

Geological and Geochemical Report
on the Outback Claims
Greenwood Mining Division
N.T.S. 82E-9

Latitude: $49^{\circ} 41^{\prime} \mathrm{N}$, Longitude: $118^{\circ} 28^{\prime} \mathrm{W}$ OWNER: Canadian Nickel Company Limited OPERATOR: Inco Limited

SUB-RECORDER PRCS:CD

TABLE OF CONTENTS

Page
1.0 SUMMARY 1
2.0 INTRODUCTION 2
2.1 Location, Access and Topography 2
2.2 Claim Inventory 2
2.3 Property History 3
2.4 Work Summary 3
3.0 REGIONAL GEOLOGY 3
4.0 PROPERTY GEOLOGY 4
4.1 Structure 5
4.2 Mineralization 5
5.0 GEOCHEMISTRY 6
5.1 Field Procedure 7
5.2 Laboratory Procedure 7
5.3 Rock, Soil and Silt Geochemistry - 8 Discussion
6.0 CONCLUSIONS 10
7.0 RECOMMENDATIONS 11
8.0 REFERENCES 12
9.0 STATEMENT OF COSTS 13
10.0 STATEMENT OF QUALIFICATIONS 14

APPENDICES

Page

```
Appendix I - Certificate of Analyses
Appendix II - Geochemical Sample Descriptions
Appendix III - Analytical Procedure - Bondar Clegg
```


LIST OF FIGURES

LIST OF MAPS

Map 1	Geology Map	In Pocket
Map 2	Silt and Soil Sample Loacations	In Pocket
Map 3	Silt and Soil - Au Geochemistry	In Pocket
Map 4	Silt, Soil and Rock Sample Locations	In Pocket
Map 5	Rock Samples - Au Geochemistry	In Pocket

1.0 SUMMARY

This report describes the results of the reconnaissance geological mapping, soil, silt and rock chip sampling programs conducted on the Outback property between June 9 - September 21, 1989. The claims are located 73 km north of Grand Forks, B.C. and are accessible by helicopter only.

A geochemical gold anomaly on several west flowing tributaries of the Granby River prompted staking of the source area. The Outback property was explored for its epithermal gold-silver potential.

The geology is dominated by Tertiary block-faulting with basement Mesozoic Okanagan Batholith rocks unconformably overlain by a narrow slice of Marron Formation volcanic rocks of Eocene age. The Granby River fault marks the western edge of the Republic graben fault system south of the International Boundary.

Preliminary mapping suggests that several subsidiary, parallel fault splays are cutting propyllitized granodiorite rocks and formed an extensive fracture system interpreted as conduits for later silica replacement. The northerly trending zone of faulting and open-space silicification appears to be up to at least 250 m in width and 1700 m ir length. The degree of quartz flooding is quite variable. Gold content of this type of silica alteration rarely exceeds 150 ppb. A patchy argillically altered zone lies beyond the area of silicification.

The Beth Showing, characterized by gold-silver-bearing banded chalcedonic ?adularia veinlets, may represent a localized hydrothermal fracture zone spatially related to extensional faulting in a propyllitized granodiorite host. A selected grab sample of veined talus ran 6125 ppb Au and 127 ppm Ag. Chip samples ranged between $94-2490 \mathrm{ppb} \mathrm{Au}$. All indicator elements were very low. Geological and geochemical features suggest a low level epithermal system.

Numerous soil anomalies warrant further investigation. Detailed grid work is recommended for next year including prospecting, geological mapping, soil sampling, backhoe trenching and, based on encouraging results of the preceding work, diamond drilling.

2.0 INTRODUCTION

This report describes the results of the reconnaissance geological mapping, soil, silt and rock chip sampling programs conducted on the Outback property between June 9 - September 21, 1989 .

The Outback claims, consisting of 32 units (800 ha), were staked to protect the source area of several anomalous heavy mineral samples collected during a regional stream-sediment geochemical survey. The claims were explored for their epithermal gold-silver potential.

2.1 Location, Access and Topography

The Outback claims are located in the Monashee Mountains of the south-central interior, approximately 73 km north of Grand Forks, B.C. (see Figure 1). The property is situated on the east side of the Granby River about $4 \mathrm{~km} N E$ of the confluence between Cane Creek and Granby River.

Access to the property is via helicopter only. The Granby River logging road comes to within 8 km of the southern claim boundary. Flight time from Grand Forks is about 25 minutes.

Topographic relief varies from flat benches to hilly to quite steep terrain. Elevations range from 1067 m (3500^{\prime}) in the Granby River valley to over 1737 m (5700') on some ridgetops.

The area is heavily treed by mature stands of jackpine, alder, spruce, fir and aspen. Streams are fast-flowing most of the year.

Outcrop exposure is generally poor comprising less than 3% of claim area. Incised creek gullies provide some good rock outcroppings particularly along the Granby River valley where glacial till may be several metres deep.

2.2 claim Inventory

The Outback property consists of 2 contiguous mineral claims recorded in the Greenwood Mining Division (see Figure 2). For assessment purposes, the mineral titles were grouped as the Outback Group. Details are as follows:

Claim	Units	Record Date	Record Number
Outback	20	December 14, 1988	5332
Outback 2	12	August 24, 1989	5548

The Outback claims are owned by Canadian Nickel Company Limited which is a wholly owned subsidiary of Inco Limited.

2.3 Property History

No major detailed geological study has been conducted in the area. Regionally, H.W. Little of the Geological Survey of Canada, mapped the Grand Forks region between 1953-56.

In the late $1970^{\prime} s$, mostly uranium and limited base metal exploration were conducted throughout the region. Kelvin Energy Ltd. and Getty Minerals staked most of the Granby River valley in 1977 - 78 in search of uranium mineralization in Tertiary age sedimentary units. Silt samples were analyzed for $\mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}, \mathrm{Zn}$, Ag and U. One tributary on the Outback 2 claim ran 70 ppm Cu and 1.6 ppm Ag. Large claim blocks have only recently expired due to a special government 10 - year moratorium on uranium properties and exploration.

There are no known mineral occurrences on the Outback claims.

2.4 Work Summary

The operator of all work conducted on the Outback claims is Inco Limited.

Field work was carried out in two periods. On June 9 and between September 12 - 21, 1989, the following work was conducted by Inco personnel: prospecting, reconnaissance geological mapping, rock, soil and silt sampling and minor hand trenching.

Between August 25 - 29, 1989, the following work was carried out by Discovery Consultants of Vernon, B.C.: layout of flagged contour grid lines and contour soil sampling at 50 m intervals. Survey control was facilitated by altimeter and topofil instruments. Approximately 11.5 line-km of contoured grid line were established.

Geological mapping and geochemical compilation were done on $1: 10,000$ scale maps. About 250 ha were mapped and prospected. Gold results in parts per billion were plotted for all rock samples. Soil and silt sample results of 10 ppb Au or greater were also plotted.

3.0 REGIONAL GEOLOGY

The regional geology is predominantly Mesozoic granitic intrusions mapped as part of the okanagan Batholith and includes undifferentiated phases of the Nelson Batholith complex (GSC Open File 1969). In the Granby River valley, the geology is dominated by Tertiary block-faulting with basement plutonic rocks unconformably overlain by Marron Formation volcanic rocks of Eocene age.

The faulted Tertiary volcanic belt varies in composition from rhyolite/dacite to trachyandesite to basalt/phonolite flows. Sedimentary rooks of the Kettle River formation form a minor component of the Tertiary geology in the Granby River valley. Volcanic dyke swarms may occur locally near major north-south trending normal faults.

4.0 PROPERTY GEOLOGY

The Outback claims are underlain by a narrow band of downfaulted Eocene volcanic rocks on a predominant basement of Mesozoic plutonic rocks (see Map 1). Major rock types are as follows: ?Cretaceous granodiorite of the Okanagan Batholith; related quartzfeldspar porphyry altered phases; and, rusty dacite to welded basalt flows of the Eocene Marron Formation. Outcrop distribution of Tertiary volcanic rocks is limited to steep banks along the Granby River and a few tributaries.

Large outcroppings of fine to medium grained, light grey to green weathering granodiorite occur mostly at higher elevations on the property, Principal features include a slightly porphyritic matrix, dull-green chloritized hornblende, fine brown biotite and smoky grey quartz phenocrysts. Selected hand specimens show strong propyllitic alteration throughout areas of secondary silicification. Magnetite is ubiquitous with lesser pyrite and chalcopyrite usually as fracture coatings.

A related, possibly ?younger phase of the granodiorite is the pervasively argillic altered quartz-feldspar porphyry unit. Outcroppings weather to a light grey/white to rusty beige colour and are quite recessive and broken-up. Intermediate argillic alteration, interpreted to be fault-related, includes intense kaolinization of the feldspars and thermal bleaching of the primary mafic minerals such that the rock is distinctly bleached and argillaceous in appearance. Grey quartz phenocrysts and finegrained pyrite can be identified. Carbonate-limonite-hematite alteration is patchy.

Eloat specimens and tabular outcroppings of dacite to andesite tuff, trachyte and basalt were noted in several localities. Along the Granby River valley, well-fractured limonitic siliceous dacite rocks were mostly encountered. Aphanitic andesite to dacite outcroppings show variable amounts of pyrite, carbonate, chlorite and sericite mica alteration.

A sill-like body of amygdaloidal flow basalt to trachyandesite was mapped above the main area of faulting. Irregular-shaped amygdules are filled or rimmed by calcite. The dark grey/black, welded to granular groundmass contains hematized (reddish-brown) ?pyroxene and whitish feldspar phenocrysts generally throughout.

4.1 Structure

Structurally, the major feature is the northerly-trending Granby River fault which marks the western edge of the Republic graben fault system south of the International Boundary. The Granby valley outlines the inferred Tertiary normal fault with the down-dropped side hosting narrow slices of Eocene volcanic rocks to the east.

Preliminary mapping suggests that several subsidiary, parallel fault splays are cutting Mesozoic granodiorite and formed an extensive fracture system interpreted as conduits for later silica replacement. Outcroppings of silica-flooded fractured granodiorite are interpreted to be associated with underlying faults where the best ground preparation has occurred.

Varying degrees of argillic, silicic and propyllitic alteration were also interpreted to be related to masked fault structures. The lateral extent of the alteration, particularly the stockwork and open-space silica replacement, has been traced over a strike length of 1700 m and a width of at least 250 m . The eastern most fault shown on the geology map bounds relatively unaltered granodiorite to the east from silicified, fractured and propyllitized granodiorite to the west. Gouge, slickensides, sheared, brecciated and open-space filling textures were recorded in several localities. Shear plane attitudes strike 0-20AZ and $\operatorname{dip} 50^{\circ}$ to 70° east.

At the Beth Showing area, at least 3 sets of quartz-filled fractures were recognized. From oldest to youngest, they are: 1) north shallow dipping $95^{\circ}-115^{\circ}$ AZ fractures, 2) prominent 130° $150^{\circ} \mathrm{AZ} / 60^{\circ}-80^{\circ} \mathrm{NE}$ dipping fractures with vuggy quartz and fine to coarse pyrite, and 3) $10^{\circ}-40^{\circ} \mathrm{AZ} / 50^{\circ}-80^{\circ} \mathrm{NW}$ dipping fractures sometimes with banded or lamellar quartz and rare sulphides. The latter fracture set, where tightly healed by banded milky white to grey chalcedonic quartz, appears to be gold-silver bearing.

Overall, a series of inferred, north-trending parallel fault splays off the main Granby River structure are likely responsible for the extensive development of an oblique through-going fracturing pattern in granitic host rocks. No significant silica alteration has been discovered in Tertiary volcanic rocks.

4.2 Mineralization

Prospecting in the vicinity of several anomalous soil sample sites resulted in the discovery of a gold-bearing, epithermal-type quartz veinlet stockwork zone roughly measuring 15 m by 20 m . This area, named the Beth Showing, displays a variety of quartz vein textures in a fractured propyllitized granodiorite host.

Typical anastomosing quartz fracture veinlets are porous and vuggy. Auto-brecciated granitic fragments may be cemented by vuggy quartz or finely crystalline milky white to grey quartz. Distinctly banded light grey to white cryptocrystalline textured silica was noted only at the Beth Showing. Veinlet selvages show pinkish tabular ?adularia. Rafted wall-rock clasts are strongly saussauritized and bleached. Veinlets rarely exceed 3 cm in width.

Six rock samples were collected from the Beth Showing. A grab sample of several banded, finely ribboned quartz veins from a small scree slope assayed 6125 ppb Au and 127 ppm Ag. Chip samples over measured widths of 2 m or less ranged between $94-2490 \mathrm{ppb}$ Au and 0.8 - 26 ppm Ag. Indicator elements including $\mathrm{Mo}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{As}$ and Sb are well below background.

Outcroppings around the Beth Showing are well fractured and pervasively healed by white vuggy quartz with occasional pyrite pods. No other banded chalcedonic quartz veinlets were noted elsewhere. Rock geochemical results for gold were 84 ppb or less.

The structurally-prepared zone of silicification was prospected over a strike length of over 1700 m and is still open at both ends. The degree of silicification within this zone is quite variable. In many cases, original intrusive textures were partially or totally destroyed by white to vitreous quartz. About 500 m south of the Beth Showing, scant granodiorite outcroppings display varying degrees of silica, chlorite and clay alteration. Narrow fracture planes carry pyrite with lesser chalcopyrite, magnetite and pyrrhotite. One sulphide-rich sample ran 486 ppm Cu but the vast majority rarely exceed 100 ppm Cu. One isolated, NW trending quartz vein ran 1007 ppm Zn and 29 ppm Au. The highest gold value obtained from this underexplored, widespread zone of silica flooding was 187 ppb .

At the Beth Showing, banded chalcedonic quartz veinlets are concentrated over a small area and appear to be an important localizer of highly anomalous gold and silver. This discrete zone of cryptocrystalline veining lies towards the eastern edge of the extensive, structurally-controlled area of drusy quartz open-space silicification. The gold-bearing veinlets are generally NE striking and are related to late-stage crosscutting fractures. A low-level epithermal system is indicated by the wallrock alteration and veinlet geochemistry.

5.0 GEOCHEMISTRY

All soil, stream sediment and rock chip samples taken by Inco personnel were prepared and analyzed by Acme Analytical Laboratories in Vancouver. A total of 36 soil, 5 silt and 59 rock samples were collected. All samples were geochemically analyzed for $A u$ and 30 trace elements.

Soil and silt samples collected by Discovery Consultants were analyzed by Bondar-Clegg and Company in Vancouver. A total of 250 soils and 17 stream sediment samples were collected. All samples were geochemically analyzed for $A u$ and 29 trace elements.

Sample locations were plotted for the entire data set (see Maps 2 and 4). For the soil and silt geochemical data, gold values of 10 ppb or greater were plotted (see Map 3). Rock sample results for gold only were plotted (see Map 5). The certificates of analysis for all samples are included in Appendix I. A brief description of each rock and soil sample is also included in Appendix II.

5.1 Field Procedure

Two types of soil surveys were conducted on the Outback claims. They were as follows: reconnaissance contour soil sampling by Discovery Consultants and dug-out soil profile sampling of selected gold anomalies by Inco personnel.

Standard soil sampling techniques were used for the contour sampling. At each sample point a hole was dug with a mattock to a depth of at least 15 cm in order to sample the zone of accumulation or the B-horizon. With the aid of a trowel, a soil sample was then taken from the bottom of the hole and placed in a numbered kraft paper bag. Stream sediment samples were also taken with use of a trowel.

For the soil profile geochemical survey comprising 36 samples, gold anomalies greater than 10 ppb were dug-out with a shovel to the C-horizon in order to test the reproducibility of the original B-horizon sample and to see if the gold content increases significantly from the B to the C-horizon. Ideally, elevated values from the c-horizon would reflect an anomalous bedrock source. Angular, weathered rock fragments and gritty soil textures were usually encountered. Pits were excavated to a minimum depth of 0.3 m . Samples were taken with a trowel from the bottom of the hole and placed in a Kraft paper envelope.

Soils in the region are generally poorly developed podzols. In many cases the whitish leached A_{2} horizon and the reddish brown, enriched B horizon is absent to moderately developed. Along the Granby River valley, glacial till varies between poorly sorted porous gravel to intermixed clay and immature soil layers. Organic material in the samples were usually less than 10%.

The majority of rock chip samples were taken over a measured width or area. A chisel and a 1 kg hammer were utilized for most of the rock chip samples. Rock sample weights were about 1.0 to 2.5 kg .

