GEOLOGICAL REPORT \& WORIK PROPOSAL ON THE

S IWASH CREEK PIROPERTYY
V.M. 1 - 4 , PETERSON \&

FISSURE MAIDEN NO 2 FR CLAIMS

FOR
TOWER HILI MINES LTDDE $\cup \propto$ 20 \&
20

SIMIILKAMEEN MINING DIVI S $\frac{1}{10}$
 SIMIIKAAMIEEN MINING DIVI

$\mathbf{N}-\mathbf{T}-\mathbf{S}-$
$92 H / 16 W$
$49047 \cdot N$
120020°

BY
\pm U 5
5

ces.
cla
0

VICTORIA, B.C. DECEMBER 18,1989
E. W. Grove Consultants Ltd.

TABLE OF CONTENTS
PAGE
SUMMARY 1
INTRODUCTION 2
LOCATION, ACCESS AND TOPOGRAPHY 4
SIWASH CREEK CLAIM GROUP 4
HISTORY 6
1989 SPRING WORK PROGRAM 7
AREAL GEOLOGY 10
LOCAL GEOLOGY 10
ALTERATION 13
STRUCTURE 13
REGIONAL MINERAL DEPOSITS 15
PROPERTY MINERALIZATION 15
THREE-ADIT GAP (RENFREW) 17
MONTY SHOWING 19
CLAREMONT ADITS 20
FISSURE MAIDEN ADITS 20
BRENDA MINES COPPER SOIL ANOMALY 21
OTHER AREAS 21
WESTERN TRENCHES 22
NORTHWEST TRENCHES 23
GEOCHEMICAL SURVEYS 22
CONCLUSION 23
RECOMMENDATION 24
1989-1990 EXPLORATION \& DEVELOPMENT BUDGET 24
REFERENCES 25
STATEMENT OF COSTS 27
CERTIFICATE 28
FIGURES

1. Location Map 3
2. Claim Map 5
3. Local Geology 9
4. Simplified Property Geology pocket
5. Drill Hole Locations 14APPENDIX I - Brenda Mines Drill Logs Relogged - Inel ResourcesAPPENDIX II-Rock Chip and Soil Sample Descriptions llegible TKAPPENDIX II - Assay CertificatesAPPENDIX III - 1989 Siwash Project Reference Rock DescriptionsAPPENDIX IV - Vancouver Petrographics Thin Section Analyses

SUMMARY

The Siwash Creek mineral property is located on Siwash Creek about 31 kilometers (19 miles) north-northeast of Princeton, in south central British Columbia. The property lies in a forested upland plateau and can be accessed by any of three good logging roads from paved highways. Extensive logging on the property is now providing new road access and outcrop. Lack of good access and a dense timber cover have impeded exploration in the past. The property which is the subject of this assessment report comprises six claims covering an area of about 133 hectares and is owned by Tower Hill Mines Ltd. (formerly Ashnola Mines Ltd.). Work on the property dates to 1917 when high grade silver-lead-zinc fissure veins were explored near the junction of Galena and Siwash Creeks by several adits which are now located on the ED 2 and Crown Granted FISSURE MAIDEN No. 2 FR mineral claims. Little work was done in the area until 19791981 when personnel from nearby Brenda Mines Ltd. performed grass-roots exploration followed by scattered diamond core drilling. After acquiring the property in 1988 Ashnola Mines Ltd. (Tower Hill Mines Ltd.) took rock samples for analysis and followed this with a geochemical soil survey in late 1988. One new showing called the Monty West was located from which assays to 0.624 opt Au were returned across 2.4 meters.

Although the limited Brenda Mines exploration program did not locate an economic Cu-Mo deposit it has provided some basic information on rock type, alteration and $\mathrm{Ag}-\mathrm{Pb}-\mathrm{Zn}$ mineralization in the general area. The recent Tower Hill Mines Ltd. work has shown that the known mineralization such as the Monty showing ($\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$) is more extensive than previously known.

In 1989 Inel Resources Ltd. optioned these claims from Tower Hill Mines Ltd. and carried out an extensive geological mapping project which also involved relogging and sampling the old Brenda Mines core holes as well as basic preliminary preparation for further evaluation of these claims and adjoining claims also owned by Tower Hill Mines Ltd. Sampling of the many old workings, dumps, and associated structures showed significant values of silver, copper, lead and zinc as well as anomalous gold associated with shear zones. One sample from an extension of the \#2 adit, Three Adit Gap workings, gave 3.046
opt $\mathrm{Au}, 123.54$ opt $\mathrm{Ag}, 0.92$ per cent $\mathrm{Cu}, 42.25$ per cent Pb , and 2.38 per cent Zn .

The Inel Resources Ltd. program essentially completed the Stage I portion of the exploration proposed by the writer in March, 1989. It is recommended that Tower Hill Mines Ltd. implement a scaled down Stage II work program on several limited parts of the mineral property which have been defined by the 1989 work as having geological potential for mineralization. Cost of the 1989-1990 program is estimated at $\$ 188,000$.

INTRODUCTION

The Siwash Creek mineral claims are currently owned by Tower Hill Mines Ltd. The property extends across the Siwash Creek - Galena Creek junction located in south central British Columbia. The general area is noted for both major underground and open pit porphyry copper and molybdenum production from volcanic and intrusive host rocks. Significant gold and silver has also been recovered from these deposits.

Access to the area is excellent. It can be reached by any of three logging roads from local paved highways.

Gold bearing silver-lead-zinc mineralization has been located on this property on the FISSURE MAIDEN No 2 FR, VM 2 and adjoining ED 2 claims in several adits and trenches. Core drilling has shown the presence of widespread galena-sphalerite and pyrite as stockwork-like veins, some with associated fluorite veining. Epidotization and kaolinization of the mainly granitic to syenitic host rocks are pervasive.

The writer examined some of the core now stored at Penticton and visited the Siwash Creek property in late February, 1989 in the company of Mr. Norm Bonin, V.p., Tower Hill Mines Ltd. The area was covered by snow at the time of this visit and rock exposure in road cuts was rare.

As a result of an option agreement between Tower Hill Mines Ltd. and Inel Resources Ltd. on the Siwash Creek property the latter undertook Stage I of a geological program outlined and partly supervised by the writer. In late April through
early May Inel contractors relogged and sampled Brenda Mines core stored at Penticton, B.C. Work on the Siwash Creek mineral property followed in May and June 1989. Work on the Siwash Creek mineral property is estimated to have cost about $\$ 175,000.00$ of which $\$ 90,000$ has been recorded as assessment work on the V.M. 1-4, PETERSON, and FISSURE MAIDEN No. 2 Fr.

The writer visited the Siwash Creek property four days during the Inel program and has been commissioned by Mr. C. Shynkaryk, President, Tower Hill Mines Ltd. to write this geological assessmemt report and make work recommendations.

LOCATION, ACCESS AND TOPOGRAPHY

The Siwash Creek mineral property lies across the junction of Galena Creek with Siwash Creek just west of Teepee Lakes in the Thompson Plateau about 31 kilometers northnortheast of Princeton (Figure 1). Because of recent logging the claims can be accessed by three good logging roads from paved highways. The most direct route from the west is via Highway 5, then east on the Dillard Creek logging road to Siwash Creek. Alternate routes are from the Summerland-Princeton road at Osprey Lake, and from Peachland by the Peachland Main Logging road.

The claims lie in a timbered, rolling, upland plateau between elevations 1220 to 1460 meters cut by Siwash Creek and its tributaries. In this area stream flow reaches the maximum during mid-June. The surface exploration field season is generally between mid April and mid November. Winter snow is relatively light, and the main logging roads are well cleared and graded.

SIWASH CREEK CLAIM GROUP

The Siwash Creek claims under discussion currently include 6 mineral claims in the Similkameen Mining Division comprising 6 units with an area of about 133 hectares (Figure 2). The claims are within the PAT GROUP owned by Tower Hill Mines Ltd. and include the following:

Name	Units	Record No.	Expiry Date
V.M. No 1	1	445	October 5, 1995
V.M. No 2	1	446	October 5, 1995
V.M. No 3	1	447	October 5, 1995
V.M. No 4	1	448	October 5, 1995
PETERSON	1	8888	February 6, 1996
FISSURE MAIDEN No 2 FR	1	171	Nov. 22, 1995

The other claims in the PAT GROUP are:		
B \& D	12	3079
JEAN 1	1	671
JEAN 2	1	672

Two placer leases and three placer claims recorded in the names of Donald Edmund Agur (P.L. Nos. 18839 and 18844) and Christopher Cowan (RHINO 1, 2, and 3; Record Nos. 89, 90 and 91) respectively, overlie a portion of the subject mineral claims.

HISTORY

Although the public records are poor it appears that the earliest work on Siwash Creek was placer mining in an area about 32 km long by 3.2 km wide between the source of Hayes Creek and the headwaters of Siwash Creek. This mining was chiefly confined to the benches above the creek in early 1900's. Lode mining dates to 1917 when the first claims were recorded on Siwash Creek. Properties on which development work was done along Siwash Creek included the MABEL claim, and Renfrew and Claremont groups. Nearly all of this work entailed drifting, open cuts, trenches and shallow shafts on quartz-sulfide veins. In 1927, 27 tons of ore shipped to Trail from the RENFREW contained 3 oz . gold, $3,379 \mathrm{oz}$. silver, and $1,578 \mathrm{lbs}$ of lead. The most extensive work appears to have been performed on the CLAREMONT Group (Monty Showing) including some 400 to 500 feet of drifting, as well as surface work. Only one assay on argentiferous galena from the CLAREMONT has been reported. Other nearby properties on which work was done included the BLUE STONE and ARGENTITE claims and the Lucky Strike and El Paso claim groups. With the exception of the El Paso, all of the
mineralization explored was found to be hosted by intrusive rocks.

In 1951 and 1952 limited underground work was continued on the relocated Snowstorm Group (Lucky Strike) and one new adit was driven 30 feet on a "nine foot wide" sphalerite vein. About 100 tons of material was stockpiled on the property but no record of shipment is available.

More recently the general area has been examined by various major companies exploring for porphyry-type coppermolybdenum deposits utilizing mainly grass-roots geochemical and geophysical methods. These include Phelps Dodge (1972), Great Plains Development Company of Canada Ltd. (1973), Pan Arctic Explorations Ltd. (1973 - one drill hole), Utah Mines Ltd. (1974), and Brenda Mines Ltd. (1980 \& 1981). The Brenda Mines work which is pertinent to the property under discussion included geological and geochemical surveys followed by scattered core drilling. In 1988 Tower Hill Mines Ltd. took control of the Siwash Creek property and performed limited rock sampling and a soil geochemistry survey of the property. This work was the first to investigate the gold, silver potential of the claims since the 1950 's.

In 1989 under an option agreement with Tower Hill Mines Ltd, Inel Resources Ltd. undertook a detailed geological study of the Siwash Creek property with the prime objective of outlining the local geology and geological controls for the mineralization, and secondly to provide a base for future exploration and development should the option be continued. At the termination of the Stage I program Inel Resources Ltd. indicated they would not undertake any further work commitment and the property reverted to Tower Hill Mines Ltd.

1989 SPRING WORK PROGRAM

Inel Resources Ltd. completed a Stage I work program on Tower Hill Mines Ltd.'s Siwash Creek property between late April to mid-June, 1989, to evaluate the mineral potential of the Siwash property.

This program included relogging and sampling Brenda Mines' 1979-1981 drill core, locating and sampling old working on the property, prospecting and rock chip sampling, geological mapping, petrographic studies, mapping till coverage, soil orientation test pits, and limited soil sampling. Roads, trenches, pits, adits, surviving claim posts, and the old Brenda base line were surveyed to provide a planimetric base for geological mapping.

Approximately 4040 meters of drill core from the 19791981 Brenda Mines exploration program was relogged and sampled. A total of 195 samples of core were collected and assayed for 32 elements, including $A u$, which was not originally assayed. Brenda samples were also resampled to check original assays. Mineralized core not previously sampled was also split and submitted for analysis.

Field work included locating, mapping and sampling in detail the known showings including Monty West, Claremont and Three-Adit Gap. Prospecting and geological mapping were carried out over much of the property and 88 rock chip samples were collected. Mapping was completed along road cuts and major drainages at 1:5000 scale on an airphoto enlargement mosaic base. To supplement mapping and logging, 21 core and rock chip samples were sent for petrographic analysis and a skeleton selection of Brenda Mines' drill core was assembled for easy rock identification.

In preparation for soil sampling a till coverage map was completed and nine soil test pits were dug. Two of the test pits were located on the V.M. 4 claim. A limited soil sampling program of 76 samples was completed across Galena Creek at a copper anomaly previously identified by Brenda Mines. Sampling by Inel contractors also included analysis of soils for Au which had not been previously tested.

Cost of the overall work program on the Siwash Creek property was about $\$ 175,000$ of which $\$ 90,000$ has been recorded as assessment work on the V.M. 1-4, PETERSON, and FISSURE MAIDEN No. 2 Fr .

AREAL GEOLOGY

The Siwash Creek property and surrounding area are underlain by a variety of extensive plutonic masses which have intruded Triassic and older volcanic and sedimentary rocks. The intrusive which underlies the property, called the Pennask Lake Body by Rice (1960), extends east to include the Brenda Mines porphyry molybdenum-copper deposit near Peachland. Rice indicated that the Pennask pluton comprised mainly reddish, coarse grained, siliceous granite and granodiorite. Within this body he outlined units which he related to the younger pinkish Otter Lake intrusions. In spite of extensive alteration Rice related the Siwash Creek body to the Otter Lake intrusions to which he associated many of the areal mineral deposits.

This area has now been made very accessible because of the extensive network of logging roads which grid the general area providing access Rice (1960) was denied. Work on the Siwash Creek property and surroundings suggests new areal mapping should be implemented in order to upgrade the overall picture and provide continuity over this mineral belt from Princeton to Peachland.

LOCAL GEOLOGY
Rice's (1960) areal geology map indicated that the entire Siwash Creek mineral property lay within an intrusive unit termed the Otter Intrusion, an ovoid stock-like mass about 5 km long, centered on the Galena Creek-Siwash Creek junction (Figure 3). Later mapping by Brenda Mines, and Tower Hill Mines suggested the claims were largely underlain by a leucocratic porphyritic granite which they termed 'quartz eye porphyry', as well as several other variants of the Otter Intrusion.

More detailed mapping by Inel Resources has shown that only the central portion of the claim group, lying roughly along Siwash Creek, is underlain by two discrete masses of the aptly named quartz eye porphyry. Three other granitic units marked by distinct texture and composition, probably forming part of the so-called Otter Intrusion lie east and west of the central leuco-granite. These comprise a megacrystic syenite, and a coarse grained syenite. A third unit which lies on the east and
west sides is represented by a fine to coarse grained hornblende granodiorite. The larger area surrounding the claim group is underlain by the predominantly red, coarse-grained biotite granite forming part of the extensive Pennask Batholith (Figure 4 - pocket).

All of the above major rock units located by field mapping were prominent in the Brenda Mines drill core which was used in part to determine rock extent and contacts (Appendix I). Rock exposures are generally sparse because of the extensive overburden but the combination of rock cuts and drill core has provided a more useful picture, particularly in the central Siwash Creek area.

Although determination of local rock structure was mandated in the recent work, review of the program results has shown overall structural trends and rock alteration, but lack of outcrop still prohibits simple map style projections. vetailed description of the major rock units follow.

TRANSITION ZONE (Unit 3)

Unit 3 is very similar to the Quartz Feldspar Porphyry and, as K-feldspar megacrysts are sometimes present, to the Megacryst K-feldspar Porphyry, but with the distinctive addition of fine to medium grained biotite phenocrysts $1-3 \mathrm{~mm}$ (a latite composition). This unit which occurs as dike-like zones between several of the major units has also been observed in drill core as 10-20 meter wide intervals between granite and quartz syenite and on surface also between the granodiorite and granite along the Peachland Road to the east, and between units 6, 7, and 8 along Siwash Creek.

GRANITE (TO GRANODIORITE) (Dnit 4)

Granite is medium to coarse grained equigranular, pink to green with pink k-spar, plagioclase and quartz dominating, and hornblende/biotite noted to 20% in drill core. Composition appears to grade toward granodiorite, or this could be a distinct second phase, often brecciated and/or sheared and altered; alteration varies from weak to strong sericite, chlorite +/- kaolinite, ankerite, epidote, hematite; weak to moderately magnetic; andesite dikes cut granite, rare aplite dikes were observed in drill core but not in outcrop. This unit
is areally extensive and forms part of the larger Pennask Batholith.

DIORITE/GRANODIORITE (Unit 5)

Unit 5 is medium to coarse grained, grey; alteration is moderate to fresh including kaolinite, sericite, carbonate, chlorite with hematite in places; moderately magnetic, weakly to moderately developed foliation was noted in westerly exposures.

MEGACRYST K-FELDSPAR PORPHYRY (Unit 6)

Unit 6 is a quartz feldspar porphyry of rhyodacite/dacite composition with very distinctive K-feldspar megacrysts to 4 cm long; the abundance of megacrysts varies from very rare to abundant, however, only rocks with megacrysts were included in this category. The overall aspect suggests brecciation during injection of crystalline mush. These rocks have been previously termed diatremes, but they lack the significant features of a diatreme and are more likely a phase of the quartz porphyry (Unit 8) with which they are associated near the Gavin CreekSiwash Creek junction.

QUARTZ FELDSPAR PORPHYRY/QUARTZ EYE PORPHYRY (Onit 7)

This leucocratic quartz feldspar porphyry of rhyodacite composition is similar in general to the Megacryst unit but lacking the distinctive K-feldspar megacrysts. Smaller feldspar phenocrysts ($2-4 \mathrm{~mm}$) may or may not be as common as quartz phenocrysts reflected in the two names. This unit is locally brecciated. The Quartz Eye Porphyry locally exhibits abundant and characteristic hexagonal bipyramidal quartz crystals from 35 mm to over 5 cm in size. This unit has some similarities to both Units 6 and 8 , but has been generally distinguished by the white color, fine to medium grain size, lack of mafic minerals and the abundant obvious doubly terminated quartz crystals. Even where deeply weathered and crushed, these crystals have survived and identify the parent rock.

QUARTZ SYENITE (Unit 8)

The Quartz Syenite is fine to medium grained, subporphyritic to equigranular, lacking the well developed phenocrysts of the above two units; distinctive "chalky" white (kaolinite altered) weathered appearance with $5-8 \%$ finely disseminated pyrite, commonly fragmental, and brecciated
locally.

Overall similarities in composition, appearance and spatial relationships suggest that Units $5,6,7$ and 8 , described above, have a petrogenic affinity. The Megacrysts $\mathrm{K}-$ feldspar Porphyry is the most extensive of these units and possibly forms the early core of this intrusive complex. More importantly, to date, all of the significant veins and mineralized shears appear to be localized within Unit 7, the quartz eye porphyry. As indicated (Figure 4) this phase appears to be concentrated along the Siwash Creek Axis, where it forms two main bodies which appear to be somewhat younger than the more extensive megacrystic (Unit 6) and quartz syenite (Unit 8) units. The significant gold bearing mineralization developed at Three Adit Gap, Monty and Claremont showings is entirely localized within the southerly Unit 7 body.

ALTERATION

The Otter Intrusives are generally weakly to moderately altered and locally strongly to intensely altered relating to shears and faults. Major common alteration minerals include kaolinite and sericite with lesser epidote, ankerite and quartz. The quartz feldspar porphyry is commonly limonitic near surface and the quartz syenite is usually moderately kaolinitic. Overall, manganese oxide forms a typical weathering product in shears and breccia zones. In addition to the above alteration the extensive quartz syenite is generally pyritized.

STRUCTURE

Overall features observed by Rice (1960) suggest that the Otter pluton has intruded the older Pennask Batholith and this relationship has not been revised by the recent work. Brecciation is typical of the Otter rock units where zones from tens to hundreds of meters have been observed in drill core and rock exposures of units 6, 7 and 8. The fragments vary in size, texture, and composition suggesting that in addition to simple crushing (angular to rounded fragments) some mixing took place.

Fractures, including joints are abundant in the otter units; more than in the surrounding more massive batholithic rocks. No statistical study has been made but all of the Otter intrusive units include relatively close spaced, steep,

conjugate, northwest, northeast and east-west fractures. The batholithic rocks have similar but wider spaced fractures and are also marked by low angle (to flat) fractures which together produce slabs.

Faults and shear zones are common in the drill core, but have not been identified with major systems. Faults and shears observed in outcrop appear to have steep, mainly north-northwest and east-northeast orientation. All the known mineral occurrences along this portion of Siwash Creek appear to be localized in the quartz eye porphyry (Unit 7) in an eastnortheast shear zone. Mineralization in the Northwest and Western zones is localized along both systems as well as along low angle shears. The northerly to northwesterly faults mapped near and along Siwash Creek display offset contacts and are probably a relatively younger structural feature.

REGIONAL MINERAL DEPOSITS

Numerous mineral showings and deposits have been found in a variety of host rocks in this general area. Economic deposits mined over the years have included such giants as Copper Mountain, Ingerbelle, Mascot Gold, and Brenda, as well as a variety of small producers.

More recently, Fairfield Minerals Ltd. has announced a high grade gold bearing quartz vein discovery with an estimated strike length approaching 800 meters. The Fairfield ELK property surrounds the Tower Hill Mines Ltd. Siwash Creek property.

PROPERTY MINERALIZATION

Placer gold was located along Siwash Creek by the Brenda Mines personnel in 1980 and two valid placer leases and three placer claims currently lie along the stream below Galena Creek.

Most of the known lode mineralization on the property lies along Siwash Creek where the veins are exposed and have been partly developed by adits, cuts, and trenches. So far this mineralization is localized in three areas on the V.M. 2, ED 2, and FISSURE MAIDEN No 2 FR claims (Figure 5) and consists of
fissure-type quartz veins in the Osprey phase pluton. The sulfide minerals include pyrite, galena, sphalerite, with tetrahedrite, argentite, and rarely chalcopyrite and arsenopyrite. Fluorite is also a significant vein mineral on the ED 2 claim where a 120 to 150 -meter adit was driven along an east-west trending shear carrying high grade argentiferous galena (0.10 opt $\mathrm{Au}, 269.8$ opt Ag reported). This zone currently known as the Monty showing now consists of a 25 meter long cut exposing disseminated $\mathrm{Pb}-\mathrm{Zn}$ in granite. Tower Hill Mines work suggests this zone is more extensive as indicated by their sampling of the Monty West exposure which reportedly assayed up to 0.624 opt Au over 2.4 meters (8 feet), and up to $1.5 \% \mathrm{Zn}$ over a length of 18.28 meters (60 feet). Assay results of material from the FISSURE MAIDEN No 2 FR veins have been reported as up to 25.5 per cent Pb across narrow veins with silver values of up to 24 ounces per ton.

Prospecting on this property has been extremely limited and largely confined to the walls of Siwash Creek and nearby road cuts. Recent sampling by Mr. Norm Bonin of Ashnola Mines Ltd. (Pollmer, 1988) has produced the following results:

Description	Interval	\% Pb	\% Zn	$\mathrm{Ag} / \mathrm{oz}$	$\mathrm{Au} / \mathrm{oz}$
FISSURE MAIDEN (country rock)	grab	0.70	1.05	0.30	0.012
FISSURE MAIDEN ($4^{\prime \prime}$ vein)	grab	10.84	10.21	3.29	0.280
Monty Showing (quartz-eye por	${ }_{\text {phyry }} \mathrm{i}^{5} \mathrm{~m}$	0.13	4.95	0.46	0.010
Monty Showing (same as above)	7.6 m	0.30	6.41	0.73	0.014
Monty West (same as above)	3 m	1.38	0.26	1.04	0.005
Monty West (same as above)	2.4 m	0.69	0.63	1.35	0.624 *
Three Adit Gap (same as above)	0.6 m	0.06	0.05	0.30	0.008
Drill Hole	Interval		\% Cu	Ag/oz	$\mathrm{Au} / \mathrm{Oz}$
SS-06-80	124.4-136.2		0.05	0.05	0.003
SS-22-81	$52.0-53.0$		0.29	0.98	0.005
SS-24-81	$43.0-44.0$ $45.0-46.0$		$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 0.83 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 0.008 \\ & 0.004 \end{aligned}$

$\begin{array}{lllll}\text { SS-25-81 } 27.0-28.0 & 0.28 & 0.20 & 0.006\end{array}$

The 1989 work on the main mineral showings is described in the following paragraphs.

THREE-ADIT GAP (RENFREW)

The most extensive of these workings is the Three-Adit Gap (historically called the Renfrew Adits) where 120-150 meters of underground development has been undertaken in three separate adits. Government geological reports from the 1920's indicate the presence of mineralized quartz veins varying in thickness from 5-10 centimeters to 1.8 meters in width. A shipment of 27 tons of hand sorted material in 1926 produced 3 ounces of gold, 3,379 ounces of silver, and 1,578 pounds of lead.

The three adits in this vicinity have been designated as follows: \#1 Adit located on the east bank of Siwash Creek (9-15 meters), \#2 Adit located on the west bank across from \#1 Adit (at least 91 meters), and \#3 Adit located on the west bank of Siwash Creek - 18 meters downstream from \#2 Adit (at least 38 meters). For safety reasons the adits were only partially explored and were not mapped and sampled in detail. In general, the three adits in this area have been driven along several mineralized quartz vein shears. Although Siwash Creek appears to be a major structure through this area, similar veining is found on both sides of the creek and apparently not significantly offset in any manner. Several samples were collected from this area as listed below:
\#1 Adit

Sample	Ag	Cu	Pb	Zn	
Number	$\frac{\mathrm{oz} / \mathrm{t}}{}$	ppm	ppm	ppm	Remarks 37051
37052	2.52	6362	1373	4725	across $28^{\prime \prime}$
	1.08	6265	1750	2348	across $30^{\prime \prime}$

Sample	Au	Ag	Cu	Pb	Zn	
Number	oz/t	oz/t	\%	\%	\%	Remarks
24687	180	6.60	0.94	1.00	1.33	select dump
24688	2780	3.19	0.66	0.15	18.71	" "
24689	260	1.86	0.31	0.53	0.42	" "
24690	730	15.37	0.43	14.20	0.42	" "
24691	490	7.30	1.43	2.29	4.77	"

Located 9 meters above the \#2 Adit portal, sample number 37053 was a select sample of an 18 cm wide massive galena quartz shear with minor pyrite-chalcopyrite-sphalerite. This appears to be the main structure the adit continues on. Assay results are listed below:

Sample	Au	Ag	Cu	Pb	Zn
Number	oz/t	Oz/t	\%	\%	\%
37053	3.046	123.54	0.92	42.25	2.38

Brenda Mines drilled holes SS-81-24 and SS-81-25 in the vicinity of the \#2 and \#3 Adits in a location uphill to the west and south. Both holes intersected several narrow quartz vein stringers hosting pyrite-sphalerite-galena mineralization (Appendix I). Re-samples of remaining drill core assayed in 1989 are listed below. (Less than half of the drill core was often remaining following Brenda Mines' core splitting).

