

Geology and Rock Sampling

> of the

Nation Property

Specific Claims Involved:	Claim Name	Record No.
	Nation 2	9479
	Nation 3	9962
	Nation 4	9963
	Nation 5	10426
	Nation 6	10427

Mining Division: Omineca
NTS: 93N/11W, 93N/6W
Latitude: 55 degrees 32 minutes north
Longitude: 125 degrees 25 minutes west
Owner/operator: Eastfield Resources Ltd.
Author of report: J. W. Morton
Date submitted: November 1989

Table of Contents

Location Map

Figure 1 1 Position
1.2 Introduction 1
1.3 History 1
1.4 Summary of Work Completed 2
2.1 Regional Geology 2
2.2 Geology of the 'N' Grid 3

Provisional Geology of the ' N ' Grid (Revised from 1988)
2.3 Geology of the 'sW' Grid

Provisional Geology of the 'SW' Grid
Soil Sample Map of the 'SW' Grid
Induced Polarization Pseudosections
3. Conclusions
4. Cost statement

Statement of Qualifications
Petrographic Descriptions
Geochemical Certificates

Rock Descriptions
References

Figure 2
3
Figure 3
Figure 4

Figure $5 \& 6$

4

5

Appendix 1
Appendix 2
Appendix 3
Appendix 4
Appendix 5

1.1 General Geographical and Physiographical Position:

The Nation Claims occur in the Omineca mountains north of Tsayta Lake. The claims are accessible by bush road from Manson Creek which is in turn accessible by gravel road from Fort St. James, B.C. The claims occupy a pine and spruce forested terrain in which elevation varies from 1,000 meters to 1,220 meter $(3,300$ feet to 4,000 feet).

1.2 Introduction

On May $24,1989 \mathrm{~J} . \mathrm{W}$. Morton, in the company of Michael Caron of the Battle Mountain Exploration Company, visited the Nation Property. The May 24 trip was predominantly to investigate an arsenical and auriferous ankeritic carbonate unit discovered in 1988 at the head of a stream sediment gold-arsenic anomaly (305 ppb Au, 7917 ppm As).

This area of the claim was gridded in 1988 and is referred to as the 'N' grid. A siderite altered latite porphyry occurring 300 meters west of the 1988 discovery was also sampled on this day and returned a value of 350 ppb gold. During the departure from the property by helicopter some old workings were noted approximately 2 km east of the 1988 discovery. These working (trenches) are now believed to originate from the early 1940's and are described in Armstrong's G.S.C. paper 44-5 under the heading Dan Group. The trenches which occur in intensely silicified limestone and ultramafic rock were completed by the Consolidated Mining and Smelting Company of Canada while exploring for mercury.

Some sampling was completed on May 24 and the area was further investigated in July and October when the 'SW' grid was established over this area. During June and July 1989, Eastfield Resources Ltd. and Northair Mines Ltd. were exploring the adjacent Swan claims. Two lines of induced polarization survey were extended off the Swan claims onto the Nation claims. This geophysical work is not claimed as an expense in this report although the relevant portions of these lines is included in the appendix and the significance of the geophysical response is covered in the section 'SW' Grid geology.

1.3 History

The Nation claims were staked in 1988 following the definition of an outstanding gold-arsenic silt anomaly above a site where the government funded 1983 regional reconnaissance map indicated a highly anomalous arsenic drainage. The source of the silt anomaly was deemed to be from a similar stratigraphic and structural regime to that which occurs at the Indata property to the south, and the Lustdust property to the north. Placer gold occurrences are presently being worked approximately 4 kilometers downstream from the Nation discovery on Kwanika Creek. A one kilometer square grid was established in 1988 at the apparent source of the anomaly. A soil sample survey, magnetometer survey and VLF-EM survey were completed on this grid in 1988.

Vein mineralization, precious metal rich massive sulphides with minor quartz and carbonate, was discovered 1.5 kilometers west of the Bralorne Takla Mercury Mine in 1944. This occurrence formerly called the Kay Group and more recently the Lustdust deposit is located 2.5 km north of the Nation Property. Bralorne Mines Ltd. optioned the Kay Group in 1945 and completed trenching, drilling and 350 feet of underground development subsequent to 1954. In the period 1960-1962 Bralorne Mines Ltd., Canex Aerial Exploration Ltd. and Noranda Exploration Ltd. formed a joint venture to explore the Lustdust property, predominantly by diamond drilling. In 1964 Takla silver Mines Ltd. completed an additional 750 feet of adit and continued surface and underground diamond drilling. In 1977 Granby Mining Co. Ltd. (Zapata Canada Incorporated) staked around the core claims and in 1979 solidified the land position by optioning the remaining claims. Between 1978 and 1979 Granby completed extensive soil sampling and a pulse EM survey on the clains and in the fall of 1979 drilled an anomaly located 750 meters north-east of the historic workings. Drill holes 79-1 and 79-2 intersected multiple layers of massive sulphide including a 2.5 m intercept that graded 19% zinc. In 1980 and 1981 Noranda Exploration Ltd., following Noranda's acquisition of most of the assets of Granby Mining Co., continued grid work and diamond drilling. Noranda's works were not successful and Noranda terminated its exploration on the property in 1981.

1.4 Summary of Work Completed in 1989

Follow up Geochemical rock sampling - 25 samples analyzed using ICP methods plus Au, Hg by A.A. methods.
Soil Sampling - 3 lines totalling 725 meters 29 samples analyzed using ICP methods plus Au, Hg by A.A. methods.
Preliminary Geological Mapping 'SW' Grid (24 hectares) at a scale of 1:2000
Petrographic analyses - 4 samples prepared and described.
Soil samples were obtained with a soil mattock from a depth of approximately 30 cm . Soils and rocks were sent to Acme Analytical Labs in Vancouver for analyses. Analytical procedures are outlined in the geochemical certificates which appear in the appendix.

