.3 5.7 7.0 11:52:42 74 -83.1 1.5 0.8 -20509.0 4.6 9.69 5.1 11:54:17 64 -78.4 3.5 2.5 -20257.9 2.1 9.98 4.5 11:55:15 74 -80.5 5.0 4.2 -20009.0 4.7 10.15 5.1 11:56:59 2.5 76 -68.3 3.7 -197510.9 2.3 10.51 6.2 11:58:11 74 -67.3 -1.7 0.4 -195023.6 3.3 10.50 13.3 12:00:04ROAD 72 -56.8 -9.9 -5.8-192531.4 7.0 10.23 17.4 12:03:21 83 -82.9 -19.4 -14.7 -1900 22.0 3.3 10.32 -81.1 12.4 12:06:49TIE 63 -10.3 -14.9-187536.7 4.8 10.69 20.1 12:09:02 74 -82.1 -1.8 -6.1 -185033.9 3.8 10.50 18.7 12:11:22 63 -89.6 -5.4-9.0 -182534.5 0.5 10.63 19.0 12:12:35 74 -78.6 -5.2 -7.1 -0.4 10.96 -180028.4 15.8 12:13:58 74 -83.2 4.0 -0.6 -177552.5 -6.2 11.43 27.7 12:15:34 63 -85.6 -5.8 -0.9 -175049.2 -2.1 10.85 26.2 12:17:32 63 -84.7 -19.1 -12.5 -172545.1 0.6 10.71 24.2 12:20:06 74 82.7 -6.9 -13.019.8 12:24:29 -170036.0 -0.4 10.4173 75.6 9.9 1.5 -167527.4 -3.3 10.33 15.3 12:27:34 72 82.2 15.3 12.6 -165026.8 -7.0 9.85 15.0 12:29:20TIE 69 89.7 13.7 14.5 -2.3 9.77 -1625 28.8 16.1 12:40:13 75 82.3 4.0 8.8 -160029.8 -0.29.46 16.6 12:41:18 73 78.6 -2.4 0.8 -157525.8 -0.39.49 14.4 12:42:35 74 -89.5 0.1 -1.2-155023.7 0.5 9.80 13.3 12:43:56 74 81.9 5.0 2.5 -152521.4 1.8 10.16 12.1 12:45:56 76 -85.9 5.6 5.3 -1500-7.2 9.93 6.7 3.8 12:47:53 74 84.8 11.8 8.7 -14757.5 -7.3 9.51 4.3 12:50:18 74 -81.7 17.3 14.5 -1450-3.2 9.57 13.6 7.7 12:51:16ROCK 73 82.9 3.9 10.6 -142519.0 9.67 0.3 10.7 12:52:43 74 81.4 -10.3-3.2 -140020.4 1.4 9.62 11.5 12:54:15 62 80.0 -10.2 -10.3-137521.2 2.6 9.58 11.9 12:55:40 -5.0 73 88.6 -7.6 24.1 -13507.3 9.76 13.5 12:57:36 74 -82.0 -3.2 -4.1 -1325 24.3 7.7 9.81 13.6 12:58:57 73 -3.7 84.1 -3.5 -130024.8 9.56 9.4 13.9 13:02:12 72 78.3 -2.1 -2.9 9.94 -127523.3 10.4 13.1 13:04:17 53 -86.0 0.1 -1.0 -125022.7 10.5 9.93 12.7 13:07:03 74 87.2 0.9 1.7 -122521.6 9.5 10.08 12.1 13:09:16 73 76.8 2.2 1.9 -120022.1 11.2 10.04 12.4 13:10:31 63 88.1 1.3 1.7 -1175 79.3 22.5 11.0 10.27 12.6 13:12:05 53 -0.20.5 -115022.5 12.8 10.39 12.6 13:14:56 84 85.3 -0.7 -0.5

