

GALORE CREEK PROJECT

Page
Introduction 1
Location, Access \& Climate 3
Claims \& Ownership 5
History 18
Geology 19
Geochemistry 21
Sample Preparation \& Analytical Technique 21
Silt Sampling 22
Soil Sampling 22
Rock Sampling 23
Channel Sampling 24
Discussion of Results 24
Trenching (Physical Work) 27
Geophysics 27
Discussion of Results 28
Southwest Zone Grid (Fig. GC-89-29) 28
Saddle Creek Grid (Fig. GC-89-30) 29
Core Sampling 29
Summary \& Conclusions 29
Selected Bibliography 31
APPENDICES

I.	Statement of Costs
II.	Statement of Qualifications
III.	Certificates of Assay
IV.	Rock Sample Descriptions
V.	VLF-EM Raw Data

FIGURES

Page
GC-89-1 Location of Galore Creek Property (1:7,500,000) 2
GC-89-2 Claim Grouping 4
GC-89-3 Geology - Galore Creek Basin (1:50,000) 20
GC-89-4 Sample Location Map $(1: 12,000)$ Pocket
GC-89-4A Sample Location Map - Anuk River Area (1:12,000) Pocket
GC-89-5 Reconnaissance rocks \& Silts - Gold (ppb) Pocket
GC-89-5A Reconnaissance Rocks \& Silts (Anuk River Area) - Gold (ppb $(1: 12,000)$ Pocket
GC-89-6 Reconnaissance Rocks \& Silts - Gold (ppb) (1:5000) Pocket
GC-89-6A Reconnaissance Rocks \& Silts (Anuk River Area) - Copper ppm Pocket
GC-89-7 North Rim - DDH 128 Grid - Sample Location Map (1:5000) Pocket
GC-89-8 North Rim - DDH 128 Grid - Gold (ppb) (1:5000) Pocket
GC-89-9 North Rim - DDH 128 Grid - Copper (ppb) (1:5000) Pocket
GC-89-10 Southwest Zone Grid - Sample Location Map (1:5000) Pocket
GC-89-11 Southwest Zone Grid - Gold (ppb) (1:5000) Pocket
GC-89-12 Southwest Zone Grid - Copper (ppb) (1:5000) Pocket
GC-89-13 Camp IP Soils - Sample Location Map (1:5000) Pocket
GC-89-14 Camp IP Soils - Gold (ppb) (1:5000) Pocket
GC-89-15 Camp IP Soils - Copper (ppm) (1:5000) Pocket
GC-89-16 Saddle Creek Soils - Sample Location Map (1:5000) Pocket
GC-89-17 Saddle Creek Soils - Gold (ppb) (1:5000) Pocket
GC-89-18 Saddle Creek Soils - Copper (ppm) (1:5000) Pocket
GC-89-19 Steep Creek Zone - Sample Location Map (1:5000) Pocket
GC-89-20 Steep Creek Zone - Gold (ppb) (1:5000) Pocket
GC-89-21 Steep Creek Zone - Copper (ppm) (1:5000) Pocket
GC-89-22 North Rim Trenches (1:250) Pocket
GC-89-23 DDH 128 Trenches 1-3 (1:250) Pocket
GC-89-24 DDH 128 Trench 4 (1:250) Pocket
GC-89-25 DDH 128 Trench 5 (1:250) Pocket
GC-89-26 Saddle Zone Trenches (1:250) Pocket
GC-89-27 North Rim - DDH 128 Grid - VLF-EM (Maine) (1:5000) Pocket
GC-89-28 North Rim - DDH 128 Grid - VLF-EM (Seattle) (1:5000) Pocket
GC-89-29 Southwest Zone Grid - VLF-EM (1:5000) Pocket
GC-89-30 Saddle Creek Grid - VLF-EM (1:5000) Pocket

TABLES

Page

1. Breakdown of Geochem and Geophysics 1
2. Galore Creek Claims 6-17

1989 GALORE CREEK PROJECT

Introduction
The report which follows describes the geochemical, geophysical and trenching program carried out by Mingold Resources Inc. personnel from July 15 to August 7 and September 1-10, 1989. The report combines assessment for all 291 two-post claims which are divided into three groups (Galore Creek Group I, II and III). The assessment for each group is further subdivided into claims with anniversary dates of September through November (1989 assessment) and April through August (1990 assessment). All work done after September 1, 1989 is being applied toward 1990 assessment on the April August claims. Refer to the "Claims \& Ownership" section for clarification of the above.

The 1989 program on Galore Creek consisted of two separate phases of work. The first phase was mainly a reconnaissance geochemical evaluation of the Galore Creek property targeted at locating higher grade gold mineralization within the porphyry copper environment. During this phase a total of 126 rocks, 150 silts and 266 soils were collected and 4.88 km of VLF-EM surveying was carried out. The second phase of the program consisted mainly of follow up of anomalies obtained in the first phase. During this phase a total of 84 rocks, 7 silts and 463 soils were collected and 6.55 km of VLF-EM surveying was carried out. This information is broken down in Table 1 below:

Table 1: Breakdown of Geochem and Geophysics

Year Assess. Applied For	Group II	ROCKS				
		Chips	Channels	Silts	Soils	VLF-EM (km)
1989						
	I	48	0	67	12	0.30
	II	36	0	51	107	2.75
1990	III	30	12	32	147	1.83
	II	21	33	6	153	4.30
	II	0	0	1	106	0
	III	9	21	0	204	2.25

In addition, four man days of trenching (Gp III) were done in the first phase and two man days (1-Gp I, 1 - Gp III) in the second phase.

The Galore Creek property of Stikine Copper Ltd. is situated in a basin at the headwaters of Galore Creek, a tributary of the Scud River, in the northwestern part of British Columbia. The property is centred at latitude $57^{\circ} 07^{\prime} 30^{\prime \prime} \mathrm{N}$ and longitude $131^{\circ} 27^{\prime}$ W (see Fig. GC-89-1). The claims occur within the Liard Mining Division and extend across the boundary between N.T.S. mapsheets $104 \mathrm{G} / 3$ and $104 \mathrm{G} / 4$.

The property is approximately 355 kilometres northwest of Smithers, B.C. which is the major supply centre for the area. Central Mountain Air in 1989 operated a schedule fixed-wing service form Smithers to the Bronson Airstrip which is 55 kilometres southeast of the property. In addition, a turbine-equipped Otter aircraft made trips to the Galore Creek Airstrip when warranted. In 1989, helicopters were available on a casual basis from Bronson Airstrip (55 km), Telegraph Creek (90 km) and for a limited period at Galore Creek itself.

A private road was constructed by Stikine Copper Ltd. from the Scud Airstrip, at the junction of the Scud and Stikine Rivers, to the Galore Creek camp in the early 1960's. At that time, it was anticipated that production from the Galore Creek copper deposits was imminent. As it turned out, the only use of the road was for transporting several pieces of heavy duty equipment (primarily used for constructing the road). With years of lack of use, the road has overgrown with alders and the bridges have collapsed.

In 1989, the old road between the Galore Creek (Portal) Airstrip and the camp was upgraded to a useable condition for four-wheel drive vehicles. This permitted the transport of passengers and supplies by truck instead of by helicopter to and from camp.

The camp is located on the eastern side of the Galore creek valley at an elevation of approximately 760 meters above sea level. Elevations within the property boundary vary from a low of 550 meters in Galore Creek to over 1800 meters on the slopes of Saddlehorn Mountain.

Snow pack in the area is unusually heavy for northern B.C. with peak levels of 5 meters or more being typical. Snow-free conditions below the 1200 meter elevation are restricted to mid-June to late-September with air temperatures remaining relatively cool throughout the summer.

Vegetation is generally quite dense within the Galore Creek valley, consisting of mature stands of pine, spruce and cottonwood at lower elevations and passes into scrub evergreens up to treeline at 1200 meters. Underbrush of alder, willow and devil's club is extremely thick and in combination with the deeply incised creek gullies makes traversing arduous.

STIKINE COPPER LIMITED GALORE CREEK PROPERTY ore Creek, British Columbia CLAIM GROUPNG

Claims \& Ownership

The Galore Creek property consists of 252 claims and 39 fractions for a total of 291 two-post claims. These claims are wholly owned by Stikine Copper Ltd. which is controlled by Kennco (Stikine) Mining Ltd. (59\%), Hudson Bay Mining and Smelting Co. Ltd. (36\%) and Cominco Ltd. (5\%). In 1989, Mingold Resources Ltd. entered into an option agreement with Hudson Bay Mining to explore the gold potential of the Galore Creek area.

For assessment purposes, the claims have been divided into three groups, Galore Creek Group I, II and III, consisting of 99, 92 and 100 claims respectively. Each group has been further subdivided into two sets depending on whether the claim anniversary date is before or after September 1 of the current calendar year. All claims with anniversary dates after September 1 can have assessment applied for the current year (1989) while those with anniversary dates before September 1 have to be filed for the following year (1990). A complete listing of the claims under each group subdivided into the year for which assessment is being applied is shown in Table 2.

GALORE CREEK GROUP I CLAIMS
(1989 ASSESSMENT)

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
HAB 47	3792	1	October 11/90	October 11/91
HAB 48	3793	1	October 11/90	October 11/91
HAB 49	3794	1	October 11/90	October 11/91
HAB 50	3795	1	October 11/90	October 11/91
HAB 51	3796	1	October 11/90	October 11/91
HAB 52	3797	1	October 11/90	October 11/91
GC 34	8676	1	September 21/90	September 21/91
GC 36	8678	1	September 21/90	September 21/91
GC 37	8679	1	September 21/90	September 21/91
GC 79	8786	1	October 24/90	October 24/91
GC 121	9618	1	September 5/90	September 5/91
GC 122	9619	1	September 5/90	September 5/91
GC 123	9620	1	September 5/90	September 5/91
GC 124	9621	1	September 5/90	September 5/91
GC 125	9622	1	September 5/90	September 5/91
GC 126	9623	1	September 5/90	September 5/91
GC 127	9624	1	September 5/90	September 5/91
GC 128	9625	1	September 5/90	September 5/91
GC 129	9626	1	September 5/90	September 5/91
GC 136	9633	1	September 5/90	September 5/91
GC 137	9634	1	September 5/90	September 5/91
GC 138	9635	1	September 5/90	September 5/91
GC 139	9636	1	September 5/90	September 5/91
GC 140	9637	1	September 5/90	September 5/91
GC 141	9638	1	September 5/90	September 5/91
GC 142	9639	1	September 5/90	September 5/91
GC 143	9640	1	September 5/90	September 5/91
KENNCO GC 181	12184	1	October 9/90	October 9/92
KENNCO GC 182	12185	1	October 9/90	October 9/92
KENNCO GC 183	12186	1	October 9/90	October 9/91
KENNCO GC 184	12187	1	October 9/90	October 9/91
KENNCO GC 185	12188	1	October 9/90	October 9/91
KENNCO GC 186	12189	1	October 9/90	October 9/91
KENNCO GC 187	12190	1	October 9/90	October 9/91
KENNCO GC 188	12191	1	October 9/90	October 9/91
KENNCO GC 189	12192	1	October 9/90	October 9/91
KENNCO GCC 190	12193	1	October 9/90	October 9/91
KENNCO GC 191	12194	1	October 9/90	October 9/91
KENNCO GC 192	12195	1	October 9/90	October 9/91
KENNCO GC 193	12196	1	October 9/90	October 9/91
KENNCO GC 194	12197	1	October 9/90	October 9/91

(1989 ASSESSMENT)

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
KENNCO GC 195	12198	1	October 9/90	October 9/91
KENNCO GC 196	12199	1	October 9/90	October 9/91
KENNCO GC 197	12200	1	October 9/90	October 9/91
KENNCO GC 198	12201	1	October 9/90	October 9/91
KENNCO GC 199	12202	1	October 9/90	October 9/91
KENNCO GC 200	12203	1	October 9/90	October 9/91
KENNCO GC 201	12204	1	October 9/90	October 9/91
KENNCO GC 202	12205	1	October 9/90	October 9/91
FRACTIONS				
GC 7 FR	11003	1	September 10/90	September 10/91
GC9 FR	11005	1	September 10/90	September 10/91
GC 19 FR	15982	1	October 30/90	October 30/91
GC 20 FR	15983	1	October 30/90	October 30/91
GC 21 FR	15984	1	October 30/90	October 30/91
GC 24 FR	15987	1	October 30/90	October 30/91
GC 25 FR	15988	1	October 30/90	October 30/91
GC 27 FR	16184	1	November 17/90	November 17/91
GC 28 FR	15990	1	October 30/90	October 30/91
GC 29 FR	15991	1	October 30/90	October 30/91
GC 32 FR	16235	1	November 23/90	November 23/91
GC 33 FR	16236	1	November 23/90	November 23/91
TOTAL		61		

GALORE CREEK GROUP II CLAIMS
(1989 ASSESSMENT)

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
HAB 1	3760	1	October 11/90	October 11/91
HAB 3	3762	1	October 11/90	October 11/91
HAB 18	3777	1	October 11/90	October 11/91
HAB 20	3779	1	October 11/90	October 11/91
GC 1	8643	1	September 21/90	September 21/91
GC 2	8644	1	September 21/90	September 21/91
GC 3	8645	1	September 21/90	September 21/91
GC 4	8646	1	September 21/90	September 21/91
GC 5	8647	1	September 21/90	September 21/91
GC 6	8648	1	September 21/90	September 21/91
GC7	8649	1	September 21/90	September 21/91
GC 8	8650	1	September 21/90	September 21/91
GC 9	8651	1	September 21/90	September 21/91
GC 10	8652	1	September 21/90	September 21/91
GC 11	8653	1	September 21/90	September 21/91
GC 12	8654	1	September 21/90	September 21/91
GC 13	8655	1	September 21/90	September 21/91
GC 14	8656	1	September 21/90	September 21/91
GC 15	8657	1	September 21/90	September 21/91
GC 16	8658	1	September 21/90	September 21/91
GC 17	8659	1	September 21/90	September 21/91
GC 18	8660	1	September 21/90	September 21/91
GC 19	8661	1	September 21/90	September 21/91
GC 21	8663	1	September 21/90	September 21/91
GC 23	8665	1	September 21/90	September 21/91
GC 26	8668	1	September 21/90	September 21/91
GC 28	8670	1	September 21/90	September 21/91
GC 35	8677	1	September 21/90	September 21/91
GC 46	8688	1	September 21/90	September 21/91
GC 47	8689	1	September 21/90	September 21/91
GC 48	8690	1	September 21/90	September 21/91
GC 49	8691	1	September 21/90	September 21/91
GC 50	8692	1	September 21/90	September 21/91
GC 51	8693	1	September 21/90	September 21/91
GC 52	8694	1	September 21/90	September 21/91
GC 53	8695	1	September 21/90	September 21/91
GC 54	8696	1	September 21/90	September 21/91
GC 55	8697	1	September 21/90	September 21/91
GC 56	8698	1	September 21/90	September 21/91
GC 57	8699	1	September 21/90	September 21/91
GC 58	8700	1	September 21/90	September 21/91

GALORE CREEK GROUP II CLAIMS
(1989 ASSESSMENT)

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
GC59	8701	1	September 21/90	September 2191
GC 60	8702	1	September 21/90	September 21/91
GC61	8703	1	September 21/90	September 21/91
GC 62	8704	1	September 21/90	September 21/91
GC 63	8705	1	September 21/90	September 21/91
GC 64	8706	1	September 21/90	September 21/91
GC 65	8707	1	September 21/90	September 21/91
GC 66	8708	1	September 21/90	September 21/91
GC 67	8709	1	September 21/90	September 21/91
GC 68	8710	1	September 21/90	September 21/91
XGC 69	14899	1	September 4/90	September 4/91
GC 70	8712	1	September 21/90	September 21/91
XGC 71	14900	1	September 4/90	September 4/91
GC 72	8714	1	September 21/90	September 21/91
XGC 73	14901	1	September 4/90	September 4/91
GC 74	8716	1	September 21/90	September 21/91
GC 75	8717	1	September 21/90	September 21/91
XGC 110	14902	1	September 4/90	September 4/91
GC 117	9614	1	September 5/90	September 5/91
GC 118	9615	1	September 5/90	September 5/91
GC 119	9616	1	September 5/90	September 5/91
GC 120	9617	1	September 5/90	September 5/91
GC 130	9627	1	September 5/90	September 5/91
GC 131	9628	1	September 5/90	September 5/91
GC 132	9629	1	September 5/90	September 5/91
GC 133	9630	1	September 5/90	September 5/91
GC 134	9631	1	September 5/90	September 5/91
GC 135	9632	1	September 5/90	September 5/91
KENNCO GC 172	12175	1	October 9/90	October 9/91
KENNCO GC 173	12176	1	October 9/90	October 9/91
KENNCO GC 174	12177	1	October 9/90	October 9/91
KENNCO GC 175	12178	1	October 9/90	October 9/91
KENNCO GC 176	12179	1	October 9/90	October 9/91
KENNCO GC 177	12180	1	October 9/90	October 9/91
KENNCO GC 178	12181	1	October 9/90	October 9/91
KENNCO GC 179	12182	1	October 9/90	October 991
KENNCO GC 180	12183	1	October 9/90	October 9/91

(1989 ASSESSMENT)

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
FRACTIONS				
XGC 1 FR	14893	1	September 21/91	September 21/92
GC 2 FR	9606	1	September 5/90	September 5/91
GC 8 FR	11004	1	September 10/90	September 10/91
GC 18 FR	15981	1	October 30/90	October 30/91
GC 22 FR	15985	1	October 30/90	October 30/91
GC 26 FR	15989	1	October 30/90	October 30/91
GC 30 FR	16233	1	November 23/90	November 23/91
GC 34 FR	16237	1	November 23/90	November 23/91
TOTAL		86		
				.

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
GC 24	8666	1	September 21/90	September 21/91
GC 25	8667	1	September 21/90	September 21/91
GC 27	8669	1	September 21/90	September 21/91
GC 29	8671	1	September 21/90	September 21/91
XGC 30	14896	1	September 4/90	September 4/91
GC 31	8673	1	September 21/90	September 21/91
XGC 32	14897	1	September 4/90	September 4/91
XGC 33	14898	1	September 4/90	September 4/91
GC 38	8680	1	September 21/90	September 21/91
GC 39	8681	1	September 21/90	September 21/91
GC 40	8682	1	September 21/90	September 21/91
GC 41	8683	1	September 21/90	September 21/91
GC 42	8684	1	September 21/90	September 21/91
GC 43	8685	1	September 21/90	September 21/91
GC 44	8686	1	September 21/90	September 21/91
GC 45	8687	1	September 21/90	September 21/91
GC 80	8806	1	November 3/90	November 3/91
GC 81	8807	1	November 3/90	November 3/91
GC 82	8808	1	November 3/90	November 3/91
GC 83	8809	1	November 3/90	November 3/91
GC 84	8810	1	November 3/90	November 3/91
GC 85	8811	1	November 3/90	November 3/91
GC 86	8812	1	November 3/90	November 3/91
GC 87	8813	1	November 3/90	November 3/91
GC 88	8814	1	November 3/90	November 3/91
GC 89	8815	1	November 3/90	November 3/91
GC 90	8816	1	November 3/90	November 3/91
GC 91	8817	1	November 3/90	November 3/91
GC 92	8818	1	November 3/90	November 3/91
GC 93	8819	1	November 3/90	November 3/91
GC 94	8820	1	November 3/90	November 3/91
GC 95	8821	1	November 3/90	November 3/91
GC 96	8822	1	November 3/90	November 3/91
GC 97	8823	1	November 3/90	November 3/91

GaLORE CREEK GROUP III CLAIMS
 (1989 ASSESSMENT)

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
GC 98	8824	1	November 3/90	November 3/91
GC 99	8825	1	November 3/90	November 3/91
GC100	8826	1	November 3/90	November 3/91
GC 101	8827	1	November 3/91	November 3/92
GC 102	8828	1	November 3/90	November 3/91
GC 103	8829	1	November 3/90	November 3/91
GC 104	8830	1	November 3/90	November 3/91
GC 105	8831	1	November 3/90	November 3/91
GC 106	8832	1	November 3/90	November 3/91
GC 107	8833	1	November 3/90	November 3/91
GC 108	8834	1	November 3/90	November 3/91
GC 109	8835	1	November 3/90	November 3/91
GC 111	9608	1	September 5/90	September 5/91
GC 112	9609	1	September 5/90	September 5/91
GC 113	9610	1	September 5/90	September 5/91
GC 114	9611	1	September 5/90	September 5/91
GC 115	9612	1	September 5/90	September 5/91
GC 116	9613	1	September 5/90	September 5/91
GC 144	9641	1	September 5/90	September 5/91
GC 145	9642	1	September 5/90	September 5/91
GC 146	9643	1	September 5/90	September 5/91
GC 147	9644	1	September 5/90	September 5/91
GC 148	9645	1	September 5/90	September 5/91
GC 149	9646	1	September 5/90	September 5/91
GC 150	10192	1	November 7/90	November 7/91
GC 151	10193	1	November 7/90	November 7/91
GC 152	10194	1	November 7/90	November 7/91
GC 153	10195	1	November 7/90	November 7/91
GC 154	10196	1	November 7/90	November 7/91
GC 155	10197	1	November 7/90	November 7/91
GC 156	10198	1	November 7/90	November 7/91
GC 157	10199	1	November 7/90	November 7/91
GC 158	10200	1	November 7/90	November 7/91
GC 159	10201	1	November 7/90	November 7/91

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
BUY 4	4489	1	AUG. 8/90	AUG. 8/91
BUY 5	4490	1	AUG. 8/90	AUG. 8/91
BUY 6	4491	1	AUG. 8/90	AUG. 8/91
BUY 7	4492	1	AUG. 8/90	AUG. 8/91
BUY 8	4493	1	AUG. 8/90	AUG. 8/91
BUY 11	4504	1	AUG. 13/90	AUG. 13/91
BUY 13	4506	1	AUG. 13/90	AUG. 13/91
BUY 14	4507	1	AUG. 13/90	AUG. 13/91
BUY 15	4508	1	AUG. 13/90	AUG. 13/91
BUY 16	4509	1	AUG. 13/90	AUG. 13/91
GC 210	13444	1	APR. 2/90	APR. 2/91
GC 211	13445	1	APR. 2/90	APR. 2/91
GC 212	13446	1	APR. 2/90	APR. 2/91
GC 213	134447	1	APR. 2/90	APR. 2/91
GC 214	13448	1	APR. 2/90	APR. 2/91
GC 215	13449	1	APR. 2/90	APR. 2/91
GC 216	13450	1	APR. 2/90	APR. 2/91
GC 217	13451	1	APR. 2/90	APR. 2/91
GC 218	13452	1	APR. 2/90	APR. 2/91
GC 219	13453	1	APR. 2/90	APR. 2/91
GC 220	13454	1	APR. 2/90	APR. 2/91
GC 221	13455	1	APR. 2/90	APR. 2/91
GC 222	13456	1	APR. 2/90	APR. 2/91
GC 223	13457	1	APR. 2/90	APR. 2/91
GC 224	13458	1	APR. 2/90	APR. 2/91
GC 225	13571	1	APR. 6/90	APR. 6/91
GC 226	13572	1	APR. 6/90	APR. $6 / 91$
GC 227	13573	1	APR. 6/90	APR. 6/91
GC 228	13574	1	APR. 6/90	APR. 6/91
GC 229	13575	1	APR. 6/90	APR. 6/91
GC 230	13576	1	APR. 6/90	APR. 6/91
GC 231	13577	1	APR. 6/90	APR. 6/91
GC 232	13578	1	APR. 6/90	APR. $6 / 91$
GC 233	13579	1	APR. 6/90	APR. 6/91

TABLE 2
GALORE CREEK GROUP I CLAIMS (1990 ASSESSMENT)

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
GC 234	13580	1	APR. 6/90	APR. 6/91
GC 235	13581	1	APR. 6/90	APR. 6/91
GC 236	13582	1	APR. 6/90	APR. 6/91
GC 237	13583	1	APR. 6/90	APR. 6/91
TOTAL		38		

TABLE 2
GALORE CREEK GROUP II CLAIMS (1990 ASSESSMENT)

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
HAB 1 FR	9655	1	AUG. 16/90	AUG. 16/93
GC5FR	10857	1	AUG. 6/90	AUG. 6/93
KGC 11 FR	11972	1	AUG. 29/90	AUG. 29/93
GC 12 FR	11973	1	AUG. 29/90	AUG. 29/93
GC 13 FR	11974	1	AUG. 29/90	AUG. 29/93
GC 14 FR	11975	1	AUG. 29/90	AUG. 29/93
TOTAL		6		

CLAIM NAME	RECORD NO.	No. OF UNITS	CURRENT EXPIRY DATE	NEW EXPIRY DATE
GC 166	10849	1	AUG. 6/90	AUG. 6/94
GC 167	10850	1	AUG. 6/90	AUG. 6/94
GC 168	10851	1	AUG. 6/90	AUG. 6/94
GC 169	10852	1	AUG. 6/90	AUG. 6/94
GC 170	10853	1	AUG. 6/90	AUG. 6/94
GC 171	10854	1	AUG. 6/90	AUG. 6/94
FRACTIONS				
GC 3 FR	10855	1	AUG. 6/90	AUG. 6/94
GC 6 FR	10858	1	AUG. 6/90	AUG. 6/94
KGC 15 FR	11976	1	AUG. 29/90	AUG. 29/94
S.K. 1 FR	22739	1	JUNE 2/90	JUNE 2/94
S.K. 2 FR	22740	1	JUNE 2/90	JUNE 2/94
TOTAL		11		

History

Copper deposits were first discovered in the Galore Creek valley in 1955 by prospectors working for Hudson Bay Exploration and Development Co. Ltd. Staking and sampling was completed in the same year. In 1956, mapping, trenching and diamond drilling were carried out. Due to the remoteness of the area and higher priorities for expenditures elsewhere, no further work was undertaken and all but 16 claims were allowed to lapse.

In 1959, Kennco Exploration sampled the creeks in the area as part of a reconnaissance stream silt survey. Kennco began staking the resulting highly anomalous copper in the headwaters of Galore Creek in 1960. The claims surrounded the remaining H.B.E.D. ground as well as four claims which had been optioned by Cominco from one of the original prospectors. In 1962, the three companies agreed to jointly develop the property and subsequently in 1963 Stikine Copper Ltd. was formed.

Kennco was the operator of the exploration programs until early 1967. Work included 53,164 meters of diamond drilling in 235 holes and 807 meters of tunnelling in two adits. The Central Zone which occupies the valley bottom of Galore Creek became the main focus of exploration. No exploration work was carried out from 1968 to 1972.

In 1972, Hudson Bay Mining and Smelting became operator of the property and in 1972 and 1973 an additional 25,352 meters of diamond drilling was completed in 111 holes. This work focused exclusively on blocking out reserves on the Central and North Junction Zones.

In 1974, Wright Engineers undertook a feasibility study on the Galore Creek property and came out with a mining plan for the property.

Hudson Bay continued fill-in drilling in 1976, completing an additional 5,310 meters of diamond drilling in 24 holes.

Due to the enormous costs involved in bringing a deposit in this area into production the project has remained on hold until the present.

In 1989, Mingold Resources Inc. took an option on the property with the purpose of investigating the gold potential associated with the porphyry system. Although it was previously known that the gold content in the Galore Creek copper deposits was unusually high for a porphyry, the main focus of previous exploration was to delineate the copper reserves. Mingold, on the other hand, was interested in developing high grade gold deposits within or peripheral to the copper mineralization. The work carried out in this regard is embodied in this report.

Geology

The Galore Creek deposits are situated on the western margin of the Intermontane Belt, just east of the Coast Plutonic Complex. The area contains three major lithologic units: Palaeozoic and Middle Triassic metamorphic rocks; Upper Triassic volcanic and sedimentary rocks; and intrusive rocks of various ages and types. The later two units are of prime concern in the vicinity of the copper deposits. (see GC-89-3)

The Upper Triassic rocks, within the Galore Creek valley, are primarily volcanics with sediments only forming a minor component. The volcanics include pyroclastic and intrusive breccias, trachyte flows, lithic tuff, crystal tuff and pyroxene andesites. Most of the rocks have undergone moderate to intense contact metamorphism from later syenitic intrusive events. The effects of this metamorphism have been "skarnification" and "hornfelsing" of many of the rocks to an extent where the original lithologies are often uncertain. In addition, at the contacts with the intrusive rock, considerable assimilation and granitization of the volcanics has occurred resulting in hybrid porphyritic rocks which are difficult to distinguish as either volcanic or intrusive in origin. Nomenclature of the rocks has therefore been based upon the minerals present and their relative amounts.