SS-81-24				
Sample	Interval	Ag	Pb	Zn
Number	Meters	ppm	ppm	ppm
24657	24.7-26.2	7.6	5,400	9,926
24658	26.2-27.7	5.6	13,535	12,835
24659	33.5-35.1	8.6	5,485	8,149
24660	35.1-36.6	15.5	3,619	11,249
24661	36.6-38.1	40.2	9,516	17,166
24662	38.1-39.6	8.6	4,350	8,942
24663	39.6-41.2	4.9	5,638	14,967

SS-81-24

SS-81-25

Sample Number	Interval Meters	Ag	
24613	ppm	Zn	
24614	$20.0-21.0$	35.7	$>20,000$
24615	$21.0-22.0$	11.8	$>20,000$
24619	$27.0-23.0$	5.6	14,568
24622	$46.0-47.0$	4.1	9,999
24623	$75.5-77.0$	10.1	14,131
24624	$79.0-80.5$	5.7	$>20,000$
24625	$98.0-99.0$	11.1	13,582
		6.7	16,128

Based on inspection of mineralized dump material found outside of the \#2 and \#3 Adits (ie. size of material indicating minimum thickness of quartz veining) and records from historical government reports which suggest veins attaining thicknesses of up to 1.8 meters wide within the workings, it is possible that drill holes ss-81-24 and ss-81-25 did not intersect the strongest structures in this area which may also be auriferous.

MONTY SHOWING

The Monty Showing is located 150 meters downstream from the Three-Adit Gap on the east side of Siwash Creek. The first recorded mention of this occurrence appears to be in 1928 in the Annual Report of the Minister of Mines (p. 264). A short 9 meter adit was driven along a shear hosting abundant pyritesphalerite and minor galena mineralization in 1952. During the mid-1980's this area was excavated with a backhoe exposing more of the shear and associated wallrock. During the 1989 field program, channel sampling across the apparent strike of the zone produced the following results:

Sample	Au	Ag	Cu	Pb	Zn	
Number	ppb	ppm	ppm	ppm	\%	Remarks
37164	6	5.3	248	1,144	2.49	1 m chip
37165	47	13.8	757	1,100	5.82	"
37166	32	6.4	165	967	2.21	"
37167	27	9.5	302	1,149	2.49	"
37168	2	7.7	346	935	2.51	"
37169	46	3.8	70	695	2.16	"
37170	22	6.8	102	782	7958. ppm	

and SS-80-23 were drilled near the Monty Showing and both intersected zinc-silver mineralization in the form of narrow fracture stringers to narrow quartz vein stringers. Low gold, copper and lead values were reported. Comparison of the drill core to the exposed showing indicates that the Monty Showing itself possibly was not intersected. Results of assays from these holes obtained during re-sampling of drill core in 1989 are tabulated below:

SS-80-22

Sample Number	Interval Meters	Ag ppm	Zn ppm
24571	$25.9-27.4$	27.5	$>20,000$
24572	$27.4-29.0$	10.5	$>20,000$
24573	$29.0-30.5$	5.1	15,335
24574	$30.5-32.0$	2.8	6,698
24575	$32.0-33.5$	3.4	8,812
24576	$33.5-35.1$	3.6	5,424
	$\underline{\text { SS-80-23 }}$		
24629	$14.0-15.5$	3.6	9,754
24630	$15.5-17.1$	6.5	10,627
24650	$143.0-144.5$	13.5	17,720

CLAREMONT ADITS

These workings are located on the east side of Siwash Creek approximately 100 meters downstream from the Monty Showing and just down the steep embankment below the road. The adits are now caved but historical government reports indicate approximately 152 meters of underground development was completed consisting of three adits with crosscuts attempting to follow a vein varying from 5-10 centimeters to 30 centimeters. It is reported that a sample across the vein in the upper tunnel assayed $269.8 \mathrm{oz} / \mathrm{t}$ silver and $0.1 \mathrm{oz} / \mathrm{t}$ gold (Report of Minister of Mines, 1918). It is possible that adits have yet to be located above the main road. A sample consisting of sphalerite-pyrite-galena was obtained above a caved adit directly below the road cut which may or may not be the main structure. The results of this sample are below:

Sample	Au	Ag	Cu	Pb	Zn	
Number	oz/t	oz/t	ppm	\%	\%	Remarks
37085	0.037	3.32	935	5.71	15.88	across 20 cm

FISSURE MAIDEN ADITS

The Fissure Maiden adits are located south of the Claremont, Monty and Three-Adit Gap (Renfrew) workings and vary from all of the above in that this occurrence is hosted within Pennask granite rather than the quartz feldspar porphyry. This zone consists of a quartz shear mineralized with fine-grained galena and sphalerite with minor pyrite-chalcopyrite. A 15
meter long adit located on the east side of Siwash Creek exposes the mineralization which is up to 10 cm in width over a strike length of 5 meters before pinching out within the shear. Old diggings on the west bank of Siwash Creek have exposed the probable extension of this zone where the vein is up to 25 cm wide but not as strongly mineralized. Samples from each of these workings are listed below:

Sample	Au	Ag	Cu	Pb	Zn	
Number	oz/t	oz/t	\%	\%	\%	Remarks
24677	0.640	4.71	0.59	15.97	10.56	select grab

BRENDA MINES COPPER SOIL ANOMALY

Soil geochemistry surveys carried out in 1980 by Brenda Mines identified an area of anomalous copper in soils south of Galena Creek and north of the Peachland Road. prospecting and mapping in this area in 1989 identified sporadic narrow quartzcarbonate stringers hosting chalcopyrite mineralization within Coast Intrusive (Pennask) diorite. Four test soil survey lines were run across this zone to confirm the copper anomaly as well as to test gold potential. The 1989 survey confirmed the presence of copper but indicated low gold values with the highest being 56 ppb gold.

OTHER AREAS

Reported gold values from the Monty West Showing (located approximately 100 meters north of $\mathrm{SS}-80-24$) could not be verified. Pyrite-galena-sphalerite mineralization occurs within a silicified contact zone.

Narrow vuggy quartz veins up to 10 cm were found along Siwash Creek south of Galena Creek. Low gold values were obtained.

Prospecting in the western area of the $B \& D$ claims in the vicinity of Brenda Mines $1980 \mathrm{~Pb}-\mathrm{Zn}$ soil anomaly did not locate any significant mineralization. The area is locally
swampy which may in part explain these anomalies.

WESTERN TRENCHES

Trenching at the southwest corner of the JEAN 1 mineral claim has exposed an area of massive coarse grained red granite (Unit 4) cut by intersecting steep, narrow, northwesterly and northeasterly basaltic dikes. Mineralization comprises mainly magnetite with accessory pyrite, minor chalcopyrite, and secondary copper minerals localized along the contacts between the dikes and country rock, and variably along low angle shears in the granite.

NORTHWEST TRENCHES

Seven main trenches have been cut to expose variably altered, weakly pyritic quartz syenite. No significant mineralization was noted.

Overall, very little copper mineralization has yet been discovered west of Siwash Creek.

GEOCHEMICAL SURVEYS

Most of the Siwash Creek property was covered by an extensive geochemical soil survey by Brenda Mines in 1980. The target was copper and molybdenum, not gold. In 1988 Ashnola Mines Ltd. partially covered the Siwash Creek property with a geochemical soil survey utilizing $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$ and Au values.

In 1989 the Inel work program included nine orientation pits in the Siwash Creek area (Figure 4) in order to determine the best soil horizon to sample. Two test pits are located on the V.M. 4 claim (Appendix II). The test pits showed that soils are poorly developed generally and suggest that the "B" horizon was adequate for local use. Overburden in the area is highly variable in thickness ranging from thin to over 50 meters comprising largely glacio-fluvial sediments and till. Glacial features such as moraines and eskers cover the area which has a strong north-northwest to south-southeast striation and sense of movement. Most of the spot gold anomalies lie near Siwash creek within quartz eye porphyry areas (Unit 7). Several strong spot anomalies also lie west and south of Siwash Creek in batholithic granite terrain (Unit 4).

The main purpose of the 1989 field work program was achieved, that is, the Siwash Creek mineral property was mapped in sufficient detail to define the various country rocks and to determine that the quartz eye porphyry (Unit 7) forms two discrete units more or less localized along Siwash Creek. Most of the known mineral showings on this property appear to be confined to the southerly quartz eye porphyry body which has also been pointed out by coincident soil $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}, \mathrm{Ag}$ and Au soil anomalies and earlier I.P., Resistivity anomalies. The work also suggests that the contact area roughly along Saskat Creek between units 4, 6, and 7 is anomalous. This area was until recently heavily forested and almost inaccessible. Logging during this year has almost completely stripped the area bare and primed it for easy prospecting. Sampling of the old showings has generally confirmed the presence of gold with the dominantly $\mathrm{Ag}, \mathrm{Pb}, \mathrm{Zn}$ mineralization. One sample from a probable extension of the Three Adit Gap \#2 Adit assayed 3.046 opt $\mathrm{Au}, 123.54$ opt $\mathrm{Ag}, 0.92$ per cent $\mathrm{Cu}, 42.24$ per cent Pb , and 2.38 per cent zn .

Review of the Brenda core, core logs, and detailed ground mapping suggests that few if any of the Brenda drill holes intersected the shear zone targets. If so extensions of the known mineralization remain open.

The 1989 geological mapping also defined the presence of a second body of quartz eye porphyry along Siwash Creek at the northern limits of the property. Although no major mineralized structures have yet been found in this unit it is outlined by a Pb in soil anomaly and by I.P. Resistivity anomalies. The area is covered by thick overburden comprising eskers, wide terrace moraines, swamp and heavy forest cover.

The two quartz eye porphyry bodies comprise favourable exploration targets. In addition it has been shown that the contact zone between units 4,6 and 7 , extending almost eastwest has exploration potential which has not been fully tested. In the same vein the complex contact zone outlining the northerly quartz eye porphyry body should be examined as part of a second stage of exploration on the Siwash creek property.

RECOMMENDATION

Two main target areas have been outlined for detailed surface exploration on the Tower Hill Mines Ltd. Siwash Creek property. The main target lies over the JEAN, VM, ED 2 claims area which has been outlined by detailed mapping, mineral occurrences, and reconnaissance geophysics, and geochemistry. The second lies over the four easterly $B \& D$ claims where geology, and reconnaissance soil geophysics and geochemistry suggest a second order target area.

Stage I has been completed. It is recommended that in Stage II both areas be explored by detailed soil sampling, ground geophysics (Max.Min) with trenching and follow-up core drilling. This work program is estimated to cost about \$188,025.00

1989-1990 EXPLORATION \& DEVELOPMENT BUDGET

TOWER HILL MINES LTD. SIWASH CREEK PROPERTY

Stage I - has been largely completed.
Stage II A

1. Camp costs ($\$ 25 /$ man/day)
$\$ 15,000$
2. Geochemical Surveys:
(including picket lines, stations, 20 m spacing)
2 men, 30 days @ $\$ 125 / \mathrm{man} / \mathrm{day}$ 7,500.00
analyses/assaying
9,000.00
16,500
3. Geophysical Surveys:

VLF, EM, Magnetometer, Max-Min 20,000
4. Trenching (contract) 10,000
5. \quad Geology

10,000
6. Transportation (rentals etc.) 4,000
7. Supplies, sundries 2,000
8. Supervision 6,000
9. Reports, collation etc. 5,000

Contingencies \& 15\% 13,275
Sub-Total Stage II A $\$ 101,775$

Stage II B
Core Drilling
(assaying, etc.)
1000 meters $\quad 75,000$
Contingencies @ 15\% 11,250
Sub-Total Stage II B 86,250
TOTAL STAGE IIA + STAGE II B $\$ 188,025$

Stage IIB is contingent upon the identification of suitable drill targets during Stage IIA. Also, the results of stages IIA and IIB should be reviewed in detail before proceeding with a more comprehensive drilling and development program.

REFERENCES

Annual Reports of the Minister of Mines, B.C.
1917, p. 206 1925 , p. 210 1927, p. 247 1928 , p. 264 1929, p. 277 1951, p. 130 1952 , p. 136

Assessment Report 4077, Geology, Geochemistry and Geophysics of Don Agur: Siwash Claim Group, A.V. Bishoff \& M.E. Tim Coates, 1972.

Assessment Report 4347, Geophysical and Geochemical Report, Buck Group, Great Plains Development Company of Canada Ltd., M.D. McInnis, \& D.R. Cochrane, March 1973.

Assessment Report 4552 , Property Report, Buck Group, Great Plains Development Company of Canada Ltd., M.D. McInnis, August 1973.

Assessment Report 4894, Drilling Contract Re Siwash Creek Property, Pan Arctic Explorations Ltd., K. Hendricks, November 1973.

Assessment Report 5547, Report on the Geology, Geochemistry \& Geophysics (I.P.) of Siwash Claim Group, F.R. Gatchalian and K. Witherly, Utah Mines Ltd., 1974.

Assessment Report 7987 , Brenda Mines Ltd. Exploration Group, Report on Geological and Geochemical Surveys on the Siwash Creek Copper Property, Copper I and II Claim Group, P.C. Bankes, Aprif 1980.

Assessment Report 10, 448, Geological Investigation of the Late \#1 Mineral Claim Near Merritt, B.C., Inter-Continental Energy Corp., Arctex Engineering Services, P. Kallock, L.B. Goldsmith, November 1981.

Assessment Report 17,838, Siwash Silver Property, Ashnola Mines Limited, Pollmer Consulting Ltd., January 1988.

Assessment Report 18,211, Siwash Silver Mineral Property, Soil and Rock Geochemical Report, Tower Hill Mines Ltd., Pollmer Consulting Ltd., December 1988.

Grove, E.W., 1989, Exploration and Development Proposal on the Siwash Creek Silver Property, for Tower Hill Mines Ltd. March 22, 1989.

Hastings, James S., 1988, Gold Deposits of Zortman-Landusky, Little Rocky Mountains, Montana, in Bulk Mineablé Precious Metal Deposits of the United State, Geol. Soc. of Nevada.

Montgomery, A. \& Todoruk, S.L., 1989, Geological Summary on the Siwash Project, for Inel Resources Ltd., June, 1989.

Rice, H.M.A., 1960, Geology and Mineral Deposits of the Princeton Map-Area, British Columbia, G.S.C., Memoir 243.

STATEMENT OF COSTS

Field personnel:
S. Todoruk, Senior Geologist

Apr. 17 - Jun 30, 50 days @ $\$ 400 \quad \$ 20,000$
A. Montgomery, Field Geologist

May 1 - Jun 30, 41 days @ $\$ 225 / 30010,500$
R. Darney, Field Geologist Apr 17 - Jun 30, 27 days @ $\$ 300$ 8,100
L. Scroggins, Technician

May 1 - June 30, 29 days @ $\$ 225$ 6,525
B. Girling, Technician

May 15 - Jun 30 , 20 days @ $\$ 225$,500
E. Debock, Senior Prospector May 15 - Jun 30, 15 days a $\$ 275$,125
G. Caulfield, Technician,

May 15 - Jun 30,12 days @ $\# 225$ 2,700
B. McAdam, Technician May 15 - Jun 30 , 12 days @ $\$ 22500$
F. Von Possel, Technician

Apr 26 - Jun 30, 25 days @ $\$ 225,625$
P. Nicol, Technician

May 15 - Jun 30, 12 days @ $\$ 225$,700
K. Milledge, Technician

Apr 30 - May 31, 3 days @ $\$ 225 \quad 675$

Camp personnel
P. Carter, 32 days @ $\$ 200$

6,400
T. Hancock, 32 days @ $\$ 125$

4,000
s. Tennant, 2 mos. @ $\$ 3,000 / \mathrm{mo}$

6,000
16,400
6,380
Vehicle Rentals
Truck, 45 days @ $\$ 75$ 3,375
ATV, 1 mo @ $\$ 400$
3,775
Radio Rental
390
Aerial photo survey
Petrographic studies 408

Field Supplies
1,252

Consultant, E.W. Grove Consultants Ltd.
10 days @ $\$ 500$
5,000
Total Cost

CERTIFICATE

I, Edward W. Grove, of the Municipality of Saanich, do hereby certify that:

1. I am a consulting geologist with an office at 4581 Boulderwood Drive, Victoria, British Columbia.
2. I am a graduate of the University of British Columbia (1955) with a Master's degree, Honours Geology (M.Sc. Hon. Geol.) and a graduate of McGill University (1973) with a doctorate in Geological Sciences (Ph.D.).
3. I have practised my profession continuously since graduation while being employed by such companies as the Consolidated Mining and Smelting Co. of Canada Ltd., British Yukon Exploration Ltd., the Quebec Dept. of Natural Resources, and the British Columbia Ministry of Energy, Mines and Petroleum Resources. I have been in corporate consulting practice since January 1981.
4. I have no direct, indirect, or contingent interest in Tower Hill Mines Ltd. or any of its properties.
5. I am a member in good standing of the Association of Professional Engineers of the Province of British Columbia.

December 18, 1989
Victoria, B.C.

Edward W. Grove, Ph.D., P.Eng.

```
APPENDIX I
BRENDA MINES DRILL LOGS RELOGGED FOR INEL RESOURCES LTD.
```

geological core and assay log
phatcon develophents limited
711, 675 Yest Rastings Street Vancouver, B.C. V68 1 :h

COMPARI: IHEL RESODRCES LTD.
PROPRRTY: SIHASB

BOLE: $5 S-80-5$
DAFE: 1989

LOGGED BY: Steve Podoruk DLTP: Kay 8, 1989			LBNGTH: 214.88 (705^{\prime}) CORE: M			BLARING: Morth LOCAFIOH: 33901/33608				DIP: -60° RLEYATIOA: 1295 (4,249')		
InTREVAL (a)		COREDESCRIPTIOA	SHPLLE HOHBRR			LRagTE (a)	GOLD		SILIER (ppi)	$\begin{aligned} & \text { COPPRB } \\ & (p p ı) \end{aligned}$	$\begin{aligned} & \text { LPAD } \\ & \text { (Ppa) } \end{aligned}$	$\begin{aligned} & \text { IINC } \\ & \text { (ppri) } \end{aligned}$
PROH	90			Pror	90		(ppb)	(02/ton)				
0	19.8	overburden										
19.8	30.8	granodiorite - rediun grained, moderately aagnetic when fresh, non-mannetic when altered, weakly altered to 24.4 24.4 to 27.4 - wuch more mafic, locally epidote + henitization										
30.8	34.1	shear zone - strongly broken with clay gouge										
34.1	59.7	granodiorite - as above 56.7 to 59.7 - stronsly anfic with moderate to strong chlorite, henatite fractures fillings locally										
59.7	71.3	biotite QPP dyke - plagioclase phenocrysts op to $1 \mathrm{cl}, 1$ to 2 l biotite, pinkish broun colour overall 59.7 to 59.9 and 71.0 to 72.5 - shear zone, weathers with a pitted appearance										
71.3	87.8	granodiorite - as above, strong sericitization pith ninor epidote throughont, strong narroy fractures of henatite throughout, non-nagnetic except local areas not altered where it's moderately a agnetic										
87.8	92.1	```andesite dyke - dark green, fine to rediun grained 90.5 - I ce quartz vein + pyrite at 80' to c/a pyrite along fractures```										
92.1	96.6	granodiorite - as above, aderate sericite + chlorite alteration										

HOLE: \quad SS-80-5
COHPAHI: IHEL RESOURCES LTDD.
PROPRRII: SILASB
PAGE: 2 OP 3

GROLOGICAL CORE AKD ASSAI LOG

HOLL: SS-80-5
COMPAMY: IHEL RESOURCES LFD.
PROPRRTI: SITASB
PAGE: 3 OP 3

grological core and assay log
HOLE: SS-80-6
COMPAHI: IHEL RESOURCES LTD.
PROPERTY: SIMASB
PAGE: 2 OP 2

geological corr and assay log
phaicor dryelopheyts lihited
711, 675 Rest Rastings Street Vancouver, B.C. V6B 1144

COMPABY: IHEL RESOURCES LTD.
PROPRRIY: SIWSH

HOLL: SS-80-7
DATE: 1989
PAGE: 1 OP 2

PAGE: 2 OP 2

paricon derelophents litited
7II, 675 Yest Hastings Street
Vancouver, B.C. v6B $1{ }^{1} 4$

DAFE: 1989

PAGP: 1 OP 2

geological core and assay log
COMPANT: IHRL BESOURCES LTD.
PROPRETY: SIVASE

30LE: SS-80-8

PAGE: 2 OP 2

geolocical cose and assai log

PAMICOH DEVELOPYBHTS LIMITED
711, 675 Vest Rastings Street
Vancouver, B.C. V68 1 : 19

COMPASI: IARL RESOURCRS L†D.

PROPBRTI: SITASB

HOLR: $55-80-9$

DSTE: 1989

PAGR: 10 OP

grological corr ahd assai log
pAKICON DEYZLOPMEYTS LIMITED
711, 675 Test Bastings Street Vancouver, B.C. V6B 1N4

COKPaHY: Inel resources Lid.
PROPRRTY: SIHASB
HaL: SS-80-10

geotogichl corr and assai log
COYPAMY: IHEL RESOURCES LTD.
PROPRRTY: SIMASA

HOLE: SS-80-10

PAGE: 3 OR 3

grologichl corb ahd asshy Log
pakicoh dertlopyehts Linited
711, 675 Rest Fastings Street
Yancouver, B.C. V68 184

COMPAYY: IHEL RESOURCES LTD.
PROPRRTY: SIHSS
HOLR: SS-80-11
Dafl: 1989
PaGE: 1 OP 2

HOLR: $S S-80-11$
COMPAKP: IHEL RESODBCES LTD
PROPRRTI: SIHASH
PAGE: 2 OP 2

IHPREVAL (a)		COBEDESCBIPTION	SAMPLE RUWBER	Inferval (1)		LENGPG (1)	GOLD		$\begin{aligned} & \text { SILTER } \\ & (p p a) \end{aligned}$	$\begin{aligned} & \text { COPPER } \\ & \text { (pp1) } \end{aligned}$	$\begin{aligned} & \text { LBAD } \\ & \text { (ppal) } \end{aligned}$	$\begin{aligned} & \text { 2IMC } \\ & \text { (ppi) } \end{aligned}$
PROM	90			Pron	90		(ppb)	(02/ton)				
16.8	81.4	bleached zone	24503	78.0	79.6	1.5	30	--	1.3	3	11	119
		rest of zone is noderately kaolinized, strong increase in pyrite content (2-3\%). Eas greenish-tan chalky appearance, Sericite?	24504	79,6	81.1	1.5	100	--	0.3	9	57	104
81.4	88.4	granite - sediun to coarse grained, weak chlorite alteration, winor dissesinated pyrite										
88.4	112.2	quartz feldspar porphyry - fine to rediua srained green granite with increase in ankerite content replacing feldspars	24505	95.1	96.6	1.5	30	--	1.5	99	205	5,999
		109.1 to 109.7-shear zone with 1-25 disseninated pyrite 95.6 - unidentified retallic nineral (sphalerite ?) with 1-21 pyrite. Koderately sericitized	24506	108.8	110.3	1.5	60	--	1.3	85	397	2,152
112.2	123.7 80日	brecciated quartz feldspar porphyry - medin grained with chlorite/ biotite altered k-spar phenocrysts up to 3 cı. k-spar locally 20ned										

GROLOGICAL CORE AND ASSAI LOG
Paricon developheris limined
7II, 675 Mest Hastings Street
Pancouver, B.C. P6B IR4

COHPAHY: INEL RESOURCES LTD.
PROPRETY: SIHSSR

LOCGED BI: Steve Fodoruk DATE: May 8, 1989			LEMGTE: $150.6:\left(494^{\prime}\right)$ CORE: MQ			BLABIMG: South LOCAFIOK: 3780M/3200E				$\begin{aligned} & \text { DIP: }-50^{\circ} \\ & \text { BLEYITIOR: } 1273 \cap(4,1751) \end{aligned}$		
INTERVAL (${ }^{\text {(}}$		COEEDESCBIPTIOM	SAMPLE MOMBER			LBUGTE (a)			$\begin{aligned} & \text { SILVER } \\ & (p p 1) \end{aligned}$	coppra (ppu)	$\begin{aligned} & \text { LEAD } \\ & \text { (ppq) } \end{aligned}$	$\begin{aligned} & \text { ZIVC } \\ & (\mathrm{ppI}) \end{aligned}$
PROM	to			Proh	90		(ppb)	(02/ton)				
0	18.3	overburden										
18.3	41.2	fine to nediur grained syenite ? - light buff to pink colour, stains hearily in potassiun, broken + oxidized to $\$ 1.2$										
41.2	85.7	granite - coarse grained quart2, k-spar crystals 41.2 to 78.6 - ankeritic and weakly sericitic/epidotized, cis disseninated pyrite 60.4 to 60.7 - clay (with ainor pyrite) gouge 62.2 to 71.0 - strongly sheared, broken and kaolinized 68.9 to $69.1-3-4 \mathrm{~cm}$ quartz vein + pyrite at 30° to c / a 74.4 to 74.7 - slightly sheared pith 58 nediun grained pyrite 73.8 to $74.1-1 \mathrm{c}$ quartz vein + pyrite + sphalerite at $5-10^{\circ}$ to c / s 76.8 to $77.1-1$ c quartz vein + pyrite + sphalerite at $5-10^{\circ}$ to c / a 78.6 to 85.7 - not ankeritic but nou is moderately chloritized + sericitized nith sore epidote										
85.7	86.6	felsite zone (3) - light pale grass green, fine to nediun grained										
86.6	103.0	granite - as above, neakly altered, sone sericite/chlorite/epidote										
103.0	103.9	andesite dyke										
103.9	114.6	granite - as above, start seeing uispy pale grass green $20 n e s$ up to 20 cm of sericite/chlorite										

grological core and assir loc
phaicon devllopyeyts likited
711, 675 Vest Bastings Street Vancouver, B.C. 168144

COMPAHI: IMEL RESOURCRS LTD.
PROPBRTI: SIHASH
BOLE: $55-80-13$
DITE: 1989
PAGL: 1 OP 2

GEOLOGICLL CORE ABD ASSAY LOG
gOLE: $55-80-13$
COMPAH: IMRL RESOURCES LTDD.
PROPRRTY: SIUASE
PAGR: 2 OP 2

geological core and assay log
PAMICON DEVELOPYEMTS LIMITED
711, 675 Vest Fastings Street Vancouver, B.C. V6B 1 IR 4