Petrographic studies were completed by John G. Payne of vancouver Petrographics Ltd. of Fort Langley, B.C.

2.1 Regional Geology

The Nation claims lie within an assemblage of Paleozoic aged interbedded sedimentary and volcanic rocks and their derived schists. Recrystallized blue grey limestone is a major part of this sequence. The eastern edge of the claim group coincides with a narrow linear band of ultramafic rocks that marks the approximate trace of a major break of the pinchi Fault zone. Further to the east, beyond the limits of the claims, there is an abrupt change in lithology as upper Triassic aged sediments and Jurassic age Hogem intrusive rocks are encounterod. The pinchi

Fault zone varies between 100 and 1,500 meters in width in this region and trends in a north by northwest direction separating Mesozoic strata from Paleozoic strata.

2.2 Geology of the ' N ' Grid

Cache Creek age blue grey limestone occurs in contact with quartz-sericite schist, chloritic schist and a jasperoid like unit. Quartz feldspar porphyry and feldspar porphyry dykes have been emplaced parallel to the stratigraphy. Foliations in the schist and contacts between dykes are typically approximately 160 degrees and dip steeply to the west. A central area of jasperoid like rock that may be a silicified limestone or alternatively a chert occupies an area of at least 250 meters by 150 meters. Limestone adjacent to the jasperoid like rock is commonly affected by a low density stockwork quartz/carbonate vein system. Ankeritic carbonate rich siltstone containing significant sulphides (pyrite, arsenopyrite) occurs in contact with the jasperoid like rock at 2010N/1975E. An auriferous siderite altered latite porphyry occurs approximately 300 meters west of the ankeritic siltstone. Auriferous porphyritic dacite rubble occurs approximately 400 meters $S E$ of the altered siltstone.

Significant rock geochemical values obtained from the 'N' Grid are as follows:

Sample No.	Gold ppb	Arsenic \qquad	Antimony ppm \qquad	Lithology
21M3R	590	2	2	dacite porphyry rubble
88 NBR 9	305	7917	26	```ankeritic siltstone outcrop```
88NER35 (1988)	72	34	2	siderite altered latite porphyry outcrop
BC469	350	107	-	siderite altered latite porphyry outcrop

Geology of the 'SW' Grid
An ultramafic body, possibly a sill, occurs as a talc altered gabbro in the southwest corner of the grid and as quartz-carbonate-mariposite rock 800 meters to the north. Intense silicification of both the ultramafic and hosting limestone is evident. Abundant cinnebar occurs in the northern altered ultramafic unit in the form of disseminations and with chalcedonic veinlets. A quartz rich felsic porphyry that may be a rhyolite dyke occurs in the central region of the grid and trends north-south. Rubble obtained from soil holes indicates that a limonitic schistose quartz-carbonate rock (altered ultramafic) occurs on the southern soil line $4+00 s$. A one meter
wide pod of massive chromite in serpentinite is exposed in an old trench in the central region of the grid. Two induced polarization survey lines that reach the southern portion of the grid indicated that a well defined chargeability anomaly trends across the grid at approximately 345 degrees. the reason for this chargeability response is not known but may be related to the ultramafic unit.

Significant rock geochemical values obtained from the 'sw' grid are as follows:

Sample No.	Au ppb	Hg ppb	Ni ppm	Cr ppm	As ppm	1ithology
89-NAT-1	2	308,000	899	365	770	silicified ultramafic
89-NAT-4	3	214,000	1028	314	40	silicified ultramafic
SW-89-MR-6	43	20	201	551	2	talc altered gabbro
SW-89-MR-10	120	120	22	29	636	felsic porphyry
SW-89-MR-11	2	5	149	1665	2	Pt: 158 ppb .

3. Conclusions

An intensely silicified ultramafic rock hosted by silicified limestone occurs approximately 1.5 km east of the 1988 discovery. This silicified unit displays multiple periods of quartz veining and contains subeconomic mercury values and anomalous arsenic values. Sampling completed in 1989 did not outline significant gold values. Two lines of induced polarization survey completed in 1989 indicate that this zone roughly correlates with a well defined northerly trending I.P. conductor.

This eastern silicified zone is suspected to correlate to the mineralizing structure that hosts the now mined out Bralorne Takla mercury deposit located 6 kilometers to the north.

The intensity of alteration and the classical epithermal character of the silicification justify that this structure be properly explored for its gold potential. (Particularly in view of the downstream coarse gold placer which occurs with cinnebar nuggets in Kwanika Creek).
Similarly altered ultramafic rock occurring in the Pinchi fault zone has been shown to host gold mineralization of economic grades. In 1983, Cominco Exploration located a boulder of quartz-mariposite-magnesite rock in the Pinchi Fault zone 75 kilometers to the south near Izana Lake. Three replicate assays of this boulder returned values of 8.1 grams per tonne gold. In 1988 Eastfield Resources Ltd. obtained a 4 meter intersection of 47.3 grams per tonne gold from a talc magnesite altered ultramafic rock at the Indata property 13 kilometers to the south.

At the 'N' grid discovery, 1.5 kilometers west of the mercury zone mineralization associated with ankeritic sericite altered siltstone was shown in 1989 to likewise be anomalous in mercury
content. In this context it appears likely that this mineralization, which is suspected to correlate with the Lustdust mineralization, 6 km to the north may be related to the mercury zone and may likewise be of an epithermal origin.

A sample of altered latite porphyry from the 'N' grid returned a value of 350 ppb gold without appreciable base metals. A thin section description of this latite shows that it is saturated with fine grained veinlets. (quartz-albite-calcite-pyrite). The presence of an auriferous latite on the 'N' grid indicates that at least two sources of gold mineralization occurs and further justifies that an I.P. survey be completed.