The intrusive rocks vary considerably in composition, texture, color and age. Syenitic intrusive rocks are the most important, both volumetrically and economically. These rocks have been divided into four main rock types which in order of introduction are dark syenite porphyry, garnet syenite megaporphyry, fine-grained syenite porphyry and epidote syenite porphyry. On the detailed level, many subdivisions of each type are possible however in order to allow some form of geological interpretation on a property basis these major divisions have been adopted. The age of the intrusive rocks varies from Upper Triassic to Lower Cretaceous with the syenites being Upper Triassic to Lower Jurassic.

Known copper mineralization occurs in ten incompletely defined deposits as well as numerous erratic high-grade pods and low-grade showings. The deposits occur largely within feldspathized and biotite altered volcanic rocks and pipe-like breccias associated with alkalic (viz. syenitic) intrusive dykes and stocks. The deposits are tabular to manto-shaped and most have a north to northeast orientation parallel to the syenite contacts and structural trend of the area. Gold is generally associated with the higher grade copper mineralization although many areas of high copper lack appreciable gold. Because earlier exploration treated gold (and silver) as only by-product credits to the copper mineralization, assays were done by compositing the pulps within selected sections ($0.4 \% \mathrm{Cu}$) of the drill holes. This approach resulted in gross representation of the gold distribution within the copper zones but failed to property evaluate the higher grade gold potential of the area.

Ore reserves estimates taken from the latest HBMS reports (Freberg, 1974, Walker, 1977) are as follows:

Central Zone ($0.4 \% \mathrm{Cu}$ cutoff) 159.7 million tonnes of $0.93 \% \mathrm{Cu}$, $0.38 \mathrm{~g} / \mathrm{mt}$. Au

North Junction Zone ($1 \% \mathrm{Cu}$ cutoff) 4.8 million tonnes of $2.00 \% \mathrm{Cu}$, $0.75 \mathrm{~g} / \mathrm{mt}$. Au

The satellite deposits have had too little work to calculate a satisfactory reserve figure.

Geochemistry

Geochemical sampling, in the form of stream silts, soils and rocks, formed the bulk of the 1989 work program at Galore Creek. Total samples collected amounted to 1,030 samples which break down as follows: 210 rocks, 157 silts and 729 soils. Each sample type is covered separately in the appropriate sections below.

The location of all the silt and rock chip samples are shown on Fig. GC-89-4. The location of the soil and trench channel samples are shown on detailed maps referred to on this same figure.

Sample Preparation and Analytical Technique

The field sampling technique is unique to each type of sample involved and is described under the respective sections below. The sample preparation described under this section pertains only to Coastech Lab's handling of the samples once they are received from the field.

All soil and silt samples are dried at $90^{\circ} \mathrm{C}$ and then screened to -80 mesh and mixed. Rock samples are dried at $105^{\circ} \mathrm{C}$, crushed to $1 / 8^{\prime \prime}(5 \mathrm{~mm})$ size and split in a Gilson riffle to a 250 gram sample. This portion is then pulverized to -100 mesh in a ring grinder and mixed. The prepared soil, silt and rock samples are then assayed using two different analytical techniques - one for gold and the other for all other elements.

The analytical technique for all gold assays involved fusing a 30 gram sample with a PbO flux. The resulting cupelled beads are parted with HNO_{3}. If less than 0.35 mg of gold is present the separated bead is put into an aqua regia solution and analyzed by A.A. If more than 0.35 mg . of gold is present then the separated bead is weighed by conventional gravimetric methods. A control and blank sample are run with each fusion.

For elements other than gold, a 0.5 gram sample is digested with 5 ml . of HNO_{3} on a hot water bath for one hour. 10 ml of HCl is then added and digestion continues for another two hours. The solution is then allowed to cool, diluted to 25 ml with distilled water and analyzed on a standard ICP unit. Each run contains a known control sample.

Silt Sampling

Silt samples were taken systematically down all the major creeks within the Galore Creek Valley. Lack of silt in some of the steeper areas hindered sampling although generally an adequate sample density was maintained to properly evaluate the area. Sufficient silt was collected from the active part of the stream to fill a gussetted Kraft bag. The samples were then air-dried in camp and then sent to Coastech Labs in Vancouver for analysis.

A total of 157 silts were taken in 1989 and are shown as circles on Figures GC-894,5 and 6. A breakdown of these into the various claim groups and assessment periods is as follows:

1989 Assessment

Group I	67	6
Group II III	51	1
Group II	32	0
TOTAL	150	7

On the sample maps the assessment periods are shown as an open circle for 1989 and a solid circle for 1990.

Soil Sampling

Soil sample grids were set up in areas where rock sampling indicated anomalous gold values or where insufficient streams were present to adequately evaluate an area (eg. Southwest Zone Grid). The area of these soil grids is indicated on the main sample location map (Fig. GC-89-4). A detailed (1:5000) sample location map indicates the sample numbers of each soil series for the respective soil grid. The grids include the North Rim - DDH 128 Grid (Fig. GC-89-7,8,9), the Southwest Zone Grid (Fig. GC-89-10, 11, 12), the Camp IP Soils (Fig. GC-89-13, 14, 15), the Saddle Creek soils (Fig. GC-89-16, 17, 18) and the Steep Creek Soils (Fig. GC-89-19, 20, 21).

Soils were taken concurrently with establishing the grid lines. Lines were put in using compass and hip-chain with no correction for slope (ie; the reason for variable spacing on the sample stations). In some areas, such as the North Rim DDH 128 Grid, sufficient magnetite was present in the rocks to significantly affect the compass resulting in diverging and converging lines. Stations were usually put in every 25 meters however in the North Rim - DDH 128 area some 12.5 meters stations were used. Soils were collected from the "B" horizon, where available, using a grubhoe. Sample depths varied from 15 to 30 cm being typically 20 cm .

The soil was placed into a gussetted Kraft bag and then air-dried in camp. Samples were then sent to Coastech Labs in Vancouver for analysis.

A total of 729 soils were collected in 1989. A breakdown of these into the various groups and assessment periods involved is shown below:

1989 Assessment

Group 1 I2
Group II 107
Group III 147
TOTAL 266
1990 Assessment
153
106
204
463

Soils are shown on the maps as a small open circle for 1989 assessment and a small solid circle for 1990 assessment.

Rock Sampling

Rock samples for plotting purposes were divided into three types: rock samples from outcrop, rock samples from float and channel samples from trenches. Rock samples from outcrop and float are shown as triangles and squares respectively on the reconnaissance maps (GC-89-4,5 and 6). The channel samples are described below under "Channel Sampling".

The reconnaissance rocks were either random chip samples or grabs. The random chip samples are taken by randomly breaking off small, equal-sized chips of rock and placing them into a plastic sample bag. They were usually taken where we wanted to check an area of more or less homogeneous rock for mineralization. Grab samples, on the other hand, were taken where interesting mineralization was observed and we wanted to see if it carried significant gold (or copper). A grab sample consisted of a single specimen of rock which was either representative of most of the mineralized rock (representative grab) or focused only on the (presumed) higher grade mineralization (select grab).

A total of 144 reconn. rocks (excludes channels) were collected during the 1989 program. A breakdown of these into the various claim groups and assessment periods is as follows:

1989 Assessment

Group I
48
36
30
114

1990 Assessment
21
0
9
30

On the sample maps the rocks for 1989 assessment are shown as open triangles or squares while 1990 assessment rocks are solid.

Channel Sampling

Channel samples were taken in the hand-trenches that were put in crosscutting the presumed strike of significant mineralization. Three separate areas of trenching were done; the North Rim Trenches (Fig. GC-89-22), the DDH 128 Trenches (Fig. GC-89-23, 24, 25) and the Saddle Zone Trenches (Fig. GC-89-26). The location of all these trenches is shown on the main sample location map (GC-89-4) and, in the case of the North Rim and DDH 128 trenches, on the 1:5000 soil sample location map (GC-89-7).

Channel samples were taken by continuously chipping out samples of rock along a line such that the width and depth of the resulting channels were equal. The channel was typically 2.5 cm wide by 2.5 cm deep by 1.52 meters long. The length of the channels were sometimes adjusted for changes in lithology but not for assumed grade of mineralization. Samples were placed in large plastic sample bags, tagged and sent to Coastech Labs in Vancouver for analysis.

A total of 66^{*} channel samples were collected in 1989 with the breakdown into claim groups and assessment periods shown below:

	1989 Assessment	1990 Assessment
Group I	0	33
Group II	0	0
Group III	12	21
TOTAL	12	54

A description of the individual rock samples is included as Appendix IV at the end of the report.

Discussion of Results

Reconnaissance (Fig. GC-89-4,5,6)
The reconnaissance silt sampling was very effective at locating the known copper zones. Using 500 ppm copper as anomalous, virtually all the major zones show up that were sampled. These include the Butte, the Southwest, the Junction, the North Junction, the South 110, the West Rim and West Fork Glacier zones. The only one which was not detected was the Saddle Zone however several samples ran 300
ppm. Several additional areas were also highlighted and in each case could be traced to in-situ copper mineralization.

Using 100 ppb gold as anomalous in silts yields a similar picture to the copper. We already know that many of the copper deposits carry low grade gold values so this result is no surprise. If we boost our anomalous level up to 300 ppb gold however many of the zone related anomalies disappear. What we are left with is ten anomalies, several of which are on the same creek drainage. M033X (874 ppb) and 34X (516 ppb) both are on Steep Creek where a showing carrying 18.77 g/tonne ($0.55 \mathrm{oz} /$ t) was taken in a reconn. rock sample (M005R). Attempts to reproduce this value in follow up sampling were unsuccessful. It appears that gold values are very spotty in this area with considerable nugget effect occurring. C077X (1850 ppb) is a short distance downstream from the North Rim trenches (NRT - 1 to 4) where several samples over $7.00 \mathrm{~g} /$ tonne ($0.20 \mathrm{oz} / \mathrm{t}$) were obtained (see Fig. GC-89-22). T031X (2570 ppb) occurs southwest of DDH 128 and follow up of the creek located copper mineralization with $1.23 \mathrm{~g} /$ /tonne gold. A retake of the T031X sample, T147X, gave $<5 \mathrm{ppb}$ gold suggesting that placering or nugget effect is occurring in this area as well. C116X (650 ppb) and M070X (740 ppb) are both on Left Creek with, as yet, no source located by follow up sampling/prospecting. This area has fair talus and overburden cover locally so the source could be buried. T018X (447 ppb) near Camp Creek has also not been traced to its source again due to significant talus and overburden cover. M044X (416 ppb) and T069X (430 ppb) are both downstream from the South 110 deposit where low-grade gold was known to occur in old trenches. As well rock sample M036R taken from float upstream from these silts carried $1.39 \mathrm{~g} /$ tonne ($0.04 \mathrm{oz} / \mathrm{ton}$). Sample M030X (1000 ppb) was taken on a tributary of Drop Creek in the Anuk River area. follow up of this area located no mineralization of significance and a re-sample of the silt (M189X) gave $<5 \mathrm{ppb}$ gold.

The reconnaissance rocks confirmed the presence of gold mineralization in the areas targeted by the silts (where source exposed). In addition, they located several small low-grade copper-gold showings which, thus far, do not appear to be significant. Most importantly, however, was that they also located significant gold mineralization in three areas not picked up by the silt-sampling. Samples Y015R (8200 ppb) and Y016R ($18,970 \mathrm{ppb}$) detected probable economic levels of gold within the Saddle Zone copper mineralization (previous samples ran 1-2 gm/tonne in the same area). M024R ($22,135 \mathrm{ppb}$) was taken from pyritic quartz float in the area of the Camp IP soil line. Unfortunately due to a delay in receiving the lab result for this sample it was not followed up during our 1989 program. M095R (6067 ppb) led to our work on the DDH128 trenches which thus far have outlined similar grade mineralization over mineable widths. These trench results are elaborated on further under the discussion of channel sampling results below. All in all, the combination of silt and rock sampling on the reconnaissance level has proven to be an effective exploration tool in this area.

Soil sampling was done in areas of known gold mineralization, elther from past work or from our 1989 silt and rock sampling results. Only three areas of gold mineralization have had extensive soil sampling done on them. These were the North Rim, the DDH 128 and the Southwest Zone areas. The other areas (Camp IP, Saddle Creek and Steep Creek) involved only reconnaissance level soils along a
single line. Soil sampling, as a whole, worked quite well at outlining the overall pattern of gold (and copper) mineralization. With closer inspection, however, some problems are evident. In the North Rim area, for instance, the soils show fairly extensive gold anomalies (100 ppb) however a sample taken right next to the best grade gold in the trenches ran $<5 \mathrm{ppb}$ (C266). This suggests that significant overburden, locally, is suppressing the geochemical response. Even the copper value in the same soils was only 248 ppm which is almost a background value in this area. The trench samples ran over 2% copper over considerable widths so values in the order of 5000 ppm would be more the magnitude expected. The same is true for the DDH 128 trench area although snow prevented complete sample coverage. This indicates, therefore, that drilling on soil anomalies alone may not be wise. Thorough prospecting/rock sampling of an area must be done before the drill is brought in. Anomalous level for gold in soils appears to be about 100 ppb and above while for copper it is probably about 800 ppm . A statistical evaluation of the results was attempted however, because we sampled what is overall an anomalous area, high values significantly skew the population. We are in essence trying to find an anomaly within an anomaly and normal statistical methods are not adequate for this purpose. Anomalous levels have, therefore, been chosen by inspection.

Hand-trenching of the main gold anomalies was completed where feasible. Channel sampling of the trenches are shown on Figures GC-89-22 to GC-89-26 inclusive. On the North Rim Zone, trenches NRT-1 and 2 crossed the strike of mineralization and sampling outlined a 10.4 meter section which averaged $5.59 \mathrm{~g} /$ tonne gold. This includes 7.0 meters of $9.26 \mathrm{~g} /$ tonne gold with most of the remaining lower grade material being barren dyke. The overlying metavolcanics are essentially barren although minor higher grade pods occur locally. The DDH 128 trenches were put in to cross a volcanic-intrusive contact zone which trends about 170°. Two of the trenches, 128T-1 and T-2, intersected gold mineralization in excess of 3 g /tonne with a 3.0 meter section in 128T-2 averaging $9.75 \mathrm{~g} /$ tonne.

The intersection in the two trenches indicate that the strike of the gold zone may be closer to 195° than the 170° assumed from alignment of fractures. The trenching on the Saddle Zone was done in an old Kennco trench which had sloughed in considerably. The trench, ST-2 crosses what is believed to be a breccia pipe with magnetite healing intrusive fragments. Sampling of the trench began 16.75 meters from the north western end of the old trench and proceeded southeasterly (1.5 meter intervals) to 48.62 meters. From 22.86 meters to 48.62 meters (25.76 m) averaged 7.89 g/tonne with a high grade section from 22.86 meters to 30.48 meters $(7.62 \mathrm{~m})$ running $12.69 \mathrm{~g} /$ tonne. The high gold values are associated with high copper mineralization (up to 5.4%) although not necessarily at a consistent ratio. Heavy rubble in the other two trenches prevented sampling them in 1989. Detailed mapping and sampling of the area is necessary before the limits of the mineralization (on surface) are known.

Trenching (Physical Work)

Physical work was submitted for the labour involved with cleaning out the trenches described above. The trenches are shown on figures GC-89-22 to GC-89-26 inclusive. A total of 105 meters of trenching was completed in 6 man days. The breakdown into trenches on each zone was as follows: Saddle Zone - 34 meters; North Rim Zone - 17 meters and DDH 128 Zone - 54 meters. A breakdown by claim group and assessment period is shown below:

1989 Assessment Man Days Meters

1990 Assessment Man Days Meters

Group I	0	0	1	54
Group II	0	0	0	0
Group III	4	17	1	34
			2	88

Geophysics

The only geophysics done in 1989 was VLF-EM surveys using a Geonics EM-16 unit. The operation of this instrument is well documented in the literature and will therefore not be reiterated in this report.

For the VLF-EM surveys on the Galore Creek property, two different transmitting stations were used depending on the orientation of the grid lines. The station used for all the lines trending north to northwesterly was Cutler, Maine (NAA-17.8 Hz) and the operator consistently faced southerly when taking readings. For lines trending westerly to southwesterly Seattle, Washington (NLK-24.8Hz) was used and the operator faced easterly when taking readings.

The VLF-EM utilized the same stations (25 m interval) established during the soil sampling with the exception of the east-west (grid) lines on the North Rim - DDH 128 Grid (GC-89-28). Due to the strong magnetics in this area, the east-west stations would have been too distorted to properly interpret the results. Two lines were therefore run with compass and hip-chain for this survey. Tie-ins were made with the existing cross-lines permitting an accurate representation of the actual station locations in the field.

All results were Fraser-filtered and the results are shown on Figures GC-89-27, 28, 29 and 30. Contours are at 0, 10 and 20 units. Raw data is included as Appendix V.

The total VLF-EM surveying carried out in 1989 was 11.43 kilometres. A breakdown into the amount for each claim group and assessment period is shown below:

	1989 Assessment	1990 Assessment
Group I	0.30 km	4.30 km
Group II	2.75 km	0
Group III	1.83 km	2.25 km
TOTAL	4.88 km	6.55 km

Discussion of Results

North Rim - DDH 128 Grid (Fig. GC-89-27, 28)
As detailed mapping of this area has not been done, it is difficult to know the likely source of the VLF-EM anomalies in all cases. We know from our mapping of the North Rim trenches that copper mineralization is strongest adjacent to the contact between the Upper Triassic volcanics and the underlying epidote syenite intrusive rocks. It appears that the long northeasterly trending anomaly which roughly follows the $0+00$ baseline is likely tracing out this contact. The anomaly broadens out to the northeast probably because the topography in this area more or less parallels the dip of the contact. The copper mineralization is generally disseminated in the rocks and therefore would likely not show up as an EM conductor.

The strong anomaly southeast of DDH 128, by its strength, is likely a major fault. This entire area is covered in glacial till and scree so trenching or drilling would be required to determine its true source.

The anomaly in the southwestern corner of the grid is somewhat complex and may be due to a combination of rock type changes and faulting.

The two east-west (grid) lines suggest some cross-faulting is occurring however the survey in this direction is neither extensive enough nor sufficiently detailed to permit a more thorough interpretation.

Southwest Zone Grid (Fig. GC-89-29)

The EM survey of the Southwest Zone was done at a 200 meter line spacing which results in a strong east-west bias to the contouring. Despite this bias, there does appear to be a strong conductor trending roughly east-west just south of $0+00 \mathrm{~N}$. This coincides fairly closely with the projected trend of the Southwest Zone from drilling. The entire zone is overburden covered so the exact trend of the mineralization is not know. The EM, again, is probably not responding to the disseminated copper mineralization but rather to a major controlling structure (fault?) associated with it.

The two anomalies to the north of this are basically single line anomalies so no defined trend can be determined. The intensity of them is probably too strong to result from lithologic contacts which leads to the next most likely cause - faulting.

More detailed surveying may indicate that the middle anomaly ties in with the $+16 /+18$ readings on line $2+00 \mathrm{E}$ and trends east-west. Additional lines both between the existing lines and to the east and west are necessary to properly delineate these anomalies.

Saddle Creek Grid (Fig. GC-89-30)

VLF-EM was run along this single contour line mainly to see if any of the soil gold anomalies had associated structures. Although EM anomalies were detected, they are all considerably southwest of the anomalous gold values. The only exception might be a very weak anomaly between soils C252S and C253S.

Core Sampling

A total of ten core samples were taken of DDH 88 from 100-200 feet (30.5-61.0 $\mathrm{m})$. Samples were $1 / 4$ split for reassay from previously split core. The section was reassayed to check the gold assays on 3 meter intervals within the previous 100 ft (30.5 m) composite which ran $0.005 \mathrm{oz} / \mathrm{t}$ gold ($0.17 \mathrm{~g} /$ tonne). The results of this sampling are as follows:

Sample No.	Interval (m)	Width (m)	Au (ppb)	$\underline{\mathrm{Cu}}$ (ppm)
32401	30.5-33.5	3.0	<5	1940
32402	33.5-36.6	3.1	23	697
32403	36.6-39.6	3.0	46	554
32404	39.6-42.7	3.1	<5	1019
32405	42.7-45.7	3.0	343	1478
32406	45.7-48.8	3.1	607	1479
32407	48.8-51.8	3.0	<5	1197
32408	51.8-54.9	3.1	57	1384
32409	54.9-57.9	3.0	70	1535
32410	57.9-61.0	3.1	63	732
TOTAL	30.5-61.0	30.5	Avg. 121	Avg. 1202

The core was all from epidote syenite porphyry with only trace chalcopyrite observed while splitting.

Summary and Conclusions

The 1989 exploration program at Galore Creek was successful at locating three significant zones of gold mineralization: the North Rim Zone, the DDH 128 Zone and the Saddle Zone. All these areas had previously been known for their copper mineralization however sampling for gold either was not done or was done by compositing of copper rich samples. Our sampling has only been of a preliminary nature with more extensive work required to adequately evaluate the potential of each zone.

The reconnaissance silt and rock sampling led to the rediscovery of each zone for its gold mineralization in addition to copper. Follow up trench sampling indicated significant grades of gold (and copper) mineralization over mineable widths.

Soil sampling has outlined several other areas of potential which include the Southwest Zone, the Camp IP area and the Saddle Creek area. Due to extensive overburden or incomplete follow up, additional work will be required to locate the source of these anomalies.

The VLF-EM survey has delineated several areas of likely faulting and lithologic contacts which may prove to be controlling features for the gold mineralization.

Although no "gold-only" targets were located, the 1989 program has gone a long way in developing significant gold-copper targets in the Galore Creek area. Further work is definitely warranted and is expected to be continued in the 1990 field season.

K.J. Taylor

Senior Project Geologist

SELECTED BIBLIOGRAPHY

Walker, A.A.	1977	"Stikine Copper Limited: Progress Report - 1976 /1977 - Galore Creek Project" In House Report; March 1977
Barr, D.A.	1964	"Stikine Copper Limited: Progress Report 1963 - Galore Creek Project" In House Report; April 30, 1964
	1963	"Kennco Explorations, (Western) Limited: Progress Report 1962 - Galre Creek Project" In House Report; April 17, 1963
	1965	"Stikine Copper Limited: Progress Report 1964 Galore Creek Project" In House Report; April 30 1965
	1966	"Stikine Copper Limited: Progress Report 1965Galore Creek Project" In House Report; May 30, 1966
	1961	"Kennco Explorations, (Western) Limited: Progress Report 1960 - Galore Creek Area" In House Report; March 15, 1962
	1962	"Kennco Explorations, (Western) Limited: Progress Report 1961 - Gaiore Creek Project" In House Report; March 15, 1962
Freberg, R.A.	1974	"Stikine Copper Limited: Progress Report 1973 Galore Creek Project". In Hse Rept; March 1974
Zurowski, M.T.	1988	"Gold Potential of the Galore Creek Deposits" In House Report; Jan. 11, 1988
Allen, D.G. et al	1976	"Galore Creek" in Can. Inst. of Mining and Met. Special Vol. No. 15; Part C pp. 402-414; 1976
Jeffery, W.G.	1966	"A Geology of Upper Galore Creek" B.C. Min. Mines and Petrol. Res., Annual Report, 1965, pp. 19-29
Panteleyev, A.	1973	"GC, HAB, BUY (Stikine Copper)" B.C. Dept. Mines \& Petrol. Res., Geology, Exploration \& MIning 1972, pp. 520-526
Souther, J.G.	1972	"Telegraph Creek Map-Area, British Columbia" Geol. Surv. Canada, Paper 71-44.

STATEMENT OF COSTS - Group I (1989 Assess.)

Personnel

K.Taylor - Geologist/Supervisor \$200/day
J. Mirko - Prospector \$200/day
D. Cosgrove - Fieldman \$150/day
E. Yarrow - Geologist \$250/day

Dates Work Done

July 15, 16, 18, 23, 29, 30

Cost Breakdown

Geochemistry (July 15, 16, 18, 23, 29, 30)
48 rock sample assays/preps @ 17.75/sample 852.00
67 silt sample asays/preps @ 15.75/sample 1,055.25
12 soil sample assays/preps @ 15.75/sample 189.00
Wages - 3 3/4 man days @ $\$ 150 /$ man day 562.50

- $61 / 4$ man days @ $\$ 200 /$ man day 1,250.00
- 1 1/2 man days @ $\$ 250 /$ man day 375.00
Plotting - 2 man days @ \$200/man day 400.00
Transportation - $1 / 3$ of plane flights (Vanc to Smithers) 609.00
$-1 / 3$ of plane flights (Smithers to Gal Crk) 966.67
-4 hrs. helicopter @ \$725/hr 2,900.00
Room/Board - $131 / 2$ man days @ $\$ 100 /$ man day 1,350.00
Supplies (flagging, bags etc.) 150.00
Shipping - Helicopter/Plane/Bus to Vancouver 500.00
Geophysics (July 30-0.300 km VLF-EM)
Wages - 1/4 man day @ \$200/man day 50.00
Transportation - included with geochem
Filtering/plotting - 1/4 man day @ \$200/man day 50.00
Room/Board - $1 / 2$ man day @ $\$ 100 /$ man day 50.00
Expediting - $1 / 3$ of $\$ 1,000$ 333.33
Report - Preparation - 4 days @ $\$ 200 /$ day 800.00
- Secretarial - 1 day @ \$100 day 100.00
- Drafting - 20 hrs @ \$15/hr 300.00

STATEMENT OF COSTS - Group II (1989 Assess.)

Personnel

K. Taylor - Geologist/Supervisor	$\$ 200 /$ day
J. Mirko - Prospector	$\$ 200 /$ day
D. Cosgrove - Fieldman	$\$ 150 /$ day

Dates Work Done

July 17, 18, 22, 23, 26, 27, 28, 31
August 1-6

Cost Breakdown

Geochemistry (July 17, 18, 22, 23, 26-28, 31; Aug 1-3, 5)
36 rock sample assays/preps @ 17.75/sample 639.00
51 silt sample asays/preps @ 15.75/sample 803.25
107 soil sample assays/preps @ 15.75/sample $1,685.25$
Wages - 7 man days @ $\$ 200 /$ man day $1,400.00$

- 7 man days @ $\$ 150 /$ man day 1,050.00
Plotting - 3 man days @ $\$ 200 /$ man day 600.00
Transportation - $1 / 3$ of plane flights (Vanc to Smithers) 609.00
- $1 / 3$ of plane flights (Smithers to Gal Crk) 966.67
-6 hrs. helicopter @ $\$ 725 / \mathrm{hr}$ 4,350.00
Room/Board - 17 man days @ $\$ 100 /$ man day 1,700.00
Supplies (flagging, bags etc.) 200.00
Shipping - Helicopter/Plane/Bus to Vancouver 700.00
Geophysics (Aug 1-0.925 km VLF-EM; Aug 4 - 1.825 km VLF-EM)
Wages - 1 man day @ \$200/man day 200.00
- 1 man day @ \$150/man day 150.00
Transportation - included with geochem
Filtering/plotting - 1 man day @ \$200/man day 200.00
Room/Board - 3 man days @ $\$ 100 /$ man day 300.00
Expediting - $1 / 3$ of $\$ 1,000$ 333.33
Report - Preparation - 5 days @ \$200/day 1,000.00
- Secretarial - 1 day @ $\$ 100$ day 100.00
- Drafting - 25 hrs @ \$15/hr 375.00

STATEMENT OF COSTS - Group III (1989 Assess.)

