D. L. COOKE AND ASSOCIATES LTD.

MINERAL EXPLORATION CONSULTANTS

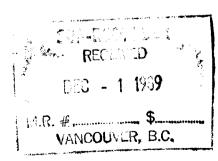
ASSESSMENT REPORT

1989 PRELIMINARY GEOCHEMICAL SURVEY
KC MINERAL CLAIMS
MT. MILLIGAN AREA OMINECA M.D.

Latitude: 55° 07' N Longitude: 123° 56' W NTS: 93 0/4 W.

HLX RESOURCES LTD.

1900 - 999 West Hastings St.,
Vancouver, B.C., V6V 2W2


by
David L. Cooke, Ph.D., P.Eng.
D.L. COOKE AND ASSOCIATES LTD.
811 - 675 West Hastings St.
Vancouver, B.C., V6B 1N2

NOVEMBER 10, 1989 FIELD WORK DONE: July 15 & Aug. 28, 1989

CLAIMS ON WHICH WORK DONE:

Claim KC 2 Record No. 10098

Record Date February 14/89

L90 NO:	1205	RD.
ALTIUM:		: } ?
FILE NO:	سيناه والمستهارة والمس	

TABLE OF CONTENTS

	Page
SUMMARY AND CONCLUSIONS	1
RECOMMENDATIONS	1
INTRODUCTION	2
LOCATION AND ACCESS	2
PROPERTY AND OWNERSHIP	2
GEOLOGY AND MINERALIZATION	2
GEOCHEMICAL SURVEY	3
DISCUSSION OF RESULTS	3
REFERENCES	4
ILLUSTRATIONS	a de Maria
Figure 1: Location Map, KC Claims, Mt. Milligan A Figure 2: Claim Map, KC Claims, 1: 25,000	
Figure 3: Sample Locations, Cu & Au Results, KC Claims, 1: 10,000	
<u>APPENDICES</u> → ← Z	
Appendix I: Statement of Expenditures Appendix II: Statement of Qualifications	***
Appendix III: Analytical Results - Min En Laborator es	
	B
보호 : : : : : : : : : : : : : : : : : : :	

SUMMARY AND CONCLUSIONS

The KC 1 and 2 claims (40 units) cover an area believed to be underlain by Triassic volcanic and/or intrusive rocks. They are favourable for the occurrence of porphyry copper-gold mineralization similar to that which occurs on the adjacent Mt. Milligan property of Continental Gold Corporation and BP Resources Can. Ltd. The claims adjoin the east boundary of the Continental property and straddle the main logging road which runs some 90 kilometers west from McKenzie, B.C. to the Mt. Milligan area.

A preliminary, reconnaissance type soil and rock sampling survey was done over the KC property in late July and August, 1989 to determine the usefullness of geochemistry in evaluating the potential for the occurence of copper and gold on the property. Anomalous levels of gold in soils and copper and gold in erratic rock samples lead to the conclusion that more detailed geochemical work is warranted. The area is relatively flat and bedrock is obscured by glacial drift. Consequently the source of the anomalous levels of Cu and Au in soil and rock samples is unknown. Mineralized float of intermediate and basic volcanic rocks contain abundant disseminations of pyrite and various amounts of chalcopyrite.

RECOMMENDATIONS

Further evaluation of the KC claims will require a combination of exploration techniques. A detailed geochemical survey is recommended for the claims in conjunction with geophysical surveys to better locate the source of anomalous gold and copper found in the soils and in mineralized float.