5.2 Laboratory Procedure

For silt and soil samples analyzed by Acme Labs, samples were dried in their envelopes and sieved to obtain a -80 mesh fraction. Then 0.5 gram sample is digested in 3 ml of $3: 1: 2 \mathrm{HC}-\mathrm{HNO}_{3}-\mathrm{H}_{2} \mathrm{O}$ solvent at $95^{\circ} \mathrm{C}$ for one hour and is then diluted to 10 ml with water. The digested sample is analyzed for 30 elements by inductively coupled argon plasma method (ICP). This leach is partial for Mn, Fe, Ca, P, La, Cr, Mg, Ba, Ti, B, W and limited for Na, K and A1.

For Au, a 10 g sample is ignited at $600^{\circ} \mathrm{C}$ and digested with 30 mls hot dilute aqua regia. Then 75 mls of clear solution is extracted with 5 mls Methyl Isobutyl Ketone. Gold is determined in the acid leach MIBK extract by graphite furnace Atomic Absorption analysis to a 1 ppb detection limit.

Rock samples were pulverized to -150 mesh and analyzed using the sample procedures outlined above. For Au, however, the 10 gram sample is preconcentrated using fire assay techniques and finished by ICP geochemical analysis.

For silt and soil samples analyzed by Bondar-Clegg, the -80 mesh fraction was analyzed for gold by standard fire assay/atomic absorption methods. Samples were also analyzed for Ag, As, Ba, Be, Cd, Ce, Cr, Cu, Ga, La, Li, Mn, Nb, Pb, Zn, Mo, Co, Bi, Ni, Sb, Sc, Sn, Sr, Ta, Te, B, Y, Zr and Fe by Induced Plasma technique following HNO_{3} - HCL extraction. Specific extraction techniques and lower detection limits for each element are shown in Appendix III.

5.3 Rock, Soil and Silt GeochemistryDiscussion

Basic statistics were compiled for the contour soil survey utilizing Bondar Clegg's computer. Histograms were plotted for Au, Ag, As, $\mathrm{Cu}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Pb}$ and Zn (see Figures 3 to 10). Results of the statistically analyzed data are located at the end of Appendix I.

The gold threshold was determined to be 68 ppb. A high background is recognized for the area. Maximum value obtained was 1496 ppb Au . The Au histogram shows a bimodal population that likely reflects slightly anomalous areas of drusy quartz silicification and the potentially Au-enhanced chalcedonic quartz variety of veining.

The Ag and Fe histograms also show two distinct populations. The thresholds were calculated to be 0.7 ppm Ag and $4.3 \% \mathrm{Fe}$, respectively. Multiple populations are expected because of the variability in rock types and alteration. The Ag and Fe plots may, in part, reflect the intensity of the silicification and propyllitic alteration, respectively. A high background in Fe reflects the iron-bearing constituents of the underlying granodiorite. Histogram plots for $\mathrm{As}, \mathrm{Cu}, \mathrm{Mo}, \mathrm{Pb}$ and Zn display a slightly skewed distribution and appear to indicate that only one population is present.

Most soil sample sites displaying gold of 10 ppb or greater were dug-out to the c-horizon and re-sampled in order to verify the anomaly close to a bedrock source. Angular or residual rock fragments from the pit excavations were often sampled as well. A comparison summary of the soil sample results are shown in Table 1. Gold results were plotted on Map 3.

TABLE 1

OUTBACK - SOIL GEOCHEMISTRY

Discovery ConsultantsB-horizon			Inco Check samples C-horizon			
SAMPLE \#	$\begin{gathered} A u \\ (\mathrm{ppb}) \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{ppm}) \end{gathered}$	Sample \#	$\begin{gathered} \mathrm{Au} \\ (\mathrm{ppb}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ (\mathrm{ppm}) \end{gathered}$	Depth
OB-133	24	<0.2	SX 72949	91	0.2	0.55 m
OB-224	51	0.2	SX 72950	61	0.1	0.60 m
OB-274	89	<0.2	SX 72951	43	0.1	0.35 m
OB-275	22	0.7	SX 72952	53	1.5	0.40 m
OB-276	49	0.6	SX 72953	34	0.3	0.30
OB-63	43	<0.2	SX 72954	3	0.1	0.60 m
OB-64	13	<0.2	SX 72955	3	0.2	0.55 m
OB-67	63	<0.2	SX 72956	1	0.1	0.30 m
OB-72	23	<0.2	SX 72958	1	0.1	0.50 m
OB-181	69	<0.2	SX 72959	1	0.1	0.50 m
OB-261	39	<0.2	SX 72960	15	0.1	0.50 m
OB-260	20	<0.2	SX 72961	2	0.1	0.55 m
OB-365	21	0.3	SX 72962	40	0.3	0.45 m
OB-364	37	<0.2	SX 72963	31	0.2	0.60 m
OB-363	115	$0 \cdot 3$	SX 72964	18	0.8	0.50 m
OB-370	68	0.2	SX 72965	52	0.1	0.50 m
OB-300	< 5	<0.2	SX 72939	2	0.1	0.55 m
OB-301	24	<0.2	SX 72940	37	0.3	0.60 m
OB-194	6	<0.2	SX 72941	4	0.3	0.50 m
OB-195	37	0.2	SX 72942	25	0.1	0.55 m
OB-198	9	0.4	SX 72943	9	0.4	0.50 m
OB-238	44	<0.2	SX 72944	71	0.2	0.50 m
OB-234	23	0.3	SX 72945	650	0.7	0.55 m
OB-233	14	0.2	SX 72946	43	0.3	0.45 m
OB-232	54	0.3	SX 62947	41	0.4	0.55 m
OB-284	59	0.9	SX 72948	103	1.0	0.45 m
OB-239	10	0.7	SX 72970	13	1.2	0.60 m
OB-237	99	0.7	SX 72971	1218	0.5	0.50 m
OB-285	27	0.7	SX 72972	17	1.1	0.60 m
OB-287	120	1.9	SX 72973	106	2.5	0.40 m
OB-426	70	0.3	SX 72974	55	1.3	0.60 m
OB-429	1155	0.8	SX 72975	948	0.7	0.20 m
OB-430	216	0.4	SX 72976	1596	0.5	0.45 m
OB-431	1496	1.5	SX 72977	322	0.8	0.20 m
OB-433	55	0.3	SX 72978	32	0.9	0.50 m
OB-305	261	1.7	SX 72979	603	2.5	0.55 m

The tabulated Au-Ag comparison shows that almost half of the samples display a significant increase between the gold value obtained in the B-horizon and check sample obtained from the C horizon. These sample locations warrant further investigation. The soil sample closest to the Beth Showing (OB-301) ran 37 ppb Au compared to an original anomaly of 24 ppb Au .

3

OUTBACK (As histogram) $\pi=250$ sumples, $\quad 1<5 \mathrm{ppm}, \quad 0 \geqslant 200 \mathrm{ppm}$

OUTBACK (Cu histogram) $\pi=250$ somples, $0<5 \mathrm{ppm}, 5>200 \mathrm{ppr}$

OUTBACK (Mo histogram)
$n=250$ sqmples, 27 द1pprn $\mid>40 \mathrm{pprt}$

3

Soil geochemistry displays 3 main clusters of statistically significant anomalies all within 500 m of each other. They are defined as follows: The Beth Showing area (OB 30l - 305); roughly 400 m south of the Beth Showing on the other side of the creek (OB 232-234, 284); and, near a break in slope on the southern edge of the main creek valley ($O B 429$ - 433). All three targets were briefly investigated but with the exception of the Beth Showing discovery, no significant gold results were obtained from rock sampling. Soil anomalies ranged between 32 - 1596 ppb Au and 0.3 2.5 ppm Ag .

The source of these anomalies are likely related to silicification but further investigation is required. For example, the original sample at OB-430 ran 216 ppb Au while the check C horizon sample returned 1596 ppb Au. Two rock samples of altered granodiorite from the immediate vicinity yielded results of only 35 and 94 ppb Au .

Scattered soil anomalies exist farther south and generally follow the structural trend of drusy/vuggy silicification. No significant rock or soil anomalies were obtained over the argillically altered quartz-feldspar intrusive. Only a few discrete gold anomalies exist at higher elevations above the main area of silicification. Stream sediment results were 15 ppb Au or less.

6.0 CONCLUSIONS

The zone of silicification, roughly measuring 250 m in width and a minimum of 1700 m along strike, extends laterally and parallel to a series of subsidiary fault structures related to the Granby River fault. Evidence of silicification includes widespread drusy quartz open-space infillings, stockwork quartz flooding, fracture-controlled quartz veinlets and discrete, banded chalcedonic silica veinlets. Pervasive silicification appears to be hosted in propyllitized Mesozoic granitic rocks only. Multiple episodes of fracturing and silica enrichment were recognized. Gold values rarely exceed 100 ppb throughout this broad zone. Argillically altered quartz-feldspar intrusive rocks appear to lie beyond the main area of silica replacement.

The Beth Showing, characterized by gold-silver-bearing banded cryptocrystalline quartz veinlets, may represent a localized hydrothermal fracture zone spatially related to extensional faulting in a propyllized granodiorite host. This Au-Ag occurrence is characterized as epithermal because of its apparent association with major fault splays, locally intense fracturing, grey chalcedonic quartz, thin walls of potassic feldspar (?adularia) and possible very fine-grained sulphides. All trace elements were very low. Overall, geological indicators and geochemistry suggest evidence of a low-level epithermal system that warrants follow-up exploration.

7.0 RECOMMENDATIONS

The following exploration work is recommended for the Outback claim group:

1. A petrographic study supplemented with an SEM mineralogical determination of gold-silver at the Beth Showing. Characteristics of the alteration assemblage and mode of occurrence would help define the alteration level in the epithermal model.
2. A detailed grid should be laid out to facilitate control of geological, geochemical and prospecting follow-up surveys. Line spacings of 50 m should be adequate. Some linecutting may be required.
3. Detailed mapping, prospecting and limited soil sampling is warranted over the main areas of alteration in order to establish drill targets and to assist in more accurately determining dimensions, structural controls, grade continuity, mineralogy and hydrothermal alteration of the epithermal Au-Ag mineralization.
4. Specific targets and/or areas of potential gold mineralization may warrant mechanized trenching and/or blasting particularly in overburden covered areas.
5. Dependant upon encouraging results of the preceding exploration work, a provision for a 1000 m diamond drill program is recommended for the best target area.

8.0 REFERENCES

Garber, R.J., Louring, J.T., Lund, J.L., (1979): Geological and Geochemical Report on Granby Project, Greenwood Mining Division; B.C.M.M.E.P.R. assessment report 7246.

Little, H.W. (1957): Kettle River, East Half, B.C.; Geological Survey of Canada Map 6-1957.

Monger, J.W.H. (1968): Early Tertiary Stratified Rocks, Greenwood map-area, B.C.; Geological Survey of Canada, Paper 67-42, 39 р.

Parrish, R.R., Carr, S.D. and Parkinson, D.L. (1987): Extensional Tectonics of the southern Omineca Belt, B.C. and Washington; Tectonics, Volume 7.

Tempelman-Kluit, D.J., (1989): Geological Map, Penticton Map Area (NTS 82E) Southern British Columbia; Geological Survey of Canada, Open File 1969.

Outback Claims

Personnel

D. Bohme 10 days @ 200/day $\$ 2000.00$

Project Geologist June 9-Sept. 21, 1989
J. Miller

Geologist
6 days @ $120 /$ day 720.00
D. Henderson

Assistant
sept. 12-21, 1989
2 days @ 95/day 190.00
June 9, 10, 1989
\$2910.00
Professional Services
W.R. Gilmour
1 day @ 300/day
300.00
S.B. Butrenchuk
0.5 day @ $320 / \mathrm{day}$
160.00

Labour

| R. Mitchell | 2 days @ $228 /$ day | 456.00 | |
| :--- | :--- | :--- | :--- | :--- |
| R. Patrick | 2 days @ $270 /$ day | 540.00 | |
| B. Ingelson | 4 days @ $186 /$ day | 744.00 | |
| R. Anctil | 4 days @ $232 /$ day | $\underline{928.00}$ | 2668.00 |

Geochemical Charges

267 soil and silt samples for Au,	4272.00
29 element ICP @ $\$ 16 /$ sample	
41 soil and silt sample for Au,	430.50
30 element ICP @ $\$ 10.50 /$ sample	
59 rocks for Au, 30 element ICP	$\underline{914.50}$
@ $\$ 15.50 /$ sample	

5617.00

Transportation

$\begin{aligned} & \text { Helicopter 206B } \\ & 16.4 \mathrm{hrs.} \text { @ } 670 \end{aligned}$	including fuel	10,988.00	
4×4 truck	5 days @ 90/day	450.00	11,438.00
Meals and Groceries	30 man-days @ $28 /$ day		840.00
Accommodation	Hotels		520.00
Field Supplies	Flagging, bags, etc.	350.00	
	Freight and shipping	$\underline{220.00}$	570.00

Report Preparation

Reproductions, airphotos, etc. Typing, copy, drafting, etc.
300.00
800.00

Total $\$ 26,123.00$

10.0 STATEMENT OF QUALIFICATIONS

I, Dennis Martin Bohme, of the City of Vancouver, in the Province of British Columbia, do hereby certify that:

1. I reside at 57 East 40 th Avenue, Vancouver, British Columbia, V5W 1L3.
2. I am a graduate of the British Columbia Institute of Technology with a Diploma in Mining Technology, 1980 .
3. I am a graduate of the Montana College of Mineral Science and Technology, in Butte, Montana, with the degree of Bachelor of Science in Geological Engineering, 1985.
4. I have been employed in mining exploration as a technician and a geological engineer with Newmont Exploration of Canada Limited from May 1980 until February 1989, except for 18 months when I was attending university.
5. I am a registered Professional Engineer in the Province of British Columbia.
6. I am a self-employed Geological Consultant.
7. I personally carried out and supervised much of the work described in this report.

APPENDIX I

Certificate of Analyses

Soil Saapling Results (1989)

Reference: v89-05094.0

Sanple ID	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} A_{5} \\ \text { ppa } \end{gathered}$	$\begin{gathered} 8 \mathrm{da} \\ \mathrm{ppa} \end{gathered}$	$\begin{array}{r} \text { Bi } \\ \text { ppa } \end{array}$	$\begin{gathered} c_{0} \\ \text { pp\# } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{cu} \\ \mathrm{ppma} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppr} \end{gathered}$	$\begin{gathered} \text { Ho } \\ \text { ppa } \end{gathered}$	$\underset{\text { ppa }}{\substack{\mathrm{Ni}}}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { pp』 } \end{gathered}$	$\begin{gathered} \text { ln } \\ \text { ppa } \end{gathered}$
OB-1	<5	0.2	16	106	<2	6	13	8	1.55	190	2	4	15	<5	39
08-2	<5	<0.2	6	50	<2	1	5	3	0.97	46	<1	1	3	<	32
OB-3	<	<0.2	16	202	<2	4	26	7	2.87	106	1	8	5	< 5	39
OB-4	<	0.2	18	160	<2	7	51	17	2.98	185	1	18	<2	< 5	39
OB-5	<5	<0.2	22	134	<2	7	46	14	2.70	526	2	13	<2	< 5	43
08-6	<5	<0.2	15	108	<2	6	42	8	2.87	148	I	9	<2	<5	43
OB-8	< 5	<0.2	15	140	<2	8	62	15	2.97	116	1	16	<2	< 5	35
08-9	<5	<0.2	12	160	<2	9	64	12	3.34	176	,	20		< 5	43
08-10	<5	<0.2	16	91	<2	5	34	7	2.37	124	<1	9	<2	< 5	47
08-11	7	<0.2	17	118	<2	5	20	8	2.88	253	,	7	<2	< 5	65
OB-12	<5	<0.2	15	142	<2	6	27	14	2.68	750	2	12	5	<5	35
08-13	<5	<0.2	19	52	<2	4	33	6	2.62	196	2	5	<2	< 5	35
OB-14	<5	<0.2	15	214	<2	9	69	17	2.83	523	2	23	<2	<5	50
08-15	8	<0.2	12	85	<2	5	36	10	2.43	125	<1	10	<2	< 5	49
OB-16	<5	<0.2	14	333	<2	10	52	21	2.84	943	2	25	3	<	45
08-17	<5	<0.2	7	91	<2	6	45	8	2.48	406	1	,	<2	<5	22
OB-19	6	<0.2	14	219	<2	7	50	18	3.13	213	3	23	5	<5	29
OB-20	<5	0.3	15	177	<2	7	23	24	2.80	1000	3	12	7	< 5	47
OB-21	<5	<0.2	23	114	<2	4	10	8	2.32	159	2	5	3	<5	42
OB-22	<5	<0.2	21	364	<2	6	13	20	2.28	839	2	12	13	< 5	40
08-23	<5	<0.2	14	83	<2	5	8	12	2.16	228	<1	6	<2	<5	43
08-24	< 5	<0.2	19	92	<2	4	8	10	2.03	393		5	<2	<5	37
08-25	<5	<0.2	19	76	<2	4	9	12	2.28	182	2	5	2	<	30
OB-26	9	<0.2	12	77	<2	5	9	9	2.12	401	2	5	${ }^{2}$	< 5	46
OB-27	<5	<0.2	15	118	<2	5	10	8	2.03	528	2	5	2	<	53
08-28	< 5	<0.2	11	104	<2	4	12	9	2.01	268	2	7	<2	<	45
08-29	<	<0.2	12	114	<2	,	10	13	2.26	151	,	6	<2	<5	38
08-30	<5	<0.2	9	52	<2	5	11	13	2.15	152	1	6	<2	< 5	30
08-31	<5	$\langle 0.2$	15	83	<2	5	8	12	1.95	225	1	5	<2	<5	45
08-33	<5	<0.2	19	91	<2		9	14	3.37	226	2	6	<2	<5	45
OB-34	<	<0.2	6	110	<2	6	11	25	2.87	235	2	8	<2	<5	44
08-51	<5	<0.2	19	74	<2	7	29	10	2.76	555	,	11	3	< 5	60
OB-52	<5	<0.2	18	88	<2	5	19	10	2.14	461	2	7	<2	<5	37
08-53	<	<0.2	14	98	<2		32	10	2.56	1036	1	10	4	<5	54
OB-54	<	<0.2	10	72	<2	4	47	13	3.06	98	2	10	<2	<5	20
08-55	12	<0.2	17	178	<2	10	21	14	2.91	633		8	47	< 5	119
08-56	(5	<0.2	19	109	<2	5	27	9	2.99	548	2	8	14	<5	111
08-57	<5	<0.2	18	89	<2	d	17	8	3.32	1056	2	6	12	< 5	107
08-58	< 5	<0.2	15	120	<2	5	25		2.72	679	1	8	4	<5	138
08-59	<	<0.2	11	64	<2	4	29	6	1.91	303	1	5	3	<5	69