COMPAYY: IREL RESOORCES LTD.
PROPERTY: SIWHSE
ROLE: SS-80-14
DATE: 1989
PAGE: 10 F 6

LOGGBD BI DATE:	Steve fodoruk Hay 2, 1989		LRYGTE: $335.3:(1,1001)$ CORE: HV			BLARIMG: Horth LOCAFIOH: 33001/3620R				$\begin{aligned} & \text { DIP: -60' } \\ & \text { BLEYITIOR: } \quad 1296 』\left(4,250^{\prime}\right) \end{aligned}$		
InPreval (${ }^{\text {(}}$		COBEDESCRIPTIOA	$\begin{aligned} & \text { SAYPLE } \\ & \text { NOBBER } \end{aligned}$		(1)	LBMGP (1)	GoLD		silver (ppi)	$\begin{aligned} & \text { COPPRR } \\ & (\text { ppin) } \end{aligned}$	$\begin{aligned} & \text { LPAD } \\ & \text { (ppan) } \end{aligned}$	$\begin{aligned} & \text { ZIMC } \\ & \text { (ppil) } \end{aligned}$
F80M	P0			PROM	$\uparrow 0$		(ppb)	(02/ton)				
0	13.7	overburden										
11.1	41.1	diorite - sediun to coarse grained, moderate to strong magnetics, 5-15\% hornblende throughout which often alters partially to biotite, <1\% disseninated pyrite (hormblende granite) 20.1 to 20.4 - epidotized clay gouge zone 23.5 - narror clay gouse zone 35.4 to 36.9 - moderately to strongly epidatized zone uith clay gouse from 35.7 to 35.8 and 36.3 to 36.6 . It is also strongly sericitized through 35.4 to 36.9 . At 35.7 is 1 Cl galena + sphalerite + quartz vein.	24584	34.4	36.0	1.5	20	--	0.2	22	112	323
41.1	60.2	mineralized, intensely sericitized/epidotized diorite - overall pale grass sreen colour, non-iagnetic 44.8 to 45.1 and 45.4 to 47.2 - strongly broken clay gouge shear zones 48.0 to 48,8 - strong clay gouge zone 49.2 to 49.8-intensely chloritized/epidotized, Heak ankerite alteration, moderate to strong narrow to 5 cl quartz-chlorite stringers throughout which often carry pyrite + galena + sphalerite nineralization as at 41.3 (.6 cm with galena), 42.2 (2.5 cm with ninor pyrite + galena + sphalerite), 42.4 to 42.7 (narrow stringers with galena), $43.3+43.5$ (narroy galena stringers), 43.8 (narrou pyrite + galena + sphalerite stringers), $46.9(1 \mathrm{~cm}$ sphalerite + galena stringer), 47.9 (.6 cn galena	$\begin{aligned} & 24585 \\ & 24586 \\ & 24887 \\ & 24588 \\ & 24589 \\ & 24590 \\ & 24591 \end{aligned}$	41.0 $\$ 2.7$ 44.5 46.9 48.5 50.0 58.5	42.7 44.5 46.9 48.5 50.0 51.5 60.2	$\begin{aligned} & 1.1 \\ & 1.8 \\ & 2.4 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & \text { nd } \\ & 10 \\ & 25 \\ & 10 \\ & \text { ad } \\ & \text { nd } \\ & \text { nd } \end{aligned}$	--	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 2.5 \\ & 0.1 \\ & 0.7 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 37 \\ & 17 \\ & 13 \\ & 51 \\ & 14 \\ & 83 \\ & 66 \end{aligned}$	$\begin{array}{r} 949 \\ 751 \\ 280 \\ 1,154 \\ 399 \\ 2,679 \\ 1,222 \end{array}$	$\begin{array}{r} 1,401 \\ 1,391 \\ 881 \\ 2,927 \\ 731 \\ 3,011 \\ 3,079 \end{array}$

grologichl core and assay log
COMPAMY: ILEL RESOURCES LPD.
PROPERTI: SIMASE

HOLP: SS-80-14
PAGE: 20 O 6

Inreryal (a)		core description	$\begin{aligned} & \text { SAMPLR } \\ & \text { MOVBER } \end{aligned}$	Inferyd (${ }^{\text {a }}$		LEMGFII (1)	GOLD		$\begin{aligned} & \text { SILIVRer } \\ & (\mathrm{ppre}) \end{aligned}$	$\begin{aligned} & \text { Coppre } \\ & \text { (ppu) } \end{aligned}$	$\begin{aligned} & \text { LRAD } \\ & \text { (ppp) } \end{aligned}$	$2 \mathrm{IIC}$(ppl)
Pron	90			Pron	70		(ppb)	(02/ton)				
60.2	60.5	+ sphalerite + pyrite stringer), 51.81 .6 cm pyrite + galena + sphalerite stringer) nassive pyrite + sphalerite + galena rein at 45° to c / a (as are the ajaority of stringers in above section)										
			24592	60.2	60.5	0.3	190	--	250.0	1,796	10,836	220,000
			24593	60.5	62.5	2.0	30	--	4.1	101	3,890	8,319
60.5	18.3	60.2, pale green colour 71.6 to $71.9,73.2$ to 73.5 and 75.1 to 75.4 - mineralized with	26594	62.5	64.0	1.5	10	--	0.5	31	1,663	2,171
		balena + pyrite; clay gouse shears, narrou to scl quart2-chlorite + pyrite + galena +	24595	64.0	65.5	1.5	10	--	3.1	174	2,601	6,849
		sphalerite stringers as at 61,6 (1.3 ca galena + pyrite + sphalerite stringer at 45^{\prime} to c / a),	24596	65.5	67.1	1.5	10	--	4.8	232	3,861	5,945
		64.9 (1.9 cı pyrite + galena + sphalerite stringer at 80° to c / a), 69.0 (1 ca sphalerite	26597	67.1	68.6	1.5	10	--	1.5	88	4,166	6,559
		+ galena + pyrite stringer at 10° to c / a), 69.5 (1.3 cm pyrite + galena + sphalerite at 80° to	26598	68.6	70.1	1.5	nd	--	1.5	59	3,663	4,539
		$c / a)$ 15.2 to 75.4 - shear zone vith galena + pyrite + sphalerite at	24599	70.1	71.6	1.5	10	-	2.1	102	1,815	4,543
		$16.5 \quad \text { - narrov pyrite + galena + sphalerite at } 70^{\circ} \text { to } \mathrm{c} / \mathrm{a}$	2460	74.7	76.2	1.5	840	--	8.6	267	8,860	10,602
18.3	83.5	diorite - as 13.7 to 11.1 but a little darker green overall coloor, noderately nagnetic										
83.5	99.7	variably altered diorite - noderate to strons sericitized/ epidotization, overall pale to grass green colour 90.5 to 90.7 and 92.2 to 92.5 - shear zone										
99.7	101.2	diorite dyke (?) - very ufic (black overall colour), hornblende rich, is disserinated pyrite, veak to moderately nagnetic										

grological corr and assar log
80LE: $5 S-80-14$
COMPAMI: IHEL RESODRCES LTD.
PAGE: 3 OP 6

grolocical corr and asshy log
COMPAMI: IHEL RESOORCES LTD.
PROPRRTY: SIMASB

HOLE: SS-80-14
PRGE: 4 OP 6

IRTRRYAL (a)		COREDESCRIPIIOA	SAMPLL RUABER		(1)	LBIGTH (a)	GOLD		SILTER (ppi)	COPPRB (ppu)	$\begin{aligned} & \text { LEMD } \\ & (\mathrm{Ppan}) \end{aligned}$	$\begin{aligned} & \text { 2IKC } \\ & \text { (ppa) } \end{aligned}$
PROK	10			PROH	10		(ppb)	(02/ton)				
230.7	237.1	altered diorite - as 208.2 to 219.5, noderately sericitized and epidotized, light pale green										
237.1	258.2	hornblende diorite - a darker sedina green colour 238.7 to $239.1-1.3$ al pyrite + galena + sphalerite + covellite staining, parallel to c / a 250.2 to 250.5 - get narron pyrite + galena + henatite stringers, chlorite/sericite altered (noderate)	9318	238.5	239,3	0.8	80	--	45.7	18,466	286	700
258.2	278.9	altered diorite - variably moderately to strongly sericitized, pale green to green colour 254.5 to $255.1-2-54$ pyrite as blebs and disseninations $268.8-1.3$ ca quartz-pyrite + henatite at 20° to c / a	9319	254.5	256.0	1.5	40	--	2.4	364	1,032	4,355
278.9	281.9	light pale grey strongly kaolinized diorite 280.4 to 280.6 - pyritic clay gouge 20ne, sericite aoderate										
281.9	292.3	hornblende diorite - light pale brown to brovn colour, hornblende phenocrysts to 1 cm altering to biotite/chlorite 290.8 to 291.1 - pyritic aarro quart2 veins vith pyrite as blebs 280.4 - clay gouge + henatite + pyrite $281.9-5$ en silicified clay googe + pyrite at 45° to c/a 284.7 - narron gouge slip $1 I^{\prime}$ to $\mathrm{c} / \mathrm{a}+$ henatite 290.2 to 290.5 - broken, brecciated gouge 20ne sith sone kaolinite										
292.3	335.3 80日	quartz feldspar porphyry - light tan bromn colour, <l\% disserinated pyrite, oderate epidote alteration locally 292.3 to 201.8 and 311.8 to 335.3 - moderate to strong pervasive sericitization										

GEOLOGICAL CORE AND ASSAY LOG
COMPABY: INEL RESODRCES LTD.
PROPBRTY: SIFASH

EOLR: SS-80-14
PAGE: 6 OP 6

IRTERVAL (a)		COBEDESCBIPTIO	SAMPLE HUABER	IMFREPAL (${ }^{\text {(}}$		LEMGTH (.)	GOLD		$\begin{aligned} & \text { SILTVE } \\ & \text { (ppı) } \end{aligned}$	COPPRR (ppa)	$\begin{aligned} & \text { LRAD } \\ & \text { (pp1) } \end{aligned}$	$\begin{aligned} & \text { ZIHC } \\ & \text { (pp1) } \end{aligned}$
PBOH	T0			PROK	10		(ppb)	(02/ton)				
		301.8 to 311.8 - stroag ankeritic alteration 306.3 to 312.7 - shattered broken 20ne gith narron goage 20nes nithin at 45° to c / a, ninor silicification $315.8-8$ ca clay gouge zone, widely spaced narror quartz-pyrite + henatite stringer activity throughout 294.7 - feldspar phenocrysts appear to have been ankerite altered siving nafic appearance; can't tell for certain if these are feldspars altered to ankerite/henatite or hornblende altered										

grological corr aid assat log
PBGICON DEVELOPKEVTS LIHITED
711, 675 Yest Bastings Street
Pancourer, B.C. F6B ${ }^{1 / 44}$

80LR: SS-80-15

DITR: 1989

PAGE: 10 OP

Infreral (${ }^{\text {a }}$		CORE DESCRIPTIOA	$\begin{aligned} & \text { SAMPLR } \\ & \text { NUKBEB } \end{aligned}$			LEVGTH (1)			$\begin{aligned} & \text { SILTER } \\ & \text { (ppa) } \end{aligned}$	$\begin{aligned} & \text { COPPRR } \\ & (\text { Ppa }) \end{aligned}$	$\begin{aligned} & \text { LRAD } \\ & \text { (ppi) } \end{aligned}$	$\begin{aligned} & \text { 2INC } \\ & (\mathrm{ppq}) \end{aligned}$
FROH	T0			Prok	10		(ppb)	(02/to0)				
61.9	64.9	basalt dyke										
64.9	11.1	diorite (?) - asssive, sediun grey overall colour, pervasive aderate chlorite alteration, <lit disseninated pyrite, increased afics content as compared to granite, veak to noderate kaolinization of feldspars										
11.1	71.6	basalt dyke										
17.6	106.1	diorite - as above 80.2 to 80.8 - clay fault gouge 20ne locally zoderate to strong magnetics throughout, darker grey-green colour overall 94.5 to 106.1 - moderate to strong epidotization/chloritization 102.1 to 102.7-clay gouge										
106.1	108.8	basalt dykes										
108.8	135.3	quartz feldspar porphyry - dirty broun colour 117.0 to 123.8 - coarse grained, hornblende phenocrysts up to 2 c 123.8 to 126.8 - very dark dirty broun coloured diorite, coarse grained 125.9 to 126.8 - fault 129.5 to 135.3 - lighter pale sreen altered diorite pith moderate narrou pink fluorite stringer activity strong kaolinized + chloritized 131.4 to 132.3 - fanlt gouge zone crystals appear worked										

PACE: 3 OP 3

COMPAH: IHEL RESOURCES LTD.

PROPRRTY: SIHSA

日OLR: SS-80-16

PAKICON DPVELOPKEHFS LIMITED
711, 675 West Hastings Street
Pancouver, B.C. PGB IIM

DAfL: 1989

PAGE: 10 OP

geological corr aid assay log
PAMICOR DEYELOPYEHTS LIMITED
711, 675 Vest Eastings Street
Yancouver, B.C. Y6B 1:4

COMPAYI: IHEL RESOURCES LTD.
PROPRRTI: SITASA

80LE: $5 S-80-17$
DIft: 1989
PAGR: | OP

LOGGED BI DARE:	Steve Fodoruk Hay 7, 1989		LEMGTH: CORR:	$\begin{aligned} & 78.33 ः\left(257^{\prime}\right) \\ & \text { 10 } \end{aligned}$		Buring: 150 LOCATIOR: 51201/31708				$\begin{aligned} & \text { DIR: }-60^{\circ} \\ & \text { ELEYATIOI: } 1311 \rrbracket\left(4,300^{\prime}\right) \end{aligned}$		
IHPREYAL (${ }^{\text {(}}$		COBEDESCBIPTIOM	SAMPLE HUKBER	IPTERYAL (${ }^{\text {(}}$		LRAGTE (a)	GOLD		$\begin{aligned} & \text { SILTER } \\ & (\mathrm{ppr}) \end{aligned}$	COPPRE (ppa)	$\begin{aligned} & \text { LRAD } \\ & \left.(\mathrm{PP})_{1}\right) \end{aligned}$	$\begin{aligned} & \text { 2IHC } \\ & (\mathrm{ppn}) \end{aligned}$
PROM	70			PROM	TO		(ppb)	(02/ton)				
0	3.1	overburden										
3.7	44.2	biotite-QPP dyke - as $\$ S-80-7$ (178,0), plagioclase phenocrysts up to 1 ch , overall buff grey colour										
44.2	45.4	shear zone - strongly kaolinized + ankerite										
45.4	$\begin{aligned} & 78.3 \\ & \mathrm{EOOR} \end{aligned}$	quartz syenite - fine to rediun grained, quartz phenocrysts to 5 m , light white to grey to chalky colour, $5-8 \%$ disseninated pyrite throughout 57.9 to 60.4 - intensely kaolinized shear zone sith $5-10 \%$ disseninated prite	24670	58.4	59.3	0.9	20	--	0.5	10	64	76
		59.4 to 60.4 - is dark grey pyritic clay gouse	24671	59.3	60.5	1.2	35	--	2.5	107	107	57
		64.6 to 65.0 - dark grey pyritic clay gouge $72.5 \quad-5$ ca dark grey pyritic clay googe whole unit is moderately to strously kaolinized	24672	60.5	61.4	0.9	10	--	0.3	5	38	24

grological corr and assai log

Palifol dertlopherrs LIMITED
711, 675 Hest Hastings Street
Vancouver, B,C. V6B114

COMPARI: INEL RESOORCES LPD.

PBOPRRII: SITRE

HOLR: $55-80-18$
DtTE: 1989

grological core hid asshy log
PAKICOH DEVELOPMEMTS LIMITED
711, 675 Rest \#astings Street Yancouver, B.C. V6B IM4

COMPAHI: IMEL RRSOURCES LTD.
PROPRRPY: SITASH

HOLE: SS-80-19
DAft: 1989
PGGE: 1 OP 1

grological corr and asshy log
paricon developyents lihined
7II, 675 Yest Hastings Street Vancouver, B.C. VGB 146

COMPAMP: IHEL RESOURCES LTD.
PROPRERY: SIFASH
HOLE: $55-80-20$

geologichl core and assay log
Phatcoa derle pheris likitrd
711, 675 Rest Hastings Street
Pancouver, B.C. V6B $1: 4$

COMPAHP: IHEL RESOURCBS LTD.
PROPRRTY: SIWASH

GROLOGICAL CORE AMD ASSAI LOG

PRHICON DEVELOPHEMPS LIMITED
711, 675 Pest Bastings Street
Vancouver, B.C. V68 144

COMPAMY: INRL RESOURCES LTD.

PROPRRTY: SIHASE

HOLE: $5 S-80-22$

DSTE: 1989

GBOLOGICAL COBE AMD ASSAI LOG
PAMICON DEYELOPMEMTS LIMITEO
711, 675 Yest Hastings Street
Vancouver, B.C. V68 1 in

COMPAHP: IREL RRSOUBCES LIDD.
PROPRPRI: SIWASH
DARP: 1989
PACE: 1 OP 3

LOCGED BI: AI Montgonery DATE: Kay 6, 1989		LEMGTE: 205.7 (675°) CORE: BQ		BEARING: 310 LOCATIOH: downhill, V of Monty Showing by Sivash Creek						DIP: -60° RLEVATIOH: unknown		
Ihtreval (a)		COBEDESCBIPTIOA	SAMPLE RJHBER	IKTERYAL (1)		LRYGTH (a)	G0LD		$\begin{aligned} & \text { SILIER } \\ & \text { (ppı) } \end{aligned}$	$\begin{aligned} & \text { COPPER } \\ & \text { (ppi) } \end{aligned}$	$\begin{aligned} & \text { LBAD } \\ & \text { (ppal) } \end{aligned}$	$\begin{aligned} & \text { LIMC } \\ & \text { (ppil) } \end{aligned}$
Pron	10			Pro\%	Y0		(ppb)	(02/ton)				
0	3.4	casing										
3.4	205.7	quartz - feldspar porphyry - subround quartz crystals avg $3-4$ m and subhedral off-uhite k-spar crystals ave $2-3$ an reaching 1 cm dia set in a very fine pale green matrix with fine to rediun grained euhedral nuscovite occurs locally. Disseninated aediunfine grained pyrite (<1) throughout. Reak to oderate pervasive alteration of groundzass to sericite/clay (?). Peldspars variably altered to sericite, clay, weak ankerite, and, locally, k-spar phenos appear to be altred to epidote/sericite in the core of the phenocrysts (as displayed as dark green radiating crystal mass ringed by outside edge of k-spar pheno) 14.3 to 32.0 - kaolinite alteration noderate-strong with local clay gouge zone and broken core (Pb-2n-Pe uineralization also locallized in this area) 82.3 to 87.5 and 93.0 to 101.5 - sinilar zones $8.8 \quad-1$ cu quartz-fluorite veinlet 11.0 to 17.4 - stringers to 1 cı nide and ninor disseninations of sphalerite/pyrite with associated quartz + carbonate 20.1 - salena-sphalerite-pyrite-ankerite veinlet (1-2 cm at 50° to c / a 31.4 to 32.0 - blebs and stringers of sphalerite-pyrite (<s\%) 34.1 to 36.9 - sphalerite-galena-pyrite bleb $39.9-2$ ca vide pyrite + sphalerite galena band at 30^{4} to c / a $41.5-$ sinilar band at 10° to c / a	24627	11.0	12.5	1.5	30	--	4.1	49	1,191	3,462
			24628	12.5	14.0	1.5	20	--	3.1	33	1,119	3,470
			24629	14.0	15.5	1.5	70	--	3.6	84	124	9,754
			24630	15.5	17.1	1.5	100	--	6.5	133	1,474	10,621
			24631	17.1	18,6	1.5	60	--	9.3	61	921	2,871
			24632	18.6	20.1	1.5	110	--	6.1	68	3,494	6,595
			24633	20.1	21.6	1.5	165	--	6.2	56	2,266	4,507
			24634	21.6	23.2	1.5	60	--	3.8	68	948	6,490
			24635	23.2	24.7	1.5	5	--	2.1	17	695	1,116
			24636	24.7	26.2	1.5	nd	--	2.1	18	341	2,279
			24637	26.2	27.7	1.5	10	\cdots	1.4	52	109	4,172
			24638	27.7	29.3	1.5	10	--	1.1	26	360	2,567
			24639	29.3	30.8	1.5	nd	--	0.9	84	39	1,473

GEOLOGICAL CORE AHD ASSAI LOG
COMPAMI: IWRL RESOURCES LPD.
PROPBETI: SIMASB

HOLE: $55-81-23$
PAGR: 2 OR 3

grological core and assil log
HOLR: $5 S-81-24$
compary: INEL ReSOURCRS LPD.
PROPEBTI: SIHASH
PAGR: 2 OP 2

gROLOGICAL CORR AMD ASSAI LOG
PAMICOH DETELOPKEYTS LIMITED
1II, 675 Yest \#astings Street
Vancouver, B.C. V6B 1 IM

COMPARI: INEL RESOBRCES LIDD.
PROPRRTY: SIHASH
DAFE: 1989
PAGE: 1 OF 2

grological core amd assay log
COKPAMY: IHEL RESOORCES LPD.
PROPERTY: SIWASE

HOLE: $55-81-25$
PAGE: 20 OR

geological corr and assay log
PAMICOH DEYRLOPMEYTS LIYITRD
7ll, 675 Mest Hastings Street
Pancouver, B.C. V6B 114

COMPRHY: IMRL RESOURCES LTD.
PROPRETY: SIHASH

HOLR: SS-81-26
DATE: 1989
PRGR: 1 OP 1

LOGGED BI: DATE:	Steve fodoruk Hay 4, 1989		$\begin{aligned} & \text { LBMCTE: } 102.1:\left(335^{\prime}\right) \\ & \text { CORE: } \\ & \text { BQ } \end{aligned}$			BEABIHG: 360° LOCAFION: near $\operatorname{II} B+D$ clain boundary				$\begin{aligned} & \text { DIP: }-65^{\circ} \\ & \text { ELEVATIOH: } 5054.5:\left(5,100^{\prime}\right) \end{aligned}$		
InTERYAL (1)		COREDESCRIPTIOA	SAMPLE BUKBER			LRMGTH (1)	60LD		$\begin{aligned} & \text { SILVER } \\ & (\mathrm{ppn}) \end{aligned}$	$\begin{aligned} & \text { COPPRR } \\ & (\mathrm{ppn}) \end{aligned}$	$\begin{aligned} & \text { LEAD } \\ & (p p a) \end{aligned}$	$\begin{aligned} & \text { ZINC } \\ & \text { (ppin) } \end{aligned}$
Frok	90			PROK	T0		(ppb)	(02/ton)				
0 28.1	28.7 102.1 ROB	 overburden (from Brenda Mines drill logs) negacryst 1 -spar porphyry - identical to SS-81-27, this hole has a sore pronounced green colour due to stronger sericite + kaolinite alteration (soderate), perfect teninated x-spar crystais (up to 3 (1) 45.7 to $46.3,53.3$ to $51.6,73.5$ to $75.0,87.5$ to 87.8 , 91.1 to $91.4,95.1$ to 96.0 , and 97.8 to 102.1 - are all strongly sheared nith clay googe										,

APPENDIX II

ASSAY CERTIFICATES

CLIENT: INEL RESOURCES LTD.
DATE: May 121989
ADDRESS: 301 - E75 West Hastings St.
Vancouver, E.C.
REPORT\#: 890198 GA
VEE 1 N2
JOE\#: 8901.78
PROJECT\#: S. T.
SAMPLES ARRIVED: MAY 9 198' REPORT COMPLETED: May 121989 ANALYSED FOR: Au (FA/AAS) ICP
INVOICE\#: 890198 NA TOTAL SAMPLES: 112 SAMPLE TYPE: 112 CORE REJECTS: SAVED
SAMPLES FROM: STEVE TODORUK COPY SENT TO: INEL RESOURCES LTD.

PREPARED FOR: INEL RESOURCES LTD.