Personnel

K. Taylor - Geologist/Supervisor	$\$ 200 /$ day
J. Mirko - Prospector	$\$ 200 /$ day
D. Cosgrove - Fieldman	$\$ 150 /$ day
E. Yarrow - Geologist	$\$ 250 /$ day

Dates Work Done

July 15, 17-19, 21, 25, 29, 31
August 2, 3, 5, 7

Cost Breakdown

Geochemistry (July 15, 17-19, 25, 29, 31; Aug 7)

30 rock sample assays/preps @ 17.75/sample 532.50
32 silt sample asays/preps @ 15.75/sample 504.00
147 soil sample assays/preps @ 15.75/sample 2,315.25
12 channel sample assays/preps @ 17.75/sample 213.00
10 core sample assays/preps @ 17.75/sample 177.50
Wages - $43 / 4$ man days @ \$200/man day 950.00

- 5 1/4 man days @ \$150/man day 787.50
- 1/2 man days @ \$250/man day 125.00
- 1 man day $1 / 4$ splitting core @ \$200/man day 200.00
- 1 man day channel sampling trench @ \$200/man day 200.00
Plotting - 3 man days @ \$200/man day 600.00
Transportation - 1/3 of plane flights (Vanc to Smithers) 609.00
$-1 / 3$ of plane flights (Smithers to Gal Crk) 966.67
- 6 hrs. helicopter @ $\$ 725 / \mathrm{hr}$ 4,350.00
Room/Board - 15.5 man days @ \$100/man day 1,550.00
Supplies (flagging, bags etc.) 250.00
Shipping - Helicopter/Plane/Bus to Vancouver 700.00
Geophysics (July 30-1.125 km VLF-EM; Aug 7-0.7 km VLF-EM)
Wages - 1 man day@ \$200/man day 200.00
- 1 man day @ \$150/man day 150.00
Transportation - included with geochemFiltering/plotting - 1 man day @ \$200/man day200.00
Room/Board - 3 man days @ \$100/man day 300.00

Physical (Aug. 3, 5 - Handtrenching)

Wages - 2 man days @ \$200/man day 400.00

- 2 man days @ \$150/man day 300.00
Transportation - 1.5 hrs helocipter @ \$725/hr 1,087.50
Room/Board - 4 man days @ \$100/man day 400.00
Expediting - $1 / 3$ of $\$ 1,000$ 333.33
Report - Preparation - 5 days @ \$200/day 1,000.00
- Secretarial - 1 day @ \$100 day 100.00
- Drafting - 25 hrs @ \$15/hr 375.00

STATEMENT OF COSTS - Group I (1990 Assess.)

Personnel
K.Taylor - Geologist/Supervisor \$200/day
J. Mirko - Prospector \$200/day
D. Cosgrove - Fieldman \$150/day
Dates Work Done
September 1-9 inclusive
Cost Breakdown
Geochemistry (Sept. 1-4, 6, 7, 9)
21 rock sample assays/preps @ 17.75/sample 372.75
33 channel sample asays/preps @ 17.75/sample 585.75
6 silt sample assays/preps @ 15.75/sample 94.50
153 soil sample assays/preps @ 15.75/sample 2,409.75
Wages - 3 1/2 man days channel sampling @ \$200/day 700.00

- 2 3/4 man days @ \$150/man day 412.50
- 3 man days @ \$200/man day 600.00
- 2 man days plotting @ \$200/day 400.00
Transportation - 1/3 of plane flights (Vanc to Smithers) 397.40
$-1 / 3$ of plane flights (Smithers to Gal Crk) 766.67
- 1.8 hrs. helicopter @ \$725/hr 1,305.00
Room/Board - 11 1/4 man days @ \$100/man day 1,125.00
Supplies (flagging, bags etc.) 100.00
Shipping - Helicopter/Plane/Bus to Vancouver 700.00
Geophysics (September 4, 6-4.30 km VLF-EM)
Wages - 3/4 man day@ 150/day 112.50
- 1/2 man day @ \$200/day 100.00
Transportation - included with geochem
Filtering/plotting - 1 man day @ \$200/man day 200.00
Room/Board - 2 1/4 man days @ \$100/man day 225.00
Physical Work (September 2, 3 - Digging trenches 128T1-5)
Wages - 1/2 man day @ \$200/day 100.00
- 1/2 man day @ \$150/day 75.00
Room/Board - 1 man day @ \$100/man day 100.00
Transportation - 0.3 hrs. helicopter @ \$725/hr 217.50

Expediting - $1 / 3$ of $\$ 330$	110.00
Report - Preparation -2 days @ $\$ 200 /$ day	400.00
- Secretarial - 1 day @ $\$ 100 /$ day	100.00
- Drafting - 5 hrs. @ $\$ 15 / \mathrm{hr}$	75.00

STATEMENT OF COSTS - Group II (1990 Assess.)

Personnel

K.Taylor - Geologist/Supervisor	$\$ 200 /$ day
J. Mirko - Prospector	$\$ 200 /$ day
D. Cosgrove - Fieldman	$\$ 150 /$ day

Dates Work Done

September 1, 9

Cost Breakdown

Geochemistry (September 1, 9)

$$
106 \text { soil sample assays/preps @ 15.75/sample } \quad 1,669.50
$$

1 silt sample asay/preps @ 15.75/sample
15.75

Wages - 1 man day @ \$200/man day 200.00

- 1 man day @ $\$ 150 /$ man day 150.00
$-1 / 2$ man day plotting @ $\$ 200 /$ man day 100.00
Transportation - $1 / 3$ of plane flights (Vanc. to Smithers) 397.40
$-1 / 3$ of plane flights (Smithers to Galore Crk) 766.67
- 0.4 hr . helicopter @ \$725/hr 290.00

Room/Board - 2 1/2 man days @ \$100/man day 250.00
Supplies (flagging, bags etc.) 75.00
Shipping - Helicopter/Plane/Bus to Vancouver 400.00
Expediting - $1 / 3$ of $\$ 330 \quad 110.00$
Report - Preparation - 1 dya @ \$200/day 200.00

- Secretarial - $1 / 2$ day @ $\$ 100 /$ day 50.00
- Drafting - 3 hrs @ \$15/hr 45.00

STATEMENT OF COSTS - Group III (1990 Assess.)

Personnel

K.Taylor - Geologist/Supervisor	$\$ 200 /$ day
J. Mirko - Prospector	$\$ 200 /$ day
D. Cosgrove - Fieldman	$\$ 150 /$ day
E. Yarrow - Geologist	$\$ 250 /$ day

Dates Work Done

September 1, 3-6 incl; 8, 9

Cost Breakdown

Geochemistry (September 1, 3, 5, 6, 8, 9)
9 rock sample assays/preps @ 17.75/sample 159.75
204 soil sample asays/preps @ 15.75/sample 3,213.00
21 channel sample assays/preps @ 17.75/sample 372.75
Wages - $13 / 4$ man days channel sampling @ $\$ 200 /$ man day 350.00

- 1/2 man day @ \$250/man day 125.00
-1 1/2 man days @ $\$ 200 /$ man day 300.00
- 13/4 man days @ $\$ 150 /$ man day 262.50
- 1 1/2 man days plotting @ $\$ 200 /$ man day 300.00
Transportation $-1 / 3$ of plane flights (Vanc to Smithers) 397.40
$-1 / 3$ of plane flights (Smithers to Gal Crk) 766.69
-.8 hrs. helicopter @ $\$ 725 / \mathrm{hr}$ 580.00
Room/Board - 7 man days @ \$100/man day 700.00
Supplies (flagging, bags etc.) 100.00
Shipping - Helicopter/Plane/Bus to Vancouver 650.00
Geophysics (September 4, 8-2.25 km VLF-EM)
Wages - 1 1/4 man day @ \$200/man day 187.50Transportation - included with geochem
Filtering/plotting - $1 / 2$ man day @ $\$ 200 /$ man day 100.00
Room/Board - 1 3/4 man days @ $\$ 100 /$ man day 175.00
Physical Work (September 8 - Cleaning out trench ST-1)
Wages - 1/2 man day @ \$200/man day 100.00
Room/Board - 1/2 man day @ \$100/man day 50.00
Transportation - 0.1 hr helicopter @ $\$ 725 / \mathrm{hr}$ 72.50
Expediting - 1/3 of \$330 110.00
Report - Preparation - 2 days @ \$200/man day 400.00
- Secretarial - 1 day @ \$100/day 100.00
- Drafting - 5 hrs @ \$15/hr 75.00

APPENDIX II

STATEMENT OF QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

I, Kenneth J. Taylor of 15732-92 B Avenue, Surrey, British Columbia do hereby certify that:

1. I am a geologist with a B.Sc. in Geology from the University of British Columbia, 1973.
2. I have practised my profession continuously since 1973.
3. I am a Fellow of the Geological Association of Canada.
4. I supervised and co-executed the 1989 fieldwork at the Galore Creek property on behalf of Mingold Resources Inc.

Senior Project Geologist
Mingold Resources Inc.

November 28, 1989
Galore ck．

SAMTLL ORSCIN IPTIJUN	$\begin{aligned} & \text { PREF } \\ & \text { CODE } \end{aligned}$		$\begin{gathered} \text { A1 } \\ \% \end{gathered}$	$\begin{gathered} \text { A: } \\ \text { plinin } \end{gathered}$	Apmin	$\begin{gathered} \text { Ing } \\ \text { mann } \end{gathered}$	$\underset{\text { nepue }}{\text { ne }}$	$\begin{gathered} \text { mb } \\ \text { ynn } \end{gathered}$	C_{6}	$\begin{gathered} \text { Cd } \\ \text { pyirt } \end{gathered}$	$\begin{gathered} \text { Co } \\ \mathrm{p}^{\mathbf{n}} \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \text { prin } \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { phiz } \end{gathered}$	$\begin{aligned} & \Gamma_{0} \\ & \% \end{aligned}$	0 m pinn	$\begin{gathered} \text { If/ } \\ \text { [נn+1 } \end{gathered}$	$\begin{aligned} & \mathbf{R} \\ & 3 \end{aligned}$	L prn	$\begin{aligned} & \text { M4 } \\ & \text { ip } \end{aligned}$	$\begin{aligned} & \text { Mit } \\ & \text { Mp!"! } \end{aligned}$	$\begin{array}{r} n \\ \operatorname{mon} \end{array}$
（07－104－0－3）003－	\％14	218	1.32	2.6	13	210	<0.3	<1	1.15	0.5	24	16	271	8． 50	20	<1	0.30	10	1．0）	313	1
（x＋404－4t）004－	214	238	1，37	3.0	43	160	<0.3	<2	1.25	<0.9	25	20	120	10.10	10	7	0.17	10	0.94	159	<1
（ x^{\prime}－104－6－3 cos－	214	238	1.32	J． 2	＜3	190	<0.5	<2	1.09	＜－0．3	21	10	294	10．35	18	<1	0.18	10	0.87	1315	$?$
（07－104－6－3 006－	何14	238	1.21	2.2	13	110	<0.3	<2	1.13	2.0	18	13	169 ，	9． 22	70	<1	0.17	10	0.83	1 ± 10	$?$
（0） $104-6-3$ 007－	214	2.18	1.38	2.6	<3	180	<0.3	<2	1.12	<0.5	19	19	268	4． 3	20	$<$	0.19	10	0.85	1435	，
C0－109－4－1 003－	214	238	1.96	2.0	5	40	<0.5	く 2	0.93	<0.5	18	19	217	6.65	20	$?$	0.10	10	1.00	1410	1.1
（cc－101－t－3 009－	1214	238	1.42	1.6	10	130	<0.5	<2	0.48	<0.5	3	10	16	2.16	70	<1	0.09	20	0.70	313	13
（co－104－6t3 090－	－14	298	1.18	1.0	<5	60	<0.5	<7	0.28	$\leqslant 0.5$	18	11	12 －	4.18	18	1	0.09	10	0.72	2370	26.
（cos－104－0－3 011－	724	248	0.67	0.8	10	10	<0.3	<1	0.24	$\leqslant 0$	3	20	11.	3.60	10	\cdots	0.09	$\leqslant 10$	0.17	260	2
	f14	2 JF	1.05	1.2	<1	30	<0.5	<2	0.46	<0.5	1	12	13.	2.63	20	<1	0.10	10	0.17	620	1
（00－104－0－3 of J－	Q11	138	2， 34	2.0	20	10	<0.3	<2	0.70	<0.9	4	27	415	4．01	20	1	0.10	10	0.59	590	，
（ax－104－0．3 014－	914	238	1．23	1.8	5	40	＜0．s	<2	0.41	＜0． 5	4	22	23 ，	2.65	20	<1	0.13	10	0． 17	330	19
（0x－104－6－3 ofs	214	238	2.35	4． 4	3	50	<0.5	<2	0.87	0． 5	20	20	11，	5.41	70	<1	9．21	10	1.92	1930	11
00－194－0．3 016－	914	218	2.17	2.0	10	410	<0.5	<2	0.97	<0.5	0	27	93	4.06	10	1	0．18	10	1.04	880	7
（x－164－6－3 0： 0	P14	298	1．03	1.8	<3	90	<0.5	<2	0．49	1.3	3	13	10 －	1.37	10	<1	0．0．	10	0.17	239	7
（00－104－6－3 018－	214	718	2.19	3.2	<3	130	1.0	<7	0.73	1.3	13	11	B3－	3.06	10	<1	0.11	10	0.19	1790	18
ab－104－6－1 019	214	238	1.64	2.4	13	110	<0.3	<1	0.80	2.0	4	17	109 －	3． 68	10	2	0.14	10	0.14	995	2
（6）－104－6］ 047	214	238	1.59	1.8	<3	do	<0.5	<2	0.35	<0.5	4	16	14.	3.40	10	<1	0.17	10	0． 16	410	2
crilica－0－3 048－	214	238	1． 32	1.2	<3	10	<0.3	<2	0.48	<0.5	2	17	11.	3.92	10	<1	0.10	10	0.15	205	，
60－104－6－1 040	214	238	0.72	1.0	9	10	<0.3	<2	0.10	<0.5	I	14	6	1.24	10	<1	0.08	<10	0.08	120	<1
co－104－0－1 050－	214	294	1．37	1.2	10	do	<0.3	<2	0.61	<0.5	1	18	10	3.77	20	<1	0.11	10	0.76	363	1
（03－101－6－3）0．13－1	\％14	23t	1.03	1.0	10	30	<0.5	<1	0.39	<0.3	λ	19	10	3.11	10	<1	0.11	10	0.14	200	
50－104－0－3 052－5	214	238	1.42	1.8	5	50	<0.5	<2	0.32	<0.3	4	11	40	5.99	20	<1	0.28	10	0.48	315	1
$08-104-3-3$ 0s $3-$	214	238	2.37	2.4	35	50	<0.5	<1	0.12	$<0,3$	1	10	B1－	8.15	20	，	D． 21	10	0．5\％	313	7
（x）－104－7－3 034a	214	238	1.94	2.4	19	50	＜0．3	<1	1.01	<0.3	19	14	272 －	7.55	20	<1	0.11	20	1.17	1790	5
at－104－6－3 059－1	214	23t	1.02	0.8	10	30	<0.5	<1	0.31	<0.5	3	11	14	3.07	10	<1	0.10	10	0.14	220	1
20－104－6－3 096－12	214	236	0.87	0.6	5	30	<0.5	<2	0.29	<0.3	2	13	7 －	2.08	10	<1	0.07	<10	0.11	180	\％
60－104－7－3 057－1	214	238	1.18	1.4	25	40	<0.5	<2	0.31	<0.3	1	17	20	3．15	10	<1	0.15	10	0． 18	210	1
C0－104－6－3 058－5	214	238	1.12	1.0	<5	30	<0.9	<1	0.48	<0.3	1	22	14	4.95	10	1	0.10	<10	0.31	120	<1
20－104－6－3 039－	28	238	0.89	0.8	<1	10	<0.3	<2	0.15	<0.5	2	11	11 －	1.31	10	<1	0.10	10	0.10	150	<1
10－104－0－1 000	214	238	2.98	2.0	<3	so	<0.5	<2	0.13	<0.3	3	29	12	8.35	20	1	0.10	10	0.37	320	\％
c0mation 061－	214	23t	1.07	1.2	<3	20	＜0．9	<2	0.34	<0.5	2	19	10	3．66	10	<1	0.12	<10	0.16	179	
$00-104-0-3062+2$	214	238	1.13	0.6	<9	30	<0.5	<2	0.25	<0.5	2	13	6^{1}	1.72	<10	<1	0.14	<10	0．13	130	
17－104－6－3 063－7	214	238	1．69	1.1	<5	50	<0.5	<2	0.39	<0.3	2	25	45	4.34	10	<1	0.09	－10	0.10	200	\％
03－104m0－3 064－才	214	238	1.34	0.6	<5	10	<0.5	<2	1．10	<0.5	1	11	16 －	3.41	10	，	0.10	<10	0.31	1055	1
（6－104－03－3 D）5－1	214	238	3.01	0.2	25	70	<0.3	<2	2.90	<0.5	8	11	89 －	\＄． 73	<10	<1	0.87	<10	1.95	2190	4
67－104－0－1066－5	214	238	1.83	1.0	5	40	<0.5	<2	1.27	<0.3	2	$1)$	27 －	4.91	10	，	0.14	10	0.57	730	7
1－114－0－1067－2	214	238	0.71	0.6	10	20	<0.5	$<?$	0.64	<0.5	<1	10	4.	2.01	<10	，	0.09	10	0.08	105	8
（0－104－0－3 088－5	714	238	2.50	1.2	3	40	<0.3	<2	1.08	<0.3	5	10	71 －	6.19	10	3	0.27	10	1.06	1603	\＄
C0104－（0－1 069－2	214	238	1.01	2.4	<5	20	＜0．3	<2	0.31	<0.3		12	11 －	3.93	10	<1	0.08	<10	0.06	143	3

COAST II RESRARCH HKC.
40 NIOAE SE
NoxISI VARKOUVTlR. H.C. V1J $1 C^{7}$

Chemenis: atre: fack stambuy
CERTIFICATE OF ANALYSIS 18922774

SAMMCLI DESCRICTBON	CODH:		$\begin{gathered} \mathrm{N} \pi \\ \% \end{gathered}$	$\begin{gathered} \text { Nit } \\ \text { preis } \end{gathered}$	EH	$\begin{gathered} \mathrm{Mb} \\ \mathrm{pg} \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { SB } \\ & \hline 1 \text { ויון } \end{aligned}$	$\begin{gathered} \text { So } \\ \text { pivn } \end{gathered}$	$\underset{p \mathbf{p r w}}{\mathbf{S I}^{\prime}}$	$\begin{aligned} & 11 \\ & 4 \end{aligned}$	$\begin{gathered} \mathrm{Yi} \\ \hline \boldsymbol{n} \end{gathered}$	$\underset{y}{v \times 1}$	$\begin{array}{r} v \\ \text { ועון } \end{array}$	W	$\begin{gathered} \text { Zn } \\ \hline \boldsymbol{n} \end{gathered}$	
100-104-0-3 009	214	218	<0.01	10	2910	H\%	3	17	137	0.12	<10	<10	279	<10	176	
	㜢1:	218	<0.01	12	1120	64	5	11	181	0.13	<10	<10	313	<30	130	
$100-104-6.3009-$	214	238	<0.01	5	2940	16	\%	11	132	0.14	<10	<10	331	<10	132	
COT-104-3-3 004-	211	238	<0.01	6	2890	122	5	18	133	0.12	<10	<10	177	<10	308	
CHF10.9-0.3 007	214	238	<0.01	6	2820	38	<3	11	154	0.12	<16	<10	178	<10	148	
$x-504-30300$	214	238	0.01	8	2990	82	3	10	111	0.12	<10	<10	224	<10	192	
(x-104-0-1 000	+214	238	0.12	5	580	12	5	1	35	0.13	<10	<10	35	<10	61	
(0x-104-0.3 010	P214	238	0.02	5	1330	60	<3	2	17	0.09	<10	<10	105	<10	18	
crios-9-3 011-	214	238	0.01	4	670	18	<5	2	$f 1$	0.09	<10	<10	140	<10	42	
(37-104-0.3) 012	R14	238	0.09	4	10.10	10	<5	1	45	0.09	10	<10	37	<10	56	
(00-104-0-3) 011-1	1291	238	0.91	7	2170	28	5	2	58	0.12	~ 10	<10	110	<10	71	
(06-104-0-3 014-	214	238	0.03	7	950	18	<3	2	64	0.11	<10	<10	64	<10	98	
(a)-104-0-3 015-	\% 14	238	0.01	${ }^{6}$	1490	42	5	7	139	0.18	<10	<10	116	<10	290	
(CG-104-0-3 016-	214	238	0.02	${ }^{*}$	1200	12	9	6	157	0.18	<10	<10	183	<10	20405	
(0c-104-6-3 0t	+14	238	0.07	4	750	12	<3	1	4.1	0.11	$\leqslant 10$	<10	28	$\div 10$	88	
(0x-104-6-3 olt	214	238	0.06	8	1860	68	5	.	94	0.08	<10	$\bigcirc 10$	80	<10	7	
cr-10.1-6-3 019-	P14	230	0.05	1	1860	78	5	2	72	0.06	<10	<10	90	<10	172	
cos-104-0-3 0.17-1	214	238	<0.01	1	1140	62	<5	4	113	0.12	<10	<14	120	<10	60	
(00-104-0-3 04,	214	238	0.01	1	770	10	≤ 5	4	96	6:17	<10	<10	147	<10	310	
(0)-104-6.1 049-	214	238	0.03	1	300	16	<1	2	11	0.11	<10	<10	49	<10	10	
(00-104-0-3 050	214	238	<0.01	1	2040	20	<5	6	110	0.75	<10	<10	202	<10	36	
45-104-6-3 051-	-1:1	215	0.01	<1	699	26	<5	1	42	0.26	<10	<10	120	<10	36	
(0)-104-0-) 051-	+214	238	0.01	<1	2990	12	3	6	Pot	0.14	<10	<10	231	<10	76	
(00-104-0.3 3 039-1	21.1	138	0.01	2	218	18	1	7	9)	0.15	<18	<10	107	<10	66	
(00-104-61-1 054-7	214	230	<0.01	3	2810	5	5	12	171	0.12	<10	<10	251	<10	187	
(0)-104-0,3 035	C14	2.78	0.02	1	1980	18	<3	7	68	0.18	<10	$\because 10$	107	<10	4	
(0)-104-0,3 05s-1	Q14	238	0.01	<1	110	14	<3	2	70	0.18	<10	<10	94	<10	26	
05-104-0-1 057-	F14	238	<0.01	7	2180	17	5)	71	0.10	<10	<10	268	<10	36	
cat-104-0-5 038-	214	238	<0.01	1	370	17	<3	4	76	0.10	<10	<10	152	<10	34	
10-104-17-3 059-	214	238	0.04	1	10 FO	8	5	1	43	0.12	<10	<10	40	<10	14	
60-104-9-3 0.60-19	214	338	0.01	5	6490	22	5	4	54	0.13	<10	<10	247	<10	92	
6 $5-104-0^{-3} 061-$	214	138	0.02	2	480	1	<3	4	69	0.17	<10	<10	105	<10	10	
(0)-104-0-3 062-	214	238	<0.01	2	290	12	<5	2	61	0.16	<10	<10	97	<10	26	
cor-104-0] 0 os $3-1$	214	238	0.01	2	3200	12	<3	1	31	0.12	<10	<10	118	<10	44	
cos-104-9-1 064-12	214	238	<0.01	<1	1020	10	5	7	31	0.14	<10	<10	246	<10	36	
cos-104-0-3 06s-	114	238	<0.01	,	1300	18	<3	11	13	0.17	<10	<10	231	<10	121	
COF_{5}-104-0-1) 086-7	F14	238	<0.01	1	1090	12	<5	5	10	0.24	<10	<10	125	<10	60	
(0,104-0-3 067-f	214	295	<0.01	<1	310	12	<3	2	36	0.21	<10	<10	142	<10	16	
$\mathrm{CO}-104-\mathrm{O-3}$ 088-1	214	218	<0.01	1	2170	26	5	1	28	0.19	<10	<10	231	<10	146	
(0)-104-6-3 069-1	214	218	<0.01	4	470	4	<3	2	60	0.11	$\leqslant 10$	<10	115	<10	24	

Chemex Labs Ltd.

To: COASTL . . AESEARCH INC.
80 NTOBE ST.
NORTH YANCOUVER. B.C vis 2Co
Jraject:
Page No. :2-n
Tal. Pages: 4
Date : 14 -ALG-by
invoice : [-8922774
P.O.

Chmenis: ATTN: IACK STMNIAY

CERTIFICATE OF ANALYSIS A8922774

32

Chemex Labs Ltd.

1:2 HROXISSMANK AVK. NMTII VANLTHIVER.

P!

Te COASTF RESEARCH [MC.
0 NIORES ST
NORTI VAMCOUVLR , I.C. V7J 2 C 9
loqulact:
Cinmenle: ATTiA: PACK STANI.RY
CERTIRICATE OF ANALYSIS A8922774

Chemex Labs Ltd.

ETH COASTECII MHSHARCII IMC.
80 NIOBL . I'.
NOLIII VAMCOUVER, H.C'

CERTIFICATE OF ANALYSIS 18922774

SAMplit mastelirrion	5ROP CODI		$\begin{gathered} \text { Al } \\ \text { \% } \end{gathered}$	As	$\begin{gathered} \text { Nin } \\ \text { ppin } \end{gathered}$	Hת 13Tin	$\begin{gathered} \mathrm{He} \\ \text { prin } \end{gathered}$	$\begin{gathered} D I \\ \text { puyi } \end{gathered}$	$\begin{gathered} C m \\ 8 \end{gathered}$	$\begin{gathered} \mathrm{Cid} \\ \mathrm{pmon} \end{gathered}$	$\begin{gathered} \text { Cn } \\ \text { ppin } \end{gathered}$	$\underset{\mathrm{pran}}{\mathrm{Cr}}$	Cu phn	$\begin{gathered} \mathrm{gre} \\ \boldsymbol{0} \end{gathered}$	$\begin{gathered} \text { On } \\ \hline \text { nn } \end{gathered}$	$\begin{gathered} \text { His } \\ \text { 日l } \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \text { 哭 } \end{aligned}$	$\underset{\text { Inth }}{L_{1}}$	$\begin{gathered} 148 \\ 88 \end{gathered}$		$\begin{gathered} \text { Nb } \\ 1 \times 1 \times 1 \end{gathered}$
M6-104-6-1 05A-	214	238	1.41	2.0	<1	$4 \cdot 10$	1.0	<2	1.37	0.3	24	109	409	9, 71	<10	<1	0.4)	20	1.18	1480	20
(t)-104-6-1 055-1	214	218	1.11	0.0	10	10	0.5	4	1.11	<0.5	16	178	129	4.86	$\leqslant 10$	$\leqslant 1$	0.13	10	1.13	610	<1
(12-104-6-1 058-	214	214	1.42	1.6	<1	280	1.0	<2	2.13	<0.5	31	149	30)	8. 59	<10	<1	0.29	10	1.43	10.5	
Mr-104-6-3 053-1	2at	2.18	1.71	2.0	13	190	1.5	<2	2.11	<0.5	15	90	781	7.97	<10	<1	0.44	10	1.14	1560	-
M-104-0-1 063-	as4	2.8	1.82	1.4	<1	1.50	1.0	2	2.30	0.5	12	193	735	6.96	<10	<1	0.50	10	1.19	174)	7
104-0-3 OG6-	214	238	1.62	1.6	<3	514	1.5	<2	0.12	<0.5	7	21	14.1	7.04	<10	<1	1.76	10	1.72	1373	39
(1)-104-0.3 067	at	1318	1.42	2.0	10	720	2.0	<2	0.83	co. 3	12	18	393	7.98	<10	<1	0.95	10	1.52	1480	37
A0-104-0-3 060,	R14	218	1.95	3.2	<3	1000	2.0	1	1.44	1.9	1)	AB	1620	5.96	<10	<1	0.11	10	1.64	2320	32
(12-104-0-3 069-	Q14	238	1.30	1.4	10	220	2.0	<2	1.15	1.5	15	42	1173	1.75	<10	<1	0.19	20	0.93	3,370	16
(10-104-0-1 070-	214	238	1.64	3.0	5	770	3.3	<2	1.47	2.0	15	21	1493	4.71	<10	<1	0.31	10	1.20	>10000	101
81-104-4-4 008-1	Q14	238	2.36	0.0	5	124	0.9	<2	1.12	<0.5	26	212	73	1.94	<10	<1	0.45	10	2.72	770	<1
Pli-104-6t-4009-	014	218	2.12	0.8	13	160	1.0	2	1.24	<0.5	16	124	85	1.90	<10	<1	+1.3)	10	2.12	915	<1
(13-104-4t-4 010-	1214	238	1.87	0.4	<5	151	0.5	<2	1.61	<0.5	11	152	A!	3.47	<10	<1	0.31	10	2.09	640	<1
(6)-104-04-4 old	214	218	2.04	1.0	15	120	1.0	2	1.14	0. 5	24	107	109	4.70	<10	<1	0.60	20	1.0)	835	<1
* $\mathbf{F r - 1 0 4 - 7 - 4 ~ 0 1 2 - 1 ~}$	214	2J8	1.44	0.8	45	100	1.0	2	1.36	<0.9	18	96	83	4.13	<10	<1	6. 34	10	1,25	713	,
bri-104-6-4 013-	a14	238	1.62	0.8	5	130	1.0	2	1.60	<0.5	22	48	110	4.64	<10	<1	0.51	10	1. 40	115	<1
Pt-104-0-4 016-	Q14	238	1.47	0.8	<3	100	1.0	<2	2.10	<0.5	22	55	98	4.98	<10	<1	0.51	10	1. 14	665	,
P0-104-0-4 $025-1$	Q14	218	2.22	1.0	10	290	2.3	<2	3.93	<0.5	24	22	97	6.30	<10	<1	0.95	<10	2.04	1350	,
15-104-6-4 026	Q14	238	1.90	1.4	25	480	1.5	<2	1.57	<0.5	29	120	77	5.14	<10	<1	0.37	10	1.83	10.15	<1
AT-104-0-4 027-	211	218	2.36	0.8	15	310	1.0	<2	1.41	<0.3	28	129	87	4.98	<10	<3	0.36	10	2.17	730	<1
$110 \mathrm{Cl} 0^{4-0}-3040$	2es	218	1.86	1.4	25	410	1.0	<2	1.89	<0.9	15	89	296	7.32	<10	<1	1.17	10	1.87	1370	20
M $7-101-0-4020-1$	21.	238	1. 94	0.4	50	100	0.5	<1	1.2.)	<0.3	21	141	61	4.71	<10	<1	0.23	10	2,13	810	,
Mr-104-6-4 030-1	214	238	2.13	0.4	90	870	0.9	<1	0.92	<9.3	16	100	63	4.31	<10	<1	0.12	10	1.72	680	$?$
IECJOH-0-3 De2-	Q14	238	2.35	1.0	10	30	0.5	<2	1.09	0.3	43	908	185	4.04	<10	<1	0.61	10	J. 01	645	4
Mreios-0-3 004-1	214	238	1.94	0.6	5	190	0.5	<2	1.98	<0.1	23	119	433	4.50	<10	<1	0.48	20	2,90	800	31
-8Clo4-0-1 009-	214	238	1.84	0.8	15	40	0.9	<2	1.07	<0.5	76	64	572	6.03	<10	<1	0.50	10	1.03	693	301
fthelot-o-3 Mi 4	014	2)	1.92	1.0	<3	180	1.0	<2	0.72	1.0	20	28	180	6.11	<10	<1	0.23	20	1.69	2750	1.
rtacose-6-3 ofs-f	214	218	1.70	1.2	. 10	140	1.0	<2	1.24	<0.3	11	23	174	6.11	<10	,	0.24	10	1.46	2020	,
treliot-0 -3 0is -	014	218	1.73	4.0	30	310	2.9	<2	1.22	0.3	41	34	183	13.10	<10	<1	0.35	20	1.36	1969	3
IRCIO4-8-3 of 7 -	Q14	238	1. 58	1.4	5	120	1.0	2	1.32	0.5	2.3	42	16.9	1. 14	<10	<1	0.21	10	1.43	2060	1
raclor-6-3 ols-	Q\|A	238	1.75	4.8	10	160	2.5	10	1.12	0.5	41	14	224	13.80	<10	1	0.33	20	1.68	18.5	< 1
15ciod-0-3 019-	14	210	1.65	1.6	15	130	1.0	*	1.42	2.0	23	43	171	3.73	<10	<1	0.27	20	1.71	2010	-
$1 \mathrm{xx104}-0-3$ 021-1	214	238	0.98	1.8	15	290	1.0	2	3.82	1.0	3	11	319	6.75	<10	<1	0.24	<10	1.12	1620	1
$1 \mathrm{bCl} 0^{4-0-3} 8023+$	214	238	1.58	2.8	40	210	1.5	6	3. 19	1.0	35	22	115	10.80	$\leqslant 10$	<1	0.33	10	1.31	1850	J
TOCl04-6-3 024-10	014	238	2.97	1.8	25	230	2.0	2	1.31	1.0	10	17	142	9.59	<10	<1	0.97	<10	2.07	1760	<1
Toc104-0-1 029-10	214	238	1.65	2.6	20	140	1.1	<2	3.06	1.3	14	21	10.4	10, 50	<10	<1	0.11	10	1.47	1859	1
r0c104-0-9 026-10	014	238	1.42	3.2	3	310	1.3	<2	2.86	2.0	10	10	233	9.01	<10	<1	0.26	10	1.20	1879	1
ROClod-G-3 029-10	a14	238	1.12	2.6	20	240	1.9	6	1.34	1.0	11	24	403	10.00	<10	<1	0.24	<10	1.21	1680	,
TuClOto-3 0)O-1	d14	238	1.45	1.6	10	160	1.9	8	1.21	<0.3	18	36	223	4.20	10	<1	0.68	10	1.17	1129	1
1ucio4-0-3 031-18	114	238	1.87	1.2	<3	100	1.0	2	1.19	0.3	25	224	113	6.95	<10	<1	0.75	20	1.36	999	28