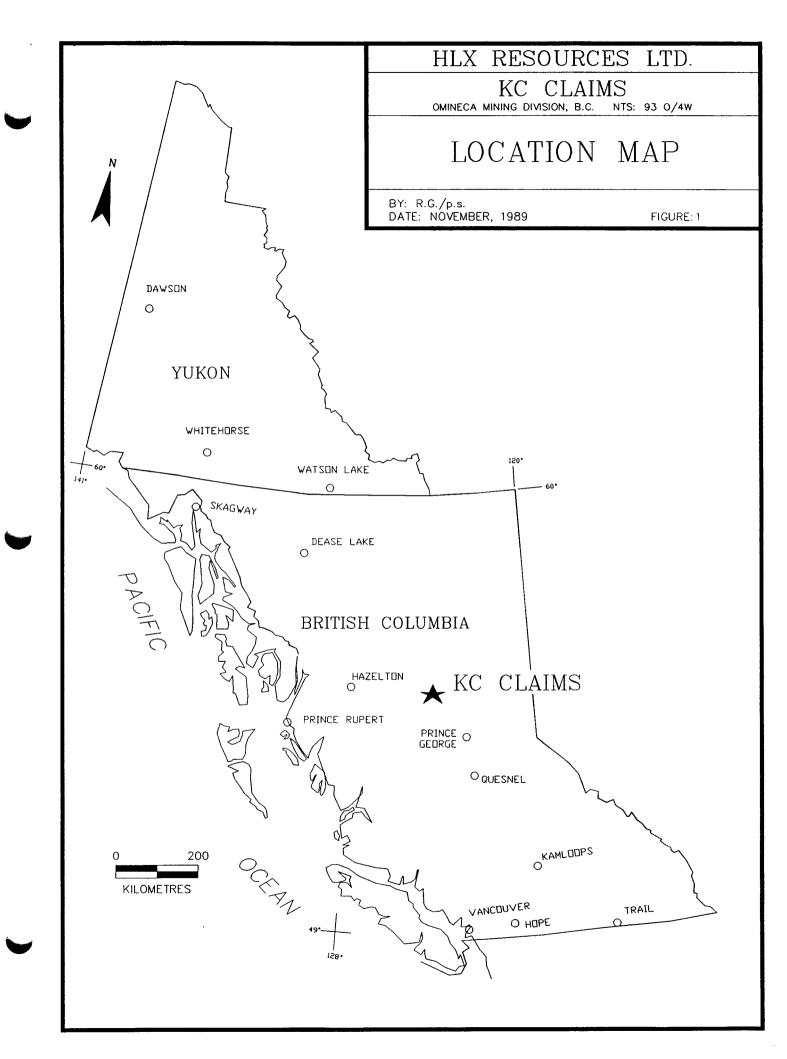
INTRODUCTION

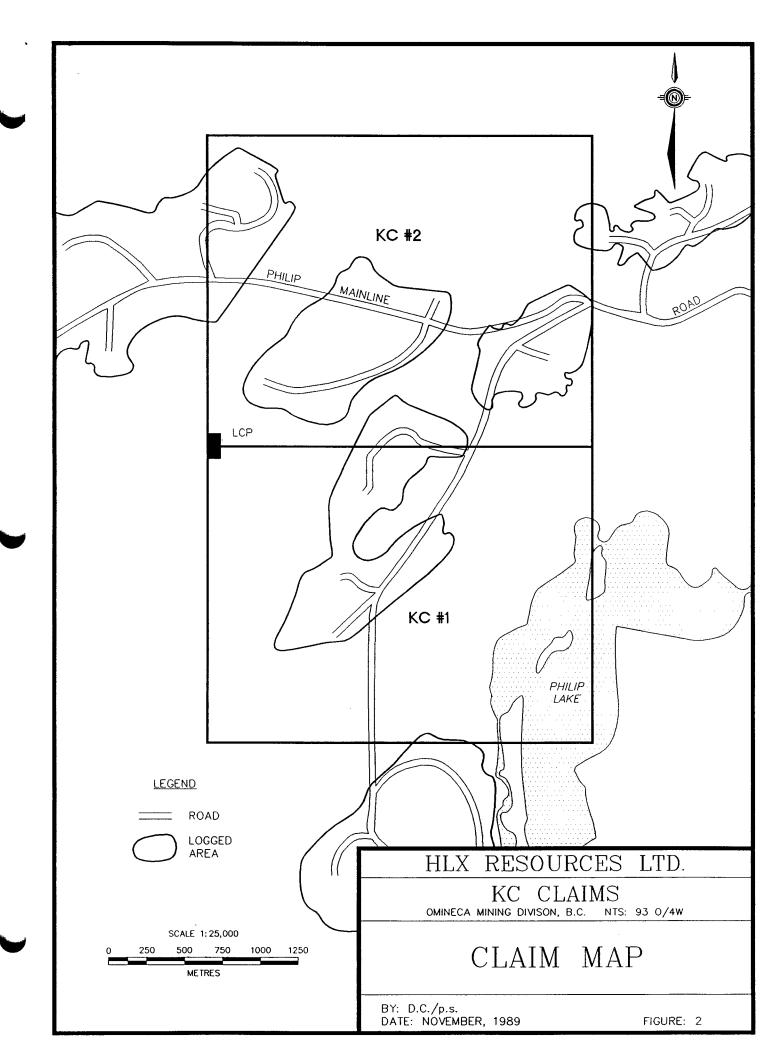
The KC claims were staked in the covered area on the eastern margin of the Mt. Milligan property because of the potential for the occurrence of other porphyry copper-gold deposits in the area. A reconnaissance soil survey was done in July and August by geologists D.L. Cooke, Ph.D., P.Eng., and R.U. Bruaset, B.Sc., along logging roads which cross the propety. This survey was confined to the KC 2 claim. Because of the unknown thickness but widespread nature of glacial drift cover in the area, mineralized volcanic float was also collected for analysis.

