MIN	ISTRY OF PETROLE	ENER LIM B	gy, Mine Esource	s s
Rec'	d UCC	12	1989	
SI F	UBJECT ILE VANC	OUVE	R, B.C.	

LOG NO:	1221	RD
ACTION:		
angerates an an angerasi sa	and the second secon	a a se a

GEOCHEMICAL REPORT

ON THE

FILMED

and the

QUASH 1-12, 16-19

MINERAL CLAIMS

LIARD MINING DIVISION

N.T.S. 104 G/09

And for VA ZO ₹ 6. 130° 13' W 57° 45' N Located at Co-ordinates: 12 R Ca Gri America forcas N Z in find \bigcirc

NORANDA EXPLORATION COMPANY, LIMITED (NO PERSONAL LIABILITY)

34.7

BY: MIKE SAVELL

NOVEMBER, 1989

 $\langle f \rangle$ 00

Seed from \bigcirc <math>**1** C <

TABLE OF CONTENTS

SUMMARY	1
INTRODUCTION	2
LOCATION & ACCESS	2
PHYSIOGRAPHY & VEGETATION	2
CLAIM STATISTICS	2
PREVIOUS WORK	3
REGIONAL GEOLOGY	3
GEOCHEMICAL SURVEY	3
CONCLUSIONS	5
RECOMMENDATIONS	5

APPENDIX I	Statement of Qualifications	6
APPENDIX II	Statement of Costs	7
APPENDIX III	Analytical Procedure	8,9
APPENDIX IV	Analytical Results	10

FIGURE	1	Location Map	1:8,000,000	2a
FIGURE	2	Claim Map	1:50,000	2b
FIGURE	3	Sample Location Map	1:10,000	in pocket

SUMMARY:

The Quash 1-12, 16-19 mineral claims (Quash Creek Property) were staked in August, 1988 to secure the apparent source area of several anomalous silt samples collected as part of the National Geochem Reconnaissance Survey for N.T.S. 104 G. The sampling indicated an area anomalous in antimony and gold.

The property is underlain by Upper Triassic island arc assemblages of marine volcanics including augite-andesite flows, pyroclastics, derived volcaniclastic rocks and related subvolcanic intrusions, siltstone, chert, calcareous siltstone, greywacke and minor limestone.

In order to locate and evaluate the source of the RGS silt geochem anomaly, a brief program consisting of stream sediment sampling, prospecting and rock chip sampling was undertaken in early September, 1989.

Geochemical anomalies detected are believed to reflect a mineralizing system which has yet to be fully evaluated. The presence of a large, visible oxidized area containing float boulders of brecciated, pyritized, baritic, quartz-ankerite altered volcanics mineralized with sphalerite and chalcopyrite with gold values up to 2370 ppb on this essentially untested prospect warrant that additional exploration surveys be undertaken.

Detailed prospecting and sampling should be completed in the watersheds of anomalous silt results. A small grid should be placed over the gossan at the south end of the claims to facilitate detailed soil geochem, rock sampling and geological surveys.

INTRODUCTION:

The Quash 1-12, 16-19 mineral claims (Quash Creek Property) were staked in August, 1988 to secure the apparent source area of several anomalous silt samples collected as part of the National Geochem Reconnaissance Survey for N.T.S. 104 G. The sampling indicated an area anomalous in antimony and gold.

All work reported here was performed by employees of Noranda Exploration Company, Limited.

LOCATION & ACCESS:

The property is located approximately 200 km north of Stewart, B.C., and 18 km southeast of the village of Iskut (Figure 1). Access to the property has been by helicopter from the Stewart-Cassiar Highway, 15 km to the east.

PHYSIOGRAPHY & VEGETATION:

The property lies on the Klastline Plateau, a high, dissected highland contained within the much larger Spatsizi Plateau. Elevations on the property range from about 1370 metres to 1980 metres. Except for a few prominent cliffs and small glaciers, most of the property can easily be traversed by foot.

The property lies entirely within alpine, with vegetation consisting of hardy grasses, mosses, lichens and small shrubs, typical of a high latitude, high elevation environment.

CLAIM STATISTICS:

The property is comprised of sixteen 2-post claims as listed below and shown in Figure 2.

Upon acceptance of this report, the claims will be in good standing until the expiry date below:

NAME	RECORD #'S	UNITS	RECORD DATE	EXPIRY DATE
Quash 1-12	5505-5516	12	Sept. 17, 1989	Sept. 17, 1990
Quash 16-19	5517-5520	4	Sept. 17, 1989	Sept. 17, 1990

All claims are owned and operated by Noranda Exploration Company, Limited (no personal liability).