÷.,

-1125	20.4	12.6	10.43	11.5	13:15:59CROP	72	-87.5	0.9	0.1
-1100	20.1	13.7	10.45	11.3	13:17:54BASE	84	87.0	2.4	1.6
-1075	18.2	12.3	10.58	10.3	13:19:15ROCK	63	-82.9	2.5	2.4
-1050	15.9	11.0	10.58	9.0	13:20:49	84	86.5	3.5	3.0
-1025	12.8	8.6	10.95	7.2	13:22:30	53	-81.6	5.4	4.4
-1000	13.0	6.5	11.09	7.4	13:24:15	64	-85.7	4.7	5.0
-975	17.4	8.6	11.50	9.8	13:27:11CROP	64	-83.0	-1.0	1.8
-950	19.3	8.6	11.79	10.9	13:29:26	73	-81.8	-6.1	-3.6
-925	22.1	9.1	12.32	12.4	13:30:46	64	-89.8	-6.1	-6.1
-900	27.2	9.0	12.34	15.2	13:31:59	74	-73.1	-6.9	-6.5
-8/5	31.0	12.0	11.76	17.2	13:33:55	73	-81.3	-9.1	-8.0
-850	23.0	10.3	11.38	12.9	13:35:3/ROAD	63	-85.0	-2.5	-5.8
-823	9.3	3.9	11.39	5.3	13:3/:29	54	88.6	14.2	5.8
-775	21 1	-3.7	11.51	127	13:39:23	74		1/.0	12.8
-750	17.6	7 6	10.07 11.24	10 0	13.42.30	73	-04.7	-2.0	-7 0
-725	12.9	4.7	11.34	7.3	13.43.30	73 64	-87 6	-11.1	-7.0
-700	15.9	5.1	10.82	9.0	13:46:10	74	79.9	7.4	-5.5
-675	10.4	3.6	11.25	5.9	13:47:07	74	87.3	2.4	4.9
-650	6.0	3.3	10.64	3.4	13:48:10	74	84.8	7.0	4.7
-625	3.6	3.0	10.09	2.0	13:49:34	74	-79.7	9.5	8.2
-600	12.0	4.6	10.46	6.8	13:50:49	73	-79.4	0.5	5.0
-575	13.5	3.5	10.60	7.6	13:51:59ROAD	74	-89.0	-9.0	-4.3
-550	10.2	2.2	10.59	5.8	13:53:54BASE	74	-71.2	-4.6	-6.8
Line -1900	Da	te 8	AUG 89	23.4	4 #70				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CUL	гs	DIR	4-FRA	5-FRA
-550	18.3	-2.3	13.13	10.3	14:17:13ROAD	64	-81.6		
-575	22.1	-0.6	11.35	12.4	14:19:36	73	-84.5		
-600	22.2	0.3	11.10	12.5	14:21:06	84	72.7		
-625	25.7	2.5	11.45	14.4	14:22:27	74	86.2	4.2	
-030	21.9	-0.1	11.32	12.3	14:23:43	63	82.2	1.8	3.0
-075	2/.5	_2 2	11 22	12.3	14:20:00	03	84.4	0./	1.2
-725	18.8	-1.7	11.12	10.6	14.20.11	63	77 Q	_3 3	-0.5
-750	14.1	0.0	11.25	8.0	14:28:47ROAD	74	-85.3	-10.4	-6.9
-775	16.4	2.3	11.81	9.3	14:30:47	63	79.8	-7.0	-8.7
-800	29.1	6.4	11.50	16.2	14:32:43	62	79.7	6.9	-0.1
-825	39.1	9.8	11.29	21.4	14:34:20	73	83.3	20.3	13.6
-850	34.8	4.1	11.48	19.1	14:36:14	73	89.9	15.0	17.6
-875	23.3	0.5	11.35	13.1	14:38:53	62	86.1	-5.4	4.8
-900	18.6	0.0	11.36	10.5	14:40:58	53	-79.2	-16.9	-11.2
-925	1/./	0.8	11.3/	10.0	14:43:14	74	86.1	-11.7	-14.3
-950	10.8	1.0	11.26	9.5	14:44:32CROP	13	-88.8	-4.1	-/.9
-1000	17 3	1.5	11 25	9.7	14:40:20CRUP	13	70.7	-1.3	-2.7
-1025	16.0	-0.3	11.25	9.1	14:48:42CROP	72	76.4	-0.3	-0.7
-1050	14.7	0.2	11.22	8.4	14:51:53	73	-87.5	-2.0	-1.2
-1075	15.5	0.1	11.26	8.8	14:53:10	53	-80.6	-1.7	-1.9
-1100	15.8	1.3	11.58	8.9	14:55:40BASE	53	-63.3	0.2	-0.8
-1125	17.1	2.6	11.68	9.7	14:58:02	62	-81.0	1.4	0.8
-1150	17.6	2.3	11.83	10.0	14:59:13	73	88.3	2.0	1.7
-1200	21.8 22 1		11 60	12.3	15.02.09	72	-89.3	3.7	2.8
- I Z V V	44•1	τ.Ο	TT . OA	12.4	T1:01:00	12	-00.N	D.U	4.1