GENERAL REMARK: Au* = Au first recheck value $A u \div \%=A u$ second recheck value
*

REPORT NUKBER: 890198 6A JOB NUMBER: 890198
IMEL RESOURCES LTD.
PAGE 1 OF 3

REPORT NUMBER: 890198 GA JOB NUMBER: $890198 \quad$ INEL RESOURCES LTD. PAGE 2 OF 3

A． 5 gran sample is digested with 5 al of $3: 1: 2 \mathrm{HCl}$ to HHO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $95{ }^{\circ} \mathrm{C}$ for 90 inates and is diluted to 10 al vith vater． This leach is partial for $\mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{Kg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{P}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{Sn}, \mathrm{Sr}$ and W ．

\begin{tabular}{|c|}
\hline REPORT ： 890198 PA \& \multicolumn{5}{|c|}{IMEL RESOURCES LTD} \& \multicolumn{3}{|c|}{Proj：S．t．} \& \multicolumn{4}{|r|}{Date In：89／05／09} \& \multicolumn{3}{|l|}{Date Out：89／05／12} \& \multicolumn{4}{|l|}{AEt：STEVE TODORUK} \& \multirow[b]{2}{*}{Pb} \& \multirow[b]{2}{*}{Pd} \& \multirow[b]{2}{*}{Pt} \& \multirow[b]{2}{*}{56} \& $$
7
$$ \& Page \& \multicolumn{3}{|l|}{$$
1 \text { of } O_{3}
$$}

\hline Sample Muaber \& Ag \& Al \& As \& Al \& Ba \& Bi \& Cl \& cd \& Co \& Cr \& Cu \& Fe \& k \& H9 \& mm \& no \& Ma \& Mi \& p \& \& \& \& \& Sn \& 5 r \& 0 \& N \& In

\hline \& ppa \& 1 \& ppa \& pea \& ppa \& ppa \& 1 \& ppa \& ppe \& ppa \& ppa \& 2 \& 2 \& \％ \& ppa \& ppa \& 7 \& ppa \& 1 \& ppa \& PP4 \& ppa \& ppa \& ppt \& ppa \& ppa \& ppa \& ppa

\hline 24584 \& 0.2 \& 0.75 \& ＜3 \& ＜3 \& 426 \& （3 \& 0.87 \& 0.3 \& 6 \& 47 \& 22 \& 1.85 \& 0.19 \& 0.55 \& 1546 \& 4 \& 0.01 \& 4 \& 0.08 \& 112 \& ＜3 \& ＜ \& ＜2 \& 2 \& 73 \& ＜5 \& ＜3 \& 323

\hline 24585 \& 0.1 \& 0.64 \& ＜3 \& ＜3 \& 284 \& （3） \& 1.75 \& 0.7 \& 4 \& 115 \& 37 \& 1.61 \& 0.31 \& 0.43 \& 5072 \& 6 \& 0.01 \& 5 \& 0.08 \& 949 \& ＜3 \& ＜ \& ＜2 \& （2 \& 98 \& ＜5 \& ＜3 \& 1401

\hline 24586 \& 0.1 \& 0.33 \& （3 \& ＜3 \& 177 \& ＜3 \& 2.13 \& 0.8 \& 3 \& 65 \& 17 \& 1.35 \& 0.35 \& 0.30 \& 5931 \& 1 \& 0.01 \& 1 \& 0.08 \& 751 \& ＜3 \& （5 \& ＜2 \& （2 \& 109 \& <5 \& ＜3 \& 1391

\hline 24587 \& 0.1 \& 0.36 \& ＜3 \& ＜3 \& 551 \& ＜3 \& 2.46 \& 0.4 \& 2 \& 91 \& 13 \& 1.10 \& 0.39 \& 0.28 \& 6800 \& 1 \& 0.01 \& 2 \& 0.08 \& 280 \& ＜3 \& ＜ 5 \& ＜2 \& ＜2 \& 105 \& ＜5 \& ＜3 \& 881

\hline 24588 \& 2.5 \& 0.33 \& （3 \& ＜3 \& 56 \& （3 \& 0.87 \& 1.5 \& 5 \& 79 \& 51 \& 3.10 \& 0.25 \& 0.11 \& 8898 \& 5 \& 0.01 \& 4 \& 0.08 \& 1154 \& ＜3 \& ＜5 \& <2 \& ＜2 \& 60 \& ＜5 \& ＜3 \& 2927

\hline 24589 \& 0.1 \& 0.99 \& ＜3 \& $\stackrel{3}{ }$ \& 55 \& （3 \& 3.56 \& 0.4 \& 7 \& 68 \& 14 \& 2.24 \& 0.58 \& 0.94 \& 8386 \& 2 \& 0.01 \& 15 \& 0.12 \& 399 \& ＜3 \& ＜5 \& <2 \& ＜2 \& 207 \& ＜ 5 \& ＜3 \& 731

\hline 24590 \& 0.7 \& 0.59 \& ＜3 \& ＜3 \& 424 \& （3） \& 2.05 \& 1.4 \& 4 \& 132 \& 83 \& 1.83 \& 0.36 \& 0.53 \& 7162 \& 7 \& 0.01 \& 4 \& 0.09 \& 2679 \& ＜3 \& ＜ \& ＜2 \& ＜2 \& 100 \& ＜5 \& ＜3 \& 3011

\hline 24591 \& 2.1 \& 0.34 \& 9 \& ＜3 \& 89 \& （3） \& 1.11 \& 1.4 \& 4 \& 116 \& 66 \& 2.16 \& 0.24 \& 0.31 \& 6032 \& 6 \& 0.01 \& 3 \& 0.08 \& 1222 \& ＜3 \& く5 \& 12 \& ＜2 \& 59 \& （5 \& （3） \& 3079

\hline 24592 \& 350.0 \& 0.17 \& 44 \& 3 \& 11 \& 4 \& 0.51 \& 56.1 \& 18 \& 115 \& 1796 \& 310.00 \& 0.47 \& 0.13 \& 8466 \& 15 \& 0.01 \& 5 \& 0.01 \& 10836 \& ＜3 \& ＜5 \& ＜2 \& 5 \& 22 \& ＜5 \& く3 \& 720000

\hline 24593 \& 4.1 \& 0.27 \& （3 \& ＜3 \& 47 \& ＜3 \& 1.62 \& 4.1 \& 4 \& 127 \& 101 \& 2.52 \& 0.33 \& 0.26 \& 8349 \& 7 \& 0.01 \& 3 \& 0.07 \& 3890 \& ＜3 \& ＜5 \& ＜2 \& ＜2 \& 66 \& ＜5 \& 13 \& 8319

\hline 24594 \& 0.5 \& 0.25 \& ＜3 \& ＜3 \& 44 \& 13 \& 1.81 \& 1.1 \& 3 \& 73 \& 37 \& 1.93 \& 0.33 \& 0.28 \& 8061 \& 2 \& 0.01 \& 1 \& 0.08 \& 1463 \& ＜3 \& ＜5 \& ＜2 \& ＜2 \& 71 \& <5 \& ＜3 \& 2177

\hline 24595 \& 3.1 \& 0.36 \& （3） \& $\stackrel{3}{ }$ \& 41 \& 3 \& 0.99 \& 3.4 \& 4 \& 144 \& 174 \& 3.12 \& 0.28 \& 0.37 \& 8094 \& 8 \& 0.01 \& 3 \& 0.08 \& 2607 \& ＜3 \& ＜ 5 \& ＜2 \& ＜2 \& 55 \& ＜5 \& ＜3 \& 6849

\hline 24596 \& 4.8 \& 0.33 \& （3 \& ＜3 \& 34 \& （3 \& 0.56 \& 3.1 \& 6 \& 66 \& 232 \& 4.37 \& 0.26 \& 0.43 \& 8839 \& 4 \& 0.01 \& 5 \& 0.08 \& 3861 \& 13 \& ＜5 \& 12 \& ＜2 \& 49 \& ＜5 \& ＜3 \& 5945

\hline 24597 \& 1.5 \& 0.30 \& （3 \& ＜3 \& 49 \& ¢3 \& 1.39 \& 3.1 \& 4 \& 60 \& 88 \& 1.48 \& 0.25 \& 0.24 \& 5614 \& 5 \& 0.01 \& 24 \& 0.07 \& 4166 \& ＜3 \& ＜ \& ＜2 \& ＜2 \& 56 \& 15 \& ＜3 \& 6559

\hline 24598 \& 1.5 \& 0.54 \& （3） \& ＜3 \& 62 \& （3 \& 1.86 \& 2.2 \& 5 \& 111 \& 59 \& 2.43 \& 0.35 \& 0.31 \& 4944 \& 6 \& 0.01 \& 4 \& 0.08 \& 3063 \& （3 \& 15 \& ＜2 \& ＜2 \& 90 \& ＜5 \& ＜3 \& 4539

\hline 24599 \& 2.1 \& 0.48 \& （3） \& く3 \& 49 \& ＜3 \& 2.07 \& 2.2 \& 5 \& 53 \& 102 \& 2.32 \& 0.37 \& 0.12 \& 6102 \& 4 \& 0.01 \& 24 \& 0.08 \& 1815 \& ＜3 \& ＜5 \& （2 \& ＜2 \& 86 \& ＜5 \& ＜3 \& 4543

\hline 24600 \& 8.6 \& 0.30 \& （3 \& ＜3 \& 58 \& 13 \& 1.61 \& 5.1 \& 7 \& 49 \& 267 \& 2.54 \& 0.32 \& 0.20 \& 6642 \& 4 \& 0.01 \& 3 \& 0.07 \& 8860 \& （3 \& ＜5 \& ＜2 \& ＜2 \& 73 \& ＜ 5 \& ＜3 \& 10602

\hline 9301 \& 1.4 \& 0.79 \& 16 \& ＜3 \& 44 \& ＜3 \& 0.73 \& 0.5 \& 6 \& 116 \& 81 \& 4.30 \& 0.26 \& 0.54 \& 1478 \& 6 \& 0.01 \& 3 \& 0.08 \& 460 \& （3 \& （5 \& ＜2 \& <2 \& 48 \& ＜ 5 \& ＜3 \& 698

\hline 9302 \& 8.5 \& 0.51 \& 97 \& ＜3 \& 17 \& （3 \& 0.23 \& 3.1 \& 6 \& 55 \& 139 \& 10．00 \& 0.41 \& 0.36 \& 7843 \& 8 \& 0.01 \& 1 \& 0.05 \& 2658 \& （3） \& ＜5 \& ＜2 \& 2 \& 24 \& ＜5 \& ＜3 \& 5082

\hline 9303 \& 14.6 \& 0.25 \& 98 \& ＜3 \& 14 \& （3 \& 0.19 \& 1.5 \& 8 \& 140 \& 63 \& 8.35 \& 0.33 \& 0.14 \& 2132 \& 25 \& 0.01 \& 5 \& 0.09 \& 706 \& （3 \& ＜ \& （2 \& 2 \& 16 \& ＜ \& ＜3 \& 1717

\hline 9304 \& 250.0 \& 0.21 \& 186 \& $\langle 3$ \& 8 \& （3 \& 0.25 \& 3.3 \& 23 \& 74 \& 219 \& 710.00 \& 0.78 \& 0.17 \& 2105 \& 21 \& 0.01 \& 19 \& 0.12 \& 2287 \& ＜3 \& ＜ 5 \& ＜2 \& 2 \& 14 \& ＜ \& ＜3 \& 3255

\hline 9305 \& 12.8 \& 0.27 \& 35 \& ＜3 \& 12 \& （3） \& 0.16 \& 1.7 \& 11 \& 63 \& 63 \& 10.00 \& 0.14 \& 0.19 \& 2035 \& 33 \& 0.01 \& 28 \& 0.06 \& 497 \& ＜3 \& ＜ \& ＜2 \& 2 \& 17 \& ＜ 5 \& ＜3 \& 1417

\hline 9306 \& 4.1 \& 0.28 \& 17 \& ＜3 \& 15 \& ＜3 \& 0.16 \& 1.1 \& 9 \& 125 \& 43 \& 8.63 \& 0.33 \& 0.17 \& 2184 \& 14 \& 0.01 \& 6 \& 0.07 \& 268 \& （3） \& ＜ \& ＜2 \& 3 \& 19 \& ＜ 5 \& ＜3 \& 595

\hline 9307 \& 1.3 \& 0.27 \& 12 \& ＜3 \& 67 \& ＜3 \& 1.88 \& 2.2 \& 8 \& 52 \& 61 \& 3.37 \& 0.39 \& 0.38 \& 7032 \& 4 \& 0.01 \& 5 \& 0.07 \& 2402 \& （3 \& ＜ 5 \& ＜2 \& ＜2 \& 56 \& （5 \& 13 \& 4370

\hline 9308 \& 2.5 \& 1.08 \& （3 \& ＜3 \& 98 \& （3 \& 0.91 \& 0.6 \& 4 \& 62 \& 331 \& 3.07 \& 0.24 \& 0.55 \& 2182 \& 3 \& 0.01 \& 2 \& 0.09 \& 252 \& ＜3 \& ＜ \& ＜2 \& ＜2 \& 59 \& （5 \& （3 \& 656

\hline 9309
9310 \& 1.2 \& 0.81
1.40 \& 4
4 \& 13
<3 \& 41 \& 13
<3 \& 0.29
0.15 \& 0.4
0.5 \& 6
5 \& 53
92 \& 87
90 \& 3.23
5.14 \& 0.16
0.21 \& 0.39
0.50 \& 2692
3998 \& 3
5 \& 0.01
0.01 \& 22
3 \& 0.08
0.07 \& 155
79 \& 13
13 \& ＜

<5 \& 12
12 \& ＜2 \& 35
20 \& ＜
＜ 5 \& 13

3 \& 550
367

\hline | 9311 |
| :--- |
| 9312 | \& \[

$$
\begin{array}{r}
2.1 \\
350.0
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 0.56 \\
& 1.52
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
3 \\
20
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& <3 \\
& <3
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 43 \\
& 20
\end{aligned}
$$
\] \& ＜3 \& 0.18

0.12 \& 0.4
1.2 \& 5 \& 82
56 \& 156
11268 \& 3.88
110.00 \& 0.217
0.39 \& 0.23
0.45 \& 4080
4403 \& 7 \& 0.02
0.01 \& 28 \& 0.09
0.05 \& 199 \& 13
<3 \& ＜
$<$
4 \& <2
<2 \& 12

3 \& 25 \& | ＜ |
| :--- |
| |
| |
| 5 | \& 13

<3 \& 348
952

\hline 9313 \& 8.3 \& 1.42 \& 12 \& ＜3 \& 25 \& ＜3 \& 0.11 \& 1.3 \& 7 \& 74 \& 937 \& >10.00 \& 0.41 \& 0.14 \& 1619 \& 10 \& 0.01 \& 1 \& 0.05 \& 298 \& $\langle 3$ \& ＜ \& ＜2 \& 2 \& 13 \& ＜ \& ＜3 \& 1003

\hline 9314 \& 1.9 \& 1.29 \& （3） \& <3 \& 51 \& ＜3 \& 0.31 \& 0.7 \& 4 \& 119 \& 136 \& 3.78 \& 0.18 \& 0.61 \& 1807 \& 6 \& 0.01 \& 3 \& 0.07 \& 553 \& $\langle 3$ \& ＜ 5 \& ＜2 \& ＜2 \& 36 \& （5 \& 33 \& 782

\hline 9315 \& 1.1 \& 0.28 \& ＜3 \& 13 \& 24 \& 13 \& 0.17 \& 0.5 \& 8 \& 99 \& 28 \& 4.62 \& 0.19 \& 0.15 \& 2862 \& 3 \& 0.03 \& ， \& 0.07 \& 313 \& 13 \& （5 \& 12 \& 2 \& 18 \& （5 \& ＜3 \& 498

\hline 9316 \& 0.6 \& 0.28 \& （3 \& 13 \& 30 \& （3 \& 0.17 \& 0.6 \& 6 \& 54 \& 36 \& 3.90 \& 0.18 \& 0.13 \& 5430 \& 2 \& 0.03 \& 3 \& 0.08 \& 241 \& $\langle 3$ \& ＜ 5 \& ＜2 \& ＜2 \& 24 \& （5 \& ＜3 \& 756

\hline 9317 \& 1.7 \& 0.52 \& （3 \& （3 \& 27 \& （3） \& 0.17 \& 1.2 \& 13 \& 137 \& 92 \& 5.86 \& 0.24 \& 0.25 \& 4106 \& 8 \& 0.01 \& 3 \& 0.06 \& 1180 \& ＜3 \& （5 \& ＜2 \& ＜2 \& 22 \& （5 \& ＜3 \& 1984

\hline 9318 \& 45.7 \& 2.82 \& ＜3 \& ＜3 \& 10 \& （3） \& 0.10 \& 1.2 \& 13 \& 43 \& 18466 \& ）10．00 \& 0.49 \& 0.85 \& 3100 \& 7 \& 0.01 \& 19 \& 0.04 \& 286 \& 13 \& （5 \& ＜2 \& 3 \& 11 \& （5 \& ＜3 \& 700

\hline 9319 \& 2.4 \& 0.26 \& 7 \& ＜3 \& 28 \& （3 \& 0.14 \& 2.3 \& 9 \& 84 \& 364 \& 5.55 \& 0.23 \& 0.13 \& 4005 \& 1 \& 0.01 \& 4 \& 0.06 \& 1032 \& （3 \& ＜ 5 \& （2 \& 2 \& 16 \& ＜5 \& ＜3 \& 4355

\hline 24601 \& 1.7 \& 1.22 \& ＜3 \& ＜3 \& 91 \& （3 \& 1.20 \& 1.6 \& 3 \& 81 \& 73 \& 3.96 \& 0.31 \& 0.49 \& 1739 \& 4 \& 0.01 \& 2 \& 0.03 \& 990 \& ＜3 \& ＜ 5 \& （2 \& ＜2 \& 84 \& ＜5 \& （3） \& 3079

\hline 24602 \& 0.7 \& 0.25 \& ＜3 \& （3） \& 16 \& ＜3 \& 0.15 \& 0.5 \& 3 \& 66 \& 9 \& 7.36 \& 0.28 \& 0.02 \& 272 \& 7 \& 0.06 \& 34 \& 0.01 \& 48 \& ＜3 \& ＜5 \& ＜2 \& ＜2 \& 19 \& ＜ \& （3 \& 87

\hline 24603 \& 2.2 \& 0.30 \& 6 \& （3 \& 46 \& ＜3 \& 0.08 \& 0.6 \& 1 \& 122 \& 16 \& 1.86 \& 0.07 \& 0.01 \& 379 \& 7 \& 0.08 \& 3 \& 0.03 \& 585 \& ＜3 \& ＜ \& （2 \& ＜2 \& 11 \& ＜ \& （3 \& 1458

\hline Miniaus Detection \& 0.1 \& 0.01 \& 3 \& 3 \& 1 \& 3 \& 0.01 \& 0.1 \& 1 \& 1 \& 1 \& 0.01 \& 0.01 \& 0.01 \& 1 \& 1 \& 0.01 \& 1 \& 0.01 \& 2 \& 3 \& 5 \& 2 \& 2 \& 1 \& 5 \& 3 \& 1

\hline Masiane Datertion \& 50.0 \& 10.00 \& 2000 \& 100 \& 1000 \& 1000 \& 10.00 \& 1000.0 \& 20000 \& 1000 \& 20000 \& 10.00 \& 10.00 \& 10.00 \& 20000 \& 1000 \& 10.00 \& 20000 \& 10.00 \& 20000 \& 100 \& 100 \& 2000 \& 1000 \& 10000 \& 100 \& 1000 \& 20000

\hline
\end{tabular}

Att：STEVE TODORUK
Page 2 of 3

Sapple Muaber	19	Al	As	Au	82	$8 i$	C	cd	Co	Cr_{7}	Cu	Fe	K	H9	Hn	no	M1	Ni	p	Pb	Pd	Pl	50	Sn	Sr	0	N	In
	ppa	$\%$	DPA	ppm	ppe	pp：	1	ppa	ppi	ppa	ppa	τ	1	1	ppı	pp：	1	ppi	2	ppa	ppa	ppa	ppı	ppa	ppa	ppı	ppe	ppa
24604	3.7	0.28	16	＜3	32	＜3	0.07	2.7	1	72	244	3.44	0.13	0.01	472	5	0.01	3	0.02	824	＜3	＜5	<2	$(2$	14	＜	13	4698
24605	1.7	0.35	（3	（3	18	＜3	0.21	1.9	2	88	54	4.23	0.18	0.02	588	4	0.04	1	0.03	841	＜3	＜5	<2	2	28	45	＜3	1627
24808	1.2	0.15	（3	（3	7	3	0.01	0.9	11	85	191	9.02	0.32	0.01	24	6	0.01	37	0.01	45	＜3	＜5	＜2	2	8	＜	（3）	37
24607	0.4	0.25	（3	＜3	7	＜3	0.01	0.5	5	123	111	4.84	0.01	0.01	18	8	0.01	6	0.01	30	＜3	<5	＜2	＜2	18	<5	＜3	12
24608	0.8	0.17	7	（3	13	＜3	0.01	0.7	9	79	34	8.55	0.23	0.01	15	6	0.01	3	0.01	35	13	＜	＜2	＜2	19	＜ 5	3	30
24609	0.6	0.28	＜3	＜3	36	＜3	0.65	0.1	1	92	3	0.75	0.13	0.05	265	3	0.11	2	0.04	42	<3	＜ 5	＜2	＜2	253	＜5	＜3	38
24610	4.7	0.26	13	（3）	214	＜3	0.03	2.4	1	73	444	1.03	0.04	0.01	76	5	0.02	36	0.02	251	＜3	＜	＜2	＜2	10	15	13	2794
24611	0.9	0.35	（3	＜3	209	＜3	0.02	0.7	1	120	117	0.30	0.01	0.01	32	6	0.06	2	0.02	374	＜3	＜ 5	＜2	＜2	8	＜	＜3	979
24612	1.1	0.26	（3）	＜3	334	＜3	0.01	0.6	1	63	128	0.18	0.02	0.01	29	2	0.04		0.02	593	＜3	＜5	＜2	＜2	10	＜ 5	＜3	846
24613	35.7	0.19	7	（3	14	4	0.02	79.8	2	108	1713	3.56	0.13	0.01	538	13	0.01	6	0.01	2538	＜3	＜5	＜2	5	4	<5	（3）	220000
24614	11.8	0.27	6	（3）	32	3	0.01	18.2	1	73	621	1.83	0.06	0.01	156	10	0.01	34	0.01	1233	<3	＜5	<2	2	3	（5	（3）	20000
24615	5.6	0.53	3	＜3	74	＜3	0.32	10.5	1	105	392	1.43	0.11	0.02	5579	9	0.01	2	0.02	1501	＜3	<5	<2	＜2	16	＜	13	14568
24616	1.5	0.29	＜3	＜3	412	＜3	0.15	2.6	1	54	42	0.36	0.03	0.01	1637	3	0.03	2	0.02	1888	＜3	＜5	＜2	（2	16	＜	＜3	3731
24617	2.2	0.27	8	（3	223	＜3	0.04	2.9	1	56	59	0.52	0.02	0.01	604	4	0.02	31	0.02	337	＜3	＜	＜2	＜2	7	＜5	＜3	3802
24618	1.6	0.28	9	＜3	87	＜3	0.05	3.2	1	85	52	0.51	0.02	0.01	1313	4	0.02	1	0.02	254	＜3	＜5	<2	＜2	5	＜	＜3	4057
24619	4.1	0.25	29	（3	115	＜3	0.04	8.2	1	66	394	0.89	0.04	0.01	1237	5	0.01	1	0.02	324	＜3	＜	＜2	＜2	7	＜5	（3	9999
24620	1.1	0.30	（3	＜3	241	＜3	0.04	1.9	1	111	38	0.50	0.02	0.01	575	6	0.03	2	0.02	385	13	＜5	＜2	＜2	12	15	（3	2503
24621	20.9	0.20	20	（3	29	＜3	0.02	4.2	2	100	3591	2.58	0.10	0.01	1800	7	0.01	1	0.01	812	<3	＜5	＜2	＜2	3	＜5	（3	4225
24622	10.1	0.22	15	＜3	42	＜3	0.06	10.3	1	69	1352	2.11	0.09	0.01	4139	10	0.01	34	0.01	1132	（3	＜ 5	＜2	2	7	＜ 5	＜3	14131
24623	5.7	0.72	18	＜3	42	4	0.05	26.8	2	75	1546	1.78	0.07	0.01	2284	13	0.01	3	0.01	438	＜3	＜5	＜2	2	7	＜ 5	＜3	720000
24624	11.1	0.29	9	＜3	40	3	0.07	9.6	1	100	818	1.64	0.07	0.03	2630	11	0.01	11	0.02	686	（3	＜ 5	<2	＜2	7	＜ 5	（3）	13582
24625	6.7	0.25	13	＜3	32	＜3	0.08	12.1	1	61	1033	1.78	0.08	0.02	4409	12	0.01	30	0.02	542	＜3	＜ 5	＜2	＜2	11	15	＜3	16128
24626	5.2	0.23	20	＜3	45	3	0.08	3.1	1	83	439	2.63	0.11	0.03	3212	6	0.01	2	0.02	473	＜3	＜5	＜2	＜2	9	＜ 5	（3	4515
24627	4.1	0.24	12	＜3	163	（3）	0.56	2.3	1	55	49	0.83	0.12	0.01	5154	3	0.01	1	0.02	1191	＜3	＜5	＜2	＜2	18	＜5	く3	3462
24828	3.1	0.25	22	＜3	102	＜3	0.27	2.3	1	108	33	0.99	0.08	0.02	5030	7	0.01	1	0.02	1119	＜3	＜	＜2	＜2	11	＜5	（3）	3470
24629	3.6	0.21	31	＜3	91	＜3	0.15	7.1	1	53	84	1.13	0.07	0.01	3708	8	0.01	18	0.02	724	＜3	<5	＜2	＜2	9	＜5	（3	9754
24630	6.5	0.21	36	＜3	57	（3	0.13	7.3	1	89	133	1.20	0.07	0.01	3860	7	0.01	1	0.02	1474	＜3	＜5	＜2	＜2	10	＜ 5	（3）	10527
24531	9.3	0.23	28	＜3	23	（3．	0.17	1.8	2	53	61	1.09	0.07	0.02	3131	3	0.01	1	0.02	921	＜3	＜5	＜2	（2	10	（5	（3	2877
24532	6.1	0.25	49	＜3	24	（3）	0.28	4.4	1	140	68	1.53	0.13	0.02	13519	9	0.01	1	0.02	3494	＜3	＜5	＜2	（2	10	＜ 5	（3	－6595
24633	6.2	0.22	57	＜3	32	＜3	0.33	3.2	2	73	56	1.67	0.12	0.02	6439	6	0.01	34	0.02	2256	＜3	＜5	＜2	＜2	13	＜ 5	＜3	4507
24634	3.8	0.24	20	＜3	81	＜3	0.08	4.5	2	89	68	1，63	0.07	0.02	2464	5	0.01	2	0.03	948	<3	<5	＜2	＜2	14	＜ 5	（3）	6490
24635	2.7	0.31	5	＜3	67	（3）	0.12	0.9	3	76	17	1.06	0.01	0.03	1537	3	0.08	3	0.03	695	＜3	（5	＜2	＜2	18	＜5	（3	1716
24636	2.1	0.30	（3	＜3	173	（3）	0.09	1.3	3	60	18	1.30	0.06	0.02	1518	4	0.05	25	0.03	341	＜3	＜ 5	＜2	＜2	22	＜5	$(3$	2279
24637	1.4	0.27	9	＜3	48	＜3	0.07	2.4	2	111	52	2.09	0.09	0.06	1814	8	0.01	1	0.02	109	＜3	＜5	＜2	2	10	＜5	（3）	4172
24638	1.7	0.22	9	＜3	68	＜3	0.06	1.6	2	59	26	2.09	0.08	0.03	1329	4	0.01	2	0.02	360	＜3	＜5	＜2	＜2	8	＜	43	2567
24639	0.9	0.24	11	＜3	42	（3）	0.09	1.1	2	82	84	2.47	0.11	0.08	2693	4	0.02	1	0.02	39	＜3	（5	（2	$(2$	10	（5	＜3	1473
24640	1.1	0.21	23	（3	35	（3	0.07	0.9	3	52	92	2.47	0.10	0.05	2311	6	0.01	27	0.02	122	＜3	く5	（2	12	11	＜5	＜3	1137
24641	5.2	0.21	51	（3	26	5	0.03	1.8	5	115	147	3.74	0.14	0.01	405	13	0.01	1	0.01	553	く3	（5	＜2	3	10	＜5	＜3	2334
24642	3.3	0.20	21	（3	26	＜3	0.05	1.5	2	58	158	2.46	0.10	0.02	1251	4	0.01	2	0.02	1324	＜3	（5	＜2	＜2	8	＜	＜3	1955
Minimun Delection	0.1	0.01	3	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1	5	3	1
Maximun Delection	50.0	10.00	2000	100	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000	100	1000	20000