11) GRONKFIWASK AVE. , NORTII VANCXIVIIR.

CERTIFICATE OF ANALYSIS A8922774

$\begin{gathered} \text { SAMPlet } \\ \text { OnSCRIPTION } \end{gathered}$	$\begin{aligned} & \text { PRes } \\ & \text { CoDr } \end{aligned}$		Nn \%	$\begin{gathered} \mathrm{Ni} \\ \text { ppm } \end{gathered}$	$\underset{\text { pron }}{\mathbf{P}}$	$\begin{gathered} 10 \\ 8 p m \end{gathered}$	su pron	$\begin{gathered} \text { Sci} \\ \text { pluII } \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ \text { pran } \end{gathered}$	$\begin{array}{r} \mathrm{H} \\ \% \end{array}$	$\begin{gathered} 17 \\ \hline \boldsymbol{m} \end{gathered}$	$\begin{array}{r} \mathrm{u} \\ \text { npron } \end{array}$	pqun	$\begin{gathered} w \\ \text { wrin } \end{gathered}$	$\begin{gathered} Z_{12} \\ \text { p/inn } \end{gathered}$
, 6 -104-6-3 054-	QL4	23.	0.02	34	3360	58	<3	16	189	0.19	<10	<10	348	60	114
$3 \mathrm{c}-104-451035$	Q14	118	0.02	30	1190	6	<3	3	117	D. 15	<10	<10	182	20	36
4-104-6-1 036-	014	138	0.02	33	2080	30	5	12	159	D. 10	<10	<10	130	50	92
$56-104-0-3$ - 59	1214	218	0.02	34	2530	52	5	15	265	0.10	<10	<10	120	50	148
4-104-603 0fs	214	218	0.01	62	2400	32	<5	15	205	0.21	<10	<10	T108	40	146
1-104-9m3 006	Q14	298	0.01	5	2110	18	<5	21	251	0.29	<10	<10	380	50	121
10-104-(2) 607	al4	215	0.01	17	21.10	17	<3	18	209	0.25	<10	<10	J48	410	188
it-104-0-1 068-6	Q14	238	0.04	25	2180	76	<5	16	362	0.21	<10	<10	235	10	274
: 1 -104-6-3 \%0,	(214	218	0.01	21	2060	112	<3	10	202	0.14	$\leqslant 10$	<10	178	40	264
冫3-104-6-3 070-	Q11	235	0.01	19	3650	120	<5	12	166	0.14	~ 10	<10	100	90	696
- $-104-6-4008$	-14	238	0.01	113	1860	12	<3	0	19\%	0.23	<10	<10	119	10	60
- $0-104-6-4$ cos-	1a1	231	0.01	75	1900	12	<9	8	171	0.23	<10	<10	1.18	30	98
42-104-6-4 010-1	al4	2118	0.61	84	1340	8	<9	7	271	0.19	<10	<10	114	13	31
- $2-104 \mathrm{ct-4}$ nil	Q14	238	0.01	52	2850	14	<1	11	256	0.21	<10	<10	177	10	84
: $5-104-6-4$ 012-	204	238	0.01	36	2500	16	<5	4	290	0.17	<10	<10	192	10	66
\%-104-0-4 013	Qia	238	0.01	3)	1110	26	<5	10	259	0.26	<10	<8	142	10	62
5-104-6-4 016-	(214	2,18	0.01	13	1410	12	<3	13	288	0.28	<10	<10	179	10	61
(-104-0-4 02:	Q14	238	0.07	11	4140	16	<3	16	4.12	0.25	<10	<10	308	30	81
ty-104-0-1 020-	ald	210	0.04	81	3110	14	<3	17	411	0.16	<10	<10	110	40	106
$13-104-0-4 \quad 027-$	214	238	0.01	67	2140	8	<3	10	322	0.25	<10	$\leqslant 19$	140	10	110
(xiod-0-3 040	Q14	218	0.01	17	1480	10	<3	21	112	0.32	<10	<10	3,88	10	110
4-104-0-4 029-1	d 14	218	0.01	13	1490	6	5	8	179	0.29	<10	<10	133	<10	119)
0-104-6-4 030-1	Q14	218	0.01	46	1260	2	<3	6	90	0.21	<10	<10	99	<10	104
Teclot-0-3 002-	214	2.18	0.01	244	1450	14	<3	0	16	0.22	<10	<10	199	10	104
(2:104-0-3 004-	al4	298	0.01	181	2150	8	<5	6	107	0.16	<10	<10	114	270	74
(x)104-0-) $006 \times$	214	238	0.03	32	1420	14	<5	6	102	0.76	<10	<10	152	200	99
3C104-6-5 014-1	114	238	0.01	13	2730	10	<5	1 3	71	0.10	<10	<10	187	96	144
5x104-0-3 019 -	Q14	2.18	0.01	14	2720	10	<5	11	16.	0.17	<10	<10	202	90	964
(Clor-6-3 016-t	alt	290	0.01	22	4140	78	<5	17	140	0.24	<10	<10	371	70	204
	214	238	0.02	24	2530	10	<3	11	133	0.13	<10	<10	17\%	760	160
ncios-0.3 ois-	[14	238	0.01	78	4290	64	<5	19	1. 14	0.19	<10	<10	412	70	170
nc104-0-3 010-10	Q34	2,88	0.01	14	3140	64	<5	14	201	0.19	<19	<10	215	990	322
9xiod-a-3 of1-4	Q14	218	0.01	\dagger	3950	50	<3	11	217	0.00	<10	<10	167	30	134
	914	218	0.01	17	4240	118	<3	18	258	0.16	<10	<10	147	70	218
C104-0-3 024-0	214	2.18	0.01	14	3650	12	5	20	349	0.24	<10	<10	134	60	235
TK104-0-3 025-0	214	218	0.01	16	4040	124	<5	17	272	0.17	<10	<10	151	10	262
WC104-6-1 926-10	a14	238	0.01	15	4290	92	<5	19	241	0.14	<10	<10	290	50	194
1x104-9-3 627-0	114	238	0.01	16	4270	78	<5	13	226	0.11	<10	<10	290	60	112
xclo4-6-3 830-10	914	238	0.03	26	1920	40	<3	7	187	0.14	<10	<10	158	140	106
+2104-6-3 03:-10	a14	218	0.02	7	1390	76	<3	9	116	0.13	<10	<10	188	10	107

\qquad

Chemex Labs Ltd.

lo: COASI 1 meseanch inc.
80 N1OUE ST.
NORTH VANCOUYHR, PC. V7J 2C9
ouject :
Comanemis: ATTN: BACX STAgI \&Y

Page Mo. : $4=A$
Tot. Pngrs: 4
Date : $11-\mathrm{AlMi}-84$
Involce ${ }^{\text {I }}$: $1-8921774$
P. O.

CERTIFICATB OF ANALYSIS A8922774

Chemex Labs Ltd.

ASYF NBSBARCII JHE.
so NiOME ST.
NOH'LB VAMCOUVTBR, B.C. V7J 2C9
Howjec:
Cumenals: A'tre: fact staniory
CERTIFICATE OF ANALYSIS A8922774

\qquad

Tk OASTECH RESEARCH INC.
80 NIOBE ST.
MC\&IH. VANCOIVER, B:C. V7J 2C9

Page No. : 1-A
Tot. Pages: 3
Date :17-AuG-89
Invoice I:I-8923074
P.O. $\#=89-4099$

IE 2 BROOKSBANK AVE. NORTH VANCOUVER, BRITISH COLUMAIIA. CANALA VTJTRCI

HBONH (6yt1 984-ul2t
Commones: ATTN: IACK STANLEY

CERTIFICATE OF ANALYSIS A8923074

Chemex Labs Ltd.
To ASTECH RESEARCH INC,
80 NIOBE ST
SO NIOBE ST,
NORTHYANCOIVER, B.C v7J $2 C 9$

- Amalytioal Chentists * Gevociemests. Reaplsteied Assayens
$21 j$ BKuOKSBANX AVE . NORTH VANCOITVER.
PHONE (NUA) 984-02)
CERTIFICATE OF ANALYSIS A8923074

Chemex Labs Litd.
Ancilftlicat Chamists "Geochemists * Regislered Assayers
212 BROOKSEANK AVE. NORTH VANCOUYER GRITISH COLIMGIA. CANADA VTJ-2CI

PHONE (604; 9x4-0721

To: STECI RESEARCH INC
80 NIOBE ST. "cing NORTH VANCOUVER, B.C. V7J 2C9
ioject MJIGOLD
Commens: ATTN: JaCK STANLEY

CERTIFICATE OF ANALYSIS A8923074

Chemex Labs Ltd.
TO:C TECH RESEARCII INC
30 NIOBE ST
NORTH YANCOLVER, B.C V7J 2C9

Page No. : 2
Tot. Pages: 3
Date
\rightarrow Invoice $:=1 T-$ AUG- 81
P.O. $\quad: 89-4099$

112 bROOKSBANK AVE. NOATH VANCOIIVHR
Project : MINIGOTD
Commen1s: ATTN: J^CK STANJ.FY
CERTIFICATE OF ANALYSIS A8923074

Chemex Labs Ltd.
 Amalytical Clemists ogeoclumisia - Regletered Asearera

212 BKOOKSBANK AYE.. NGARTH VANCOIIVER
RITISH COLTMBIA. CANADA V7J-2CI
PHONE (SBA) 984-0221
CERTIFICATE OF ANALYSIS A8923074

Analylical Chemists - Geochemists + Reglatered Assayers
212 DROOKSEANK AYE. NORTH YANCUEYIEX RRITISH COLIMBIA. CANADA V7I-2CI

CERTIFICATE OF ANALYSIS A8923074

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

Date:
17 Aug, 1989
TO: Mingold Resources
405-470 Granville Street Vancouver, BC v6C 1V5

Attention: Ed Yarrow
Invoice No. 08A006
Order No. 95508
Page 1 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

I HEREBY CERTIFY the following results of assays.

AUG-21-89 MON 13:23
6049802737
P. 01

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 3 of 30 CERTIFICATEOFASSAY

I HEREBY CERTIFY the following results of assays.

	Element	$\begin{gathered} \mathrm{Au} \\ \hline \mathrm{PPB} \\ \hline \end{gathered}$	$\frac{\mathrm{Cu}}{\mathrm{PPM}}$	-1	1		
33	MG 104 G3	100	$R_{K}-p_{0}$	ssibe mo	isread ple no.		
34	68	163					
35	TGC 104 G 32	$\rightarrow 40$		YG104C	$4(-3004 \times ?$	-	
36	$? ? \boxed{4}$	23		pssibly	moreat	(ج2	
37	6	77					
38	14A	<5					
39	15	<5					
40	16	93					
41	17	<5					
42	18	447					
43	19	30					
44	21	33					
45	23	90					
46	24	<5					
47	25	<5					
48	26	<5					

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 4 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

	$\frac{\text { Element }}{\text { Units }}$		$\frac{\mathrm{Cu}}{\mathrm{PPM}}$				-	
49	TGC 104 G3 27	30						
50	30	55						
51	31	2570						
52	MG 104 G3 71R	Delay						
53	72	<5						
54	73	<5						
55	74	<5						
56	76	636						
57	77	<5						
58	78	<5						
59	79	95						
60	80	55						
61	81	88						
62	Cosqrove? 261 x	68						
63	M 75R	<5						
64	TGC 104 G4 12X	<5						

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 5 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 6 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 7 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1 V5

Date:
17 Aug, 1989
Invoice No. 08A006
Order No. 95508
Page 8 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

	Element	$\begin{gathered} \mathrm{Au} \\ \mathrm{PPB} \end{gathered}$	$\frac{\mathrm{Cu}}{\mathrm{PPM}}$		$-$	-		
113	CG 104 G3 435	200						
114	44	25						
115	45	<5						
116	46	<5						
117	51	115						
118	52	<5						
119	53	60						
120	54	200						
121	55	36						
122	56	56						
123	57	70						
124	58	17						
125	59	16						
126	60	<5						
127	61	<5						
128	62	<5						

TO: Mingold Resources
405-470 Granville Street
Vancouver, BC
V6C 1V5

Attention: Ed Yarrow

Date:
17 Aug, 1989
Invoice No. 08A006
Order No. 95508
Page 9 of 30
CERTIFICATEOF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources
$405-470$ Granville Street
Vancouver, BC
V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 10 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

	$\frac{\text { Element }}{\text { Units }}$		$\frac{\mathrm{Cu}}{\mathrm{PPM}}$	ـ				
145	TGC 104 G3 38X	55						
146	40	65						
147	41	90						
148	43	80						
149	44	290						
150	CG $15 \times$	<5						
151	CG 104 G3 77	1850						
152	82	219						
153	85	27						
154	86	40						
155	87	20						
156	88	40						
157	90	370						
158	91	30						
159	92	373						
160	93	40						

TO: Mingold Resources		
$405-470$ Granville Street	Date:	17 Aug, 1989
Vancouver, BC	Invoice No.	$08 A 006$
V6C 1V5	Order No.	95508
Attention: Ed Yarrow	Page 11 of 30	

CERTIFICATE OF ASSAY
I HEREBY CERTIFY the following results of assays.

	Element	Au						
	Units	PPB	$\overline{\text { PPM }}$			- -		
161	CG 104 G3 94	<5						
162	95	<5						
163	96	180						
164	TGC 104 G4 7	<5						
165	8	<5						
166	9	<5						
167	T 076 MG	1267	Mingo	old - not	t Murko?	?		
168	$24 x ? 245$	<5						
169	73 (5) S	173						
170	745	133						
171	755	60						
172	775	273						
173	805	87						
174	815	617						
175	825	73						
176	835	47						

TO: Mingold Resources 405 - 470 Granville Street Vancouver, BC V6C IV5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 12 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C IV5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 13 of 30

> CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

COASTECH ANALYTICAL SERVICES LABORATORY

```
TO: Mingold Resources
    405 - 470 Granville Street
    Vancouver, BC
    V6C 1V5
```

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 14 of 30
CERTIFICATEOF ASSAY

I HEREBY CERTIFY the following results of assays.

	Element	Au						
	Units	PPB	PPM					
209	¢1188 1185	<5						
210	1195	<5						
211	1205	<5						
212	1215	<5						
213	1225	<5						
214	1235	<5						
215	1265	<5						
216	1275	<5						
217	1285	<5						
218	1295	<5						
219	1305	<5						
220	1315	<5						
221	1325	<5	- $-150 x$		5R-	could b	$50 x$	
222	$\text { TGC } 104 \text { G3 } 5 \mathrm{X}$	<5		pued bo	$S E$			
223	T67x-7	31						
224	T68x-8	33						

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 15 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C $1 V 5$

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 16 of 30
CERTIFICATEOF ASSAY

I HEREBY CERTIFY the following results of assays.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1 V 5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 17 of 30

17 Aug, 1989

$$
C E R T I F I C A T E O F A S S A Y
$$

I HEREBY CERTIFY the following results of assays.

	- Element	$\frac{\mathrm{Au}}{\mathrm{PPB}}$	$\begin{array}{\|c\|} \hline \mathrm{Cu} \\ \hline \mathrm{P} \overline{\mathrm{P}} \mathrm{I} \\ \hline \end{array}$					
257	CGC 104 G3 111R	<5						
258	115	8						
259	119	100						
260	120	14						
261	121	127						
262	177	6867						
263	181	260						
264	182	1053						
265	184	1810						
266	188	1460						
267	189	5367						
268	C260R? 200C	2170	? ?	aheady	have 20	OOS sch	prole. If	this a
269	CGC 104 G3 102X	<5						
270	103	<5						
271	104	33						
272	105	253						

```
TO: Mingold Resources
    405 - 470 Granville Street
    Vancouver, BC
    V6C 1V5
```

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order NO. 95508
Page 18 of 30

> CERTIFICATEOF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 19 of 30
CERTIFICATE
0 F
A S SAX

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources
405-470 Granville Street Vancouver, BC
V6C 1V5
Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 20 of 30

CERTIFICATEOF ASSAY
I HEREBY CERTIFY the following results of assays.

COASTECH ANALYTICAL SERVICES LABORATORY

```
TO: Mingold Resources
    405 - 470 Granville Street
        Vancouver, BC
        V6C 1V5
```

Attention: Ed Yarrow

Date:
Invoice NO. 08A006
Order No. 95508
Page 21 of 30

CERTIFICATEOFASSAY
I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources
405-470 Granville Street
Vancouver, BC V6C $1 V 5$

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 22 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 23 of 30

17 Aug, 1989

> CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 24 of 30

CERTIFICATEOF ASSAY
I HEREBY CERTIFY the following results of assays.

Date:
17 Aug, 1989

TO: Mingold Resources
405-470 Granville Street. Vancouver, BC V6C 1 V5

Attention: Ed Yarrow

Invoice No. 08A006
Order No. 95508
Page 25 of 30

CERTIFICATEOFASSAY
I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources 405 - 470 Granville street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 26 of 30

$$
C E R T I F I C A T E O F A S A X Y
$$

I HEREBY CERTIFY the following results of assays.

399	Element	Au	Au	Cu				
	Units	PPB	G/MT	PPM				
	89651	<5		23				
400	52	<5		502				
401	53	<5		297				
402	54	<5		565				
403	55		18.77	281				
404	56		2.26	97				
405	57	<5		1685				
406	58	<5		52				
407	59	<5		97				
408	60	87		1637				
409	61	<5		2645				
410	62	<5		467				
411	63	43		1288				
412	64	103		239				
413	65	Delay		5750				
414	$>_{67}$	<5		212				

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 27 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Oxder No. 95508
Page 28 of 30

> CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C IV5

Attention: Ed Yarrow

Date:
Invoice No. 08A006
Order No. 95508
Page 29 of 30

17 Aug, 1989

> CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

TO:
Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1 V5

Attention: Ed Yarrow

Date:
Invoice No.
Order No. 95508
Page 30 of 30
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY
Date: 21 Aug, 1989

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Invoice No. 08A010
Order No. 95508
Page 1 of 3

I HEREBY CERTIFY the following results of assays.

Registered Assayer, Province of B.C.

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C IV5

Date:
21 Aug, 1989
Invoice No. 08A010
Order No. 95508
Page 2 of 3

CERTIFICATEOFASSAY
I HEREBY CERTIFY the following results of assays.

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

Date:
Invoice No. 08A010
Order No. 95508
Page 3 of 3

> CERTIFICATEOF ASSAY

I HEREBY CERTIFY the following results of assays.

Comments:

Registered Assayer, Province of B.C.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Date:
Invoice No.
Order No.
Page:

21 Aug, 1989
08A009
95508
1 of 2

CERTIFICATEOF OSSAY
I HEREBY CERTIFY the following results of assays.

Comments:
Reconn.

Registered Assayer, Province of B.C.

CoAStech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY
TO: Mingold Resources
$405-470$ Granville Street
Vancouver, BC
V6C 1V5

Date:	21 Aug,
Invoice No.	08 A009
Order No.	95508
Page:	2 of 2

CERTIFICATEOFASSAY
I HEREBY CERTIFY the following results of assays.

Comments:
Recond.

Registered Assayer, Province of B.C.

CoAstech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

```
TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5
```

Attention: Ed Yarrow

Date: 21 Aug, 1989
Invoice No. 08A008
Order No. 95508
Page 1 of 8
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405 - 470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date: 21 Aug, 1989

Invoice No. 08A008
Order No. 95508
Page 2 of 8

I HEREBY CERTIFY the following results of assays.

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street
Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date: 21 Aug, 1989
Invoice No. 08A008
Order No. 95508
Page 3 of 8
C ERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

CoAStech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY
Date: 21 Aug, 1989
TO: Mingold Resources
405-470 Granville Street
Vancouver, BC
V6C 1V5
Attention: Ed Yarrow
Invoice No. 08A008
Order No. 95508
Page 4 of 8
CERTIFICATE
0 F
ASSAY

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date: 21 Aug, 1989
Invoice No. 08A008 Order No. 95508

Page 5 of 8
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1 V5

Attention: Ed Yarrow

Date: 21 Aug, 1989
Invoice No. 08A008
Order No. 95508
Page 6 of 8

A S S A Y

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY
Date: 21 Aug, 1989
TO: Mingold Resources
405-470 Granville Street
Vancouver, BC
V6C 1V5
Attention: Ed Yarrow
Invoice No. 08A008
Order No. 95508
Page 7 of 8

$$
C E R T I F I C A T E O F \text { ASSAY }
$$

I HEREBY CERTIFY the following results of assays.

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date: 21 Aug, 1989
Invoice No. 08A008
Order No. 95508
Page 8 of 8

CERTIFICATE OF ASSAY
I HEREBY CERTIFY the following results of assays.