,

 \bigcap

 \bigcirc

-1005	22 Q	5 3	12 10	12 0	15.04.26	60	00 0	2 0	1 0
-1223	22.3	3.3	12.13	12.7	15:04:50	02	09.0	3.0	4.0
-1250	21./	2.0	12.05	12.2	15:0/:20	12	85.4	0.4	1./
-1275	22.6	1.8	11.62	12.7	15:08:30	72	77.4	-0.4	0.0
-1300	23.3	1.9	11.30	13.1	15:10:03	62	87.7	0.7	0.1
-1325	24.6	-0.1	11.00	13.8	15:11:49	62	84.5	2.0	1.3
-1350	24.1	-0.4	10.48	13.5	15.12.52	73	86 9	1 5	1 7
-1375	24 5	-0.5	10 27	12 7	15.14.41	70	-91 0	0.2	
-1373	24.5	-0.5	10.37	15.7	15.15.57	72	-01.9	0.3	0.9
-1400	27.4	-3.0	10.40	10.3	15:15:57	12	/3.1	1./	1.0
-1425	29.8	-1.9	10.18	16.6	15:1/:1/	62	/6./	4.7	3.2
-1450	30.7	-2.3	9.78	17.1	15:19:10	73	85.3	4.7	4.7
-1475	29.8	-3.1	9.85	16.6	15:21:41	73	88.2	1.8	3.2
-1500	30.7	-6.5	9.51	17.0	15:23:07	62	89.5	-0.1	0.8
-1525	34.6	-8.9	8.79	19.1	15:24:43	62	87.4	2.4	1.1
-1550	34 0	-8.0	a na	18 8	15.26.09	62	87 2	1 3	2 2
-1575	26 1	10.2	0 01	20.0	15.07.57	62	62 2	4. 0 7	J.J J.E
-1575	30.4	-10.2	9.01	20.0	15:27:57	03	03.3	2.7	3.5
-1600	34.0	-9.7	9.39	18.8	15:29:11	62	-8/.8	0.9	1.8
-1625	26.4	-15.2	9.35	14.8	15:30:08	72	-89.4	-5.2	-2.2
-1650	29.4	-17.1	9.37	16.4	15:31:13	52	88.6	-7.6	-6.4
-1675	39.0	-17.0	9.22	21.3	15:32:26	63	88.5	4.1	-1.8
-1700	52.4	-23.5	9.82	27.6	15:34:05	61	-88.9	17.7	10.9
-1725	39.2	-10.3	11.12	21.4	15:35:03	61	-73.9	11.3	14.5
-1750	30 7	-11 A	12 66	17 0	15.36.29	73	-71 1	_10 5	0 4
-1775	16 2	-5 0	11 26	17.0	15.27.25	13	- 01 0	-10.5	16 7
-1775	10.3	-5.0	11.20	7.2	15:57:55	43	-01.2	-22.8	-16./
-1800	24.7	-0.5	11.14	13.8	15:38:51	52	-/8./	-15.4	-19.1
-1825	26.7	-1.9	11.21	14.9	15:42:24	62	89.6	2.5	-6.5
-1850	21.3	-0.4	11.49	12.0	15:44:36	63	-85.4	3.9	3.2
-1875	32.1	2.2	11.66	17.7	15:45:28	72	87.6	1.0	2.4
-1900	21.8	0.1	12.01	12.3	15:46:21RC	AD 72	-77.1	3.1	2.0
-1925	15.3	1.7	10.81	8.7	16:12:42	42	-78.3	-8.7	-2.8
-1950	5.2	-1.1	9.87	3.0	16:14:09	62	-69.7	-18.3	-13.5
-1975	7.6	-0.8	8.87	4.3	16.15.27	41	-59 9	-13 7	-16 0
-2000	1/2	-1 3	8 9/	9 1	16.16.20	50	-61 1	13.7	6 5
-2000	16 0	-1.5	0.04	0.1	16,10,10	70	01 1	0.7	-0.5
-2025	10.0	-0.0	0.93	9.0	10:10:13	12	-01.1	9.8	5.2
-2050	18.1	-9.6	8.97	10.2	16:19:24	52	-/5.8	6.8	8.3
-2075	21.0	-12.0	9.13	11.8	16:20:28	52	-69.4	4.9	5.8
-2100	17.9	-13.5	9.95	10.1	16:21:36	63	-83.4	2.7	3.8
-2125	26.2	-6.7	10.50	14.7	16:23:29	62	-88.4	2.8	2.7
-2150	33.8	1.2	10.38	18.6	16:24:41	63	80.6	11.4	7.1
-2175	33.5	2.8	10.26	18.5	16:25:45	72	-89.1	12.3	11.8
-2200	33.1	1.8	10.28	18.3	16.26.26	72	-89 1	3 5	7 9
2200	00.1	1.0	10.20	10.0	10.20.20	12	00.1	5.5	1.5
Line -2000	Da	ato 8	AUG 89	23	4 #137				
	τ/n			 	1 #137 MIME 0		DID	4 603	5 603
2200	22 0	QUAD	11 20	1101			DIR	4-r RA	5-FRA
-2200	23.8	4.3	11.39	13.4	16:29:1211	.E /3	-88.9		
-2175	21.1	5.2	11.45	11.9	16:31:42	73	-84.1		
-2150	20.3	1.4	11.38	11.4	16:32:52	73	-82.4		
-2125	19.9	-2.6	11.48	11.2	16:33:33	75	-77.5	2.7	
-2100	25.1	-2.9	11.21	14.1	16:34:27	63	-72.5	-2.0	0.3
-2075	32.8	-3.3	10.58	18.1	16:36:03	63	-71.6	-9.6	-5.8
-2050	34.3	-3.0	10.47	18.9	16:37:21	62	-77.4	-11.7	-10.7
-2025	32.3	-1.6	10.31	17.9	16:38:31	73	-82.2	-4.6	-8.2
-2000	31.6	-2.5	10.83	17.5	16.39.27	62	86 5	1 6	-1 5
-1075	27 0	_1 7	11 04	15 6	16.10.20	70	_85 1	27	1.J 7 C
-1050	21.9	-1·/		14 4	10:40:29	13	-00.T	3./ E /	2.0 A F
-1720	23.0	2.0	TA'90	14.4	10:41:20	/3	6/.8	D.4	4.5

 \bigcirc

 \bigcirc

 \bigcirc

-1925	20.1	6.3	10.63	11.3	16:43:18	72	81.3	7.4	6.4
-1900	8.5	6.6	11.73	4.8	16:44:51ROAD	73	-86.9	13.9	10.6
-1875	1.2	14.8	13.46	0.7	16:45:38ROAD	74	89.2	20.2	17.0
-1850	5.4	14.1	12.17	3.1	16:46:41	64	-83.8	12.3	16.2
-1825	17.8	9.3	12.42	10.0	16:47:31	74	-83.3	-7.6	2.3
-1800	21.6	10.0	11.58	12.1	16:48:16	73	-85.0	-18.3	-13.0
Line -2100	Da	te 8	AUG 89	23.4	# #154				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CULT	r s	DIR	4-FRA	5-FRA
-1800	7.1	10.5	10.23	4.0	16:53:47	63	-80.3		
-1825	7.0	14.2	9.74	4.0	16:55:35	53	-87.6		
-1850	9.8	17.1	9.44	5.6	16:57:04	62	-81.8		
-1875	13.1	19.0	9.48	7.4	16:58:14	63	-89.2	5.0	
-1900	16.8	21.7	9.50	9.5	16:59:55TIE	62	-75.4	7.3	6.1
-1925	25.2	23.5	10.56	14.1	17:01:20	62	-81.4	10.6	8.9
-1950	18.8	10.7	13.24	10.6	17:02:23	72	-67.1	7.8	9.2
-1975	3.4	8.5	15.70	1.9	17:03:07ROAD	64	-76.4	-11.1	-1.7
-2000	-9.5	11.8	17.56	-5.4	17:04:04	74	-88.0	-28.2	-19.7
-2025	5.5	7.1	14.07	3.1	17:05:00	63	-82.3	-14.8	-21.5
-2050	-3.1	8.0	14.97	-1.7	17:05:50	74	-87.7	4.9	-5.0
-2075	-2.0	5.0	12.93	-1.1	17:06:42	63	-87.2	-0.5	2.2
-2100	3.8	-0.2	11.31	2.1	17:07:40	73	-79.4	-0.4	-0.5
-2125	8.2	-0.9	10.65	4.7	17:08:45	63	-76.8	9.6	4.6
-2150	7.4	-3.6	10.32	4.2	17:09:38	53	-77.7	7.9	8.7
-2175	4.8	-7.6	10.19	2.7	17:10:48	73	-72.3	0.1	4.0
-2200	8.0	-4.8	9.89	4.6	17:12:06TIE	73	-86.9	-1.6	-0.8

.