Sapple ID	$\begin{gathered} \mathrm{Be} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { cd } \\ \text { ppin } \end{gathered}$	$\begin{gathered} \mathrm{Ce} \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \text { 6a } \\ \text { ppı } \end{array}$	$\begin{array}{r} \text { La } \\ \text { ppa } \end{array}$	$\begin{array}{r} \text { Li } \\ \text { ppi } \end{array}$	$\begin{gathered} \text { Nb } \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \text { Sc } \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \mathrm{ppa} \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{ppa} \end{array}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppa} \end{array}$	$\begin{array}{r} \text { Te } \\ \text { ppı } \end{array}$	$\begin{array}{r} V \\ \text { ppa } \end{array}$	$\begin{array}{r} Y \\ \text { ppa } \end{array}$	$\begin{array}{r} \text { lr } \\ \text { ppa } \end{array}$
08-1	<0.5	<1	42	<2	32	6	<1	<1	<20	12	<10	<10	27	6	2
OB-2	<0.5	<1	14	<2	7	1	<1	<1	<20	6	<10	(10	15	<1	<1
OB-3	$\langle 0.5$	<1	87		29	12	<1	1	<20	15	<10	<10	42	8	1
OB-4	<0.5	<1	35	4	22	9	2	1	<20	30	<10	<10	59	5	2
08-5	<0.5	<1	54	7	30	13	3	2	<20	36	<10	<10	54	10	8
OB-6	<0.5	<1	17	6	9	11	2	1	<20	11	(10	<10	54	2	4
08-8	<0.5	<1	24	3	13	12	1	2	<20	9	<10	<10	66	3	6
OB-9	<0.5	(11	18	7	10	18	2	2	<20	17	<10	<10	64	2	5
08-10	<0.5	<1	23	4	13	10	,	1	<20	7	<10	<10	48	3	10
08-11	<0.5	<1	14	6	9	16	,	2	<20	9	<10	<10	42	2	16
08-12	<0.5	<1	53	9	34	14	2	2	<20	63	<10	<10	51	10	2
08-13	<0.5	<1	14	5	8	9	1	1	<20	9	(10	<10	52	2	6
08-14	<0.5	<1	97	6	51	22	4	2	<20	88	(10)	<10	69	15	<1
OB-15	<0.5	<1	26	5	14	17	1	1	<20	8	(10	<10	48	3	3
OB-16	<0.5	<1	86	8	31	32	3	2	<20	98	<10	<10	58	10	<1
08-17	<0.5	<1	50	4	18	6	1	<1	<20	12	<10	<10	55	4	<1
OB-19	<0.5	<1	54	7	35	17	5	1	<20	80	(10	<10	59	8	2
08-20	<0.5	<1	99	9	70	20	2	2	<20	44	<10	<10	42	34	2
OB-21	<0.5	(1	17	6	10	13	1		<20	12	<10	(10)	36	2	3
$0 \mathrm{~B}-22$	<0.5	<1	178	6	47	31	2	2	<20	56	<10	<10	36	17	3
08-23	<0.5	<1	21	6	10	16	<1	1	<20	4	(10)	<10	33	2	4
OB-24	<0.5	<1	15	5	8	12	(1	1	<20	5	<10	(10	31	2	6
08-25	<0.5	<1	20	7	14	7	2	2	<20	7	<10	(10	30	8	15
08-25	<0.5	<1	10	6	5	15	1	1	<20	6	<10	<10	32	2	16
08-27	<0.5	<1	16	6	9	14	1	1	<20	5	<10	(10	33	2	4
OB-28	<0.5	<1	14	4	8	14	<1	1	<20	6	(10	<10	35	2	8
08-29	<0.5	<1	13	6	9	20	<1	1	<20	8	(10	<10	36	3	1
OB-30	<0.5	<1	17	3	10	20	<1	1	<20	5	<10	<10	35	2	2
$08-31$	<0.5	<1	15	4	8	17	<1	1	(20	7	(10	<10	30	2	3
08-33	<0.5	<1	14	5	8	24	<1	1	<20	5	<10	<10	43	1	4
OB-34	<0.5	<1	21	4	8	20	<1	3	<20	10	<10	<10	40	4	31
08-51	<0.5	<1	15	5	7	11	1	2	<20	6	<10	<10	42	2	9
08-52	<0.5	<1	20	5	9	9	1	2	<20	10	(10	<10	35	4	31
08-53	<0.5	<1	21	6	10	11	1	1	<20	14	<10	<10	46	2	2
08-54	<0.5	<1	16	2	,	6	<1	<1	<20	10	<10	<10	62	1	1
08-55	<0.5	<1	137	7	43	13	2	1	<20	11	<10	(10	35	10	
08-56	<0.5	<1	90		36	11	2	2	<20	9	<10	<10	43	8	20
08-57	<0.5	<1	43	9	8	15	2	1	<20	8	<10	<10	45	2	3
08-58	<0.5	<1	23	4	7	10	1	1	<20	8	<10	<10	46	2	2
08-59	<0.5	<1	20	3	11	6	(1)	<1	<20	9	<10	<10	42	2	<1

Soil Sampling Results
(1989)

Reference: v89-06094.0

Sample ID	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \text { Ag } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { A5 } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \text { Ba } \\ \text { pp } \end{gathered}$	$\begin{array}{r} \mathrm{Bi} \\ \text { ppi } \end{array}$	$\begin{gathered} \text { Co } \\ \text { pp } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { pp』 } \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \text { Min } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Mo } \\ \text { ppm } \end{gathered}$	$\underset{\mathrm{ppn}}{\mathrm{Ni}}$	$\begin{gathered} \text { Pb } \\ \text { ppo } \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { ppa } \end{gathered}$	In
OB-60	<	0.7	17	464	<2	11	119	81	3.05	562	2	39	<2	< 5	48
08-62	<5	<0.2	15	222	<2	14	158	21	4.06	260	2	37	<2	<5	67
0B-63	43	<0.2	10	182	<2	6	47	10	2.90	218	<1	13	<2	< 5	34
08-64	13	<0.2	15	125	<2	12	84	13	4.09	325	2	22	<2	<5	66
OB-65	<5	<0.2	15	92	<2	9	75	9	3.08	187	1	17	<2	<	61
08-66	10	<0.2	10	138	<2	6	37	11	2.72	149	1	11	<2	<	37
OB-67	63	<0.2	7	102	<2	5	37	8	2.72	156	1	9	<2	<	35
08-68	6	<0.2	7	42	<2	2	20	6	1.89	52	2	4	4	<5	14
OB-69	6	<0.2	6	129	<2	7	52	13	1.61	108	2	21	<2	<	32
08-70	<	<0.2	8	42	<2	2	9	6	1.33	179	1	3	<2	<	20
08-71	8	<0.2	13	161	<2	7	7	14	2.98	767	2	5	<2	<	80
08-72	23	<0.2	9	108	<2	6	11	20	2.59	523	2	8	<2	<5	51
08-73	< 5	<0.2	14	71	<2	5	10	12	2.63	321	2	5	<2	<	44
08-74	<5	<0.2	11	90	<2	5	13	12	2.16	430	2	6	<2	<5	44
OB-75	18	<0.2	13	84	<2	6	9	18	2.72	504	2	5	<2	<	50
08-76	<5	<0.2	10	136	<2	4	8	7	2.37	280	2	6	<2	<5	49
OB-77	< 5	<0.2	10	81	<2	6	9	13	2.55	456	2	7	<2	<	66
08-78	< 5	<0.2	18	107	<2	5	10	13	2.02	284	<1	8	<2	<5	46
OB-79	< 5	<0.2	12	129	<2	6	11	15	2.76	211	1	8	<2	<	49
08-80	<	<0.2	10	155	<2	5	9	11	1.90	275	<1	4	3	<	26
OB-81	< 5	<0.2	10	115	<2	7	9	16	2.32	565	1	6	<2	<	48
08-127	< 5	<0.2	8	64	<2	4	12	8	2.02	176	2	6	<2	< 5	43
08-128	9	0.2	21	278	<2	5	12	30	2.96	386	2	11	<2	<5	42
08-129	6	<0.2	9	94	<2	7	12	24	3.07	332	2	8	<2	< 5	54
08-130	<5	<0.2	17	253	<2	11	10	49	3.87	1052	2	8	<2	<5	87
08-131	8	<0.2	17	134	<2	8	14	34	3.20	478	3	10	<2	<	47
OB-132	5	<0.2	15	109	<2	7	9	22	2.82	253	3	8	3	<	42
08-133	24	<0.2	19	147	<2	15	11	85	4.52	656	4	7	<2	<5	63
08-134	6	<0.2	12	232	<2	9	11	18	3.30	653	2	9	<2	< 5	81
08-135	8	<0.2	23	205	<2	11	13	38	3.85	685	5	10	<2	<5	70
OB-136	10	<0.2	11	126	<2	8	18	17	3.12	401	3	12	<2	<	68
08-137	< 5	0.2	15	171	<2	11	60	20	3.47	518	2	23	<2	<5	60
08-138	< 5	0.2	14	93	<2	9	19	21	3.08	559	2	9	<2	< 5	56
OB-139	11	<0.2	13	112	<2	8	11	12	2.63	535	1	8	<2	<5	41
OB-140	<	<0.2	13	106	<2	6	18	9	2.57	254	1	9	<2	<	36
08-141	7	0.2	14	95	<2	18	11	60	5.79	942	3	9	<2	<5	51
OB-142	<5	<0.2	15	63	<2	10	13	22	3.49	293	2	10	<2	<	41
08-143	<5	0.2	13	110	<2	10	22	47	3.31	718	1	13	<2	<5	58
08-168	<5	0.2	8	100	<2	7	5	71	1.78	1689	1	3	<2	<5	35
08-169	<	0.2	14	178	<2	10	16	52	3.02	369	2	10	$\langle 2$	<5	44

Sample ID	$\begin{gathered} \mathrm{Be} \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Cd } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Ce} \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { 6a } \\ \text { ppп } \end{gathered}$	$\begin{gathered} \text { La } \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \mathrm{Li} \\ \text { Lpim } \end{array}$	$\begin{gathered} \text { Nb } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Sc} \\ \mathrm{ppn} \end{gathered}$	$\begin{array}{r} \mathrm{Sn}_{\mathrm{n}} \\ \mathrm{ppe} \end{array}$	$\begin{gathered} \text { Sr } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \mathrm{r}_{\mathrm{a}} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { Te } \\ \text { ppı } \end{gathered}$	$\begin{gathered} V \\ \text { ppı } \end{gathered}$	$\begin{array}{r} Y \\ p p п \end{array}$	lr ppı
OB-60	<0.5	11	52	7	66	35	6	10	<20	118	<10	(10	65	37	4
08-62	<0.5	<1	12	7	7	13	5	2	<20	21	<10	<10	89	2	2
08-63	<0.5	<1	19	5	11	19	2	1	<20	19	<10	<10	64	2	2
OB-64	<0.5	<1	22	7	12	23	2	3	<20	17	13	<10	86	3	3
OB-65	<0.5	<1	16	4	10	17	3	2	<20	12	<10	(10	67	2	6
0B-66	<0.5	<1	32	4	23	15	2	2	<20	31	<10	<10	57	4	2
OB-67	<0.5	<1	27	4	15	14	1	1	<20	10	<10	<10	52	3	11
08-68	<0.5	<1	13	6	8	2	2	<1	<20	5	<10	<10	46	<1	2
OB-69	$\langle 0.5$	<1	63	5	45	17	3	2	<20	19	<10	<10	50	10	<1
08-70	<0.5	<1	9	4	5	4	<1	(1	<20	8	<10	<10	25	1	1
OB-71	<0.5	<1	43	2	18	18	<1	2	(20	11	(10	<10	42	5	3
08-72	<0.5	<1	44	3	12	16	<1	2	<20	8	<10	<10	37	4	4
OB-73	<0.5	<1	19	4	7	18	<1	2	<20	9	(10	<10	45	2	2
08-74	<0.5	<1	19	4	9	13	<1	2	<20	17	<10	<10	40	2	2
OB-75	<0.5	<1	35	<2	7	16	<1	2	<20	8	<10	<10	47	3	<1
08-76	<0.5	<1	14	4	9	16	1	1	<20	12	<10	<10	41	2	1
OB-77	<0.5	<1	19	3	11	15	<1	2	<20	7	<10	<10	37	3	4
08-78	<0.5	<1	16	3	8	14	<1	2	<20	7	<10	<10	32	3	10
08-79	<0.5	<1	14	4	8	25	<1	2	<20	7	<10	<10	42	3	3
OB-80	$\langle 0.5$	1	18	(2	13	15	<1	1	<20	13	<10	(10	34	5	<1
08-81	<0.5	<1	17	3	9	20	<1	2	<20	8	<10	<10	36	3	2
08-127	<0.5	<1	15	4	9	14	<1	1	<20	13	<10	<10	38	2	(1)
OB-128	<0.5	<1	46	6	25	44	2	2	<20	50	<10	<10	41	18	3
08-129	$\langle 0.5$	<1	20	3	10	20	(1	2	<20	13	(10	<10	44	2	4
08-130	<0.5	<1	26	4	14	25	<1	3	<20	17	<10	<10	57	2	3
08-131	<0.5	<1	27	3	10	20	<1	2	<20	8	<10	<10	46	3	12
OB-132	<0.5	<1	18	5	8	22	<1	2	<20	10	<10	<10	43	2	6
08-133	<0.5	<1	22	5	12	41	<1	4	<20	10	11	<10	74	3	2
OB-134	<0.5	<1	10	7	6	29	1	2	<20	31	<10	(10	49	2	5
08-135	$\langle 0.5$	<1	11	5	5	32	1	3	<20	19	11	<10	57	3	5
OB-136	< 0.5	<1	25	4	14	25	3	2	<20	29	<10	(10	47	4	3
08-137	<0.5	<1	50	6	18	36	5	3	<20	33	<10	<10	53	5	5
08-138	<0.5	<1	18	5	9	32	2	3	<20	19	<10	<10	53	4	5
OB-139	<0.5	<1	15	5	6	30	2	3	<20	28	<10	<10	51	3	2
08-140	<0.5	<1	17	5	9	20	2	2	<20	14	<10	<10	44	2	8
OB-141	<0.5	<1	22	6	13	72	1	5	<20	31	11	<10	77	9	1
OB-142	<0.5	<1	13	7	7	35	2	3	<20	20	<10	<10	56	3	4
08-143	<0.5	<1	28	6	13	40	2	4	<20	28	<10	<10	55	6	2
08-168	<0.5	<1	14	<2	11	15	<1	4	<20	16	<10	<10	36	14	1
08-169	<0.5	<1	20	5	12	34	2	2	<20	24	(10)	<10	50	8	5

