LOG NO: /	206	[rs)
ACTION.		
FILE NO:	·····	

GEOCHEMICAL REPORT

on the

WP 1-4 CLAIMS

Hedley Area Similkameen Mining Division

92H-8E (49°19' N. Lat.,120°11' W. Long.)

for

CANNELLE EXPLORATION LTD. #135, 4631 Shell Road Richmond, B.C. V6X 3H4 (Operator)

> GEOLOGICAL BRANCH GRANT F. GROOKERSSMENT REPORT (Owner)

GRANT F. CROOKER, B.Sc., F.G.A.C. Consulting Geologist

December, 1989

TABLE OF CONTENTS

·

		Page
	SUMMARY AND RECOMMENDATIONS	1
1.0	INTRODUCTION	3
	 1.1 General 1.2 Location and Access 1.3 Physiography 1.4 Property and Claim Status 1.5 Area and Property History 	3 3 4 5
2.0	EXPLORATION PROCEDURE	9
3.0	GEOLOGY AND MINERALIZATION	10
	3.1 Regional Geology 3.2 Claim Geology 3.3 Mineralization	10 13 14
4.0	GEOCHEMISTRY	16
	4.1 Soil Sampling	16
5.0	CONCLUSIONS AND RECOMMENDATIONS	19
6.0	REFERENCES	20
7.0	CERTIFICATES OF QUALIFICATION	23
	APPENDICES	

Appendix I - Certificates of Analysis Appendix II - Cost Statement

松

~

ILLUSTRATIONS

きまた

•

5

FIGURE		PAGE
1.	Location Map •	follows page 1
2.	Claim Map	follows page 4
3.	Regional Geology, Hedley District	follows page 10
4.	Soil Geochemistry, Au and Ag	pocket
5.	Soil Geochemistry, As and Cu	pocket
6.	Soil Geochemistry, Pb and Zn	pocket
7.	Soil Geochemistry, Bi and Co	pocket

TABLES

TABLE		PAGE
I	Production Data, Hedley Gold Camp	

SUMMARY AND RECOMMENDATIONS

The WP Claims are located 8 kilometers southwest of Hedley B.C. in the Hedley Gold Camp of southern British Columbia. The property consists of four claims totalling 72 units.

Placer mining was first carried out in the Hedley area in the 1860's and 1870's with the first hardrock claims being staked in 1896 on Nickel Plate Mountain. Gold production from the camp until 1986 was 3,693,985 tonnes of ore yielding 50,715,213 grams of gold and 6,007,730 grams of silver. Production at the Nickel Plate Mine resumed in 1987 with a milling rate of 2700 tons per day. Ore reserves as of December 1988 are in the order of 9,100,000 tons grading 0.088 ounces per ton gold.

Gold mineralization in the Hedley Camp occurs as both skarn and vein type, and occurs within Nicola volcanic and sedimentary rocks. The gold mineralization is spatially related to the Hedley Intrusions.

The WP Claims are located in a favourable geological environment for gold mineralization. They are mainly underlain by the Stemwinder Mountain and Whistle Creek Formations of the Nicola Group. A stock of the Hedley Intrusions outcrops in the southeastern section of the property.

During 1987 exploration on the property consisted of soil sampling, VLF EM and magnetometer surveying, geological mapping and prospecting. A number of multi-element soil geochemical anomalies and favourable geophysical and geological structures were outlined on the property. Highly anomalous gold values (28000 ppb) were obtained from heavy metal concentrates taken from Pettigrew Creek at the northern boundary of the property and anomalous gold values of up to 270 ppb were obtained from rock samples. Recommendations were made to continue exploration on the property.

The 1988 exploration program consisted of establishing a grid at 100 and 200 meter spacing over the WP-3 and WP-4 Claims. Soil sampling, VLF EM and magnetometer surveying, geological mapping and prospecting were carried over the grid. Heavy metal concentrate samples were also taken at 250 meter intervals along Pettigrew and Whistle Creeks.

The heavy metal stream sediment sampling yielded very favourable results. Highly anomalous gold and silver values (up to 5500 ppb Au, 12.0 ppm Ag) were obtained from the northern portion of Pettigrew Creek, draining the WP-3 claim. One highly anomalous gold value of 2350 ppb was obtained from Whistle Creek at the northern boundary of the WP-4 claim. Two samples taken from Whistle Creek at the western boundary of the property also

CHONG

E.

yielded anomalous lead and zinc values.

The soil geochemical sampling indicated several small multi-element soil geochemical anomalies, but due to the small number of samples analyzed, the dimensions of the anomalies were not defined.

The geophysical survey indicated a number of magnetic and VLF EM anomalies. Areas which exhibit strong magnetism with strong VLF EM conductors are of highest priority. Prospecting disclosed several small outcrops with pyrrhotite in the vicinity of the high magnetism and VLF EM conductors along line 1400N.

The program covered by this report consisted of analyzing 542 soil samples collected in 1988. The samples were taken from lines 5N to 13N and 15N to 20N and analyzed for gold, silver, copper, arsenic, cobalt, bismuth and lead.

The soil geochemical sampling indicated four areas of weak to moderate multi-element soil geochemical anomalies. The multi-element anomalies are made up of a combination of silver, copper, arsenic, cobalt and lead. Gold values are restricted to single sample locations, although some of these occur within the broader multi-element anomalies.

The multi-element soil geochemical values occur coincidentally with a number of magnetic features and weak to strong VLF EM conductors. These anomalies also occur on the steep slopes leading into Pettigrew Creek and could be the source for the anomalous heavy metal stream concentrate samples taken from Pettigrew Creek in 1987 and 1988.

Recommendations are to continue exploration on the property. This should include follow up evaluation of the multi-element soil geochemical anomalies by prospecting and fill-in soil sampling if required.

Based on an examination of the geochemical and geophysical anomalies and geological structures, trenching should be carried out over favourable areas to define possible drill targets.

OCIATE Suppritted, Respected Grants Greek¢i≶/B.Sc., F.G.A.C., Consulting Geologist FELLOW

1.0 INTRODUCTION

1.1 GENERAL

The work program covered by this report consisted of analyzing 542 soil samples collected in previous years. Samples taken on lines 5N to 13N and 14N to 20N east of the baseline were analyzed. The sample spacing is generally at 50 meters, with a few locations at 25 meters.

1.2 LOCATION AND ACCESS

The property (Figure 1) is located 8 kilometers southwest of Hedley in southern British Columbia. The property lies between 49°17'30" and 49°20'north latitude and 120°09'30" and 120°13' west longitude (NTS 92H-8E).

Access to the property is via Highway 3A, turning west onto the Sterling Creek logging road 8 kilometers west of Hedley. The Sterling Creek logging road is an all weather 2 wheel drive road, and the distance to the property is approximately 7 kilometers. A number of two wheel drive and four wheel drive roads give good access to all but the extreme southeast corner of the property.

1.3 PHYSIOGRAPHY

The property is located along the eastern edge of the Cascade Mountains. Elevation varies from 850 to 1500 meters above sea level and topography varies from flat to steep. Outcrop is generally sparse with the exception of the steep slopes leading into Pettigrew Creek.

Pettigrew and Whistle Creeks cut across the claims and a number of smaller tributaries drain into them. Pettigrew Creek has cut a steep canyon through the property, and it contains a substantial flow of water all year round.

Vegetation varies from open range land to a forest cover of pine and fir trees. Large areas of the property have been selectively logged, and several areas have heavy deadfall.

1.4 PROPERTY AND CLAIM STATUS

The WP 1-4 Claims (Figure 2) are owned by Grant Crooker of Keremeos, B.C., and are under option to and operated by Cannelle Exploration Ltd., #135, 4631 Shell Road, Richmond, B.C., V6X 3H4. The property consists of four claims covering 72 units located in the Similkameen Mining Division.

Claim	Min Aim Units Divi		Record Number	Record Date	Expiry Date	
WP-1	20	Similkameen	2766(12)	12/12/86	12/12/94	
WP-2	20	Similkameen	2767(12)	12/12/86	12/12/95	
WP-3	16	Similkameen	2768(12)	12/12/86	12/12/95*	
WP-4	16	Similkameen	2908(5)	22/05/87	22/05/94*	

* Upon acceptance of this report.

1.5 AREA AND PROPERTY HISTORY

Placer mining was first carried out in the Hedley area in the 1860's and 1870's. The interest in placer mining led to the discovery of gold on Nickel Plate Mountain in the 1890's, with the first claims being staked in 1896. Many showings were found within the Hedley Gold Camp, both on Nickel Plate Mountain as well as the surrounding area.

The two major producers in the camp have been the Nickel Plate and Hedley Mascot properties. Production from the camp has been approximately 51 million grams (1.6 million ounces) of gold. Table I gives the production data from the camp.

TABLE I PRODUCTION DATA, HEDLEY GOLD CAMP (Ray-1986)

Mine	Minfile No.	Ore (Tonnes)	Gold (Grams)	Silver (Grams)
Nickel Plate 1904-1963	92H/SE-038	2,978,046	41,637,106	4,163,138
Hedley Mascot 1936-1949	92H/SE-036	619,022	7,248,106	1,707,021
French 1950-1955 1957-1961 JanApr.1983 Total	92H/SE-059	29,450 48,158 <u>1,519</u> 79,127	786,420 817,306 <u>11,462</u> 1,615,188	NA 65,784 <u>58,412</u> 124,196
Canty 1939,1941	92H/SE-064	1,483	16,480	NA
Good Hope 1946-1948 1982 Total	92H/SE-060	4 ,241 <u>4,990</u> 9,231	89,516 <u>75,270</u> 164,786	NA NA NA
Maple Leaf, Pine Knot veins(Banbury Gold Mines)	92H/SE-046			
1937 1982 Total		5,897 <u>1,179</u> 7,076	29,424 <u>4,124</u> 33,548	13,375 <u>NA</u> 13,375
Total Product	ion	3,693,985	50,715,213	6,007,730

In the late 1970's exploration activity again began in the Hedley Gold Camp. Most of activity was concentrated on a number of properties on Nickel Plate Nountain, however exploration was also carried out on the south side of the Similkameen River. The most significant property in the camp is the Nickel Plate Mine of Corona Corporation. Open-pit production resumed in April 1987 at a rate of 2450 tonnes of ore per day. As of December 1988, calculated mineable open pit ore reserves are in the order of 9.1 million tons grading 0.088 ounces per ton gold.

A number of gold properties are found on the south side of the Similkameen River north and east of the WP Property (Figure 2). Properties on the south side of the Similkameen River differ significantly from those on Nickel Plate Mountain in that gold mineralization is related to quartz±carbonate vein systems and associated shear zones as opposed to skarn related mineralization on Nickel Plate Mountain.