The expenditures for this preliminary geochemical survey are being applied for one year's assessment credits on the KC 1 and 2 claims.

LOCATION AND ACCESS

The KC claims are located immediately west of Philip Lakes, along the main logging road, 90 kilometers west of McKenzie, B.C. (Figure 2). Timber on parts of the KC claims have been clear-cut, allowing easy access to most areas of the claims. The property adjoins the east boundary of the Mt. Milligan property which consists of the Heidi, Phil and Rainbow claims. (Figure 2).


PROPERTY AND OWNSHIP


The KC claims are held by D.L. Cooke in trust for the Cooke Nation Syndicate. The pertinent claim data is as follows:

<u>Claim</u>	<u>Units</u>	Rec. No.	Rec. Date
KC 1	20	10097	February 14, 1989
KC 2	20	10098	February 14, 1989

GEOLOGY AND MINERALIZATION

The area of the KC cliams is covered by glacial drift of unknown thickness. It is probably underlain by Takla volcanics of Triassic age, similar to the sequence which occurs on the Mt. Milligan property to the west. Abundant erratics in the glacial cover on the KC 2 claim consists of augite andesite and basalt boulders. Some of these volcanic boulders are impregnated with disseminations of pyrite , with or without chalcopyrite. The best geochemical values obtained from these boulders are 3650 ppm. Cu and 444 ppb. Au. (Figure 3).