Chemex Labs Lrd.
Analytical Chemisis * Geochemists * Registered Assayers
212 BROOKSBANK AVF NOKTH VANCOIVF:
BRITISH COHIIMIA. CANAIAA V7.I-2CI
PHONE $1614+4.9+-11221$

To: COASTECH RESEARCH INC
80 NIOBE ST
NORTH VANCOUVER, B.C V7J 2C9

Page No. : $1-\mathrm{A}$
Tot. Pages:
Invoic : $21-\mathrm{AUG}-89$

CERTIFICATE OF ANALYSIS A8923479

SAMPLE DESCRIPTION	$\begin{aligned} & \text { PREP } \\ & \text { CODE } \end{aligned}$	$\begin{aligned} & \text { Al } \\ & \% \end{aligned}$	A8 ppm	$\begin{gathered} \mathrm{A} s \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppan} \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{Be}}$	$\begin{gathered} \mathrm{Bi} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { Ca } \\ \text { \% } \end{gathered}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppn} \end{gathered}$	$\underset{\text { ppon }}{\text { Co }}$	$\underset{\mathrm{ppm}}{\mathrm{Cr}}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Ga} \\ \mathbf{p p m} \end{array}$	$\underset{\mathrm{ppm}}{\mathrm{H}_{\mathrm{B}}}$	$\begin{aligned} & \mathbf{K} \\ & \% \end{aligned}$	$\underset{\mathrm{ppm}}{\mathrm{La}}$	$\begin{array}{r} \mathrm{Mg} \\ \% \end{array}$	$\begin{array}{r} \mathbf{M n}^{\mathbf{p p m}} \end{array}$	$\begin{gathered} \text { Mo } \\ \text { ppn } \end{gathered}$
C 1335	$214{ }^{\prime} 238$	1.18	<0.2	10	50	0.5	<2	0.29	<0.5	6	28	65	5.89	10	<1	0.10	10	0.21	270	7
C 1345	214238	2.33	<0.2	15	80	0.5	<2	0.31	<0.5	9	28	88	8.40	<10	<1	0.16	10	0. 56	425	10
C 1355	214238	1.90	<0.2	15	100	10	<2	0.43	<0.5	24	75	362	7.46	<10	<1	0.21	20	1.64	1400	40
C: 365	214238	1.72	1.2	<5	30	0.5	<2	0.08	<0.5	3	7	131	1.45	<10	<1	0.04	20	0.10	90	
C 1375	214238	1.73	1.6	5	30	0.5	<2	0.08	<0.5	3	5	115	1.54	<10	<1	0.04	20	0.10	100	
C 1385	214.238	2.21	0.6	s	60	1.0	<2	0. 55	0.5	20	34	361	5.88	<10	<1	0.20	20	1.09	1960	18
C 1395	214238	0.91	0.2	15	400	0.5	<2	2.13	2.0	15	32	1030	3.47	<10	<1	0.10	<10	0.45	8860	217
C 1405	214238	2.09	0. 2	<5	So	0. 5	<2	0.38	<0.5	6	24	58	5.22	10	<1	0.14	20	0.55	465	88
C 1415	214.238	1.35	<0.2	<5	50	1.0	<2	0.27	<0.5	5	10	45	2.38	10	<1	0.09	20	0.37	175	4.3
C 1425	214238	1.21	<0.2	5	110	1.0	<2	0.40	<0.5	3	11	84	2.94	10	<1	0.12	20	0. 31	175	49
C 1435	214 238	0.91	2.4	10	80	0. 5	<2	0.27	0.5	6	9	39	2.84	10	<1	0.16	20	0.40	410	12
c 1445	214,238	1.30	0.6	20	50	0.5	<2	0.11	<0.5	6	9	55	3.97	<10	<1	0.15	20	0.34	420	9
C 145s	214:238	0.24	<0.2	<5	70	<0.5	<2	2.66	1.5	2	4	43	0.29	10	<1	0.05	<10	0.16	70	58
C 1465	214'238	0.40	<0.2	<5	50	1.0	<2	3.35	2.0	2	5	112	0.36	10	<1	0.04	<10	0.15	310	79
C 1475	214238	0.10	0.2	s	20	<0.5	<2	3.33	<0.5	1	<1	38	0.77	10	<1	0.01	<10	0.07	425	16
C 1485	214238	2.05	6.2	15	40	1.0	<2	0.47	<0.5	7	36	113	4.57	10	<1	0.12	30	0.49	705	21
c 1495	214'238	1.29	1.0	<5	40	0.5	<2	0.27	<0.5	5	11	24	2.47	10	<1	0.15	20	0.40	1060	18
C isos	214238	1.06	2.2	60	380	2.0	<2	0.43	1.5	32	11	262	7.53	<10	<1	0.17	30	0. 51	6160	28
C 151s	214238	1.03	0.4	5	90	0.5	<2	0.34	0.5	4	19	41	5.33	10	<1	0.10	+10	0.17	420	47
C 1525	214:238	1.07	0.8	10	170	1.5	<2	0.49	0.5	23	10	309	5.34	<10	<1	0.28	30	0. 54	2650	15
C 1535	214:238	0.31	0.2	<5	50	0.5	<2	3.94	3.5	3	1	82	0.83	<10	<1	0.03	<10	0.13	40	88
C 1545	214:238	1.40	3.6	15	40	1.0	<2	0.98	<0.5	10	9	47	2.96	<10	<1	0.14	10	0.36	1805	8
C 1sss	214238	1.05	1.8	<5	20	1.0	<2	1.22	<0.5	15	16	205	2.85	10	<1	0.06	20	0.18	2340	44
c 1565	214 238	0. 50	<0.2	5	10	0.3	<2	4.25	<0.5	4	2	22	0.37	<10	<1	0.02	<10	0.04	2380	
C 1575	214238	1.86	0.8	35	1570	2.0	<2	0.99	<0.5	66	24	1765	10.55	<10	<1	0.42	30	1.34	8890	,
C 1585	214 238 214	0.88	<0.2	< 5	100	1.0	<2	3.14	0.5	36	6	847	2.11	<10	<1	0.05	<10	0.15	5030	147
C 1595	214238	0.99	<0.2	<5	30	1.0	<2	0.57	<0.5	3	7	30	0.56	10	<1	0.09	20	0.10	90	17
C 1605	214 238	0.23	<0.2	5	20	<0.5	<2	2.76	<0.5	2	<1	98	0.28	<10	<1	<0.01	<10	0.04	55	93
C 1615	214238	1.84	<0.2	<5	430	1.5	<2	0.80	1.0	29	8	87	8.44	10	<1	0.08	30	0.16	>10000	399
c 1625	214 238	0.29	<0.2	<5	10	<0.5	<2	3.35	1.5	2	4	392	0.90	<10	<1	0.06	<10	0.05	250	109
c 1635	$214 \% 38$	1.89	1.6	<5	1910	1.5	<2	0.34	<0.5	40	37	2330	6.24	<10	<1	0. 50	20	1.33	1640	153
C 1645	214 238	1.98	<0.2	5	370	1.0	<2	0.74	<0.5	32	49	808	6.16	<10	<1	0.25	20	1.09	2500	67
C 1655	214238	1.31	<0.2	45	80	13.5	<2	1.90	1.0	61	26	407	9.65	<10	<1	0.10	10	0.60	5880	341
c 1665	214238	2.13	<0.2	<5	30	0.5	<2	0.51	<0.5	8	46	112	5.47	<10	<1	0.10	10	0.61	540	55
C 1675	214\|238	1.64	<0.2	15	30	0.5	<2	0.44	<0.5	9	28	21	4.09	<10	<1	0.12	10	0.42	915	31
c 1685	214238	1.38	<0.2	5	30	0.5	<2	0.33	<0.5	4	23	18	3.34	<10	<1	0.09	10	0.24	285	2
c 169s	214238	2.23	<0.2	<5	30	1.0	<2	0.36	<0.5	8	35	41	6.50	<10	<1	0.08	10	0. 50	430	3
C 1705	$214 \mid 238$	0.91	<0.2	5	30	<0.5	<2	0.37	<0.5	5	24	19	4.73	<10	<1	0.09	10	0.18	245	3
C 1715	214 2148	0.76	<0.2	10	20	<0.5	<2	0.29	<0.5	5	32	34	5.62	<10	<1	0.06	10	0.05	170	4
C 1725	214 238	0.74	0.8	<5	20	<0.5	<2	0.37	<0.5	5	27	29	4.86	<10	<1	0.08	10	0.09	240	12

To : COASTECH RESEARCH INC.
80 NIOBE ST.
NORTH VANCOUVER, BC. v7J 2C9 Project
Project:
CERTIFICATE OF ANALYSIS A8923479

CERTIFICATION

Chemex Labs Ltd.
To : COASTECH RESEARCH INC

Analytical Chemists - Geochemists * Registered Assayers
212 brooksibank ave . North vancolivier BRITISH COIIMBIA. CANADA V7I-2CI

PHONE (604) 984-0221

Page No. : 2-A
Tot. Pages: 4
Date $: 21-$ AUG-89
Invoice $: ~: 1-8923479$
$\begin{array}{ll}\text { Invoice } & : 1-8923479 \\ \text { P.O. } & : 89-4127\end{array}$

```
V7J 2C9
```

NORTH VANCOUVER, B.C

CERTIFICATE OF ANALYSIS A8923479

SAMPLE DESCR I PTION	PREP CODE	$\begin{gathered} \mathrm{Al} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	As ppin	$\begin{array}{r} \mathrm{Ba} \\ \text { ppon } \end{array}$	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppn} \end{array}$	$\underset{\mathbf{p p i}}{\mathrm{Bi}}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Cd}}$	$\begin{gathered} \text { Co } \\ \text { ppon } \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Cr}}$	$\underset{\mathrm{ppr}}{\mathrm{Cu}}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{array}{r} \text { Ga } \\ \text { ppm } \end{array}$	$\underset{\text { ppm }}{\mathrm{H}_{\mathrm{g}}}$	$\begin{aligned} & \mathbf{K} \\ & \% \end{aligned}$	$\underset{\mathrm{ppm}}{\mathrm{La}}$	$\begin{gathered} \mathrm{Mg}_{8} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { Mo } \\ \text { ppin } \end{gathered}$
C 1735	214 238	1.65	0.4	15	40	<0.5	<2	0.44	<0.5	7	25	64	4.99	<10	<1	0.11	10	0.17	375	31
C 1745	214238	2.05	0.6	25	60	<0.5	<2	0.42	<0.5	9	30	181	7.53	<10	<1	0.13	10	0.63	565	
¢C 1905	214238	1.00	<0.2	20	240	<0.5	<2	1.09	<0.5	19	10	304	4.95	<10	<1	0. 26	20	0.74	1260	<1
C 1915	214 1488 14	1.33	<0.2	20	140	<0.5	<2	1.13	<0.5	22	18	235	5.27	<10	<1	0.27	20	0.96	1285	
C 1935	214 188	0.88	<0.2	35	110	<0.5	<2	0.99	<0.5	18	10	148	5.52	<10	<1	0.17	20	0.62	1265	
C 1955	214\|238	1. 26	<0.2	35	90	<0.5	<2	1.25	<0.5	18	27	131	5.57	<10	<1	0.16	10	1.04	1335	10
C 196s	214:238	0.69	1.8	55	770	<0.5	<2	0.42	1.5	27	3	387	6.23	<10	<1	0.16	20	0.32	3720	24
c 1975	214 14	1.57	0.4	<5	70	<0.5	<2	0.42	0.5	10	31	85	8.15	10	<1	0.16	10	0.41	610	17
C 1985	214:238	2.13	<0.2	<5	80	<0.5	<2	0.80	<0.5	13	31	119	4.64	<10	<1	0.31	10	0.96	805	30
C 1995	214238	1.05	<0.2	<5	30	<0.5	<2	0.63	<0.5	8	32	59	4.93	<10	<1	0.10	10	0.35	295	30
C 2005	214'238	1.79	2.2	15	570	<0.5	<2	0.56	1.0	158	32	1375	9.87	<10	<1	0. 30	30	0.96	5400	20
$k 2015$	214,238	0.96	1.0	<5	30	<0.5	<2	0.28	<0.5	5	26	23	5.88	<10	<1	0.08	10	0.10	225	8
C 2025	214\|238	1.80	<0.2	35	50	<0.5	<2	0.56	<0.5	13	39	140	5.99	<10	<1	0.16	10	0.96	645	2
c 2035	214:38	1.77	<0.2	10	50	<0.5	<2	0.37	<0.5	7	20	38	5.20	<10	<1	0. 19	10	0.38	420	6
c 2045	214\|238	2.00	0.8	<5	30	<0.5	<2	0.55	<0.5	6	34	24	3.80	10	<1	0. 11	10	0.44	325	1
C 2055	214238	1.05	0.4	5	40	<0.5	<2	0.47	<0.5	5	13	15	2.85	10	<1	0.12	10	0.21	335	<1
C 2065	214.238	0.65	0.4	5	20	<0.5	<2	0.65	<0.5	3	8	11	2.11	10	<1	0.04	10	0.05	475	4
C 207 s	$214 \mid 238$	1.02	1.6	30	50	<0.5	<2	0.15	<0.5	7	23	179	6.70	10	<1	0.16	20	0.25	535	15
C 2085	214 214 188	1.80	<0.2	15	40	<0.5	<2	0.49	<0.5	14	60	77	5.72	10	<1	0.13	10	1.10	1210	5
C 2095	214238	1.19	0.6	20	20	<0.5	<2	0.24	<0.5	4	30	26	2.68	10	<1	0.07	10	0.21	195	s
c 2105	214238	0.77	<0.2	5	20	<0.5	<2	0.31	<0.5	2	29	11	1.91	10	<1	0.06	10	0.08	205	2
c 2115	214238	2.04	0.4	25	150	2.0	<2	0.81	0.5	14	14	111	4.73	10	<1	0.09	30	0.44	1245	45
C 2125	214\|238	1.45	0.4	20	150	0.5	<2	0.76	<0.5	5	9	35	2.24	10	<1	0.22	20	0.44	190	29
C 2135	214\|238	1.17	0.6	50	120	0.5	<2	0.83	1.0	12	17	37	4.64	<10	<1	0. 31	20	0.86	510	
C 2145	214 148	1. 52	<0.2	20	90	1.0	<2	068	<0.5	10	12	- 0	384	<10	<1	0.17	20	0.67	620	,
C 215s	214 238	1.79	2.2	s	150	<0.5	<2	0.49	<0.5	7	18	73	2.71	<10	<1	0.14	20	0.57	365	9
C 2165	214 238	1.21	1.6	so	150	<0.5	-?	- 2:	-0.	3 S	!	213	6.33	<10	<1	0.25	30	0.45	2470	11
C 2175	214238	0.85	1.0	15	230	<0.5	<2	0.48	<0.5	1	12	41	1. 52	<10	<1	0.18	20	0.17	75	10
C 2185	214238	1.89	<0.2	15	150	<0.5	<2	1.44	<0.5	16	26	172	4.48	<10	<1	0.33	10	1.12	790	8
- 2225	214238	3.22	1.2	45	410	<0.5	<2	1.87	1.5	54	34	559	13.45	<10	<1	0.49	30	2.15	4970	5
C 2235	214238	1. 39	1.2	10	40	<0.5	<2	0.46	<0.5	6	12	55	3.06	<10	<1	0.18	10	0.47	645	<1
c 2245	214238	2.33	0.4	20	40	<0.5	<2	0.47	<0.5	4	13	42	3.08	<10	<1	0.10	10	0.29	320	1
C 2255	214238	2.02	<0.2	10	140	<0.5	<2	0.78	0.5	24	17	250	6.17	<10	<1	0.37	20	1.29	2030	6
C 2265	$214 \mid 238$	2.00	<0.2	5	40	<0.5	<2	0.18	<0.5	15	25	60	5.96	<10	<1	0.12	20	0.49	1235	5
C 2275	214238	2.10	<0.2	25	80	<0.5	<2	0.31	<0.5	18	17	151	3.95	<10	<1	0.25	20	0.95	1815	7
C 2285	214238	2.16	1.0	10	90	<0.5	<2	1.13	0.5	28	22	216	6.98	<10	<1	0.55	20	1.71	2390	7
> 2305	214238	1.83	1.0	35	210	<0.5	<2	0.53	2.5	46	14	637	9.73	<10	<1	0.51	30	1.11	2020	44
C 2315	214238	2.02	<0.2	10	50	<0.5	<2	0.20	<0.3	11	21	116	7.73	<10	<1	0.14	10	0.87	1025	8
C 2325	214238	1.99	0.8	20	30	<0.5	<2	0.27	<0.3	10	19	43	4.69	10	<1	0.10	10	0.70	1045	3
C 2335	214238	1.68	0.4	<5	30	<0.5	<2	0.22	<0.3	5	14	51	2.98	<10	<1	0.11	10	0.38	340	1

Chemex Labs Ltd.
Analytical Chemists * Geochemists - Reglstered Assayers
212 BROOKSBANK AVE. NORTH VANCOIVIER
BRITISH COI (M1SIA. CANAISA V7I-2CI

To : COASTECH RESEARCH INC.
80 NIOBE ST.
NORTH VANCOUVER, B.C.
V7J 2C9 Project
Commenis: atte: IACK staniey

Certification

Page No. : 2-B
Tot. Pages: 4
Date :21-AUG-89
Invoice : I-8923479
P.O. \# :89-4127

CERTIFICATE OF ANALYSIS A8923479

Chemex Labs Ltd.
Analytical Chemists * Geochemists * Reglstered Assayers
212 BROOKSBANK Al': NOKTH VANCOIVE
BRITISH COIMMBIA. CANADA V7.I-2CI
RITISH COIIMBIA. CANADA V7.I-2CI
PHONE (6ル4) 984-0221

80 NIOBE ST
NORTH VANCOUVER, B.C. V7J 2C9

Page No. : 3-A
Tot. Pages: 4
Date: 21-AUG-89
Invoice \#: I-8923479
P.O. \# : 89-4127

CERTIFICATE OF ANALYSIS A8923479

SAMPLE DESCRIPTION	PREP CODE		$\begin{gathered} \text { A1 } \\ \% \end{gathered}$	$\begin{gathered} \mathbf{A g} \\ \mathbf{p p m} \end{gathered}$	$\begin{gathered} \mathrm{AL} \\ \mathrm{prim} \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{ppan} \end{array}$	$\begin{gathered} \mathrm{Be} \\ \mathrm{ppm} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Bi}}$	$\begin{aligned} & \mathrm{Ca} \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { Co } \\ \text { ppin } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppin} \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Cu}}$	$\begin{array}{r} \mathrm{Fe} \\ \% \end{array}$	$\begin{gathered} \mathrm{Ga} \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \mathbf{H}_{8} \\ \text { ppn } \end{array}$	$\begin{aligned} & \mathbf{K} \\ & \mathscr{\%} \end{aligned}$	$\underset{\mathrm{ppa}}{\mathrm{La}}$	$\begin{gathered} \mathbf{M g}_{8} \\ \% \end{gathered}$	$\begin{gathered} \mathbf{M n} \\ \mathbf{p p m} \end{gathered}$	$\underset{\text { Mpr }}{\mathrm{Mb}}$
C 2345	214	238	2.48	<0.2	35	40	<0.5	<2	0.24	<0.5	14	23	96	7.42	<10	<1	0.14	10	0.76	1460	10
c 2355	214	238	3.34	<0.2	10	40	1.0	<2	0.24	<0.5	24	23	91	6.95	<10	<1	0.09	20	0.74	2340	6
C 2365	214	238	1.78	<0.2	25	40	<0.5	<2	0.37	<0.5	7	15	46	2.62	<10	<1	0.10	10	0. 56	500	1
C 2375	214	238	2.27	<0.2	15	40	<0.5	<2	0. 57	<0.5	21	16	33	4.70	10	<1	0.29	20	1.52	1340	
C 2385	214	238	1.13	<0.2	25	60	<0.5	<2	0.11	<0.5	10	11	37	3.71	<10	<1	0.15	10	0.28	2000	
C 2395	214	238	1.41	0.6	10	40	<0.5	<2	0.07	<0.5	S	10	18	2.52	<10	<1	0. 10	10	0.13	485	
C 2405	214	238	1.57	1.0	90	120	1.0	<2	1.05	1.0	41	16	336	7.96	<10	<1	0. 20	20	1.09	2490	5
C 2415	214	238	1.29	1.0	45	200	0.5	<2	0.94	0.5	33	20	298	7.16	<10	<1	0.19	20	1.05	2400	2
C 2425	214	238	1.32	0.4	25	200	0.5	<2	096	1.0	30	16	284	7.37	<10	<1	0.17	20	1.04	2280	<1
C. $2+35$	214	238	1.44	0.4	25	320	0.5	<2	1.05	1.0	33	15	283	7. 24	<10	<1	0.21	20	1.17	2530	<1
C 24.55	214	238	1. 55	0.8	10	200	0.5	\because	1. 57	0.5	31	23	358	7. 50	<10	<1	0.31	10	1. 51	2840	;
C 2465	214	; 238	1.28	1.2	50	310	0.5	<2	1.93	0.5	36	21	482	7.91	<10	<1	0.27	10	1.13	2350	1
C 2475	214	238	1.11	0.8	35	230	O. 5	<2	1.34	0.5	33	22	398	8. 16	<10	<1	0.25	20	0.93	1890	<1
C 2485	214	238	1.47	0.4	35	390	<0.5	<2	4.08	0.5	29	16	314	6.02	<10	<1	0.39	<10	1.23	2150	<1
C 2495	214	238	1.42	0.4	25	350	0.5	<2	2.33	1.0	29	18	265	6.48	<10	<1	0.36	10	1.14	1955	<1
T 1295	214	238	3.86	<0.2	30	20	<0.5	<2	0.57	<0.5	16	128	114	5.22	<10	<1	0.06	10	1.47	400	<1
I 1305	214	238	2.23	<0.2	20	30	<0.5	<2	0. 56	<0.5	12	63	79	4.53	10	<1	0.07	20	0.63	720	1
T 1315	214	238	2.60	<0.2	15	30	<0.5	<2	0.64	<0.5	8	75	91	2.82	10	<1	0.06	10	0.68	275	<1
T 1325	214	238	2.34	<0.2	5	40	<0.5	<2	0.58	<0.5	9	118	79	3.80	10	<1	0.05	10	0.90	345	1
Ooclo4g3-101X	214	238	1.19	1.6	20	480	<0.5	2	1.27	0.5	19	63	1305	3.94	<10	<1	0.24	20	1.24	1225	2
CaC104G3-102X	214	238	0.67	<0.2	<5	340	<0.5	<2	0.61	<0.5	11	67	369	2.31	<10	<1	0.15	10	0.89	535	2
OGC104G3-103X	214	238	0.58	<0.2	s	260	<0.5	<2	0. 58	<0.5	10	56	381	2.64	<10	<1	0.15	10	0.64	635	4
OGC104G3-104X	214	238	0.58	<0.2	5	250	<0.5	2	0.41	<0.5	8	43	252	2.06	<10	<1	0.19	10	0.60	540	4
OCC104G3-105X	214	238	1.00	0.4	10	290	<0.5	<2	1.50	<0.5	13	69	665	4.08	10	<1	0.44	10	1.02	705	
COC104G3-106X	214	238	1.07	0.8	20	350	<0.5	<2	1.47	<0.5	13	62	683	3.55	10	<1	0.45	10	1.10	650	4
cocio4g3-107x	214	238	0. 56	<0.2	5	300	<0.5	2	0. 54	<0.5	11	55	223	2.50	<10	<1	0.18	10	0.88	1225	4
Joclio4G3-109X	214	238	1.17	<0.2	<5	270	<0.5	<2	1.89	05	15	80	402	3.78	10	<1	0.35	10	1.33	675	1
*00C104G3-112X	214	238	1. 59	2.0	15	2290	0.5	2	0.67	0.5	21	23	660	4.56	10	<1	0.98	30	1.06	1455	55
Oaclo4g3-113X	214	238	1.72	1.2	$<\mathrm{s}$	620	1.0	<2	1.75	2.0	19	20	621	4.52	10	<1	1.00	20	1.46	2170	21
00C104G3-114X	214	238	1.61	<0.2	5	440	0.5	<2	1.26	1.0	17	32	265	4.54	10	<1	0.50	20	1.34	3130	3
00c104G3-116X	214	238	0.90	<0.2	<5	160	<0.5	<2	0.86	0.5	14	39	144	3.90	<10	<1	0.18	10	0.66	1335	1
COC104G3-117X	214	238	0.94	<0.2	<5	510	<0.5	<2	0.69	0. 5	12	16	147	3.50	<10	<1	0.33	20	0. 57	1420	2
00clo4G3-118X	214	238	1.60	1.4	20	1500	0.5	<2	1.13	0.5	19	23	816	4.43	<10	<1	0.79	20	1.13	1775	21
OCC104G3-122X	214	238	1.38	1.2	<5	1220	<0.5	<2	1.01	1.0	16	19	844	4.31	<10	<1	0.71	20	1.06	1680	15
OCCl04G3-123X	214	238	0.95	1.2	<5	1580	<0.5	2	0.98	0.5	15	29	2670	3.51	<10	<1	0.52	20	0.74	1100	16
OOC104G3-1 24 X	214	238	0.96	<0.2	10	470	<0.5	2	0.56	0.5	12	22	297	3.16	<10	<1	0.42	20	0.89	1470	15
OXC104G3-125X	214	238	0.94	<0.2	10	360	<0.5	<2	0.77	1.0	15	23	250	3.46	<10	<1	0.29	20	0.72	2620	20
OOC104G3-126X	214	238	1.16	0.4	10	350	<0.5	<2	0.65	0.5	15	26	158	3.96	<10	<1	0.26	10	0.81	1920	6
OCCl04G3-127X	214	238	1.07	0.6	25	280	<0.5	<2	2.80	1.0	25	15	333	6.70	<10	<1	0.21	<10	1.22	1600	3
OCCl04G3-128X	214	238	1.18	0.8	30	210	<0.5	<2	1.74	1.5	26	23	282	8.72	<10	<1	0.23	10	1.06	1575	3

Chemex Labs Ltd.
Analytical Chemists - Geochemists - Registered Assayers
212 BROOKRBBANK A $\because E$ NORTH VANCOIVER BKITISH COIMMISI. CANABA V71-2CI PHONE (6ロ4) 984-0221

To : COASTECH RESEARCH INC.
80 NIOBE ST.
NORTH VANCOUVER, B.C V7J 2C9
Project
Comments: ATTN: IACK NTANIAY

Page No. : 3-B
Tot. Pages: 4
Date : 21-AUG-89
Invoice $\#: I-8923479$
P.O. \quad :89-4127

CERTIFICATE OF ANALYSIS A8923479

Chemex Labs Ltd.
Analytical Chemists - Geochemists - Reglstered Assayers
212 BROOKSBANK Al $i:$ NORTH VANCOIIVER BRITISH COIIMMII. CANADA V7.I-2CI

PHONE (6 (1) +) 3×-1-1221

To : COASTECH RESEARCH INC.
80 NIOBE ST
NORTH VANCOUVER, B.C. V7J 2C9

Page No. : 4-A
Tot. Pages: 4
Date :21-AUG-89
Invoice A : $^{\text {I }} \mathbf{- 8 9 2 3 4 7 9}$
P.O. $\#$: 89-4127

CERTIFICATE OF ANALYSIS A8923479

SAMPLE DESCRIPTION	$\begin{aligned} & \text { PRE } \\ & \text { COD } \end{aligned}$		$\begin{gathered} \text { Al } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { As } \\ \mathrm{ppm} \end{gathered}$	$\begin{array}{r} \text { Ba } \\ \text { ppin } \end{array}$	Be ppm	$\begin{gathered} \mathrm{Bi} \\ \mathrm{ppn} \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Co } \\ \text { ppn } \end{gathered}$	$\underset{\mathrm{ppm}}{\mathrm{Cr}}$	Cu ppm	$\begin{aligned} & \mathrm{Fe} \\ & \% \end{aligned}$	Ga ppin	$\begin{gathered} \mathrm{H}_{\mathrm{g}} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \boldsymbol{\%} \end{aligned}$	La ppn	$\begin{array}{r} M_{8} \\ \% \end{array}$	$\begin{array}{r} \mathbf{M n} \\ \mathrm{ppm} \end{array}$	$\begin{gathered} \text { Mo } \\ \text { ppın } \end{gathered}$
OCC104G3-129X	214	238	1.77	0.4	<5	90	<0.5	<2	1.60	1.5	27	23	304	6.64	<10	<1	0.55	20	1.67	1565	7
Oacio4G3-1 30x	214	238	1.12	0.8	15	320	<0.5	<2	2.87	1.5	25	14	325	6.52	<10	<1	0.24	<10	1.20	1675	1
OCC104G3-131X	214	238	1.43	0.8	<5	310	<0.5	<2	2.30	1.0	20	24	216	7.36	<10	<1	0.44	10	1.36	1540	1
occ.104G3-132X	214	238	1.11	0.8	40	270	<0.5	<2	2.30	0.5	25	25	284	9.33	<10	<1	0.22	10	1.05	1440	
OaC104G3-175x	214	238	0.83	0.2	10	800	<0.5	2	1.51	<0.5	10	32	445	2.86	<10	<1	0.35	10	0.82	705	
Joccio4g 3-176X	214	238	0. 55	<0.2	;	850	<0.5	2	1.52	<0.5	12	20	1140	3.18	<10	<1	0.26	20	0.60	1180	8
OCCl04G3-178X	214	238	0.99	0.6	<5	580	<0.5	<2	1.34	0. 5	14	31	1505	3.45	<10	<1	0.41	10	1.02	935	5
Cacio4G3-179X	214	238	1.08	0.4	<3	450	<0.5	<2	2.02	<0.5	14	24	872	4.02	<10	<1	0.46	20	1.10	1185	9
COC104G3-180X	214	238	1.19	2.8	10	350	<0.5	<2	1.41	<0.5	14	59	486	4.53	<10	<1	0.44	10	1.18	960	5
70acl04G3-183X	214	238	1.00	0.2	<5	440	<0.5	<2	1.26	<0.5	12	32	714	3. 51	<10	<1	0.52	10	1.10	860	2
Joccio4g 3-185X	214	238	1.22	1.2	<5	450	<0.5	<2	1.42	0.5	14	59	459	3.96	<10	<1	0.46	10	1.33	870	5
- accio4G3-187X	214	238	1.21	0.2	<5	180	<0.5	<2	1.14	0.5	14	71	318	4.30	<10	<1	0.23	10	1.06	745	$\stackrel{5}{5}$
OGC104G3-219X	214	238	0.83	1.6	<5	310	<0.5	<2	0.58	O. 5	12	24	43	3.82	<10	<1	0.14	10	0. 54	1755	17
CCC104G3-220X	214	238	0.68	0.8	10	390	<0.5	2	0.48	0.5	12	12	98	3.09	<10	<1	0.31	20	0.42	1165	5
crelo4g 3-221X	214	238	0.57	0.8	10	830	<0.5	<2	0.56	10	14	14	135	3.30	<10	<1	0. 27	20	0. 26	1825	7
Tracio4G3-005X	214	238	0.85	0.4	10	380	<0.5	<2	1.44	<0.5	10	31	239	3.07	<10	<1	0.22	10	0.75	860	2
IGCl104G3-007X	214	238	1.31	0.2	<5	180	<0.5	2	2.94	0.5	16	18	128	5.05	<10	<1	0.17	<10	0.87	670	<1
TGC104G 3-008X	214	238	1.25	0.2	20	110	<0.5	<2	2.65	0.5	23	27	176	8.60	<10	<1	0.14	<10	0.79	635	2
-IGC104G3-045X	214	238	0.75	0.4	<5	690	<0.5	<2	1.09	0:5	9	16	571	2.86	<10	<1	0.31	20	0.61	845	2
TGC104G3-046X	214	238	0.80	<0.2	<5	480	<0.5	2	1.18	<0.5	9	17	418	2.72	<10	<1	0.30	10	0.70	705	1
TCC104G3-047X	214	238	0.65	0.4	5	400	<0.5	<2	0.79	<0.5	7	15	361	2.41	<10	<1	0.28	10	0.57	615	2
TOC104G3-048X	214	238	0.74	0.2	<5	430	<0.5	<2	1.01	<0.5	9	22	345	2.96	<10	<1	0.26	10	0.66	695	<1
10Cl04G3-049X	214	238	0.74	<0.2	<5	380	<0.5	<2	0.98	<0.5	9	32	323	2.78	<10	<1	0.25	10	0.64	755	4
Tracioug 3-054X	214	238	1.13	2.0	<5	1940	<0.5	<2	0.30	0.5	17	11	4960	3.56	<10	<1	0.75	10	0.58	1100	
TGC104G3-05 5 X	214	238	1.00	1.0	<5	1280	<0.5	<2	1.21	0.5	21	40	3180	4.62	<10	<1	0.41	20	0.85	1560	
TGC104G3-056X	214	238	0.83	1.6	<5	1540	<0.5	<2	0.84	0.5	17	33	2460	3.82	<10	< 1	0.48	20	0.65	955	16
TGC104G3-057X	214	238	1.09	0.8	15	790	<0.5	<2	1.28	<0.5	19	60	2570	4.64	<10	<1	0.44	10	1.09	1380	5
TGC104G3-058X	214	238	1.03	0.8	10	890	<0.5	<2	0.96	<0.5	16	38	2150	4.61	<10	<1	0.43	20	0.86	1190	9
TOC104G3-059X	214	238	1.10	<0.2	20	290	<0.5	<2	0.56	0. 5	13	17	588	3.94	<10	<1	0.33	20	0.75	1745	18
- Taclo4G3-062X	214	238	0.99	<0.2	<5	350	<0.5	<2	0.76	0.5	12	11	101	3.32	<10	<1	0.37	20	0.76	1285	14
Tracio4G3-065x	214	238	0.95	<0.2	<5	210	<0.5	<2	0.71	<0.5	11	19	77	3.83	<10	<1	0.29	20	0.76	1080	4
TCC104G3-066X	214	238	1.65	<0.2	10	330	<0.5	<2	4.09	0.5	18	20	346	5.94	<10	<1	0.22	<10	1.20	930	<1
TrCCIO4G3-069X	214	238	1.30	0.6	20	120	<0.5	<2	2.72	<0.5	20	23	157	8.19	<10	<1	0.15	<10	0.84	645	2
TGC104G3-070X	214	238	1.31	<0.2	10	150	<0.5	<2	2.63	<0.5	18	22	146	6.72	<10	<1	0.18	<10	0.87	650	<1
TOC104G3-071X	214	238	1.22	<0.2	5	310	<0.5	<2	2.16	<0.5	17	69	200	4.49	<10	<1	0.18	<10	1.24	820	2
TGC104G3-072X	214	238	1.24	<0.2	10	140	<0.5	$<{ }_{2}$	2.80	0. 5	18	23	179	6.87	<10	<1	0.17	<10	0.86	650	2

Chemex Labs Ltd.