Ť

PREVIOUS WORK:

There is no recorded work for the area of the Quash claims. The B.C. Mineral Inventory for N.T.S. 104 G reports several occurrences within a few kilometres of the claims including #33 (Nabs, QC, Boot - Cu, Mo), #35 (SF, Horn - Ag, Pb, Zn, Cu, Ba), #44 (AL - Cu, Au) and #76 (JO, Castle - Cu, Au). Companies known to have conducted exploration programs nearby in the past include Conwest, Amoco, Teck, Silver Standard and Tenajon Silver Corp.

REGIONAL GEOLOGY:

The Klastline Plateau is underlain by Upper Triassic assemblages of marine volcanics including augite-andesite flows, pyroclastics, derived volcaniclastic rocks and related subvolcanic intrusions, siltstone, chert, calcareous siltstone, greywacke and minor limestone. This island arc assemblage has been deformed and subjected to greenschist facies metamorphism. These rocks have been overlain and intruded by felsite and rhyolite of the Upper Cretaceous to Tertiary Sloko Group, and more recently by Pleistocene basic flows.

Within the present criteria of the Terrane concept for origin of the cordillera, the rocks have been assigned to the Stikinia Terrane.

GEOCHEMICAL SURVEY:

In order to locate and evaluate the source of the RGS silt geochem anomaly, a brief program consisting of stream sediment sampling, prospecting and rock chip sampling was undertaken in early September, 1989. Sample locations, descriptions and analytical results are presented on Figure 3. Note that only expenditures made on the Quash 1-12, 16-19 claims are included in the statement of costs, although results of additional sampling are included in the map.

<u>Silts</u> -

A total of 36 silt samples from active stream channels were collected and placed in high wet-strength Kraft paper envelopes and shipped to Vancouver, B.C. for drying and analysis. Of these, 17 were analyzed for Cu, Zn, Pb, Ag, As and Au at Noranda Exploration's AA lab at 1050 Davie Street, Vancouver, B.C. The remaining were analyzed for a 30 element suite plus Au by the ICP method by Acme Analytical Laboratories at 852 E. Hastings Street, Vancouver, B.C. Details of the analytical procedure are given in Appendix III.

ASSESSMENT - GEOCHEMICAL REPORT QUASH 1-12, 16-19 CLAIMS

All significant drainages emptying into the RGS anomalous streams were sampled. There are several sets of results worthy of note. Copper results are in general high, especially streams draining from the north and east side of the claims, where values range from 103 to 144 ppm. Minor chalcopyrite in quartz veins cutting andesitic rocks has been observed in float in this area. Sample #97371 near the southwest corner of Quash 1 contains 730 ppm Zn, which may reflect an elevated background in the fine black clastic sediments which the stream drains. The most interesting multi-element anomaly was obtained from #104613, which is from a small west flowing stream on the Quash 8 claim. Values of 203 ppm Cu, 57 ppm Pb, 214 ppm Zn, 58 ppm As and 79 ppb Au suggest more prospecting and sampling is warranted in this area. Antimony values were consistently low, between 2 (the detectable limit) and 3 ppm, however, 17 of the samples have not been analyzed.

Soils -

A small suite of soil samples was collected along a prominent rusty orange coloured gossan for a length of approximately 350 metres on the Quash 17 claim. This suite of 8 samples were treated and analyzed identically to the silts. Values up to 142 ppm Cu, 26 ppm Pb, 150 ppm Zn, 1.1 ppm Ag, 1107 ppm Ba, 29 ppm As and 16 ppb Au. These results are considered to reflect elevated levels associated with the soil gossan, and more detailed sampling is in order.

Rocks -

A total of 21 rock samples were collected and analyzed. These consist entirely of selected grab samples of various lithologies scattered over the property showing visible mineralization and/or alteration.

The most significant result was obtained from #34728 on the Quash 7 claim which contained 2370 ppb Au, 4.4 ppm Ag, 631 ppm Cu, and 365 ppm As. This sample is a pyritic, altered volcanic from the north end of a large soil gossan as described above. Other anomalous gold values from 67 to 280 ppb were also obtained. A quartz-ankerite breccia with sphalerite from the gossan contained 18090 ppm Zn, but only minor Au (45 ppb) and Ag (1.7 ppm). A chalcopyrite bearing quartz stringer network in andesite (#103830) contained 5055 ppm Cu, but insignificant Au and Ag. White, crystalline, barite mineralization observed as float on the Quash 17 claim returned maximum ICP values of only 1532 ppm. This is attributed to the incomplete dissolution of barite with the digestion used.

PAGE 4

ASSESSMENT - GEOCHEMICAL REPORT QUASH 1-12, 16-19 CLAIMS

CONCLUSIONS:

Geochemical anomalies detected on the Quash claims are believed to reflect a mineralizing system which has yet to be fully evaluated. The presence of a large, visible oxidized area containing float boulders of brecciated, pyritized, baritic, quartz-ankerite altered volcanics mineralized with sphalerite and chalcopyrite with gold values up to 2370 ppb on this essentially untested prospect warrant that additional exploration surveys be undertaken.