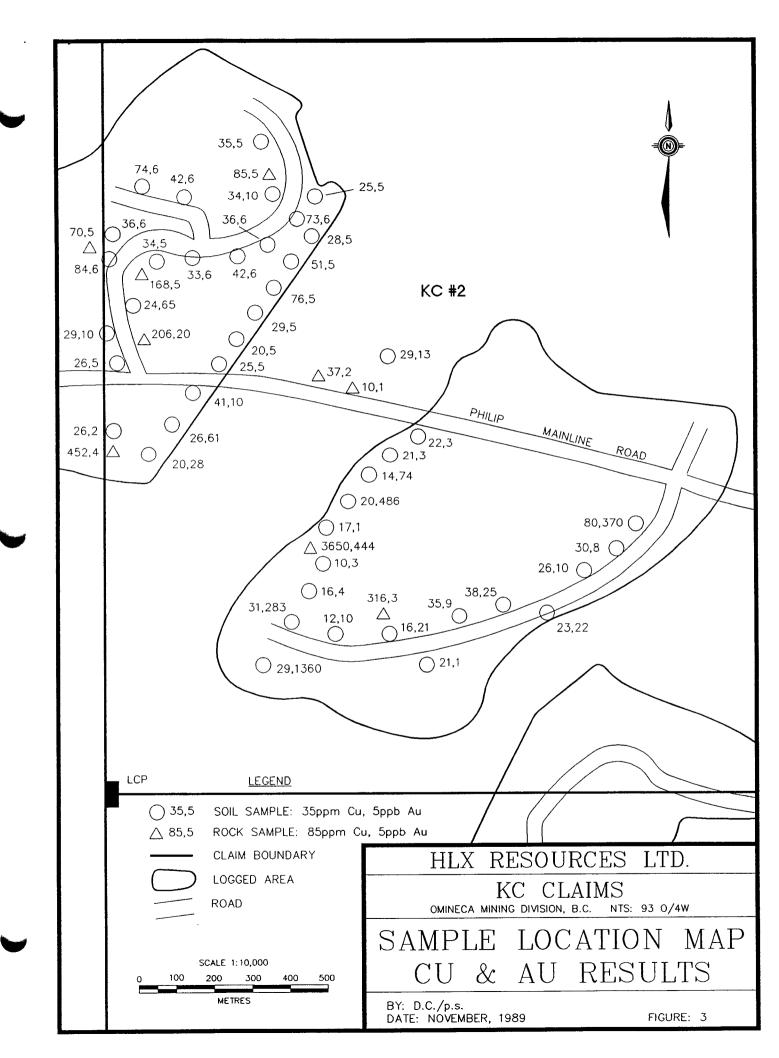
GEOCHEMISTRY

Soil samples were collected at 50 metre intervals along logging roads and skid trails on the KC 2 claim (Figure 3). Sample depth varied from 15 cm to 25 cm. In general a good redbrown B horizon is developed at these depths within the glacial The B horizon is less well-developed on eskers drift cover. which are common in this area. Soil samples were placed in kraft sample bags and shipped to Min-En Laboratories in North Vancouver for analysis. Sulphide-bearing float were collected from the vicinity of some soil samples and submitted for geochemical analysis.

Soil samples were dried at approximately 60°C and the -80 mesh portions digested with an acid mixture of HNO3 and HClO4. The solutions were standardized and then analysed by computer operated Jarrell Ash 9000 Induction Plasma (ICP) Analyser. was determined by atomic absorption spectrophotometry. samples were crushed and treated in the same manner as the soil samples. The analytical results are presented in Appendix III. Plots of copper and gold values are shown in Figure 3.

DISCUSSION OF RESULTS

Anomalous values in soils and rocks are assumed to be as follows:


Cu ≥ 100 ppm; Au \geq 20 ppb; Ag \geq 1.0 ppm, and As \geq 15 ppm. total number of samples are insufficient to statistically determine the anomalous levels.

On the basis of the assumptions made above, it is evident that many of the mineralized rock samples are anomalous for copper, gold, silver and arsenic. On the other hand, some soil samples are anomalous for gold and arsenic only.

Report by D.L. COOKE AND ASSOCIATES LTD.

David L. Cooke, Ph.D., Eng.

November 10, 1989.

REFERENCES

- Hunter, R.G., 1989: News Releases; Continental Gold Corp. -Nov. 7, 1989; Aug. 21, 1989; Aug. 10, 1989, etc.
- Rice, H.M.A., 1948: G.S.C. Map 971A, Smithers Ft. St. James, 1" = 8 miles.
- 3. Muller, J.E., 1960: G.S.C. Map 11 1961, Pine Pass, 1:253,440.