The most significant property in this area is that of Banbury Gold Mines which is currently under option to Noranda Mines Ltd.. This property includes the former Maple Leaf and Pine Knot properties. Initial exploration at Banbury was directed towards the higher grade narrow width vein systems. However recent exploration by Noranda has at least partially been directed towards lower grade but much wider shear systems. A number of drill intersections announced by Banbury Gold Mines in the Vancouver Stockwatch contained significant gold values. The results are as follows:

Dri	ll Hole	From(ft)	To(ft)	Width(feet)	Au(oz per ton)
NB	87-13	92	255	133.0	0.110
NB	87-14	299	257.5	28.5	0.085
	11	321	326	5.0	0.260
NB	87-16	472	482	10.0	0.250
	11	576	587	10.5	0.060
NB	87-17	147	155	8.0	0.044
	н	239	249	10.0	0.046
		294	304	10.0	0.049
	11	330.5	334	3.5	0.128
	**	327	339	12.0	0.048
	n	409	419	10.0	0.043
NB	87-18	156	161	5.0	0.064
	11	186	191	5.0	0.099
	91	234	239	5.0	0.517
	**	234	257	23.0	0.152
	и	327	330.3	3.3	0.166
NB	87-19	174	179	5.0	0.239

Surface and underground diamond drilling were carried out on the Patsy 1 and 2 (figure 2) properties during the fall of 1988. The results of this drilling are not known at this time.

Previous work on the WP Claims consisted of an airborne VLF EM and magnetometer survey, and a reconnaisance soil geochemical survey during the summer and fall of 1981.

A number of magnetic contrasts were indicated by the magnetic survey. The magnetic lows were attributed to a gabbroic intrusion, while the magnetic highs were attributed to a dioritic phase in an alteration zone around the gabbroic intrusion.

Only one strong VLF EM anomaly was indicated by the survey. This occurs in the central part of the WP-4 claim. A number of narrow and weak field strength increases were observed, and these were attributed to reflect small, slightly conductive, near surface features such as minor faults or contact zones.

The soil geochemical survey was of the reconnaisance nature, with lines on average 150 meters apart and samples taken at 150 meter intervals. The survey was carried out over approximately 50% of the claim area. Despite the widely spaced sampling a number of weak to moderate coincidental Ag-As-Cu-Zn anomalies were outlined. The anomalies occured mainly in ares of little or no outcrop.

During the summer of 1983 additional soil geochemical sampling was carried out over the claim area. Sample density varied from lines 75 to 150 meters apart and samples taken at 75 to 150 meter intervals. The coincidental Ag-As-Cu-Zn anomalies indicated by the 1981 survey were confirmed and in many cases broadened. Gold values were spotty and in most cases low. However this may be attributed to a thick cover of glacio-fluvial gravels covering much of the property.

The 1987 program consisted of establishing a grid over the northern portion of the claims, and carrying out soil and heavy metal concentrate sampling, magnetometer and VLF EM surveying, geological mapping and prospecting. Ten exploration targets were outlined by a combination of geological, geochemical and parameters by the 1987 program. geophysical Heavy metal concentrate sampling from Pettigrew Creek at the north end of the WP Claims yielded highly anomalous gold and silver values (28,000 ppb Au (0.812 oz/ton) and 25.80 ppm λg (0.75 oz/ton), respectively).

A statistical analysis carried out on the geochemical data indicated a strong correlation of gold with bismuth, silver, cobalt, copper and arsenic. This is significant as it coincides with the observed mineralogical assemblage (Ray 1987) of gold with hedleyite (BiTe), arsenopyrite (FeAsS), gersdorffite

(NiAsS), chalcopyrite (CuS) and sphalerite (ZnS) at the Nickel Plate Mine.

The 1988 program consisted of establishing a grid at 100 and 200 meter spacing over the WP-3 and WP-4 claims. Soil sampling, VLF EM and magnetometer surveying, geological mapping and prospecting were carried out over the grid. Heavy metal concentrate samples were taken at 250 meter intervals along Whistle and Pettigrew Creeks.

A combination of soil geochemical sampling, geophysical surveying, geological mapping and prospecting outlined several target areas. The most significant results were obtained from the heavy metal stream sediment sampling with both Whistle and Pettigrew creeks showing anomalous gold and silver values.

2.0 EXPLORATION PROCEDURE

The 1989 work program consisted of analyzing a number of soil samples collected in previous years. The samples were analyzed for gold and a six element ICP (Cu, Co, Ag, Pb, Bi, As).

GEOCHEMICAL SURVEY PARAMETERS

-survey line separation 100 meters -survey sample spacing 25 meters -survey totals - 542 soil samples -542 soil samples analyzed by ICP(Cu; Co, Ag, Pb, Bi, As) -542 soil samples analyzed for Au, -sample depth 10 to 30 centimeters -sample taken from brown B horizon

All samples were sent to Rossbacher Laboratory Ltd., 2225 South Springer Avenue, Burnaby, B.C. for geochemical analysis. Laboratory techniques for geochemical analysis consists of preparing samples by drying at 95° C and seiving to minus 80 mesh. A 6 element ICP and gold (aqua-regia digestion, atomic adsorption finish) analyses were then carried out on the samples.

The soil geochemical data was plotted on figures 4 through 7 at a scale of 1:5000. The data was plotted on the base maps used for the 1988 survey, to provide continuity of information.

3.0 GEOLOGY AND MINERALIZATION

3.1 REGIONAL GEOLOGY

The Hedley Gold Camp is located witin the Intermontane Belt of the Canadian Cordillera. The oldest rocks in the area belong to the Apex Mountain Group (figure 3) and occur in the southeastern part of the camp. The Apex Mountain Group consists of a deformed package of cherts, argillites, greenstones, tuffaceous siltstones and minor limestones believed to range in age from Upper Devonian to Middle to Late Triassic.

The remainder of the Hedley Gold Camp is underlain by Late Triassic Nicola Group volcanic and sedimentary rocks, and stocks, sills and dykes ranging in composition from granodiorite to gabbro.

Recent mapping by Ray and Dawson divides the Nicola Group into three distinct stratigraphic packages. The oldest, informally called the Peachland Creek formation, comprises massive, mafic, andesitic to basaltic ash tuff and minor quartz-bearing chert-pebble conglomerate. This previously unrecognized basal unit is poorly exposed in the Hedley district, but has been identified in several localities. This formation is named after major tuffaceous sequence which underlies the Hedley formation a in the Pennask Mountain area, 30 kilometers west of Peachland.

The Peachland Creek formation is stratigraphically overlain by a 100 to 700 meter thick sedimentary sequence in which a series of east-to-west facies changes are recognized. This sequence progressively thickens westward and the facies changes probably reflect deposition across the tectonically controlled margin of a northwesterly deepening Late Triassic marine basin.

The easternmost and most proximal facies, informally called the French Mine formation has a maximum thickness of 150 meters and comprises massive to bedded limestone interlayered with thinner units of calcareous siltstone, chert-pebble conglomerate, tuff, limestone-boulder conglomerate and limestone breccia. This formation hosts the auriferous skarn mineralization at the French and Goodhope mines.

Further west, rocks stratigraphically equivalent to the French Mine formation are represented by the Hedley formation which hosts the gold-bearing skarn at the Nickel Plate Mine. The Hedley formation is 400 to 500 meters thick and characterized by thinly bedded, turbiditic calcareous siltstone and units of pure to gritty, massive to bedded limestone that reach 75 meters in thickness and several kilometers in strike length. The formation lesser amounts of argillite, conglomerate and also includes tuff: locally the lowermost portion includes minor bedded chert-pebble comglomerate.

CHONG

The westernmost, more distal facies is represented by the Stemwinder Mountain formation which is at least 700 meters thick and characterized by a sequence of black, organic-rich, thinly bedded calcareous argillite and turbiditic siltstone, minor amounts of siliceous fine-grained tuff and impure limestone beds. The Stemwinder formation hosts the gold occurrences at Banbury (vein) and Peggy (skarn).

The sedimentary rocks of the French Mine, Hedley, and Stemwinder Mountain formations pass stratigraphically upward into the Whistle Creek formation which is probably Late Triassic in age. The formation is 700 to 1200 meters thick and distinguishable from the underlying rocks by a general lack of limestone and a predominance of andesitic volcaniclastic material. The Whistle Creek formation is host to the Canty (skarn) and Gold Hill (vein) gold occurrences.

The base of the Whistle Creek formation is marked by the Copperfield conglomerate, a limestone-boulder conglomerate that forms the most distinctive and important stratigraphic marker horizon in the district. The conglomerate is well developed west of Hedley where it forms a northerly trending, steeply dipping unit that is traceable for over 15 kilometers along strike.

The Whistle Creek formation is overlain by volcaniclastic rocks that may belong to the Early Cretaceous Spences Bridge Group.

Three suites of plutonic rocks are recognized in the area. The the Hedley intrusions is probably Early Jurassic in age oldest, and is economically important. It forms major stocks up to 1.5 kilometers in diameter and swarms of thin sills and dykes up to 200 meters in thickness and over 1 kilometer in length. The sills and dykes are coarse-grained and massive diorites and quartz diorites with minor gabbro, while the stocks range from through granodiorite to quartz monzonite. gabbro This plutonic suite is genetically related to the skarn-hosted gold mineralization in the district including that at the Nickel Plate, Hedley Mascot, French and Goodhope mines, and gold occurrences at Banbury, Goldhill, Peggy and Canty.

The second plutonic suite is the Early Jurassic? Similkameen intrusions which comprise coarse-grained, massive, biotite hornblende granodiorite to quartz monzodiorite. It generally forms large bodies, for example, the Bromley batholith and Cahill Creek pluton which generally separates the Nicola Group rocks from the highly deformed Apex Mountain complex.

The third and youngest intrusive suite includes two rock types that are possibly coeval and related to the formation of the dacitic volcaniclastic rocks within the Spences Bridge Group. One of these, the Verde Creek stock comprises a fine to medium grained, massive leucocratic microgranite that contains minor biotite. The other type is represented by fine-grained, leucocratic, felsic quartz porphyry.

神殿

素能

-

,

3.2 CLAIM GEOLOGY

The WP Claims (figure 3) are mainly underlain by Nicola Group volcanic and sedimentary rocks, including both the Whistle Creek and Stemwinder Mountain formations.

Two suites of intrusive rocks outcrop on the property. These include a stock of the Hedley Intrusions in the southeastern portion of the claims and the Cahill Creek pluton in the southern portion of the claims.

The oldest unit (Unit 5) consists of rocks of the Stemwinder Mountain formation which is characterized by a sequence of black, organic rich, thinly bedded calcareous argillite and turbiditic siltstone, minor amounts of siliceous fine-grained tuff and dark impure limestone beds that seldom exceed 3 meters in thickness.