Soil Sanpling Results
(1989)

Reference: v89-06094.0

Saaple [0	$\begin{gathered} \text { Au } \\ \text { ppb } \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} A s \\ p p a \end{gathered}$	$\begin{array}{r} \text { Ba } \\ \text { ppa } \end{array}$	$\begin{gathered} \text { Bi } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \mathrm{C}_{0} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \text { Cu } \\ \text { ppp } \end{gathered}$	$\begin{array}{r} \mathrm{Fe} \\ \mathrm{y} \end{array}$	$\begin{gathered} \mathrm{Mn} \\ \text { pp } \end{gathered}$	$\begin{gathered} \text { Ho } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppa} \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { ppa } \end{array}$	$\begin{gathered} \text { In } \\ \text { ppa } \end{gathered}$
OB-170	< 5	<0.2	12	132	<2	10	24	36	2.91	242	2	11	<2	< 5	38
OB-171	く5	0.2	10	186	<2	7	13	111	2.44	258	2	7	2	< 5	29
OB-172	6	0.2	11	103	<2	6	13	30	2.35	216	1	7	<2	<5	34
08-173	13	<0.2	11	130	<2	3	33	16	3.08	340	2	14	<2	<5	49
DB-174	<5	<0.2	11	86	<2	9	43	17	3.48	252	2	12	<2	<5	44
08-175	7	0.2	15	185	<2	5	24	17	2.28	148	1	8	<2	<	34
OB-177	n/a	<0.2	7	98	<2	7	39	11	1.88	181	<1	15	<2	<5	28
08-179	<5	0.2	8	117	<2	6	15	12	2.10	555	2	6	<2	<	51
OB-180	< 5	<0.2	12	110	<2	8	19	33	2.79	234	3	12	<2	<	30
08-181	69	<0.2	13	123	<2	7	16	17	2.34	227	1	10	<2	<	38
OB-183	<5	<0.2	9	132	<2	7	33	23	2.70	200	1	11	<2	<	36
08-184	6	<0.2	8	68	<2	7	15	17	1.99	201	1	7	<2	< 5	29
OB-185	<5	0.3	13	148	<2	5	12	47	2.13	495	2	11	<2	<	50
08-186	6	<0.2	6	94	<2	5	11	16	1.75	117	1	5	<2	<	20
OB-187	<5	0.2	15	153	<2	11	12	65	3.89	589	3	6	<2	<	55
08-188	8	0.4	17	175	<2	7	19	29	2.20	579	1	13	<2	<	42
08-189	<5	0.3	12	213	<2	7	13	38	2.32	595	1	9	7	<	58
08-190	10	0.4	20	166	<2	5	11	25	2.61	196	2	8	<2	<	28
08-191	< 5	0.3	10	252	<2	7	18	35	2.78	667	2	12	<2	<	58
08-192	6	<0.2	7	70	<2	8	19	22	2.27	193	1	11	<2	< 5	34
08-193	<5	0.2	7	177	<2	12	68	13	2.94	1252	<1	21	<2	<	61
OB-194	6	<0.2	13	119	<2	6	13	20	2.27	289	1	10	<2	< 5	57
08-195	37	0.2	-5	221	<2	7	10	40	3.01	283	2	9	<2	<5	42
08-196	7	<0.2	9	127	<2	11	9	38	2.60	764	2	8	<2	<	40
08-197	6	0.4	7	130	<2	7	10	30	2.71	296	2	8	<2	<5	41
08-198	9	0.4	12	90	<2	7	11	54	3.54	437	3	10	<2	<	51
08-199	< 5	0.3	8	104	<2	6	8	16	2.06	297	1	7	<2	<5	46
08-200	< 5	0.3	10	109	<2	6	9	16	2.13	381	1	8	<2	<	46
OB-205	<5	0.3	11	186	<2	5	24	77	2.10	203	2	6	<2	<5	19
08-206	< 5	0.2	11	131	<2	10	27	17	3.02	180	2	10	<2	<5	37
08-207	< 5	<0.2	12	65	<2	5	24	14	2.43	216	1	8	<2	< 5	25
08-208	<5	<0.2	10	99	<2	5	16	11	1.93	489	1	6	<2	<	42
08-209	<5	0.3	7	157	<2	6	19	28	2.91	180	2	9	<2	< 5	56
08-210	< 5	<0.2	9	120	<2	6	31	14	2.36	251	<1	8	<2	<5	26
OB-212	<5	0.3	8	103	<2	6	15	19	2.66	194	2	8	<2	<	47
08-213	< 5	<0.2	13	141	<2	7	20	25	2.80	194	2	12	<2	<5	48
08-214	<5	<0.2	15	123	<2	6	16	14	2.11	238	1	11	3	<5	37
08-215	< 5	<0.2	13	142	<2	7	17	17	2.12	356	1	10	3	<	44
OB-216	<5	<0.2	11	108	<2	5	12	10	1.61	257	<1	6	3	(5	31
OB-217	<	0.5	19	163	く2	7	10	19	2.22	200	2	8	8	<5	53

Sample ID	$\begin{gathered} \mathrm{Be} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{Cd} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{Ce} \\ \mathrm{pp} \end{gathered}$	$\begin{array}{r} \text { 6a } \\ \text { ppa } \end{array}$	$\begin{array}{r} \text { La } \\ \text { ppa } \end{array}$	$\begin{array}{r} \text { Li } \\ \text { ppa } \end{array}$	$\begin{array}{r} \text { Nb } \\ \text { ppa } \end{array}$	$\begin{array}{r} \text { Sc } \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{Sn}_{\mathrm{n}}^{\mathrm{ppn}} \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \text { ppı } \end{gathered}$	$\begin{gathered} \mathrm{Ta} \\ \mathrm{pa} \end{gathered}$	$\underset{\text { ppa }}{\mathrm{Te}}$	$\begin{gathered} \text { v } \end{gathered}$	$\begin{array}{r} Y \\ \text { Y } \end{array}$	$\begin{gathered} \mathrm{Lr} \\ \mathrm{pg} \end{gathered}$
08-170	<0.5	<1	16	3	9	27	1	2	<20	13	<10	<10	50	3	<1
08-171	<0.5	<1	15	3	10	22	<1	2	<20	25	<10	<10	43	6	<1
08-172	<0.5	<1	12	4	8	15	<1	2	<20	11	<10	<10	41	3	11
08-173	<0.5	<1	33	2	14	16	1	2	<20	16	<10	(10	60	3	4
08-174	<0.5	<1	29	4	16	22	1	2	<20	15	<10	<10	72	4	4
OB-175	<0.5	<1	63	4	65	21	2	1	<20	49	<10	<10	38	17	<1
08-177	<0.5	<1	22	3	12	10	2	1	<20	19	<10	<10	42	2	1
08-179	<0.5	<1	17	3	10	14	<1	1	<20	7	(10	<10	37	2	4
08-180	<0.5	<1	27	2	15	21	<1	2	<20	17	<10	<10	42	3	<1
OB-181	<0.5	<1	18	4	10	16	<1	2	<20	11	<10	<10	39	2	6
08-183	<0.5	1	21	2	13	16	1	2	<20	16	<10	<10	53	3	2
OB-184	<0.5	<1	30	3	18	20	<1	1	<20	22	<10	<10	36	4	1
08-185	$\langle 0.5$	<1	26	4	16	18	<1	3	<20	33	<10	<10	35	11	4
08-185	<0.5	<1	16	<2	10	14	<1	1	<20	17	<10	<10	33	3	41
08-187	<0.5	<1	15	6	7	42	<1	4	<20	24	16	<10	80	3	2
08-188	<0.5	<1	39	4	27	21	1	3	$\stackrel{20}{ }$	55	(10	<10	35	16	2
08-189	<0.5	<1	27	5	23	19	1	2	<20	53	<10	(10	36	14	1
08-190	<0.5	<1	22	4	14	21	<1	3	<20	30	<10	<10	38	13	8
08-191	<0.5	<1	55	5	39	43		3	<20	105	<10	<10	41	22	3
08-192	<0.5	11	22	2	12	16	<1	2	<20	12	<10	<10	36	3	5
OB-193	<0.5	<1	37	5	18	23	2	4	<20	44	<10	<10	63	3	1
0B-194	<0.5	<1	11	4	6	16	<1	2	<20	17	<10	<10	38	2	6
08-195	<0.5	<1	19	3	6	29	<1	2	<20	17	<10	<10	44	3	10
08-196	<0.5	<1	21	<2	8	20	<1	2	<20	22	<10	(10	41	3	<1
08-197	<0.5	<1	13	4	6	22	<1	2	<20	13	(10	<10	40	3	13
OB-198	<0.5	<1	11	4	6	48	$\stackrel{1}{1}$	3	<20	15	<10	<10	56	2	,
08-199	$\langle 0.5$	<1	16	4	6	16	<1	2	<20	14	<10	<10	31	3	13
DE-200	<0.5	<1	35	3	9	19	<1	1	<20	18	<10	(10	38	3	(1
08-205	<0.5	11	27	4	23	19	<1	2	<20	23	<10	<10	44	17	1
OB-206	<0.5	<1	17	5	10	17	<1	2	<20	9	<10	(10	57	2	6
08-207	<0.5	<1	17	3	6	12	<1	1	<20	13	<10	<10	45	2	19
OB-208	<0.5	<1	17	3	10	11	<1	1	<20	15	<10	(10	36	2	2
08-209	<0.5	<1	26	4	11	24	<1	2	<20	16	<10	<10	48	2	3
OB-210	<0.5	<1	39	2	33	10	<1	1	<20	27	<10	<10	53	8	<1
08-212	<0.5	<1	17	4	9	20	<1	2	<20	10	<10	<10	43	2	9
OB-213	<0.5	<1	23	6	12	20	2	2	<20	19	<10	<10	45	3	3
OB-214	<0.5	<1	26	6	14	14	2	1	<20	13	<10	(10	37	3	6
08-215	<0.5	<1	17	6	8	14	1	2	<20	13	<10	<10	38	2	10
08-216	<0.5	<1	14	5	7	10	1	1	<20	13	(10	<10	29	2	5
0 BP 217	<0.5	<1	17	7	7	13	2	2	<20	16	<10	<10	34	3	20

Soil Salpling Results
（1989）

Reference：v89－06094．0

Sample 10	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{array}{r} \text { Ag } \\ \text { ppn } \end{array}$	$\begin{gathered} \text { As } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{Bi} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \text { Co } \\ \text { ppп } \end{gathered}$	$\begin{gathered} \text { Cr } \\ \text { ppa } \end{gathered}$	$\underset{\text { ppa }}{\text { Cu }}$	$\begin{array}{r} \mathrm{Fe} \\ \% \end{array}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { Ho } \\ \text { ppin } \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppi} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{ppi} \end{gathered}$	$\begin{array}{r} 50 \\ \text { ppa } \end{array}$	$\begin{gathered} \text { ln } \\ \text { ppa } \end{gathered}$
OB－218	＜5	<0.2	9	82	＜2	5	15	19	1.78	120	＜1	7	13	＜5	35
OB－219	＜5	0.2	18	206	＜2	8	10	19	2.26	360	2	6	27	＜5	72
OB－220	＜5	＜0．2	17	102	＜2	7	11	12	2.20	213	1	5	2	＜ 5	35
OB－221	＜5	0.3	15	153	＜2	8	25	17	2.17	285	1	10	5	＜5	48
DB－222	＜ 5	0.2	19	79	＜2	7	12	16	2.36	216	2	7	＜2	＜	40
08－224	51	0.2	21	107	＜2	6	12	8	2.15	613	（1	8	2	＜5	38
DB－225	＜ 5	＜0．2	18	244	＜2	9	12	25	3.19	581	2	12	＜2	＜ 5	140
08－226	14	0.3	21	78	＜2	12	12	32	2.88	250	2	10	＜2	＜5	57
OB－227	＜5	0.3	13	115	＜2	6	9	19	2.33	164	2	7	（2	（5	64
OB－228	＜5	0.3	25	77	＜2	7	10	15	2.79	312	2	7	＜2	＜ 5	73
OB－230	6	0.2	18	85	＜2	7	10	29	2.80	337	2	8	＜2	＜5	55
08－231	25	0.4	18	75	＜2	4	11	13	3.14	420	2	7	3	＜ 5	80
OB－232	54	0.3	18	96	＜2	8	12	27	2.77	464	2	7	＜2	＜5	54
OB－233	14	0.2	12	92	＜2	7	13	29	3.03	366	2	9	＜2	＜5	63
OB－234	23	0.3	9	141	＜2	8	12	41	2.81	439	2	10	＜2	＜5	54
08－235	＜5	＜0．2	23	84	12	7	7	26	2.64	250	＜1	19	13	＜5	44
08－236	＜ 5	0.9	20	88	＜2	7	12	95	3.16	337	5	10	3	＜5	63
08－237	99	0.7	12	95	＜2	8	12	123	2.73	395	2	8	＜2	＜ 5	49
OB－238	44	＜0．2	12	95	＜2	8	14	70	2.25	303	2	8	＜2	＜5	39
08－239	10	0.7	15	151	＜2	9	11	127	3.35	305	4	9	＜2	＜5	38
0B－240	6	＜0．2	14	126	く2	11	13	65	3.26	479	2	11	＜2	＜5	41
08－253	＜5	＜0．2	16	91	＜2	5	27	10	2.36	481	1	10	3	＜5	40
OB－254	＜5	<0.2	12	80	＜2	5	30	9	2.09	95	2	8	＜2	＜5	17
08－255	＜ 5	0.2	13	94	＜2	7	16	11	2.17	205	2	7	＜2	＜5	28
OB－256	11	＜0．2	11	88	＜2	8	18	21	2.81	376	2	10	＜2	＜5	33
08－257	7	0.2	29	254	＜2	25	19	60	4.34	1085	2	8	3	＜ 5	35
08－259	＜5	＜0．2	20	130	＜2	7	14	13	2.61	458	1	9	（2	＜5	65
08－260	20	＜0．2	10	118	＜2	8	23	18	2.69	306	1	11	＜2	＜5	49
OP－251	39	<0.2	16	145	＜2	10	40	19	2.78	352	2	14	3	＜ 5	56
OB－262	＜5	＜0．2	15	105	＜2	13	15	10	1.82	372	＜1	8	6	＜5	38
OB－263	く5	0.2	9	200	＜2	9	17	25	2.79	240	2	10	24	＜5	50
08－264	＜5	＜0．2	12	161	＜2	7	15	28	2.60	206	2	8	＜2	＜5	44
OB－265	＜5	0.2	21	247	＜2	8	8	26	2.28	477	2	8	49	＜5	72
08－266	＜	0.2	25	254	＜2	14	10	13	2.73	1636	2	7	8	＜ 5	43
OB－267	6	＜0．2	21	82	3	7	11	16	2.44	309	2	7	3	＜ 5	31
OB－268	＜	＜0．2	23	107	＜2	9	11	38	2.96	429	2	6	＜2	＜5	35
OB－270	＜5	＜0．2	19	150	2	6	11	18	1.85	843	1	5	6	＜5	33
OB－271	＜ 5	0.2	20	101	＜2	10	13	54	2.87	268	2	7	＜2	＜5	47
DB－272	15	＜0．2	18	54	2	8	13	26	2.76	229	2	7	く2	＜5	32
08－273	6	0.3	20	105	2	8	10	16	2.57	166	2	7	く2	＜ 5	39