Fo : COASTECH RESEARCH INC.
80 NIOBE ST
NORTH VANCOUVER, B.C V7J 2C9

Page No. : 4-B
Tot. Pages: 4
Date :21-AUG-89
Invoice \#: 1-8923479
P.O. \# 89-4127

Chemex Labs Ltd.

211 ORCMIKSIIANK AVI: NORTH VANCXITVYFR
IURITISH CVI.IMBTA. CANAISA VT,I-ICI

to : coastecil research inc.
80 Nione st
NORTH VANCOUVER, B.C. v7J 2 C 9

Prge No. : I-A Tol. Pages: 4 Date : 2 -AUF-84
Involce म: $1-8423794$
P.O. : 11 :9-4130

Pqufoci :
Comenemia: ATTN: JACK STANI,HY
CERTIFICATE OF ANALYSIS A8923794

SAMPLEE DRSCTIPTION	$\begin{aligned} & \text { PRE } \\ & \text { COD } \end{aligned}$		$\begin{gathered} \text { A1 } \\ \% \end{gathered}$	$\begin{gathered} \lambda_{8} \\ p m i n \end{gathered}$	At ppn	$\begin{gathered} \mathrm{Ha} \\ \mathrm{ppm} \end{gathered}$	$\begin{aligned} & \text { Ho } \\ & \text { pgon } \end{aligned}$	$\begin{gathered} \text { D! } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{x} \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ \mathrm{pl} \pi \mathrm{R} \end{gathered}$	$\begin{gathered} C o \\ \text { pims } \end{gathered}$	$\underset{\mathrm{pr}}{\mathrm{Cr}}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{ppnn} \end{gathered}$	$\begin{gathered} \mathbf{T r o u}_{0} \\ \text { on } \end{gathered}$	$\underset{\text { pan }}{\mathrm{Ga}}$	$\begin{gathered} \mathrm{Hg}_{\mathrm{g}} \\ \mathrm{ppmin} \end{gathered}$	$\begin{aligned} & \mathbf{K} \\ & \% \end{aligned}$	$\underset{p_{\mathrm{R}}}{\mathrm{~L}_{12}}$	$\begin{gathered} \mathrm{NG} \\ 3 \end{gathered}$	$\begin{gathered} \text { M } \\ \text { ppin } \end{gathered}$	$\begin{gathered} \text { Mo } \\ \text { pron } \end{gathered}$
Frxio40. 26:3	214	238	0.72	0.4	15	810	<0.5	$?$	0.70	$\leqslant 0.5$	7	14	540	4. 58	10	≤ 1	0.52	20	0.87	720	27
creso40, 28.35	211	2,88	2.10	<0.1	15	20	<0.5	<2	0.58	<0.5	5	60	90	6.35	20	<1	0.04	10	0.64	600	<1
kTxio403 2644	214	238	2.07	<0.2	$<$	60	<0.3	a. 2	0.71	<0.5	11	8%	377	6.92	10	1	0.04	10	1.2 .8	685	<1
cxalo4n. 2658	214	2.88	2.29	0.2	5	10	<0.5	<2	0. 30	<0.3	11	71	107	6.40	10	1	0.07	10	1.08	\$13	1
kOClOks. 26 Fs	114	2.18	2.10	0.2	9	10	<0.5	<2	\%. 53	<0.3	14	$1 . \mathrm{M}$	248	5.49	10	<1	0.05	10	1.28	520	<1
coxi0403 2635	21.1	238	1.47	0.8	23	70	<0.5	<2	6.47	<0.5	16	71	261	6.15	20	<1	0.11	10	0.94	1340	
<0C1046, 2685	111	23 A	1. 30	0.4	<3	90	<0.3	<2	0.52	<0.5	11	16.2	15	3.64	10	<1	0.09	10	0.96	613	
cocio403 269S	214	238	1.82	1.6	13	70	<0.3	<2	0.37	<0.5	10	197	77	4.46	20	<1	0.08	10	0.61	935	
crcinas 2708	214	238	2.10	0.4	<3	70	<0.3	<2	0.94	<0.5	9	157	1200	3.44	10	<1	0.05	10	1.08	210	1
COC104G3 2715	214	218	1.66	0.4	<3	160	<0.3	<2	D. 37	b. 5	12	54	1010	1.24	18	<1	0.10	10	0.88	613	13
cracio40.1 2725	$2: 4$	231	1.35	0.6	<1	120	<0.3	<1	0.62	<0.3	16	30	246	7.91	20	<1	0.09	13	1.02	2100	11
(x+C104G3 2738	214	231	1.71	0.2	<5	140	<0.3	<2	0.75	0.5	22	70	429	\$. 66	20	<1	0.14	10	0.64	3080	20
OxClo4as 274s.	214	238	2.47	0.2	$<$	10	<0.5	<2	1.03	<0.3	13	61	1010	6.32	20	<1	0.03	40	3.96	185	22
CrClo4ct 2755	214	288	1.43	0.2	10	10	<0.5	<2	0.39	<0.5	2	28	48	2.31	10	<1	0.02	10	C. 26	270	<1
(15C10403 276S	214	288	2.34	0.2	20	20	<0.5	<2	0.02	<0.5	17	203	294	4.6'	10	<1	0.02	10	1.68	625	2
(0x10403 2775	214	218	2.49	<0.2	<5	10	<0.5	<2	2.f4	<0.5	27	18.	430	10.95	39	<1	0.05	<10	1.80	1300	<1
coclotcy 274s	214	218	3.27	<0.2	<3	70	<0.3	<1	2.36	<0.5	24	17	1485	10.20	20	<1	0.43	10	2.09	1310	<1
caclotal 2795	214	238	2.05	0.6	<5	120	<0.5	<1	1.8E	< E. 3	18	27	1615	6.02	20	<1	0.9 .8	20	1.72	1170	<1
krociougl 2a0s	214	218	2.0)	<0.2	10	40	<0.3	<2	1.38	<0.5	22	20	499	7.198	20	<1	0.44	20	1.65	820	<1
人0ciosos 2815	214	2.8	1.66	0.2	13	10	<0.3	<2	0.3s	<0.5	10	171	147	4.90	10	<1	0.04	10	0.86	515	,
(xacisaty 2825	214	238	1.84	<0.2	<9	130	<0.3	<1	0.57	<0.3	20	57	1210	3.a3	10	<1	0.03	10	1.31	685	13.
gachotas 28.5	214	238	2.03	0.8	<9	110	<0.3	<2	0.88	<0.3	16	121	1375	3.50	10	<1	0.12	10	1.73	410	7
focliodas 284S	214	238	2.05	0.2	<5	190	<0.3	<2	0.76	0.3	16	78	1250	4.53	10	<1	0.11	20	1.22	74s	1
(cactotos 2835	214	238	2.63	<0.2	5	10	<0.5	<2	0.17	<0.3	23	189	481	5.19	10	<1	0.81	10	3.21	643	6
cacional 286	214	238	1.81	0.6	10	200	<0.3	<2	0.58	<0.5	I	51	2310	J. 86	10	<1	0.08	20	0. 51	2190	6
Cacio403 2878	214	218	0.99	1.0	<3	90	<0.3	<1	0.34	<0.5	15	95	At1	6.28	20	1	0.07	10	0. 30	2410	3
arcioso3 2885	214	2.18	1.57	0.8	<5	20	<0.3	<2	1.08	<0.3	13	107	919	4.27	10	1	0.09	10	1.21	453	<1
a0clo40: 2898	214	2.18	2.25	<0.2	<5	30	<0.5	<2	1.18	<0.5	15	113	342	5.60	10	<1	0. 12	10	1.31	365	<1
Oacio40s 290k	214	218	1.71	0.8	$\leqslant 3$	40	<0.3	- 2	1.49	<0.3	21	83	1150	3,76	10	1	0.14	10	1.06	815	<1
pocio403 7915	214	2.18	2.12	2.8	<1	80	<0.5	<2	1.32	0.3	23	0.1	>10000	8.08	10	<1	B. 36	20	2.13	1170	17
OXC10433 2925	214	238	2.32	0.1	19	58	<0.5	<2	3.11	<0.5	19	617	272	0.15	10	<1	0.59	<10	3.18	780	9
caclouns 29,	214	238	2.26	0.4	<5	138	<0.5	<2	0.77	1.0	10	237	418	7.68	10	<1	0.25	20	2.74	1370	$2{ }^{6}$
ccciougs 294s	214	238	2.83	<0.2	10	90	<0.5	<1	1.19	0.5	31	703	89	4.46	<10	<1	0.21	<10	4.36	745	<1
CxCl0463 295	214	238	2.93	<0.2	15	30	<0.5	≤ 2	1.28	0.5	45	408	36.2	6.97	10	<1	0.69	10	3.59	2005	12
C0C10403 2965	214	238	1.01	0.2	10	100	<0.5	≤ 2	0.85	< 0.3	76	157	796	10,10	20	<1	0.96	20	2.81	1875	99,
OCCl04G3 297S	214	238	2,44	0.4	<3	90	<0.3	<2	0.83	1.0	138	30	1110	10.50	20	$<$	0.80	20	2.28	1470	132
0cciongi 2315	214	238	2.92	<0.2	20	40	<0.3	<2	0.66	<0.5	57	12	1095	7,91	10	<1	0.85	20	2.11	1135	81
OxClodgs 299s	214	238	1.98	0.4	81	40	<0.3	4	1.27	<0.5	32	67	515	12.30	20	<1	0. 36	$\leqslant 10$	1.31	910	115
creclo403 301x	214	218	1.47	2.2	<3	190	<0.3	<2	1.08	0.5	21	299	1070	5.99	10	<1	0.41	20	1.75	900	19
cucto4as 102x	214	238	1.32	0.4	<3	90	<0.3	2	1.04	<0.5	17	147	236	3.33	10	<1	0.38	10	1.35	805	8

Chemex Labs Lid.

Analytion Chembats * Bsoohemfala - Replslerad Aotagers

Io COASTEELH RESEARCH INC.
80 N10IUE SJ
NORTIT VAMCOUVER, B.C. VJJ 2C9
lrofert :
Cimmenis: ATTN: IACK RTANI.YY

Pnge Na. : 1-8
Tol. Pages:4
Dote :22-ang
[nvolee : : $3-892370$
P.O. \quad : 89-1130

CERTIFICATE OF ANALYSIS A8923794

SAMP12 DESCR I PTION	PRE COO		$\begin{aligned} & \mathbf{N F}_{\boldsymbol{m}} \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\underset{\text { pint }}{\mathrm{P}}$	Pb prus	$\begin{gathered} \text { SB } \\ \text { npon } \end{gathered}$	$\mathrm{So}_{\mathrm{p} \mid \mathrm{n}}$	$\underset{\mathrm{ppr}}{\mathrm{Sr}}$	$\begin{gathered} \text { TI } \\ \mathscr{W} \end{gathered}$	$\begin{gathered} \text { II } \\ \text { pron } \end{gathered}$	$\underset{\text { ppin }}{\boldsymbol{j}}$	$\begin{array}{r} v \\ p \mid m i n \end{array}$	$\begin{array}{r} W \\ \text { prom } \end{array}$	7ss
(TXCIO4G3 261K	214	238	0.01	1	1740	12	<3	6	110	0.07	<10	<10	291	10	46
cxclosed 2635	2141	218	0.01	14	1020	4	<3	4	45	0.12	<10	<19	104	10	34
axciodas 2645	211^{\prime}	'2.38	0.01	22	609	<2	$\leqslant 5$	7	33	0.19	<10	<10	348	10	72
axcinatil 2635	214.	. 218	0.02	27	8213	0	<3	d	16	0.15	$\because 10$	<10	126	10	76
cocborgl 28 ess	2141	[238	0.02	43	910	<2	<5	d	18	0.16	<10	<10	236	10	72
Crcianos 2675	214.	. 218	0.02	19	1810	6	<3	4	14	0.10	<10	<10	3es	10	80
crelo463 1685	214	${ }^{238}$	0.01	49)	980	<2	<3	l	44	0.10	$\leqslant 10$	<10	161	<10	60
ODC10431 260S	214	238	0.01	13	970	4	<3	2	33	0.10	<10	<10	1.15	$\leqslant 10$	00
Cociohas 2705	211	2,88	0.02	42	610	14	-3	4	43	0.21	<163	<10	130	<10	46
arciotey 2715	214	288	0.10	27	1110	6	<3	4	17	0.17	<10	<10	132	$\leqslant 10$	78
CaC1040) 272S	214	238	0.02	13	2320	92	3	8	42	0.17	<10	<10	326	19	132
(axclo4a3 2735	211	238	0.02	18	1710	22	<3	4	10	0.11	<10	<10	172	10	118
COC1040.1 2745	214	1238	0.01	2.	1310	14	<5	1	89	0.24	<10	$\leqslant 10$	414	29	112
ExClo4as 2755	214	. 238	0.02	1	600	18	<3	1	42	0.275	<14	$\therefore 10$	171	<10	26
O0C101G3 2765	214	238	0.02	61	910	10	<5	3	$\$ 8$	0.18	<10	<10	252	10	64
مocio403 2715	$2: 4$	238	< 0.01	1	1730	<2	3	17	19	0.17	<10	<10	818	10	110
Cocio46. 2785	214	12.18	0.01	23	2600	6	<5	15	108	0.17	<10	<10	697	10	114
Oacia403 2715	214	2,24	0.08	17	2480	<2	<5	11	97	0.17	$\leqslant 10$	<10	39.3	19	130
Orclomaj 280s	214	218	0.02	11	2350	6	<5	8	118	0.21	<	< 10	581	- 20	120
cricionos 2818	214	2.18	0.04	37	050	2	<3	2	19	0.13	<10	<10	218	<10	60
COC10403 2825	114	238	0.02	32	900	1	<3	1	12	0.12	<10	<10	217	10	80
aclorn3 2835	214	238	0.05	67	1400	4	<5	7	19	0.16	<10	<10	172	<10	86
cocilotol 2845	214	2.38	0.07	37	1350	${ }^{\wedge}$	5	7	15	0.17	<30	<10	216	10	82
axcio4n3 2855	214	238	0.01	198	1110	2	<3	6	17	0.12	<10	$\because 10$	147	10 <10	78
aOclodos 2kas	214	234.	0.03	13	1190	14	<5)	51	6.09	<10	<10	165	<10	36
(ancio40) 1878	214	298	0.02	2\%	2100	14	5	2	28	D.0\%	<10	<10	100	10	98
(ancio40s 2889	214	23]	0.02	42	1570	<1	<5	7	71	0.16	<10	<10	192	10	44
coctis40] 1895	114	1238	0.03	19	14.10	2	<9	8	80	0.21	<10	$\leqslant 10$	111	10	61
cacio403 2908	214	298	0.01 :	39	2310	18	<3.	10	70	0.19	<10	<10	348	20	96
a0c10403 2958	214	238	0.02	42	1480	194	5	18	61	0.20	<10	<10	504	10	186
O0C10403 292s	214	234	0.01	172	1070	6	<5	7	1.1	0.20	<10	<10	142	40	90
craclombs 2935	214	238	0.01	117	1470	60	<5	9	37	0.21	<10	<10	135	20	100
grcto403 294s	214	238	0.01	257	1360	<2	9	5	27	0.21	<10	<10	112	20	108
kaclo403 2935	114	238	0.01	170	1110	6	5	9	45	0.27	<10	<10	174	30	106
CaClo4G\% 296s	214.	218	0.01	37	1510	164	<5	17	62	0.17	<10	<10	240	10	.124
anclo463 2975	214	238	0.01	24	1810	40	<3	15	94	0.36	<10	<10	178	10	148
10C10403 298S	214	2.18	0.01	7	2090	4	<5	6	42	0.35	<10	<10	142	20	66
20c10403 2995	214	238	0.01	17	1600	J	<3	11	71	0.27	<10	<10	202	40	70
[0C10403 301X	214	118	0.01	34	1860	30	<5	7	101	0.15	<10	<10	18.	30	118
[0Cl04G3 302K	214	138	0.01	21	1310	24	<9	7	120	0.11	<10	<10	158	10	80

is cossiobel bleceartal INC
3 NIOBL ST
NOR'IM VANCOUYRE, B.C. V7. 2 C 9
ouject
C'mTmenis: ATTN: IACK STANI EY
CERTIFICATE OF ANALYSIS A8923794

SAMPLE DESCR IPTION	$\begin{aligned} & \text { PREP } \\ & \text { CODH } \end{aligned}$	A)	$\begin{array}{r} \text { A. } \\ \text { ppin } \end{array}$	As ypll	1) onn	Re ppos	$\begin{gathered} \text { BI } \\ \text { y! } \end{gathered}$	$\begin{gathered} \mathrm{CR} \\ \text { in } \end{gathered}$	Cll	$\begin{gathered} \text { Co } \\ \mathrm{pm} \end{gathered}$	$\underset{\mathrm{par}}{\mathrm{Cr}}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{p} \mathrm{~m} \end{gathered}$	$\begin{gathered} r_{C} \\ W_{4} \end{gathered}$		$\begin{aligned} & \mathrm{If}_{\mathrm{B}} \\ & \mathrm{pran} \end{aligned}$	$\begin{aligned} & K \\ & \text { K } \end{aligned}$	La pmin	M \%	Mn ppm	$\begin{gathered} \mathrm{Mm} \\ m \mathrm{~m} \end{gathered}$
cocioda, joss	214 218	2.18	<0.2	<3	40	<0.1		1.42	<0.1	14	H4	88	8.78	10	<1	0.12	<10	1.41	875	$<$
cuclo4a3 307s	214.218	1.14	<0.2	15	110	<0.9		1.13	<0.1	20	J	114	4.27	10	<1	0.12	10	0.96	1923	
axclatas 338s	114'238	2.00	<0.2	311	160	<0.5	<2	1.72	<0.3	2.1	35	195	3.96	10	<1	0.11	<10	1.62	2590	
focio40. 1m0s	2142318	1.87	<0.1	<3	60	$\leqslant 0.5$	$\leqslant 1$	1.20	<0.3	1.1	60	150	\$.47	10	1	0.11	10	1.00	1085	
arciono. 110 s	284238	2.12	<0.2	21	50	<0.5	$\leqslant 2$	1.20	<0.3	is	78	177	3.65	10	1	0.11	10	1. 24	1000	
a0cio4al 11 is	214\|235	1.83	0.2	20	40	<0.5	$\leqslant 2$	1.00	<0.5	11	54	142	9.23	10	<1	0.09	10	0.90	1185	
acciodal 3125	2141238	1.97	0.2	5	80	<0.3	<2	0.68	<0.5	11	69	. 124	1.37	10	<1	0.17	10	1.06	190	
(xacloag) 1135	7141238	2.13	<0.2	3	90	<0.5	<2	0.91	$<0,5$	13	67	214	4.16	10	<1	0.15	10	1.19	740	$1:$
arcloras 314s	214.218	1.57	0.4	19	100	<0.3	<2	0.73	<0.3	9	19	106	3.61	10	<1	0.06	10	0.46	1035	,
OXC1040, 315s	214218	2.00	<0.2	5	70	<0.3	<2	1.47	<0.3	13	61	264	5.04	10	<1	0.13	10	1.41	1105	
Cuciong i 1165	214 2.18	1. 26	0. 2	5	30	<0.9	<2	0.98	<0.3	11	41	50	1.77	10	1	0.07	<10	0.116	1120	
(axClodas 3175	214'238	2.40	<0.2	<3	40	<0.9	<2	0.72	<0.3	10	67	26.2	4.60	10	<1	0.83	10	1.15	2160	1
Faclodg3 3185	214, 338	1.60	0.4	5	10	<0.3	<2	0.45	$<0,3$	${ }^{6}$	4.6	52	3.27	10	<1	0.04	10	0,28	710	
(axio4G3 3185	214:238	2.08	<0.1	30	10	<0.5	<2	0.61	<0.5	3	14	107	3.12	10	1	0.07	20	0.61	J40	
cracloag 3ides	2142.18	1.87	<0.2	10	10	<0.5	<2	0.75	<0.5	12	01	1.19	4.72	10	<1	0.07	10	0.9 .1	713	
dacio403 321s	214\|231	1.71	0.1	35	10	<0.5	≤ 2	1.01	<0.5	7	17	43	3.09	10	<1	0.07	10	0.64	453	<1
anclond 3128	214,2.18	1.86	0.6	<9	70	<0.3	<2	1.00	0.1	18	27	76	3.92	10	<1	0.11	10	1. 21	753	λ
accloatil 3235	214, 238	2.19	<0.2	33	50	<0.3	$\leqslant 2$	0.83	<0.1	17	69	271	4.47	10	<1	0.23	10	1.44	685	
Oecio403 3245	$214{ }^{238}$	2.28	0.2	15	10	<0.3	<2	0. 59	<0.3	13	96	104	3,83	10	<1	0.05	10	1.06	640	J
(0xC10403 1255	214738	2.08	<0.2	10	60	<0.3	<1	0.90	<0.3	20	113	54	5.95	20	<1	0.09	10	1.17	1170	J
a0cioraj 1265	214238	1.39	0.2	10	40	<0.9	<2	0.63	<0.9	6	35	123	2.82	10	1	0.11	10	0.31	325	
(00c104G3 1275	214\|238	2.48	0.2	<3	60	D. 5	<2	1.65	<0.5	20	26	210	4.07	20	<1	0.32	20	1.35	1863	<1
OxClongl 1185	214:238	2.09	<0.2	3	20	<0.5	<2	0.92	<0.1	,	71	74	4.22	10	<1	0.05	10	0.53	435	
CuCio403 329s	214238	2.29	<0.2	\$	10	<0.5	<2	0.72	<0.3	10	57	100	4.65	10	<1	0.06	10	0.34	785	2
Cractotas 3305	214\|258	1.92	2.2	39	360	<0.5	~ 2	0.86	<0.9	38	15	3400	8.73	20	<1	0.19	40	0.97	3140	16
ancioats 315	214238	2.13	0.2	35	20	<0.9	<2	0.63	<0.3	d	33	B7	3.23	10	<1	0.06	10	0.68	335	3
cocilo403 33s	214238	2.07	0.4	<5	50	<0.5	<2	0.68	<0.3	16	$10 ¢$	491	4.19	10	<1	0.11	10	1.2 .1	605	2
00c10403 334s	21.1238	0.94	0.4	35	80	<0.3	<2	0.13	<0.5	12	. 6	257	5.29	20	<1	0.07	14	0. 10	1520	
axcto4ar 33ss	$214{ }^{218}$	1.78	1.4	40.	150	<0.5	<2	0.72	<0.3	29	30	1480	6.73	20	<1	0.22	30	0.93	2670	+
arcto403 316s	114238	1.95	1.0	25	95	<0, ${ }^{\text {c }}$	<2	0.52	<0.5	17	78	498	4.32	10	<1	0.07	10	0.94	675	1
cravenos 3,375	214218	2.32	<0.2	3	10	<0.3	$<i$	0.93	<0.9	13	75	324	4.33	10	<1	0.13	10	1.3)	510	$<$
C0C10403 33ES	2141238	1.65	0.8	<5	50	<0.9	<2	0.13	<0.5	9	36	112	4.94	20	<1	0.05	10	0.23	935	
CaCi0403 3395	214 238	2.90	0.2	20	10	<0.5	<2	0.19	<0.9	12	62	717	5.81	20	<1	0.01	10	1.12	480	1
craclo4g] 34085	2141238	2.47	1.6	30	120	<0.5	<2	1.71	<0.3	37	11	3370	12.23	30	<1	1.17	20	2.77	2120	<1
(xacio403 3445	214238	0.63.	0.2	23	340	<0.9	<2	0.48	<0.5	14	6	80	3.t3	10	<1	0.13	20	0.13	1105.	-7
Ooclo4as 3495	214238	6. 58	1.0	45	100	<0.5	<2	0.31	0.5	J	6	112	6.47	10	<1	0.16	20	0.28	3750	13
prcto4g3 3485	214238	0.39	0.8	90	\$50	<0.3	<2	0.64	1.0	18	1	189	4.15	10	<1	0.11	20	0.15	2650	0
cxel0403 347s	214238	1.04	1.2	40	220	<0.5	<2	0.32	<0.5	16	15	196	3.97	10	<1	0.16	20	0.42	1785	\$
creclo403 3498	114138	0.45	1.4	20	410	0.5	2	0.11	0.3	18	2	192	4.05	10	<1	0.13	20	©. 18	2710	\%
P0Cl04G3 1495	$2 1 4 \longdiv { 2 3 8 }$	0.60	1.0	40	260	<0.5	,	0.15	<0.5	19	3	204	4.16	<10	<1	0.14	20	0.23	1380	6

Tn: COASIECI RESEARCII INC.

$$
\begin{aligned}
& \text { Bo N1OME FI: } \\
& \text { NONTH VANCOMNER, H.C. } \\
& \text { V7J } 7 C 0
\end{aligned}
$$

Chemex Labs Ltd.