Unit 6a is the Copperfield Conglomerate. The unit is composed of well rounded to angular limestone clasts up to 1 meter in width, and varies from clast to matrix supported. Several scattered outcrops of this unit were noted, with the largest exposure 25 meters wide and 75 meters long. This unit generally marks the boundary of the Stemwinder Mountain and Whistle Creek formations.

Unit 6b is made up of rocks of the Whistle Creek formation which predominates over the claims. In its lower portion the unit is predominately sedimentary, while higher in the unit it becomes more volcanic in nature. This unit varies from a massive, well indurated black to grey argillite and tuffaceous argillite to a massive to bedded dark green andesite tuff. Lesser amounts of angular to subangular clasts of grey to black argillite within a fine-grained green tuff and thinly bedded grey to blue limestone were also noted.

The general strike of the units is north to northeasterly, with dips predominately steep to the west. Subunits are often narrow, interbedded and of mixed lithologies, making mapping difficult.

Unit 7 is a medium to coarse grained hornblende diorite of the Hedley Intrusions. The unit forms a stock in the southeastern portion of the property and scattered dykes or sills over the remainder of the property.

Unit 8 is composed of rocks of the Cahill Creek pluton which is generally a medium grained biotite hornblende granodiorite. The unit intrudes the Nicola Group in the southern portion of the property.

3.3 MINERALIZATION

The gold occurrences and deposits within the Hedley area are spatially associated with dioritic bodies of the Hedley intrusions. The gold mineralization can be broadly divided into skarn-related (s) and vein related (v) types.

The skarn-type mineralization is the most widespread and economically important, and is characterized by the gold being intimately associated with variable quantities of sulphide bearing garnet-pyroxene-carbonate exoskarn alteration. The gold tends to be associated with sulphides, particularly arsenopyrite, pyrrhotite and chalcopyrite. Present in lesser amounts are pyrite, gersdorffite and calcium-rich sphalerite with minor amounts of magnetite and cobalt minerals. Trace minerals include galena, native bismith, electrum, tetrahedrite and molybdenite. This type of mineralization is found at the Nickel Plate, Hedley Mascot and most other properties in the area.

skarn-type mineralization is generally stratabound and The follows calcareous tuffs and limestones within the upper parts of the Hedley, French mine and Stemwinder Mountain formations. Swarms of diorite sills and dykes of the Hedley Intrusions or bodies of the Hedley Intrusions have intruded the larger favourable beds and hornfelsed them. Both the intrusions and subsequently overprinted with the skarn sediments were alteration.

The vein-type mineralization is characterized by gold and sulphides hosted in higher level, fracture-filled quartz-carbonate vein systems. This type of mineralization is seen only at the Banbury and Gold Hill properties.

At the Banbury Property two elongate stocks of the Hedley Intrusions some 300 meters wide by 1.3 kilometers long intrude both the Hedley and Whistle Creek sequences. A hornfelsed aureole surrounds the stocks. Both the stocks and aureoles are cut by northerly trending fracture zones which are filled by steep and shallow dipping quartz-carbonate vein systems.

Exploration on the WP Claims is directed towards two types of gold mineralization, skarn type as is found at Nickel Plate Mountain, and quartz-carbonate veins within shear zones as is found at the Banbury Gold Mines Limited property.

Only one mineralized zone has been found on the claims to date. A quartz stockwork-breccia is exposed in an old road cut. The zone is approximately 4.5 meters wide, with a 2 meter wide central portion composed of angular argillite fragments within a quartz matrix, and a peripheral zone with a weak to moderate quartz stockwork. Minor amounts of fine grained pyrite and rusty boxworks are found within the quartz matrix. Anomalous gold and silver values of up to 720 ppb and 5.9 ppm respectively were obtained from sampling. Quartz stockwork-breccia float is scattered over a wide area along strike in both directions from the road cut. The zone strikes approximately north-south and appears to be vertical.

.

4.0 GEOCHEMISTRY

4.1 SOIL SAMPLING

Five hundred and forty-two soil samples were analyzed by 6 element ICP and for gold. The elements analyzed by ICP analysis were silver, arsenic, bismuth, cobalt, copper, and lead. The 6 elements were chosen for ICP analysis on the basis of their coorelation with gold as determined by the 1987 soil survey.

The relatively good correlation of gold with bismuth, cobalt and arsenic is significant as this coincides with the observed mineralogical association of gold with hedleyite, gersdorffite and arsenopyrite at Nickel Plate Mountain.

The soil samples analyzed by the two laboratories in 1988 and 1989 do not show a good correlation of the magnitude of the background and anomalous values. For this reason a new set of background and anomalous values were calculated for this survey.

Background and anomalous values were calculated as follows:

ELEMENT	BACKGROUND	ANOMALOUS		
Ag ppm	0.17	≥ 0.3		
As ppm	4.88	≥ 8.0		
Cu ppm	24.84	≥ 38.0		
Pb ppm	4.08	≥ 7.0		
Co ppm	6.05	≥ 10.0		
Bi ppm	2.0	≥ 4.0		
Au ppb	5.0	≥ 15.0		

Gold

Gold values ranged from 5 to 100 ppb and no broad anomalies were outlined.

All of the anomalous values occurred at a single sample location. Several of the anomalous values do occur within broader silver, arsenic, copper and cobalt anomalies.

Silver

Silver values ranged from 0.1 to 1.5 ppm and four weak anomalies were outlined.

Anomaly Ag-6 is a fairly broad anomaly occurring on a gentle slope immediately before the sharp break into Pettigrew Creek. It occurs along lines 15N, 16N and 17N and coincidentally with copper, cobalt and lead. A number of weak VLF EM conductors pass through the anomaly. Anomaly Ag-7 is a small anomaly occurring on the steep western slope dropping into Pettigrew Creek. The anomaly is downslope from a coincidentally occurring magnetic low and weak VLF EM conductor. No other elements are anomalous with the silver.

Anomaly Ag-8 is a large anomaly extending from Pettigrew Creek up the steep eastern slope to the east claim boundary. Smaller arsenic, copper and cobalt anomalies occur coincidentally with the silver.

Anomaly Ag-9 is a small but moderate five sample anomaly occurring along the eastern edge of the claims. Moderate arsenic, copper and cobalt anomalies along with a single 90 ppb gold occur with the silver.

Arsenic

Arsenic values ranged from 2 to 58 ppm and three weak anomalies were outlined.

Anomaly As-7 is a small five sample anomaly occurring on the steep eastern slope leading into Pettigrew Creek. It occurs coincidentally with silver and copper anomalies and a magnetic high.

Anomaly As-8 is a small five sample, moderate anomaly occurring in the northeast corner of the WP-3 claim. It occurs with copper, silver and cobalt, all of which are of moderate magnitude.

Anomaly As-9 is a linear anomaly occurring along the northern portion of Pettigrew Creek. Silver, copper and to a lesser extent cobalt are also anomalous within the area.

Copper

Copper values ranged from 5 to 186 ppm and four anomalies were outlined.

Anomaly Cu-8 is a weak linear anomaly occurring on the gentle slopes before the sharp break into Pettigrew Creek. It extends from line 14N to 19N and silver, cobalt and lead are anomalous within portions of the larger copper anomaly. The southern section of the anomaly overlaps a magnetic high, and a number of weak to moderate VLF EM conductors pass through the anomaly.

Anomaly Cu-9 is a moderate sized anomaly occurring on the steep western slopes leading into Pettigrew Creek. Smaller lead and cobalt anomalies along with several weak to strong VLF EM conductors occur coincidentally with the copper anomaly. Anomaly Cu-10 is a broad anomaly extending from Pettigrew Creek up the steep eastern slope. Silver, cobalt and arsenic are also anomalous.

Anomaly Cu-11 is a small, strong anomaly occurring at the northeast corner of the WP-3 claim. Silver, cobalt and arsenic are also strongly anomalous.

Lead

Lead values ranged from 1 to 26 ppm and two small anomalies were outlined.

Anomaly Pb-4 is a small, moderate anomaly occurring at the steep break into Pettigrew Creek. Copper, silver and cobalt are also anomalous and several strong VLF EM conductors and a magnetic high occur coincidentally with the lead anomaly.

Anomaly Pb-5 is a linear anomaly occurring on the steep western slope leading into Pettigrew Creek. Copper is also anomalous and several weak to moderate VLF EM conductors pass through the anomaly.

Bismuth

No anomalous bismuth values were noted.

Cobalt

Cobalt values ranged from 1 to 24 ppm and five anomalies were outlined.

Anomaly Co-5 is a weak anomaly straddling Pettigrew Creek at the north end of the WP-3 claim. Silver, copper and arsenic are also anomalous.

Anomaly Co-6 is a small, strong anomaly occurring in the northeastern corner of the WP-3 claim. Silver, copper and arsenic are also anomalous.

Anomaly Co-7 is a moderate sized anomaly occurring on the western slope of the sharp break into Pettigrew Creek. Silver, copper and lead are also anomalous and several weak to strong VLF EM conductors pass through the anomaly.

Anomaly Co-8 is a broad anomaly occurring along the northern boundary of the WP-3 claim. Several weak VLF EM conductors pass through the anomaly.

Anomaly Co-9 is a small anomaly occurring on the steep western slope above Pettigrew Creek. Copper and lead are coincidentally anomalous with a portion of the cobalt anomaly.

5.0 CONCLUSIONS AND RECOMMENDATIONS

The WP Claims are underlain by Whistle Creek and Stemwinder Mountain Formations of Nicola Group volcanic and sedimentary rocks. A stock of the Hedley Intrusions which are spatialy related to gold mineralization in the Hedley Gold Camp outcrops in the southeastern section of the property.

The program covered by this report consisted of analyzing 542 soil samples collected in previous years. The samples were analyzed for gold, silver, copper, arsenic, cobalt, bismuth and lead.

The soil geochemical sampling indicated four areas of weak to moderate multi-element soil geochemical anomalies. The multi-element anomalies are made up of a combination of silver, copper, arsenic, cobalt and lead. Gold values are restricted to single sample locations, although some of these occur within the broader multi-element anomalies.

The multi-element soil geochemical values occur coincidentally with a number of magnetic features and weak to strong VLF EM conductors. These anomalies also occur on the steep slopes leading into Pettigrew Creek and could be the source for the anomalous heavy metal concentrate samples taken from Pettigrew Creek in 1987 and 1988.

Recommendations are to continue exploration on the property. This should include follow up evaluation of the multi-element soil geochemical anomalies by prospecting and fill-in soil sampling if required.

Based on an examination of the geochemical and geophysical anomalies and geological structures, trenching should be carried out over favourable areas to define possible drill targets.