Sample ID	$\begin{gathered} \mathrm{Be} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { cd } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Ce } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Gd } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { La } \\ \text { ppi } \end{gathered}$	$\underset{\text { pp\# }}{\stackrel{\mathrm{Li}}{ }}$	$\begin{gathered} \mathrm{Nb} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{Sc} \\ \mathrm{ppa} \end{gathered}$	$\begin{array}{r} S_{n} \\ \text { ppa } \end{array}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{r}_{\mathrm{a}} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { Te } \\ \text { ppa } \end{gathered}$	V ppı	$\begin{array}{r} Y \\ \text { ppa } \end{array}$	$\begin{gathered} \text { lr } \\ \text { pp』 } \end{gathered}$
OB-218	<0.5	<1	13	5	8	18	1	1	<20	17	<10	(10	34	2	<1
08-219	<0.5	<1	21	8	11	18	1	1	<20	16	<10	<10	35	2	3
OB-220	$\langle 0.5$	<1	16	5	8	19	2	1	<20	24	<10	(10	40	2	(1)
OB-221	$\langle 0.5$	<1	24	6	14	19	2	2	<20	38	<10	<10	37	3	1
OB-222	<0.5	<1	12	6	6	13	2	2	<20	19	<10	<10	38	3	11
08-224	<0.5	<1	11	7		16	1	1	<20	11	<10	(10	35	2	4
OB-225	<0.5	<1	11	7	6	23	1	2	<20	20	<10	<10	41	3	8
OB-226	$\langle 0.5$	<1	11	6	6	16	1	2	<20	9	<10	<10	41	3	18
08-227	<0.5	<1	8	6	4	18	2	2	<20	13	<10	<10	39	2	18
OB-228	<0.5	<1	7		4	21	2	2	<20	12	<10	<10	39	2	9
08-230	<0.5	<1	11	6	5	20	2	2	<20	13	<10	<10	40	3	21
08-231	<0.5	<1	12	10	7	20	2	2	<20	8	<10	(10	49	2	6
OB-232	<0.5	<1	23	5	8	22	1	2	<20	9	<10	<10	47	3	5
O8-233	<0.5	<1	20	7	6	32	1	2	<20	13	<10	<10	50	3	10
08-234	<0.5	<1	20	7	9	50	2	3	<20	28	(10	<10	45	8	2
08-235	<0.5	<1	8	24	7	22	9	2	<20	18	<10	10	44	4	29
OB-236	<0.5	<1	13	9	8	58	3	2	<20	20	(10	<10	53	7	4
08-237	$\langle 0.5$	<1	12	7	7	39	2	2	<20	20	<10	<10	49	3	1
OB-238	<0.5	<1	24	6	14	34	2	2	<20	27	(10	<10	42	4	2
08-239	$\langle 0.5$	<1	16	7	7	49	3	4	<20	27	<10	<10	51	6	7
OB-240	<0.5	<1	18	6	14	62	2	3	<20	27	(10	<10	53	8	1
08-253	<0.5	<1	14	7	7	11	2	1	<20	8	<10	<10	48	2	10
08-254	<0.5	1	13	6	8	9	1	1	<20	9	<10	<10	44	2	5
08-255	<0.5	(1	15	6	9	16	2	1	<20	9	<10	<10	43	2	2
08-256	<0.5	<1	20	5	11	19	2	1	<20	19	<10	<10	46	3	<1
08-257	<0.5	<1	37	6	11	24	1	4	<20	37	<10	<10	47	7	1
08-259	<0.5	<1	26	7	14	19	2	2	<20	16	<10	<10	39	3	2
08-260	<0.5	<1	21	6	12	18	2	2	<20	18	<10	<10	49	3	<1
08-261	<0.5	<1	22	6	12	18	2	2	<20	22	<10	<10	56	3	2
OB-262	<0.5	<1	27	6	16	13	2	1	<20	11	(10	<10	34	3	3
08-263	<0.5	<1	14	5	8	19	1	2	<20	20	<10	(10	45	3	5
08-264	<0.5	<1	16	7	8	19	1	2	<20	19	<10	<10	41	3	8
08-265	$\langle 0.5$	<1	16	7	7	19	2	2	<20	16	<10	(10	34	3	6
08-266	<0.5	<1	16	8	8	21	2	2	<20	24	<10	<10	40	2	<1
08-267	$\langle 0.5$	<1	18	9	9	17	3	2	<20	22	<10	<10	44	3	4
08-268	<0.5	<1	22	9	12	27	3	2	<20	38	<10	<10	52	5	1
08-270	<0.5	<1	17	8	10	16	2	1	<20	28	<10	<10	35	3	<1
08-271	<0.5	<1	19	6	9	22	2	2	<20	22	<10	(10	45	3	3
OB-272	<0.5	<1	16	7	9	25	2	2	<20	16	<10	<10	46	3	1
08-273	$\langle 0.5$	<1	13	7	6	21	2	2	<20	13	<10	<10	42	3	16

DUTBACK
Soil Sampling Results
(1989)

Reference: v89-06094.0

Sample ID	$\begin{gathered} \mathrm{Au} \\ \mathrm{ppb} \end{gathered}$	$\begin{gathered} \text { Ag } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \text { As } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Bd } \\ \text { ppa } \end{gathered}$	$\begin{gathered} B i \\ p p п \end{gathered}$	$\begin{gathered} \text { Co } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { cu } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \text { Mn } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Ho } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppi} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \text { Sb } \\ \text { ppп } \end{gathered}$	$\begin{gathered} \text { ln } \\ \text { ppı } \end{gathered}$
OB-274	89	$\langle 0.2$	20	55	<2	7	12	57	2.11	406	2	8	2	< 5	30
OB-275	22	0.7	28	69	<2	13	14	84	4.21	282	7	11	<2	< 5	50
DB-276	49	0.6	26	92	<2	14	8	38	3.88	786	3	6	36	< 5	321
OB-277	<5	<0.2	19	108	2	8	13	42	2.73	332	2	9	3	<5	62
OB-278	7	0.2	23	91	<2	6	12	50	2.04	242	1	8	3	<5	32
08-279	<	0.5	19	153	<2	8	11	73	2.88	317	2	11	<2	< 5	54
DB-280	(5	<0.2	21	145	<2	7	11	44	2.65	354	2	8	<2	<5	43
08-281	13	0.8	25	118	<2	8	15	188	3.28	429	3	14	<2	<5	50
OB-282	< 5	0.3	39	74	<2	6	11	25	2.97	217	2	9	2	<5	41
08-283	<5	<0.2	15	71	<2	5	14	8	2.26	236	2	10	3	<5	37
OB-284	59	0.9	30	185	<2	11	14	478	4.07	650	5	14	8	<	70
OB-285	27	0.7	24	109	<2	7	11	165	2.82	788	3	10	<2	<5	56
0B-286	9	0.9	24	72	3	6	9	19	2.70	306	2	7	<2	<5	39
OB-287	120	1.9	23	49	<2	8	17	47	3.23	214	2	11	<2	<5	30
08-288	<5	0.3	23	94	<2	9	16	29	3.99	244	4	11	<2	<5	37
08-289	<5	0.5	25	121	<2	11	14	51	3.85	720	3	9	<2	< 5	30
08-290	8	0.2	21	105	<2	7	11	14	2.86	555	2	8	3	<	31
08-291	29	<0.2	22	77	<2	7	13	13	3.01	343	3	7	<2	< 5	36
08-292	8	<0.2	17	47	<2	5	15	12	2.48	136	2	6	<2	<5	21
08-293	< 5	<0.2	21	101	(2	5	15	13	2.57	354	2	8	<2	<5	28
08-294	<5	<0.2	25	95	4	5	11	10	2.15	291	2	7	3	<	42
08-296	12	<0.2	24	141	<2	16	16	82	4.91	669	2	12	<2	<5	57
DB-297	<5	<0.2	16	92	<2	8	15	18	3.07	571	2	10	3	<	53
08-298	<5	<0.2	24	137	4	7	10	14	2.44	1209	1	7	5	< 5	54
08-299	43	<0.2	10	151	2	8	10	25	3.08	1077	2	8	<2	<5	56
OB-300	<5	<0.2	13	126	2	5	9	9	2.08	251	<1	6	5	<5	43
08-301	24	<0.2	19	203	<2	10	17	15	3.71	848	1	10	<2	<5	61
OB-302	61	0.2	27	156	<2	11	17	40	4.74	433	3	14	<2	<5	55
08-303	48	0.3	30	145	3	13	11	88	4.21	344	3	9	<2	〈5	59
08-304	15	0.2	22	136	<2	16	11	217	6.68	477	4	7	<2	<5	88
08-305	261	1.7	24	89	<2	13	12	59	3.96	696	4	10	8	く5	339
08-351	< 5	<0.2	23	166	2	6	12	16	3.50	552	2	8	5	<5	50
08-352	<	<0.2	26	160	<2	16	15	66	5.01	1067	8	7	2	<5	35
08-353	<5	<0.2	24	177	<2	6	18	11	2.90	319	2	9	5	<5	29
08-354	<5	<0.2	25	209	<2	9	16	15	3.14	659	2	11	3	<5	38
08-355	<5	<0.2	21	215	<2	16	33	49	3.03	835	2	14	<2	<	32
OB-356	<5	<0.2	25	179	<2	17	133	28	4.28	406	2	40	<2	<5	64
08-358	<5	<0.2	12	115	3	4	15	7	1.42	400	1	4	8	<5	26
DB-359	<5	0.3	26	257	<2	14	72	40	3.85	549	2	25	<2	< 5	48
08-360	<5	<0.2	17	212	5	14	23	19	2.75	328	1	13	8	<	47

Project: 392
Soil Saapling Results (part 2)

Sauple ID	$\begin{array}{r} \mathrm{Be} \\ \mathrm{ppa} \end{array}$	$\begin{gathered} \text { Cd } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \mathrm{Ce} \\ \mathrm{ppa} \end{gathered}$	$\begin{array}{r} \text { Ga } \\ \text { ppa } \end{array}$	$\begin{array}{r} \text { La } \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{Li} \\ \mathrm{ppa} \end{array}$	$\begin{gathered} \mathrm{Nb} \\ \mathrm{ppq} \end{gathered}$	$\begin{array}{r} \text { Sc } \\ \text { ppı } \end{array}$	$\begin{array}{r} \text { Sn } \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{pp} \end{array}$	$\begin{gathered} \mathrm{Ta} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \text { Te } \\ \text { ppq } \end{gathered}$	$\begin{gathered} V \\ \rho p a \end{gathered}$	$\begin{array}{r} y \\ \text { ppa } \end{array}$	$\begin{gathered} \text { lr } \\ \text { ppa } \end{gathered}$
OB-274	$\langle 0.5$	<1	34	8	22	36	3	2	<20	18	<10	<10	35	14	3
08-275	<0.5	<1	19	9	9	32	2	2	<20	11	11	<10	57	3	7
08-276	<0.5	<1	30	9	14	30	<1	2	<20	12	<10	<10	57	6	1
08-277	<0.5	<1	20	9	8	23	2	2	<20	12	(10	<10	46	2	6
OB-278	<0.5	<1	18	,	8	17	2		<20	10	<10	<10	38	2	10
08-279	$\langle 0.5$	<1	12	9	7	31	2	2	<20	14	<10	<10	52	2	8
OB-280	<0.5	<1	12	11	7	28	3	2	<20	22	<10	<10	49	2	3
08-281	<0.5	<1	30	11	16	60	3	4	<20	31	<10	<10	55	16	6
08-282	<0.5	<1	14	12	5	24	3	3	<20	14	<10	<10	41	3	42
OB-283	<0.5	<1	15	9	9	19	2	1	<20	10	<10	<10	41	2	3
08-284	<0.5	<1	65	11	31	83	4	6	<20	45	(10	<10	56	27	6
OB-285	$\langle 0.5$	(1)	16	10	24	40	2	3	<20	29	<10	<10	46	18	3
08-286	<0.5	<1	5	10	4	18	3	2	<20	18	(10	<10	39	3	18
OB-287	<0.5	<1	22	7	13	34	2	2	<20	19	<10	(10	52	4	7
08-288	<0.5	<1	15	12	9	36		2	<20	20	(10	<10	61	3	2
08-289	<0.5	<1	18	12	21	40	4		<20	39	13	<10	65	20	2
08-290	<0.5	<1	13	12	6	30	4	2	<20	31	(10	<10	47	3	10
OB-291	<0.5	<1	11	9	6	18	3	2	<20	16	<10	<10	51	2	6
08-292	<0.5	<1	27	7	15	20	2	1	<20	7	<10	<10	41	2	2
OB-293	<0.5	<1	16	8	8	19	2	1	<20	10	11	<10	44	2	1
08-294	<0.5	<1	12	11	5	13	3	2	<20	14	<10	<10	32	3	28
OB-296	<0.5	<1	28	15	6	55	4	5	<20	44	<10	<10	75	7	15
08-297	<0.5	<1	20	11	10	23	3	2	<20	20	<10	<10	49	3	2
08-298	<0.5	<1	22	10	10	16	3	1	<20	11	(10	<10	36	3	3
08-299	<0.5	<1	13	12	6	22	4	2	<20	38	10	<10	45	3	4
08-300	<0.5	<1	26	9	14	16	3	1	<20	14	<10	<10	31	2	2
OB-301	<0.5	<1	19	13	9	35	4	3	<20	24	<10	<10	58	5	4
OB-302	$\langle 0.5$	<1	26	13	8	44	3	1	<20	18	<10	<10	72	6	17
08-303	<0.5	<1	17	12	6	36	3	3	<20	22	<10	<10	55	5	8
OB-304	<0.5	<1	11	12	6	62	3	4	<20	27	<10	(10	64	3	3
08-305	<0.5	<1	24	11	11	33	3	3	<20	16	10	<10	51	4	2
OB-351	<0.5	<1	12	17	6	27	4	2	<20	18	<10	<10	59	3	4
08-352	<0.5	<1	15	10	6	36	2	2	<20	15	<10	<10	62	3	<1
OB-353	<0.5	<1	11	11	6	16		2	<20	13	<10	(10	47	3	12
08-354	$\langle 0.5$	<1	15	13	7	26	3	2	<20	17	<10	<10	54	3	2
OB-355	<0.5	<1	13	10	6	17		2	<20	29	<10	(10	51	3	<1
08-356	$\langle 0.5$	<1	60	12	27	18	7	3	<20	34	<10	<10	97	6	2
OB-358	<0.5	<1	16	10	9	4	2	11	<20	15	<10	<10	31	1	<1
08-359	<0.5	<1	54	11	59	23	5	5	<20	70	<10	<10	83	29	
08-360	<0.5	<1	28	11	14	19	3	2	<20	21	<10	<10	43	3	5

Soil Sampling Results
（1989）

Reference：v89－06094．0

 ppb ppa ppa ppa ppm ppa ppa ppa \％ppa ppi ppa ppa ppa ppa

OB－361	＜5	0.2	14	130	4	11	19	15	2.32	318	1	9	3	＜ 5	38
08－362	11	0.2	26	186	＜2	15	15	58	3.48	438	4	9	13	＜	43
08－363	115	0.3	19	128	3	6	12	16	2.53	217	2	7	8	＜5	78
08－364	37	＜0．2	16	74	3	6	11	15	2.07	412	＜1	6	5	＜5	27
0B－365	21	0.3	13	78	＜2	6	12	20	2.59	217	2	7	＜2	＜5	27
08－366	＜ 5	＜0．2	16	47	＜2	5	10	17	2.06	173	1	4	＜2	＜	24
08－368	＜	0.3	13	37	3	6	8	20	1.90	186	1	4	5	く5	21
08－369	＜5	＜0．2	20	93	＜2	9	6	45	2.53	587	5	6	3	＜ 5	39
OB－370	68	0.2	17	60	く2	9	11	64	2.80	258	2	7	＜2	＜5	33
08－371	155	0.2	30	95	＜2	12	11	90	3.75	1192	6	8	＜2	＜	46
08－372	8	0.4	29	141	く2	6	7	12	2.09	657	＜1	7	5	＜5	77
08－400	8	＜0．2	32	179	＜2	14	8	274	4.34	1898	2	7	＜2	＜5	76
DB－401	＜5	＜0．2	27	115	く2	8	12	19	3.12	1378	2	9	＜2	＜ 5	50
08－402	＜5	＜0．2	26	109	＜2	7	11	16	2.85	856	2	9	4	（5	44
0B－403	8	0.2	14	134	2	7	11	12	2.67	853	1	7	3	く5	56
08－404	＜5	0.2	27	117	＜2	10	10	23	3.12	1943	2	7	6	＜ 5	48
08－405	＜5	＜0．2	20	99	＜2	8	24	21	2.66	534	1	12	く2	く5	46
0B－406	17	0.2	19	37	＜2	12	12	33	3.86	412	＜1	9	＜2	（5	45
OB－407	12	0.8	33	141	2	27	10	235	5.71	2532	3	7	＜2	＜5	97
08－408	＜5	0.2	28	62	＜2	15	11	49	3.43	1096	3	7	＜2	＜ 5	76
08－409	＜5	＜0．2	36	36	＜2	21	14	147	5.16	1563	7	9	（2	＜ 5	61
08－410	＜5	＜0．2	36	121	2	19	12	76	4.13	3163	4	8	17	＜5	72
DB－411	＜5	＜0．2	18	83	2	7	8	29	1.64	1356	2	5	3	＜5	35
08－412	＜ 5	＜0．2	20	460	＜2	10	34	31	2.22	1976	＜1	23	6	＜ 5	109
08－413	＜5	＜0．2	19	85	3	6	41	8	2.18	408	＜1	18	5	＜5	31
08－414	＜5	0.2	21	68	2	5	34	29	1.42	186	＜1	11	6	＜ 5	22
08－415	＜5	＜0．2	42	144	＜2	15	28	71	6.42	942	4	17	＜2	＜5	76
08－416	45	0.2	32	158	2	6	13	16	2.59	976	2	8	31	＜ 5	91
OB－417	13	<0.2	14	53	＜2	4	17	7	1.74	157	11	7	6	＜5	24
08－418	33	＜0．2	21	83	2	7	39	10	2.35	374	＜1	15	4	＜ 5	33
OB－419	＜	＜0．2	23	72	2	6	27	12	2.30	184	2	8	4	＜5	19
08－421	19	0.5	21	68	3	4	14	10	1.96	246	1	5	8	＜	27
OB－422	14	＜0．2	18	66	＜2	7	33	15	2.95	190	1	13	8	＜5	26
08－423	11	0.3	22	80	2	4	12	6	1.99	91	＜1	6	8	＜	32
08－424	13	0.2	18	62	4	4	16	10	1.82	466	2	9	5	＜5	35
OB－425	34	0.3	18	78	5	5	10	9	2.24	723	1	5	7	＜ 5	43
OB－426	70	0.3	28	183	＜2	4	9	6	2.07	679	＜1	9	18	＜5	77
08－427	＜5	＜0．2	21	90	3	5	14	15	2.34	412	1	10	3	＜	36
OB－428	6	0.2	28	98	＜2	6	12	12	2.20	190	2	7	3	＜5	38
OB－429	1155	0.8	30	75	2	10	13	59	3.72	987	22	9	＜2	＜5	68

