	100 - 0102	
CONTRACTOR OF THE OWNER OF	ACTION	
COLUMN TWO IS NOT	CITE NO:	

A GEOPHYSICAL REPORT ON A GROUND MAGNETOMETER AND INDUCED POLARIZATION SURVEYS ON THE GREAT WESTERN STAR GOLD-COPPER PROPERTY NELSON MINING DIVISION, BRITISH COLUMBIA

> LATITUDE 49°27'NORTH LONGITUDE 117°22'EAST NTS 82F/6W

> > FOR

PACIFIC SENTINEL GOLD CORP.

ΒY

John Lloyd, M.Sc., P.Eng. LLOYD GEOPHYSICS LIMITED VANCOUVER, BRITISH COLUMBIA OCTOBER, 1989

SUMMARY

During the period July 27 to August 6, 1989 Lloyd Geophysics Limited carried out an IP and ground magnetometer survey on the TOUGHNUT grid and an IP survey on the RON grid for PACIFIC SENTINEL GOLD CORP. on the Great Western STAR Property near Nelson, British Columbia.

The IP survey delineated two new zones on the TOUGHNUT grid and two new zones on the RON grid. At least three of these new zones remain open along strike beyond the boundaries of the survey grids.

On the 1989 TOUGHNUT Grid 450 metres of trenching and 1240 metres of drilling is recommended to test the most promising targets. Similarly 500 metres of trenching and 1220 metres of drilling is recommended on the 1989 RON Grid.

Lloyd Geophysics

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	PROPERTY LOCATION AND ACCESS	1
3.0	PROPERTY STATUS AND CLAIM HOLDINGS	4
4.0	REGIONAL AND PROPERTY GEOLOGY	9
5.0	INSTRUMENT SPECIFICATIONS 5.1. Ground Magnetometer Survey Equipment 5.2. Induced Polarization Survey Equipment	12 12 13
6.0	SURVEY SPECIFICATIONS 6.1. Ground Magnetometer Survey 6.2. Induced Polarization Survey	16 16 16
7.0	DATA PROCESSING	17
8.0	DATA PRESENTATION	18
9.0	DISCUSSION OF RESULTS 9.1. Toughnut Grid 9.2. Ron Grid	19 21 22
10.0	CONCLUSIONS AND RECOMMENDATIONS 10.1 Toughnut Grid 10.2 Ron Grid	23 24 27

,

TABLE OF CONTENTS (Continued)

LIST OF FIGURES Page

Figure 1	Property Location Map	2
Figure 2	Detailed Property Location Map	3
Figure 3	Claim Map	5
Figure 4	Regional Geology Map	10
Figure 5	BRGM IP-6 Receiver Parameters	15

APPENDICES

Bibliography	APPENDIX	A
Personnel Employed On Survey	APPENDIX	В
Cost of Survey and Reporting	APPENDIX	С
Certification	APPENDIX	D

LIST OF PSEUDO-SECTIONS AND MAPS

Toughnut Grid

Pseudo-Sections	Dwg.	Nos	89291-1	to	89291-6
Chargeability Map	Dwg.	No 8	39291-7		
Resistivity Map	Dwg.	No 8	39291-8		
Magnetic Contour Map	Dwg.	No 8	39291-9		

Ron Grid

Pseudo-Sections	Dwg. Nos 89291-10 to 89291-16
Chargeability Map	Dwg. No 89291-17
Resistivity Map	Dwg. No. 89291-18

1.0 INTRODUCTION

During the period July 27 to August 6, 1989, Lloyd Geophysics Limited carried out a time domain Induced Polarization (IP) survey on part of the TOUGHNUT and RON grids which lie within the boundaries of the Great Western Star property held by PACIFIC SENTINEL GOLD CORP., near Nelson British Columbia.

A ground magnetic survey was also carried out on the TOUGHNUT grid. This grid is comprised of 10 old lines originally surveyed by IP methods during 1988 and 6 new lines also surveyed by IP methods, in 1989.

2.0 PROPERTY LOCATION AND ACCESS

The Great Western Star Project (NTS 82F/6W) is located 8 kilometres southwest of Nelson, in southeastern British Columbia (Figures 1 and 2). The project is centered on the ridges between Giveout, Sandy and Eagle creeks at latitude 40°27'N and longitude 117°22'E. Access to the property is by mainline logging road off the Nelson-Salmo highway approximately 4 kilometres south of Nelson, or by forestry road from the Highway #6, 8 kilometres west of Nelson.