SSOCIA TIO unnitted, Respec £fully CROPKE Crogrand, B.Sc., F.G.A.C., Gra Geologist Con

6.0 REFERENCES

Amendolagine, E. (Feb. 1, 1982): Geology and Soil Geochemistry Survey Report GM Claim in the Similkameen Mining Division, British Columbia for Kelly Kerr Energy Corporation. Assessment Report 10,013, Part 1 of 2.

Geology and Soil Geochemistry Survey Report EA Claim in the Similkameen Mining Division, British Columbia for Tuscaloosa Oil and Gas Inc.. Assessment Report 10,014, Part 1 of 2.

Geology and Soil Geochemistry Survey Report VA Claim in the Similkameen Mining Division, British Columbia for Kadrey Energy Corporation. Assessment Report 10,015, Part 1 of 2.

Geology and Soil Geochemistry Survey Report JA Claim in the Similkameen Mining Division, British Columbia for Berle Oil Corporation. Assessment Report 10,016, Part 1 of 2.

Billingsley, P. and Hume, C.B., (1941): The Ore Deposits of Nickel Plate Mountain, Hedley, B.C., The Canadian Institute of Mining and Metallurgy, Transactions, Volume XLIV, 1941, pp. 524-590.

Botel, W.G., (1988): Summary Report on the WP Property, Hedley Area, Similkameen Mining Division for Cannelle Exploration Ltd.

Cavey, G. and Helgason, R. (Jan. 5, 1984): Geochemical Report on the EA Claims for Tuscaloosa Oil and Gas Inc., Similkameen Mining Division, Orequest Consultants Ltd..

Geochemical Report on the GM Claims for Kelly Kerr Energy Corporation, Similkameen Mining Division, Orequest Consultants Ltd..

(Nov. 30, 1983): Geochemical and Geophysical Report on JA Claims for Berle Oil Corporation, Similkameen Mining Division, Orequest Consultants Ltd..

(Jan. 5, 1984): Geochemical Report on the VA Claims for Kadrey Energy Corporation, Similkameen Mining Division, Orequest Consultants Ltd..

Crooker, G.F., (1987): Geophysical Report on the LM Claim, Hedley Area, Similkameen Mining Division, for Hidden Valley Mines Inc..

Crooker, G.F. and Rockel, E.R., (1987): Geological, Geochemical and Geophysical Report on the WP 1-4 Claims, Hedley Area, Similkameen Mining Division for Cannelle Exploration Ltd..

(1988): Geological, Geochemical and Geophysical Report on the WP 1-4 Claims, Hedley Area, Similkameen Mining Division for Cannelle Exploration Ltd..

Dolmage, V. and Brown, C.E., (1945): Contact Metamorphism at Nickel Plate Mountain, Hedley, B.C., Canadian Institute of Mining and Metallurgy, Transactions, Volume XLVIII, 1945, pp. 27-67.

Falconer, J.S., et al, (1987): Geophysical, Geochemical and Geological Surveys on the Lost Horse Project for Montello Resources Ltd., 92H/8E, Osoyoos Mining Division.

Little, H.W., (1961): Geology Kettle River (West Half), B.C., Geological Survey of Canada Map 15-1961.

Northern Miner, Corona Corporation: December 19, 1988.

Pezzot, E.T. and White, G.E. (Jan. 11, 1984): Geophysical Report on an Airborne VLF-EM and Magnetometer Survey, GM Claim, Similkameen Mining Division for Kelly Kerr Energy Corporation. Assessment Report 10,013, Part 2 of 2.

Geophysical Report on an Airborne VLF-EM and Magnetometer Survey, EA Claim, Similkameen Mining Division for Tuscaloosa Oil and Gas Inc.. Assessment Report 10,014, Part 2 of 2.

Geophysical Report on an Airborne VLF-EM and Magnetometer Survey, VA Claim, Similkameen Mining Division for Kadrey Energy Corporation. Assessment Report 10,015, Part 2 of 2.

Geophysical Report on and Airborne VLF-EM Survey, JA Claim, Similkameen Mining Division for Berle Oil Corporation. Assessment Report 10,016, Part 2 of 2.

Ray, G.E., Simpson, R., Wilkinson, W. and Thomas, P. (1986): Preliminary Report on the Hedley Mapping Project, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1985, Paper 1986-1, pages 101-105.

Ray, G.E., Dawson, G.L. and Simpson, R. (1986): The Geology and Controls of Skarn Mineralization in the Hedley Gold Camp Southern British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork, 1985, Paper 1987-1, pages 65-79.

(1987): Geology, Geochemistry and Metallogenic Zoning in the Hedley Gold-skarn Camp (92H/08; 82E/05).

Ray, G.E. and Dawson, G.L. (1987): Geology and Mineral Occurrences in the Hedley Gold Camp, Southerm British Columbia (92H-8E), B.C. Ministry of Energy, Mines and Petroleum Resources, Open File Maps 1987-10 a,b,c.

(1988): Geology and Mineral Occurrences in the Hedley Gold Camp, Southern British Columbia, B.C. Ministry of Energy, Mines and Petroleum Resources, Open File Map 1988-6.

Rice, H.M.A., (1947): Geology and Mineral Deposits of the Princeton Map-Area, B.C., Geological Survey of Canada Memoir 243.

Seraphim, R.H., (1984): Report on Banbury Gold Mines Ltd. Hedley B.C..

Vanouver Stock Watch, Banbury Gold Mines Ltd.: Thursday November 13 1986, Tuesday June 23 1987, Tuesday July 7 1987, Thursday July 30 1987, Monday August 24, 1987, Tuesday September 29 1987.

7.0 CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

- 1. That I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
- 2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
- 3. That I am a member of the Canadian Institute of Mining and Metallurgy.
- 4. That I am a Fellow of the Geological Association of Canada.
- 5. That I am the owner of the WP 1 to 4 claims.

Dated this λ^{9th} day of $N^{1,1}$, 1989, at Vancouver, in the Province of British Columbia.

SSOCIATIO F.G.A.C. Grant Ct Consultin

Appendix I

,

1.42 .

北北市

利用

CERTIFICATES OF ANALYSIS

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP 2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax:299-6252

CERTIFICATE # : 89399 INVOICE # : 10056 DATE ENTERED : 89-10-18 FILE NAME : 6C89399 PAGE # : 1

FE	SAMPLI	e name	PPM Cu	PFM Co	PPM Ag	PPM Pb	PFM Bi	PPM As	PPB Au AA	
	5N	OCOE	11	5	0.1	6	2	2	5	
5	SN	050E	43	7	0.1	7	2	6	5	
S	5N	100E	27	10	0.1	6	2	2	5	
	5N	150E	36	6	0.1	4	2	2	5	
	5N	200E	12	2	0.1	3	2	2	5	
S	SN	250E	13	2	O.1	4	2	2	5	
1000 第二日 第二日	EN	SOOE	7	5	0.1	6	2	3	5	
	5N	SSOE	31	1	0.1	5	2	2	5	
S	SN	400E	29	5	0.1	6	2	2	5	
<u>с;</u>	<u>5N</u>	450E	15		0.1	4	2	2	- 5	
	5N	500E	9	2	0.1	4	2	2	5	
	5N	550E	10	1	0.1	5	2	2	5	
S	5N	600E	11	4	0.1	5	2	2	5	
	SN	650E	11	3	0.1	4	2	2	5	
	5N	700E	10	1	0,1	4	2	2	5	
S	5N	750E	15	6	0.1	7	2	4	5	
	5N	800E	13	4	0.4	7	2	5	5	
	SN	850E	16	5	O.1	6	2	2	5	
S	5N	900E	16	2	0.1	ර	2	2	5	
S	<u>EN</u>	950E	12	3	0.1	5	2	2	5	
	5N	1000E	22	9	0.1	9	2	2	5	
	EN	1050E	12	5	0.6	6	2	<u>ن</u>	0	
S	EN	1100E	16	6	0.1	7	2	2	5	
and the second sec	EN	1150E	103	16	0.1	6	2	6	0	
	EN	<u>1250E</u>		5	0,1	6		<u></u>	<u></u>	
S	EN	1300E	27	5	0.1	5	2	د م	5	
() [2] [2]	SN	1350E	11	3	0.1	4	2	2		
	SN	1400E	10	2	0.1	5	2	~ ~	0	
5	EN	1450E	50	8	0.1	6	~	~	0	
S		15005	16	<u></u>	<u> </u>				<u>.</u>] E:'	
	CN.	15005	27		O.L	0	<u>بر</u>	<u>к</u>	ປ ເສ	
	EN	1600	44C)	8	0.1	7	~ ~	4	୍	
5	EN	16505	20	4	0.1	97 107	<u>~</u>	ා ප	ں =	
	EN	17005		8 0	0.1	0		2 	 E	
	<u>EN</u>	1/50E	1/		<u> </u>	 	<u>~</u> ~	<u> </u>	C E	
5	EN .			/	0.1	B E	<u> </u>	4 つ		
	6N (N	OCOE:	12	<u>×</u>	0.1	0 17		<u>ب</u> ر م	ت در	
	ESIN (CCAR.	10	ن ~	0.1	د. س	2 ~	14 M	لل (ES	
<u></u>	CSIN Z N	1, U.N., Mai, 1, 400/06/07	6 1 /	£ Л	0.1		<u>ب</u> د ص		(). E::	
5	Vic3	1. COLAE	14	* •}	O.L	£	£	sti.	ى 	