To: cuastecil keseailcti inc.
80 NLOBE ST'
NOATH YANCOUVBX, B.C.
V7J 2CF
1'ragect:

CERTIFICATE OF ANALYSIS A8923794

SANTLLE PSCRISTION	Pn		$\begin{gathered} \text { ㄱI } \\ \text { of } \end{gathered}$	$\begin{array}{r} A_{8} \\ \mathrm{mpn} \end{array}$		$\begin{gathered} \mathrm{H} * \\ \mathrm{ppm} \end{gathered}$	Be	$\begin{gathered} \text { Df } \\ \text { ppra } \end{gathered}$	$\begin{gathered} \text { Ca } \\ \text { of } \end{gathered}$	$\underset{\text { mat }}{\text { Ot }}$	$\begin{gathered} \text { Co } \\ \text { ppans } \end{gathered}$	$\underset{\text { rym }}{\mathrm{Cr}}$	$\underset{\text { R1M }}{\text { Cin }}$	$\begin{gathered} \Gamma_{0} \\ 9_{6} \end{gathered}$	$\begin{gathered} 0_{n} \\ \text { nnn } \end{gathered}$	$\begin{array}{r} H_{B} \\ \text { purie } \end{array}$	$\begin{aligned} & K \\ & \% \end{aligned}$	$\begin{gathered} \text { Lan } \\ 3 \times n \end{gathered}$	$\begin{gathered} M 0 \\ \$ 0 \end{gathered}$	$\begin{gathered} \mathbf{M n} \\ \mathbf{p r m} \end{gathered}$	$\begin{array}{r} \text { Mo } \\ \text { ppmi } \end{array}$
c10403 330S	214	238	0.69	0.2	10	100	<0.3	6	0.39	<0.3	13	7	67	4.31	10	<1	0.18	20	0.28	1410	7
Cloadi 3315	214	238	0.9 .7	0.6	20	230	<0.3	<2	0. 18	<0.5	9	6	16	3.35	10	<1	0.09	10	0.19	2140	8
x10403 352s	214	238	0.94	4.4	93	610	<0.3	4	0.21	<0.5	11	4	876	0.78	20	$\leqslant 1$	0.26	10	0.12	3610	10
clo4n3 3335	214	218	0.71	2.0	43	810	<0.5	1	9.18	1.0	18	2	221	8.80	10	≤ 1	0.16	30	0.34	3050	17
xiongs jsas	214	238	0.69	1.6	80	3,0	<0.5	2	0.10	0.3	28	1	270	6.81	10	<1	4.16	20	0.36	1120	12
- $2: 10403$ 353s	214	218	0.78	0.6	70	540	<0.3	2	0.24	<0.5	31	3	280	6.70	10	<1	0.23	30	0.45	1320	67
- $x=101093565$	214	218	0.76	1.2	60	460	<6.5	<2	0.24	<0.3	29	1	135	6.59	10	<1	0.24	30	0.42	3090	(1)
: Cl 10403 3515	214	218	1.26	0.6	10	130	0.5	2	0.30	A. 5	11	δ	122	3. 31	10	<1	0.21	10	0.17	2570	18
- xionas 3585	211	218	0.11	<0.2	25	210	<0.3	0	4.68	<0.3	12	1	. 12	4,93	10	<1	0.11	<10	0.08	9820	607
(xiotos 359S	214	23E	3.20	<0.2	20	230	<0.5	4	0.77	<0.5	48	46	269	6.19	20	<1	0.14	20	1.41	5430	18
x-10403 ivas	214	2.18	2.40	0.4	3	100	<0.3	2	0.74	<0.5	7	27	63	3.74	10	<1	0.22	10	0.77	663	A
rxileme: 361s	214	2:18	2.11	0.2	<3	70	<0.3	1	0 OR	0.1	12	27	394	3.72	10	<1	0.11	10	1.15	731	3
rxilotas 3625	214	1238	1.18	0.8	25	50	<0.s	2	0.19	<0.3	4	14	48	2.74	10	<1	0.12	10	0.26	240	1.
5C104G] . 16.15	214	2.68	0.94	1.2	10	34	<0.5	2	0.18	<0.5	2	\%	18	2.00	10	<1	0.07	10	0.14	115	4
TXClo40. 164,	214	7 Al	2.76	0.1	<1	10	<0.3	2	0.42	<0.5	12	4.3	1604	5.03	10	<1	0.12	10	0.87	710	14
वC10403 3685	214	218	1.04	1.2	19	100	<0.3	4	0.36	<0.5	6	14	28	1.0.1	15	<1	0.14	10	0.19	1105	6
DCiotas 366s	114	23\%	1.98	0.4	25	10	<0.5	4	0.67	<0.5	21	31	402	9.06	10	$\because 1$	0.27	10	1.09	1833	21
nciolaj 3675	111	234	1.19	1.2	23	80	<0.9	<2	1.06	<0.9	7	22	96	1.26	10	<1	0.17	10	0.93	563	29
relodg. 3685	2.14	238	1.63	1.4	10	70	<0.3	2	0.16	<0.1	11	4\%	0.1	4.95	10	<1	0.13	10	0.13	1005	12
CC10403 3694	214	238	0.85	1.0	35	290	0.5	1	0.38	<0.9	12	7	13)	4.62	10	<1	0.20	20	0.3\%	1015	7
(2Cl0403 370 S	214	238	0.34	1.4	30	469	<0.3	2	0.21	1.3	18	6	221	5.12	10	<1	0.17	30	0.17	2900	35
xacionos 371s	114	238	0.39	1.4	15	550	<0.5	4	0.17	2.0	21	8	371	0.37	10	<1	0.16	10	0.23	1010	23
0ctonas 3728	264	238	1. 58	0,1	10	100	<0.3	<2	0.39	<3.5	18	13	203	3.87	10	<1	0.31	20	1.00	2300	0
TXC10403 3738	214	238	1.13	1.2	10	240	<0.5	1	0.61	<0.3	17	13	177	6.24	10	<1	0.35	20	1.15	1860	6
cocio4at 37ds	214	238	1.27	0.8	10	130	<0.3	2	0.59	<0.5	17	10	166	5.75	10	<1	0.16	20	0.80	1930	1.
	214	2.85	1,26	0.8	10	110	<0.5	2	0.61	<0.5	18	12	153	0.11	10	<1	0.13	28	0.98	1905	3
axclo403 3765	214	218	0.91	1.2	23	110	<0.5	2	0. 37	$\leqslant 0.5$	14	10	159	5.80	10	$<$	0.29	20	0.64	1530	9
-xaciotas 3778	214	238	1.14	1.2	5	298	<0.5	4	0.61	<0.5	19	17	204	3.94	10	<1	0.33	20	1.10	2180	6
oxciotes 3785	214	238	1.31	1.0	15	3 Ha	<0.3	2	0.49	<0.3	10	21	273	3.80	10	<1	0.38	20	0.73	2040	6
CJC10103 379S	214	238	1.29	0.8	55	140	<0.3	1	0.88	<0.5	17	20	162	6.01	10	<1	0.12	20	0.83	1825	
axciomas 180 s	214	238	1.71	0.2	15	40	<0.5	2	1.4)	<0.3	15	9	31	3.43	10	\bigcirc	0.10	10	1.09	830	4
00610403 inis	214	218	0.82	0.8	(3)	60	$\leqslant 0.5$	<2	0.37	<0.5	4	\%	19	2.01	10	<1	0.17	10	0.42	290	7
occlotas 382S	214	218	1.07	0.6	25	130	<0.5	2	0.61	<6.5	15	11	139	5.16	10	<1	0.29	20	0.83	1300	6
oxcloter 383 s	214	238	1.22	3.4	35	120	<0.5	4	0.16	<0.5	18	11	234	3.76	10	<1	0.34	10	0.68	2210	11
OCClodg jess	214	139	1.07	1.2	15	310.	<0.5	<1	0.60	<0.9	IA	12	182	5.82	10	<1	0.14	10	0.77	1610	
Cocl040. 3935	214	238	0.90	1.4	25	400	<0.5	<2	0.11	<0.3	13	10	187	6.02	10	<1	0.33	20	0.34	1625	14
O0Cl0403 3869	214	238	1.39	1.0	15	150	<0.9	<2	0.50	<0.5	11	11	123	3.92	10	<1	0.20	20	0.80	975	3
cxaclotos 3878	114	218	1.72	1.0	<5	30	<0.9	4	0.23	0.5	4	10	34	2.65	10	<1	0.10	10	0.48	250	4
coclotal 3885	214	238	1.98	0.6	10	70	<0.3	6	0.65	<0.5	13	19	128	3.96	10	<1	0.22	20	1.25	600	15
coclota3 389S	214	238	2.12	0.4	50	100	<0.3	4	0.50	<0.5	16	22	146	6.54	10	<1	0.34	20	1.33	760	15

\qquad

To: constech hespanch inc.
80 NIOBF ST.
NGMIB VANCOUVER, H.C. V7J 2C3
-ris Jeet :
-ĭm

CERTLFICATE OF ANALYSIS A8923794

()

Chemex Labs LId.

PIKNI: folls 4a4-10221

Tu eonajecth kespmacll inc.
\&o NIORE STC.
Nombil Vancouver, 8.C. V71 2C
properi:

Dalc ;22-AUN-:
invole : $1-892379$
invoice $:=892379$
f.0. $=89-4130$

CERTIFICATE OF ANALYSIS A8923794

M. Mo.

Toi. Pagen 4
Dale $=22-A U G-$

P.O. $=59-4130$

Praject :

CERTIFICATE OF ANALYSIS A8923794

\qquad

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date: 29 Aug, 1989
Invoice No. 08A014
Order No. 95508
Page 1 of 12
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

```
TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5
```

Attention: Ed Yarrow

Date:
Invoice No. 08A014
Order No. 95508
Page 2 of 12

CERTIFICATEOFASSAY
I HEREBY CERTIFY the following results of assays.

CoAStech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date: 29 Aug, 1989
Invoice No. 08A014
Order No. 95508
Page 3 of 12
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

CoAStech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date: 29 Aug, 1989
Invoice No. 08A014
Order No. 95508
Page 4 of 12
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A014
Order No. 95508
Page 5 of 12
CERTIFICATEOF ASSAY

I HEREBY CERTIFY the following results of assays.

CoAStech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date: 29 Aug, 1989
Invoice No. 08A014
Order No. 95508
Page 6 of 12
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources 405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A014
Order No. 95508
Page 7 of 12
C ERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow

Date:
Invoice No. 08A014
Order No. 95508
Page 8 of 12
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1 V5

Attention: Ed Yarrow

Date:
Invoice No. 08A014
Order No. 95508
Page 9 of 12

CERTIFICATEOFASSAY
I HEREBY CERTIFY the following results of assays.

COASTECH RESEARCH INC.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Attention: Ed Yarrow
Date:
29 Aug. 1989
Invoice No. 08A014
Order No. 95508
Page 10 of 12

CERTIFICATEOFASSAY
I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

```
TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C IV5
```

Attention: Ed Yarrow

Date: 29 Aug, 1989
Invoice No. 08A014
Order No. 95508
Page 11 of 12
CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

```
TO: Mingold Resources 405 - 470 Granville Street Vancouver, BC V6C 1V5
```

Attention: Ed Yarrow

Date:
Invoice No. 08A014
Order No. 95508
Page 12 of 12

CERTIFICATEOFASSAY
I HEREBY CERTIFY the following results of assays.

Registered Assayer, Province of B.C

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

TO: Mingold Resources
405-470 Granville Street Vancouver, BC V6C 1V5

Date:
Invoice No. 09A002
Order No. 95508

Attention: Ed Yarrow

```
CERTI FICATE OF ASSAY
```

I HEREBY CERTIFY the following results of assays.

Registered Assayer, Province of B.C.

Coastech research inc.

COASTECH ANALYTICAL SERVICES LABORATORY

Date:
Invoice No. 09A005
Order No.
95508

Attention: Ed Yarrow
CERTIFIC
CATE
0 F
ASSAY

I HEREBY CERTIFY the following results of assays.

GOASTEEH ANALYTIEAL SEFUIEES LAEORATOFY

```
MingGld Fiesgurces
405 - 470 Granville Street
Vancouver, Ec:
VEC 1VS
```

Attention: Ed Yarrow

Date:
Invaice No.

Order No.
$19 \mathrm{Sep}, 1989$
$09 A 013$
Page 1 af 3 95508

EEFTIFIEATE DFASSSAY
I HEFEBY EEFTIFY the fallowing results of assays.

Registered Assayer, Pravince of E.C.

COASTECH ANALYTIGAL SERVICES LABORATORY

TO:
Mingold Resources
405-470 Granville Street
Vancouver, BL
VEL 1 VS
Attention:

Date:
Invaice No.
Order No.

19 Sep, 1989
$09 A 013$
Fage 2 of 3 95508

CERTIFIEATE OF ASSAY
I HEREEY CERTIFY the following results of assays.

Fegistered Assayer, Frovince of B.C.

COASTECH RESEARCH INC.
COASTELH ANALYTICAL SERVICES LABORATORY

TO: | Mingold Fesourges |
| :--- |
| $405-470$ Granville Street |
| Vancauver, EL: |
| |
| $V E C$ IVS |

Attention: Ed Yarrow

Date:

Invaice No.

Order No.

19 Sep, 1989
09 AO 3
Fage 3 af 3 95508

I HEFEEY EEFTIFY the fillowing results gf assays.

COASTECH ANALYTICAL SERVICES LABORATORY

To:
MINGOLD
Suite 405 - 470 Granville Street
Vancouver, BC
V6C 1V5

Attention:
Ed Yarrow

Date:
September 29, 1989

Invoice No. CO9A031
Order No. 95508
Project No. 95508

PAGE 1 OF 2

CERTIFICATEOF ASSAY

1 HEREBY CERTIFY the following results of assays.

1	I Au	Cu	Ag		\|	I	1	1	1				
1	\|--.....-		- -	-....-1	--------\|	\|--.-.-.-		\|-.....-		$\|-\cdots .$.$\| - \mid$	\|-....---		\|-....-..
1	\| g/MT		\% 1	ppm \|						11			
				-----\|	$\|-\cdots---\cdot\|$	\|-------		\|-...-.-.		$\|-----\cdot\|$,		
\| TGC104G3112	\| 1.050		0.091	1.66 \|		I	1	1	11	11			
1113	\| $0.450 \mid$	0.18 1	1.15 \|		1 I	1	1	11	$1 \quad 1$				
1148	\| 0.670		0.001	trace \|		11	1	1	1 I	1			
150	\| <0.001		0.001	trace \|		11	1	1	11	1			
1					11	1	1	11	11				
1151	\| <0.001		0.01	trace \|		1 I	1	1	11	I			
1152	\| 0.095		0.031	trace \|		11	1	1	11	11			
1153	\| 1.225		1.581	4.461		11	1	1	I	11			
1954	\| 0.110		0.041	trace 1		11	1	1	1	1			
1				1	11	1	1	1	11				
1155	\| 0.015		0.031	trace 1		1 I	1	11	11	1			
1156	\| 1.340		0.751	6.85 1		11	1	11	1	11			
1157	\| 12.646		1.67 \|	24.901		1 I	1	11	1	11			
1158	\| 6.855		1.791	26.10 \|		1 I	1	1	1	11			
1				1	1 1	1	11	1	11				
1159	\| 1.290		0.971	8.19 \|		1 I	1	11	1	11			
1160	\| 0.075		0.19 \|	1.06 \|		1 1	1	11	1	11			
\| 161	\| 2.850		0.801	16.70 \|		1	1	11	1	11			
1162	\| 2.750		0.911	10.20 \|		11	1	11	1	1			
	1			-1.	1	- 1							

Registered Assayer, Province of Brizish Columbia

COASTECH ANALYTICAL SERVICES LABORATORY

To:	MINGOLD			Date:	September 29, 1989
	Suite 405-470	Granville Street			
	Vancouver, BC			Invoice No.	C09A031
	V6C 1V5			Order No.	95508
				Project No.	95508
Attention:	Ed Yarrow				
				PAGE 2 OF 2	

1 HEREBY CERTIFY the following results of assays.

Registered Assayer, Province of British Columbia

To:	MINGOLD	Date:	Septeaber 29, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	CO9A032
	V6C IVS	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrou		

CERTIFICATE OF ASGAY
I HEREBY CERTIFY the following results of assays.

To:	MINGOLD	Date:	September 29, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	CO9A032
V6C IV5	Order No.	95508	
		Project No.	95508

PAGE 2 OF 2
CERTIFICATE OF ASSAY
I HEREBY CERTIFY the following results of assays.

Registered Assdyer, Province of British Colunbia

To:	MINGOLO	Date:	October 3, 1989
	Suite 405-470 6ranville Street		
	Vancouver, EC	Invoice No.	C09A040
	V6C 1V5	Order No.	95508
		Froject No.	95508
Attention:	Ed Yarraw		
		PAGE 1 OF 4	

CERTIFICATE OF ASSAY
I HEREEY CERTIFY the following results of assays.

To:	Mingold	Date:	October 3, 1989
	Suite 405-470 Granville Street		
	Vancouver, EC:	Invoice No.	$\operatorname{coshato}$
	V6C IV5	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrow		
		PAGE 20 O 4	

CERTIFICATE OF ASSAY
1 HEREEY CERTIFY the following results of assays.

To:
To:
Attention:

RINGOLD
Suite 405-470 Granville Street
Vancouver, 㫙
VEC IVS

Ed Yarrow

Date:
October 3, 1989

Invoice No.	C09A040
Order No.	95508
Project No.	95508

FAGE 3 OF 4

CERTIFIGATE OF ASSAY
I HEREGY CERTIFY the following results of assays.

Registered Assayer, Pfovince of British Coluabia
To:
Attention:

MIN60LD	Date:	October 3
Suite $405-470$ Granville Street		
Vancouver, BC:	Invoice No.	C09A040
V6C 105	Order No.	95508
	Project Nu.	95508

Ed Yartal

PAGE 4 OF 4

CERTIFIGATE OF ASSAY
1 HEREGY CERTIFY the following results of a5says.

To: | Mingold | |
| :--- | :--- |
| | Suite 405-470 Granville Street |
| | Vancouver, BC |
| | V6C IV5 |
| Attention: | |
| | Ed Yarrow |

Date:
October 3, 1989
Invaice No. COSA039
Order No. 95508
Project Na. 95508
PAGE 1 OF 2

CERTIFIGATE OF ASSAY
1 HEREEY CERTIFY the follawing results of as5ays.

To:	MING0LO	Date:	October 3, 1989
	Suite 405-470 Granville Street		
	Vancouver, fiC	Invoice No.	C09A039
	V6C 1V5	Order No.	95508
		Project Nō.	95508
Attention:	Ed Yarrob		
		FAGE 2 OF 2	

CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of as5ays.

To:	MINGOLD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A038
	V6C 1V5	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrow		
		FAGE 1 OF 5	

CERTIFICATE OF ASSAY

1 HEREEY CERTIFY the following results of assays.

To:
Attention:

Mingold
Suite 405-470 Granville Street Vancouver, EC V6C IVS

Ed Varraw

Date:

Invoice No.	C09A03B
Order No.	95508
Project No.	95508

PAGE 2 OF 5
CERTIFICATE OF ASSAY
I HEREEY CERTIFY the following results of as5ays.

To:
To:
Attention:

Mingold
Suite 405-470 6ranville Street Vancouver, EC
VEC 145

Ed Yarrow

Date:

Invoice No. COSA038
Order No. 95508
Project No. 95508

FAGE 3 OF 5
CERTJFICATE OF ASSAY
I HEREBY CERTIFY the following results of assays.

To:
Mingold
Suite 405-470 Granville Street
Vancouver, $B C$
V6C IVE

Attention:

Date:

Invoice No.	C09A03B
Order No.	95508
Project No.	95508

FAGE $40 F 5$

CERTIFIGATE OF ASSAY
I HEREBY CERTIFY the following results of assays.

COASTECH ANALYTICAL SERVICES LARDRATORY

10:	MIN60LD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancolver, BC	Invoice No.	C09A038
	V6c ivs	Order No.	95508
		Praject No.	95508
Attention:	Ed Yarrow		
		PAGE 5 OF 5	

CERTIFICATE OFASSAY

I HERERY CERTIFY the following results of assays.

To:	Mingold	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A032
	VGC 1V5	Order No.	95508
		Project No.	95508

CERTIFICATE OF ASSAY
1 HEREEY CERTIFY the following results of as5ays.

To:	HINGOLD	Date:	Ditober 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A032
	VGC IV5	Order No.	95508
Attention:	Ed Yarrow	Project No.	95508
		PAGE 2 OF 2	

CERTIFIGATE Of ASSAY

I HEREBY CERTIFY the following results of assays.

To:	MINGOLD	Date:	October 2, 1989
	Suite 405-470 6ranville Street		
	Vancouver, BC	Invoice No.	C09A035
	V6C IV5	Order No.	95508
		Froject No.	95508
Attention:	Ed Yaproy		
		PAGE 1 OF 3	

CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

Registered Assayp, Province of British Coluabia

To:	MINGOLD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A035
	V6C IV5	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrow		

CERTIFIGATE OF ASSAY

1 HEREBY CERTIFY the following results of as5ays.

Registered Assayer, Province of British Columbia

To:	MINGOLD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A035
	V6C IV5	Order No.	95508
		Project No.	95508

PAGE 3 OF 3
GERTIFIGATE OF ASSAY

I HEREEY CERTIFY the following results of assays.

	AU	;	;	i	;		!	I	I
	---------1		,	,	i				
	g/MT	;	1	;	1	I		;	1
16C10463208	1 2.4801	1	1	1	;	!		;	!
209	\% 9.621	;	1	;	;	;	!	;	I
211	; 2.990 ;	;	;	;	!	!	;	;	!
212	; 5.015 ;	;	;	;	;	;	;	;	;
	1 !	;	;	;	;	I	;	;	!
213	; 15.761 ;	;	;	!	;	!	!	;	!
214	\| 3.975	;	;	;	;	!	'	;	;
215	- 5.960 \|	;	;	;	;	;	'	i	;
217	; 13.786 \|	;	;	;	;	'	'	;	;
	;	1	;	!	;	;	!	;	;
210 2-t	- 2.750 !	:	;	;	'	'	!	1	;
	1 !	;	;	!	;	!	,	;	1
	$1 \quad 1$;	;	;	;	;	,	!	,
	;	;	;	1	!	;	;	;	1
	;	!	;	1	;	;	;	!	1
	;	1	;	;	;	1	;	'	
	;	;	;	,	;	;	'	I	;
	;	!	;	1	;	1	!	!	
	i i	;	;	;	,	;	!	,	
			1						

Registered Assayer, Province of British Coluabia

To:	Mingold	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A037
	V6C IV5	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrow		
		PAGE 1 OF 1	

CERTIFICATE OF ASSAY

1 HEREBY CERTIFY the following results of assays

COASTECH ANALYTICAL SERUICES LABORATORY

To:	MINGOLD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	CO9A034
VEC IV5	Order No.	95508	
		Project No.	95508

PAGE \perp OF 10

CERTIFICATE OF ASSAY

1 HEREBY CERTIFY the following results of assays.

To:	Mingold	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A034
	V6C IV5	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrou		
		PAGE 2 OF 10	

CERTIFICATE OF ASSAY

I HEREEY CERTIFY the following results of assays.

	1 Au		1	;	I	,	1	1	,	!
	;--									
	(ppb	;	1	;	;	;	;	;		;
C6C10463632	1 < 5	!	;	1	;	1	1	1	;	'
633	$1<5$;	;	;	;	;	;	;	I	;
634	- <5	;	;	;	;	;	,	;	!	;
635	1 <	1	;	;	;	i	,	;	!	1
	!	,	i	;	;	,	,	,	'	;
636	1 <5	,	!	;	;	I	;	;	;	I
637	1 <5	1	;	;	;	1	;	;	;	1
638	1 <5	;	;	1	;	1	;	;	;	1
639	- 60	i	1	i	;	1	'	;	+	1
	1	,	!	1	;	;	;	;	;	;
640	1 <5	;	;	;	;	,	;	;	;	!
641	: 1353	;	;	1	'	;	!	;	;	1
642	; 55	;	1	1	1	!	;	;	;	1
643	- 110	;	1	;	;	;	;	;	;	!
	;	1	i	1	'	;	;	!	!	!
644	(145	1	1	;	;	;	;	;	'	1
645	- 105	1	1	;	;	;	'	;	;	!
MGC10463121	- 30	;	;	1	;	;	;	;	;	;
122	- 25		1	1	;		;	;	I	
	:							,		

To:	hingold	Date:	October 2, 1989
	Suite 405-470 6ranville Street		
	Vancouver, BC	Invoice No.	COSA034
	V6C IVS	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrou		
		PAgE 3 OF 10	

CERTIFICATE OF ASSAY

I HEREEY CERTIFY the following results of assays.

To:	HINGOLD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
Vanceuver, BC	Invoice No.	C09A034	
	V6C IV5	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrow		

CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

MINGOLD
Suite 405-470 6ranville Street Vancouver, BC
V6C IV5

Attention:
Ed Yarrou

Date:

Invoice No. COga034
Order No. 95508
Froject No. 95508

PAGE 5 OF 10

CERTIFICATE OF ASSAY
I HEREBY CERTIFY the following results of assays.

To:	Mingold
	Suite 405-470 Granville Street
	Vancouver, BC
	VEC IV5

Date:

Invoice No. COSA034
Order No. 95508
Project No. 95508
fage 6 of 10

CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

To:	HINGOLD	Date:	October 2, 1989
	Suite 405-470 6ranville Street		
	Vancouver, BC	Invoice No.	C09A034
	V6C IV5	Order No.	95508
		Froject No.	95508
Attention:	Ed Yarrow		
		FAGE 7 OF 10	

CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

	- Au	;	;	;	;	1	1	;	;	;
	1----	-		-	-1-	-				
	1 ppb	;	,	'	;	1	;	1	1	1
M6C10463188		,			!	1	1			
M6C10463188	1105	:	,	!	1	1	1	!	1	,
$? 201$	< 5	1	1	,	1	,	1	i	;	'
CGClo443646	- 80	;	;	,	,	;	!	,	!	!
	!	;	;	;	1	;	;	,	;	;
647	-145	;	;	1	1	1	;	;	;	;
648	- 570	;	;	!	1	1	1	;	;	;
649	- 160	;	;	;	1	1	;	;	1	;
650	- 90	;	;	;	1	1	;	;	i	;
	I	i	;	;	;	1	;	;	;	;
651	1 330	;	;	!	1	1	;	;	1	;
652	- 270	;	;	1	;	;	;	;	!	;
653	\| 113	;	;	1	;	,	;	;	!	;
654	\| 200	;	;	;	;	;	!	;	1	;
	1	i	;	;	;	1	;	;	;	;
655	1 200	;	;	;	;	;	;	;	1	;
656	165	;	;	1	;	,	;	;	1	;
657	1 155	;	;	1	1	;	;	;	;	;
658	145	;	1	;	1	;	;	,	;	;

To:	MINGOLD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	COSA034
	VEC IV5	Order No.	95508
		Project No.	95508

PAGE 8 OF 10
CERTIFICATE OF ASSAY
I HEREGY CERTIFY the following results of assays.

	Au		I	;	1	'		1	;	1

	ppt	;	1	1	;	;		1	1	;
			-							
M6C10463E5S	310	!	1	i	;	i	;	!	;	1
661	250	;	;	;	1	;	!	;	;	;
662	220	1	;	!	;	;	;	1	;	;
663	60	i	;	;	i	i	;	1	1	;
		!	;	;	;	;	!	!	;	;
664	160	i	;	;	;	,	!	1	;	;
665	<5	1	;	;	;	;	!	1	1	;
666	10	;	;	1	1	;	;	1	;	;
667	< 5	1	!	1	,	;	;	,	,	;
		I	;	;	1	;	;	1	;	;
668	95	;	;	1	!	!	,	;	;	1
669	<5	1	;	1	;	;	1	-	;	!
670	20	;	;	;	1	;	:	1	;	1
671	<5	;	;	!	;	;	;	;	,	;
		!	;	;	1	;	;	;	;	;
672	(5	;	;	1	;	;	;	;	;	1
673	5	;	;	1	1	;	;	;	;	;
674	175	;	;	;	;	;	!	1	;	!
675	20		;	;	1	;	;	;	;	;

To:	HINGOLD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A034
	V6C 1V5	Order No.	95508
		Project No.	95508
Attention:	Ed Yarrou		
		FAGE 9 OF 10	

CERTIFICATE OF ASSAY

I HEREBY CERTIFY the following results of assays.

* Assay to follow

COASTECH ANALYTICAL SERVICES LABORATORY

To:	MINGOLD	Date:	October 2, 1989
	Suite 405-470 Granville Street		
	Vancouver, BC	Invoice No.	C09A034
	V6C 1V5	Order No.	95508
		Project No.	95508
Attention:	Ed Yaprow		
		FAGE 10 OF 10	

CERTIFICATE OF ASSAY

1 HEREBY CERTIFY the following results of assays.

	Au	1	;	1	;	1	;	1		;
;	1---	:				;				
;	pot	;	!	1	!	,	'	\|	;	I
- P6C10463692	1 40	!	;	;	;	;	;	!		
1 693	- 30	1	;	;	1	;	;	;	;	;
1 694	- 20	;	!	;	;	;	;	!	;	;
; 695	- 60	;	;	;	1	;	;	;	;	;
;	,	;	;	;	;	;	;	!		;
1 696	- 300	!	!	;	;	;	;	;	;	!
1 697	- 400	1	!	;	;	1	!	!	!	;
1 698	$1<5$;	;	,	1	!	;	;	;	I
1 699	1 <	;	;	;	;	1	;	;	;	1
I	;	;	;	;	1	;	!	;	,	;
1700	\| 33	;	;	;	;	;	;	;	;	;
!	!	;	!	1	!	!	;	;	;	;
;	!	;	1	;	;	;	;	;	;	;
1	i	;	1	;	;	;	;	;	1	,
;	;	;	1	;	1	I	!	;	;	;
1	;	;	1	;	;	;	;	;	;	;
!	;	;	;	;	1	;	;	;	;	;
I	!	;	,	;	!	;	;	1	;	
!	;	;	I	i	-	,	;		!	;
				\|		,	1	,		'

ACME ANALYTICAL LABORATORIES LTD.
DATE RECEIVED:
OCT 301989
852 E. HASTINGS ST. VANCOUVER B.C. VGA 1R6 PHONE (604)253-3158 FAX (604)253-1716 DATE REPORT MAILED:

GEOCHEMICAL ANALYSIS CERTIFICATE

ic - . 500 gram sample is digested with 3ml 3-1-2 hel-hno3-h2o at 95 deg. c for one hour and is diluted to 10 ml with hater. this leach is partial for mn fe sR ca p la cr mg ba ti b n and limited for na x and al. au detection limit by icy is 3 ppm. - SAMPLE TYPE: Core AU* ANALYSIS BY ACID /EACH/AA FROM 30 GM SAMPLE.