Cost Statement

Personnel:

| J.W. Morton | May 23, 24; July 12, 16, 171989 | |
| :--- | :--- | :--- | :--- | :--- |
| | 5 days @ $\$ 300 /$ day | $1,500.00$ |
| G.L. Garratt | July 12, 1989-1 day @ $\$ 300 /$ day | 300.00 |
| A. Buskas | October 5, 1989-1 day @ $\$ 200 /$ day | 200.00 |
| A. Fahlman | October 5, 1989-1 day @ $\$ 200 /$ day | 200.00 |

Transportation:
Scheduled Flights - J.W. Morton - May 23/24, 1989228.40
Helicopter - May 24, 1989-2.5 hrs 1,398.50

29 soil samples @ \$17/sample 493.00
25 rock samples @ \$18.5/sample 462.50
4 petrographic analyses 327.67
Report Preparation \& Drafting:
600.00

TOTAL
\$ 5,710.07
note: Induced Polarization Survey not included in costs. July and October Travel not included in costs. Room and board not included in costs.

Appendix 1

I, James William Morton, of 2750 Alma street, Vancouver, British Columbia, do hereby certify:

1. I graduated from Carleton University, Ottawa, in 1971 with a Bachelor of Science on Geology.
2. I graduated from the University of British Columbia, Vancouver, in 1976 with a Master of Science in Soil Science.
3. I am a fellow of the Geological Association of Canada.
4. I supervised the work described in this report.

J. W. Morton
M. SC., F.G.A.C.

Dated at Vancouver, British Columbia, this 17 th day of November, 1989.

Appendix 2

The sample is a very fine to extremely fine grained ankeritic marble containing moderately abundant sericite/kaolinite and pyrite porphyroblasts, and minor quartz and arsenopyrite. Early veins are of dolomite-(quartz), and later stringers are of calcite and pyrite-calcite.

ankerite	$75-8 \emptyset \%$
sericite/kaolinite	$8-1 \emptyset$
pyrite	$2-3$
Ti-oxide(?)	$4-5$
quartz	$1-2$
arsenopyrite	$\emptyset .1$
veins	
dolomite-(quartz)	$5-7$
calcite-pyrite-(quartz)	1

Ankerite forms ragged, anhedral, interlocking grains averaging $\emptyset .05-\emptyset .15 \mathrm{~mm}$ in size, grading down to much finer grains in zones with moderately abundant sericite/kaolinite. In the latter zones, ankerite commonly forms ragged porphyroblasts averaging $0.2-\emptyset .5 \mathrm{~mm}$ in size, with a few up to 1 mm long. Some have textures suggestive of plagioclase phenocrysts.

Sericite and kaolinite occur together in wispy lenses and interstitial patches and seams of grains averaging $\varnothing .005-\varnothing .01 \mathrm{~mm}$ in size. Subparallel orientation of these produces a weak foliation.

Pyrite forms disseminated, subhedral to euhedral porphyroblasts and clusters of a few porphyroblasts averaging $\varnothing .1-\varnothing .5 \mathrm{~mm}$ in grain. size. A few have small pressure-shadow rims of quartz and/or dolomite. Pyrite commonly contains moderately abundant, extremely fine grained inclusions of $T i-o x i d e$.

Ti-oxide(?) forms disseminated, cryptocrystalline patches intergrown intimately with ankerite.

Quartz forms scattered patches averaging $\emptyset .1-\emptyset .2 \mathrm{~mm}$ in size of very fine grains.

Arsenopyrite forms a few concentrations of euhedral to subhedral, rhombic grains averaging $\varnothing . \varnothing 2-\varnothing .1 \mathrm{~mm}$ in size, with a few up to 0.22 mm long.

Veins up to 1 mm wide are dominated by very fine to locally fine grained dolomite and lesser very fine grained quartz. Quartz occurs in the cores of some veins. One large vein also contains a few patches of extremely fine grained sericite averaging 0.02 mm in grain size.

Calcite forms a few late veinlets averaging $0.03-\varnothing .05 \mathrm{~mm}$ in width; grain size averages $\varnothing . \varnothing 2-\emptyset . \emptyset 5 \mathrm{~mm}$. One veinlet averaging $\emptyset .3-\emptyset .5 \mathrm{~mm}$ wide is dominated by fine grained, subhedral to euhedral pyrite grains, with patches of very fine grained calcite and minor quartz, in part oriented perpendicular to pyrite crystal faces.

Phenocrysts of plagioclase are set in a groundmass dominated by quartz and plagioclase, with minor pyrite, zoisite, and muscovite. At one end are several fragments(?) dominated by quartz. Hematite and limonite are secondary minerals.

phenocrysts	
plagioclase	$8-10 \%$
mafic	0.2
groundmass	
quartz	$35-4 \emptyset$
plagioclase	$30-35$
pyrite	$1-2$
zoisite	1
limonite	0.5
muscovite	$\emptyset .3$
apatite	trace
fragments	
quartz-(muscovite)	$8-1 \emptyset$

Plagioclase forms euhedral to subhedral phenocrysts averaging $\emptyset .5-1.5 \mathrm{~mm}$ in size, with a few up to 2.5 mm across. Some show weak oscillatory growth zones. Composition is probably oligoclase-andesine. Alteration is slight to strong to extremely fine to very fine grained sericite and locally to cryptocrystalline to very fine grained clinozoisite. Blebby to lensy quartz inclusions averaging $\varnothing . \varnothing 5-\varnothing .1 \mathrm{~mm}$ in size occur in one large phenocryst.

A patch 2.5 mm long consisting mainly of very fine grained muscovite flakes, with lesser chlorite and minor limonite may be after biotite or hornblende.

In the groundmass, quartz forms equant grains averaging ø.ø3-Ø.15 mm in size, with a few from $0.5-1 \mathrm{~mm}$ across. The larger grains are anhedral in outline and do not appear to be phenocrysts. plagioclase forms anhedral grains averaging $0.05-\emptyset .15 \mathrm{~mm}$ in size. Alteration is variable from slight to strong to sericite with minor patches of limonite. Muscovite forms equant flakes averaging $0.05-0.08 \mathrm{~mm}$ long.