Honsbao

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP 2225 S. Springer Ave., Burnaby, British Columbia, Can. ¥5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 INVOICE # : 10056 DATE ENTERED : 89-10-18 FILE NAME : 6C89399 PAGE # : 2

sta

FIX	SAMPLE	NAME	PPM Cu	PPM Co	PPM Ag	PFM Pb	PPM Bi	PPM As i	PPB Au AA	
	2.51		47		<u> </u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	£:;	
e .	CHN Z-M	ana ang ang ang ang ang ang ang ang ang	10		0.1	л. 1			5	
0 C	(DIN 2.14	2000-000 1271-01-000	10		0 1 0 1		2	5	5	
	C21 N 2, K1	13152-14C	1.7	л Л	0.1	 1		2	5	
	CHN Z-NI	2525400 /1/156100	11	- - /1	0.1		2	7	5	
 	<u>COIN</u>	AFAT	1/01	- - A	<u> </u>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5	
	60 V	-70-01 EV Y YE	24 B	-1	O.1		2	2	ŝ	
	AN	EEOE	10	2	0.1	1	2	2	5	
G	AN	ACOF	19	4	Ö.1	2	2	2	5	
s.	6N	650E	17	ż	0.1	1	2	2	5	
	6N	700E	10		0.1	1	2	2	tij	
S	6N	750E	11	3	0.1	1	2	2	5	
S	6N	BOOE	13	.3	0.1	2	2	2	5	
	6N	3033	14	6	0.1	3	2	3	5	
	611	900E	20	7	0.1	3	2	4	r::)	
5	610	950E	13	7	0.1	5	2	12	5	
	6N	1000E	16	7	0.1	4	2	6	5	
	6N	1050E	14	5	0.1	4	2	3	5	
S	6N	1100E	22	6	0.1	6	2	2	5	
<u>ç</u>	<u>6N</u>	1150E	21	7	0.1	3	2	2	5	
	6N 11	50A E	34	10	0.1	5	2	4	5	
5	6N	1200E	25	8	0.1	3	2	2	5	
S	6N	1250E	16	8	0.1	6	2	5	5	
	6N	1300E	12	5	0.1	4	2	3	5	
	<u>6N</u>	1350E	20	5	0.1	3	2	<u>, , , , , , , , , , , , , , , , , , , </u>	5	
S	6N	1400E	32	7	0.1	3	2	2	5	
	6N	1450E	34	8	0.1	5	2	3	5	
	6N	1500E	18	4	0.1	3	2	2	5	
S	6N	1550E	10	5	0.1	2	2	2	5	
	611	<u>1600E</u>	28	10	<u>0,1</u>	5	2	5	5	
	6N	1650E	16	7	0.1	2	2	3	5	
5	6N	1700E	18	4	0.1	3	2	2	5	
S	7N	OOOE	11	4	0.1	3	2	2	5	
	7N	OBOE	7	3	0.1	2	2	2	5	
	<u>7N</u>	100E	12	1	0.1	2	2	2	<u> </u>	
S	7N	150E	20	5	0.1	4	2	2	5	
	/N	ZOOE	10		0.1	1	~	2	0	
	7N	250E	7	<u>ن</u>	0.1	ے م	ж. 	2	0	
S .	/N	SOOL.	13	1	0.1	4)	2 0		O E	
	ZN		1/	0	O.T	5	£.	. s	<u></u>	<u></u>

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 INVOICE # : 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 3

FF	SAMPLE	NAME	PPM Qu	PPM Co	PPM Ag	PPM Pb	.FFM Bi	PPM As	PPB Au AA	
c		//.vov		í.	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		5	
	71N 77N	440.040 214701	12	 1	0.1	3	2	2	5	
2 C	714 "7N	-r	ср 1.2.	2	0.1	2	2	2	5	
	21N 12N	ana ang ang ang ang ang ang ang ang ang	13	2	0.1	2	2	2	5	
	714	ACOF	9 10	3	0.1	2	2	2	5	
C	714		11	1	0.1	2	2	2	5	
	27N	7005	34	â	0.1	2	2	2	5	
CC AR	714	750F	14	4	0.1	2	2	2	5	
	714 7M	SHOWNET	27	5	Ö.1	2	2	2	5	
	7N	REDE	12	4	0.1	2	2	2	5	
c	7N	SOUL	49	12	0.1	6	2	2	5	
<u> </u>	7N	9505	17	3	0.1	5	2	2	5	
S	7N	1000F	15	3	0.1	4	2	2	5	
	70	1050E	20	6	0.1	4	2	2	5	
c	7N	1100E	106	15	0.1	4	2	2	5	
S	7N	11506	13	3	Ö.1	1	2	2	5	
	75	1200E	31	8	Ö.1	4	2	2	5	
	71	1250E	15	2	0.1	2	2	2	5	
9	714	13005	15	4	0.1	4	2	2	5	
S_	714	1.350F	16	4	0.1	3	2	2	5	
<u>C</u>	7N	1400	14	5	0.1	2	2	2	5	
C C	75	14505	14	6	0.1	1	2	2	5	
S	7N	1500F	11	6	0.1	2	2	2	5	
	714	15506	12	.3	0.1	1	2	2	5	
ç	75	16005	18	6	0.1	1	2	3	5	
S	7N	14508	16		0.1	4	2	2	5	
S	7N	1700E	33	6	0.1	2	2	2	5	
c de	- ERN	OOOE	10	4	0.1	2	2	3	5	
S	- AN	OFOE	5	2	0.1	1	2	2	5	
ŝ	FIN	100E	6	3	0.1	1	2	2	5	
c	EN	150E	13	4 ·	0.1	1	2	2	5	
g	8N	200E	10	4	0.1	1	2	2	5	
s	EN	250E	8	5	0.1	1	2	2	5	
C	8N	300E	10	5	0.1	1	2	2	5	
C.	80	350E	12	2	0.1	1	2	2	5	
5	EN	400E	11	4	0.1	2	2	2	5	
S	BN	450E	9	2	0.1	1	2	2	5	
g	8N	500E	14	4	0.1	1	2	5	5	
3	8N	550E	tŌ	2	0.1	1	2	4	5	
S	8N	600E	11	5	0.1	1	2	4	5	(
	<u></u>		<u></u>	Œ	RTIFIE	DBY:		Å	$\frac{1}{2}$	share

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP 2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax:299-6252

CERTIFICATE # : 89399 INVOICE # : 10056 DATE ENTERED : 89-10-18 FILE NAME : 6C89399 PAGE # : 4

onsbac

P RE FIX	SAMPLE	E NAME	PPM Cu	PPM Co	PPM Ag	PPM Pb	. PPM Bi	PPM As f	PPB Au AA	
	EN	650E	11	5	0.1	i	2	3	5	
S	8N	700E	18	6	0.1	2	2	6	5	
S	BN	750E	9	6	0.1	1	2	3	5	
	8N	800E	9	4	0.1	2	2	4	5	
5	EN	850E		8	0.1	2	2	4	5	
S	EN	900E	27	8	0.1	1	2	7	5	
	81	950E	13	4	0.1	3	2	10	5	
	BN	1000E	14	7	0.1	2	2	6	5	
S	8N	1050E	34	10	0.1	1	2	4	5	
	8N	1100E	15	3	0.1	1	2	6	5	******
	BN	1150E	24	8	0.1	3	2	6	5	
S	8N	1200E	49	11	0.1	1	2	10	5	
S	81/	1250E	29	9	0.1	4	2	7	5	
	AB)	1300E	20	6	0.1	3	2	7	5	
	84	1350E	92	12	0.1	2	2	8	5	
S	644	1400E	63	9	0.1	4	2	14	5	
	814	1450E	14	5	0.1	3	2	8	5	
	8N	1500E	80	13	0.1	6	2	18	40	
S	814	1550E	28	8	0.1	4	2	10	5	
<u> </u>	EN	1600E	24	1	0.1	1	2	7	S	
	CB/V	1650E	28	7	0.1	1	2	12	5	
5	814	1700E		5	Ö.1	5	2	10	5	
S	9 N	COORE	21	6	0.1	7	2	6	5	
	9N	OSOE	12	5	0.1	2	2	4	5	
	<u>9N</u>	100E	10	3	0.1	1		2	5	
S	51 V	150E	9	4	0.1	1	2	6	5	
	9N	200E	10	3	0.1	1	2	4	5	
	511	250E	14	3	0.1	1	2	2	5	
S	9N	SOOE	10	4	0.1	3	2	3	5	
C:	<u>9N</u>	350E		2	0.1	1	2	2	<u> </u>	
	9N	400E	11	5	0.1	2	2	2	b	
5	9N	450E	12	4	0.1	2	2	2	5	
S	9N	SOOE	9	3	0.1	1	2	<u>_</u>	5	
	9N	SECE	13	3	0.1	3	2	4	0	
	<u>91</u>	600E	10	3	0.1	1	2	<u>.</u>	<u></u>	
S	9N	30 2 8	12	4	0.1	1	2	4	20	
	9N	700E	16	6	0.1	1	2	8		
	9N	750E	15	4	0.1	4	2	2	5	
S	9N	BOOE	15	4	0.1	5	2	2	0	
5	9N	850E	47	3	0.2	6	2	10	5	(

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. ROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 **INVOICE # :** 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 5

FEE	EXMERE NAME	PPM	PPM	PPM	PPM Ph	. PPM	PPM	PPB	
					10				
	9N 900E	18	5	0.2	5	2	2	5	
S	9N 950E	25	4	0.1	3	2	2	5	
ç	9N 1.000E	20	3	0.1	5	2	2	5	
	9N 1050E	11	2	0.1	4	2	2	5	
	9N 1100E	38	9	0.1	6	2	2	5	
S	9N 1150E	27	6	Ö.1	5	2	2	5	
	9N 1200E	52	9	0.3	5	2	7	5	
	9N 1250E	13	3	Ō.1	3	2	2	5	
S	9N 1300E	22	6	0.1	5	2	2	5	
ŝ	9N 1350E	21	7	0.1	3	2	2	5	
1 - 1049 3 - 1049 3	9N 1400E	15	5	0.1	4	2	2	5	
8	9N 1450E	30	8	0.1	6	2	2	5	
S	9N 1500E	23	5	0.1	9	2	2	5	
	9N 1550E	27	8	0.1	5	2	2	5	
U	9N 1600E	25	6	0.1	4	2	2	5	
S	9N 1650E	255	5	0.1	8	2	2	5	
	9N 1700E	22	5	0.1	8	2	2	5	
1430	9N 1750E	60	7	0.1	13	2	2	5	
S	10N 050E	10	6	0.1	5	2	2	5	
C:	10N 100E	10	1	0.1	2	2	2	5	
	10N 150E	10	1	0.1	6	2	2	5	
-	10N 200E	8	З	0.1	7	2	2	5	
S	10N 250E	10	5	0.1	3	2	2	5	
	10N 300E	14	4	0.1	4	2	2	5	
	10N 350E	9	3	0.1	4	2	2	5	
S	10N 400E	20	3	0.1	5	2	2	5	
a	10N 450E	8	4	0.1	4	2	2	5	
	10N 500E	8	3	0.1	7	2	2	5	
S	10N 550E	8	5	0.1	4	2	2	5	
S	10N 600E	9	5	0.1	5	2	2	5	
	10N 650E	16	7	0.1	5	2	2	5	
	10N 700E	21	6	0.1	6	2	2	5	
S	10N 750E	35	4	0.1	8	2	2	5	
	10N 800E	12	7	0.1	6	2	2	5	
1975	10N EEDE	31	7	0.2	8	2	2	5	
S	10N 900E	27	11	0.1	7	2	4	5	
	10N 950E	19	8	0.3	2	2	8	5	
	10N 1000E	13	7	0.2	1	2	8	5	
5	10N 1050E	37	10	0.2	6	2	8	5	
S	10N 1100E	31	8	0.2	4	2	4	5	(
			Œ	TIFIE) BY :	-7	7		spara
					/	1	//	010	