RECOMMENDATION:

Detailed prospecting and sampling should be completed in the watersheds of anomalous silt results. A small grid should be placed over the gossan at the south end of the claims to facilitate detailed soil geochem, rock sampling and geological surveys.

APPENDIX I

STATEMENT OF QUALIFICATIONS

I, Michael J. Savell of the City of Prince George, Province of British Columbia, do certify that:

- 1. I am a geologist residing at 3507 Rosia Road, Prince George, British Columbia.
- 2. I am a graduate of Dalhousie University with a Bachelor of Science (Honors) in Geology (1980).
- 3. I am a member in good standing of the Geological Association of Canada, Canadian Institute of Mining, Prospector's and Developer's Association and the B.C.-Yukon Chamber of Mines.
- 4. I presently hold the position of Project Geologist with Noranda Exploration Company, Limited and have been in their employ since 1980.

Michael J. Savell Project Geologist NorandaExploration Company,Limited (no personal liability)

- ---

ASSESSMENT - GEOCHEMICAL REPORT QUASH 1-12, 16-19 CLAIMS

APPENDIX II

STATEMENT OF COSTS

DATE: NOVEMBER, 1989 **REPORT TYPE:** GEOCHEMICAL a) WAGES: No. of Days - 4 Rate per day - \$150.00 Dates from - Sept. 1 to Sept. 15, 1989 Ŝ 600.00 Total: FOOD & ACCOMMODATION: b) No. of Days - 4 Rate per day - \$40.00 Dates from - Sept. 1 to Sept. 15, 1989 160.00 Total: S c) **TRANSPORTATION:** • No. of Days - 4 Rate per day - \$150.00 Dates from - Sept. 1 to Sept. 15, 1989 600.00 \$ Total: d) ANALYSIS: 31 silt, soil, rock 30 element by ICP and Au geochem at \$14.50/sample 449.50 Total: \$ COST OF PREPARATION OF REPORT: e) Author \$100.00 Drafting \$ 50.00 \$ 50.00 Typing \$ 200.00 Total: \$ 2,009.50 TOTAL COST:

ANALYTICAL METHOD

DESCRIPTIONS FOR GEOCHEMICAL ASSESSMENT REPORTS

(Revised: 01/86)

The methods listed are presently applies to analyse geological materials by the Noranda Geochemical Laboratory at Vancouver. (March, 1984).

Preparation of Samples

Sediments and soils are dried at approximately 80° C and sieved with a 80 mesh nylon screen. The -80 mesh (0.18 mm) fraction is used for analysis.

Rock specimens are pulverized to -120 mesh (0.13 mm). <u>Heavy</u> mineral fractions (panned samples) are analysed in its entirety, when it is to be determined for gold without further sample preparation. See addendum.

Analysis of Samples

Decomposition of a 0.200 g sample is done with concentrated perchloric and nitric acid (3:1), digested for 5 hours at reflux temperature. Pulps of rock or core are weighed out at 0.2 g or less depending on the matrix of the rock, and twice as much acid is used for decomposition than that is used for silt or soil.

The concentrations of Ag, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn (all from the group A elements of the fee schedule) can be determined directly from the digest (dissolution) with an atomic absorption spectrometer (AA). A Varian-Techtron Model AA-5 or Model AA-475 is used to measure elemental concentrations.

Elements Requiring Specific Decomposition Method

Antimony - Sb: 0.2 g sample is attached with 3.3 mL of 6% tartaric acid, 1.5 mL conc. hydrochloric acid and 0.5 mL of conc. nitric acid, then heated in a water bath for 3 hours at 95°C. Sb is determined directly from the acid solution with an AA-475 equipped with electrodeless discharge lamp (EDL).

Arsenic - As: 0.2 - 0.4 g sample is digested with 1.5 mL of 70% perchloric acid and 0.5 mL of conc. nitric acid. A Varian AA-475 equipped with an As-EDL measures the arsenic concentration of the digest.

PAGE 9

Barium - Ba: 0.1 g sample is decomposed with conc. perchloric, nitric and hydrofluoric acid. Atomic absorption using a nitrous oxide-acetylene flame determines Ba from the aqueous solution.

Bismuth - Bi: 0.2 g - 0.3 g is digested with 2.0 mL of perchloric 70% and 1.0 mL of conc. nitric acid. Bismuth is determined directly from the digest into the flame of the AA instrument c/w EDL.

Gold - Au: 10.0 g sample (Pan-concentrates see below) is digested with aqua regia (1 part nitric and 3 parts hydrochloric acid). Gold is extracted with Methyl iso-Butyl ketone (MIBK) from the aqueous solution. Gold is determined from the MIBK solution with flame AA.