REPORT I： 890198 PA		IMEL RESOURCES LID				Proj：S．I．			Date In：89／05／09				Date Out：89／05／12			Alt：STEYE TOOORUK				Pb	Pd	Pt	Sb	Sn	Pige			3	
Sapple Mumber	Ag	Al	15	Au	Ba	Bi	Cl_{3}	cd	Co	Cr	Cu	$\mathrm{Cl}^{\mathrm{Fe}}$	K	Mg	Mn	Ho	Na	Ni	p						5 r		U	N	In
	ppa	7	ppa	P9：	ppa	ppi	1	ppa	pp：	ppa	ppa	1	1	1	ppa	ppa	2	p9n	1	pps	p90	ppa	ppi	pen	9pp		pi	ppa	ppo
24643	7.3	0.17	（3	（3）	30	＜3	0.04	3.3	6	87	189	3.50	0.12	0.01	467	7	0.01	1	0.01	2995	（3）	45	12	＜2	8		＜	$(3$	3032
24644	13.3	0.19	4	＜3	20	¢3	0.05	2.2	2	55	57	76.24	0.21	0.02	763	5	0.01	23	0.02	5335	（3	（5	<2	＜2	9		（5	＜3	1960
24645	3.3	0.24	4	＜3	49	＜3	0.56	4.5	1	127	1125	1.73	0.12	0.01	2419	7	0.01	1	0.02	419	（3）	＜ 5	＜2	＜2	25		＜ 5	＜3	4711
24646	3.9	0.19	3	＜3	34	＜3	0.48	5.7	1	50	283	2.25	0.13	0.01	3542	3	0.01	1	0.01	500	＜3	（5	<2	＜2	19		＜	＜3	5969
24647	3.1	0.21	11	43	130	＜3	0.37	5.2	1	68	120	． 1.20	0.01	0.03	4047	3	0.01	1	0.02	296	$(3$	<5	＜2	＜2	18		＜	＜3	5645
24648	8.1	0.16	22	＜3	75	＜3	0.70	8.7	1	43	110	1.27	0.01	0.03	3196	5	0.01	19	0.02	382	＜3	＜ 5	＜2	＜2	25		＜5	$\langle 3$	9322
24649	9.6	0.22	（3）	＜3	72	＜3	0.42	6.5	1	118	99	1.95	0.01	0.06	3950	8	0.01	3	0.02	920	＜3	＜5	<2	＜2	20		＜	43	6842
24650	13.5	0.25	7	＜3	36	4	0.10	16.3	2	56	1091	1.95	0.05	0.02	1230	7	0.01	2	0.02	427	＜3	＜	＜2	＜2	10		＜ 5	＜3	17720
24651	3.8	0.28	6	＜3	75	＜3	0.11	3.2	1	81	192	2.01	0.05	0.04	1825	4	0.01	1	0.02	181	（3）	＜5	＜2	＜2	11		45	＜3	3439
24652	2.5	0.22	5	＜3	101	＜3	0.10	0.9	1	59	52	2.43	0.06	0.06	2420	4	0.01	30	0.02	292	＜3	$\langle 5$	<2	＜2	12		＜5	（3	418
24653	3.5	0.21	11	＜3	41	＜3	0.08	2.2	2	59	119	3.13	0.07	0.05	3052	7	0.01	1	0.02	281	$(3$	＜5	<2	<2	10		＜ 5	（3	1851
24654	3.4	0.24	10	（3	71	［3	0.08	2.4	1	100	128	2.14	0.01	0.04	2499	7	0.01	1	0.02	288	$(3$	＜ 5	＜2	＜2	10		＜ 5	（3	2278
24655	15.7	0.22	13	（3	63	＜3	0.10	3.4	1	52	314	12.33	0.04	0.05	2427	20	0.01	29	0.02	525	$(3$	＜5	<2	＜2	9		＜5	（3	3597
24656	3.8	0.19	（3	＜3	46	（3）	0.04	0.9	1	86	98	1.77	0.03	0.01	506	4	0.03	1	0.02	1171	＜3	＜	<2	＜2	9		（5	（3	608
24657	7.6	0.28	（3）	（3）	45	＜3	0.18	8.3	3	74	174	1.15	0.03	0.02	5119	4	0.01	4	0.03	5400	（3	＜5	<2	＜2	5		＜	＜3	9926
24658	5.6	0.09	（3	$\stackrel{3}{ }$	18	＜3	0.67	11.1	2	17	55	3.16	0.01	0.02	7850	5	0.01	1	0.03	13535	（3	＜5	＜2	＜2	15		＜5	（3	12835
24659	8.6	0.15	（3	（3	54	＜3	0.08	6.4	3	69	123	0.92	0.01	0.01	3786	7	0.01	34	0.02	5485	＜3	＜5	＜2	＜2	4		＜5	＜3	8149
24660	15.5	0.16	＜3	＜3	21	＜3	0.08	9.5	3	69	167	1.11	0.01	0.01	3872	7	0.01	3	0.03	3619	$(3$	＜5	<2	＜2	3		¢5	（3）	11249
24661	40.2	0.14	（3	＜3	22	＜3	0.09	15.3	5	103	214	2.69	0.02	0.01	4979	9	0.01	2	0.02	9516	$(3$	（5	<2	<2	3		＜ 5	く3	17166
24662	8.6	0.16	＜3	＜3	58	＜3	0.06	7.1	3	71	77	1.04	0.01	0.01	2286	7	0.01	42	0.02	4350	$(3$	＜5	<2	＜2	3		＜	＜3	8942
24663	4.9	0.21	（3）	＜3	63	＜3	0.09	12.3	3	135	127	1.11	0.01	0.03	3372	11	0.01	14	0.02	5638	$(3$	15	<2	＜2	5		15	¢3	14967
24664	3.1	0.17	7	3	27	＜3	0.07	2.1	2	63	42	2.97	0.01	0.02	3605	3	0.01	2	0.01	798	＜3	＜5	＜2	＜2	3		＜5	＜3	2301
24665	5.1	0.17	5	（3	26	＜3	0.06	5.4	1	77	181	2.91	0.01	0.01	1774	4	0.01	1	0.02	3523	＜3	＜5	＜2	＜2	4		＜5	＜3	5536
24666	8.1	0.15	13	＜3	27	$\stackrel{3}{ }$	0.07	7.1	2	68	193	2.76	0.01	0.02	4440	5	0.01	35	0.01	2084	＜3	<5	＜2	（2	1		＜5	＜3	7769
24567	15.5	0.12	108	43	7	＜3	0.04	4.9	1	107		1710.00	0.01	0.02	1416	8	0.01	1	0.01	1492	（3	＜	<2	3	3		＜ 5	43	2751
24668	5.4	0.13	18	＜3	15	$\langle 3$	0.05	4.9	9	81	154	7.05	0.01	0.02	540	8	0.01	2	0.02	669	（3）	＜5	<2	2	I		（5	13	4794
24669	18.6	0.15	33	－3	15	＜3	0.10	3.7	4	82	333	3810.00	0.01	0.12	1651	10	0.01	50	0.02	459	$(3$	＜5	＜2	2	3		（5	＜3	2430
24670	0.5	0.16	31	＜3	23	＜3	0.01	0.5	9	74	10	－ 2.70	0.01	0.01	40	5	0.01	5	0.01	64	$(3$	＜5	＜2	＜2	11		（5	＜3	76
24671	2.5	0.18	14	＜3	11	＜3	0.01	1.2	15	46	107	6.88	0.01	0.01	15	7	0.01	3	0.01	107	＜3	＜5	＜2	4	8		（5	＜3	57
24672	0.3	0.19	12	＜3	18	（3	0.01	0.4	4	142	5	51.47	0.01	0.01	17	9	0.01	3	0.01	38	＜3	（5	＜2	（2	12		＜	＜3	24
246732467424675	41.5	0.09	＜3	＜3	2	（3	0.01	6.3	95	㫜	303	）10．00	0.01	0.02	24	11	0.01	41	0.01	3002	＜3	く5	（2）	2	5		＜	く3	4280
	36.1	0.11	（3	＜3	10	4	0.03	12.2	51	97	637	110．00	0.01	0.08	10700	18	0.01	6	0.01	11273	13	＜ 5	（2	4	10		<5	＜3	19837
	4.5	0.12	3	＜3	5	（3）	0.07	2.6	12	69	55	9.22	0.01	0.04	638	11	0.01	1	0.02	1146	＜3	＜5	（2	2	15		＜5	＜3	1524
24576	1.0	0.13	57	＜3	10	＜3	0.09	4.9	13	137	80	710.00	0.01	0.04	454	17	0.01	1	0.01	1028	＜3	＜5	＜2	2	9		＜ 5	＜3	3395
Miniaus Detection Maxiau Detection ＜＝Less than Miniaun	0.1	0.01	3	3	1	3	0.01	0.1	1	1	1	10.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1		5	3	1
	50.0	10.00	2000	100	1000	1000	10.00	1000.0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000		100	1000	20000
	Insuf	icient	Saple	ns $=$	No sampl	（e）＝	＝6reate	er than	Maxinua	Aufa	＝Fire	as5ay／A																	

ASSAY ANALYTICAL REPORT

$$
\begin{aligned}
\text { CLIENT: } & \text { INEL RESOURCES LTD. } \\
\text { ADDRESS: } & 301-675 \text { West Hastings St. } \\
& : \text { Vancouver, B.C. } \\
& : V 6 E 1 N 2
\end{aligned}
$$ DATE: MAY 8 1 989

REPORT\#: 890194 AA JOE\#: 890194

PROJECT\#: SIWASH
SAMPLES ARRIVED: MAY 4 1Э8G REPORT COMPLETED: MAY 81989 ANALYSED FOR: Pb Zn

INVOICE\#: 890194 NA
TOTAL SAMPLES: 1
REJECTS/PULPS: 30 DAYS/1 YR SAMPLE TYPE: 1 PULP SAMPLES FROM: INEL RESOURCES LTD.
COPY SENT TO: INEL RESOURCES LTD.

PREPARED FOR: INEL RESOURCES LTD

ANALYSED EY: VGC Staff
SIGNED:

GENERAL REMARK: SAMPLE FROM 890185

		M LAB LIMIT	MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1K5 (604) 251-5656 - FAX (604) 254.5717	BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA. U.S.A.
	REPORT NUMBER: 890194 AA	JOB RUMBER: 890194	INEL RESOURCES LTD.	PAGE 1 OF 1
	SAMPLE \#	$\begin{aligned} & \text { Pb } \\ & \% \end{aligned}$	$\begin{aligned} & \mathrm{Zn} \\ & \% \end{aligned}$	
	24514	1.00	1.93	

DETECTION LIMIT		. 01	
1 Troy 02/short ton $=34.28 \mathrm{ppe}$	$1 \mathrm{ppm}=0.00012$	ppa = parts per aillion	$<=$ less than
signed:			

GEOCHEMIRAI ANATYTICAI, REPORT

CLIENT: INEL REBOURCES LTD.
DATE: MAY 51989
ADDRESS: 301 - 675 West Hastings st.
: Vancouver, B.C.
REPORTH: 890191 GA
: V6B 1N2
JOB\#: 890191

PROJECT\#: SIHASH
INVOICE\#: 890191 NA
SAMPLES ARRIVED: MAY 31989
REPORT COMPLETED: MAY 51989
ANALYSED FOR: AU (FA/AAS) ICP
TOTAL SAMPLES: 52
SAMPLE TYPE: ROCK/CORE
REJECTS: SAVED

SAMPLES FROM: STEVE TODORUK
COPY SENT TO: PAMICON/INEL RESOURCES LTD.

ANALYSED BY: VGC Staf£
SIGNED:

$\mathrm{N}^{1} \rightarrow$ VANGEOCHEM LAB LIMITED

MAIN OFFICE 1988 TRIUMPH ST. VANCOUVER, B.C. V5L 1 K5 - (604) 251-5656 - FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO, NEVADA, U.S.A

Irst lesodrces lyo.
PAGB 1 OP 2

SAMPLE 1	10
	ppb
21532	10
24533	25
21531	50
21535	ad
24536	ad
21537	60
21538	10
21539	20
24510	10
24511	20

$21512 \quad 20$
2454360

2451410
2454510
24546
24517 ad
2454810
21549 ad
21550 ad
21551 ad
$24552 \quad 65$
$21553 \quad 25$
21554 ad
21555 25
24556

21557	50
24558	5
21559	10
24560	110
24561	10

21562 ad
21563 20
21564 10
21565
24566
2156720
2456810
2456940
$24590 \quad 10$
DBYECYIOM LIMIT 5
nd = none detected $\quad--=$ not analysed is = lasufficient sanple

I®AF GEDCHEMICAL ANALYSIS
A. 5 gram sample is digested with 5 al of $3: 1: 2 \mathrm{HCl}$ to HNO , $\mathrm{H}_{\mathrm{H}} \mathrm{H}_{2} \mathrm{O}$ at $95^{\circ} \mathrm{C}$ for 90 ainutes and is diluted to 10 al vith vater. This leach is partial for $\mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{Mg}, \mathrm{Kn}, \mathrm{Ka}, \mathrm{P}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{Sn}, \mathrm{Sr}$ and W .

REPORT 7： 890191 PA	Panicon／IMEL RESOURCES					Proj：SIMASH			Date In：89／05／03				Date Out：89／05／05			Att：		Ni	p	Pb	Pd	Pt	So	Page			201	12	
Sasple Nuaber	Ag	Al	As	Al	Bz	$8 i$	Ca_{2}	Cd	Co	ir	Cu	Fe	k	Hg	An	Ho	Na							Sn	Sr		0	H	ln
	Op：	7	pos	D日：	DD：	DD：	2	001	201	DD：	opa	2	1	7	PDE	dpa	1	poi	1	Don	ppil	DD：	DO：	pos	229		8	080	008
24571	27.5	0.78	40	（3	22	4	0.60	35.5	6	51	219	4.13	0.24	0.06	4035	12	0.01	26	0.03	3111	＜3	＜ 5	＜2	12	9		（5	$(3$	220000
24572	10.5	0.31	8	¢3	23	（3）	0.22	32.2	4	129	203	3.86	0.18	0.03	4398	11	0.01	3	0.02	3480	＜3	＜5	（2	＜2	7		＜ 5	（3）	320000
24573	5.1	0.16	49	＜3	6	＜3	0.94	23.2	6	167	147	7.11	0.32	0.03	$1: 410$	15	0.01	3	0.01	1335	＜3	＜ 5	¢2	＜2	5		＜ 5	（3）	15336
24574	2.8	0.14	11	（3	23	（3）	0.06	9.1	2	82	102	2.45	0.12	0.01	8083	5	0.01	3	0.01	1159	＜3	＜5	（2	$\stackrel{1}{2}$	3		（5	（3	6698
24575	3.4	0.15	12	＜3	18	（3	0.08	12.3	2	114	89	3.50	0.16	0.01	7331	8	0.01	1	0.01	830	＜3	＜5	＜2	12	5		＜ 5	（3	8812
24576	3.6	0.17	19	＜3	43	（3	0.28	7.1	2	44	50	1.24	0.09	0.01	4532	7	0.01	27	0.03	1426	＜3	＜ 5	＜2	＜2	8		（5	（3	5424
24577	0.5	0.20	5	＜3	107	＜3	0.07	1.5	1	74	53	0.52	0.03	0.01	1128	3	0.02	3	0.02	518	＜3	＜ 5	＜2	＜2	10		＜	¢3	1896
24578	3.2	0.17	（3	（3	104	＜3	0.06	7.1	2	91	440	0.55	0.03	0.01	788	4	0.01	3	0.02	5539	（3	＜5	（2	＜2	10		＜ 5	（3）	5723
24579	1.5	0.18	（3）	＜3	85	（3	0.09	4.5	3	70	52	0.99	0.05	0.01	2459	6	0.01	46	0.02	2597	＜3	＜ 5	（2	＜2	12		＜ 5	（3	3838
24580	2.1	0.48	3	＜3	65	＜3	0.20	9.1	1	142	87	0.92	0.06	0.02	568	9	0.01	4	0.02	921	く3	＜5	（2	＜2	13		＜5	（3）	7054
24581	1.5	0.22	（3）	＜3	14	（3	0.04	4.1	43	66	26	6.95	0.28	0.04	6801	4	0.01	5	0.01	1326	＜3	＜ 5	$(2$	＜2	9		＜5	（3	4463
24582	0.5	0.21	－3	＜3	31	（3）	0.05	0.5	10	82	9	1.79	0.07	0.02	1325	2	0.03	2	0.02	372	＜3	＜	（2	<2	19		＜5	（3	1114
24583	1.1	0.19	（3	＜3	7	（3	0.04	3.8	75	132	16	7.64	0.28	0.01	169	8	0.01	7	0.01	580	く3	＜5	（2	＜2	15		（5	（3	1693
hinima Detection	0.1	0.01	3	3	1	3	0.01	0.1	1	1	1	0.01	0.01	0.01	1	1	0.01	1	0.01	2	3	5	2	2	1		5	3	1
Haxisun Detection	50.0	10.00	2000	100	1000	1000	10.00	1000．0	20000	1000	20000	10.00	10.00	10.00	20000	1000	10.00	20000	10.00	20000	100	100	2000	1000	10000		00	1000	20000
く＝Less than Minious	nsuf	cient	Saple	ns $=$	sampl	$\rangle=$	Great	er than	Maxisus	Aufa	＝fire	assay／A																	

$$
\begin{aligned}
& \text { CLIENT: } \text { INEL RESOURCES LTD. } \\
& \text { ADDRESS: } 301-675 \text { West Hastings St. } \\
&: \text { Vancouver, B.C. } \\
&: \text { VB } 1 N 2
\end{aligned}
$$ DATE: MAY 4 1989

REPORT\#: 890185 GA JOE\#: 890185

PROJECT\#: SIWASH
SAMPLES ARRIVED: MAY 1 1389 REPORT COMPLETED: MAY 4 1989 ANALYSED FOR: Au (FA/AAS) ICP

INVOICE\#: 890185 NA
TOTAL SAMPLES: 31 SAMPLE TYPE: CORE

REJECTS: SAVED

SAMPLES FROM: STEVE TODORUK COPY SENT TO: PAMICON \& INEL RESOURCES

PREPARED FOR: INEL RESOURCES LTD.

ANALYSED EY: VGC Staff

SIGNED:

GENERAL REMARK: INVOICE SEND TO INEL RESOURCES LTD.

MAIN OFFICE 1988 TRIUMPH ST VANCOUVER, B.C. V5L 1 K5 - (604) 251-5656 - FAX (604) 254-5717

BRANCH OFFICES PASADENA, NFLD. BATHURST, N.B. MISSISSAUGA, ONT. RENO. NEVADA, U.SA.
REPORT NUMBER: 890185 GA JOB NUMBER: 890185 INEL RESOURCES LTD. PAGE 1 OF 1

SAMPLE	Au
	Pph
24501	45
24502	20
24503	30
24504	100
24505	30
24506	60
24507	55
24508	80
24509	390
24510	120

24511	450
24512	110
24513	30
24514	150
24515	50

$24516 \quad 50$
24517 30
24518 20
2451930
$24520 \quad 25$

24521	1640
24522	120
24523	180
24524	60
24525	30

$24526 \quad 75$
24527 20
24528 80
24529160
$24530 \quad 20$
24531190

ICAP GEDEHEMIMAL ANALYSIS

A. 5 gran sample is digested with 5 al of $3: 1: 2 \mathrm{HCl}$ to KNO_{3} to $\mathrm{H}_{2} \mathrm{O}$ at $95{ }^{\circ} \mathrm{C}$ for 90 anutes and is diluted to 10 with water. This leach is partial for $\mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{P}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{Sn}, \mathrm{Sr}$ and H .

SIWASH PROJECT

REFERENCE ROCK DESCRIPTIONS

Reference	Description
29/05-1	K-spar Megacryst Porphyry: Sanidine phenocrysts (?) to 4 cm with quartz phenocrysts and off-white feldspar phenocrysts to 1 cm set in a very fine grained grey/buff/pink groundmass.
29/05-2	Brecciated Quartz-Feldspar Porphyry: Rounded to subround QFP fragments to 5 cm (off-white feldspar and quartz phenocrysts $<1 \mathrm{~cm}$ set in a fine grained groundmass) in a milled matrix. Maroon weathering.
29/05-3	Brecciated Quartz-Feldspar Porphyry: Rare subangular QFP (?) fragments to 5 cm set in a fine grained clastic appearing matrix. Maroon weathered.
29/05-4	Quartz-Feldspar Porphyry: Quartz phenocrysts subrounded to subhedral 2 to 4 mm and less visible subhedral off-white feldspar phenocrysts of similar size, set in a light, very fine grained groundmass. Distinct limonitic weathering; kaolinite, sericite, epidote (?) alteration.
29/05-5	Biotite Quartz-Feldspar Porphyry: Medium to coarse grained quartz and feldspar phenocrysts, subround to subhedral, and fine grained euhedral biotite set in a pale grey (pinkish when fresh) aphanitic groundmass; kaolinite, sericite alteration, limonitic fractures.
29/05-6	Biotite Quartz-Feldspar Porphyry: As 29/05-5 with coarser
	phenocrysts to 5 mm with occasional k -spars up to 1.3 cm .

29/05-7	Quartz Feldspar Porphyry: Quartz and feldspar phenocrysts 1 to
	3 mm in a very fine grained matrix; sericite, epidote, ankerite altered; limonitic weathered.
29/05-8	Quartz Feldspar Porphyry: Similar to above; epidote alteration.
29/05-9	Brecciated Granite: Subangular to subround heterolithic
	fragments to 5 cm set in a fine clastic appearing (cataclastic ?) grey matrix.
30/05-5a	Brecciated Quartz Feldspar Porphyry: 1 mm to 10 cm diameter
	fragments, commonly porphyritic within an aphanitic groundmass; kaolinite, sericite altered, limonitic and bleached chalky white weathered.
30/05-5b	Brecciated Quartz Feldspar Porphyry: Multilithic fragments to
	2 cm set in a very fine grained grey-green groundmass; kaolinite, sericite altered; distinct maroon weathering.
30/05-9	Brecciated Quartz Feldspar Porphyry (?): Rounded to subangular
	multilithic fragments averaging 5 cm in diameter (quartz syenite fragments noted) set in a fine grained chalky white matrix; bleached chalky weathered.
30/05-11	Quartz Feldspar Porphyry: quartz phenocrysts 3 to 6 mm and
	feldspar phenocrysts 2 to 4 mm set in a very fine grained greygreen groundmass; silicified, sericite, kaolinite, epidote (?) altered.
31/05-2	Brecciated Quartz Feldspar Porphyry: Subround QFP fragments to
	15 cm in a tuffaceous grey-green matrix; quartz and feldspar phenocrysts noted; rusty buff-grey weathered.

31/05-3a	Brecciated Quartz Feldspar Porphyry: <1 to 1 mm feldspar
	phenocrysts and 1 to 3 mm quartz phenocrysts set in a very fine grained pale green-grey groundmass (silicified), brecciated in places with abundant clay gouge; kaolinite, sericite altered.
31/05-3b	Altered Granite: Strong chlorite \pm sericite, kaolinite altered; coarse grained equigranular texture that is common in fresher granite to the south is mostly destroyed.
31/05-3c	Altered Granite: Similar in general to 31/05-3b; strongly altered to epidote, sericite (?), chlorite (?); remnant quartz and feldspar crystals visible.
31/05-4	Altered Granite: Similar to $31 / 05-3 \mathrm{~b}$ and $31 / 05-3 \mathrm{c}$; weakly foliated.
31/05-5a	Altered Granite: \quad Similar to $31 / 05-3 \mathrm{~b}, 31 / 05-3 \mathrm{c}$ and 31/05-4; sericite, chlorite, epidote \pm limonite altered.
$31 / 05-5 b$	Brecciated Granite: Round to subround lithic fragments to 5 cm set in a very fine to fine grained dark green (chlorite altered ?) matrix; distinct maroon weathering.
31/05-6	Altered Granite: Medium to coarse grained similar to above altered granites, quartz magnetite veinlet in this outcrop.
31/05-7	Granite: Coarse grained, equigranular pink k-spar, plagioclase and quartz; weak sericite, kaolinite alteration.
02/06-1	Altered Granite: Granite to brecciated granite; medium to dark green, chlorite, sericite altered \pm subangular fragments of granite in fine grained matrix.

02/06-4	Brecciated Granite: Fragmented, kaolinite, chlorite, sericite
	altered; quartz and feldspar "phenocrysts" visible; limonitic weathering.
02/06-5	Brecciated Granite: Brecciated, chlorite altered.
02/06-6	Altered Granite: Altered with or without brecciation; kaolin-
	ite, ankerite, limonite \pm sericite altered; remnant quartz and feldspar crystals create a porphyritic appearance.
02/06-8	Brecciated Biotite Quartz Feldspar Porphyry: Fine grained
	quartz and feldspar phenocrysts, $<1 \%$ fine biotite set in a very fine grained siliceous groundmass; chlorite, silica epidote altered.
02/06-9	Granite: Coarse grained, equigranular texture.
02/06-10	Brecciated Granite (?): Fine grained dark green (chlorite
	altered ?) with < 1% biotite, siliceous.
02/06-11	Brecciated Granite (?): Medium to dark green, fine grained
	granular texture with brecciated appearance; quartz crystals to 3 mm , chlorite, sericite alteration.
03/06-1	Biotite Quartz Feldspar Porphyry: Quartz and feldspar pheno-
	crysts to 1 to 2 cm and fine grained euhedral biotite and hornblende (?) set in a very fine grained green-grey groundmass; ankerite, sericite, kaolinite alteration of groundmass; chalky weathered.
03/06-2	Quartz Feldspar Porphyry: Quartz and feldspar phenocrysts, 1 to
	2 mm (feldspars to 1 cm) set in a very fine grained pale green groundmass; sericite, ankerite alteration.

03/06-4 K-spar Megacryst Porphyry: Euhedral sanidine megacrysts to 3 cm and smaller quartz and feldspar phenocrysts 2 to 6 mm set in a very fine grained groundmass; <1\% fine biotite/hornblende (?); silicified and sericite altered.

03/06-5 K-spar Megacryst Porphyry: Similar to above, strongly altered with sericite, ankerite, kaoline, pyrolusite; intensely fractured.

03/06-7 Quartz Syenite: A few 1 to 3 mm quartz phenocrysts set in a very fine grained groundmass; groundmass bleached white to buff, intensely altered to kaolinite, sericite, ankerite \pm quartz; brecciated in places.

03/06-8 Biotite Quartz Feldspar Porphyry: Fine biotite and hornblende (?) and quartz and feldspar phenocrysts $<1 \mathrm{~cm}$ in a very fine grained groundmass; rare feldspar "megacryst" to 2 cm noted; feldspars kaolinite altered.
n.b.: From field observations it is concluded that "biotite QFP" is closely related genetically and mineralogically to "k-spar megacryst porphyry"; the biotite QFP was distinguished by the presence of fine grained disseminated biotite and hornblende (?) and by its occurrence as dykes.

03/06-9 Quartz Syenite: Fine to medium grained quartz and feldspar phenocrysts set in a very fine to fine grained tuffaceous appearing groundmass; moderate to strong quartz, kaolinite alteration; minor disseminated fine grained pyrite.

03/06-10	K-spar Megacryst Porphyry: Strongly altered adjacent to fault
	zone; alteration includes kaolinite, sericite, ankerite, limonite, pyrolusite with zones of silicification \pm pyrite.
03/06-12	Quartz Eye Porphyry: Prominent quartz phenocrysts 1 to 4 mm set in a very fine grained groundmass; feldspar phenocrysts present but less apparent; chalky buff weathered.
03/06-13	Quartz Eye Porphyry: Similar to 03/06-12; sericite, kaolinite, ankerite altered.
03/06-16	Brecciated Quartz Syenite (?): Subround to subangular chalky weathered quartz syenite fragments 2 to 3 cm , set in a light brown gritty matrix.
05/06-3	Brecciated Quartz Feldspar Porphyry: $\quad 1 \mathrm{~mm}$ to 30 cm subroundsubangular QFP fragments abundant in "milled" medium to coarse grained dull yellow/tan matrix; kaolinite, sericite alteration.
07/06-13	Quartz Syenite: Euhedral feldspar phenocrysts 1 to 3 mm and subhedral quartz phenocrysts 1 to 4 mm set in a very fine grained, light grey groundmass; kaolinite altered.
08/06-6	Quartz Feldspar Porphyry: Strongly silicified zone adjacent to old workings (pyritic quartz vein stockwork zone) west side Siwash Creek.
08/06-7	Biotite Quartz Feldspar Porphyry: Sample from opposite side of showing described in 08/06-6; 1 to 5 mm quartz phenocrysts and 2 to 5 mm feldspar phenocrysts (rare feldspar megacryst) with 1 to 2% fine grained biotite in a very fine grey-green groundmass.