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. DJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 **INVOICE # :** 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 6

F I E FIX	SAMPLE NAME	PPM Cu	PPM Co	PPM Ag	PFM Pb	. PPM Bi	PPM As f	PPB Pu AA	
	10N 1150E	34	12	0.2	4	2	6	5	
3	10N 1200E	~~~	8	0.1	5	2	16	5	
S	10N 1250E	13	4	0.1	3	2	6	5	
	10N 1300E	29	9	0.2	4	2	4	5	
	10N 1350E	14	6	0.1	3	2	7	5	
S	10N 1400E	14	5	0.1	3	2	6	5	
	10N 1450E	14	2	0.1	4	2	6	5	
	10N 1500E	22	6	0.1	3	2	4	5	
S	10N 1550E	17	2	0.1	4	2	5	5	
<u>c</u>	10N 1600E	24	6	0.1	4	2	6	5	
	10N 1650E	28	6	0.1	4	2	5	5	
	10N 1700E	32	5	0.2	4	2	7	5	
S	11N 000E	15	8	0.1	2	2	4	5	
	11N 050E	12	3	Ö.1	2	2	3	5	
	11N 100E	10	1	0.1	2	2	2	5	
S	11N 150E	11	1	Ö.1	2	2	3	5	
â	11N 200E	7	3	0.1	. 5	2	4	5	
	11N 250E	13	1	0.1	7	2	3	5	
S	11N 300E	10	3	0.1	3	2	2	5	
S	11N 350E	10	3	0.1	5	2	6	5	
	11N 400E	9	3	0.1	3	2	2	5	
	11N 450E	13	3	0.1	2	2	5	5	
S	11N 500E	10	2	0.1	2	2	7	5	
	11N SECE	7	2	0.1	2	2	4	5	
	11N 600E	11	2	0.1	3	2	2	5	
S	11N 650E	12	1	0.1	4	2	6	5	
	11N 700E	16	2	0.2	3	2	10	5	
	11N 750E	19	5	0.2	6	2	9	5	
5	11N 900E	15	3	0.3	2	2	8	5	
S	11N 850E	24	5	0.3	7	2	16	5	
	11N 900E	322	4	0.3	5	2	12	5	
	11N 950E	43	8	0.2	8	2	15	5	
S	11N 1000E	26	6	0.2	6	2	9	5	
推	11N 1050E	24	5	0.1	5	2	10	5	
	<u>11N 1100E</u>	15	4	0.1	4	2	10	5	
S	11N 1150E	84	16	0.1	7	2	9	5	
	11N 1200E	34	7	0.1	2	2	8	5	
	11N 1250E	22	4	0.1	3	2	2	5	
	11N 1300E	35	10	0.1	2	2	5	5	
S	11N 1350E	45	10	0.1	3	2	4	5	
			Œ	RTIFIE	DBY:	7	/	7	stoch

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEDS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 **INVOICE # :** 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 7

FRE	COMPL	FNAME	PPM Du	PPM Co	PPM An	FFM Ph	PPM Bi	PPM As (PPB Au AA	
	11N	1400E	40	10	0.1	1	2	3	5	
S	11N	1450E	23	7	0.1	2	2	2	5	
	11N	1500E	14	6	0.1	1	2	2	5	
	11N	1550E	6	1	0.1	1	2	2	5	
5	<u>11N</u>	1600E	20	9	0.1	3	2	2	5	
S	11N	1650E		11	0.1	3	2	3	5	
	11N	1700E	14	6	O,1	4	2	2	5	
	12N	COOE	10	4	0.1	2	2	2	5	
S	12N	OBOE	8	4	0.1	1	2	2	5	
K	<u>12N</u>	100E	9	3	0.1	2	2			
	12N	150E	12	6	0.1	3	2	2	5	
S	12N	200E	10	5	0.1	<u></u>	2	2	()) 67	
	1.21		10	2	0.1	ు ం	<u> </u>	~	2) (2)	
	1231	SOOE	11	<u>.</u>	0.1 0.4	<u>~</u>	26 m) 68:	
	121	<u></u>	8	4 <u>4</u>	<u> </u>	<u>~</u>	<u>_</u>	<u> </u>		
Cí	1.23N 4.73N	440, A. A.:	·"/ • •	~ ~	0.1	یک جو	<i>x</i> . 5			
	1.23N	44000.000 600000	11	يند. ۲	0.1	0		~ ~	/	
—	1.23N	CALALACI COCUMENT	10		0.1	2	<i>х.</i> 17	2		
0 20	P (2, 2). 1720-1	<u></u>	0	 	0.1		2	2		
	1/261	<u>()</u> () () () () () () () () () () () () ()		<u>()</u>	<u> </u>	<u></u> Д				
	1.254	12551 776 X X.T	10 1		0.1 0.1	2	2	2	10	
c	1.254	7000	15	ន	0.1	4	2	4	5	
	1 (3).	SAUX-1	17	4	0.1	5	2	4	5	
	1254	850F	37	11	0.1	5	2	6	5	
S	12N	900F	30	8	0.1	7	2	8	5	
	121	950E	29	10	0.1	4	2	7	5	
	12N	1000E	43	11	0.1	6	2	4	5	
S	12N	1050E	18	6	0.1	5	2	2	5	
<u>c</u>	12N	1100E	46	13	0.1	9	2	2	5	
	1.2N	1150E	71	15	0.1	10	2	3	5	
3	12N	1200E	33	7	0.1	5	2	4	5	
S	12N	1250E	20	5	0.1	4	2	2	5	
	12N	1300E	10	4	0.1	4	2	2	5	
	121	1350E		2	0.1	6	2	2	5	
S	12N	1400E	23	2	O.1	4	2	2	5	
	12N	1450E	24	4	0.1	5	2	2	5	
	12N	1500E	14	3	0.1	5	2	3	5	
S	12N	1550E	28	1	0.1	ර	2	2	5	,
	12N	1600E	16	4	0.1	4	2	2	5	
				Œ	RTIFIE	D BY :	7	1	0	sbard

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 **INVOICE # :** 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 **PAGE # :** 8

PRE FIX	SAMPL	e name	PPM Cu	FPM Co	PPM Ag	PPM Pb	FPM Bi	FPM As (PPB Au AA	
	1.054	1.2.500000	4 65		<u>0 1</u>	A		~ ~	E::;	
	1.234	1.05.05.00	1.U A77		0.1	10	2	Â	5	
e	173N	C)(3)12			0.1	3	2	2	5	
	173N	ORDE	ý,	1	0.1	3	2	2	s	
	1 3M	100	10	Ż	0.1	2	2	2	5	
 C	1.354	15765	11		Ö. 1		2	2	5	
1	1.735	2006	12	1	0.1	5	2	2	5	
100	1.335	2505	12	1	0.1	2	2	2	5	
G	1.3N	2006	11	1	0.1	5	2	2	5	
	13N	350E	11	2	0.1	2	2	2	5	
	13N	400E	10	1	Ö.1	1	2	2	5	
S	13N	450E	13	1	0.1	5	2	2	5	
S	13N	500E	15	1	0.1	5	2	2	5	
	1.3N		11	1	0.1	6	2	2	5	
	13N	SEOE	12	5	0.1	6	2	2	5	
S	13N	575E	14	4	0.1	5	2	2	5	
	13N	600E	10	3	0.1	4	2	2	5	
, 4 9.90°	13N	625E	16	4	0.1	4	2	2	5	
S	13N	650E	27	5	Ö.1	5	2	2	5	
	13N	675E	37	8	0.1	8	2	2	5	
	13N	700E	37	7	0.1	4	2	2	5	
S	1.3N	725E	37	9	0.1	6	2	2	5	
S	13N	750E	27	8	0.2	9	2	4	5	
	13N	775E	30	7	0 . 1	7	2	6	5	
	<u>13N</u>	800E	14	5	0.1	3	2	5	5	
S	13N	825E	19	4	0.2	6	2	4	5	
	1.3N	850E	31	7	0.1	8	2	6	5	
	13N	875E	21	5	0.1	8	2	3	5	
S	13N	900E	94	24	0.4	22	.2	34	5	
C:	<u>13N</u>	925E			<u>0.1</u>	12	2	11	5	
	13N	950E	47	6	0.1	8	2	.2	5	
3	13N	975E	60	19	0.2	13	2	14	0	
S	13N	1000E	40	8	0.1	9	2	6	5	
1000 x 200 2010 x 200 2000 x 200 2000 x 200 2000 x 200 2000 x 200 2000 x 200 2000 x 2000	13N	1025E	44	10	0.2	су /	2	14	0	
	<u>13N</u>	1100E		10	0.2	<u>6</u>	<u> </u>			
S	13N	112E	76	11	O.2	6	2	b	0	
915-74 915-74	13N	11505	68	ب	0.3	4	2	4	(1) 60	
	1.N	11/56	24	ن 	0.2	يد م	~	<u>~</u>		
S	1.3N	1200t		0	0.2	44 	<u>~</u>	44 ~~~	 E2	
5	NE.L	12505		ਲ ਲ	<u> </u>	د	<u>د</u>	£.	ີ 	
		·		Œ	RTIFIE	D BY :	4	$\overline{\mathcal{N}}$	7	stad

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. DJECT : CANNELLE/WP CLAIMS P TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 **INVOICE # :** 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 9