The topography in the project area is moderately steep, with elevations ranging from 600 to 1800 metres. The central and western portions of the project area form a plateau, hidden from Nelson by Morning Mountain. The upper slopes of the property are covered by glacial clays and sands, which may be up to 6 metres thick on ridges, and 12 metres thick in valleys and on side hills.

Mature second growth larch, douglas fir, hemlock and western red and white cedar covers much of the property, with recent clear cut

Lloyd Geophysics

logging having removed much of this growth near the Alma N and Star mineralized zones. Atco Ltd. has plans for continued clear-cut logging on the property during 1989.

3.0 PROPERTY STATUS AND CLAIM HOLDINGS

The Great Western Star property is comprised of modified grid and 2 post claims as well as crown grants and reverted crown grants. The property contains 117 British Columbia claim units of 30 square kilometres, and is operated by Pacific Sentinel Gold Corp., under an option and joint venture agreement with Lectus Developments Ltd., and Reymont Gold Mines Ltd. Pacific Sentinel can earn a 70% direct interest in all claims comprising the project area except for the Asarco option claims in which Pacific Sentinel is earning a 35% interest.

Pertinent claim information is outlined below. Nine separate property vendors own underlying interests in the claims which range from a 1% to 5% N.S.R. The location of the project claims is depicted in Figure 3.

<u>Claim</u>	<u>Units</u>	<u>Record</u> Number	<u>Record Date</u>	Expiry
ADDIE				
Royal Arthur Josie	1 1	3634 4281	01/03/84 10/29/85	1994 1990

<u>Claim</u>	<u>Units</u>	<u>Record</u> Number	<u>Record Date</u>	Expiry
FINLAY COMPANY				
Champion CG	1	4648		07/31/89
Vicking Fr. CG	1	4649		07/31/89
Gold Leaf Fr. CG	1	12458		07/31/89
Gold Leaf #2 CG	1	12457		07/31/89
Toronto CG	1	4646		07/31/89
Alhambra Fr. CG	1	4651		07/31/89
Imperial CG	ĩ	3686		07/31/89
Eureka CG	1	5552		07/31/89
Bellerophon	1	3680		07/31/89
Florence G. CG	1	3676		07/31/89
Star CG	1	3687		07/31/89
Gerald F. Fr. CG	1	3683		07/31/89
Elkhorn CG	1	9175		07/31/89
Bob CG	1	14632		07/31/89
Alma N CG	1	9174		07/31/89
Dot CG	1	14631		07/31/89
Mayflower CG	1	3684		07/31/89
Elk CG	1	3677		07/31/89
Silverstone	1	10640		07/31/89
Bee CG	1	14630		07/31/89
Gem CG	1	14629		07/31/89
Trumpet CG	1	3678		07/31/89
Toronto Fr CG	1	4301		07/31/89
Dundee CG	1	7241		07/31/89
MS CG	1	7243		07/31/89
STAR CLAIMS				
Star #1 Fr	1	3306	07/08/83	1005
Star ± 2 Fr	1 1	3300	07/08/83	1995
Star $#3$ Fr.	1	3768	07/11/84	1995
Star $#4$ Fr.	1	3789	07/20/84	1995
ST 1	6	3769	07/11/84	1995
ST 2	2	3835	08/23/84	1995
 ST #3	2	4861	10/14/87	1998
ST #6 Fr	1	4862	10/14/87	1998

		'		
Claim	<u>Units</u>	<u>Record</u> Number	<u>Record Date</u>	Expiry
DENNY				
Muldoon CG	1	976		
Majestic RCG	1	1398	01/10/80	1991
Invincible RCG	1	1403	01/10/80	1991
Vernamo RCG	1	1404	01/10/80	1991
Republic Fr. RCG	1	1424	01/17/80	1991
Mika Chahko RCG	1	1425	01/17/80	1991
Moken Bird Fr. RCG	1	1426	01/17/80	1991
Ron #1 Fr.	1	1438	01/24/80	1992
Ron #2 Fr.	1	1439	01/24/80	1992
Ron #3 Fr.	1	1535	03/10/80	1991
Ron #4	1	1440	01/24/80	1992
Ron #5	1	1441	01/24/80	1991
Ron #6	1	1442	01/24/80	1991
Ron #7	1	1443	01/24/80	1991
Ron #8	1	3716	01/24/80	1991
Ron #9	1	3/10	03/14/84	1991
Ron #10	1	1537	03/10/80	1991
Ron #11	1	1520	03/10/80	1991
Ron #12	1	2717	05/10/00	1991
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1	3710	05/14/84	1990
$\begin{array}{c} \text{ROII} \#14 \\ \text{Don} \#15 \end{array}$	1 1	3720	05/14/84	1990
$\begin{array}{c} \text{ROII} \#15 \\ \text{Pop} & \#16 \end{array}$	⊥ 1	3840	08/28/84	1990
$\frac{1}{10}$	1	3721	05/14/84	1990
Majestic Fr.	1	3722	08/28/84	1990
Muldoon Fr.	-			
GOLD EAGLE				
Gold Eagle #3	9	1533	03/05/80	1990
ASARCO				
Birdseve	CG	L3278		07/31/89
Princeton Fr	20 20	13938		07/31/89
Gold Eagle	4	1302	10/16/79	1990
Gold Eagle #1 Fr	1	1531	03/05/80	1992
Gold Eagle #2	2	1532	03/05/80	1990
Gold Eagle #4	6	1841	08/05/80	1989
Gold Eagle #5 Fr	1	1856	08/13/80	1990
· · · · · · · · · · · · · · · · · · ·				