APPENDIX I

1989 EXPENDITURES KC CLAIMS, COOKE NATION SYNDICATE

SALARIES

D.L. Cooke, Geologist

July 15 & Aug. 28, 1989: 2 days @ \$350/day\$700.00 M. Cooke, Assistant	
July 15, 1989: 1 day @ \$150/day 150.00 R. Bruaset, Geologist	
August 28, 1989: 1 day @ \$250/day 250.00 Report - D.L. Cooke: 1 day 350.00	
	\$1,500.00
GEOCHEMISTRY - ANALYSES	
Min-En Labs - Sept. 17, 1989: 6 rocks @ \$17.35 ea 103.50 23 soils @ \$ 7.00 ea 350.75	
Min-En Labs - Aug. 1, 1989: 5 rocks @ \$14.75 ea 73.75 21 soils @ \$ 7.00 ea 147.00	675.00
CAMP & DOMICILE	
July 14 - 15 & Aug. 27 - 28, 1989: 8 man days @ \$50.00/ea.	400.00
TRANSPORTATION	
Truck Rental - July 14 - 16 & Aug. 27 - 28, 1989 5 days @ \$50.00/day 250.00	
Gasoline, etc	829.10
1111CGGC, 133/ NM C 13 / NM **** 133/33	222.10

OCTOBER 16, 1989

TOTAL EXPENDITURES \$3,404.10

APPENDIX II

STATEMENT OF QUALIFICATIONS

I, DAVID LAWRENCE COOKE, of the Municipality of Surrey in the Province of British Columbia, hereby certify:

- That I am a Consulting Geologist, with a business office at 811 - 675 West Hastings Street, Vancouver, B.C., V6B 1N2.
- 2. That I graduated with a B.Sc. degree in Geology from the University of New Brunswick in 1959, and with a M.A. degree and Ph.D. degree in Geology from the University of Toronto in 1961 and 1966 respectively.
- 3. That I have practised my profession as an exploration geologist from 1959 to the present time in Canada, the U.S.A., Mexico, the Caribbean and South America.
- 4. That I am a Registered Member of the Association of Professional Engineers of the Province of British Columbia.
- 5. That I have personally examined the KC Property, carried out the sampling on the said property, and that I am the author of this report.

David L. Cooke, Ph.D., P.Eng. November 10, 1989

Report/DLC

APPENDIX III ANALYTICAL RESULTS D. L. COOKE AND ASSOCIATES LTD. COMP: D.L. COOKE & ASSOC.

ATTN: D.L. COOKE

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

FILE NO: 9V-0754-RJ1

DATE: JUL-31-89

* TYPE ROCK GEOCHEM * (ACT:F31)

KC-R-1	SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	B I PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH	U PPM	V PPM	ZN PPM	GA PPH	SN PPM	W PPH I	CR PPH 1	A⊎ PB
	KC-R-2 KC-R-3 KC-R-4	1.0 1.2 1.3	22430 24210 12430	15 9 5 1	1 1 1 1	123 32	.7 .7 .7 .2	7 11 11 -9 18	12790 23370 16440	7 /	31 29 36	206 70 168	72020 44640 31210	7840 2650 370	5 10 10 1	16530 11370 1490	279 615 177	4	890 1450 760	11	1830 1480 1250	36 32 8	1 1 1 1	10 33	1 1 1 1		129.6 168.8 69.9	42 73 60 14 26	2 2 2 1 2	1 2 1 1 2	1 1 1 1	53 40	25 20 5 5

COMP: D.L.COOKE & ASSUCIATES

MIN-EN LABS - ICP REPORT

FILE NO: 9V-1063-SJ1

PROJ:

PROJ:

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

DATE: SEP-16-89

ATTN: D.L.COOKE

(604)980-5814 OR (604)988-4524

* TYPE SOIL GEOCHEM * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	N I MAG	P PPM	PB PPM	SB PPM	SR PPM I	TH PPM P	U PM	V PPH	ZN PPM I	GA PPM F	SN PPM PF	W CR	AU PPB
KC22S KC23S KC24S KC25S KC26S	.3	19480 16610 18200 23310 29780	1 1 1 1	1 1 1 1	69 50 68 70 120	1.0 1.0 .8 1.4 1.4	5 4 5 6 7	3430 3590 3690 3220 3630	.1 .1 .1	17 14 14 18 20	20 2 26-2 41-3	9870 9200 5260 8790 2720	500 390 420 500 800	10 9 10 13 19	5010 4540 3730 5380 6720	416 600 785 379 1118	1 1 1 1 2	90 80 90 90 130	14 18	1690 2320 1090 2000 4720	13 12 15 20 20	1 1 1 1	12 13 14 12 15	1 1 1 1	1 8 1 8 1 8 1 11 1 11	7.9 3.2 3.5	80 85 77 70 154	1 1 1 1	1 1 1 1 1	1 20 1 16 1 16 1 21 1 11	28 - 61 - 10 - 13 -
KC27S KC28S KC29S KC30S KC31S	.8	14520 19270 8710 17410 15380	1 1 1 1	1 1 1 1	48 67 28 56 76	.6 .9 .5 1.0	4 5 3 5 4	2330 3530 1540 3240 4070	.1 .1 .1	11 13 8 13 15	21/3 14/1 20/2	8020 2080 3800 9020 0210	360 470 220 450 560	8 10 5 10	3430 4290 2300 3840 4210	332 207 162 470 390	2 1 1 2	60 100 40 70 90	10 8 13	1150 2210 750 2390 2000	11 12 4 17 12	1 1 1 1	10 14 6 14 14	1 1 1 1	1 8	9.7 2.1	91 69 65 105 60	1 1 1 1 1	1 1 1 1	1 13 1 22 1 9 1 18 1 17	3- 3- 74- 486-
KC32S KC33S KC34S KC35S KC36S	.3	11450 14890 17090 18450 15040	1 1 5 1 3	1 1 1 1	40 47 86 109 86	.6 .8 1.3 1.0	5 4 7 5 4	3930 2810 5030 5130 3510	.1 .1 .1 .1	9 11 18 17 12	16-2 31-4 29-3		440 290 670 640 590	6 8 14 19 10	2390 2640 5640 6770 4110	161 568 277 439 212	1 2 1 2	80 60 100 120 80	9 14 17	1370 1380 1690 1350 2230	10 6 17 19	1 1 1 1	16 11 18 17 15	1 1 1 1 1	1 7 1 7 1 13 1 9 1 7	2.8	39 75 82 81 69	1 1 2 1	1 1 1 1	1 17 1 14 1 24 1 35 1 23	283 1360
KC37S KC38S KC39S KC40S KC41S	.6 1 .6 1	17460 19610 18680 21700 18650	1 1 1 4	1 1 1 1	68 69 69 66 70	1.1 1.6 1.3 1.3	7 6 6 6 6	4980 4320 4880 4210 4680	.1	15 16 21 19 16	16-3 21-3 35-5 38-3 23-3	4050 7810	700 560 500 510 500	13 13 10 11 10	6460 4700 5830 5890 4650	266 441 406 592 298	1 1 1 1	120 90 90 100 90	14 16 21	1450 1790 2050 1670 1830	20 17 20 25 13	1 1 1 1	17 18 17 17 17	1 1 1 1	1 105 1 100 1 189 1 118 1 132	3.9	61 122 83 99 76	1 1 1 1 1	1 1 1 1	1 33 1 24 1 35 1 29 1 31	21/
KC42S KC43S KC44S	.8 2 1.8 2	7280 5230 0500 9750	2 1 6 7	1 1 1	78 81 82 77	1.0 1.3 1.4 1.3	6 6 7 7 1	5240 4570 5650 1550	.1 .2 .2	16 19 21 21	26-29 30-36 80-36 62 36	6030 6850	600 620 880 640	13 13	4740 5260 8550 10980	372 440 430 706	2 1 3 3	120 110 150 130	17 23	1020 2490 1060 1010	19 12 20 28	1 1 1 3	20 19 21 34	1 1 1 3	1 100 1 105 1 120 1 117	.7	58 09 63 85	1 1 2	1 1 1 2	1 23 1 25 1 32 1 58	10 - 8 - 370 - 1