08/06-12	K-spar Megacryst Porphyry: Euhedral k-spar megacrysts to 3 cm with smaller subrounded to subhedral quartz and feldspar phenocrysts 1 to 4 mm set in a very fine groundmass.
08/06-13	Quartz Feldspar Porphyry: Feldspar phenocrysts 1 to 3 mm and quartz phenocrysts 1 to 4 mm in a very fine grained groundmass; kaolinite, sericite alteration, limonitic weathered.
Gavin Trench	Cataclastite: Up to 1 cm subangular multilithic
Sample	fragments set in very "milled" granitic (?) groundmass.
Peachland Road	d Diorite: Coarse grained, moderate mafic content, coarse
34 km Sample	grained chlorite, moderate to strong finely disseminated hematite, $<1 \%$ minor patchy blebs of chalcopyrite.
Peachland Road	d Quartz Eye Porphyry: With abundant 3 to 5 mm doubly
Sample	terminated quartz crystals.
Northwest Trenches	nches Multilithic Breccia: Fine grained dark green rock with
Sample	angular lithic fragments to 10 cm ; matrix andesitic in appearance and weakly to moderately magnetic; fragments of various lithologies (intrusive, extrusive (?), sedimentary (?)); unit appears to occur as narrow (<10 m) dyke.
Spukune Lake Road/	Road/ Breccia: see 03/06-16.
Galena Creek Road	
Junction Sample	

APPENDIX IV
 VANCOUVER PETROGRAPHICS THIN SECTION ANALYSES

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager
JOHN G. PAYNE, Ph.D. Gedogist
CRAIG LEITCH, Ph.D. Goologist
JEFF HARRIS, Pn.D. Geologist
KEN E. NORTHCOTE, ph.D. Geologist
P.O. BOX 39

8080 GLOVER ROAD,
FORT LANGLEY, B.C.
VOX 1JO
PHONE (604) 888-1323
FAX. (604) 888-3642

Invoice 8130
April 1989

Samples: SS-1Ø-124', SS-1Ø-190', SS-1Ø-396', SS-2ø-627', SS-21-115', Hole 10-168 m

Summary:

1.6 Alteration

Samples show various stages of alteration, with the main alteration minerals being sericite, ankerite/calcite, quartz, chlorite and pyrite. plagioclase is altered to sericite and much less ankerite. K-feldspar is altered to patches of ankerite and minor kaolinite. Biotite is altered completely to pseudomorphic to irregular muscovite-(Ti-oxide) in some samples and to chlorite-(Ti-oxide) in others. Hornblende is altered completely to aggregates of quartz-ankerite-sericite-Ti-oxide. only in one sample was original texture largely destroyed.

2.ø Brecciation

A few samples contain seams and veinlike zones of brecciation in which the host rock was granulated and in part silicified. Associated with some of these are lenses of pyrite. In one sample, coarse fragments are set in a fine grained matrix dominated by quartz, amphibole (altered to sericite) and lesser chlorite, calcite, and pyrite.

$$
3.0
$$

Veins

Veins occur in a few samples and are dominated by one or more of the following minerals: pyrite, quartz, ankerite, and sericite.

Samples are grouped into the following types:

4:1 Altered plutonic Rocks

SS-10-124'	leucocratic quartz monzonite; dominated by medium to fine grained microcline and quartz with slightly less plagioclase. Alteration is slight to patches and veinlets of sericite and ankerite, with a trace of kaolinite.
SS-19-190'	altered diorite; dominated by plagioclase (altered to sericite-[ankerite]) and quartz, with lesser hornblende (altered to quartz-sericite-ankerite-oxides) and minor biotite (altered to muscovite-ankerite-[Ti-oxide]). Breccia seams have a siliceous groundmass and contain lenses of pyrite.
SS-10-396 ${ }^{\prime}$	strongly altered quartz diorite(?): dominated by quartz and sericite, with minor disseminated pyrite; original texture largely destroyed; abundant veins of pyrite(quartz); several poorly developed breccia seams. Based on the accessory minerals and texture of the least altered zones, the rock probably was a quartz diorite.

Hole 10168 m breccia: quartz diorite, granodiorite fragments; borders of fragments commonly are diffuse; sparse, patchy matrix dominated by quartz, altered amphibole(?), and chlorite, with less calcite and pyrite.
4.2 Felsic Crystal-Lithic Tuffs

SS-2日-627' rhyodacite crystal-lithic tuff; crowded fragments of crystals of quartz, plagioclase, and $K-f e l d s p a r, ~ a n d$ lithic fragments of porphyritic rhyodacite, latite, and granodiorite set in a groundmass dominated by plagioclasesericite with minor patches of ankerite; slight to moderate alteration to sericite and ankerite.

SS-21-115' rhyodacite crystal tuff; fragments of quartz, K-feldspar, and plagioclase, and minor ones of muscovite and a few lithic types in a groundmass of plagioclase-sericite, with a few patches of ankerite and of pyrite; slight to moderate alteration to sericite-ankerite.

The sample is dominated by medium to fine grained microcline and quartz with slightly less plagioclase. Alteration is slight to patches and veinlets of sericite and ankerite, with a trace of kaolinite.
microcline
quartz
plagioclase
sericite *
ankerite *
kaolinite *
veins ankerite-sericite-(muscovite) 1-2

opaque/leucoxene	0.5%
muscovite	minor
apatite	trace

Microcline forms anhedral grains averaging $\emptyset .5-1 \mathrm{~mm}$ in size. A few coarser grains (up to 2 mm in size) contain irregular, very fine to fine, exsolution lenses of plagioclase.

Plagioclase forms anhedral grains averaging $0.5-1.2 \mathrm{~mm}$ in size. Alteration is variable, and generally slight to sericite and minor ankerite. A few irregular, coarse grains of plagioclase are altered moderately to strongly to patches of sericite and ankerite. few grains also contain patches up to 0.3 mm in size of equant kaolinite flakes averaging 0.005 mm in grain size. Both feldspars commonly contain dusty opaque (probably hematite) inclusions.

Quartz forms anhedral grains averaging $\varnothing .3-1 \mathrm{~mm}$ in size, with a few interstitial grains up to 2.5 mm across. Coarse grains commonly have slightly to moderately wavy extinction. In a few patches, quartz forms very fine to medium, irregular, graphic intergrowths with microcline.

Sericite forms scattered patches averaging ø. $3-\emptyset .7 \mathrm{~mm}$ in size of extremely fine grained, unoriented flakes. Some contain extremely fine grained patches up to 0.3 mm in size of opaque, of Ti-oxide, and of limonite.

Opaque oxide forms anhedral, equant grains averaging Ø.1-Ø. 2 mm in size, with a few up to 0.4 mm across. A few ragged patches up to $\emptyset .2 \mathrm{~mm}$ in size are intergrown intimately with sericite. Some opaque patches are altered to leucoxene.

Muscovite forms a few ragged, equant flakes and clusters of flakes up to $\varnothing .2 \mathrm{~mm}$ long, and a slender flake 0.5 mm long. The latter possibly is after primary biotite.

Apatite forms a very few prismatic grains up to 0.07 mm long.
Ankerite forms an interstitial patch up to $\varnothing .6 \mathrm{~mm}$ across between subhedral quartz grains in a large patch of quartz. Ankerite is extremely fine grained. Dusty limonite inclusions outline subhedral zones (? = relic grains of unknown composition) up to $\varnothing .15 \mathrm{~mm}$ in size surrounded by ankerite without limonite inclusions.

A few irregular veins and patches from Ø.1-Ø. 3 mm wide are dominated by extremely fine grained sericite and very fine grained ankerite. Locally muscovite forms subradiating flakes averaging $\emptyset .1 \mathrm{~mm}$ long.

The rock is strongly altered and dominated by quartz and sericite, with minor disseminated pyrite. It is cut by abundant veins up to a few mm wide of pyrite-(quartz), and by several poorly developed breccia seams. Based on the accessory minerals and texture of the least altered zones, the rock probably was a quartz diorite, possibly similar to Sample SS-10-190'.

quartz	$45-50 \%$
sericite	$30-35$
pyrite	$3-4$
apatite	0.5
Ti-oxide/leucoxene	0.3
zircon	minor
hematite	minor
veins and seams	
pyrite	$12-15$
quartz	$2-3$
sericite	0.3
sphalerite	minor

The rock has a very variable texture. Much of it consists of fine to medium grained aggregates of quartz and patches of sericite (after plagioclase). These patches probably are similar in texture to the original rock.

One large patch several mm across is dominated by sericite (after plagioclase). No primary texture is preserved in the patch. It contains minor disseminated patches of $T i-o x i d e$ and of hematite, and a few grains of zircon.

Less common are patches are of very fine to extremely fine grained aggregates of quartz and sericite, which represent silicified and recrystallized rock in which the original texture was destroyed completely. Some patches of sericite contain minor to moderately abundant, disseminated, extremely fine grained hematite and ti-oxide.

Pyrite forms irregular, disseminated grains averaging 0.2- 0.8 mm in size.

Apatite forms subhedral prismatic grains up to 0.18 mm long, and a few clusters up to 0.8 mm across of anhedral grains averaging $0.1-\emptyset .2 \mathrm{~mm}$ in size intergrown with quartz. Locally it forms patches up to 1 mm across intergrown with pyrite; grain size in these averages $0.05-\varnothing .1 \mathrm{~mm}$, with a few up to 0.5 mm long.

Ti-oxide/leucoxene forms disseminated patches averaging 0.l-Ø.3 mm in size.

Zircon forms subhedral, prismatic grains averaging $\varnothing .1 \mathrm{~mm}$ long and equant, anhedral to subhedral grains averaging $0.05-\emptyset .1 \mathrm{~mm}$ across. One angular grain 0.2 mm long occurs in the core of the large sericite patch.

Veins are dominated by fine to medium grained pyrite with patches of interstitial quartz. A few quartz grains have euhedral outlines against pyrite. Sphalerite (neutral) forms irregular patches up to 0.3 mm in size intergrown with apatite and minor hematite in a patch bordering pyrite.

A few moderately brecciated seams are up to 1 mm wide. In these quartz is fragmented and recrystallized, and surrounded by sericite. A few wispy seams averaging $0.01-\emptyset .03 \mathrm{~mm}$ wide are dominated by sericite.

Altered Diorite; Minor Breccia Seams with Pyrite Lenses

The sample is dominated by plagioclase (altered to sericite-[ankerite]) and quartz, with lesser hornblende (altered to quartz-sericite-ankerite-oxides) and minor biotite (altered to muscovite-ankerite-[Ti-oxide]). Accessory minerals include apatite, Ti-oxide/leucoxene, and pyrite. Breccia seams have a siliceous groundmass and contain lenses of pyrite.

plagioclase	$60-65 \%$
quartz	$25-30$
hornblende	$5-7$
biotite	$2-3$
apatite	0.7
Ti-oxide/leucoxene	0.3
pyrite	0.5
zircon	trace
breccia seams	
breccia	$1-2$
pyrite	$1-2$

Plagioclase forms anhedral grains averaging l-2.5 mm in size. Most grains are altered completely to extremely fine to very fine grained sericite. A few are altered only moderately. A few also contain patches up to $\varnothing .7 \mathrm{~mm}$ across of very fine grained ankerite(limonite), and a few contain patches of specular hematite. A few sericite patches (after plagioclase grains) grade into patches of very fine grained quartz-sericite-ankerite.

Quartz forms anhedral grains averaging $\varnothing .5-1 \mathrm{~mm}$ in size.
Biotite forms a few flakes up to 3 mm in size. It is replaced completely by pseudomorphic muscovite books and irregular muscovite aggregates, with minor to moderately abundant disseminated patches of Ti-oxide. The largest grain also contains with abundant lenses of ankerite up to $\emptyset .15 \mathrm{~mm}$ wide parallel to cleavage. A few irregular patches of very fine grained muscovite and ankerite with minor Ti-oxide also are secondary after biotite flakes.

Hornblende forms equant to prismatic grains averaging l-2 mm in size. Alteration is complete to aggregates of very fine grained quartz with lesser patches of sericite, ankerite, and opaque (specular hematite ?).

Pyrite forms equant porphyroblastic grains and patches up to 1.2 mm across with very irregular outlines and with abundant inclusions of plagioclase/sericite. It also forms scattered subhedral to euhedral grains averaging $0.2-0.5 \mathrm{~mm}$ in size, with a few up to 0.9 mm across.

Ti-oxide/leucoxene forms patches up to 0.9 mm in size of extremely fine grained aggregates intergrown with minor silicates.

Apatite forms clusters up to 0.8 mm in size of anhedral, equant to subhedral prismatic grains up to 0.6 mm in size. It forms a few euhedral, elongate prismatic grains up to $\varnothing .08 \mathrm{~mm}$ long in quartz.

Zircon forms a few equant, subrounded to subhedral grains averaging $\varnothing .05-\varnothing . \varnothing 7 \mathrm{~mm}$ in size.

The rock is cut by a subparallel set of breccia seams averaging Ø.05-0.1 mm wide, and locally up to 1 mm wide. These contain abundant fragments of the host rock in a groundmass of quartz-(sericite) averaging Ø. Øø $-\emptyset . \emptyset \emptyset 5 \mathrm{~mm}$ in grain size. Some of the seams also contain lenses up to 0.5 mm wide and 3 mm long of pyrite. A few quartz grains in the host rock are fractured moderately and recrystallized slightly along the breccia seams.

Crowded fragments of crystals of quartz, plagioclase, and K-feldspar, and lithic fragments of porphyritic rhyodacite, latite, and granodiorite are set in a groundmass dominated by plagioclasesericite with minor patches of ankerite. Alteration is slight to moderate to sericite and ankerite.
fragments

quartz	$25-30 \%$
plagioclase	$17-20$
K-feldspar	$7-8$
rhyodacite/latite	$12-15$
granodiorite	$3-4$
groundmass	
plagioclase-sericite	$25-30$
ankerite-limonite	$1-2$
veinlet	
ankerite-(quartz)	minor

Quartz forms angular crystals and crystal fragments averaging $0.1-0.5 \mathrm{~mm}$ in size, with a few up to 1.7 mm across. Subhedral outlines of many grains and uniform extinction indicate that their origin was as volcanic phenocrysts.
plagioclase forms grains ranging from ø.l-l. 5 mm in size. Alteration is slight to moderate to sericite, and less commonly slight to moderate to patches of ankerite. One plagioclase grain contains a subhedral zircon grain $\emptyset .1 \mathrm{~mm}$ long.

A few patches are dominated by much finer fragments of plagioclase and quartz averaging $0.03-\emptyset .1 \mathrm{~mm}$ in size, set in a sparse groundmass dominated by sericite.

K-feldspar forms grains averaging $\varnothing .1-\emptyset .5 \mathrm{~mm}$ in size, with a few up to 1.5 mm across. Textures suggest that they are phenocrysts from a felsic volcanic rock. Many are altered moderately to irregular patches of ankerite. one is altered moderately in discrete patches to cryptocrystalline kaolinite.

Porphyritic latite forms a few fragments up to several mm across. phenocrysts of plagioclase averaging $\varnothing .3-\emptyset .7 \mathrm{~mm}$ in length are set in an extremely fine grained groundmass dominated by plagioclase. plagioclase phenocrysts are altered moderately to sericite. In one large fragment, opaque (pyrite?) forms moderately abundant grains averaging $\emptyset .1-\emptyset .3 \mathrm{~mm}$ in size. Minor minerals in the groundmass are apatite and $T i-o x i d e$.

One fragment over 1 cm long of porphyritic rhyodacite contains abundant phenocrysts up to 1.3 mm in size of K -feldspar, plagioclase, and quartz, and minor ones of biotite in an aphanitic, devitrified groundmass, in which the only mineral recognized is sericite as extremely fine grained, disseminated flakes. K-feldspar is altered to patches of ankerite, plagioclase is altered slightly to sericite, and biotite is altered completely to muscovite-(Ti-oxide).

A few latite fragments contain a subrounded quartz phenocryst averaging $\emptyset .1-\emptyset .15 \mathrm{~mm}$ in size set in a uniform, extremely fine grained groundmass dominated by plagioclase.

One fragment 1.7 mm long contains a few phenocrysts of plagioclase and minor ones of muscovite (after biotite) in a groundmass dominated by a very fine grained ankerite-(limonite).

Several other fragments of latite are free of phenocrysts. Two contain a flake of muscovite $\varnothing .3 \mathrm{~mm}$ long.

One granodiorite fragment 3 mm across is dominated by medium grained quartz and plagioclase. K-feldspar forms a few grains up to $\emptyset .7 \mathrm{~mm}$ in size. Biotite (altered to muscovite-[Ti-oxide])) forms a flake 0.7 mm long. Opaque (pyrite?) forms an irregular replacement patch 1 mm across, and pyrite surrounded by ankerite forms an adjacent patch 1 mm across. A second granodiorite fragment 4 mm across contains much more abundant microcline. Minor biotite flakes up to 0.3 mm in length are altered to muscovite-(Ti-oxide). Minor hornblende grains up to 0.6 mm across are altered completely to sericite-(ankerite-Ti-oxide). This fragment also contains a euhedral grain of apatite and of zircon $\varnothing .15-\varnothing .2 \mathrm{~mm}$ in size, and an equant patch of calcite-(hematite) 0.4 mm across.

Ti-oxide and opaque each form a few fragments averaging Ø.1-Ø. 4 mm in size.

Muscovite forms a few slender flakes averaging 0.15-0.4 mm long. It contains minor inclusions of $T i-o x i d e, ~ a n d ~ p r o b a b l y ~ i s ~ s e c o n d a r y ~$ after biotite.

The groundmass is dominated by extremely fine grained plagioclase, altered slightly to strongly to sericite. Scattered patches up to $\varnothing .3 \mathrm{~mm}$ in size consist of ankerite with minor limonite stain.

A wispy veinlet $\emptyset . \emptyset 5 \mathrm{~mm}$ wide is of ankerite-(quartz).

Groundmass of Quartz-Amphibole(?)-Chlorite-(Calcite-Pyrite)

In hand sample, poorly defined fragments up to a few cm across of two main rock types are set in a sparse groundmass dominated by chlorite, with lesser quartz. In thin section, borders of fragments commonly are diffuse, and in many places it is impossible to tell if the material is part of a fragment or part of the groundmass. Fragments are dominated by quartz diorite and less granodiorite in a sparse, patchy matrix dominated by quartz, altered amphibole(?), and chlorite, with less calcite and pyrite.
fragments: quartz diorite, granodiorite

plagioclase	$35-4 \emptyset \%$	
quartz	$25-3 \emptyset$	
K-feldspar	$4-5$	
chlorite	$3-4$	(after biotite)
Ti-oxide/leucoxene	0.5	
apatite	0.3	
groundmass		
quartz	$10-12$	
amphibole(?)	$5-7$	(altered to sericite)
chlorite	$4-5$	
pyrite	$1-2$	
calcite	1	
muscovite	0.2	

plagioclase forms anhedral grains averaging Ø.5-1.5 mm in size, with a few up to 2.5 mm across. Alteration is slight to moderate to sericite and patches of carbonate and minor chlorite.

Quartz forms patches up to a few mm across of grains averaging 0.3-0.7 mm in size.

K-feldspar forms equant grains averaging $\emptyset .5-1.5 \mathrm{~mm}$ in size. Alteration is moderate in irregular patches to sericite-calcite(chlorite).

Chlorite (probably after biotite) is concentrated in patches up to 1.5 mm in size as unoriented flakes averaging $\varnothing .05-\varnothing .15 \mathrm{~mm}$ in size. In some patches it is intergrown with less plagioclase and quartz. pleochroism of chlorite is from pale yellowish green to light/medium green. Associated with chlorite are ragged patches of Ti-oxide/opaque. Ti-oxide/leucoxene also forms patches up to 0.5 mm in size of extremely fine grained aggregates intergrown with minor chlorite.

Apatite forms anhedral to subhedral prismatic grains averaging $0.05-\emptyset .07 \mathrm{~mm}$ in size, with a few up to 0.5 mm long. Commonly it is associated with patches of chlorite-Ti-oxide.

Zircon forms subhedral to euhedral, slightly to moderately elongate grains averaging $0.07-\emptyset .1 \mathrm{~mm}$ long, with on $\emptyset .17 \mathrm{~mm}$ long.

Two fragments averaging $1.5-2 \mathrm{~mm}$ across are dominated by fine grained, slightly interlocking quartz with abundant disseminated patches and seams of extremely fine grained sericite. Quartz commonly shows slightly wavy extinction.

In the groundmass, quartz forms aggregates averaging Ø.1-Ø.3 mm in grain size, in part intergrown with chlorite and amphibole. Commonly it is difficult to distinguish secondary quartz from quartz in the altered host rock.

A few patches up to 2 mm across are dominated by prismatic amphibole(?) grains up to 1.2 mm long. These are altered completely to pseudomorphic sericite. Some of these aggregates are intergrown with quartz, others contain minor interstitial calcite and muscovite flakes, and a few contain radiating aggregates of chlorite up to 0.2 mm in diameter. other patches are dominated by radiating aggregates of chlorite, whose pleochroism is from pale to medium green.

In places the groundmass has a brecciated texture, with fragments of quartz from the host rock averaging $0.1-\emptyset .3 \mathrm{~mm}$ in size enclosed in a groundmass of much finer grained quartz and chlorite.

Pyrite forms a few irregular lenses up to 3 mm long, and skeletal grains and clusters up to 2.5 mm in size, both intergrown intimately with plagioclase and lesser quartz.

The rock contains fragments of quartz, $K-f e l d s p a r, ~ a n d ~$ plagioclase, and minor ones of muscovite and a few lithic types in a groundmass of plagioclase-sericite, with a few patches of ankerite and of pyrite. Alteration is slight to moderate to sericite-ankerite.

fragments	
quartz	$25-30 \%$
quartz vein	$1-2$
K-feldspar	$15-17$
plagioclase	$10-12$
muscovite	$1-2$
Ti-oxide	0.2
opaque	minor
latite	0.3
groundmass	
plagioclase-sericite	$35-4 \emptyset$
pyrite	$2-3$
ankerite	1
Ti-oxide	minor

Quartz forms crystals and crystal fragments averaging 0.5-1.7 mm in size, with a few up to 4 mm across. Textures indicate that most are volcanic phenocrysts. A few fragments consist of aggregates of fine to medium grained quartz, with textures suggestive of fracturefilling quartz veins.

K-feldspar (sanidine) forms crystal fragments averaging 0.3-1.5 mm in size, with a few up to 2 mm across. Alteration is slight to moderate to patches of ankerite. A few large phenocrysts are intergrown with plagioclase grains up to 0.7 mm long.
plagioclase forms crystal fragments averaging ø.l- $\varnothing .5 \mathrm{~mm}$ in size, with a few up to 1.7 mm across. Alteration is slight to moderate to sericite flakes, and slight to patches of ankerite.

Muscovite (after biotite) forms slender, commonly slightly contorted flakes averaging $0.3-\varnothing .7 \mathrm{~mm}$ in length.

Ti-oxide/leucoxene forms a few patches up to 0.6 mm across.
pyrite forms disseminated grains and clusters of grains averaging $\emptyset .3-0.6 \mathrm{~mm}$ in grain size.

Latite/dacite forms fragment averaging 0.2-0.3 mm in size, consisting of extremely fine grained aggregates dominated by plagioclase. One fragment 1 mm across is of equant plagioclase grains averaging $0 . \emptyset 5-\varnothing .1 \mathrm{~mm}$ in size with much less quartz. plagioclase is altered slightly to sericite.

The groundmass is dominated by extremely fine grained plagioclase, altered moderately to strongly to sericite and containing minor dusty Ti -oxide. Ankerite forms scattered patches up to 0.5 mm in size of very fine grained aggregates.
pyrite forms a few irregular replacement grains up to 3 mm across. They are skeletal in outline, and contain inclusions of feldspars and quartz.

Ti-oxide forms scattered subhedral to euhedral grains averaging 0.05 mm in size.

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager
JOHN G. PAYNE, Ph.D. Geologist
CRAIG LEITCH, Ph.D. Goologist
JEFF HARRIS, ph.O. Goollogis
KEN E. NORTHCOTE, Ph.D. Goologitat
\[\begin{aligned} Report for: \& Liz Scroggins,
\& Pamicon Developments, Ltd.
\& 711-675 West Hastings Street,
\& VANCOOVER, B.C. \end{aligned} \]
project: Siwash
Samples: $29 / 05-1,29 / 05-4,31 / 05-7,03 / \varnothing 6-13,80-5-199^{\prime}$, peachland Road

P.O. BOX 39

8080 GLOVER ROAD,
FORT LANGLEY, B.C.
vox 1, 0
PHONE (604) 888-1323
FAX. (604) 888-3642

Invoice 8243
May 1989

Summary: Samples are divided into the following main types:

1. Hypabyssal Intrusion (or flow)

porphyritic rocks with phenocrysts of feldspars and quartz and minor ones of mafic and accessory minerals in a groundmass dominated by feldspars. Composition based on phenocrysts indicates that the rocks are rhyodacites, however, the groundmass is very poor in quartz, suggesting that the many of the rocks might be better classed as quartz-bearing latites. For a field classification, the presence of significant quartz phenocrysts commonly is used as an indicator to classify the rocks as rhyodacite/dacite.

Several of the samples contain megacrysts of K-feldspar, which are defined as coarse K-feldspar phenocrysts containing inclusions of phenocrysts of other minerals, mainly plagioclase.

29/65-1 porphyritic rhyodacite: Megacrysts of K-feldspar and smaller phenocrysts of plagioclase and quartz, less hornblende, biotite, and opaque, and minor apatite occur in a groundmass dominated by K-feldspar and plagioclase, with less quartz and biotite.

29/05-4 rhyodacite porphyry: Megacrysts of K-feldspar, and phenocrysts of quartz, less plagioclase, and minor biotite are set in a groundmass dominated by plagioclase and K-feldspar, with minor quartz, opaque, and pyrite. Minor replacement patches are of sericite, quartz, and limonite.
$\begin{aligned} \text { 03/ø6-13 } & \text { porphyritic rhyodacite: Megacrysts of K-feldspar, and } \\ & \text { phenocrysts of quartz, plagioclase, K-feldspar, and minor } \\ & \text { biotite are set in a groundmass dominated by plagioclase and } \\ & \text { K-feldspar. }\end{aligned}$

89-5-199' porphyritic guartz-bearing latite: Phenocrysts of plagioclase, and much less K-feldspar, biotite, and quartz are set in a groundmass of devitrified glass dominated by feldspars, with plagioclase dominant over $\mathrm{K}-\mathrm{feldspar}$. plagioclase phenocrysts are altered completely to kaolinite-calcite. Replacement patches consist of one or both of kaolinite and calcite.

2. Plutonic Rocks

31/05-7 leucocratic (biotite) granite/quartz monzonite: Equal amounts of medium to locally coarse grained plagioclase and K-feldspar, and slightly less quartz are intergrown with much less biotite and minor hornblende(?), opaque, sphene, apatite, and zircon.

Peachland Road potassic quartz-bearing diorite (Monzodiorite): Medium to coarse grains of plagioclase, hornblende, and biotite are set in a finer grained groundmass of plagioclase, K-feldspar, and quartz. Mafic minerals commonly occur in clusters, with cores of hornblende and/or opaque surrounded by biotite; they are altered strongly and plagioclase is altered moderately.