Magnesium - Mg: 0.05 g - 0.10 g sample is digested with 4 mL perchloric/nitric acid (3:1). An aliquot is taken to reduce the concentration to within the range of atomic absorption. The AA-475 with a nitrous oxide flame determines Mg from the aqueous solution.

Tungsten - W: 1.0 g sample sintered with a carbonate flux and thereafter leached with water. The leachate is treated with potassium thiocyanate. The yellow tungsten thiocyanate is extracted into tri-n-butyl phosphate. This permits colourimetric comparison with standards to measure tungsten concentration.

Uranium - U: An aliquot, taken from a perchloric-nitric (3:1) decomposition, usually from the multi-element digestion, is diluted with water and a phosphate buffer. This solution is exposed to laser light, and the luminescence of the uranyl ion is quantitatively measured on the UA-3 (Scintrex).

LOWEST VALUES REPORTED IN PPM

Ag	-	0.2	Mn	-	-	20	Zn	-	1	P	Au	-	0.1	(10	ppb)
Cd	-	0.2	Мо	-	-	1	Sb	-	1	\mathbf{v}	Ň	-	2		
Co	-	1	Ni	-	-	1	As	-	1	τ	J	-	0.1		
Cu		1	Рb	-	-	1	Ba	-	10						
Fe	-	100	v	-	-	10	Bi	-	1						

APPENDIX IV

.

.

·														ل	Sk	ert	. (ins)													
CME ANALS	TICA	L LA	BOR	ATOF	RIES	LTI	.	1	352	E. H	IAST	INGS	S ST	. vi	ANCO	UVEF	₹В.	c.	V64	1R(5	Pl	IONE	(604)25	3-3:	158	FAJ	(60	4)25	3-171	16
						Ĝ	EO	CF	IEN	11	CA	L	A	JA.	LY	SI	s	C	ER		F	C.	АТ	E								
				_																												
				I I	CP! HIS LE	500 GR ACH TS	AN SAN Parti	PLK IS N. 701	DIGKS NN PR	TKD WI SR CA	TH JHL P LA i	3-1-2 CR XG	HCL-HI BA TI	NO3-HZ B V AN	O AT 9 Id lini	S DEG. TED JOI	C FOR E NA E	CANE H	UUR A) L. AI	ND IS D U drtre	TLUTED	TO 10 1 TO 10	I NG NU Ny Tep	TH WAT IS 3 P	BR. PM.							
				-	SAMPL	E TYPE	: Pi S	OIL P2	SILT	P3 TAL	US FIN	IS P4-	PS ROCI	K	AU* AN	ALYSIS	BY AC	ID LEA	CH/AA	TRON 1	G GK S	ANPLE.										
חאת		C T 1/6	en.	C 7 D 1		 1 - n	- ۲۳	DFD	יזיימרי	MAT	1.60.	\langle	, at	20	90	e.	TCNE	ם חק	v (". L		~ n	1011	C. LEON	G. J.W	ANG: C	-	XD 8.C	1551	TERS		
DAT		C 1 V C	50.	3BC .	13 1909	, ,	A10	NG1		CLAT.			sopi	**	•/.	0.	1 0111						10141		•, •							
•				Ň	oran	da i	Expl	ora	tion	Co	. Lt	d. 1	PROJ	ECT	890	9-05	51 2	40	Fj	lle	# 89	-'36	81	Pa	ige	1						
SANPER	No	Cu	Pb	žn	λg	Ni	Co	Xa	īe	ÀS	U	λu	Tb	Sr	Cđ	Sb	Bİ	۷	Ca	P	La	Cr	Ng	Ba	71	B	Al	Na	K	¥	Au*	
	PPK	PPM	PPM	PPN	PPM	PPN	PPN	PPN	۲	PPM	PPK	PPN	PPN	PPN	PPN	PPN	PPH	PPN	\$	3	PPN	PPN	\$	PPK	٢	PPN	٤	٤	\$	PPN	P28	
34731	4	108	23	122	.1	25	25	1702	5.17	27	5	ND	1	18	1	2	ż	53	.15	. 146	15	14	. 58	583	.04	4	1.76	.01	.08	1	2	
34732	2	95.	5	90	.4	43	25	1735	5.62	15	5	ND	1	25	1	2	2	51	. 58	.131	18	20	1.00	617	.12	5	1.55	.02	.09	1	6	
34733	3	128	26	82	1.1	25	35	3004	7.31	29	5	ND	1	18	1	2	2	51	.50	.167	14	12	. 52	630	.05	- 4	1.23	.01	.12	1	16	
34734	2	142	13	87	. 6	30	29	2547	6.22	20	5	ND	1	27	1	2	2	56	.46	.156	15	18	.10	1002	.07	2	1.55	.01	. 12	1	5	
34735	2	\$2	14	85	.1	35	24	1673	5.70	13	5	ND	1	19	1	2	3	66	.43	.128	17	23	. 83	418	.13	5	1.63	.01	.09	1	· 1	
34735	2	102	19	117	. 2	31	24	1956	5.63	14	5	HD	1	22	1	2	2	54	.38	.125	14	20	.15	1107	.05	6	1.65	.01	.10	1	14	
34737	2	100	13	118	. 4	40	25	1640	5.96	17	5	ND	1	23	1	2	2	60	. 11	.131	15	24	.91	956	.08	- 1	1.72	.01	. 09	1	5	
34738	2	92	15	150	٦.	57	26	1707	5.96	21	5	ND	2	21	2	2	2	59	.42	. 124	17	27	1.22	761	.14	- 1	1:58	.02	.08	1	4	
STD C/AU-S	13	6 3	17	133	6.3	68	31	1012	4.08	42	23	ŝ	39	48	18	15	20	59	.49	.092	39	55	.91	i11	7.07	33	1.99	.06	.13	12	51	