SIGNED BY...O
Mingold Resources Inc. PROJECT GALORE CR. FILE \# 89-4542

assay recommended for $\mathrm{Cu}=1 \%$.

$$
262-296
$$

CoAstech research inc.

DATE:
TO:
FROM:
RE:
To follow, please find more assays fxom your list.

Sample Number
co50s
C145S
C146S
C521S
C554S
C555s
C556S
C5575
C560S
C561s
C562S
C563S
C564S
C565S
C566s
C567s
C568S
C570S
C571S
T032X
T095S
T133R
T134R
T135R
T136R
T137R
T138R
T139R
T143R

November 16, 1989
Ken Taylor, MINGOLD RESOURCES
Jack Stanley, COASTECH RESEARCH
Missing Assay Status
status
125 ppb Au
< 5 ppb Au
$<5 \mathrm{ppb} A u$
Not sufficient sample for $A u$
50 ppb Au
75 ppb Au
340 ppb Au
45 ppb Au
135 ppb Au
50 pDD Au
105 ppb Au
$105 \mathrm{ppb} A u$
80 ppb Au
130 ppb Au
525 ppb Au
435 ppb Au
160 ppb Au
315 ppb Au
110 ppb Au
75 ppb Au
1375 ppm Cu
$2.26 \% \mathrm{Cu}$
$2.70 \% \mathrm{Cu}$
$0.15 \% \mathrm{Cu}$
$0.15 \% \mathrm{Cu}$
$0.26 \% \mathrm{Cu}$
$2.57 \% \mathrm{Cu}$
$2.79 \% \mathrm{cu}$
$1.39 \% \mathrm{Cu}$

CBAIIPICATB OPASSAI

I BBREBY CBPify the following results of assays.

APPENDIX IV

ROCK SAMPLE DESGRIPTIONS

MINGOLD RESOURCES INC.

GEOCHEMICAL DATA SHEET - ROCK SAMPLING
UTS
$104 G / 3<4$
Location Ref
Air Photo No. \qquad

GEOCHEMICAL DATA SHEET - ROCK SAMPLING
Sampler

Date $\frac{\text { K. TAYLOR }}{\text { JULY-SEPT. } 189} \quad$| Project |
| :--- |
| Property |

NTS
Location Ref
Air Photo No.

104G/3

SAMPLE No.	LOCATION	SAMPLE TYPE	SAMPLE WIDTH	DESCRIPTION			ADDITIONAL OBSERVATIONS	ASSAYS				
				Rock Type	Alteration	Mineralization		$\overline{\mathrm{Ag}}$	Au			
TI34R	North Rim Trench	Channel (NRT-2)	1.5-2.7m.	Epid.syen. posph	Same is Ti33a	Same as Ti33R						
T135R	"	* *	2.7-3.6m.	" ${ }^{\prime}$	* " "	M. mal.	Sample ends e dyke.					
T136R	$1{ }^{\prime}$	" "	3.6-5.4m.	Greem and dine	-	M. mal, tr. cpy tripy	, Sharp contacts.					
T1372	$" \quad "$	" "	$5.4-6.1 \mathrm{~m}$	Syen. parph.	Strong Chl.-Kspa	Modi mal, tr- cpy,nopy	1\% End of trench NRT-2					
T138R	" " "	" (NRT-1)	O-1.5m.	Epid.syen. porph	Epd, Kspar	$\begin{aligned} & 2-5 \% \text { cpy,tr. } \\ & 5-7 \% \text { mad } \end{aligned}$	to, Continuation from T1332					
T139R	." " ${ }^{\text {a }}$	" "	1.5-3.0m.	"	"	"	Last 15 cm near solid epy					
Tl40R	StespCK.	Contr chip \%e	1.2 m .	Alt'd vole.	Strong Fe	$\begin{aligned} & >15 \% P Y, \\ & +r-2 \% P P^{\prime} \end{aligned}$	Very strong Fe staining					
T141R	${ }^{1}$	" "	0.8 m .	Augite porph.	-	$5-10 \%$ py						
T142R	$"$	\%/e	Randon chip	Meta and.	Epid., Kapar	$\begin{aligned} & \text { Tr }<p y, 3-5 \% n \\ & \text { Tr }-1 \%, m, m 1 \end{aligned}$	nal Strongly jointed					
T143R	North Rim Trench	Channd (NRT-1)	3.0-4.3 m.	Epid.syen prop	Epid,Kspar	1-2\% cpy	Spolty Cu mineraln					
TI44R	" " 1	${ }^{\prime}$	$5.0-6.6 \mathrm{~m}$.	Alt'd vole.	Stroung sid-92	No visible	Overlying vole. rocks					
T145R	" " ${ }^{\text {a }}$	،	$6.6-8.2 \mathrm{~m}$	"	"	" ${ }^{\text {c }}$	End of sampling NRT-1					
T146R	" ${ }^{\text {a }}$	" (NRT-5)	$0-1.5 \mathrm{~m}$.	Syim. porph.	Strong chl-Kspart	Trepy, , l - hem.	Entire trench sampled.					
TI48R	JunctionCk.Trib.	\%	Randanchicf	Dk.syen. porph	Mod. K-spar	Tr-2\%py	Just above TO31x					
TISOR	" " "	\%	$4{ }^{\prime}$	Green and. dyke	-	$T_{r}-1 \% p Y \text {, }$ fair mode!						
TISIR	" ".	\% $/$	-	Maroon syen.porp	Hem.	Tr-1\%py						
T152R	" " "	$0 / 6$	"	$4 \times$	ink Kspar-epid	No visible	Orthoclase phenos $1 \mathrm{~cm} \times 3 \mathrm{~cm}$.					
T153R	11 - "	\%/c	" "	Epid,siyen puoph	Mod Kspar-epid	$\begin{aligned} & 1-3 \% c \cdot y, \\ & \text { tr }-1 \% b 0 \end{aligned}$	Local pods near solid cpy-bo					
TI54R	, "	\%	" "	"	WK " "	M. mal						
T155R	$\cdot 1$	\%	"	* " "	"	No visible	V. broken to shattered					
TIS6R	DDH 128 Trenc	Channel (128T-2)	0-1.5m.	"	" "	$1-3 \%$ cpy	Mod-strong sid, alt'n					

MINGOLD RESOURCES INC.

Project
Property

NTS
104 G/3
Location Ref Air Photo No.

SAMPLE No.	LOCATION	SAMPLE TYPE	SAMPLE WIDTH	DESCRIPTION			ADDITIONAL OBSERVATIONS	ASSAYS			
				Rock Type	Alteration	Mineralization		A	Au		
T157R	Doit 128 Trench	Channel (1281-2)	$1.5-3.0 \mathrm{~m}$	Epid. sigen.purph	Wh. Kispar-epiń.	2-4\%cpy					
T158R	" ${ }^{\text {c }}$	"	$3.0-4.6 \mathrm{~m}$. . ${ }^{\text {. }}$	"	1-3\%cpy					
TIS9R	" ${ }^{\text {] }}$	" "	$4.6-6.1 \mathrm{~m}$	" " "	" " "	2-3\%cpy					
TIGOR	" " "	" "	$6.1-7.6 \mathrm{~m}$	" " "	"	Tr -2% cpy	Cpy decreasing towand end of				
T161R	" " "	" (128T-1)	0-1.5m	" " "	" " "	5-7\%cpy					
T162R	$4{ }^{4}$	" "	$1.5-3.0 \mathrm{~m}$	" " "	" " "	1-2\%cpy					
T163R	" ${ }^{\prime}$,	$3.0-4.6 \mathrm{~m}$	" "	" " "	$2-3 \%<p y$					
Ti64R	.	" "	4.6-6.1 m	" " "	" " "	Tr-1\%cpy					
T165R	" ،	" ${ }^{\text {. }}$	$6.1-7.6 \mathrm{~m}$	"	"	". ${ }^{\text {a }}$					
T166R	" " "	"	7.6-10.2m	" " "	"	No visible	End of sample at lamprophyse dyke				
T167R	" "	" (128T-3)	0-1.1m.	" ".	" " ${ }^{\text {a }}$	"					
T168R	" ${ }^{\text {] }}$	" ${ }^{\circ}$	$1.1-2.6 \mathrm{~m}$	" " "	Mod-strom sid.	Tr.epy, mal					
TI69R	" ${ }^{\text {. }}$	" "	$2.6-4.1 \mathrm{~m}$	" " "	Mod. sid.	No visible					
TITOR	" " ${ }^{\text {a }}$	" "	$4.1-5.3 \mathrm{~m}$	" " ${ }^{\text {c }}$	"	" "					
TITIR	" " "	" "	5.3-6.6m	" ${ }^{\prime}$	Strong sid.	"					
T172R	" "	"	$7.3-8.8 \mathrm{~m}$	" . .	Wk. sid.	Tr.cpy, mal					
T173R	" ${ }^{\text {b }}$	" ${ }^{\prime}$	8.8-10.4m	" " "	" "	Tr.cpy	Tr-1\% cpy end of interval.				
T174R	" ${ }^{\prime}$	" "	$10.4-11.9 \mathrm{~m}$	" " "	" "	No visible					
T175R	،	" "	11.9-13.4m	" '	"	Tr. cpy					
TI76R	" " "	" "	13.4-14.9m	'	"	Tr. -1 cpy					
TI77R	'	" " 14.	$14.9-16.5 \mathrm{~m}$	Alt'd sipeniti?	Strong sid.	$1-2 \% c p y$	$3-5 \%$ cpy at contact				

Project GALORE CREEK

Property

NTS
Location Ref Air Photo No.

Sampler \qquad
\qquad

SAMPLE No.	LOCATION	SAMPLE TYPE	SAMPLE WIDTH	DESCRIPTION			ADDITIONAL OBSERVATIONS	ASSAYS				
				Rock Type	Alteration	Mineralization		Ag	Au			
T178R	DDH 123 Trench	Channel (129T-3)	$16.5-18.0 \mathrm{~m}$	Alt'd syeniti?	Strong sid.	2-3\%cpy	Strona oxidation					
T179R	. ${ }^{\text {.. }}$	"	18.0-19.5	" "	1. ${ }^{\text {- }}$	1-2\%cpy	up to $3-5 \%$ cpy locally					
T180R	" " ${ }^{\text {" }}$	" (128T-5)	$0-1.5 \mathrm{~m}$	Syen. porph.	Strong Kspor	No visible						
TI81R	" ${ }^{\text {a }}$	" "	$1.5-30 \mathrm{~m}$	Alt'd volc.	Intense sid ± 92	2-5\%cpy						
T182R	" "		$3.0-4.6 \mathrm{~m}$	"	" " "	Tr-1\%cpy						
T183R	" ${ }^{1 \times}$	Chip aseny 46 cm	8.2 m .	Epid. syen. poriph	Wk. epid-Kspan	Tr 2% cpy						
T184R	" 1	Bulk sampte of	128T-2	" ${ }^{\text {c }}$	" "1	2-4\%cpy						
T185R	" "	Chavnel (1287-4)	$0-1.5 \mathrm{~m}$	Alt'd volc?	Intense sid.	Tr. epy						
T186R	" " .	4.	$1.5-3.0 \mathrm{~m}$	4 !		$1-2 \% c p y$						
T187R	" "	4	$3.0-4.6 \mathrm{~m}$	" "	Garnet-mag	Tr-2\%cpy						
TI88R	". " ${ }^{\text {a }}$	" ${ }^{\text {a }}$	4.6-6.1	"	1.1	Tr - 1\%cpy						
T189R	North Rim Area	$\%$	Random chip	Alt'd syanite	Macj-ch.	Tr. cpy	75\% maq, 20% chl.					
TI90R	" "	ole	Grab	Alt'd voic?	14	No visible	25\% mag, 75% chel					
TI91R	$4{ }^{4}$	\%	Kandom chip	Alt'd syen.	Stroug Kspar	Tr-5\%c.py	Bedrock ui small pit					
T192R	" " "	$\%$ to sub \%	"	" "	Mod "	Tr $-3 \% \mathrm{cpy}$						
Tl93R	Steep CK.	Bulk sample	MoosR \%	Metavols?	Strong chl-epid.	$\begin{array}{r} >15 \% \mathrm{py} \\ +1-2 \% \mathrm{pe} \\ \hline \end{array}$						
Tl94R	" ${ }^{\text {a }}$	\%	Random chij	Alt'd and.	Bleached. Strowtel	$\begin{array}{r} 20-30 \% \mathrm{po-} \\ \text { d. } \\ \text { py, }+\mathrm{tr}-5 \mathrm{mag} \end{array}$						
T195R	Saddle Zoru Trenif	Chaund (ST-2)	16.8-18.3m.	Alf'd sypmite	Mod eprd-Kspan	$3-10 \%$ man No visible Sulphss	Maq healed syanite bx.					
T196R	.1. ${ }^{\text {. }}$	" ،	$18.3-19.8 \mathrm{~m}$	" "	" "-gor.?	$\begin{aligned} & 15-20 \% \mathrm{mag} \\ & \text { tr. mal } \end{aligned}$	" " ${ }^{\text {" }}$					
Ti97R	" " ${ }^{\text {] }}$	" ${ }^{\text {a }}$	19.8-21.3m	" "	Mod-string epidty	$\begin{aligned} & 20.30 \% \text { maq } \\ & \mathrm{m} . \mathrm{mal} . \end{aligned}$	" " "					
T198R	h $\quad . \quad 1$	"	21.3-22.7m	" "	", '. .. "	$20-30 \%$ maly tr-1 cpy mat.						

MINGOLD RESOURCES INC.

Property

NTS
Location Ref Air Photo No.
\qquad

SAMPLE	location	SAMPLE TYPE	SAMPLE WIDTH	DESCRIPTION			ADDITIONAL ObSERVATIONS	ASSAYS			
				Rock Type	Alteration	Mineralization		Ag	Au		
T199R	Saddle Zous Trenery	Chamel (ST-2)	22.9-24.4m	Alt'd syen.	stromg epid.	$\begin{aligned} & 20-30 \% \text { mag, } \\ & 1-5 \% \text { cpy } 1-2 \% \times \text { es } \end{aligned}$	has). Partial ovalap with YoisR				
T200R	" 1.	" "	24.4-25.9m	"	" ".	,	Pantial onulap with Y015,016R				
T201R	" " "	" "	25.9-27.4m	" "	" ${ }^{\prime}$	$15.20 \% \mathrm{mag}$	" " " Yo16R				
T202R	" . "	- "	27.4-29.0m	" "	* "	.. .					
T203R	" " ${ }^{\text {c }}$	" "	$29.0-30.5 \mathrm{~m}$	" "	" ${ }^{\text {" }}$						
T204R	" .	" "	30.5-32.0m	" "	" ${ }^{\text {a }}$	$\begin{array}{r} 20-25 \% \text { mag } \\ +\quad-29_{0} 094,+1+10 \end{array}$	al				
T205R	" ${ }^{\prime}$.	" "	$32.0-33.5 \mathrm{~m}$	" "	" "	$15-20 \% \text { mad }$					
T206R	" "	" ${ }^{\text {n }}$	33.5 m 35.1 m	"	" "	$\begin{array}{r} 15-20 \% \text { mag } \\ +\quad-1 \% \text { qun mimp } \end{array}$					
T207R	" ." "	" ${ }^{\prime}$	$35.1-36.6 \mathrm{~m}$	" "	" "	$\begin{array}{\|} 3-5 \% \text { max } \\ \text { tr-1 } \% \text { cop mal mal } \end{array}$					
T208R	" ${ }^{\text {- }}$	" "	36.6-38.1m	" "	" "	$\begin{array}{r} 10-15 \% \text { maqa } \\ +2 \% \text { acpy, mal } \\ \hline \end{array}$					
T209R	-	"	$38.1-39.6 \mathrm{~m}$	" "	" "	" ${ }^{\text {. }}$					
T210R	" 4 "	" "	39.6-41.1m	" "	" "	" "					
T211R	" "	. ${ }^{\text {. }}$	41.1-42.7m	" "	" "	" ${ }^{\text {" }}$					
T212R	"	" "	$42.7-44.2 \mathrm{~m}$	" "	" "	$\begin{array}{r} 20.25 \% \text { mog } \\ 1-2 \% \text { cpy, v-1 } \end{array}$	nad.				
T213R	"	" "	44.2 m 45.7 m	, " "	" ${ }^{\text {c }}$	" 1.					
T214R	"	" ${ }^{\text {" }}$	45.7-47.2m.	. " ${ }^{\text {" }}$	" "	$\begin{aligned} & 15-20 \% \text { maq } \\ & 1-2 \text { cpy, tv-1 } \end{aligned}$	al.				
T215R	n	" "	47.2-48.6n	" "	" "	$\begin{aligned} & 15-20 \% \text { mal } \\ & +v-1 \text { cgy, mal. } \end{aligned}$	End of trench sampling				
T216R	"	Bulk samph	of ST-2	" "	- "	". .	Mix of high grade				
T217R	"	" "	NRT-1,2	Epid. cyen.posion	Epid, Kepar	3-5\%cpy.	" ." " ${ }^{\text {c }}$				

MINGOLD RESOURCES INC．

Sampler－JCHN Mir－KC
Date $A \cup \omega L \leq T E, i j 4$

Project Property

NTS $\quad 1046 / 3+4$
 Air Photo No． \qquad

SAMPLE No． Nom M－E．1こ4 シージーに	LOCATION U，保 STEE ご，NUTル	SAMPLE TYPER-FLCAT	SAMPLE WIDTHCi-AB	DESCRIPTION			ADDITIONAL OBSERVATIONSGREY	OZ／PPO ASSAYS				
				Rock Type	Alteration	Mineralization		Ag	Au			
				に㣙にくご	S．LIC．	$<\mathrm{l}$ ¢ $\mathrm{P}^{\text {c }}$		nerow－	xarmoxmen	N000000		
ご，こ	\because	\cdots	\cdots	くソご，「～		$\begin{aligned} & \angle 2 \% \\ & >9 \% \\ & \hline \end{aligned}$	watrecizey					
$\geqslant>2 ;$	＇		3 M		$\cdots 10,21$	$y-\dot{/ 1} 1^{\prime} x$	BN CAEEN					
$3 \cup i 4$	，		$1 \sim 1 \sim 1$	1，	1．							
Y c c－\％	1	in $\quad=$ 	2．1	\because	$15=\pi レ 7$				C．LC			
$\geqslant 0.6$	1		2.1	为 ${ }^{\prime \prime}$	S以．	$\begin{aligned} & 716 i 7 \\ & 0-12 \end{aligned}$			0.07			
人 col	＂		1．M	い	،	い	い ナ MN゙					
$\begin{aligned} & 1 c 441+ \\ & 0141 \end{aligned}$		$0 \cdot{ }^{\circ}$	11.1	$\begin{aligned} & 9-6-19 \\ & \hdashline y \end{aligned}$	E．2．E？	$\langle 30 \%$ Fl	ぐナER，边，RUごTY					
\％C， $1 \cdots$	，		i． 2 N	，	\cdots	＂	い					
$\begin{gathered} 16407 \\ <17 \end{gathered}$	iia．is zimome ćmidét（w）	Flumit	CrAE		\cdots	$\begin{aligned} & >4 \%-r y \\ & 1 \%: 16 \end{aligned}$						
C－\％			20 N	$\begin{aligned} & \text { ! int } \\ & y>6 \end{aligned}$	$\left\lvert\, \begin{aligned} & 1+2 x \\ & +2021 \end{aligned}\right.$	$\begin{aligned} & \cos 2 \\ & \hdashline 14 y \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Whaniou (DEAD) } \\ & \text { T: } \because \text { MD } \end{aligned}$					
06	サricu，	\cdots	3.61		$\begin{aligned} & \because ル< \\ & \therefore=1 \\ & \hline \end{aligned}$	$\left\langle\begin{array}{c} 1 r^{3} y \\ +\quad r^{y} \end{array}\right.$	Civer i－kitces Dosicirk $\approx r e c s=M M 2$					
2 $\because \because \leq$	$\begin{aligned} & 5,1 \\ & \hdashline-m+1 \\ & \hline \end{aligned}$	\cdots	$1 く 6 \sim 1$	i－	．	い	い					
$0 \cdot 3$		「じンパ	ぐ心穴	\cdots	$\begin{aligned} & G_{1}: 2 \\ & y_{z}, \ldots \ldots \\ & \hline \end{aligned}$	$y s i \%$ ry						
里	い	八	4＊4\％）	，	い	－•	0					
$\begin{gathered} 104=-1 \\ =20 \end{gathered}$		＊	\square	可人	\because	－	ーサ17゙こ，ソいくくり					
Y $\quad 30$	16		11 m		シルハ	$y^{2},-\% \mu$						
$c^{3}>2$	$\begin{gathered} \therefore=12 \\ 1 \\ \hline \end{gathered}$	FLumt	$\therefore 19 \times 1{ }^{\text {a }}$	rir ：								
	$\left\lvert\, \begin{array}{rc} 7-1 & 6{ }^{\top} \\ \hdashline & 6 \end{array}\right.$	\cdots	\cdots	VRe．		7 ¢\％\％			1390			
$\times 36$	\cdots	\cdots	心	い	\cdots	\cdots	\cdots					
038	11	O／CR．GR．	${ }^{11} 60 \mathrm{M}$	11	FINE GR． jicic．Va．	1	＇＇					

MINGOLD RESOURCES INC.
Sampler
Date $\frac{\text { Sorta Mirico }}{\text { AuS. } / 89}$

GEOCHEMICAL DATA SHEET - ROCK SAMPLING
UTS
Location Ref
Air Photo No.
GEOCHEMICAL DATA SHER ROCK SAMPLIN

GALORE CR.

Project
Property
$1046 / 3+4$
LAT 5707N LONG $131^{\circ} 27^{\circ} \omega$
\qquad

MINGOLD RESOURCES INC.
Sampler JoHn MiRK
geOCHEMICAL dATA SHEET - ROCK SAMPLING

Project
Property GALORE CREEK

NS
Location Ref LAT. $57^{\circ} 07^{\prime} \sim$ Long. $131^{\prime} 27^{\prime} L$
Air Photo No.
$104 G / 3+40$
\qquad

MINGOLD RESOURCES INC.

GEOCHEMICAL DATA SHEET - ROCK SAMPLING

Project
Property

UTS
Location Ref $\frac{104 \mathrm{G} / 3}{\text { LAT .57 } 007^{\prime} \mathrm{N} \text { Low G. } 131^{\circ} 27^{\prime} \mathrm{m}}$
Air Photo No.

MINGOLD RESOURCES INC.

Sampler Non CosGROve
Date
Sune-Auq 89 $\quad \begin{aligned} & \text { Project } \\ & \text { Property }\end{aligned}$

GEOCHEMICAL DATA SHEET - ROCK SAMPLING
\qquad
${ }_{\text {Location Ret }}^{\text {NT S }} 104 /\left(63_{+1}\right.$
Air Photo No.

MINGOLD RESOURCES INC.

$$
\begin{aligned}
& \text { Sampler Den Cosgrave Project Galere riel } \\
& \text { Date }
\end{aligned}
$$

GEOCHEMICAL DATA SHEET - ROCK SAMPLING
UTS
$1046-3$
\qquad
\qquad

MINGOLD RESOURCES INC.
$\underset{\text { Date }}{\text { Sampler }} \frac{\text { E. W. Yarrow }}{\text { July-September/Eq }} \quad \begin{aligned} & \text { Project } \\ & \text { Property }\end{aligned}$

GEOCHEMICAL DATA SHEET - ROCK SAMPLING

$$
\text { NTS } \quad 104 G / 3 \& 4
$$

Location Ref
\qquad

MINGOLD RESOURCES INC.

$$
{ }_{\text {Sampler }}^{\text {Date }} \frac{\text { E.W. Yarrow }}{\text { July -September } 1^{2 i 85}}
$$

GEOCHEMICAL DATA SHEET - ROCK SAMPLING
NS
$104 G / 3 \times 4$
Location Ref \qquad

vLr-ヒNI vara sneer
Line : \qquad
Grid : \qquad NORTH RIM...
$7+00 W$
TX. : MAINE \qquad
Facing : \qquad

vLr-cNI vara sheet
Line :7.+.0...W............

Grid :......NoRTH. RIM......

Δ	Dip Angle	Slope \%	$\begin{array}{c}\text { Correction } \\ \text { Factor }\end{array}$	Reading	$1^{\text {st }}$ Diff.	F. Filter

vLr-ENI maia Sheet
Line : 6+......................
Grid : \qquad NORTH. RIM....

TX.: MAINE
Facing: SOUTH

VLt-ENI Uaia Sneet
Line :6....00.W............. Grid :......NORTH.RIM........
Tx. : MA1NE
Focing : _Soulth_

vLr-LMI vara sheep
Line
Tx. :
MAINE
Grid : \qquad NORTH...RIM....

Facing : SouTH

VLT-ENI Lala sheet
Line :5.t.ọ.W.
TX. : MAINE
Grid : \qquad NORTH. Rim Facing : STunt

VLr-EMI vara Sheet
Line :
$4+00 w$
TX. : MAINE
Grid : \qquad NORTH RIM.....
\qquad

ver-emi valid sheet
Line :
$4+00 . W$
TX. : MAINE
Grid : NORTH RIM.

Facing : _SouTH

vLT-ENI UNto Sheet
Grid : \qquad NORTH RI........

Line : \qquad $2+85 \mathrm{~W}$ \qquad TX. : MAINE.
Facing : SouTh

vLt-EN Uaia Sneet
Grid: R!:1... North

Line

Di
$\frac{0}{1+00 N}$
75

75
50
25
$0+00 \mathrm{~N}$
25
75
$1+005$
25
50
75
$2+005$
50

—
\therefore

vLr-cNi uaia Sneet
Line :!+!!.S..W...........
Grid :......NORTH...RIM.....
Facing: SouTH

VLr-EN Uaia Sineet
Line : O+..OPE
O+.+OPE..........
Grid :.......NorTH Rim.......

VLT-ENI UaIa Sneet
Grid : \qquad NORTH....RIM...
\qquad

Line : \qquad 1.+.O.E.E. \qquad

VLT-ENI USIa sheet
Grid : \qquad NORTH RIM

Line : \qquad $2+O O E$ \qquad TX. : MAINE
Facing : _SouTH_

vLr-cNi vara sneer
Grid \qquad NORTH. RIM

Line
........ $3+00$.

TX. : \qquad
vLr-ENI vara Sheet
Grid : \qquad NORTH RIM

Line :
$1+00 \mathrm{~N}$
(GRID E-W)

Tx. : _SEATTLE
Facing : EEAST_

ver-ENI vaia sneet
Line :! + O.O.N............
Grid :........NoRTH....RIM...
Facing: EASI

vLr-ENI vala Sneet
Grid : \qquad NoRTH RIM....

Line
........
$1+005$
(GRID E-W)

TX. : SEATILE
Focing : EAST

ver-twl uala sineet
Line :o.s.
Tx. : SEATTLE
Grid :.......NorTH...RIM......
Focing : _._EASI

ver-ENI Uaid Sneei
Line :ntour.........4̣!'
Tx. : _MAINE
Grid:....SADDLE CREEK
Focing : SSouTt _

ver-ENI vaio Sneet
Line : \qquad $2+\infty \bigcirc \ldots$
Tx. : MAINE
Grid :.....STOTTHWEST........
Focing : SOUTH

VLT-ENI Uaio Sneet
Line : O+.................
Grid :.....S.SUTHWEST......

VLr-cNl vaio Sneet
Line : \qquad $2+O O E$
Grid : \qquad
Line : $2+0$ O.