Project: 392
Soil Sampling Results (part 2)

Sample ID	$\begin{gathered} B \varepsilon \\ p p q \end{gathered}$	$\begin{gathered} \text { Cd } \\ \text { pp』 } \end{gathered}$	$\begin{gathered} \text { Ce } \\ \text { ppı } \end{gathered}$	$\begin{gathered} \text { Gad } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { La } \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \mathrm{Li} \\ \mathrm{ppq} \end{array}$	$\begin{gathered} \mathrm{Nb} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \text { Sc } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Sn} \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Sr} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \mathrm{r}_{\mathrm{d}} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{Te} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} V \\ \text { ppi } \end{gathered}$	$\begin{array}{r} Y \\ \text { ppa } \end{array}$	$\begin{gathered} \text { lr } \\ \text { ppı } \end{gathered}$
OB-361	<0.5	1	20	10	11	16	2	1	<20	20	<10	<10	41	3	1
OB-362	<0.5	<1	12	9	6	24	2	2	<20	14	<10	<10	47	3	1
08-363	<0.5	<1	13	10	6	16	2	1	<20	13	<10	<10	37	2	8
OB-364	<0.5	<1	21	8	11	12	2	2	<20	15	<10	<10	37	3	2
OB-365	<0.5	<1	19	7	8	16	1	2	<20	14	<10	<10	43	3	16
OB-366	<0.5	<1	26	8	14	17	2	2	<20	14	<10	<10	38	3	1
OB-368	<0.5	<1	40	7	19	13	2	1	<20	9	<10	<10	31	4	(1)
08-369	<0.5	<1	8	8	3	29	1	1	<20	20	<10	<10	35	2	<1
OB-370	<0.5	<1	24	8	9	25	1	3	<20	12	10	(10	49	4	19
OB-371	<0.5	<1	20	11	8	34	2	3	<20	24	(10	<10	60	4	2
OB-372	<0.5	<1	12	13	4	20	3	2	<20	21	<10	<10	27	3	16
08-400	<0.5	<1	9	12	3	31	3	6	<20	31	<10	<10	80	3	2
OB-401	<0.5	<1	29	12	10	29	3	3	<20	16	<10	<10	52	5	5
08-402	<0.5	<	24	12	10	19	3	2	<20	22	<10	<10	45	4	3
OB-403	<0.5	<1	20	11	9	17	3	2	<20	23	<10	(10	42	3	5
08-404	<0.5	<1	23	14	9	27	4	4	<20	50	<10	<10	51	11	2
OB-405	<0.5	<1	38	11	18	24	4	2	<20	34	<10	<10	47	5	2
08-406	<0.5	<1	14	14	6	49	4	5	<20	52	<10	<10	68	8	18
08-407	<0.5	<1	28	16	12	57	3	6	<20	60	<10	<10	77	13	3
08-408	<0.5	<1	11	13	5	46	4	5	<20	52	<10	<10	63	7	2
OB-409	<0.5	<1	21	18	11	70	4	8	<20	86	<10	<10	97	15	3
08-410	<0.5	<1	30	17	10	53	6	6	<20	85	(10)	(10	70	11	3
08-411	<0.5	<1	11	14	5	17	4	2	<20	46	<10	<10	31	4	<1
OB-412	<0.5	<1	30	16	15	20	6	2	<20	61	<10	<10	39	4	3
08-413	<0.5	<1	45	11	25	15	5	1	<20	18	<10	<10	48	5	<1
08-414	<0.5	<1	43	12	33	27	5	2	<20	38	<10	<10	30	23	<1
OB-415	<0.5	<1	11	14	4	68	3	4	<20	29	<10	<10	79	4	<1
08-416	<0.5	<1	43	11	17	29	3	2	<20	22	<10	<10	39	7	5
08-417	<0.5	<1	33	8	18	12	3	1	<20	13	<10	<10	31	2	<1
08-418	<0.5	<1	37	10	20	14	4	1	<20	16	<10	<10	51	3	11
08-419	<0.5	<1	44	g	19	17	3	2	<20	12	<10	<10	42	5	2
08-421	<0.5	<1	30	d	15	15	2	1	<20	12	(10	<10	39	2	<1
08-422	<0.5	<1	29	8	15	15		1	<20	10	<10	<10	59	3	<1
OB-423	<0.5	<1	15	10	8	17	2	1	<20	9	<10	<10	34	2	10
OB-424	<0.5	<1	21	8	11	13	2	1	<20	9	<10	<10	34	2	1
08-425	<0.5	<1	29	12	16	20	2	1	<20	12	(10)	<10	43	2	<1
OB-426	<0.5	(1	13	12	7	14	3	2	(20	19	<10	<10	33	2	24
08-427	<0.5	<1	14	9	7	16	2	1	<20	10	<10	<10	39	2	4
08-428	<0.5	<1	13	10	7	14	3	1	<20	14	<10	<10	36	2	8
08-429	<0.5	<1	10	13	5	20	3	2	<20	13	<10	(10	63	2	9

Soil Sampling Results （1989）

Refarence：v89－06094．0

Sample ID	$\begin{gathered} A u \\ \text { ppb } \end{gathered}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \text { As } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ \mathrm{pp} \end{gathered}$	$\begin{array}{r} \mathrm{Bi} \\ \mathrm{pp} \end{array}$	$\begin{gathered} \text { Co } \\ \text { ppi } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppa} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \mathrm{Z} \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{pp} \end{gathered}$	$\begin{array}{r} \text { Mo } \\ \text { ppa } \end{array}$	$\begin{gathered} \mathrm{Hi} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{pp} \end{gathered}$	$\begin{array}{r} 56 \\ \text { ppa } \end{array}$	$\begin{gathered} \ln \\ p p a \end{gathered}$
OB－430	216	0.4	24	118	3	6	12	35	2.37	1020	3	8	2	＜ 5	58
OB－431	1496	1.5	41	21	＜2	25	7	362	7.62	1091	96	5	4	＜5	31
0B－433	66	0.3	24	85	＜2	9	9	91	3.15	1031	11	8	7	＜5	52
OB－434	＜5	＜0．2	22	152	3	8	12	13	2.34	1551	3	7	6	5	67
08－435	＜5	＜0．2	29	108	5	7	10	37	2.28	618	3	7	2	＜5	61
08－436	＜	＜0．2	27	99	4	5	7	16	1.90	287	3	5	＜2	＜5	43
08－451	く5	＜0．2	19	102	2	8	26	18	2.58	234	2	9	2	く5	25
08－452	く5	0.2	29	102	4	6	14	15	2.34	198	2	7	3	＜ 5	24
08－453	＜	0.2	31	95	2	5	11	12	2.06	486	1	5	5	＜5	35
08－454	〈5	＜0．2	31	140	2	13	42	38	3.53	853	2	16	＜2	¢5	42

$n=250$ samples

max：	1496	1.9	42	464	12	27	158	478	7.52	3163	96	40	49	5	339
in：	<5	<0.2	<5	21	<2	1	5	3	0.97	46	<1	1	<2	<5	14
1st quartile：	<5	<0.2	12	88	<2	6	11	12	2.24	225	1	7	<2	<5	35
median：	<5	<0.2	16	109	<2	7	13	17	2.70	354	2	8	<2	<5	44
3rd quartile：	10	0.2	21	147	<2	9	20	35	3.07	581	2	10	3	<5	56
95\％ile：	68	0.7	30	244	3	15	52	95	4.34	1252	4	21	13	<5	87

Project: 392 Soil Sampling Results (part 2)

Sample ID	$\begin{gathered} \text { Be } \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \text { cd } \\ \text { ppe } \end{array}$	$\begin{array}{r} \text { Ce } \\ \text { ppı } \end{array}$	$\begin{array}{r} \text { 6a } \\ \text { ppa } \end{array}$	$\begin{gathered} \text { La } \\ \text { ppı } \end{gathered}$	$\begin{array}{r} \text { Li } \\ \text { ppa } \end{array}$	$\begin{gathered} \text { Nb } \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \text { Sc } \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{Sn} \\ \text { ppa } \end{array}$	$\begin{array}{r} \text { Sr } \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppe} \end{array}$	$\begin{gathered} \text { Te } \\ \text { ppa } \end{gathered}$	$\begin{gathered} V \\ \text { ppi } \end{gathered}$	$\begin{array}{r} Y \\ \rho \rho \varepsilon^{\prime} \end{array}$	$\begin{gathered} \text { Lr } \\ \text { ppa } \end{gathered}$
08-430	20.5	<1	16	12	,	17	3	2	<20	15	<10	<10	51	3	4
OB-431	<0.5	<1	48	9	30	20	2	4	<20	25	11	<10	68	17	8
08-433	<0.5	<1	21	12	10	20	4	2	<20	27	<10	(10	69	5	<1
OB-434	<0.5	<1	11	14	6	14	2	1	<20	13	<10	<10	47	2	<1
08-435	<0.5	<1	28	11	13	16	3	3	<20	11	<10	(10	35	10	34
OB-436	<0.5	<1	11	10	5	14	3	1	<20	16	<10	<10	31	2	27
08-451	<0.5	<1	16	8	8	14	2	1	<20	11	(10	<10	53	2	5
OB-452	$\langle 0.5$	<1	11	11	6	17	3	2	<20	11	<10	(10	42	2	15
08-453	<0.5	<1	9	10	4	14	3	2	<20	15	(10	<10	36	2	15
OB-454	<0.5	<1	25	14	8	43	4	4	<20	30	<10	<10	70	4	5

ax:	<0.5	<1	178	24	70	83	9	10	<20	118	16	10	97	37	
in:	<0.5	<1	5	<2	3	<1	11	<1	<20	4	(10	<10			

15t quartile:	<0.5	<1	14	4	7	15	1	1	<20	11	<10	<10	38	2
nedian:	<0.5	<1	19	7	9	19	2	2	<20	16	<10	<10	44	3
3														
3rd quartile:	<0.5	<1	27	10	14	25	3	2	<20	24	<10	<10	53	5
95\% ile:	<0.5	<1	55	14	34	50	4	4	<20	56	10	<10	74	17

Silt Sanpling Results

(1989)

Reference: v89-06094.0

Saple ID	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{gathered} \mathrm{Ag} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \text { As } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { Ba } \\ \text { ppa } \end{gathered}$	$\begin{gathered} 8 i \\ p p i \end{gathered}$	$\begin{gathered} \text { Co } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{ppr} \end{gathered}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \mathrm{Fe} \\ \% \end{gathered}$	$\begin{gathered} \mathrm{Mn} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \text { Ho } \\ \text { pp! } \end{gathered}$	$\begin{gathered} \mathrm{Ni} \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ \mathrm{pp} \end{gathered}$	$\begin{gathered} \mathrm{Sb} \\ \mathrm{ppi} \end{gathered}$	$\begin{gathered} \text { ln } \\ \text { ppa } \end{gathered}$
OBS-7	<5	<0.2	11	209	<2	21	184	32	3.63	426	2	53	<2	<5	45
085-18	<5	<0.2	15	212	<2	8	58	13	2.38	421	2	21	2	<5	37
085-61	<5	<0.2	15	215	<2	20	196	24	4.64	378	2	49	<2	<5	40
08S-176	12	<0.2	10	200	<2	16	163	21	4.16	381	2	41	<2	<5	41
OBS-178	6	<0.2	12	165	<2	7	59	12	2.56	356	1	17	6	<5	35
OBS-182	<5	0.3	25	293	く2	8	33	40	3.04	927	1	17	2	<5	47
OBS-211	< 5	<0.2	8	199	<2	15	141	22	3.22	382	1	41	<2	<5	40
OBS-223	<5	0.2	14	223	<2	7	17	31	2.65	585	2	9	2	<5	42
085-229	7	1.8	24	150	<2	6	10	89	2.18	567	3	9	<2	<5	39
08S-258	<5	<0.2	11	153	<2	12	122	18	2.93	340	1	33	<2	<5	35
08S-269	15	0.3	29	264	<2	8	18	36	2.85	613	2	12	<2	<5	45
08S-295	< 5	<0.2	16	103	3	12	71	24	3.72	415	2	33	<2	<5	57
085-357	<5	0.2	25	215	<2	15	161	21	4.55	435	2	41	<2	(5	45
0BS-367	<5	0.4	29	256	<2	7	15	41	2.61	645	2	11	2	< 5	41
085-416	<5	<0.2	23	86	3	9	72	13	2.24	281	2	31	6	<5	39
08S-420	<5	<0.2	21	84	<2	9	54	23	2.74	367	2	27	3	<	41
0BS-432	<5	<0.2	27	85	2	9	51	24	3.13	420	2	21	4	5	41

$n=17$ samples

max:	15	1.8	29	293	3	21	196	89	4.64	927	3	53	6	5	57
nin:	<5	<0.2	10	85	$\langle 2$	7	15	13	2.24	340	1	9	<2	<5	35

Sample ID	$\begin{gathered} \mathrm{Be} \\ \mathrm{ppi} \end{gathered}$	$\begin{array}{r} \text { Cd } \\ \text { ppa } \end{array}$	$\begin{gathered} \text { Ce } \\ \text { ppı } \end{gathered}$	$\begin{gathered} \text { Ga } \\ \text { ppa } \end{gathered}$	$\begin{gathered} \text { La } \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \text { Li } \\ \text { ppa } \end{array}$	$\begin{gathered} \text { Nb } \\ \text { ppa } \end{gathered}$	$\begin{array}{r} \text { Sc } \\ \text { ppa } \end{array}$	$\begin{array}{r} 5 n \\ \text { ppa } \end{array}$	$\begin{array}{r} \mathrm{St}_{\mathrm{r}} \\ \rho \rho \mathrm{a} \end{array}$	$\begin{array}{r} \mathrm{Ta} \\ \mathrm{ppa} \end{array}$	$\begin{array}{r} \text { Te } \\ \text { ppa } \end{array}$	ppı	Y ppa	$\begin{gathered} \mathrm{lr} \\ \mathrm{pp} \end{gathered}$
08S-7	<0.5	<1	69	6	36	11	5	2	<20	59	(10	<10	92	8	<1
OBS-18	<0.5	<1	55	7	37	18	4	2	<20	65	<10	<10	57	9	<1
OBS-61	<0.5	<1	80	6	43	10	4	2	<20	54	<10	<10	132	9	<1
OBS-176	<0.5	<1	53	4	30	11	3		<20	49	<10	<10	113	-	1
OBS-178	<0.5	<1	58	5	39	14	3	2	<20	53	<10	<10	65	10	<1
DBS-182	<0.5	<1	99	8	115	24	4	7	<20	116	<10	<10	48	72	8
08S-211	<0.5	<1	56	3	31	12	3	3	<20	50	<10	<10	82	8	(1
OBS-223	<0.5	<1	45	6	30	38	2	3	<20	79	(10	<10	42	18	2
OBS-229	<0.5	<1	47	8	30	29	2	4	<20	42	<10	<10	34	33	2
OBS-258	<0.5	<1	56	6	31	11	4	2	<20	45	<10	<10	75	8	<1
08S-269	<0.5	<1	52	10	40	44	4	3	<20	115	<10	<10	43	25	3
DBS-295	<0.5	<1	47	10	27	33	5	2	<20	42	(10	<10	81		,
085-357	<0.5	<1	57	10	31	13	5	3	<20	50	<10	<10	124	8	<1
OBS-367	<0.5	<1	45	11	35	38	3	3	<20	103	<10	<10	39	24	,
08S-416	<0.5	<1	52	11	29	23	6	1	<20	35	(10	<10	55		<1
DBS-420	<0.5	<1	40	11	23	31	4	2	<20	37	11	<10	59	7	<1
0BS-432	<0.5	<1	43	11	26	27	5	2	<20	39	(10	(10	65	8	<1
max:	$\langle 0.5$	<1	99	11	115	44	6	7	<20	116	11	<10	132	72	8
, in:	<0.5	<1	43	4	26	11	2	2	<20	37	(10	<10	39	7	<1
15t quartile:	<0.5	<1	47	6	30	12	3	2	<20	42	<10	<10	48	8	<1
nedian:	<0.5	<1	53	8	31	23	4	2	<20	50	<10	<10	65	8	<1
3rd quartile:	<0.5	<1	57	10	37	31	5	3	<20	65	<10	<10	82	18	2
95\% ile:	<0.5	<1	80	11	43	38	5	4	<20	115	<10	<10	124	33	3

- SAMPLI TTPE: P1 ROCK P2 SOLL AUT ANALYSIS B7 PA/ICP PROM IO GM SAMPLE.