OMNI-PLUS Tie-line MAG/VLF R22K Ser #26102 VLF TOTAL FIELD DATA (uncorrected) Date 10 AUG 89 Operator: 3000 Records: 103 Bat: 17.8 Volt Lithium: 3.50 Volt Last time update: 7/12 11:52:00 Start of print: 8/10 18:53:27

Line -2200	Da	te 10	AUG 89	23.4	#2				
POSITION	I/P	QUAD	T.FLD	TILT	TIME	CULT S	DIR	4-FRA	5-FRA
-1800	12.9	7.8	8.51	7.3	9:18:30	73	86.8		
-1825	8.8	13.0	9.61	5.0	9:19:24	75	84.7		
-1850	13.7	15.3	8.36	7.8	9:20:40	64	-88.9		
-1875	11.9	16.0	8.51	6.8	9:21:30	64	-85.8	2.3	
-1900	4.2	10.1	8.01	2.4	9:22:19	74	-82.5	-3.6	-0.7
-1925	1.1	7.7	7.10	0.6	9:23:26	73	-83.8	-11.6	-7.6
-1950	2.6	11.8	6.78	1.5	9:24:21	72	-82.9	-7.1	-9.4
-1975	5.5	15.1	6.53	3.1	9:25:51	73	-83.5	1.6	-2.8
-2000	5.5	16.9	6.55	3.1	9:26:42	73	-80.4	4.1	2.8
-2025	7.9	20.0	7.06	4.5	9:27:34	74	-82.9	3.0	3.5
-2050	9.2	16.9	7.27	5.2	9:28:24	74	88.8	3.5	3.2
-2075	13.6	14.1	7.11	7.7	9:29:40	73	85.4	5.3	4.4
-2100	12.5	11.9	7.32	7.1	9:30:29	73	84.1	5.1	5.2
-2125	11.2	7.5	7.68	6.4	9:31:19	73	83.7	0.6	2.8
-2150	8.7	6.3	8.18	5.0	9:32:10	74	79.5	-3.4	-1.4
-2175	13.4	5.1	8.17	7.6	9:33:08	64	65.1	-0.9	-2.2
-2200	10.9	10.5	8.19	6.2	9:34:31T	'IE 73	79.5	2.4	0.7

Line -2300	Dat	te 10	AUG 89	23.4	#19				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CUL	ΤS	DIR	4-FRA	5-FRA
-2200	6.9	-5.0	7.63	3.9	9:39:14TIE	74	85.0		
-2175	7.5	0.0	7.60	4.3	9:41:34	85	81.4		
-2150	4.6	7.1	8.02	2.6	9:43:24	75	82.4		
-2125	8.0	8.7	8.40	4.6	9:44:24	74	80.6	1.0	
-2100	5.4	8.7	8.40	3.1	9:45:15	74	-89.5	-0.8	0.1
-2075	5.6	8.4	8.99	3.2	9:46:36	75	-83.6	0.9	0.0
-2050	6.5	8.9	9.65	3.7	9:47:33	75	-89.0	0.8	0.8
-2025	11.8	9.2	9.91	6.7	9:48:38	65	-81.9	-4.1	-1.7
-2000	20.2	8.9	10.25	11.4	9:49:39	73	-79.1	-11.2	-7.7
-1975	37.5	6.5	10.03	20.5	9:50:45	73	-76.3	-21.5	-16.4
-1950	36.9	3.5	8.91	20.3	9:51:50	63	82.7	-22.7	-22.1
-1925	31.5	3.9	8.40	17.5	9:52:50	73	84.2	-5.9	-14.3
-1900	26.7	6.4	9.55	14.9	9:54:01TIE	74	72.8	8.4	1.2
-1875	23.2	5.5	9.28	13.1	9:55:03CROP	74	78.9	9.8	9.1
-1850	22.3	6.6	9.38	12.5	9:57:14	73	72.2	6.8	8.3
-1825	17.5	5.3	9.37	9.9	9:58:03	74	70.7	5.6	6.2
-1800	12.0	5.3	9.34	6.8	9:59:01	75	76.7	8.9	7.2
Line -2400	Dat	te 10	AUG 89	23.4	#36				