PF FIX	SAMPLI	e name	FFM Du	PPM Co	PPM Ag	PPM Pb	. PPM Bi	PFM As f	PP18 Au AA		
- c	1.3N	1300E	66	14	0.1	3	2	8	5	<u> </u>	
5	13N	1350E	40	9	0.1	1	2	2	5		
S	13N	1400E	14	3	0.1	1	2	2	5		
c.	13N	1450E	28	5	0.2	5	2	2	5		
g	13N	1500E	21	5	0.1	4	2	4	5		
5	13N	1550E	22	Θ	0.1	4	2	4	5		
9	13N	1600E	25	7	0.1	3	2	2	5		
9	13N	1650E	······································	7	0.2	5	2	2	5		
S	15N	COORE	8	2	0.1	1	2	2	5		
5	<u>15N</u>	OEOE	13	4	0.2	5	2	2	5		****
S	15N	100E	12	4	0.1	1	2	2	5		
3	15N	150E	12	2	0.1	1	2	2	5		
S	15N	200E	11	4	0.1	1	2	2	5		
	15N	250E	11	3	0.2	1	2	2	5		
<u>C</u>	<u>15N</u>	SOOE	13	4	0.2	š	2	2	<u> </u>		·· ·· ••
S	15N	350E	13	3	0.2	1	2	2	5		
G	15N	400E	20	2	0.2	<u>ن</u>	1	.t	0		
9	15N	450E	30	4	0.3	5		4	0		
5	15N	SCOE	40	10	0.5	د	2	4) -		
<u> </u>	15N	523:		/	0.2	4	<u>.</u>	<u> </u>	 		••••••
5	15N	SECE	33	/	0.2	4	2	141 m	0		
9	15N	575E	51	14	0.3	8	2	4	0		
S	15N	600E	60	15	0.j	8	2. (7)	4	0		
9	15N	625E	61	14	0.4	12	2	<u>.</u>	0		
	15/	<u> </u>	40	12	0.2	4.03					
5	1550	6/58	28	20 	0.0	103	يد. ص	*+ ~>	ป ส		
	150	/Q01::	28		0.2	11	<u>بد</u>	يند. دي			
	1.531	/2010	<u></u>	8 0	0.2	ີ ຕ	<u>د</u>	<u>بد</u>			
5	100	/ CA.45	21	·7	O a se	C)	<u>بد</u>	0 7			
 	100	<u>//Ct:</u>	<u></u>		0.0	<u></u>		<u></u>	<u></u>		•••••••
	T COM	<u>28.8.4:</u> ()))	200 1 1	7 4	0.2	् ।	2	-10			
3 	1.004	COLLAR	1. J. 1. K.S.		0.2	т Т	2	 10	/ EC.;		
3	1.00M 4.00M	CONTRACT	1		0.0	् र		- 10 - 10			
	1.001	07.00	1 1 (1)		0.7			<u>д</u>			
	1.0.1V 4.675.1	·7 (A, A;;; ()~~~~	24 70	•+	<u></u>				5 5		
ъ С	1004	7.4.4C		11	0.4	2		а 2	5		
	1034	75.A.42. COTTET		** 10	0.3		5		5		
3	1. C.I.N 4. CCK J	777 UKC 1777 VOVDC	చాలు 1 ఓ		0.2			2			
а С	1004	1000000	10	14	0.2		2	Â	5	·	
ා ඕ		A Continuediin		1 -7	N.º 11 año		*		•		_
de las Standard				Œ	RTIFIE	DBY :	$\frac{1}{1}$	7	$\overline{\mathcal{N}}$	bad	

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 INVDICE # : 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 10

PE FIX	SAMPL	e name	PFM Du	PPM Co	PPM Ag	PPM Pb	. PPM Bi	PPM As	PP18 Au AA	· · · · · ·
	15N	10505		8	0.2	3				
g	15N	1075F	26	10	Ŭ.1	5	2	6	5	
S	15N	1200F	25	10	0.2	2	2	2	5	
	15N	1250E	37	10	0.1	3	2	4	100	
	15N	1300E	14	5	0.1	ŝ	2	4	5	
S	15N	1350E	15	5	0.1	2	2	4	20	***************************************
	15N	1400E	31	8	0.2	3	2	10	5	
	15N	1450E	26	10	0.2	5	2	2	5	
S	15N	1500E	13	4	0.1	3	2	2	5	
	15N	1550E	15	6	0.1	3	2	6	C.	
	15N	1600E	13	3	0.2	3	2	6	5	
S	15N	1700E	47	8	0.3	5	2	6	5	
S	16N	COOE	12	4	0.2	6	2	4	5	
	1.6N	050E	13	5	0.2	4	2	4	40	
	<u>16N</u>	100E	23	4	0.2		2	4	5	
S	16N	150E	12	2	0.2	2	2	4	5	
	16N	200E	12	3	0.2	2	2	6	5	
	16N	250E	17	4	0.3	3	2	10	5	
S	16N	COOE	14	3	0.4	2	2	6	5	
	<u>16N</u>	350E	24	6	0.4	4	2	2	5	
1000	16N	400E	48	8	0.3	6	2	6	5	
5	16N	450E	41	11	0.4	7	2	8	5	
S	16N	500E	39	10	0.3	5	2	8	5	
	1.6N	SEXCE	44	10	0.5	9	2	6	5	
	<u>16N</u>	<u> </u>		14	0.3	9		6	5)	
8	16N	650E	18	D 	0.4	4		10	5	
	16N	700E	27	8	0.3	5	2	8	0	
	164	/50E	B		0.1	2	2	4	Ü	
5	164	BOOL	1/	<u>ن</u>	0.j	1	2	() (U U	
	1614	<u> </u>	18	4	0.7		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>(</u>)		
2000	1.691	8/26	2/	4	0.3	4	2	6	0	
8	1.6914	570, A.M.:.	24 CT	7	0.0		<i></i>	14		
С А	1 CNV	1700.000 1.00000	 200	0	0.4	0	<u> </u>	8 0	00 67	
	1.001	LCALAURE:	40	5	0.4	*+ -:::	<i></i>	8	(C) 821	
	1.6.1	1 1 (A. K. 40)	1) 61151	<u></u>	<u> </u>		<u></u>	10	с.) Е::	***
а 9.	1.6.51		000 120	<u> </u>	0.0	ు ా	<u>بد</u> ص	10	0 5	
	- 103N 17.51	1.12.24.42		1	0.0	alin An		1/1	 E	
	1 AN	1.120040400	15	-1. K::;	0.2	2	<i>4.</i> (7)	<u>ب</u> ر م	65) 65)	
g	1.4N	1300F	14	5	0.2		2	4	5	1
	л КЛ Ч						.i	·	~~ ***********	
				Œ	TIFIEI) BY :	$\frac{2}{1.7}$	Ĥ	7	sbach

LTD-SSBACHER LABORATORY

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 **INVOICE # :** 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 11

PRE FIX	SAMPL	e name	PPM Cu	PPM Co	FPM Ag	PPM Pb	. PPM Bi	PPM As	PPB Au AA				
	1.6N	13508	17	7	0.2	3	2	6	5		<u></u>		
s	16N	1400E	33	7	0.1	1	2	8	20				
<u> </u>	16N	1450E	17	6	0.2	2	2	8	10				
	16N	1500E	15	5	0.3	3	2	12	5				
5	16N	1550E	18	4	0.3	3	2	10	5				
S	17N	COOE	15	4	0.2	1	2	2	5				
	17N	OSOE	21	1	0.2	1	2	2	5				
	17N	100E	10	2	0.2	1	2	2	5				
S	17N	150E	14	3	0.3	2	2	4	5				
	17N	200E	12	4	0.2	1	2	4	5			*******	
	17N	250E	20	5	0.1	2	2	8	5				
S	17N	SOOE	28	6	0.2	3	2	2	5				
C.	17N	SSOE	27	1	0.1	2	2	3	5				
	17N	400E	50	12	0.2	3	2	4	5				
5	17N	450E	70	17	0.3		2		5	na yan karakin nin bini nin kina kina kina kina kina kina ki			
S	17N	SOOE	44	11	0.2	5	2	2	5				
\$	17N	550E	26	5	0.3	3	2	4	5				
	1.7N	600E	37	13	0.2	9	2	10	5				
S	17N	650E	30	6	0.4	3	2	4	5				
	17N	700E		11	0.3	9	2	8	5				
	17N	750E	41	9	0.2	3	2	12	5				
S	17N	800E	39	8	0.2	5	2	10	5				
S.	17N	850E	50	15	O.1	6	2	6	5				
	17N	900E	15	6	0.2	4	2	2	5				
	<u>17N</u>	950E		8	0.3	4	2	4	5		******	** ****	
S	17N	LOOOE	12	3	0.1	2	2	6	5				
	17N	1050E	20	7	0.2	4	2	8	5				
	17N	1100E	17	3	0.1	3	2	2	5				
S	17N	1150E	14	3	0.1	4	2	2	5				
	<u>17N</u>	1200E	<u>66</u>	12	0.2	5	2	20	<u> </u>			18- 199 19-91 1-1 - 1 - 1 - 1 - 1 - 1 - 1	
	17N	1250E	20	5	0.4	4	2	10	5				
5	17N	1300E	19	1	0.5	2	2	6	5				
S	1.7N	1350E	14	2	0.3	2	2	2	5				
	17N	1400E	7	3	0.2	4	2		5				
	<u>17N</u>	1450E	13	4	0.2	<u></u>	<u>.</u>	4		****			
S	17N	1500E	20	4	0.2	5	2	2	5				
1	17N	1550E	20	7	0.3	5	2	2	0				
	17N	1600E	23	6	0.3	6	2	4			,		
S	17N	1650E	18	4	0.4	6		2					
	17N	1700£.	9	£.	0.5	0	si.	<i></i>	ີ 		_/		
				Œ	RTIFIE	D BY :		7/1	1,00	sboro		\supset	
							1 / 1						

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS. B.C. **PROJECT :** CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 **INVOICE # : 10056** DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 12

PNE			PPM	PPM	PPM	PFM	. PPM	PPM	PPB	
FIX	SAMPLE N	AME	Cu	Co	Ag	Pb	Bi	As i	Au AA	
	15N C	YOOF:	10	3	0.2	2	2	2	5	
s	18N 0	2505	6	4	0.1	1	2	2	5	
Sas	1.61 1	OOF	23	6	0.1	2	2	2	5	
	18N 1	150E	13	5	0.2	3	2	2	5	
5	16N 2	XOOE	11	6	0.2	4	2	2	5	
5	18N 2	ЖŒ	11	4	0.3	3	2	2	5	
	18N 3	SOOE	7	2	0.2	3	2	2	5	
	18N 3	SOE	35	8	0.2	8	2	6	5	
S	18N 4	100E	34	6	0.3	5	2	2	5	
	181 4	150E	38	7	O _4	4	2	4	5	
	181 5	XXXE	10	2	0.2	2	2	2	5	
S	18N 5	EOE	40	10	0.3	3	2	4	5	
S	16N 6	500E	8	4	0.2	2	2	2	5	
	18N 6	SOE	22	7	0.1	9	2	4	5	
5	18N 6	575£	21	7	0.1	6	2	2	5	
S	18N 7	700E	9	.	0.1	3	2	2	5	
	18N 7	750E	49	15	0.3	14	2	6	5	
	18N 9	ROE	30	5	0.5	26	2	58	10	
S	18N 9	250E	12	3	0.2	4	2	4	5	
a	16N 10	XOOE	12	3	0.2	3	2	4	5	
	18N 10	30E	33	8	0.3	4	2	8	5	
S	18N 11	LOOE	87	13	0.4	5	2	16	5	
S_	18N 11	BOE	42	5	0.4	5	2	14	5	
	18N 12	200E	40	7	0.3	5	2	32	5	
	18N 12	250E	37	8	0.2	4	2	6	90	
S	18N 13	XOE	42	9	0.3	5	2	8	5	
	18N 13	SOE	43	7	0.4	5	2	16	5	
	18N 14	100E	535	8	0.5	8	2	28	5	
s	18N 14	450E	48	9	0.5	13	2	20	5	
	181 15	SOOE	30	6	0.3	4	2	6	5	
	18N 15	TOE	34	9	0.2	6	2	2	5	
5	18N 16	SOOE	23	9	0.1	4	2	2	5	
S	18N 16	350E	16	5	0.2	3	2	2	5	
	19N C	XXXE	11	4	0.1	4	2	2	5	
	19N C	EOE	11		0.1	3	2	2	5	
S	19N 1	LOOE	21	7	0.1	5	2	2	5	
	19N 1	SOE	15	6	0.1	3	2	2	5	
	19N 2	200E	12	4	0.1	2	2	2	5	
S	19N 2	250E	19	8	0.2	4	2	2	-5	<i>r</i>
S	19N 3	SOOE	17	9	0.2	4	2	2	5	
				Œ	TIFIE) BY :		A	0/10	store