Inco Expl. \& Tech. Services File \# 89-3715 page 1

SAMPL:	no	Cl	Pb	38	8 g	Yi	Co	H0	Fe	As	1	Au	Th	55	Cd	Sb	31	∇	Ca	p	La	Cr	ng	Ba	7 i	B	11	Ha	I	H	Aus
	P! ${ }^{\text {P }}$	PPM	? ${ }^{\text {P }}$	SPM	PPY	PR	PP!	PPM	$\}$	PPM	PPM	PPM	PPM	PPM	ppy	PPM	PP!	P9.4	$\%$	\%	PRK	PPM	$\}$	P?	3	PPM	$\}$	1	;	PPM	FPR
RX 041130	1	79	5	43	. 1	1	11	575	j. 50	2	5	10	5	18	1	2	3	57	.67	. 070	1	19	1.15	j3	. 13	5	1.61	. 02	. 15	2	9
RI 04112:	1	6	9	:6	. 1	10	9	173	3.10	2	;	HD	j	27	1	2	4	79	. 44	. 377	7	28	1.23	68	. 03	2	1.56	. 03	. 13	2	1
910 $011: 9$	2	81	97	48	9.7	6	9	375	2.11	12	5	N0	3	$2 i$	$!$	2	2	11	. 36	. 259	5	10	. 12	13	\therefore	2	. 38	. 02	. 11	3	94
RI 04:133	2	61	Is	3 S	15.3	6	5	$2: 6$	2.03	3	5	H0	2	35	1	2	2	43	. 31	. 038	4	10	. 40	38	. 93	2	. 64	. 02	. 10	2	403
R 0404134	1	75	65		127.0	5	5	:55	2.06	8	5	25	2	19	$!$	2	2	35	. 21	. 038	4	7	. 46	30	. 02	2	. 61	. 01	. 06	1	61.5
RI 011:35	2	55	11	26	26.0	6	5	266	2.09	11	5	3	2	24	$!$	2	4	39.	. 28	. 037		9	. 34	29	. 28	j	. 71	. 02	. 08	2	2190
R1 241136	?	59	5	10	2.5	8	5	392	2.10	8	5	T5	2	24	1	2	4	10	. 10	. 047	6	11	. 17	37	. 88	3	. 94	. 11	. 11	3	201
88011.37	1	20	8	24	. 8	1	?	292	3.11	10	;	3 N	j	33	1	$?$	2	46	. 37	. 859	1	$?$. 65	12	. 91	2	, 99	. .02	. 11	1	1?!
R8041:33	2	31	$?$	14	. 2	7	\%	229	1.15	2	5	80	1	1	1	2	2	[3	. 14	. 025	3	8	. 42	19	. 41	1	. 55	. 01	. 04	1	14
21041135	3	95		17	. 3	16	25	227	4.55	$?$	5	ND	1	12	1	2	2	33	. 09	. 016	2	-	. 36	11	. 35	2	. 18	. 01	. 03	1	13
2104110	2	29	4	25	3.9	5	1	391	2.59	5	5	HD	5	48	1	2	13	33	. 78	. 018	10	21	. 13	S2	. 01	2	1.08	. 01	. 11	2	56
RI 0111:1	1	39	3	28	. 5	1	9	499	3.39	8	j	ND	5	$5:$	1	2	2	38	1.15	. 068	9	7	. 74	23	. 25	12	1.27	. 01	. 11	3	49
R8 041142	2	37	j	26	. 1	5	1	456	2.25	2	5	10	6	601	,	2	2	40	2.36	. 019	11	11	.11	23	. 81	14	. 36	. 02	.10	1	41
210611:?	1	5	4	17	.1	3	1	281	. 43	2	6	HD	12	48	1	2	2	1	1.05	. 201	3	3	. 04	151	. 01	5	. 14	. 03	. 35	1	1
R1041144	1	181	8	33	. 1	7	18	429	4.04	2	5	ND	9	$1!$	1	2	2	56	. 23	. 065	13	10	. 39	60	. 11	2	1. 51	. 02	. 12	1	9
8 0411!5	1	19	3	20	. 1	$!$	4	316	1.52	3	;	ND	44	10	1	2	2	28	. 20	. 014	21	25	. 28	34	. 01	2	. 54	. 02	. 07	2	.
RI 041146	2	2	5	5	. 1	2	1	11	, 74	2	5	H1	5	:2	$!$?	2	2	. 02	. 903	2	2	. 01	320	. 01	4	. 16	. 02	. 05	1	3
81 0411:7	41	35	10	22	. 1	2	4	104	3.54	13	5	YD	17	29	1	2	2	41	. 15	. 228	B	8	.18	49	. 02	3	. 64	. 02	. 11	1	9
R1 041148	1	52	2	38	. 1	4	5	417	2.59	2		H0	4	44	1	2	2	45	. 29	. 058	5	10	. 18	44	. 07	1	1.50	. 02	.12	3	1
21011145	1	23	1	41	. 1	7	10	532	3.32	2	5	YD	5	23	1	2	3	66	. 59	. 075	11	20	1.11	? 1	. 08	2	1.78	. 02	. 14	3	1
R8041150	1	16	?	29	. 1	j	6	313	2.12	2	5	ND	3	25	1	2	2	45	. 30	. 017	7	3	. 05	37	. 196	2	1.15	. 01	.69	2	44
R1041151	1	11	1	11	.	5	1	5j3	2.31	2	5	ND	1	28	1	2	2	47	. 24	. 013	19	;	. 31	40	. 01	3	. 61	. 02	. 10	1	15
25 241152	1	99	$?$	31	. 3	1	10	283	5.21	3	5	HD	5	$!$	1	2	2	61	. 27	. 038	12	5	. 16	19	. 21	7	. 76	. 01	.12	1	36
82041133	1	11	1	40	. 7	4	1	606	1.97	2	5	ND	1	13	1	2	2	24	.28	. 027	14	19	. 38	48	. 21	4	. 89	. 01	. 11	2	86
88041154	92	81	!	37	. 3	6	8	563	3.17	2	5	\$1	4	:	1	?	3	47	. 11	. 060	17	1	. 51	11	. 11	8	. 79	. 01	. 17	1	45
2x 041ijs	2	j	2	12	1.0	4	1	118	. 96	2	5	ND	9	i	1	2	3	1	. 02	. 008	10	4	. 36	25	. 31	4	. 28	. 02	. 09	1	1
P8 241150	1	1	?	25	. 1	3	1	23	. 55	5	5	\% ${ }^{\text {c }}$	10	\because	$!$	2	2	9	. 33	. 008	12	1	. 01	29	. 81	3	. 12	. 02	. 05	1	60

GEOCHEMICAL ANALYSIS CERTIFICATE

Inco Expl. \& Tech. Services File \# 89-3745 Page 1

SAMPLE	Ho	Cu	Pb	20	Ag	\#1	CO	Mn	Pe	As	0	AU	Th	SI	Cd	sb	B1	∇	Ca	?	Ld	CI	Mg	82	7 T	B	11	In	1	V	$\mathrm{Au}^{* *}$
	P9!	PPM	PPM	PfM	PP!	p9n	PPM	PR	\%	P?M	PPM	PRM	EPM	PPM	8P!	PPM	PPM	P?	\}	\$	PRM	PPY	$\}$	PPM	$\$$	PPM	\}	\$	ξ	PPM	P9B
R1 041157	4	21	2	1	. 1	10	2	445	. 91	2	5	WD	1	64	1	2	2	9	. 62	. 007	2	10	. 15	15	. 01	11	. 29	. 01	. 04	1	123
R20411:8	2	14	8	24	. 1	5	18	312	4.12	2	5	15	5	15	1	2	2	33	. 08	. 070	1	21	. 32	173	. 02	3	. 82	. 01	. 19	2	45
RI 041159	8	91	8	38	. 2	8	16	446	3.67	3	5	W0	8	10	1	2	2	61	. 24	. 073	17	10	1.16	45	. 01	2	1.74	. 01	. 15	2	1
R1041160		26	30	1007	. 5	7	8	213	2.41	2	5	SD	3	1	$!$	2	1	32	. 16	. 050	8	6	. 31	36	. 01	1	1.08	. 01	. 18	1	29
2104116i	3	43	7	54	. 5	8	10	500	3.32	2	5	HD	5	8	1	2	2	41	. 19	. 061	9	9	. 98	11	. 01	2	1.14	. 02	. 11	1	147
R2041152	1	2	1	9	. 1	1	3	108	1.16	2	5	nd	4	6	1	2	2	10	. 12	. 046	11	13	. 15	86	. 01	3	. 62	. 01	. 19	1	4
25041153	10	120	3	41	. 6	9	10	584	2.80	2	5	WD	5	24	$!$	2	3	48	. 61	. 059	,	10	. 88	46	. 01	2	1.18	. 02	. 12	1	6
R1 041164	2	1	8	20	. 1	6.	1	60	1.07	2	S	HD	6	5	$!$	2	1	(. 01	. 007	3	5	. 01	21	. 01	2	. 15	. 02	. 06	,	3
RI 04115	5	6	1	13	. 1	3	1	160	. 94	2	7	KD	15	13	1	2	2	1	. 06	. 013	27	4	. 02	30	. 01	2	. 21	. 01	. 14	1	3
R104116i	2	31	4	35	. 2	d	10	618	3.25	8	5	ND	3	15	:	2	2	12	. 28	. 059	1	11	. 86	61	. 02	3	1.49	. 81	. 15	1	17
24041167	1	59	5	28	. 2	1	9	459	2.84	8	5	H0	3	25	1	2	2	36	. 46	. 051	8	33	. 62.	53	. 06	2	1.10	. 01	. 15	1	10
RI 941158	1	56	2	27	. 3	1	,	540	:. 88	2		10	1	199	1	2	3	37	4.78	. 060	12	19	1.26	20	. 01	3	1.54	. 01	. 11	1	2
RY 041169	12	63	6	31	. 3	8	18	317	2.76	2	5	N0	4	12	1	?	2	39	. 22	. 054	8	9	. 67	58	. 01	2	1.08	. 01	. 17	1	30

B52 E. F-TINGS ST. VANCOUVER B.C. V6A $\mathbf{1}^{-\cdots}$
PHONE (604)253-3158 FAX(604)253-1716

GEOCHEMュCAL ANALYSIS CERTIFICATE

ICP - . 500 GRAM SAMPLE 15 DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER.
THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DEIECTION LIMIT BY ICP IS 3 PPM.

- SAMPLE TYPE: P1 ROCK P2 SOIL AU** ANALYSIS BY FA/ICP FROM 10 GM SAMPLE. P-pulverized, - 30 mesh.
 Inco Expl. \& Tech. Services File \# 89-3871 Page 1

SAMPLE\#

$\begin{array}{r}\text { Mo } \\ \hline P P M\end{array}$	Cu	Pb PPM	PR	AP8	Ni PPM	Co PPM	Mn PPM		As PPM	UPM	AU PPM	Th PPM	$\mathbf{S r}$	Cd PPM	$\mathbf{s b}$ PPM	$\mathbf{B i}$ PPM	V PPM	Ca	$\begin{aligned} & P \\ & X \end{aligned}$	La PPM	Cr PPM	Mg	8a PPM	$\mathbf{T i}$	PPM	Al	Na	$\begin{aligned} & K \\ & \% \end{aligned}$	$\begin{array}{r} \mathbf{W} \\ \mathrm{PPM} \end{array}$	P ${ }_{\text {P }}{ }^{\text {* }}$
PPM	\%	PPM	X	\%		PPM		PPM	\%	PPM	\%	\%	\%	PPM	PPB															
2	20	3	42	$\bigcirc 1$	10	11	539	3.16	6	5	ND	5	72	1	2	2	63	. 66	. 081	8	11	1.31	32	10	2	1.71	. 03	11		10
1	188	4	40	. 2	6	10	532	2.92	22	5	ND	7	47	१1	3	2	70	. 57	. 061	8	9	. 97	49	10	9	1.35	. 02	. 10	1	12
1	150	2	29	\%.4	6	8	411	2.83	\% 1	5	ND	5	70	\%1	2	2	74	1.09	. 072	5	8	. 90	27	10	10	1.19	. 04	. 09	1	187
2	1	2	2	4.	4	1	136	. 28	\% 4	5	NO	20	4	\%1	2	2	3	. 27	. 001	3	4	. 05	11	01	4	. 08	. 01	. 03	1	6
1	4	2	16	2	2	2	244	1.08	2	5	ND	12	9	1	2	2	12	. 04	.011	15	4	. 10	22	\%01	2	. 44	. 02	. 08	1	20
1	1	11	30	\% 9	3	1	472	. 57	\%2	5	ND	8	10	1\%	2	2	9	. 04	. 009	13	4	. 01	39	01	2	. 21	. 03	. 07	1.	12
7	106	2	114	, 1	6	8	415	2.91	2	5	NO	3	24	+1	2	2	67	. 48	. 072	6	21	. 71	44	10	16	. 89	. 04	. 07	2	61
1	47	2	43	\%1	4	7	760	3.10	+ 4	5	NO	6	12	11	2	2	95	. 21	. 059	9	8	. 77	45	0.1 \%	9	1.12	. 02	. 09	1	35
1	65	4	49	$\bigcirc 1$	2	6	746	3.06	\% 2	5	NO	5	91	+1	2	2	99	2.35	. 053	14	12	. 68	23	. 08	2	1.10	. 01	. 07	\% 1	94
3	78	3	35	¢	3	6	786	2.68	$\overbrace{}^{3}$	5	ND	3	58	¢ 1	2	2	96	2.01	. 053	13	8	. 65	42	$\underline{06}$	8	. 97	. 02	. 10	1	4
1	9	2	24	. 3	5	6	500	1.66	2.	5	ND	4	56	1	2	2	41	1.05	. 067	9	30	. 75	36	.02**	5	. 99	. 02	. 10	1	25
2	79	5	12	1.2	9	8	141	2.30	10	5	ND	1	30	$\bigcirc 1$	2	2	29	. 22	. 027	2	5	. 46	13	-02\%	2	. 60	. 01	. 04	1.	5
1	1	6	25	$\bigcirc .1$	2	1	273	. 47	2	5	ND	1	24	1.	2	2	4	. 25	. 008	7	24	. 01	33	01.	2	. 15	. 01	. 09	1 \%	84

CO GOLD COMPANY FILE \# 89-1458

Page 2
SAMP:I:
Ho Cu pb in ag Hi co ka in as

28 42542

 RI $4: 54$

R $325 ; 5$
RI 25546 RI
RI
22546
2: $\begin{array}{rrrrrrr}6 & 57 & 4 & 35 & .1 & 7 & 7 \\ 2 & 2 & 3 & 5 & . & 5 & 1 \\ 27 & 486 & 2 & 41 & 1.2 & 8 & 47\end{array}$
$\begin{array}{ccccccccccccc}306 & 2.16 & 2 & 5 & \text { M上 } & 4 & 112 & 1 & 2 & 2 & 65 & 2.85 & .872 \\ 2 & 5 & \text { M } & 13 & 135 & 1 & 2 & 2 & 6 & 1.84 & .001\end{array}$ $\begin{array}{rrr}6 & 1.84 & .001 \\ 63 & .28 & .045\end{array}$ -言 Cr
pry