SEP 2 8 1989 Ν TVI

61 1

(

t.

С.

2.0

(

6.,

6.

t

٤

C.

4

Copy do Mike file

" 13 R.S.

						Nor	and	a E	xbto	rat:	lon	co.	Lta	. P	ROJE	CT 8	1909	-05.	1 24	0	FILE	# 3	39-3	08 I							
SANPLE	Ko PPN	Cu PPN	PD PPH	2n PPM	Ag ?PN	NJ <u>e</u> - PPN	Co PPN	HD PPN	Ге Ъ	AS PPN	U PPN	AU PPN	Th PPN	ST PPN	Cd PPK	Sb PPK	BÍ PPN	V ?PN	Ca k	`Р Х	La PPN	Cr PPN	Ng 1	Ba PPM	Tİ X	B PPN	۸1 ۲	Ha 1	K ł	W PPK	Au* PPB
193511 103812 193913 103814	i 1 1 2	119 104 103 119	18 13 13 21	135 117 117 132	.2 .1 .1	19 17 - 17 19	17 15 17 21	501 417 600 521	4,75 4,31 4,97 5,09	21 10 16 22	5 5 5 5	ND ND ND ND	1 1 1 1	83 105 64 60	1 1 1 1	2 2 2 3	3 3 2 2 2	44 42 52 51	2.61 5.41 1.81 1.56	.129 .122 .130 .143	6 6 8 10	10 9 11 11	.94 .93 1.02 1.07	277 226 205 168	.01 .01 .01 .01	11 7 15 7	1.98 1.85 2.02 2.03	.01 .01 .01 .01	.17 .16 .14 .14	1 1 1 1	5 7 2 1
103815 103817 103813	2 1 1	116 124 30	19 17 9	157 129 133	.1 .1 .1	27 30 47	23 24 28	879 1612 1418	5.81 5.96 6.76	25 13 9	5 5 5	ND ND ND	1 1 1	42 36 31	1 1 1	2 2 2	3 2 2	,58 89 113	. 81 .72 .76	.131 .127 .101	14 22 12	15 26 34	1,17 1,45 2,49	219 241 161	.05 .15 .22	9 3 6	2.10 2.79 2.94	,02 .03 .06	,16 .13 .13	1 1 1	5 2 6
																				ini						•	ā	۸Ĩ	ÂA	i	:
194523 194524	1	109 113	13	170 141	.1 .1	48 35	25 23	1444 1224	5.62 6.32	14 12	5	ND ND	2	31 30	1	2	3	106 99	.60 .61	.108	20 20	19 33	1.86	312	.16	9	2.89	.03	.12	1	9
104525 104569 104590 104591	1 2 1 2	144 134 96 59	13 21 17 15	162 125 140 147	.1 .2 .1 .1	20 32 28 43	24 25 20 18	1581 1157 1289 965	6,25 6,16 6,31 3,56	17 18 13 17	5 5 5 5	HD ND ND ND	1 1 1 2	53 32 93 60	1 1 1 1	2 3 2 2	3 2 3	67 73 107 118	.65 .68 .73 1.37	.142 .133 .127 .079	13 17 13 23	10 19 18 36	.93 1.53 1.22 1.18	522 166 274 89	.03 .06 .09 .36	10 ~ 8 9 5	1.97 2.42 1.91 2.95	.01 .02 .01 .03	.11 .11 .10 .06	1 1 1 1	5 E 10 8
104611 194612 104613	1 2 4	96 138 205	16 21 57	153 192 214	.1 .2 .3	17 24 38	20 25 30	1941 2730 1714	6.13 5.57 6.31	21 37 58	5 5 5	ND ND ND	1 1 2	52 45 54	1 1 1	2 2 2	2 2 2	65 61 62	.50 .67 .53	.122 .131 .123	12 12 27	12 11 22	.75 .83 1.33	301 409 208	.04 .04 .08	14 5 6	1.78 2.03 2.14	.02 .01 .02	.14 .11 .10	1 1 1	3 23 79
34725 34727 34729	1 2 2	75 93 104	12 28 28	143 188 211	.1 .5 .5	74 46 35	27 23 23	1013 1395 1625	8.02 6.31 6.21	11 27 22	5 3 5	ND ND	2 2 1	32 54 45	1 2 2	2 3 2	2 2 2	161 96 73	.61 .66 .61	.100 .115 .142	19 20 17	49 34 23	2.25 1.51 1.09	109 315 319	.39 .19 .10	6 7 8	2.51 2.50 1.72	.04 .03 .02	.07 .11 .12	1 1 1	3 16 1
STD C/AU-S	18	62	44	132	6.7	68	30	1013	4.06		19	ß	38	48	- 16	16	23	59	49	. 089	38	<u>5</u> 2	. 89	176	.07	-34-	1.89	. 06	.13	11	47