Sample 63/06-13 Porphyritic Rhyodacite: Megacrysts of K-feldspar; Phenocrysts of Quartz, Plagioclase, K-feldspar, Biotite

Megacrysts of K-feldspar, and phenocrysts of quartz, plagioclase, K-feldspar, and minor biotite are set in a groundmass dominated by plagioclase and K-feldspar.
phenocrysts and megacrysts

plagioclase	$10-12 \%$
K-feldspar	$8-1 \varnothing$
quartz	$7-8$
biotite	1
opaque	0.3
apatite	minor
groundmass	
plagioclase	$35-40$
K-feldspar	$25-3 \emptyset$
quartz	0.5
calcite	0.5
zircon	trace

plagioclase forms subhedral to euhedral, equant to prismatic phenocrysts averaging 0.7-1.5 mm in length, and a few from 2-4 mm long. Alteration is slight to moderate to flakes and patches of sericite and patches of calcite. A few clusters up to 3 mm across are intergrowths of K-feldspar and plagioclase phenocrysts, with interstitial patches up to 0.3 mm across of very fine to extremely fine grained sericite, and of very fine grained calcite.
K-feldspar forms megacrysts averaging $1.5-3.5 \mathrm{~mm}$ in size. They contain minor to moderately abundant inclusions of euhedral, prismatic plagioclase phenocrysts averaging $0.3-\varnothing .7 \mathrm{~mm}$ in size, and locally subrounded plagioclase grains averaging $0.15-0.2 \mathrm{~mm}$ in size. K-feldspar is altered slightly to strongly in patches to calcite and to hematite.

Quartz forms mainly subrounded phenocrysts averaging $0.5-2 \mathrm{~mm}$ in size, with a few up to 3 mm across. Outlines of several suggest that they were formed by intergrowth of two or three grains in optical continuity. A few smaller phenocrysts are euhedral and some are rounded.

Biotite forms phenocrysts averaging $\emptyset .2-\emptyset .5 \mathrm{~mm}$ long, and a few up to 1 mm long. Alteration is complete to pseudomorphic muscovite-(Ti-oxide). A few also are replaced strongly by patches of opaque/ hematite.

Opaque forms anhedral patches averaging $\varnothing .2-\varnothing .4 \mathrm{~mm}$ in size, and a few up to 0.8 mm across.

Apatite forms subhedral to euhedral prismatic phenocrysts from $0.15-0.35 \mathrm{~mm}$ in length. It is colored light to medium brown by dusty inclusions.

The groundmass is dominated by slightly interlocking grains of plagioclase and less K-feldspar averaging $\emptyset . \emptyset 1-\varnothing . \emptyset 2 \mathrm{~mm}$ in size. plagioclase is altered slightly to moderately to sericite and possibly kaolinite. Dusty hematite is common. Quartz forms interstitial grains averaging $\varnothing .02-\varnothing .04 \mathrm{~mm}$ in size. Zircon forms euhedral, commonly elongate, prismatic grains up to 0.05 mm long in K -feldspar, plagioclase, and quartz phenocrysts, and a few anhedral grains up to 0.08 mm in size in the groundmass. Some of the latter are rimmed by opaque. Calcite forms irregular replacement patches up to $\varnothing .6 \mathrm{~mm}$ in size.

Megacrysts of K -feldspar and smaller phenocrysts of plagioclase and quartz, less hornblende, biotite, and opaque, and minor apatite occur in a groundmass dominated by $K-f e l d s p a r ~ a n d ~ p l a g i o c l a s e, ~ w i t h ~$ less quartz and biotite.
K-feldspar
plagioclase
quartz
hornblende
biotite
opaque/Ti-oxide-(zircon)
apatite
calcite
phenocrysts
7-8\%
8-10
5-7
1-2
0.5
0.2
0.1
0.1
groundmass
40-45
20-25
4-5
-
1
0.1
minor

K-feldspar forms euhedral megacrysts up to a few cm across and phenocrysts averaging l-5 mm in size. Some megacrysts are perthitic, with 50\% lenses of plagioclase altered to kaolinite. They contain moderately abundant inclusions of euhedral plagioclase phenocrysts averaging $\emptyset .3-\emptyset .7 \mathrm{~mm}$ in size. Other megacrysts and most K-feldspar phenocrysts are not perthitic and are altered slightly to moderately in irregular patches to calcite. A few contain replacement patches up to $\emptyset .3 \mathrm{~mm}$ in size of equant kaolinite(?) flakes averaging $\emptyset . \emptyset \emptyset 5 \mathrm{~mm}$ in grain size. Most contain altered patches with moderately abundant dusty hematite.

Plagioclase forms subhedral phenocrysts and clusters of phenocrysts averaging $0.5-2 \mathrm{~mm}$ in size. Alteration is slight to locally moderate to wispy patches and seams of sericite and/or kaolinite.

Quartz forms subrounded to irregular phenocrysts and clusters of a few phenocrysts averaging $0.3-2 \mathrm{~mm}$ in size, with a few up to 3.5 mm across.

Hornblende forms euhedral to subhedral equant to prismatic phenocrysts and clusters of phenocrysts averaging $0.3-0.9 \mathrm{~mm}$ in size, and one elongate phenocryst 1.3 mm long. Grains are medium greenish brown in color, with weak to no pleochroism. Many larger ones are altered strongly in their cores to patches to calcite andor kaolinite.

Biotite forms subhedral, commonly elongate flakes averaging $\emptyset .2-\emptyset .5 \mathrm{~mm}$ in length. Many larger ones are replaced in their cores by patches of calcite and less commonly by aggregates of extremely fine grained kaolinite.

Apatite forms a few prismatic phenocrysts from $0.5-2 \mathrm{~mm}$ long. It also occurs with hornblende phenocrysts as anhedral to euhedral grains averaging $0.03-0.07 \mathrm{~mm}$ in size, and a few up to 0.4 mm across.
opaque, with or without $\mathrm{Ti}-\mathrm{oxide}$ forms anhedral, commonly ragged patches averaging $\emptyset . \emptyset 7-\varnothing .2 \mathrm{~mm}$ in size, with a few up to 0.7 mm across. One patch contains several anhedral grains of zircon averaging 0.05-0.1 mm in size.

In the groundmass, K-feldspar and lesser plagioclase form anhedral, slightly interlocking grains averaging Ø. Ø2- $\varnothing . \emptyset 3 \mathrm{~mm}$ in size. Groundmass plagioclase is altered moderately to extremely fine grained sericite/kaolinite. Quartz forms interstitial, equant grains averaging $\varnothing .01-\varnothing .02 \mathrm{~mm}$ in size. Biotite forms flakes averaging 0.05-9.1 mm in length; these grade upwards in size to the biotite phenocrysts. Calcite forms scattered, irregular replacement patches up to 0.3 mm across of equant grains averaging 0.1 mm in size. Opaque forms disseminated patches averaging $0.02-0.05 \mathrm{~mm}$ in size. Apatite forms anhedral to euhedral grains averaging ø.ø3-ø.07 mm in size.

Rhyodacite Porphyry: Megacrysts of K-feldspar; Phenocrysts of Quartz, K-feldspar, Plagioclase, and Minor Biotite; Sericite, Quartz, Limonite Replacement

Megacrysts of K-feldspar, and phenocrysts of quartz, less plagioclase, and minor biotite are set in a groundmass dominated by plagioclase and K-feldspar, with minor quartz, opaque, and pyrite. Minor replacement patches are of sericite, quartz, and limonite.

	megacrysts	phenocrysts	groundmass
K-feldspar	$4-5 \%$	$5-7 \%$	$35-49 \%$
quartz		$7-8$	$1-2$
plagioclase		$4-5$	$35-40$
biotite		1	-
Ti-oxide/opaque			0.3
pyrite		0.2	
zircon			trace
replacement patches			
sericite	0.2		
quartz	0.3		
limonite	0.5		

K-feldspar forms euhedral megacrysts up to 5 mm in size. These commonly contain moderately abundant subhedral to euhedral inclusions of plagioclase phenocrysts averaging 0.3-1.2 mm in length. Some of the plagioclase grains are altered slightly to completely to sericite and carbonate (altered to limonite). K-feldspar forms subhedral phenocrysts averaging $0.5-1 \mathrm{~mm}$ in size.

Quartz forms subrounded to subhedral phenocrysts and clusters of phenocrysts averaging $\varnothing .5-3 \mathrm{~mm}$ in size. A few are recrystallized slightly to subgrain mosaics, and are recrystallized slightly to extremely fine grained aggregates along borders of subgrains. One contains an inclusion 0.06 mm long of a subhedral biotite flake which is pleochroic from light to medium/dark brown. one contains a spherical grain of calcite $\emptyset .15 \mathrm{~mm}$ across. Many rounded to subrounded, early formed crystals average $0.05-0.2 \mathrm{~mm}$ in size.
plagioclase forms subhedral to euhedral phenocrysts averaging 0.7-1.7 mm in size. Composition is uniform and is in the oligoclase range. Alteration is slight to moderate to sericite and limonite. Biotite forms subhedral to euhedral grains averaging $0.3-0.8 \mathrm{~mm}$ in size. Alteration is complete to pseudomorphic muscovite and moderately abundant patches of Ti -oxide.

The groundmass is a strongly interlocking aggregate of plagioclase and K -feldspar averaging $0.015-\varnothing .03 \mathrm{~mm}$ in grain size. plagioclase is altered slightly to strongly to extremely fine grained sericite and possibly minor kaolinite. Quartz forms minor interstitial grains averaging $\varnothing . \emptyset 1-\emptyset . \varnothing 2 \mathrm{~mm}$ in size. Dusty, interstitial semiopaque is moderately abundant. A few casts after euhedral pyrite grains average $0.1-\emptyset .2 \mathrm{~mm}$ in size. Ti-oxide (after sphene) forms scattered patches up to 0.3 mm in size. zircon forms a few anhedral grains up to $\varnothing . \emptyset 4 \mathrm{~mm}$ in size.

Irregular replacement patches up to 1 mm in size are of very fine grained, feathery sericite/muscovite.

A few replacement patches up to 1 mm wide and a few mm long are dominated by quartz grains averaging Ø.l- 0.2 mm in size and moderately abundant limonite on grain borders and fractures. A few patches up to 1.5 mm in size are of cryptocrystalline limonite with or without minor disseminated sericite flakes. Limonite also forms wispy veinlets averaging $0.01-0.03 \mathrm{~mm}$ in width; these are common in fractures in K-feldspar phenocrysts and megacrysts.

Porphyritic Quartz-bearing Latite; Phenocrysts of Plagioclase, K-feldspar, Biotite, and Quartz; Replacement patches of Kaolinite-Calcite

Phenocrysts of plagioclase, and much less K -feldspar, biotite, and quartz are set in a groundmass of devitrified glass dominated by feldspars, with plagioclase dominant over K-feldspar. plagioclase phenocrysts are altered completely to kaolinite-calcite. Replacement patches consist of one or both of kaolinite and calcite.

phenocrysts	
plagioclase	$12-15 \%$
K-feldspar	$3-4$
biotite	$3-4$
quartz	$2-3$
opaque	$\emptyset .5$
sphene	$\emptyset .2$
apatite	minor
hornblende	minor
inclusion	minor

groundmass	
devitrified glass	
\quad feldspar/kaolinite	$75-78 \%$
hematite	$1-2$
kaolinite	1
calcite	$\emptyset .3$
zircon	trace

plagioclase forms euhedral to subhedral, equant to prismatic phenocrysts averaging $0.3-1.2 \mathrm{~mm}$ in size, and a few up to 3.5 mm long. Alteration is complete to cryptocrystalline kaolinite and minor sericite and abundant patches of very fine grained calcite.

K-feldspar forms anhedral to subhedral phenocrysts averaging $0.5-1.5 \mathrm{~mm}$ long, and a few megacrysts from 2-3 mm long. The latter contain a few inclusions of plagioclase phenocrysts, and one contains a euhedral biotite phenocryst. Some others are intergrown with plagioclase phenocrysts. K-feldspar is fresh.

Quartz forms subrounded to very irregular phenocrysts averaging Ø. $3-1 \mathrm{~mm}$ in size, and a few up to 3 mm across.

Biotite forms subhedral to euhedral phenocrysts averaging 0.3-1 mm long. Pleochroism is from light to very dark brown.

Hornblende forms a subhedral, prismatic phenocryst 1 mm long. Alteration is complete to carbonate-kaolinite-(sericite), with carbonate concentrated along the margin and in the core.

Apatite forms euhedral, stubby prismatic phenocrysts up to 0.37 mm long, a few anhedral, angular grains up to 0.32 mm across, and a few acicular grains up to $\emptyset .12 \mathrm{~mm}$.

Sphene forms a few subhedral to euhedral grains up to 0.8 mm in size. It is altered completely to Ti -oxide with minor to abundant interstitial patches of extremely fine grained calcite and kaolinite.

Opaque forms anhedral to subhedral grains and clusters of grains averaging $\varnothing . \emptyset 7-\varnothing .2 \mathrm{~mm}$ in size.

A subrounded inclusion of unknown origin 0.7 mm across contains angular grains of quartz from $0.02-0.2 \mathrm{~mm}$ in size enclosed in a groundmass of cryptocrystalline carbonate-sericite-kaolinite.

The groundmass is dominated by equant feldspar grains averaging $\emptyset .002-\varnothing .003 \mathrm{~mm}$. Interstitial to feldspars is abundant dusty hematite. Feldspars may be altered partly to kaolinite.

A few irregular, interstitial patches averaging 0.1-0.2 mm in size and locally up to 1.2 mm across consist of cryptocrystalline kaolinite without dusty hematite. The largest also contains a few irregular calcite grains up to 0.3 mm in size as described below.

A few irregular replacement patches up to 1 mm in size are of fine to medium grained calcite/dolomite with dusty hematite inclusions. Carbonate has strongly wavy extinction.

The rock consists of about equal amounts of plagioclase and K-feldspar, and slightly less quartz, with much less biotite and minor hornblende(?), opaque, sphene, apatite, and zircon.

plagioclase	$35-40 \%$
K-feldspar	$30-35$
quartz	$25-30$
biotite	$3-4$
opaque	0.4
hornblende(?)	0.1
sphene	0.1
apatite	0.1
zircon	minor

Plagioclase forms anhedral equant to subhedral prismatic grains averaging $\varnothing .7-2 \mathrm{~mm}$ in size and a few up to 3.5 mm long. Bordering K-feldspar grains commonly are rims averaging $0.01-0.02 \mathrm{~mm}$ wide of fresh, much-more-sodic plagioclase. A few patches up to 1.2 mm in size are of equant, submosaic aggregates of plagioclase grains averaging $0.1-\emptyset .15 \mathrm{~mm}$ in size. Alteration of plagioclase generally is slight to disseminated flakes and wispy veinlets of sericite, and locally is strong in patches to extremely fine grained kaolinite/ sericite.

K-feldspar forms anhedral grains up to a few mm across Some contain minor to moderately abundant, irregular exsolution lenses and patches of albite.

Quartz forms patches up to a few mm across of anhedral, slightly interlocking grains averaging $0.5-2.5 \mathrm{~mm}$ in size.

Biotite forms ragged flakes averaging $0.3-\varnothing .8 \mathrm{~mm}$ in size, with a few up to 2 mm across. Alteration generally is complete to pseudomorphic muscovite with minor to abundant patches and lenses of chlorite with less T i-oxide and hematite, or to chlorite-(Ti-oxide). A few contain patches of ankerite/siderite. In a few grains and clusters (the latter up to a few mm across), biotite is altered to irregular aggregates of chlorite with minor muscovite/sericite. Associated with the largest cluster are moderately abundant opaque, Ti-oxide, apatite, and zircon. Chlorite ranges in color from light to medium yellowish green. In some altered biotite grains, ti-oxide forms abundant euhedral grains with square cross-sections averaging $\emptyset .01 \mathrm{~mm}$ in size. Opaque forms patches up to 0.5 mm in size.

Sphene (altered completely to T i-oxide) forms one cluster up to 1.3 mm across of anhedral to subhedral grains up to $\varnothing .6 \mathrm{~mm}$ in size. Ti-oxide forms a ragged, skeletal cluster up to 0.7 mm across of cryptocrystalline grains included in a K-feldspar megacryst.

Hornblende(?) forms a subhedral prismatic grain 1.2 mm long. It is replaced completely by a dense aggregate of extremely fine to very fine grained, unoriented sericite flakes, with minor intimately intergrown flakes and patches of chlorite. A few patches of opaque/hematite are concentrated near the borders.

Opaque occurs in patches up to 0.8 mm in size of equant grains averaging $\varnothing .1 \mathrm{~mm}$ in size. Patches are fractured moderately to strongly, with sericite along fractures. Associated with opaque in some patches are anhedral to subhedral grains of apatite and zircon up to $\varnothing .08 \mathrm{~mm}$ in size.

Apatite forms subhedral to euhedral prismatic to equant grains up to 0.2 mm in size, mainly associated with biotite grains.

Zircon forms a euhedral, prismatic grain 0.12 mm long associated with biotite, and more abundant grains up to 0.15 mm in size associated with opaque.

Sample: Peachland Road

Altered Hornblende-Biotite Potassic Quartz-bearing Diorite/Granodiorite; Veinlets of Calcite and of Chlorite-(Quartz-Calcite)

Medium to coarse grains of plagioclase, hornblende, and biotite are set in a finer grained groundmass of plagioclase, K-feldspar, and quartz. Mafic minerals commonly occur in clusters, with cores of hornblende and/or opaque surrounded by biotite; they are altered strongly and plagioclase is altered moderately. The contents of K-feldspar and quartz are slightly less than required by the strict definition of granodiorite.

plagioclase forms subhedral prismatic grains averaging $0.7-1.5 \mathrm{~mm}$ in size, and a few from 2-3.5 mm long. Composition probably is oligoclase/andesine. Many show slight growth zoning towards more sodic rims. Alteration is moderate to irregular patches and wispy veinlets of sericite and calcite.

Hornblende forms anhedral to subhedral prismatic grains averaging $0.7-1.7 \mathrm{~mm}$ in length. Alteration is complete to extremely fine to fine grained aggregates of calcite-quartz-(chlorite)-opaque. In some patches, abundant secondary opaque is concentrated on grain borders and fractures.

Biotite forms irregular flakes averaging Ø.5-l mm in size, with a few up to 2 mm across. A few flakes contain cores of fresh biotite, whose pleochroism is from straw to dark brown. Elsewhere, alteration is complete to pseudomorphic chlorite with abundant $T i-o x i d e ~ a l o n g ~$ cleavage planes. A few biotite grains are intergrown intimately with quartz and some grains are rimmed by quartz; these textures are of metamorphic origin.

K-feldspar forms interstitial grains averaging Ø. $3-\varnothing .8 \mathrm{~mm}$ in size; most show cross-hatched microcline twins. Locally along borders of K -feldspar grains, plagioclase contains minor myrmekitic intergrowths of quartz. Some K-feldspar grains contain rod-like exsolution lenses of albite.

Quartz forms interstitial grains averaging $\varnothing .3-\emptyset .5 \mathrm{~mm}$ in size. Some contain oriented, acicular grains of rutile averaging Ø. Øl-Ø. $\varnothing 2$ mm long.
opaque (probably ilmenite/magnetite) forms anhedral, equant to slightly elongate grains averaging $0.1-\emptyset .4 \mathrm{~mm}$ in size. one is altered to semiopaque leucoxene.

Apatite forms anhedral to euhedral, commonly prismatic grains ranging from $0.05-0.3 \mathrm{~mm}$ in length, and a few acicular grains up to $\emptyset .35 \mathrm{~mm}$ long.

Zircon forms a few irregular grains averaging $\emptyset .15 \mathrm{~mm}$ long.

A replacement patch 0.3 mm in size consists of quartz with skeletal aggregates of calcite and of tourmaline. Tourmaline is pleochroic from pale greyish green to very dark green.

A few wispy veinlets up to 0.08 mm wide are of very fine grained calcite. Two veinlets averaging 0.05 mm wide are of extremely fine grained chlorite with patches quartz. One of these veinlets contains a discontinuous lens of calcite in its core.

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager
JOHN G. PAYNE, Ph.D. Geoogist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist
KEN E. NORTHCOTE, Ph.D. Goologist
P.O. BOX 39

8080 GLOVER ROAD,
FORT LANGLEY, B.C. VOX 1 Jo
PHONE (604) 888-1323
FAX. (604) 888-3642

$$
\begin{aligned}
& \text { Report for: Liz Scroggins, } \\
& \text { Pamicon Developments, Ltd., } \\
& 711 \text { - } 675 \text { West Hastings Street, } \\
& \text { VANCOOVER, B.C. } \\
& \text { Samples: } 80 \text { series: 6-135', 11-128', 12-423', 15-613', 16-62', } \\
& \text { 18-76', 20-57', } \\
& \text { others: 81-25-148', 14-807' }
\end{aligned}
$$

Invoice 8166
May 1989

Summary:
Samples are from two main rock groups, one a felsic volcanic and subvolcanic suite ranging from dacite to rhyodacite, and including massive, subvolcanic intrusive to flow rocks, pyroclastic and reworked pyroclastic rocks, and breccias of fault and/or hydrothermal origin. The other is a plutonic suite consisting of altered quartz diorite and granodiorite.

1: Volcanic Suite
1.1 Elow or Hypabyssal Intrusion

80-16-62' coarse porphyritic rhyodacite/rhyolite: very coarse phenocrysts of sanidine, coarse ones of quartz and plagioclase, and minor ones of biotite are set in an extremely fine grained groundmass dominated by feldspars with lesser sericite.

81-25-148' porphyritic dacite: phenocrysts of quartz, lesser plagioclase, and minor biotite, $K-f e l d s p a r, ~ a n d ~ h o r n b l e n d e$ are set in a groundmass dominated by plagioclase, altered moderately to sericite. A few replacement or cavity-filling patches are of quartz-(sericite).

1.2 Pyroclastic Rocks

80-15-613' quartz-hornblende crystal tuff: fragments of quartz phenocrysts, altered hornblende phenocrysts, and minor biotite phenocrysts are set in a groundmass dominated by sericite with lesser plagioclase/quartz. Hornblende is altered to chlorite-quartz-(sericite-hematite), and biotite is altered to muscovite-(Ti-oxide).

80-6-135' tuffaceous dacitic sandstone/siltstone: abundant angular fragments of quartz phenocrysts and latite/dacite, and minor ones of exotic types are set in a groundmass dominated by plagioclase with lesser patches of sericite and kaolinite, and disseminated grains of pyrite.

80-20-57' bedded felsic crystal-lithic tuff: two beds(?) of slightly different grain size and composition. In one layer, crystal fragments are dominantly of phenocryst of quartz and lesser sanidine, with minor ones of plagioclase and microcline. Lithic fragments are dominantly of porphyritic rhyodacite and latite. The groundmass is dominated by sericite. In the other layer, fragments are smaller and dominated by quartz with lesser latite and K-feldspar, microcline, and plutonic aggregates. Pyrite is abundant along the contact of the two layers.

Breccia

80-12-423' heterolithic breccia: angular fragments of a few rock types, dominated by porphyritic rhyodacite, ranging from microscopic up to several cm in size. These are set in a groundmass of granulated rock dominated by sericite and quartz containing a few coarse clusters of pyrite.

80-18-76' fault breccia: major fragment types include porphyritic rhyodacite (K-feldspar-quartz-plagioclase) and porphyritic dacite (plagioclase-quartz), and single quartz grains (phenocryst). These are set in a groundmass of sericite with replacement patches of ankerite.
2.ø Quartz Diorite

14-807' altered hornblende-biotite quartz diorite: medium to coarse grained, massive, dominated by plagioclase with lesser quartz and altered hornblende and biotite, with accessory pyrite, sphene, and apatite. plagioclase is altered strongly to sericite, hornblende completely to chlorite-quartz-sericite-ankerite, biotite to sericite-ankerite-Ti-oxide, and sphene to Ti-oxide-(quartz-chlorite-sericite). A discontinuous vein averaging 1 mm wide is of quartz-hematite-(pyrite).

80-11-128' altered hornblende-biotite granodiorite: coarse to medium grained granodiorite dominated by plagioclase and
 biotite. Plagioclase is altered strongly to completely to sericite, $K-f e l d s p a r ~ i s ~ a l t e r e d ~ s t r o n g l y ~ t o ~ s e r i c i t e, ~$ hornblende is altered completely to quartz-sericite-Ti-oxide, and biotite is altered completely to muscovite-(Ti-oxide).

Phenocrysts of quartz, lesser plagioclase, and minor biotite, K-feldspar, and hornblende are set in a groundmass dominated by plagioclase, altered moderately to sericite. A few replacement or cavity-filling patches are of quartz-(sericite).

phenocrysts	
quartz	$22-27 \%$
plagioclase	$10-12$
biotite	$2-3$
K-feldspar	$1-2$
groundmass	
plagioclase	$40-45$
sericite	$15-17$
pyrite	2
zircon	$*$
replacement patches	
quartz-(sericite)	1

Quartz forms subrounded to euhedral phenocrysts averaging l-2 mm in size, with a few up to 6 mm across. A few smaller phenocrysts averaging $0.3-0.4 \mathrm{~mm}$ across are well rounded. A few are cut by early fractures, along which the phenocryst was recrystallized to much finer grained quartz. The surrounding groundmass was not affected by these fractures, indicating that they formed early in the cooling history of the rock.

Plagioclase forms subhedral phenocrysts averaging l-2 mm in size. Alteration is complete to very fine to extremely fine grained sericite, in part with moderately abundant, dusty hematite.

K-feldspar forms a few subhedral phenocrysts up to 2.5 mm in size. They are altered strongly in patches to sericite, with local concentrations of ankerite or pyrite up to 0.8 mm in size.

Biotite forms stubby flakes averaging $0.3-0.5 \mathrm{~mm}$ in size, with a few up to 1 mm across. Alteration is complete to pseudomorphic muscovite and minor to moderately abundant $T i-o x i d e$.

Hornblende(?) forms a few stubby prismatic grains up to 1 mm long. Alteration is complete to patches of very fine grained quartz, extremely fine grained ankerite, and minor extremely fine grained sericite.

Several subhedral, prismatic to irregular patches up to 0.4 mm long are of leucoxene, with or without minor sericite, probably secondary after ilmenite. A very few patches up to 0.4 mm in size are dominated by Ti-oxide intergrown with lesser sericite. These probably are secondary after sphene.

Apatite forms a few subhedral to euhedral, prismatic grains up to 0.2 mm long.

The groundmass is dominated by anhedral, slightly to moderately interlocking plagioclase grains averaging $0.03-0.1 \mathrm{~mm}$ in size. Sericite forms irregular patches and disseminations, formed by alteration of plagioclase. Dusty hematite inclusions are moderately abundant. Zircon forms a few euhedral to subhedral, prismatic grains up to $\emptyset .04 \mathrm{~mm}$ long.

Pyrite forms irregular clusters up to $\emptyset .5 \mathrm{~mm}$ in size of grains averaging $\emptyset .05-\emptyset .1 \mathrm{~mm}$ in size, and single grains averaging $\emptyset .2-\emptyset .4 \mathrm{~mm}$ in size, with a few up to 1 mm in size.

A few secondary replacement or cavity-filling patches up to 0.6 mm across are of very fine grained quartz with minor very fine grained sericite.