COMP: D.L.COOKE & ASSOC.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

DATE: SEP-15-89

FILE NO: 9V-1063-RJ3

ATTN: D.L.COOKE

PROJ:

(604)980-5814 OR (604)988-4524

* TYPE ROCK GEOCHEM * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB	SR PPM	TH PPM	U PPM	V PPM	ZN PPM	GA PPM	SN PPM	W PPM F	CR PPH	AU PPB
KC8R KC9RX KC9R KC10R KC11R	1.7 1.8 .6	19090 37130 39940 3610 13310	48 22 15 60 60	1 1 1 1	30 60 59 18 31	1.5 1.9 2.2 1.4 1.0	14	14530 31260 38940 93150 10260	.1 .1 .1 5.6 1.8		37 36 10	53840 57270 49400 42570 39120	900 580 500 1430 530	27	8940 18600 16100 40170 14360	169 1238 1178 937 255	8 5 5 11 253	620 460 430 60 380	22 9 10 67 45	1200 1510 1720 380 920	20 32 31 67 35	1 1 1 6	15 1 1 181 20	1 1 3 1		179.0 59.7	30 103 91 51 120	2 4 4 3 2	2 3 3 2 2		57 43 31 206 94	4 2 1 1 444
KC12R	.8	8050	9	1	87	.5	8	11400	.1	30	316	20910	1970	2	1390	59	20	230	28	1840	2	1	72	1	3	43.3	10	1	2	1	23	3

COMP: D.L. COOKE & ASSOC.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

ATTN: D.L. COOKE

PROJ:

(604)980-5814 OR (604)988-4524

FILE NO: 9V-0754-SJ1+2

DATE: JUL-31-89

* TYPE SOIL GEOCHEM * (ACT:F34)