. .

. .

....

- - -

Page 2

t

e.

£

ŕ .

 C_{1}

.

É

É

£

.

٤.

(.

(

ŧ

•						No	rand	la E	xplo	rati	ion	Co.	Ltd	1. PI	ROJE	CT 8	3909	-05	1 24	O F	ILE	# ε	9-3	681		•						Page 4
SAMPLE	X0 77K	Cu PPM	Pb PPN	Za PPX	Ag PPN	HL: " PPK	CO PPN	Kn PPN	Te 3	AS PPK	U PPN	Au PPN	Th PPN	Sr PPM	Cd PPN	SD PPN	BI PPM	V PPN	Ca t	P	La PPK	Cr PPN	Xg L	Ba PPN	ti X	B PPN	۸1 ۲	Жа Ъ	X ł	W PPK	AU* PPB	
34728 34730	11	631 52	59 4	86 28	4.4	6 8 _	15 10	826 162	15.55 3.80	365	55	ND ND	3 1	15 17	1 1	32	6 2	84 72	.23 .21	.096 .120	5 8	24 23	1.22 .78	107 59	.01	5 5	3.04 1.43	.01 .02	.18 .19	1 1	2370 280	
103826 103827 103828 103829 103829 103830	1 1 1 4 1	63 80 10 24 5055	4 4 7 4 7	62 63 96 35 61	.2 .1 .3 .4 .6	20 13 8 8 10	20 18 16 4 16	646 1215 1948 279 559	4.94 4.46 4.53 1.25 4.69	50 2 8 8 2	5 5 5 5	ND ND ND ND	1 1 1 1 1	42 27 368 29 18	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	122 121 23 7 83	2.04 2.39 27.57 1.07 1.01	.117 .081 .005 .025 .063	7 6 3 4 5	31 17 1 4 22	2.03 2.62 2.26 .09 1.66	86 48 59 25 18	.01 .18 .01 .01	8 13 2 9 3	2.67 2.28 .24 .19 2.12	.03 .03 .01 .01 .02	.07 .07 .03 .08 .05	1 1 1 1 1	8 5 1 67 12	
103831	1	419	2	72	.2	18	24	698	4.74	2	5	KD.	1	79	. 1	2	2	74	4.64	.073	5	15	1.41	62	.01	9	2.11	. 01	.18	1	4	
104521 104522 104584	3 3 1	86 62 6	7 6 2	10 44 7	.7 .3 .3	14 1 4	7 5 5	1284 147 331	1.38 3.42 1.14	20 2 2	5 5 5	ND ND ND	2 8 1	79 14 924	1 1 1	3 2 2	3 2 2	14 47 19	5.14 .08 1.84	.034 .067 .003	8 16 2	6 9 5	.28 1.21 .19	19 237 563	.01 .01 .01	5 10 5	.45 1.44 .34	.01 .02 .01	.05 .12 .01	1 1 1	19 8 1	
104585 104586 104587 104588	t 1 1	28 140 29 17	3 2 2 6	52 49 904 25	.2 .1 .6 .3	12 11 2 2	18 12 5 4	1657 496 2003 2003	5.17 2.96 1.99 2.23	2 2 7 7	5 5 5 5	ND ND ND	2 1 1 1	183 101 259 492	1 1 6 1	2 2 2 2	2 2 2 2	90 93 16 6	11.68 2.41 21.81 34.11	.064 .047 .008 .002	7 3 8 2	11 17 2 1	1.75 1.36 1.23 2.67	1272 1532 78 37	.01 .06 .01 .01	7 6 5 8	1.72 1.37 .25 .04	.01 .02 .01 .01	.11 .02 .02 .01	1 1 1 1	2 1 1 1	
IO4614 STD C/AU-R	2 18	24 60	38 40	1692 133	1.2	11 68	8 30	4574 1011	\$.23 4.16	21 45	5 18	HD 7	3 39	179	14 18 .	2 15	2 21	22 59	17.00	.021 .090	24 39	4 52	4.88 .91	148 175	.01 .07	2 32	.37 2.06	.01	.06 .14	1 13	1 480	

;

1

(

¢.