Chlorite forms wispy seams and lenses averaging $0.3-\varnothing .5 \mathrm{~mm}$ long and $0.1-\emptyset .15 \mathrm{~mm}$ wide of subparallel, very fine grained flakes. Chlorite is nearly colorless and has a moderate birefringence.

Pyrite forms disseminated, anhedral to subhedral grains averaging $0.05-\emptyset .1 \mathrm{~mm}$ in size. Towards one end of the sample, grains are altered strongly to completely to red-brown and opaque hematite and on the edge of the section to orange limonite.

Clinozoisite forms anhedral grains averaging $\varnothing .1-\emptyset .3 \mathrm{~mm}$ in size, commonly associated with and in part rimming pyrite. Extinction is slightly anomalous.

Apatite forms scattered equant grains averaging $\varnothing .05 \mathrm{~mm}$ in size.
A few lensy patches up to 7 mm long and 2 mm wide at one end of the section are dominated by patches of equant quartz grains averaging Ø. $15-\emptyset .5 \mathrm{~mm}$, which grade to patches of equant quartz grains averaging Ø.ø3-Ø.1 mm in size. Some patches contain minor to moderately abundant intergrowths of muscovite. Enclosing the patches, the host rock is altered strongly to irregular aggregates of muscovite and limonite (in part after pyrite).

The sample is a recrystallized, slightly carbonaceous chert containing several seams dominated by sericite and carbonaceous opaque. Early-formed quartz veins also were recrystallized. A moderate to good foliation is defined by orientation of sericite-rich layers and stringers.

chert	
early (cryptocryst)	$7-8 \%$
later (extr.f.gr.)	$65-7 \emptyset$
sericite	$4-5$
limonite	0.5
pyrite/limonite	$\emptyset .5$
carbonaceous opaque	0.3
veins	
quartz	$17-2 \emptyset$
hematite/limonite	$\emptyset .2$

Irregular patches up to a few mm across consist of relic zones of cryptocrystalline silica ($\varnothing . \emptyset \emptyset 2-\emptyset . \emptyset \emptyset 5 \mathrm{~mm}$) containing moderately abundant to locally very abundant dusty opaque. These are recrystallized moderately along veinlets and in irregular patches to chert as in most of the rock.

The rock is dominated by equant, slightly interlocking cherty quartz grains averaging $0.01-\varnothing .025 \mathrm{~mm}$ in size. Intergrown with chert are wispy stringers of extremely fine grained sericite and minor dusty opaque. Many of the stringers are stained orange by limonite.

Sericite is concentrated in a few layers averaging $\emptyset .1-\emptyset .5 \mathrm{~mm}$ wide. Associated with sericite in most of these is moderately abundant, dusty, carbonaceous opaque and moderately abundant disseminated limonite.

Pyrite forms scattered subhedral grains averaging $0.2-\emptyset .3 \mathrm{~mm}$ in size. It is leached from the section, leaving casts which range from empty to largely filled with limonite. A few grains also have thin rims of quartz along one side, formed as subparallel aggregates in the pressure shadow behind the pyrite grain. A few patches of pyrite up to $\emptyset .7 \mathrm{~mm}$ across on the borders of a quartz vein are replaced by dense aggregates of limonite.

Quartz forms irregular to well-defined veins averaging $0.1-2 \mathrm{~mm}$ in width. Larger veins consist of equant grains averaging $0.2-1 \mathrm{~mm}$ in size. Quartz is recrystallized strongly, mainly along grain borders to extremely fine grained aggregates with textures trending, with increasing recrystallization, towards those of the host rock. Early-formed, coarser grained quartz contains minor dusty opaque, which is absent in the much finer grained, recrystallized aggregates.

A few late stringers parallel to foliation and averaging $\emptyset . \emptyset 1-\emptyset . \emptyset 3 \mathrm{~mm}$ wide are of red-brown to opaque hematite/limonite.

Sample NATION 88-NBR-35

Porphyritic Latite; Siderite Alteration; Main Vein: Quartz-Calcite-Albite-(Limonite); Smaller Veins: Quartz-(Pyrite-Albite) Veins ' N ' 2000 N I7IIE
Phenocrysts of plagioclase are set in a moderately well foliated groundmass dominated by plagioclase, with disseminated patches of siderite. The main vein is bordered by albite with a core of quartz-calcite, and with cavities rimmed by limonite. Smaller veins are dominated by quartz, with scattered pyrite grains, and patches of albite where veins cut plagioclase phenocrysts.
phenocrysts

plagioclase	$5-7 \%$
groundmass	
plagioclase	$78-8 \emptyset$
siderite	$4-5$
Ti-oxide	$\emptyset .5$
pyrite	0.1
siderite	trace

veins

1) quartz-calcite-albite-(limonite) 8-10\%
2) quartz-(pyrite-albite) 5-7
3) siderite-(Ti-oxide) Ø.3
4) hematite/limonite 1-2
plagioclase forms anhedral to subhedral phenocrysts averaging $\emptyset .3-1 \mathrm{~mm}$ in size, with a few subhedral to euhedral ones up to 1.5 mm long. Composition probably is oligoclase (An25-30). Dusty opaque inclusions are common.

The groundmass is dominated by extremely fine grained (ø.ø1-ø.ø3
$\mathrm{mm})$, strongly interlocking plagioclase (albite-oligoclase?) grains, which are moderately to strongly oriented to define a foliation.

Siderite forms disseminated, ragged patches averaging Ø.ø5-Ø. 2 mm in size of extremely fine equant grains. In the weathered zones along one edge of the section and along a few veins of hematite, siderite is replaced by dense aggregates of hematite, and plagioclase in the surrounding groundmass is stained light orange by limonite.