<u>Claim</u>	<u>Units</u>	<u>Record</u> Number	<u>Record Date</u>	Expiry
<u>ASARCO</u> (Cont'd)				
Gold Eagle #6 Fr Lady Aberdeen Minto Fr. Inverness Haddo Fr. Horsehoe Red Fr. Tregarden Fr.	1 RCG RCG RCG RCG RCG RCG RCG	1857 919 920 918 921 1307 1308 1309	08/13/80 01/22/79 01/22/79 01/22/79 01/22/79 10/22/79 10/22/79 10/22/79	1990 1992 1992 1992 1992 1992 1990 1990
BOURDON				
Hillside	6	3512	09/13/83	1997
Hilltop Fr.	1	3511	09/13/83	1997
(ex.Lot 4148)	RCG	1551	02/19/80	1998
Irene (ex.Lot 4151)	RCG	1552	02/19/80	1998
Great Eastern (ex.Lot 4152)	RCG	1553	02/19/80	1998
PLANET PROPERTY				
Juno	RCG	34	03/19/75	03/19/91
Venus	RCG	791	10/06/78	10/06/90
Orion	RCG	899	24/11/78	24/11/90
Jupiter	RCG	900	29/11/78	29/11/90
King of the Forest Kirkwall	RCG RCG	901 902	29/11/78	29/11/90
WFTR	NCG	502	23/11/70	23/11/3
		- 0000		
Thistle White Witch	CG CG	L2238 13595	owe \$59.50	07/31/89
Graat Wast Fr	CG	т <i>і 177</i> 3	OWO \$55 55	07/31/0

<u>Claim</u>	<u>Units</u>	<u>Record</u> Number	Record Date	Exp
ADDIE, ADDIE, PAL	MER			
Black Witch	CG	L4146	owe \$21.52	07/3
Tough Nut	CG	L199	owe \$59.50	07/3
AG	1	4248	10/09/85	10/0
AG 1	1	3829	07/27/84	07/2
AG 2	1	3830	07/27/84	07/2
AG 3	1	3831	07/27/84	07/2
AG 4	1	3832	07/27/84	07/2
AG 5	1	3833	07/27/84	07/2
AG 6	1	3834	07/27/84	07/2
Crow	1	4355	06/19/86	06/1
Whiskers 1	1	3926	10/09/84	10/0
Whiskers 2	1	3927	10/09/84	10/0
Whiskers 3	1	3928	10/09/84	10/0
Whiskers 4	1	3929	10/09/84	10/0
	-	222	10/00/04	10/0

LABELLE

North Star

CG

L4149

07/31/89

4.0 REGIONAL AND PROPERTY GEOLOGY

The region southwest of Nelson is underlain by Lower Jurassic Rossland Group andesite flows, agglomerates and tuffs. This Jurassic sequence of alkaline, sub-aerial intermediate volcanic rocks is intruded by numerous small stocks that are probably correlative with the mid-Jurassic Nelson Batholith, by Tertiary rhyolite and lamprophyre dykes, by Eocene Coryell alkalic intrusions, and by Jurassic Bonnington complex diorite (Figure 4).