POSITION	T/P	OUAD	T.FLD	ጥተርጥ	TTME C	ULT S	DTR	4-FRA	5-FRA
-1800	3.0	1.7	9,98	1.7	10:03:14	75	89.4		0 1101
-1825	6.5	11.9	10.23	3.7	10:04:38	64	77.4		
-1850	8.2	15.5	10.42	4.6	10:05:51	74	81.9		
-1875	10.1	15.0	10.54	5.7	10:06:40	75	83.5	4.9	
-1900	8.2	12.1	11.02	4.6	10:07:23TT	E 75	-87.0	2.0	3.4
-1925	-2.4	8.7	10.67	-1.3	10:08:28	74	83.9	-7.0	-2.5
-1950	-3.1	7.0	9.76	-1.7	10.09.22	64	81.6	-13.3	-10.2
-1975	-2 5	10 4	9 47	-1 4	10.10.18	74	82 1	-6.4	-9.9
-2000	-2.5	7 0	8 68	-1.7	10.11.25	75	87 9	0.4	-2 B
-2000	-03	9.0	8 70	-0.7	10.11.23	75	80 9	2.2	1 5
-2025	-0.2	10.2	8 61	1 8	10.13.04	75	81 9	2.2	2 9
-2030	5.5	77	8 31	3 6	10.11.13	91	70 0	63	5 0
-2075	0.4	55	0.04	5.0	10.15.22	61	02.0	7 0	5.0
-2100	126	1.5	0.35	7 2	10.13.33	70	02.2	6.9	60
-2125	12.0	4.0	0.20	7.2	10:17:49	01	03.7	5 0	6.2
-2130	15 0	1.4	0.10	0.0	10:20:30	04 70	00.7	1 0	1 0
-2175	17.0	0.4	0.00	9.0	10:22:44	F 63	-03.0	4.0	4.9
-2200	17.9	9.3	9.00	10.1	10:20:2011	E 03	-00.2	4/	4.5
Line -2500	Da	te 10	AUG 89) 23.4	#53				
POSITION	I/P	QUAD	T.FLD	TILT	TIME C	ULT S	DIR	4-FRA	5-FRA
-2200	5.0	2.6	9.10	2.9	10:32:47TI	E 75	76.1		
-2175	7.5	9.1	10.09	4.2	10:35:44	75	-82.6		
-2150	7.4	7.3	10.33	4.2	10:37:18	76	81.4		
-2125	10.4	4.7	10.49	5.9	10:38:50RO	CK 64	87.3	-3.0	
-2100	12.5	2.3	10.74	7.1	10:40:21	69	-89.2	-4.6	-3.8
-2075	9.5	2.1	10.77	5.4	10:41:25	74	84.4	-2.4	-3.5
-2050	5.2	1.2	10.69	3.0	10:42:39	77	83.1	4.6	1.1
-2025	1.8	-0.4	10.91	1.0	10:43:35	76	68.5	8.5	6.5
-2000	-1.3	-2.6	10.98	-0.8	10:45:18RO	СК 75	81.6	8.2	8.3
-1975	-0.9	-0.1	11.28	-0.5	10:46:26	76	85.8	5.3	6.7
-1950	-0.1	-1.4	10.89	-0.1	10:48:07CB	OP 76	85.9	0.8	3.0
-1925	-1.8	-4.1	10.64	-1.0	10.49.11	75	86.2	-0.2	0.3
-1900	-3.5	-5.6	10.59	-2.0	10.50.0571	F 73	88.4	2.4	1.1
-1975	-15	-6 7	10.37	-2.6	10.50.0511	ני <u>1</u> 2	88 7	2.5	2 9
-1075	-4.J	-0.7 -1 Q	10.52	-1 0	10.52.17	54	86 6	1 5	2.5
-1000	-J.4 _1)	-4.5	10.50	_0 7	10.52.25	76	94 5	-2 0	_0 3
-1025	-1.2	-4.4	11 12	-0.7	10:53:25	67	77 0	-2.0	-0.5
-1800	0.2	-1./	11.13	0.1	10:54:25	07	11.2	-3.9	-3.0
Line -2600	Da	te 10	AUG 89	23.4	# #70				
POSITION	I/P	QUAD	T.FLD	TILT	TIME C	ULT S	DIR	4-FRA	5-FRA
-1800	-54.5	6.4	11.63	-28.6	11:01:21	63	89.7		
-1825	-43.2	7.1	15.24	-23.3	11:02:33	75	72.3		
-1850	-8.8	2.2	13.88	-5.0	11:03:44	65	73.0		
-1875	-10.8	0.1	13.53	-6.1	11:04:47	66	73.7	40.8	
-1900	-0.4	-0.7	13.32	-0.2	11:05:54TI	E 77	70.5	22.0	31.4
-1925	10.4	-2.4	12.29	5.9	11:07:50	65	64.9	16.8	19.4
-1950	11.1	-3.5	11.62	6.3	11:10:08	75	63.6	18.5	17.6
-1975	10.4	-2.9	11.03	5.9	11:11:39	73	78.3	6.5	12.5
-2000	11.9	-7.6	10.48	6.7	11:22:20	75	80.9	0.4	3.4
-2025	9.3	-4.7	9.92	5.3	11:23:16	74	82.2	-0.2	0.1
-2050	9.3	-0.9	10.26	5.3	11:26:32	54	80.2	-2.0	-1.1
-2075	8.7	4.1	10.48	5.0	11:27:39	75	73.0	-1.7	-1.9
-2100	8.4	5.3	10.14	4.8	11:28:34	74	85.5	-0.8	-1.3

 \frown

-2125	8.0	-1.3	9.48	4.6	11:29:22	63	83.7	-0.9	-0.9
-2150	9.1	1.8	9.51	5.2	11:30:10	74	79.0	0.0	-0.5
-2175	12.5	4.9	9.40	7.1	11:31:01	65	81.2	2.9	1.4
-2200	16.4	12.2	9.73	9.3	11:33:16TIE	74	82.9	6.6	4.7
Line -2700	Da	te 10	AUG 89	23.4	#87				
POSITION	I/P	QUAD	T.FLD	TILT	TIME CUL	T S	DIR	4-FRA	5-FRA
-2200	12.4	1.1	12.69	7.0	11:45:24TIE	75	85.0		
-2175	10.4	3.5	13.27	5.9	11:46:49	74	78.0		
-2150	11.2	3.1	13.21	6.4	11:47:40	65	79.7		
-2125	10.3	0.8	12.95	5.9	11:48:36	76	86.2	0.6	
-2100	8.4	-1.1	13.21	4.8	11:49:23	76	81.8	1.6	1.1
-2075	4.8	-3.2	12.96	2.7	11:50:09	75	81.2	4.8	3.2
-2050	0.5	-4.5	12.78	0.3	11:51:09ROCK	76	83.4	7.7	6.2
-2025	-2.5	-2.2	12.96	-1.4	11:52:12	77	89.2	8.6	8.1
-2000	-4.4	-1.0	13.01	-2.5	11:53:22	75	-89.2	6.9	7.7
-1975	-7.4	-0.7	12.95	-4.2	11:54:24	76	-89.4	5.6	6.2
-1950	-9.1	3.4	12.82	-5.2	11:55:25	76	84.6	5.5	5.5
-1925	-15.9	6.9	13.38	-9.0	11:57:28	77	89.7	7.5	6.5
-1900	-30.3	20.6	13.02	-16.9	11:59:18TIE	75	-88.6	16.5	12.0
-1875	-34.6	17.0	11.11	-19.0	12:00:28	76	-83.0	21.7	19.1
-1850	-21.5	16.1	10.64	-12.1	12:01:32	54	-84.8	5.2	13.4
-1825	-16.8	6.9	10.39	-9.5	12:04:07	75	-88.1	-14.3	-4.6
-1800	-14.3	9.4	10.65	-8.1	12:05:31	64	-79.8	-13.5	-13.9