SAMPLE						p. po								***															
NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA		CO PPM	CU PPM	FE PPM	PPM	LI PPM	MG PPM	MN PPH	MO PPM	NA PPM	NI PPH P	P PM	PB :			TH (PM PPI		V ZN 4 PPN				CR AU PH PPB
KC-S-01 KC-S-02	.1	22550 20740	6	1	74 73	.8 .6	5 3570 4 3150	.6	16 16	26 29	28380 27210	600 570	14	5040 4680	764 612	1	180 170	14 14- 16 13	60	20 16	1	14 13 16	1 :	82. 75. 96.	3 136 2 135	5 1	1	1	28 5 29 10
KC-S-03 KC-S-04 KC-S-05	.9	22380 22410 23180	5 15 18	1	74 116 100	.8 1.1 1.3	5 3930 7 4760 8 5910	3.1	18 23 24	84	33740 41830 43640	750 980 970	16	5010 9030 9080	947 573 625	1 2 3	160 200 200	19 18 19 17 26 12	00	18 24 26	3 '	16 19 19	1 1	96. 123. 123.	1 127	72	1	1	29 10 36 65 55 6 43 6
KC-S-07 KC-S-08	.8	27030 20360	14	1	100 251	1.0	5 4590 6 7690	1.9	17 21	33	36640 29810	940	15	5180 6730	445 1229	1	160 230	13 310 20 120	00	17 27	2	19 19 27	1 1	100.	7 132	2 1	1	1 :	33 6
KC-S-09 KC-S-10	4.0	26170 21580	26 12	1	103 73	1.1	8 6080 6 4200	2.2	22 18 15	74 36	40280 37850	1010	19	9890 6310	396 455	2 2 2 1	240 160	27 27 20 13	70 90	24 21	3 2	22 17	1 :	118.	1 86	5 2	1	1 1	33 6 57 6 38 6
KC-S-11 KC-S-12	3	19840 24240	13		99 98	1.1	5 3680 5 3500	1.5	15	36	32050	670	14	4930	909 279	<u>1</u>	170 170	13 160 32 11	00	21	1 .	17 16	1 1		7 95	1	<u> </u>	1 3	28 6 38 6
KC-S-13 KC-S-14	.6 .5	21560 19120	14	1	109 111	1.0	7 5270 6 4970	1.8	20 16	34 35	29660	1040 790	18 11	7240 6780 5360	585 1093	2 2 2 2	230 230	17 13 17 15	10 20	18 24	1 2	21 22	1 1	94.1	3 100 7 65	1	1	1 3	33 10
KC-S-15 KC-S-16	.5	21430 17130	16	1	78 94	1.0	6 4770 6 5500	1.7	17 19	28	35820 34530	770 830	14		352 1111		170 180	15 189 14 108	80	19 20	2 2	- ·	1		109	1	1		
KC-S-17 40H KC-S-18 KC-S-19	.8	22970 26710 19150	16 14 7	1 16	121 117	1.0	7 6700 8 6340 6 5080	3.4	21 21 18	76	40100 36190 32280	970 910 840	14 14	8480 8850 5890	1002 456 853	2 2 2	240 360 230	26 156 28 11 16 11	60 50 70	31 26 19	1 2 2 1	24 26 20		135.2 118.6	94 5 57	2 2	1	1 3	4 5 36 5 36 5
ŘC-S-20 KC-S-21	.6	23330 23970	1 10	i 1	93 73 74	.8 .8	6 3990	1.2	14 17	20	29110 31570	630 650	15	4150 4860	464 909	1	180 190	13 119 19 148	90	15 19	1 1	18	i i	102.8 91.9 96.4	124	1	1		51 5 66 5
89-S-01 89-S-03	.7	18490 20370	15 6	1	88 134	.7	6 5570 5 7030	1.9	15 14	25 32	35360 23220 22060	670 1050	10	4730 6800	226 485	2 2	220 220 190	10 94 22 76	50	17 23 19	2 2	23 28	1 1	126.0 73.3 61.3	78 55	1	1	1 3	so 5
89-S-04 89-S-05	.5	14630 13110	6	1	122 127	.5 .6	5 4530 5 3690	1.6	13 12	12	19290	870	10	5510 6280	322 312	2222	220	22 76 28 135 31 34	40	17	1 1	6	1 1	58.9	86 80	1	1	1 3	5 5 5 2 5 8 5
89-S-06 89-S-07	.5	21300	19	1	258 147 89	1.0	5 4720 7 5880	1.9	18	27 :	24240 31390	1870		7860 8480 7210	522 532	2 2	320 200	60 65 31 82 22 93		27	1 1		1 1 2 1 2 1 1 1	68.7 74.1	73	1	1	1 4	0 5
89-S-08 89-S-09 89-S-104 6 04	.3	15870 12540 18550	17 1 11	1	129 245	.8 .6 .8	6 6870 4 5790 6 4040		19 14 15	20 2	32000 20250 28510	1360	. 9	4410 6750	598 576 381	2	180 210	18 86 23 171	50 10	25 15 21			1 1 2 1	89.7 59.6 68.6	68	1	1	1 3	3 5 2 5 2 5 2 5
89-S-1144# 89-S-1246#	.3	16430 12990	11	<u> </u>	142 84	.7	4 4850 5 4150	1.4	15	24 7	28180 23080	900	10	5460 5310	255 361	2 1 2	150 150	22 173	50	19	1 2	20	1 1	69.9	89	1			2 5 2 5
89-S-13404 89-S-14464	.8 .7	12290 20230	5 18	. 1	126 129	.4 .9	5 3450 7 4330	.2 3.0	11 16	20 2	18400 28180	780 1630	9 17	3000 8000	273 504	1 2 2	110 210	15 95 28 60	60 00		i i 2 1 1 1		i i	52.9 70.0	77 107	1 2	1	1 3	0 5 5 5
89-S-15	.7	16080	17	1	129	.6	6 4180	2.3	13	16 2	24210	1250	13	6070	329		120	29 108	30	20	1 1	5	2 1	57.8	90	2	1	1 3	7 .5
																													1
	· · · · · · · · · · · · · · · · · · ·										***************************************																		
																											•		
																	·												
																													
																							,						
1																													