Fragments of quartz phenocrysts, altered hornblende phenocrysts, and minor biotite phenocrysts are set in a groundmass dominated by sericite with lesser plagioclase/quartz. Hornblende is altered to chlorite-quartz-(sericite-hematite), and biotite is altered to muscovite-(Ti-oxide).

fragments	
quartz	$17-29 \%$
hornblende	$15-17$
biotite	0.8
opaque	0.3
apatite	minor
zircon	\star
groundmass	
sericite	$45-50$
plagioclase/quartz	$15-17$
opaque	0.5

Quartz forms anhedral to subhedral crystals and crystal fragments whose textures indicate that they are of volcanic phenocryst origin. Size averages $0.2-1.5 \mathrm{~mm}$, with a few up to 2 mm across. A few quartz grains are strained and recrystallized slightly to coarse, subgrain aggregates with slightly variable extinction positions. A few grains are slightly offset along widely spaced fractures. A few quartz patches are fractured strongly, and some are recrystallized moderately to strongly along fractures to much finer grained aggregates. A few grains are brecciated strongly.

Hornblende forms anhedral to subhedral grains averaging 0.3-1.2 mm in size, with a few patches up to 2 mm across. Alteration is complete and variable. In many grains alteration is dominated by subradiating aggregates of green chlorite, with pleochroism from pale yellow green to medium green. Intergrown with these patches are variable amounts of quartz, patches and disseminated regions of extremely fine grained sericite, and much less patches of deep red hematite. Quartz grains average $\emptyset .05-\emptyset .2 \mathrm{~mm}$ in size, and hematite patches average $0.05-\varnothing .1 \mathrm{~mm}$ across. patches with abundant sericite intergrown intimately with chlorite are more diffuse than those rich in chlorite and/or quartz. Some patches are dominated by quartz with minor to moderately abundant chlorite. The origin of these is less certain, but because of a gradation to the chlorite-rich patches, it is suggested that many of them also were formed by replacement of hornblende.

Biotite forms a few slender flakes averaging $0.2-0.3 \mathrm{~mm}$ in length, with a few from $0.5-1.3 \mathrm{~mm}$ long. The largest flake is warped moderately. Alteration is complete to pseudomorphic muscovite and minor T i-oxide.

Opaque forms a few subhedral patches up to 0.45 mm in length, and anhedral patches averaging $0.05-0.15 \mathrm{~mm}$ in size.

Apatite forms anhedral grains averaging $0.05-0.2 \mathrm{~mm}$ in size, and a few euhedral, prismatic grains up to 0.07 mm in size. The latter are associated with biotite crystals.
zircon forms a few stubby prismatic grains up to $\varnothing .08 \mathrm{~mm}$ in size.
The groundmass contains moderately abundant, angular fragments of quartz and lesser hornblende averaging $0.05-0.1 \mathrm{~mm}$ in size surrounded by an aggregate of sericite with lesser plagioclase/quartz averaging Ø. $005-\varnothing .015 \mathrm{~mm}$ in grain size. The latter contains angular quartz fragments averaging $\varnothing .02-\varnothing .03 \mathrm{~mm}$ in size. One irregular replacement patch up to 0.8 mm across is of extremely fine grained hematite(?).

Abstract

Abundant angular grains of quartz phenocrysts and latite/dacite, and minor ones of exotic types are set in a groundmass dominated by plagioclase with lesser patches of sericite and kaolinite, and disseminated grains of pyrite. Commonly, distinction is difficult between some finer grained latite fragments and groundmass.

fragments	
quartz	$20-25 \%$
latite/dacite	$17-2 \emptyset$
quartz diorite	$3-4$
sphene	(one large fragment)
quartz-(Ti-oxide)	one fragment
groundmass	
plagioclase	$35-4 \emptyset$
sericite	$8-1 \varnothing$
kaolinite	$4-5$
pyrite	$3-4$
zircon	

Quartz forms angular to subangular grains averaging $0.2-1.2 \mathrm{~mm}$ in size. Many have textures of quartz phenocrysts in a felsic volcanic rock.

Latite/dacite fragments average 0.3-1.2 mm in size. Latite fragments are dominated by a slightly interlocking aggregate of equant plagioclase. Variation in grain size is moderate between fragments, from Ø.øl-ø. $\varnothing 2 \mathrm{~mm}$ in size up to $\varnothing . \varnothing 3-\varnothing . \varnothing 5 \mathrm{~mm}$ in others. Dusty opaque inclusions are common. Much less abundant dacite fragments are similar to the coarser grained latite, but also contain patches of quartz averaging $0.03-0.05 \mathrm{~mm}$ in grain size. One large dacite fragment contains grains averaging $0.07-0.1 \mathrm{~mm}$ in size. One dacite fragment contains a spheroidal quartz phenocryst 0.3 mm across.

The quartz diorite fragment is up to 15 mm across in hand sample and 3.5 mm across in thin section. It consists of an intergrowth of medium to coarse grained plagioclase and moderately abundant quartz. plagioclase is altered completely to extremely fine grained aggregates of kaolinite. Superimposed on this alteration is the sericite-pyrite alteration as in the groundmass.

A few fragments from Ø.2-0. 4 mm across are of a very fine grained
 secondary after sphene.

One fragment 0.6 mm across is of an aggregate of equant, anhedral quartz grains averaging $0.2-\varnothing .3 \mathrm{~mm}$ in size. It contains abundant anhedral to euhedral, prismatic T i-oxide grains up to $\varnothing .03 \mathrm{~mm}$ long.

The groundmass averages $0.01-0.03 \mathrm{~mm}$ in grain size. Much is dominated by plagioclase, with textures similar to those of the latite fragments. Intergrown with plagioclase are patches of unoriented flakes of sericite and of kaolinite. Sericite also forms patches averaging $\varnothing .2-\varnothing .3 \mathrm{~mm}$ in size of slightly coarser grained flakes ($0.03-0.05 \mathrm{~mm})$; some of these enclose a grain of pyrite. They probably are of hydrothermal origin, and related to the formation of pyrite.

Pyrite forms disseminated, subrounded to irregular grains averaging $\emptyset .1-\emptyset .3 \mathrm{~mm}$ in size, with a few clusters of irregular grains up to 1.2 mm across.

Zircon forms a few subhedral to euhedral, prismatic grains up to $\emptyset . \emptyset 6 \mathrm{~mm}$ long in the groundmass and in quartz grains.

The sample contains two main zones (beds?) of slightly different grain size and composition. In one layer (A), crystal fragments are dominantly of phenocrysts of quartz and lesser sanidine, with minor ones of plagioclase and microcline. Lithic fragments are dominantly of porphyritic rhyodacite and latite. The groundmass is dominated by sericite. In Layer B, fragments are smaller and dominated by quartz with lesser latite and K-feldspar, microcline, and plutonic aggregates. Pyrite is abundant along the contact of the two layers.

Layer A	
fragments	
quartz	$17-20 \%$
rhyodacite	$12-15$
K-feldspar	$7-8$
latite	$4-5$
muscovite	0.2
groundmass	
sericite	$30-35$
plagioclase	$16-12$
ankerite	1

Quartz forms angular grains averaging Ø.2-1 mm in size, most of which are volcanic phenocrysts or fragments of them.

K-feldspar (sanidine?) forms angular grains averaging $0.3-\varnothing .8 \mathrm{~mm}$ in size. Alteration is moderate in patches to kaolinite (0.005 mm grain size) and patches up to 0.1 mm across of ankerite.
porphyritic rhyodacite forms fragments up to 2.7 mm across. A few large fragments contain a few euhedral phenocrysts of K-feldspar and subhedral to subrounded phenocrysts of quartz averaging $0.2-1 \mathrm{~mm}$ in size. K-feldspar is altered in patches to kaolinite and ankerite. Muscovite (probably after biotite) forms a few ragged flakes averaging Ø.l-ø. 3 mm in length. The groundmass is equant and extremely fine grained ($0.01-\varnothing .02 \mathrm{~mm}$) and dominated by feldspar with dusty hematite inclusions.

A fragment of latite contains minor muscovite (after biotite) phenocrysts averaging $\quad 0.2 \mathrm{~mm}$ long in a groundmass of equant, slightly interlocking plagioclase grains averaging $0.04-\varnothing .06 \mathrm{~mm}$ in size. plagioclase is altered slightly to moderately to sericite and contains abundant dusty hematite(?) inclusions. Other smaller latite fragments are dominated by plagioclase with minor muscovite.

The groundmass is dominated by extremely fine grained sericite and lesser plagioclase, with sericite probably secondary after plagioclase. Ankerite forms irregular replacement patches averaging $\emptyset .05-\emptyset .2 \mathrm{~mm}$ in size.

Quartz forms angular fragments averaging $\varnothing .1-\varnothing .4 \mathrm{~mm}$ in size, with a few up to 1.2 mm long. These are mainly of volcanic origin. A few much finer grained aggregates may be of plutonic or metamorphic origin.

K-feldspar (sanidine) forms fragments of phenocrysts averaging $\emptyset .2-0.6 \mathrm{~mm}$ in size.

Microcline forms anhedral grains averaging $\varnothing .1-\emptyset .3 \mathrm{~mm}$ in size, with a few up to $\varnothing .9 \mathrm{~mm}$ across. Its presence indicates contamination of the magma by felsic plutonic rocks.

Plagioclase forms a few grains averaging $\emptyset .2-\varnothing .4 \mathrm{~mm}$ in size. Alteration in is slight to moderate to sericite.

Latite forms fragments averaging $0.2-\varnothing .3 \mathrm{~mm}$ in size. It consists of aggregates of equant, slightly interlocking plagioclase averaging Ø. Øl-0.02 mm in grain size.

One fragment 1.5 mm in size is dominated by very fine to fine grained muscovite intergrown with extremely fine grained sericite. One flake 0.9 mm long of muscovite (after biotite) contains several inclusions of apatite $(9.005 \mathrm{~mm}$ in size, and one patch of Ti -oxide 0.2 mm across and several much finer disseminated patches of Ti -oxide.

One fragment 0.9 mm across is an aggregate of fine to medium grained quartz and lesser plagioclase of plutonic origin. Other fragments of probable plutonic origin include one of quartz containing an inclusion 0.12 mm long of apatite, and another consisting of two slightly interlocking, subhedral grains of plagioclase.

One fragment 9.4 mm across consists of extremely fine grained quartz(?) with abundant dusty to extremely fine grained opaque.

Zircon forms an irregular fragment $\emptyset .1 \mathrm{~mm}$ across.
The groundmass is dominated by extremely fine grained sericite intergrown with lesser quartz and plagioclase; sericite pro ably is secondary after original plagioclase. Ankerite forms irregular replacement patches averaging $0.05-\varnothing .15 \mathrm{~mm}$ in size.

Pyrite forms clusters up to 2 mm across of subhedral to euhedral, porphyroblastic grains averaging $0.3-1 \mathrm{~mm}$ in size along the border of Layers A and B, and subhedral to euhedral grains averaging 0.2- 0.4 mm in size disseminated through Layer B.

Very coarse phenocrysts of sanidine, coarse ones of quartz and plagioclase, and minor ones of biotite are set in an extremely fine grained groundmass dominated by feldspars with lesser sericite.

phenocrysts			
sanidine	$20-25 \%$	biotite	l\%
quartz	$12-15$	apatite	trace
plagioclase	$12-15$		
groundmass			
K-feldspar-plagioclase	$40-45$	ilmenite	minor
sericite	$8-10$	carbonate	minor
pyrite	0.5	apatite	trace
hematite/limonite	$\boxed{0.1}$		
amygales			
quartz-sericite-(carbonate)	$1-2$		

Sanidine forms euhedral phenocrysts averaging l-3 cm in size. Alteration is slight to moderate in patches averaging 0.1-0.3 mm in size to ankerite and minor kaolinite. Dusty hematite is common in irregular zones along borders of grains. Some grains contain subhedral to euhedral inclusions of plagioclase up to 1 mm in size; most of these are altered strongly to completely to sericite. One contains an inclusion of a small biotite altered phenocryst, which is altered completely to muscovite.

Quartz forms subrounded to irregular grains averaging l-5 mm in size. A few are fractured and recrystallized slightly to irregular subgrain aggregates.

Plagioclase forms subhedral to euhedral, equant to slightly prismatic phenocrysts averaging $9.7-2 \mathrm{~mm}$ in size. A few clusters are up to 2.5 mm across. Alteration is moderate to sericite, ankerite, and dusty hematite. A few grains contain minor to moderately abundant, disseminated patches averaging $0.01-0.05 \mathrm{~mm}$ in size of limonite. One is cut by two carbonate veinlets from ø.02-0.05 mm wide.

Biotite forms stubby flakes averaging $0.3-0.5 \mathrm{~mm}$ in size, and a few flakes up to 1 mm long. One cluster $\varnothing .8 \mathrm{~mm}$ across is of equant grains averaging $0.2-\varnothing .3 \mathrm{~mm}$ in size. Alteration is complete to pseudomorphic muscovite and lenses of ankerite. In a few larger flakes, ankerite is the dominant alteration mineral, with minor muscovite, mainly along the borders of the book.

Apatite forms a few subhedral to euhedral phenocrysts up to 0.2 mm across. A few anhedral grains from $0.1-\varnothing .15 \mathrm{~mm}$ in size are associated with plagioclase phenocrysts, and a few euhedral grains $\emptyset . \emptyset 5 \mathrm{~mm}$ across associated with ilmenite.

The groundmass is dominated by anhedral, equant feldspar grains averaging $0.01-0.05 \mathrm{~mm}$ in size. Textures suggest that they may be intimate intergrowths of plagioclase and $K-f e l d s p a r, ~ p o s s i b l y ~ f o r m e d ~$ by exsolution from anorthoclase. Dusty semi-opaque hematite/limonite is common. Carbonate forms irregular patches up to 0.3 mm in size. Pyrite forms disseminated, irregular grains averaging $9.2-0.5 \mathrm{~mm}$ in size. Opaque (ilmenite?) forms subhedral, prismatic to tabular grains up to 0.4 mm long; these are altered partly to leucoxene.

A few amygdules(?) up to 0.7 mm across have a thin border zone up to $\varnothing .05 \mathrm{~mm}$ wide of quartz containing a core of extremely fine grained sericite. A few smaller patches of probable similar origin are dominated by very fine grained quartz.

The hand sample contains angular fragments of a few rock types, dominated by porphyritic rhyodacite, ranging from microscopic up to several cm in size. These are set in a groundmass of granulated rock dominated by sericite and quartz containing a few coarse clusters of pyrite.

```
fragments (\% of hand sample)
    Major (20-35\%) : porphyritic rhyodacite, dacite
    Minor (5-1ø) : quartz grains, pyrite, altered mafic
groundmass
    sexicite-quartz-(pyrite-ankerite) 25-30\%
veins
    quartz-(sphalerite-pyrite-kaolinite) l- 2
```

The major fragment in the section is of porphyritic rhyodacite, somewhat similar to Sample 80-16-62. Phenocrysts of K-feldspar, quartz, and plagioclase are set in a groundmass averaging $\varnothing .03-\varnothing .07 \mathrm{~mm}$ in grain size dominated by intimately intergrown feldspars and much less patches of quartz and of sericite. phenocrysts average l-2 mm in size, with a few clusters of quartz grains up to 5 mm across. K-feldspar is altered slightly to sericite. Plagioclase phenocrysts are altered strongly to completely to extremely fine grained sericite, in part with minor to moderately abundant patches of limonite/ hematite. Pyrite forms disseminated, anhedral to euhedral grains averaging $\varnothing .05-6.15 \mathrm{~mm}$ in size, with a few patches up to 2 mm across. One equant patch 1 mm across is dominated by muscovite (after biotite) with abundant patches up to $\emptyset .2 \mathrm{~mm}$ across of Ti oxide and numerous euhedral zircon grains averaging $0.05-\emptyset .07 \mathrm{~mm}$ long. Zircon also forms a slender, euhedral prismatic grain $\varnothing . \emptyset 9 \mathrm{~mm}$ long elsewhere.

In the hand sample, another large fragment appears to be of porphyritic dacite (quartz, plagioclase phenocrysts).
one smaller fragment with quartz and K-feldspar phenocrysts has a groundmass of equant grains of quartz with lesser $K-f e l d s p a r$ and interstitial sericite.

One fragment a few mm across is of an altered mafic rock dominated by unoriented flakes of muscovite-Ti-oxide (after biotite) averaging Ø.l-Ø. 2 mm long, with interstitial extremely fine grained sericite and minor quartz. On one border and a few fractures are concentrations of very fine to fine grained pyrite.

Smaller fragments are of a variety of mineral and rock types, mainly from the porphyritic rhyodacite. Other types include fragments of fine to very fine grained quartz (veins?), an equant apatite grain 0.6 mm across, and a hornblende grain 1.2 mm long which is replaced completely by quartz-sericite,

The groundmass is dominated by extremely fine grained sericite intergrown with very fine grained quartz. Ankerite forms a few, irregular to skeletal patches up to 1 mm across. In the hand sample, pyrite forms a few equant patches up to a few mm across.

A few irregular veinlets up to 0.5 mm wide are of very fine to fine grained quartz, with minor patches of sphalerite up to 0.4 mm long, grains of pyrite up to $\varnothing .1 \mathrm{~mm}$ across, and interstitial patches up to 0.15 mm in size of kaolinite with grain size averaging $0.003-0.005 \mathrm{~mm}$.

Fault Breccia: Major Fragments Porphyritic Rhyodacite and porphyritic Dacite, Quartz; Sericite-(Ankerite) Groundmass

Major fragment types include porphyritic rhyodacite (K-feldspar-quartz-plagioclase) and porphyritic dacite (plagioclase-quartz), and single quartz grains (phenocrysts). These are set in a groundmass of sericite with replacement patches of ankerite.
fragments
Major (2g-35\%) : porphyritic rhyodacite, porphyritic dacite, quartz
Accessory (1-5\%) : biotite, Ti-oxide
groundmass : sericite-(ankerite)
Porphyritic dacite contains minor to locally abundant phenocrysts of plagioclase averaging l-2.5 mm in size, abundant quartz phenocrysts averaging 0.7-1.2 mm in size, and minor to moderately abundant biotite phenocrysts averaging $\varnothing .2-\emptyset .3 \mathrm{~mm}$ long. plagioclase is altered completely to sericite, and biotite is replaced completely by pseudomorphic muscovite. One quartz phenocryst is brecciated moderately and cut by a carbonate veinlet up to 0.4 mm wide. One fragment contain a patch 1.2 mm across of ankerite-quartz-muscovite/ sericite, possibly after hornblende. Ti-oxide/leucoxene, with or without ankerite, forms a few patches up to $\varnothing .4 \mathrm{~mm}$ in size of very fine grained aggregates. The groundmass consists of equant plagioclase grains averaging Ø.ø2-Ø. $\varnothing 3 \mathrm{~mm}$ in size with interstitial sericite and dusty semiopaque. pyrite forms scattered patches averaging $\varnothing .05-0.15 \mathrm{~mm}$ in size. zircon forms a slender, euhedral prismatic grain $\emptyset .12 \mathrm{~mm}$ long in a plagioclase phenocryst.

Rhyodacite fragments contain phenocrysts of sanidine, quartz, and minor plagioclase in an extremely fine grained groundmass dominated by feldspars with dusty hematite inclusions. K-feldspar is altered in patches to ankerite and lesser sericite; intensity varies widely from minor to almost complete. One fragment 2.5 mm across consists of a strongly fractured $\mathrm{K}-\mathrm{feldspar}$ phenocryst which was replaced moderately to strongly by three phases. One is patches of very fine to fine grained ankerite. The second is less abundant patches of extremely fine grained sericite. The third is cryptocrystalline, light brown Mineral X, which forms angular to subrounded patches averaging 0.l- 0.3 mm in size. Mineral X has higher relief than sericite. Grain size is too fine to determine birefringence or other optical properties. Patches of Mineral X are intergrown coarsely with, and commonly surrounded by those of sericite. Some patches of ankerite are replaced by Mn-oxide or limonite/hematite. Plagioclase phenocrysts are altered completely to extremely fine grained sericite. Apatite forms a few euhedral phenocrysts up to 0.2 mm long. Interstitial patches up to 0.5 mm in size are of quartz-calcite. zircon forms minor elongate, euhedral prismatic grains up to 0.1 mm long. One fragment contains a patch 1.7 mm across of opaque containing near one side of the patch a cluster of subrounded ti-oxide grains from 0.05-0.1 mm in size.

Finer fragments are dominated by angular quartz grains and rhyodacite groundmass, with minor ones of biotite grains up to 0.7 mm long. Biotite is altered completely to pseudomorphic muscovite and minor Ti -oxide. One subrounded patch 0.8 mm across is dominated by fine grained Ti -oxide intergrown intimately with carbonate.

The groundmass is dominated by extremely fine grained sericite. Ankerite and minor quartz form very fine to fine grained replacement patches up to 1 mm in size.

Altered Hornblende-Biotite Quartz Diorite; Vein of Quartz-Hematite-(Pyrite)

A medium to coarse grained, massive rock is dominated by plagioclase with lesser quartz and altered hornblende and biotite, with accessory pyrite, sphene, and apatite. plagioclase is altered strongly to sericite, hornblende completely to chlorite-quartz-sericite-ankerite, biotite to sericite-ankerite-Ti-oxide, and sphene to Ti-oxide-(quartz-chlorite-sericite). A discontinuous vein averaging 1 mm wide is of quartz-hematite-(pyrite).

plagioclase	$50-55 \%$	sphene	0.5%
quartz	$17-2 \emptyset$	apatite	0.2
hornblende	$15-17$	ankerite	0.1
biotite	$5-7$	zircon	$*$
pyrite	$1-2$		
vein			
\quad quartz-hematite-pyrite	$1-2 \%$		

Plagioclase forms anhedral grains averaging l-2 mm in size. Alteration is strong to extremely fine grained sericite, and locally minor to moderately abundant chlorite of similar grain size, intergrown in irregular patches with sericite.

Quartz forms patches up to 2 mm in size of fine to medium grained aggregates. Many have slightly to moderately strained extinction. Some quartz patches were recrystallized to irregular, very fine grained aggregates.

Hornblende forms patches averaging $0.7-1.7 \mathrm{~mm}$ in size. It is altered variably to chlorite, sericite, quartz, ankerite, and opaque. Many hornblende grains contain inclusions of apatite averaging $\emptyset . \emptyset 2-\emptyset . \emptyset 5 \mathrm{~mm}$ in size, and coarser apatite grains commonly occur along borders of hornblende grains.

Biotite forms ragged to subhedral flakes averaging $0.5-1 \mathrm{~mm}$ in size, and a few flakes from $2-3.5 \mathrm{~mm}$ across. Several aggregates up to 2.5 mm across consist of intergrowths of several flakes in random orientation. Alteration is complete to pseudomorphic muscovite and much less chlorite, with disseminated patches of $T i-o x i d e . ~ I n ~ s o m e ~$ grains, ankerite forms thin lenses parallel to cleavage.

Pyrite forms irregular to subrounded to locally euhedral patches averaging $\emptyset .2-\emptyset .7 \mathrm{~mm}$ in size, with a few up to 1.5 mm across.

Sphene forms a few subhedral to euhedral, wedge-shaped patches averaging $0.3-0.6 \mathrm{~mm}$ long, and two patches 1 mm long. These are altered completely to aggregates of T-oxide averaging $0 . \emptyset 1-\emptyset .02 \mathrm{~mm}$ in size intergrown with variable amounts of one or more of quartz, chlorite, and sericite.

Ankerite forms a few anhedral patches averaging 0.2 mm in size. Some ankerite grains associated with hornblende are altered strongly to opaque (hematite?).

Apatite forms anhedral grains averaging $\varnothing .1-\varnothing .2 \mathrm{~mm}$ in size, and a few up to 0.5 mm long. Many grains are associated with hornblende. Zircon forms a few, equant, anhedral grains averaging Ø. 05- 0.08 mm in size, mainly associated with hornblende.

A vein averaging 1 mm wide consists of very fine to fine grained quartz with abundant patches up to 1.5 mm across of specular hematite and minor equant pyrite grains averaging $0.5-1 \mathrm{~mm}$ in size (up to 1.5 mm across in hand sample). Hematite forms aggregates of equant to platy grains up to 0.2 mm in size; thin crystals have a deep red color.

Altered Hornblende-Biotite Granodiorite

The sample is a coarse to medium grained granodiorite dominated
 and biotite. plagioclase is altered strongly to completely to sericite, K-feldspar is altered strongly to sericite, hornblende is altered completely to quartz-sericite-Ti-oxide, and biotite is altered completely to muscovite-(Ti-oxide).

plagioclase	$35-40 \%$
quartz	$30-35$
K-feldspar	$20-25$
hornblende	$2-3$
biotite	$2-3$
pyrite	0.5
ilmenite/sphene	0.2
zircon	minor

Plagioclase forms anhedral grains averaging l- 2 mm in size. Alteration is complete to strong to extremely fine grained sericite, with a few relic patches of plagioclase preserved. Some secondary assemblages are of very fine grained plagioclase (probably more albitic than originally) intergrown with moderately abundant sericite. In places these grade into patches dominated by sericite.

Quartz forms patches up to several mm across of medium to coarse grained aggregates. Some are brecciated in irregular patches and seams to extremely fine grained angular fragments.

K-feldspar forms anhedral grains averaging l-3 mm in size, concentrated in a few patches. Alteration is moderate to strong to extremely fine grained sericite. Sericite commonly is concentrated on cleavage planes. A few contain a few discontinuous lenses up to 0.05 mm wide of quartz, which are subparallel to one cleavage direction along which secondary sericite is concentrated.

Hornblende forms anhedral to subhedral grains averaging l-2 mm in size. Alteration is complete to very fine grained quartz intergrown with patches of extremely fine grained sericite, and containing moderately abundant patches of Ti-oxide. Apatite and zircon each form a few inclusions up to 0.03 mm in size in some hornblende grains.

Biotite forms flakes up to 1.7 mm long. Alteration is complete to ragged pseudomorphs of muscovite intergrown with patches of extremely fine grained sericite, and containing moderately abundant patches and lenses of $T i-o x i d e$.

Ti-oxide (after ilmenite or sphene) forms equant patches averaging $\emptyset .1-\emptyset .25 \mathrm{~mm}$ in size, in part intergrown with minor to moderately abundant sericite.

Pyrite forms disseminated grains and clusters of euhedral to subhedral grains averaging $\emptyset .08-\varnothing .2 \mathrm{~mm}$ in grain size, and one patch up to 1.2 mm across of subhedral to euhedral grains. Commonly associated with pyrite clusters are patches of $T i-o x i d e$ and concentrations of zircon.

Zircon forms anhedral, equant grains averaging $\varnothing . \varnothing 2-\varnothing . \varnothing 5 \mathrm{~mm}$ in size, commonly associated with clusters of pyrite.

At one end of the section, the rock is cut by a breccia zone a few mm wide. The zone has a fragmental texture in hand sample, which is not so prominent in thin section. Fragments of quartz and altered feldspars are set in a groundmass dominated by extremely fine grained sericite-plagioclase(?). Fragments of quartz aggregates are more strongly fractured and brecciated than normal.