¢

t_

í,

ł

١

t -

Ć.

ſ

¢.

í....

e,

C

Ć

ſ

£.

(

Ċ.

ſ

i	•						No	rand	ia E	xplo	rati	lon	Co.	Ltd	. PF	OJE	CT 8	909-	051	240	F	ILE	# 89	9-36	81								Page 5
SAMPLE		No PPN	CU PPN	PD PPN	Zn PPH	λg PPN	NL.; PPN	· Co PPN	Kn PPK	fe t	λs PPN	U PPN	Au PPX	Th PPM	Sr PPN	Cđ PPN	SD PPM	B1 PPN	V PPN	Ca ł	'Р Х	La PPH	Cr PPN	Ng ł	Ba PPN	Ti t	B PPN	л1 В	Na 1	K ł	¥ PPN	202 258	
104615 104615 104617 104613 104613 104619		2 1 2 2 3	33 59 75 275 690	4 2 8 15 5	26 2 11 18090 21	.5 .1 .4 1.7 -	3 1 6 	2 1 14 5	462 88 308 1445 1171	.60 .10 .74 3.28 1.59	17 3 44 88 8	5 5 5 5 5	ND ND ND ND ND	8 1 7 1 1	23 839 89 266 24	1 1 294 1	2 2 2 2 2 2	2 2 2 2 3	3 1 1 33 8	.51 .02 .42 4.19 1.80	.003 .001 .001 .098 .038	12 2 13 2 3	35 1 39 3 46	.08 .01 .06 .84 .13	910 580 187 12 511	.01 .01 .01 .01 .01	10 12 5 8 8	. 29 . 02 . 26 . 88 . 24	.01 .01 .01 .01 .01	.14 .01 .12 .14 .11	2 1 3 1 1	28 6 27 45 24	
•																-																	
STD C/J	.U - R	18	63	44	130	6.9	67	31	1006	4.08	43	22	?	38	49	18	15	21	59	. 49	.092	39	55	. 89	174	. 07	36	2.03	.06	.13	11	480	,

 $\dot{\phi}$:

C

 \mathbf{F}_{i}^{i}

C

é –

1

£

t

ŀ

(

6 ..

 \cdot

(

- ASSAY REQUIRED FOR CORRECT RESULT -

u 1	SAMPLE	Cu	Zn	Ръ	Ag	As	PPB Au Pg. 2 of	3
8 29 30 31 32 33 34 35 36 37 38 39	NG.							
40 41 42 43 44 45 46 47 48 49 51 52 53 45 56 7 8 90 61 23 55 56 57 8 90 61 23	38308 38309 38310 38311 38312 38313 38314	72 58 66 60 70 68 86	150 160 190 140 200 210	4 8 14 4 10 8 6	0.2 0.2 0.2 0.2 0.2 0.2 0.2	4 8 4 12 8 1	10 10 10 10 10 10	
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 5	511							

- - -----

·										
	1									
	. •							PPB		
	•	No.	Cu	Zn	РЪ	Ag	As	Au Pg.	3 of	3
	CTI T			، منظور النالي موراد ، موجو موري _{الو} يون م			یکی این اور والد باین میں چین نیے میں ا	هه وي من من من من من من من من من من من من من 		
<u>،</u>	, SICI									
أو										
6ر										
87										
89										
90										
91										
92										
93	;									
95										
96										
97	1									
98	,									
99	CHE									
100										
102										
103										
104										
105										
107										
108		•								
109										
110										
111		97366	70	180	18	0.4	8	10		
113		97367	72	200	20	0.4	28	10		
114		97368	74	150	10	0.4	24	10		
115		97369	68	170	14	0.2	20	10		•
116		97370	74 DA	160	16 2	0.2	£4 ↓ 4	10		
117		97372	84 52	170	6	0.2	8	10		
119		97373	100	120	14	0.6	24	10		
120		97374	68	200	12	0.4	16	50		
121		97375	60	170	8	0.4	4	10	•	
4 5151	571 T	35332	38	480	8	U. 4	1	10		

.

•

. .