Ti-oxide forms disseminated patches averaging $\varnothing .01-\emptyset .03 \mathrm{~mm}$ in size, and grains up to $\varnothing . \emptyset 3 \mathrm{~mm}$ across in cores of ankerite patches.
pyrite forms scattered anhedral to subhedral grains averaging Ø. Ø5-Ø. 1 mm in size. Some patches of pyrite are altered completely or almost completely to extremely fine grained aggregates of hematite.

Sericite forms scattered patches up to $\emptyset .15 \mathrm{~mm}$ long of extremely fine grains.

The main vein near one end of the section is up to 4 mm wide. In places it has a border zone up to 0.5 mm wide dominated by albite grains oriented subperpendicular to vein walls. The core of the vein consists of fine to medium grained quartz and patches of calcite. Cavities in the core of the vein up to a few mm across are rimmed by thin coatings of opaque hematite/limonite.

Quartz forms abundant veins and veinlets averaging Ø. Ø5-Ø. 3 mm in width. One subparallel set is at a low angle to the length of the section. Some veins contain a few subhedral to euhedral grains of pyrite averaging $0.05-\varnothing .1 \mathrm{~mm}$ in size.

A few discontinuous veinlets of replacement origin up to 0.2 mm wide are of siderite with minor Ti -oxide.

A few veins up to $\emptyset .2 \mathrm{~mm}$ wide are of opaque hematite, with a core up to $\emptyset .05 \mathrm{~mm}$ wide of cryptocrystalline, red-brown hematite.

Appendix 3

Geochemical Certificates

 GEOCHEMICAI ANAIYSIS CERTIEICATE
 THIS LEACH IS PARTILL POR M EE SR CA P LA CR MG BA TI B G AND LIMITED POR HA R AND AL. AU DETECTION LIMIT BY ICP IS 3 PPR.

EASTFIELD RESOURCES LTD. PROJECT NATION File \# 89-1237

SAMPLE;	He	Cu	Pb	3 n	Ag	Ni	Co	Mn	fe	As	U	A 1	Th	Sr	cd	Sb	81	V	Ca	?	La	Cr	Mg	Ba	71	B	A1	Ha	§	W	Au^{*}	Ho
	PPM	PPY	PPY	PPM	PPM	P9\%	PFM	PPM	\&	PPY	PPY	PPM	PPY	PF!	PPM	P9	PPM	PPM	\%	\%	PPM	PPM	3	PPM	\%	PPM	\%	;	\%	PPM	PPa	PP9
6+60110 $0+008$	2	39	14	101	. 1	45	$1!$	1143	3.24	5	5	ND	7	11	1	?	i	19	. 04	. 029	51	6	. 06	271	. 01	-	. 17	. 21	. 10	1	i	B0
39-H3T-1	2	29	2	56	. 1	399	43	305	2.75	170	5	ND	1	29	1	3	2	11	1.82	. 002	2	365	11.77	109	. 01	9	. 34	. 01	. 01	1		308000
B9-HAT-2	6	20198	5	88	3.3	37	36	143	7.98	12	5	N	1	i	$!$?	2	18	. 04	. 001	2	61	. 69	21	. 01	3	. 51	. 01	. 01	1	84	70
89-NAT-3	1	38	2	10	. 2	405	10	118	1.33	14	5	ND	2	51	1	i	2		11.31	. 001	2		16.48	14	. 01	9	. 01	. 01	. 01	2	:	2500
89-HAT-4	2	87	?	39	.	1028	44	417	2.80	10	5	ND	1	10	1	2	2	11	. 65	. 001	2	314	14.37	65	. 01	36	. 02	. 01	. 01	2		214000
89-NKT-5	8	43	6	48	. 3	12	3	591	1.07	16	5	HD	2	26	1	2	2	2	. 79	. 034	4	4	. 17	149	. 01	4	. 23	. 03	. 10	3	1	330
89-NA7-6	1	86	6	154	. 3	22	29	1447	9.55	909	5	ND	3	313	1	21	2	39	7.59	. 089	5	1	2.52	132	. 01	16	. 46	. 01	. 17	1	29	1100
89-NAF-7	1	63	2	138	. 1	24	33	1385	2.24	1412	5	HD	2	174	1	25	2	53	5.24	. 099	5	8	2.92	133	. 01	3	. 47	. 01	. 15	1	116	1200
STD C/AJ-R	17	62	41	132	7.1	73	31	950	$3.7{ }^{7}$	42	19	1	37	50	18	15	19	58	. 46	. 086	37	55	. 86	171	. 01	34	1.77	. 06	. 13	12	510	1400

 GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - . 500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO IO ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA II B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: P1 ROCK P2 SILT AU** ANALYSIS BY FA/ICP FRON 30 GM SAMPLE.
 Mincord Resources Inc. PROJECT NATION/SWAN File \# 89-4198 Page 1