Inco Expl. , ech. Services FILE \# 89-3715

sakPLE	Ho	Cl	Pb	21	A9	- \i	Co	Mn	Ie	As	0	Ad	Th	Sr	Cd	Sb	Bi	∇	Ca	p	La	Cr	Mg	Ba	11	B	Al	Ha	1	\#	${ }^{10}{ }^{*}$
	PFM	P?M	PPM	PPM	PFM	PPM	PPM	PRM	\%	R9!	PRM	PPM	PPK	PFK	P9Y	PPM	PPM	PPM	$\}$	$\}$	P9	P78	\%	PPM	\%	PPM	$\}$	\%	\%	p!	P98
51072939	1	13	12	41	. 1	5	5.	177	2.07	4	5	N0	8	13	1	2	2	29	. 14	. 032	21	11	. 29	75	. 03	5	1.25	. 01	. 05	1	2
S1 072940	1	22	16	55	. 3	11	3	260	3.48	9	5	W0	5	26	1	2	2	43	. 39	. 070	11	16	. 43	107	. 11	5	4.58	. 01	. 06	1	37
S1 072941	1	89	14	67	. 5	71	$\overline{8}$	309	3.30	8	5	MD	5	23	1	2	2	46	. 22	. 087	11	17	. 39	193	. 05	6	3.50	. 01	. 06	3	4
SI 072942	1	18	2	33	. 1	6	1	352	2.98	5	5	\$0	5	29	1	2	2	44	. 21	. 045	12	15	. 79	63	. 04	2	1.62	. 01	. 04	1	25
SI 072913	8	183	19	7.9	. 4	12	12	715	1.94	12	5	ND	5	31	1	3	2	85	. 33	. 095	9	21	1.29	117	. 03	2	3.41	. 01	. 06	1	9
\$1 072944	1	11	12	35	. 2	8	6	300	2.45	3	5	10	6	31	1	2	2	40	. 29	. 030	18	17	. 50	71	. 05	2	1.53	. 01	. 04	$!$	11
SI 372915	1	49	13	58	. 7	9	7	395	2.76	8	5	ND	5	28	1	2	2	12	. 30	. 041	13	16	. 57	127	. 04	2	2.70	. 01	. 05	2	650
S1 072946	1	52	12	59	. 3	11	8	119	3.38	10	5	H0	6	16	1	2	2	53	. 20	. 085	11	21	. 69	117	. 05	$?$	3.10	. 01	. 06	1	13
SI 072947	1	42	17	56	. 4	B	8	306	3.15	10	5	ND	5	10	1	2	2	49	. 08	. 072	11	16	. 52	78	. 06	5	3.29	. 01	. 05	1	41
SI 012948	5	578	22	75	1.0	15	12	1089	4.35	6	1	ND	3	50	1	2	3	53	. 57	. 032	37	19	. 63	203	. 05	2	3.72	. 01	. 08	,	103
S1 012949	1	160	7	14	. 2	11	14	624	4.80	4	5	40	6	14	1	2	2	84	. 13	. 249	17	12	1.12	176	. 01	5	3.05	. 01	. 09	1	91
SI 372950	1	21	3	39	. 1	9	1	218	2.55	2	5	H0	5	13	1	,	2	47	. 14	. 054	12	14	. 19	95	. 04	2	1.75	. 01	. 05	1	61
S1 612951	:	63	4	33	. 1	8	5	306	1.85	2	5	vo	6	18	1	2	2	33	. 18	. 028	18	10	. 39	47	. 03	2	1.16	. 01	. 03	1	43
SI 07295:	132	200	10	50	15	11	-19	303	6.03	2	5	ND	6	13	1	\%		54	. 08	. 120	16	12	. 18	14	. 02	2	2.51	. 01	. 07	1	53
S1072553	2	36	45	276	. 3	7	11	1029	3.06	2	5	40	3	21	,	2	2	52	. 20	. 064	12	7	. 27	101	. 01	2	1.65	. 01	. 08	1	31
SI 012951	1	13	4	1.34	. 1	14	6	168	2.17	2	5	10	11	23	1	,	2	60	. 26	. 059	30	46	. 39	148	. 06	2	. 98	. 01	. 06	1	3
S8 072955	1	21	7	70	. 2	30	15	358	4.41	2	5	WD	1	28	1	2	4	105	. 15	. 159	26	100	1.38	130	. 09	1	2.09	. 01	. 05	1	3
SI 072956	1	13	8	47	. 1	15	1	182	3.21	2	5	T10	1	20	1	2	2	69	. 25	. 127	30	44	. 17	121	. 07	6	1.60	. 01	. 06	1	1
S1 272957	1	12	6	39	. 2	19	7	311	2.35	4	5	SD	6	51	1	2	2	65	. 46	. 079	32	61	. 56	123	. 12	2	. 80	. 03	. 12	3	1
S1 072958	1	23	11	56	. 1	1	6	396	2.29	2	5	NO	3	19	1	2	2	38	. 17	. 058	24	9	, 60	109	. 01	2	1.65	. 01	. 03	1	1
S1072959	1	23	3	35	. 1	10	1	196	2.51	2	5	ND	6	15	1	2	2	48	. 18	. 071	19	19	. 13	97	. 03	3	1.23	. 01	. 06	1	1
SI 117960	1	31	1	42	. 1	15	10	261	1.09	2	5	HD	6	30	1	2	2	65	. 31	. 133	21	39	. 60	135	. 07	2	1.37	. 01	. 08	1	15
S1 0729 ¢	1	27	10	51	. 1	11	8	329	2.65	g	5	ND	5	23	1	2	2	51	. 25	. 081	16	22	. 57	102	. 06	2	1.58	. 01	. 06	1	2
SI 012952	1	30	2	10	. 3	7	6	171	2.19	2	f	10	5	18	1	2	2	46	. 12	. 085	13	11	. 32	88	. 09	1	2.10	. 01	. 03	1	10
S1 012953	1	22	5	27	. 2	6	6	185	2.01	2	5	KD	7	20	l	2	2	40	. 16	. 054	16	11	. 29	71	. 07	2	1.23	. 01	. 04	1	31
SI $072: 61$	1	21	11	63	. 8	8	8	160	2.39	2	5	ND	3	19	1	2	2	45	. 13	. 035	12	17	. 31	161	. 02	1	1.35	. 01	. 03	1	18
S1 072965	1	13	1	41	. 1	8	8	248	2.83	2	j	ND	5	15	1	2	2	51	. 08	. 047	11	11	. 54	71	. 04	3	2.09	. 01	. 05	1	52

Inco Expl \& Tech. Services FILE \# - $7-3871$
Page 2

SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { PPM } \end{array}$	$\begin{gathered} \text { Cu } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { Pb } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Zn} \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Ag} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \mathbf{N i} \\ \text { PPM } \end{array}$	$\begin{aligned} & \text { Co } \\ & \text { PPM } \end{aligned}$	$\begin{array}{r} \text { Mn } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \boldsymbol{\chi} \end{gathered}$	$\begin{array}{r} \text { As } \\ \text { PPM } \end{array}$	$\begin{array}{r} U \\ \text { PPM } \end{array}$	$\begin{array}{r} A U \\ \text { PPM } \end{array}$	Th PPM	$\begin{array}{r} \text { Sr } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Cd} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { Sb } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathbf{B i} \\ \text { PPM } \end{array}$	$\begin{array}{r} V \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{Ca} \\ \mathrm{x} \end{gathered}$	x	$\begin{array}{r} \text { La } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathbf{C r} \\ \text { PPM } \end{gathered}$	$\begin{aligned} & \mathbf{M g} \\ & \mathbf{x} \end{aligned}$	$\begin{array}{r} \text { Ba } \\ \text { PPM } \end{array}$	$\begin{aligned} & i 1 \\ & \% \end{aligned}$	$\begin{array}{r} \mathbf{B} \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { AL } \\ \% \end{array}$	$\begin{gathered} \mathrm{Na} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & K \\ & \chi \end{aligned}$	$\begin{array}{r} W \\ P P M \end{array}$	$\begin{aligned} & A u^{\star} \\ & \text { PPB } \end{aligned}$
SX 072970	2	120	16	40	1.2	7	8	481	2.91	\% ${ }^{2}$	5	ND	4	32	\%	2	2	46	. 22	. 030	15	12	. 40	122	O7\%	2	3.14	. 01	. 06	\% 1	13
SX 072971	2	189	10	45	$\%$	7	10	394	3.05	\%, $\%$	5	ND	5	30		2	3	52	. 38	. 044	16	13	. 63	74	\% 07	2	2.19	. 01	. 06	§ 1	1218
SX 072972	$2 \cdot$	320	15	80	1.1	14	10	479	3.85	\%	5	ND	6	40	1	2	2	60	. 29	. 040	25	15	. 54	154	-07.	2	4.17	. 01	. 06	1.	17
SX 072973	1	93	13	33	2,5	11	9	216	3.21	2	5	ND	10	22	*	2	2	49	. 24	. 063	24	17	. 55	57	\% 05	9	2.83	. 01	. 06	1.	106
SX 072974	1	15	32	67	1.3	9	5	214	2.08	\%	5	ND	10	26	1	2	2	33	. 22	. 063	13	8	. 15	121	16	5	4.27	. 02	. 04	1.	55
SX 072975	17	81	19	90	. 7.	9	11	879	4.28	\%6	5	ND	5	16	1	2	4	69	. 14	. 110	9	14	. 35	82	16	2	2.88	. 01	. 06	3	948
SX 072976	3	70	8	61	, 5	10	8	711	3.20	\%	5	NO	5	19	\%	3	2	70	. 17	.041	17	17	. 58	90	\%0\%	2	2.23	. 01	. 06	1	1596
SX 072977	13	230	19	50	88	9	13	1178	4.59	7		ND	5	38	1	2	2	79	. 43	. 060	22	15	. 60	74	. 07	2	2.14	. 01	. 07	1	322
sx 072978	22	222	5	47	¢ 9	7	12	992	4.64	6	5	NO	4	31	\%1	2	2	91	. 51	. 066	24	10	. 66	117	07	3	1.72	. 01	. 08	1	32
SX 072979	2	122	19	395	2.5	10	10	300	3.77	2	5	NO	8	14	» 1	2	2	49	. 10	. 036	18	12	. 55	69	00\%	4	3.02	. 01	. 08	\% 1	603

APPENDIX II

Geochemical Sample Descriptions

TRAVERSE NUMBER \qquad N.T.S. \qquad 82E-9 N.T.S.				PROJECT OUTBACK Claims			GEOLOGIST(S) D. Bohme/J. Miller					
				SAMPLE LENGTH, WIDTH, AREA (metres)	AREA Grand Forks, B.C._ DATE S		September 14, 1989					
SAMPLE	SAMPLE TYPE				LATITUDE, LONGITUDE and / or U.T.M.	SAMPLE DESCRIPTION	RESULTS (p.pm. / \%/oz.per ton)					
NUMBER	$\begin{aligned} & \frac{R X}{\text { Rock, }} \\ & \text { Talus } \end{aligned}$	\qquad	Grab, Chip, Channel			Rock type, lithology, character of soil, stream silt, etc. Formation Minerolization, etc.	$\begin{array}{r} \mathrm{Au} \\ \mathrm{ppb} \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{Ag} \\ \mathrm{ppm} \\ \hline \end{array}$	$\begin{array}{\|l\|} \mathrm{As} \\ \mathrm{ppm} \\ \hline \end{array}$			
RX 41162	Rock		Grab	0.5×0.5	$49^{\circ} 41^{\prime}$	Greenish-gray tuff (float) with fine quartz-	4	. 1	2			
					$118^{\circ} 28^{\prime}$	filled fractures.						
RX 41163	"		Chip	1×1	" "	Coarse-grained quartz veinlets and milky	6	. 6	2			
						whit quattockwork in granodiorite.						
- BX 41164	"		Grab	0.5×0.5	" "	Rusty, bleached quartz-feldspar porphyry	3	1	2			
- ${ }^{\text {a }} 41164$						with quartz veinlets, fine pyrite.						
RX 41165	"		Chip	1×1	$49^{\circ} 41^{\prime}$	Siliceous, pyritic dacite; thin fracturing	3	. 1	2			
					$118^{\circ} 29^{\prime}$	with carbonate alteration.						
RX 41166	"		Grab	2×2	" "	Quartz, quartz-calcite filled fractures in	17	. 1	8			
						veined granodiorite.						
RX 41167	"		"	0.5×0.5	" "	Rusty float of banded, comb textured white	10	. 2	8			
						quartz.						
RX 41168	"		Chip	1×1	" "	Fractured pyritic granodiorite with hairline	2	. 3	2			
						quartz veinlets.						
RX 41169	"		Grab	5×5	" "	By SX 72965; veined, stockwork to comb	30	. 3	2			
						flooded quartz in altered granodiorite.						

traverse number \qquad N.T.S. 82E-9 \qquad							GEOLOGIST(S) -D. Bohme/J. Miller DATE September 16, 1989						
					PROJECT - - Grand Forks, B.C.								
SAMPLE	SAMPLE TYPE			SAMPLE LENGTH, WIDTH, AREA	LATITUDE, LONGITUDE and / or U.T.M.	SAMPLE DESCRIPTION	RESULTS (p.pa. / \% /oz.per ton)						
number	$\begin{aligned} & \text { ROX } \\ & \text { Rock, } \\ & \text { Talus } \end{aligned}$	$\begin{gathered} \text { sx } \\ \text { Stream } \\ \text { Silt, } \\ \text { Soil } \end{gathered}$	Grab, Chip, Channel			Rock type, lithology, character of soil, stream silt, etc. Formation Mineralization, etc.	Au	$\begin{aligned} & \mathrm{Ag} \\ & \mathrm{ppm} \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { As } \\ & \mathrm{ppm} \end{aligned}\right.$				
. SX 72962		Soil			$49^{\circ} 41^{\prime}$	OB-365, 0.45 m deep, orange-brown colour.	40	. 3	2				
					$118^{\circ} 28^{\prime}$								
SX 72963		"			" "	OB-364, 0.6 m deep, gritty to sandy light	31	. 2	2				
						brown soil.							
SX 72964		"			" "		18	. 8	2				
						rounded fragments.							
SX 72965		"			" "	OB-370, 0.5 m deep; tan-brown colour, angu-	52	. 1	2				
-3x 7296						lar, veined granodiorite pieces.							
													-

APPENDIX III

Analytical Procedure - Bondar Clegg

Geochenical Analysis

by Bondar-Clegs:

YETHOD

LIre assay Ah
ind. coupled plasma
Ind. coupled plasa
ind. coupled plasea
Ind. coupled plasea
ind. coupled plasma
Ind. coupled plasma
Ind. coupled plasma
Ind. couplod plasma
ind. coupled plasea
Ind. coupled plasma
Ind. coupled plasma
Ind. coupled plasma
Ind. conpled plasma
Ind. coupled plasma
ind. coupled plasaa
Ind. coupled plasma
Ind. coupled plasma
Ind. coupled plasma
Ind. coupled plasea
Ind. coupled plasma
Ind. coupled plasea
Ind. coupled plasma
Ind. coupled plasa
Ind. couplod plasea
Ind. coupled plasma
Ind. coupled plassa
ind. coupled plasma
Ind. coupled plasea
Ind. coupled plasma

LEGEND

- Soil sample location and sample number
$X 269$ Silt sample location and sample number
Legal corner post
Identification post
All contour geochemical samples collected by Discovery Consultants
GEOLDGICALBRANC
12,441

SCALE $1: 10,000$

INCO EXPLORATION
OUTBACK CLAIMS
SILT AND SOIL
SAMPLE LOCATIONS 82E/9
DATE: NOV. 28, 1989 MAP NO:: 2

LEGEND

LEGEND

$\boldsymbol{4}^{72956}$ Soil sample location and sample number
x^{41162} Rock sample location and sample number
4^{7248}
silt sample location and sample number

All geochemical samples were collected by Inco

Legal corner post
\rightarrow Identification post GEOLOGICALBRANCH ASSESSMENTPEPOP
1 ?

INCO EXPLORATION
OUTBACK CLAIMS SILT, SOIL AND ROCK
SAMPLE LOCATIONS