•

. -

1522	Silt	Sample	Location
734 0	Soll	n	11
522 X	Rock	11	
•••••	Area	of outc	rop
$\sim \sim \sim$	Fault		
	beddii	n g , f olia	tion

		r b	B =		ROCKS										
A9	A3	30	0.000	AU Dob	CANDLE NO	Mo	0	Ph	Zn	10		C.h.		A	
ppm	ppm	ppm	h their	PDD	SAMPLE NU.	000	000		211	~9	~*	30	DE	anh	
0.7	27	,	583	2		p para	p parti	hhim	ppm	ppin	p pair	1) pen	P part	ppu	
0.1	15	- 5	617	ŝ	34728	11	631	59	86		365	3	107	2370	
1 1	29	2	630	16	34730	'1	52	33	28	0 4	363	2	50	2310	
0.6	20	5	1002	1.5	103826		63	7	67	0.7	50	5	22	200	
0 1	13	5	418	1	103827	i	80	7	63	0 1	2	5	4.0	ž	
0.7	14	ž	1107	14	103828		10	7	96	0.3	à	5	50	1	
0.4	17	,	956	17	103829		24		25	0.4	, in the second s	2	25	67	
0.4	21	;	761	ž	103830		5055	7	61	0.4	2	5	19	12	
4.4		•		-	103831	÷	419	,	72	0.0	5	-	62	14	
					104521		86	7	10	0.2	20	2	10	10	
					104522	3	62		44	0.3	2	2	237	· '2	
					104584	1		2		0.3	5	5	562	1	
10	4.4	en.	Re	A	104585	;	24		87	0.3	-	2	1979	-	
000		0.00	0.000	bob	104586		140	2	40	0.2	5	5	1532	1	
the final sector	2 pm	P Pin	p p	~po	104587	÷	29	ŝ	914	0.1	-	5	79	÷	
0 1	3.7	2	109	3	104599	;	17	-	25	0.2	÷	5	27	-	
0.5	17	2	315	16	104614	;	24	20	1602	1 2		2	149	-	
0.5	22	ž	319		104615	5	22	30	76	0.5	17	-	0,0	20	
0 2	~7	-		10	104616	1	58	,	20	0.5		5	500	. 20	
0.2	Â			10	104617	,	76	á	11	0.2		2	167	27	
0.2	Ř			10	104618		275	16	10000	1 7	00	2	12	48	
0.2	, A			10	104619	2	600		21	0.4		2	511		
0.2	12			10	104013	5	0.50	5		0.3	•	4	211	24	
0.2	Ř			10											
0.2	ī			10											
0 4	Å			10											
0 4	28			10		DESCRI	PTION								
0 4	24			10											
0.7	20			10	34728	Tuff-h	viivae	oxidi	zed. ca	arb-chi	alter	ed. tr	ace py	,	
0.2	24			10	34730	Tuff-e	s abov	e, 2%	dissem	рy					
0.2				10	103826	Silici	fied ro	ock, b	anded.	1% dis	isem py	,			
0.2	Ř			10	103827	Andesi	te, mi	norˈov							
0.6	24			10	103828	Otz-cal-ank vein, oridized									
0.4	16			50	103829	Qtz st	ringer	s in s	iltato	ne, mir	nor py				
0.4	4			10	103830	Otz st	ringer	s in a	ndesit	. 2% .	coy, mi	inor py	,		
0.2	21	2	277	5	103831	Andesitic breccia, silicified, minor cov									
0.1	18	2	226	7	104521	Silicified rock, fine str-cal stringers, minor py									
0.1	16	2	205	2	104522	Bleach	ed. ar	gillic	alter	ed, int	trusive	rock,	minor	- py	
0.1	22	3	188	1	104584	Barite	vein	in chl	oritiz	ad vole	anic				
0.1	25	2	219	5	104585	Bar-ca	il-atz ·	vein w	ith vo	lcanic	fragme	ints			
0.1	13	2	241	2	104586	Qtz-ca	1-ank	brecci	a zone	. trace	sph.	py. 30) cm. 1	vide	
0.1	9	2	161	6	104587	As abo	ove. ta	lus, 1	% sph.	trace	CDY. S	y .			
0.1	14	2	222	6	104588	As abo	ve, tr		Ifides						
0.1	12	2	312	9	104614	Qtz-ca	irb alt	ered,	brxd v	olcanie	c, trad	e py			
0.1	17	2	522	5	104615	Silici	ified v	olcani	c, tra	ce py		•			
0.2	18	3	166	6	104616	Coarse	white	barit	e, tra	ce cpy	, float	:			
0.1	18	2	274	10	104617	As abo	ove								
0.1	17	2	89	8	104618	Qtz-ca	arb alt	ered,	brxd v	olcanie	c, 3% s	sph. tr	ace p	/	
0.1	21	2	301	3	104619	Silici	ified,	brxd v	olcani	c					
0.2	37	2	409	23											
0.3	58	2	208	79	Abbreviatio	ns:									
		-			Ani	k - anke	orite			cpy - 4	chalcon	pyrite			
													and .		

NORANDA EXPLORATION