SAMPLE\#	Mo PPM	$\begin{array}{r} \mathrm{Cu} \\ \mathrm{PPM} \end{array}$	$\begin{aligned} & \text { Pb } \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} \mathrm{Zn} \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { Ag } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Ni} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { Co } \\ \text { PPM } \end{array}$	Mn PPM	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{aligned} & \text { As } \\ & \text { PPM } \end{aligned}$	$\underset{\text { PPM }}{\mathbf{U}}$	$\begin{gathered} \text { AU } \\ \text { PPM } \end{gathered}$	$\begin{aligned} & \text { Th } \\ & \text { PPH } \end{aligned}$	Sr PPM	$\begin{gathered} \text { Cd } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \mathbf{P P M} \end{array}$	$\begin{array}{r} \mathbf{B i} \\ \text { PPM } \end{array}$	$\begin{array}{r} V \\ P P M \end{array}$	$\begin{array}{r} \mathrm{Ca} \\ \boldsymbol{X} \end{array}$	$\begin{aligned} & P \\ & \% \end{aligned}$	$\begin{array}{r} \text { La } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{Mg} \\ \mathbf{K} \end{array}$	$\begin{array}{r} \text { Ba } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathbf{T} \mathbf{i} \\ \mathbf{\%} \end{array}$	$\begin{array}{r} \text { B } \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { Al } \\ \text { \% } \end{array}$	$\begin{gathered} \mathrm{Na} \\ \mathbf{X} \end{gathered}$	$\begin{aligned} & K \\ & \chi \end{aligned}$	$\begin{array}{r} H \\ \text { PPN } \end{array}$	$A u^{* *}$ PPB
NAB-10-89	1	54	22	134	. 4	39	32	1315	9.42	2	5	ND	1	28	1	3	2	223	1.79	. 076	5	118	3.33	1132	. 36	4	3.84	. 02	. 09	2	16
NAB-11-89	2	25	6	18	.1	11	1	66	. 56	8	5	ND	1	4	1 1	2	2	3	. 01	. 009	4	4	. 01	113	. 01	2	. 09	. 01	. 05	1	2
NAB-12-89	1	10	22	49	1.	4	3	409	. 93	2	5	ND	2	37	1	2	2	6	1.16	. 037	10	6	. 23	148	T01	4	. 60	. 02	. 19	$\bigcirc 1$	7
NAB-13-89	1	3	10	22	E1	4	1	111	. 31	2	5	ND	2	20	1	2	2	1	. 04	. 016	11	3	. 04	96	.01	4	. 31	. 02	. 17	1.	28
NAB-14-89	3	6	7	69	1	6	1	332	. 30	\% 3	5	ND	1	72	¢ 1	2	3	2	4.02	. 004	2	9	. 27	31	\$01	2	. 03	. 01	. 01	1	6
NAF-01-89	1	15	4	14	\% 1	8	1	47	. 32	2	5	ND	9	3	1	2	3	1	. 02	. 004	3	3	. 01	101	\%09	2	. 07	. 01	. 04	1	8
NAF-02-89	2	17	6	16	\downarrow	14	3	225	. 56	8	5	ND	1	4	\% 1	2	2	1	. 04	. 013	5	6	. 01	133	03	6	. 07	. 01	. 04	± 1	4
NAF-03-89	1	66	12	144	. 4	29	34	1273	9.90	2	5	ND	1	174	\%	4	2	273	2.95	. 099	4	57	3.77	223	\$07,	2	3.85	. 01	. 15	1	, 1
NAF-04-89	1	61	10	81	$\stackrel{+}{3}$	41	22	793	5.94	\% 2	5	ND	1	134	\%	9	2	129	14.95	. 042	3	112	2.23	51	17\%	10	4.00	. 01	. 01	1	11
SWAB-100-89	1	37	11	38	\% 1	3	8	443	3.32	2	5	ND	1	60	*	2	2	83	. 85	. 139	8	7	. 47	69	109	2	. 77	. 03	. 13	3	19
SWAB-101-89	1	50	9	55	\bigcirc	3	12	777	3.92	2	5	ND	1	64	1.	2	2	72	1.23	.147	7	11	. 65	52	\$04	2	1.07	. 02	. 12	4	3
STD C/AU-R	18	60	39	132	6.8.	68	31	1020	4.11	38.	22	8	38	48	19.	15	22	59	. 48	. 099	39	55	. 89	176	\%0\%	36	1.98	. 06	. 13	13.	510

GEOCHEMICAI ANAIYSIS CERTIEICATE

- SAMPLE TYPR: ROCI AU** ANALYSIS BI IA+AA EROM 30 GM sAMPLE. HG ANALYSIS Bl ILAMBLESS AA.

MINCORD EXPLORATION LTD File \# 89-2334

TITLE 06－06－89 13：52：38 v89－02490．0 M．CAROI 01／06／89 CLIEMT BATfle Moukfain（chada）lid．
PROJECP 75－91 \quad SAMPLES： 28 REPRREICE：SAIPMEMY $\$ 2$

crnital values
 Insufficient Sample

－9 No Value Recorded
Values above the upper linit are shown as＞uplint
Values below the lower limit are shown as＜lolnt（ie not detected）
DETERHIMATIOMS

01 Au 30g PA－ha B20 PPB $28 \quad 510000$ Results Reported
02 Ag ICP RO4 PPH $28 \quad 0.5 \quad 50.0$ Results Reported
03 As ICP B04 PPM 28 52000 Results Reported
04 Bi ICP RO4 PPM $28 \quad 220000$ Results Reported
05 Co ICP B04 PPM $28 \quad 120000$ Results Reported
06 Cu ICP $\mathrm{CO} 4 \mathrm{PPM} 28 \quad 120000$ Results Reported
07 Ho ICP B04 PPM $28 \quad 120000$ Results Reported
08 Pb ICP E04 PPM $28 \quad 510000$ Results Reported
09月 ICP EO4 PPM $28 \quad 10 \quad 2000$ Results Reported
10 Zn ICP B04 PPM 28 I 20000 Results Reported
SAMPLE PREPS
$\begin{array}{ll}40 \text { SAMPLE flPB＝R } & \text { ROCK OR BED ROCK } \\ 41 \text { PO5：} 28 & \text { CROSB，POLVERILE－150 }\end{array}$
REHARKS
50 Assay of high Ag and Pb to follow on
51 189－02490．6．

＊＊＊＊

PORMAT（ $\mathrm{AB}, 18, \mathrm{Al}, \mathrm{Al}, 1 \mathrm{~A}, \mathrm{A20}, 10(18, \mathrm{A7}, \mathrm{Al})$ ）