 $\widehat{}$

.

OMNI-PLUS	Tie-l	ine M	AG/VLF	R22K	Ser #3	26102						
VLF TOTAL	FIELD	DATA	(uncorr	ected)							
Date 13 AU	G 89				-							
Operator: 3000												
Records: 57												
Bat: 17.1	Volt	Li	thium:	3.48	Volt							
Last time update: 7/12 11:52:00												
Start of	print	: 8/	13 20:1	4:39								
Line -1400	Da	te 13	AUG 89	23.4	1 <u>#</u> л							
POSITION	I/P	OUAD	T.FLD	TILT	TTME	CULT	r s	DTR	4-FDA	5-503		
-2200	87.6	-1.5	11.03	41.2	15.46.3	2003 287778	71	80.0	4-LVH	J-EKA		
-2175	65.5	-2.0	9.41	33.2	15.48.2	12	71	68 0				
-2150	45.8	1.0	8.81	24.6	15:50.3	<u></u>	72	87 1				
-2125	38.3	6.0	9.57	20.9	15:53:5	55CROP	52	-89.0	28 Q			
-2100	38.7	12.3	9.67	21.1	15:57:4	12CROP	62	76.9	15 8	22 3		
-2075	31.7	2.6	9.93	17.6	15:59:2		72	-74 6	6.8	11 3		
-2050	50.1	-3.0	12.94	26.6	16:01:5	52	52	-69.4	-2.2	2 3		
-2025	60.7	-11.6	16.27	31.2	16:04:0) 7	72	80.7	-19.1	-10 7		
-2000	29.4	-7.0	10.29	16.4	16:05:5	54	72	87.2	-3.4	-11 3		
-1975	38.1	-2.1	10.78	20.9	16:07:5	53	61	84.0	20.5	85		
-1950	37.7	8.1	8.83	20.6	16:09:5	54	72	79.6	6.1	122		
-1925	34.3	6.4	7.52	18.9	16:12:4	14	61	83.0	-2 2	1 9		
-1900	29.7	0.1	8.24	16.5	16:14:4	11TTE	61	84 6	6 1	1 0		
-1875	31.2	3.0	8.60	17.3	16:16:3	34	62	75.4	5.7	5.9		
Lina = 1300	Da	+ ~ 12	AUG 00		410							
DILLE -1300		Le 13	AUG 89	23.4	+ #18							
_1975	1/2		T.ELD	TILT 25 0	TIME	COLT	' S	DIR	4-FRA	5-FRA		
-10/0	40./	-10.0	9.15	25.0	16:25:2	23	/1	/9.1				
-1900	47.0	16 7	9.65	20.4	16:27:3	SOTIE	10	87.2				
-1925	20.3	-10./	10.96	20.9	16:29:3)4	51	11.3				
-1930	34.4	-7.5	9.00	19.0	16:31:0	8	52	83.3	-10.5			
-1975	44.1 22 /	-/.0	8.82	23.8	16:32:1	./	/1	/1.6	-3.5	-7.0		
-2000	32.4	-0.0	8.47	17.9	10:33:2	23	61	-85.9	1.8	-0.9		
-2025	32.3	-7.0	8.17	17.9	16:34:3	88	61	82.3	-7.0	-2.6		
-2030	42.8	-0.4	8.02	23.1	16:38:1	.1	61	73.7	-0.7	-3.9		
-2075	43.8	-5.1	8.15	23.1	16:41:0	10	61	-85.7	11.0	5.1		
-2100	34.2	-9.0	8.//	28.4	16:44:3	34	/1	86.0	11.1	11.0		
-2125	40.3	10.0	8.79	24.8	16:4/:1	./	/1	-69.6	6.4	8.7		
-2130	50.0	10.2	9.73	20.0	16:49:2	SCROP	61	-76.5	-0.7	2.8		
-21/3	00.0 06 0	7.1	9.03	29.0	16:52:0	18	/1	71.3	2.4	0.8		
-2200	30.3 50 5	/.4	0./Y	19.9	10:55:2	OTIE	72	-83.8	-2.5	-0.1		
-2220	07.0 60 E	5.U 1 E	0.95	30./	17:02:0	UCKOP	/1	-80.3	-5.0	-3.8		
-2200	00.0 77 1	~1.J	TO 10	31.1	17:03:4	0	51	86.0	12.9	3.9		
-2275	1/11 70 7	-14 0	9.10 11 01	3/.0	17:04:5	0	ο <u>ι</u>	-80.7	18.1	15.5		
-2300	10.2	-14.0	TT • OT	30.0	1/:00:4	U	5 T	-87.3	13.8	15.9		