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. OJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

CERTIFICATE # : 89399 **INVOICE # :** 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 13

FLE			FFM	FFM	PPM	PFM	PFM	FPM	FPB	
FIX	SAMPL.	e name	Cu	Co	Ag	Pb	Bi	As I	Au AA	
ľ	1 (2)()		10		0 2	-*	2	2	s:;	
e	19N	26 Y Y Y	19		0.2	6	2	2	5	
a a	1 (26)	4505	19	á	0.2	3	2	2	5	
	19N	E CALL	â	4	0.1	2	2	2	5	
	19N	FEOE	47	16	0.2	ç	2	2	5	
S	19N	AOOF	49	16	Ö.1	5	2	2	5	
<u>ل</u>	1914	AFOF	21	tö	0.2	5	2	2	5	
教会	19N	700E	584 IS	 M	ISSING					
S	19N	750E	26	14	0.2	7	2	4	5	
<u> </u>	19N	800E	37	13	0.2	4	2	10	5	
	19N	850E	15	7	0.1	1	2	2	5	
5	19N	900E	20	7	0.1	1	2	2	5	
S	19N	950E	17	8	0.1	3	2	6	5	
	19N	1000E	9	7	0.2	3	2	2	5	
	19N	1050E	335	12	0.1	3	2	6	5	
S	19N	1100E	86	18	0,4	7	2	20	5	
	19N	1150E	34	10	Ö.4	1	2	4	5	
	19N	1200E		10	0.3	3	2	8	5	
S	19N	1250E	96	18	0.9	7	2	48	5	
C:	19N	1300E	46	12	0.2	6	2	8	5	
	19N	1350E	96	16	0.5	6	2	12	5	
	19N	1400E	46	13	0.3	5	2	6	5	
S	19N	1450E	75	<u>1</u> 4	0.3	3	2	6	5	
	19N	1500E	25	10	0.2	3	2	6	5	
	191	<u>1550E</u>	48	13	<u>0.3</u>	4	2	10	5	
S	19N	1600E		9	0.2	2	2	6	5	
	1914	1650E	94	14	0.6	7	2	14	9	
83863-	19N	1700E	SO	1Ö	0.3	6	2	4	5	
S	20N	OOOE	18	1	0.3	2	2	.2	5	
<u> </u>	2011	OBOE	37		0.3	1	2	10	<u>.</u>	
	20N	100E	16	5	0.2	1	2	2	5	
	20N	150E	17	6	0.2	1		4	Ö	
S	20N	200E	13	2	0.5	1	2	2	5	
	20N	250E	16	4	0.2	2	2	6	0	
	201	<u>SCXX-</u>	20	<u>.</u>	0.1	4		£	0	
S	20N	SECE	15	<u>.</u>	0.1	ن ہ	2	4	0 67	
	20N	44 <u>, X_}-</u>	9	ذ	0.1	2	2	4	3	
8.14970 	20N	4505	12	4	0.1	<u>خ</u>	2	din 1	0	
জ -	20N		16	5	0.2	ن م	~ ~	с /		1
5	20N		21	<u>ප</u>	0.2	<u>~</u>	<u> </u>	c3	0	
							/	7 /	$\overline{\gamma}$	
				Œ	RTIFIF	D BY =				shad
遊子の						•			120	

CERTIFICATE OF ANALYSIS

TO : MR GRANT CROOKER, P.O.BOX 234, KEREMEOS, B.C. PROJECT : CANNELLE/WP CLAIMS TYPE OF ANALYSIS : ICP 2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax:299-6252

CERTIFICATE # : 89399 INVOICE # : 10056 DATE ENTERED : 89-10-18 FILE NAME : GC89399 PAGE # : 14

PRE		- NIGHT	FPM	FPM	PFM	PPM	. PPM	PPM	PPB	· · · · · · · · · · · · · · · · · · ·
F1X	SANFU	E. INHIME.			Hg	PD	B1	H5	HU HH 	
	20N	600E	29	11	0.1	4	2	6	5	
S	20N	650E	58	15	0.2	7	2	12	5	
C,	20N	700E	24	3	0.1	1	2	4	5	
	20N	750E	144	13	1.5	2	2	10	5	
5	20N	800E	47	2	0.3	1	2	10	5	
S	20N	850E	12	4	0.1	1	2	4	5	
	20N	900E	10	3	0.1	1	2	6	5	
	20N	950E	27	8	0.1	4	2	2	5	
S	20N	1000E	49	11	0.2	5	2	6	5	
	20N	1050E	60	18	0.2	3	2	12	Ę.	
	20N	1100E	42	8	0.4	4	2	12	5	
S	20N	1150E	58	10	0.2	3	2	10	5	
S	20N	1200E	42	9	0.1	6	2	8	5	
	20N	1250E	43	10	0.2	4	2	10	5	
	<u>20N</u>	1300E	54	9	0,4	5	2	16	5	
S	20N	1350E	16	3	0.2	3	2	6	5	
教材	20N	1400E	33	8	0.1	4	2	10	5	
, these	20N	1450E	17	5	0.1	3	2	8	5	
S	20N	1500E	34	8	0.1	5	2	8	5	
	20N	1550E	30	7	0.2	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5	
	20N	1600E	186	24	0.5	8	2	30	5	
S	20N	1650E	124	22	0.3	8	2	30	90	
S	2011	1700E	100	17	0.5	9	2	16	5	

CERTIFIED BY :

Appendix II

R and

推進

教室に

.

COST STATEMENT

COST STATEMENT

SALARIES

ALC: NO.

 Grant Crooker, Geologist Oct. 9, 26, Nov. 28, 29, 1989 4 days @ \$ 350.00/day 	\$ 1,400.00
FREIGHT	31.90
ANALYSIS	
 542 soil samples, 6 elementICP, Au-aquine regia, @ \$ 8.07/ sample 	la 4,369.88
DRAUGHTING	400.00
PREPARATION OF REPORT	
 Secretarial, reproduction, telephone, Office overhead etc. 	400.00
TOTAL	S <u>6,601,78</u>

15+00E T.L. 17+00E 10+00E L 20 N 26+2 13+2 LI5N $(\tilde{e}_1)^{-1}$ $(\tilde{e}_2)^{-1}$ $(\tilde{e}_1)^{-1}$ $(\tilde{e}_1)^{-1}$ $(\tilde{e}_2)^{-1}$ $(\tilde{e}_1)^{-1}$ $(\tilde{e}_2)^{-1}$ $(\tilde{e}_1)^{-1}$ $(\tilde{e}_2)^{-1}$ $(\tilde{e}_1)^{-1}$ $(\tilde{e}_2)^{-1}$ $(\tilde{e}_1)^{-1}$ $(\tilde{e}_1)^{-1$ $\sum_{n=1}^{3} \frac{1}{2} \frac{1}{2}$ $\underbrace{(8)}_{n} \xrightarrow{23}}_{n} \xrightarrow{23}_{n} \xrightarrow{$ LION $\frac{1}{2} = \frac{1}{2} = \frac{1}$
 34
 4

 34
 4

 25
 2

 32
 2

 32
 2

 32
 2

 32
 2

 32
 2

 10
 2

 28
 5

 18
 2

 18
 2
 L 5 N <u>____</u>ᢧ<u>__</u>ᢧ<u>_</u>ᢧ<u>_</u>ᢧ<u>_</u> LOA L 0. = 5 + 9 4 + 9 GEOLOGICAL BRANCH ASSESSMENT REPORT L 5 S -+ - + + + + - + - + - + - + - - <u>+ - -</u> CANNELLE EXPLORATION LTD. WP CLAIMS GEOCHEMISTRY - As, Cu SIMILKAMEEN M.D. ,B.C. N.T.S. 92H-8E 100 200 400 METRES SCALE I:5000 DATE: OCT 1989 DRAWN BY: G.CROOKER FIGURE Nº.5

10+00E 15+00E T.L. 17+00E N 4 (r) $\rightarrow \begin{pmatrix} \infty & \infty & \sigma \\ / & + & + & + \end{pmatrix}$ L 20 N m (P) 1 1 4 10 10 20 (m) 4 10 4 m 4 4 (a) 10 4 m m N (a) N m m -Pb-4L15N4 0 4 0 0 0 4 4 3 N - 0 4 4 0 W 4 W W 4 W 4 4 4 4 LION it w w w w w w w w w 4 4 4 ω <u>υ</u> 4 ω ω L 5 N LOA 87 87 87 87 88 88 88 88 88 88 88 97 72 997 72 997 72 997 72 11 16 LO 76 88 74 74 74 74 74 74 74 74 74 75 75 70 + 14 65 21 73 20 92 15 99 26 99 26 99 26 51 20 51 20 51 20 51 20 51 20 51 20 51 20 GEOLOGICAL BRANCH 185ESSMENT REPORT L 5 S CANNELLE EXPLORATION LTD. WP CLAIMS GEOCHEMISTRY - Pb,Zn SIMILKAMEEN M.D. ,B.C. N.T.S. 92H-8E E. F.CROOKER S 0 100 200 400 METRES SCALE I 5000 DATE: OCT 1989 DRAWN BY : G.CROOKER FIGURE Nº.6 ; . . .

15+00E 10+00E T.L. 17+00E L 20 N L | 5 N LION ν ω 4 ω (<u>0</u>) ν L 5 N ┎──╅──╅──╁──╁──╁──╁──╁──╁──╁──╁──╁──┼ 4 4 0 - 4 - 4 0 - 4 - n - - - - - 0 -LOA LO 12 12 GEOLOGICAL BRANCH ASSESSMENT REPORT L 5 S CANNELLE EXPLORATION LTD. WP CLAIMS GEOCHEMISTRY - Bi,Co N.T.S. 92H-8E SIMILKAMEEN M.D. ,B.C. E GE. CROOKER S 100 200 / 400 METRES SCALE I 5000 DATE: OCT 1989 DRAWN BY: G.CROOKER FIGURE Nº. 7.