$\mathrm{b}^{\text {Path }}$	Au 30 g		Ag	As		Bi		Co	Cu		Ho	Pb		1	2n	
20001 R2 BC－0467	30	＜	0.5	532		27		31	63	く	1	36	＜	10	127	
24900003 R2 BC－0468	20	く	0.5	12	く	2	く	1	18		1	＜ 5	＜	10	54	
24900004 R2 BC－0469	350	＜	0.5	107		1	く	1	6		1	12	く	10	210	N Grid
24900005 R2 BC－0470	1	＜	0.5	175		87		19	1	く	1	100	＜	10	12	Nation
24900006 R2 BC－0471	5	く	0.5	296		116		36	1	く	1	115	＜	10	8	＇SW＇
24900007 R2 BC－0472	＜ 5	く	0.5	724		130		16	5	く	1	101	＜	10	18	sw Grid
24900008 R2 BC－0473	2084	）	50.0	200		41		1	2228		6	＞ 10000	く	10	7259	
24900009 R2 BC－0474	410	）	50.0	2000		8	く	1	3180		1	5417		10	11541	
24900010 R2 BC－0475	197		22.4	1356		23		12	82		4	202	＜	10	429	
24900011 R2 BC－0476	256	）	50.0	2000		13		18	62			2819	＜	10	135	
24900012 R2 BC－0589	28		6.9	16		12		8	89		14	81	く	10	63	
24900013 R2 BC－0590	23		1.7	28		14		18	75	く	1	14	く	10	275	
24900014 R2 BC－0591	1719	，	50.0	435		33		1	94		1	＞ 10000	＜	10	11508	
24900015 R2 BC－0592	26		4.4	69		6		8	67		1	706	＜	10	2898	
$24900016 \mathrm{R2}$ BC－0593	11	く	0.5	26		20		20	131		5	44	く	10	94	
24900017 R2 BC－0594	20		1.3	22		10		2	26		2	89	＜	10	96	
24900018 R2 BC－0595	9		0.6	29		10		1	22		3	23	く	10	62	
24900019 R2 BC－0596	14		0.9	14		11		6	75		20	25	＜	10	85	
24900020 R2 BC－0597	6		0.5	11		12		1	26		16	30	＜	10	112	
24900022 R2 BC－0598	16		0.6	34		11		15	106		1	25	く	10	56	
24900023 R2 BC－0599	17		1.3	82		11		28	648		1	19	＜	10	49	
24900024 R2 BC－0600	40		3.3	140	く	2		31	2436	く	1	20	く	10	36	
24900026 R2 BC－0601	10		1.0	214	＜	2		38	358	＜	1	15	く	10	17	
24900027 R2 BC－0602	25		0.7	150		19		42	196	く	1	48	＜	10	94	
2×190029 R2 BC－0603	14	く	0.5	56		16		25	103	く	1	39	く	10	54	
－ $030 \mathrm{R2}$ bc－0604	197		0.6	183		18		28	135		38	60	＜	10	80	
24900031 R2 BC－0605	302		0.9	297		33		32	282		51	80	く	10	105	
24900032 R2 BC－0606	9	＜	0.5	28		12		30	110		2	25	く	10	49	

Bondar－Clegg

ACME ANALYTICAL LABORATORIES
DATE RECEIVED: NOV 161989 852 E. HASTINGS ST. VANCOUVER BC. VGA 1R6 PHONE 253-3158 DATA LINE 251-1011 DATE REPORT MAILED: GEOCHEM PRECIOUS METALS ANALYSIS
10 GRAM SAMPLE FIRE ASSAY AND aNalysis by icp/GRaphite furnace.

- SAMPLE TYPE: ROCK PULP

SAMPLE\#

SW-89-MR-6
SW-89-MR-8
SW-89-MR-11 15 SW-89-MR-12 SW-89-MR-21
PB PB

Appendix 4

Rock Descriptions

89-NAT-5:	200N/2005E ('N' Grid) Au 1 ppb , subcrop, quartz eye porphyry?, limonite, minor cpy, possibly brecciated with rounded quartz clasts to 1 centimeter.
89-NAT-6:	2020N/2000E ('N' Grid) Au 29 ppb, As 909 ppm, Sb 21 ppm, Hg 1100 ppb . Subcrop, ankeritic gossan, silicified, blebby and fracture controlled sulfides, more pronounced clastic appearance, altered siltstone?
89-NAT-7 :	2000N/1975E ('N' Grid) Au 116 pb , As 1412 ppm , Sb 25 ppm , Hg 1200 ppb . Outcrop, ankerite and silicified siltstone. Contains lenses of sericite-kaolinite.
NAF-4-89:	L2500N/1425E ('N' Grid) Au 11 ppb , sb 9 ppm subcrop, fine grained black unit with rusty brown to beige zones, trace fine grained pyrite, cut by occasional quartz veinlet.
NAB-14-89:	L2500N/1455E ('N' Grid) Au 6 ppb subcrop, bull white quartz veinlet in volcanic host, occasional chaotic limonite, quartz veinlet striking 128 degrees dipping 32 degrees NE.
NAF-3-89:	L2450N/1488E ('N' Grid) Au 1 ppb outcrop, fine grained to aphanitic black rock with rusty brown area, silicified siltstone?, surrounded by foliated chlorite schist, contains trace fine grained pyrite.
NAB-13-89:	L2440N/1500E ('N' Grid) Au 28 ppb quartz feldspar porphyry, aphanitic carbonate altered, light grey with orange limonite specks, contains quartz eyes to 2 mm , trace pyrite.
NAB-12-89:	2250N/1770E ('N' Grid) Au 7 ppb outcrop, carbonate altered aphanitic volcanic, beige with 5% quartz grains $2-3 \mathrm{~mm}$ in size, 3% pyrite as fine grained aggregates, alteration zone striking 178 degrees.
NAF-2-89:	2250N/1925E ('N' Grid) Au 4 ppb outcrop, chert with quartz veinlets striking 040 degrees - 050 degrees and dipping 58 degrees to 62 degrees NW .
NAB-11-89:	2270N/1955E ('N' Grid) Au 2 ppb subcrop, black to medium grey chert cut by quartz veinlets, trace cpy, <.5\% py as disseminated grains.
NAF-1-89:	2250N/1975E ('N' Grid) Au 8 ppb subcrop, black to medium grey chert, cut by quartz veinlets, $<.5 \% \mathrm{py}$.
NAB-10-89:	$2115 \mathrm{~N} / 2120 \mathrm{E}$ ('N' Grid) Au 16 ppb subcrop, aphanitic volcanic, pale green schistose, weathers rusty brown, brecciated, black chloritic stringers, occasional carbonate veinlets, silicified. Chlorite schist.