Line -1200	Da	ite 13	AUG 89	23.4	l #36				
POSITION	I/P	QUAD	T.FLD	TILT	TIME	CULT S	DIR	4-FRA	5-FRA
-2400	30.4	2.3	9.88	16.9	17:15:38	62	-49.7		
-2375	35.2	7.3	10.13	19.4	17:18:03	71	-67.7		
-2350	49.8	-10.6	10.78	26.4	17:19:49	61	-54.5		
-2325	54.9	-9.8	8.66	28.7	17:21:03	71	-62.3	-18.8	
-2300	52.0	5.9	9.39	27.4	17:22:45	71	-77.5	-10.3	-14.6
-2275	46.0	16.0	8.30	24.7	17:24:33	71	-83.3	3.0	-3.7
-2250	38.7	10.6	8.05	21.1	17:26:35	71	61.8	10.3	6.6
-2225	47.5	2.1	8.44	25.4	17:35:080	CROP 51	-60.3	5.6	7.9
-2200	56.0	-2.5	8.18	29.2	17:38:361	TIE 71	83.6	-8.8	-1.6
-2175	59.5	-13.7	10.35	30.7	17:40:53	71	72.7	-13.4	-11.1
-2150	53.6	-5.6	12.65	28.2	17:42:44	72	60.0	-4.3	-8.9
-2125	38.9	-4.4	12.13	21.2	17:44:19	72	77.6	10.5	3.1
-2100	27.1	-5.7	12.32	15.1	17:45:58	73	83.4	22.6	16.5
-2075	23.3	-4.5	12.75	13.1	17:47:29	73	79.8	21.2	21.9
-2050	28.2	-4.1	12.63	15.7	17:48:39	61	85.9	7.5	14.3
-2025	33.2	-5.5	13.26	18.3	17:50:35	83	-87.3	-5.8	0.8
-2000	36.9	-7.2	13.84	20.2	17:52:01	62	89.0	-9.7	-7.8
-1975	44.1	-14.2	13.97	23.8	17:54:24	62	65.1	-10.0	-9.9
-1950	48.0	-11.8	13.19	25.6	17:56:23	72	-81.2	-10.9	-10.5
-1925	45.1	-10.7	12.93	24.3	17:57:46	72	78.7	-5.9	-8.4
-1900	42.2	-0.8	12.17	22.8	18:01:49	FIE 72	61.5	2.3	-1.8
-1875	37.9	3.9	12.41	20.7	18:03:03	52	67.6	6.4	4.3

 \bigcirc

,

500 E ___250 S __500 S 857998658 ____750 S ___1000 S ___1250 S ___1500 S ____1750 S ___2000 S ___2250 S 6 E ___2500 S

CAL BRANCH INT REPORT FORMOSA RESOURCES CORPORATION MASS PROPERTY LIKELY, BRITISH COLUMBIA COPPER SOIL GEOCHEMISTRY - POSTED VALUES IN PPM CONTOUR INTERVAL = 50 PPM SCALE 1:5000 DRAWN L.S.M. DATE NOVEMBER, 1989 FIGURE 3A

• "

- - --

500 E

1750 W

2000 W

2250 W

1500 W

1250 W

1000 W

500 E

. ____250 S

____500 S

___750 S

___1000 S

__1250 S

___1500 S

___1750 S

___2000 S

____2250 S

___2500 s

GEOLOGICAL BRANCH ASS SSMENT REPORT

Scale 1:5000 FORMOSA RESOURCES CORPORATION

MASS PROPERTY LIKELY, BRITISH COLUMBIA LEAD SOIL GEOCHEMISTRY - POSTED VALUES IN PPM CONTOUR INTERVAL = 50 PPM SCALE 1:5000 DRAWN L.S.M. DATE NOVEMBER, 1989 FIGURE 3B

500 E

250 E

250 W

.

500 W

750 W

1000 W	750 W	500 W		250 W	0	250 E
					983	
				* • • • • •	8 74 12	
			▶ ─── ₽੶੶੶ · ₽		·····································	H3 79 45
		•	••	·····		<u>++</u>
		107 - 115 108 - 115 104 - 115		8279873 	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	83 43 48 49 49 48 49 48 49 49 49 49 49 49 49 49 49 49 49 49 49
			2 8 8 9 8 9 8 9 8 9 8 9			2 2 2 2 2 8 8 7 2 8 8 7 2 8 2 8 2 8 2 8
			3 <u>+</u> 53 58 38 3 + 59 58 53	55 7 11 11 11 11 11 11 11 11 11 11 11 11 1		8 8 7 9 8 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9
82 94 107 117 117 117 117 117 117 117 117 117	133 157 158 159 159 159 159 159 159 159 159 159 159	1 1 0 3 1 0 - 2 8 8 2 3 3 1 0 - 2 8 8 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 3 3 1 0 - 2 8 9 2 1 0 - 2 8 9 2 1 0 - 2 8 9	<u>2 8 3 8 8</u>	2 4 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8 8 8 8 8 8 8 8 8 8 8 8 8
			2 73 92 88 89	106 73 73 84	99. 73. 92. 93. 93. 73. 83. 93. -	22 106 11 126 12 12 12 12 12 12 12 12 12 12 12 12 12
9 140 154 154 154 158 158 158 158 158 158 158 158	30 4 17 80 6 11 13 13 15 15 13 13 11 13 13 13 13 13 13 13		₽ 83 99 	888		
2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3		12 12 1 12 1	117 111 103	<u>स्</u> र भ्र	2 23	
			n 10 9	ര ഗ ധ		
			u o s ≃ ⊢	<u> </u>		
		<u>53</u> 8 8 8	150	7 8 5	145 46 17	
22 29 27 29 29 29 29 29 29 29 29 29 29 29 29 29		¥ 23 15 8	5 88 88	40 112	556	
		13 8 5 2 5 1	} ₽			
			18 1 23	888	104 74	
88 53 53 53 53 53 53 53 53 53 53 53 53 53		5 127 138				
			8			
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			· ·· ·· -			
131 357 557 117 558 557 757 757 757 757 757 757 757 75						
<u><u><u></u></u> 3 3 3 3 3 3 3 3 3 3</u>		3 3 3 3 3 3 3 3 3 3	131			
		55 3 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5	334 187 187	182		
	173 174 175 175 175 175 175 175 175 175 175 175					·
<u> 88 月 83 点 55 88 10 10 10 10 10 10 10 10 10 10 10 10 10 </u>			249			
		K & K K K & K K	00E			
117 117 118 117 117 117 117		142 153 155 157 157 157 157 157 157 157 157 157				
		Ū-	•			
		R 87 77 22 29 93 23				
		91 117				
	197 202 177 102 202 202 202 202 202 202 202 202 202	96 15 15 12 12 12 12 12 12 12 12 12 12 12 12 12				
						a ser en en en en
		3 28 27 23				,
233 23 25 25 25 25 28 28 28 28 28 28 28 28 28 28 28 28 28						
28 2 3 8 2 3 3 1 1 1 1 6						
8 8 5 7 -						
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>						
104 HZ 101 HZ 10						
1000 W	750 W	500 W		250 W		250 E