B.C. 467 200N/1975E ('N' Grid) Au 350 ppb , As $107 \mathrm{pm}, \mathrm{Zn} 210$

```
('SW' Grid)
```

89-NAT-1: 400N/2720W ('SW' Grid) Au 2 ppb, $\mathrm{Hg} 308,000 \mathrm{ppb}$, As 770 ppm, outcrop, grey silicified chalcedonic rock, several generations of clear quartz veinlets, minor whitish sulfide, mariposite.

89-NAT-2: 410N/2720W ('SW' Grid) Au $84 \mathrm{ppb}, \mathrm{Cu} 20,198 \mathrm{ppm}$, Rubble, gossanous boulder with malachite and chalcopyrite.

89-NAT-3: $375 \mathrm{~N} / 2740 \mathrm{~W}$ ('sW' Grid) Au $1 \mathrm{ppb}, \mathrm{Hg} 2600 \mathrm{ppb}$ subcrop, banded clear vuggy quartz in light buff coloured silicified carbonate, minor limonite on fractures magnesium content indicates that the carbonate is dolomite.

89-NAT-4: $350 \mathrm{~N} / 2740 \mathrm{~W}$ ('SW' Grid) Au 3 ppb , Hg 214,000 ppb, subcrop, grey coloured silicified ultramafic, grey chalcedonic veinlets, cinnebar, some iron carbonate.

SW-89-MR-5: 437S/2720W ('SW' Grid) Au 4 ppb , large angular block of rubble (. $6 \mathrm{~m} x .6 \mathrm{~m} x .6 \mathrm{~m})$, carbonate altered schist, weathers to limonite, less than 1% rusty pyritic blebs, approximately 5% corroded sulfide blebs.

SW-89-MR-6: 400S/2800W ('SW' Grid) Au 43 ppb, Ni 201 ppm , Cr 551 ppm , outcrop, top of ridge, chlorite and talc altered feldspar amphibole porphyry, appears to have been a gabbro.

SW-89-MR-7: 200S/2750W ('SW' Grid) Au 6 ppb, blocky rubble from soil hole (several pieces to . 2 m x . 2 m), felsic porphyry, quartz rich.

SW-89-MR-8: 200S/2700W ('SW' Grid) Au $12 \mathrm{ppb}, \mathrm{Ni} 920 \mathrm{ppm}$ rubble, from soil hole, red limonitic quartz carbonate rock, schistose.

SW-89-MR-9: 200S/2650W ('SW' Grid) Au 8 ppb, Rubble from soil hole, bleached pyritic sericite schist, possibly derived from siltstone.

SW-89-MR-10: 200S/2650W ('SW' Grid) Au 120 ppb , As 636 ppm , rubble from soil hole, silicified felsic rock, minor limonite.

SW-89-MR-11: 060N/2780W ('SW' Grid) Au 2 ppb, Cr 1665 ppm , outcrop, massive pod $1.5 \mathrm{~m} \times 1 \mathrm{~m}$ (as exposed), of ilmenite or chromite?

SW-89-MR-12: 015N/2785W ('SW' Grid) Au 3 ppb , As $197 \mathrm{ppm}, \mathrm{Ni} 1316$ ppm, outcrop, silicified ultramafic, leucocratic, some mariposite.

SW-89-MR-20: 370N/2710W ('SW' Grid) Au 6 ppb, Hg 3000 ppb , outcrop, quartz flooded and intensely silicified rock, chalcedonic quartz veinlets, mariposite.

SW-89-MR-21: 370N/2750W ('SW' Grid) Au 11 ppb, Hg 2900 ppb , subcrop, silicified ultramafic, stockwork quartz veining.

Appendix 5

References

Armstrong, J. E.; Northern Part of the Pinchi Lake Mercury Belt, British Columbia; G.S.C. Paper 44-5, 1944.

Armstrong, J. E.; Fort St. James map area; Cassiar and Coast Districts, British Columbia; G.S.C. memoir 252, 1949.

Christoffersen, J; Assessment Report for the Gros and Gros 2 Mineral Claims, Report \#14926, 1986.

Garrnett, J. A.; Geology and Mineral Occurrences of the Southern Hogem Batholith, B.C.D.M. Bulletin 70, 1978.

Morton, J. W.; Geochemical Soil Survey, Induced Polarization Survey, Integrated Geophysical Survey, Petrographic Study on the Indata Property, March 1989.

Morton, J. W.; Geochemical Soil Survey, VLF-EM and Magnetometer Survey, Preliminary Geological Mapping on the Nation Claims, Assessment Report, April 1989.

SW PRIJJET Figme 6.
LINE NUMBER: 400 SOUTH
" A ": 50.0
SCINTREX IPR-11 RECEIVER
POLE-DIPOLE ARRAY
TX PULSE TIME:
2.0
RECEIVE TIME: 2.0
SCALE 1: 2500

LEGEND

O— Mercury (ppD)

- Gold (ppD)
Sample location

EASTFIELD RESOURCES LTD NATION PROJECT omineca mo., bic.

SW GRID
SOIL GRID
$\mathrm{Au}(\mathrm{ppb})$ and $\mathrm{Hg}(\mathrm{ppb})$