<u>___2000</u> S ___2250 S

____2500 S

GEOLOGICAL BRANCH ASSESSMENTREPORT Scale 1:5000 100 150

FORMOSA RESOURCES CORPORATION MASS PROPERTY LIKELY, BRITISH COLUMBIA ZINC SOIL GEOCHEMISTRY - POSTED VALUES IN PPM CONTOUR INTERVAL - 150 PPM DRAWN L.S.M. SCALE 1:5000 DATE NOVEMBER, 1989 FIGURE 3C

~ _* -

· • ••

- ---.

500 E

ίx.

GEOLOGICAL BRANCH A SHERSEMENT REPORT

• •

۲

- - *

1

;

1

÷ .

	1000 W	750 W	500 W	250 W	0 	250 E	500 E
				•••••••••••••••••••••••••••••••••••	, 		
			<u></u>	·····			
			p	·····		· · · · · · · · · · · · · · · · · · ·	
		-		······································		······································	
	an ing ing ing ing ing ing ing ing ing in	►			·····	·····	
		·····				· · · · · · · · · · · · · · · · · · ·	
	▶₩₩₩₩₩₩₩₩₩-	······································		······			
7	,	······································	++				
+			-	ŧŧŧŧ.	-		
			- f f				
~							
						, ,	
	1000 W	750 W	500 W	250 W	. 0	250 E	500 E

.

500 E

____250 S ___500 s

500 E

___1000 S ___1250 S

___1500 s

___1750 S

___2000 S

___2250 s

___2500 S

___750 S

•

100 150

FORMOSA RESOURCES CORPORATION MASS PROPERTY LIKELY, BRITISH COLUMBIA

TOTAL FIELD MAGNETOMETER SURVEY - PROFILE PLOT VERTICAL SCALE: 1 CM = 150 GAMMAS EACH GRID LINE = 56700 GAMMA BASE LEVEL DATE NOVEMBER, 1989

- - 4

- - -

GEOLOGICAL BRANCH ASSESSMENT REPORT

Scale 1:5000

FIGURE 4 A

1

L_____

1000 W 750 W 500 W 250 W 250 E ┝┈┉╪┉┉┉╻╡╶╶╡╶┈╡┈┉╼┈╼──╼┈╼┈╼╴╴╸╴╸╴╸╴╸╸╸╸╸ ······ ----·----have been and the second of th الديون المحمد موسور والمستوجع ميدرون المستوحات والأكام محمد محمد الأكاري -----······ ----- $\overline{\mathbf{O}}$ 250 E

500 E

____250 S

___750 S

___1000 S

_1250 S

___1500 S

___1750 S

___2000 S

___2250 S

___2500 S

<u> 500 s</u> · __. · · · ·

÷ •*

.

.....

•

.

-

GEOLOGICAL BRANCH SPESSMENT REPART

FORMOSA RESOURCES CORPORATION MASS PROPERTY LIKELY, BRITISH COLUMBIA TOTAL FIELD MAGNETOMETER SURVEY CONTOURED MAGNETIC SUSCEPTIBILITY (GAMMAS) BASE LEVEL OF 56700 GAMMAS REMOVED

FIGURE 4 B _____ .

DATE NOVEMBER, 1989 _____ _____

L_____

	1000 W	750 W	500 W	250 W	0	250 E
				·+++++++		
			۰ ۰ ۰			
	·	_	·····			
}ŧŧŧŧ		►				
		· · · · · · · · · · · · · · · · · · ·	+ + + + + + + + + + + + + + + + + + + +			
			· · · · ·		-	
			- 	· · · · · · · · · · · · · · · · · · ·		
				····· • • • • • • • • • • • • • • • • •		
						,
				1		
				•		
	 1000 W	750 W	500 W	250 W	d	250 E

.

___250 S

___500 s

___750 S

__1000 s

___1250 S

___1500 S

__1750 S

___2000 S

___2250 S

___2500 S

-

- ...

.

. ...

500 E

- - -

.

- - -

•

•

~ _+

•

.

---+

• •

- ---

•

1

CEOLOGICAL BRANCH ASSESSMENT RPORT

FORMOSA RESOURCES CORPORATION MASS PROPERTY LIKELY, BRITISH COLUMBIA

VLF SURVEY PROFILE PLOT - 23.4 kHz (HAWAII) IN-PHASE PERCENT (SOLID) AND QUADRATURE PERCENT (DASHED) VERTICAL SCALE: 1 CM = 50 PERCENT

FIGURE 5 A

DATE NOVEMBER, 1989

____250 S

___750 S

___1000 S

___1250 S

___1500 s

____2000 s

___2250 S

DATE NOVEMBER, 1989

FIGURE 5 B ----

.

___500 s

500 E

___1750 S