Lloyd Geophysics

On the 30 square kilometre Great Western Star Project outcrop is limited to trenches and near old workings. The central portion of the claim group is underlain by brecciated flows, tuffs and minor epiclastic deposits described by Hoy (1989) as being part of the Jurassic Elise formation of the Rossland Group volcanics (Figure In the claim region the Rossland volcanics are cut by a one 4). kilometre wide northwest-trending zone of intense shearing. This major tectonic and mineralizing structure named the Silver King Shear System, has intensely altered the flows and tuffs in the chlorite, pyrite, iron-carbonate schists. claim region to Disseminated pyrite is ubiquitous within this zone of shearing, with auriferous quartz veins and quartz-carbonate stockworks occurring throughout this major ductile shear. In addition, wide zones of disseminated shear-hosted gold mineralization (Alma N, Gold Eagle Zones) have been discovered within the Silver King Shear System on the property.

In the western portion of the claim group, the Silver King Shear Zone is truncated by Jurassic Bonnington Complex diorite.

In the claim region Bonnington Complex diorite is intensely fractured and has undergone extensive potassic alteration characterized by the present of K-feldspar replacing plagioclase, and the original ferromagnesium minerals being replaced by fine grained biotite (Mulligan, 1952). Porphyry gold-copper mineralization is widespread within the intrusive and within the Rossland volcanics near the intrusive contact (ie. Star and Eureka, and Ron Zones).

On the east side of the Great Western Star Project area, the Rossland volcanics are intruded by the Jurassic Silver King porphyry. The Silver King stock is a plagioclase porphyry

Lloyd Geophysics

intrusion, which is associated with the emplacement of gold and base metal mineralization throughout the Nelson Mining Camp. In the Giveout Creek region of the Great Western Star project area, a 1,500 metre long zone of strongly schistose Rossland Group andesitic flows occurs at the contact of the Silver King porphyry. Disseminated and vein-controlled gold mineralization is widespread along this contact zone.

For a comprehensive description of the exploration history and the detailed underlying geology of the individual grid areas on the property namely the STAR, RON and TOUGHNUT grids the reader is referred to a summary report dated June 28, 1989 by Douglas B. Forster.

5.0 INSTRUMENT SPECIFICATIONS

5.1. Ground Magnetometer Survey Equipment

The equipment used on this survey was the OMNI PLUS field magnetometer and the OMNI 4 recording base station magnetometer both manufactured by EDA INSTRUMENTS INC., Toronto, Canada.

The system is completely software/microprocessor controlled. A portable proton precession magnetometer measures and stores in memory the total earth's magnetic field at the touch of a key. It also identifies and stores the location and time of each measurement and computes the statistical error of the reading and stores the decay and strength of the signal being measured. Throughout each survey day a similar base station magnetometer measures and stores in memory the daily fluctuations of the earth's

Llovd Geophysics

magnetic field. The use of two magnetometers eliminates the need for a network of base stations on the grid. At the end of each day the field data is merged with the base station data in the field computer and automatic diurnal corrections are applied to correct the field data, resulting in a very accurate (+/- 5nT) measurement of the earth's total magnetic field.

5.2. Induced Polarization Survey

The equipment used to carry out this survey was a time domain measuring system consisting of a Wagner Leland/Onan motor generator set and a Mark II transmitter manufactured by Huntec Limited, Toronto, Canada and a 6 channel IP-6 receiver manufactured by BRGM Instruments, Orleans, France.

The Wagner Leland/Onan motor generator supplies in excess of 7.5 kilowatts of 3 phase power to the ground at 400 hertz via the Mark II transmitter.

The transmitter was operated with a cycle time of 8 seconds and the duty cycle ratio: [(time)/time on + time off)] was 0.5. This means the cycling sequence of the transmitter was 2 seconds current "on" and 2 seconds current "off" with consecutive pulses reversed in polarity.

The IP-6 receiver can read up to 6 dipoles simultaneously. It is microprocessor controlled, featuring automatic calibration, gain setting, SP cancellation and fault diagnosis. To accommodate a wide range of geological conditions, the delay time, the window widths and hence the total integration time is programmable via the keypad. Measurements are calculated automatically every 2 to 4

Lloyd Geophysics

seconds from the averaged waveform which is accumulated in memory.

The window widths of the IP-6 receiver can be programmed arithmetically or logarithmically. For this particular survey the instrument was programmed arithmetically into 10 equal window widths or channels, Ch₀, Ch₁, Ch₂, Ch₃, Ch₄, Ch₅, Ch₆, Ch₇, Ch₈, and Ch₉, (see Figure 5). These are recorded individually and summed up automatically to obtain the total chargeability. Similarly the resistivity (ρ_{-}) in ohm-metres is also calculated automatically.

The instrument parameters chosen for this survey were as follows:

Cycle	Time (Ξ	8	seconds
Ratio	(<u>Time</u> (Time	On) Off)	=	2:	2

Duty Cycle Ratio $\frac{\text{Time On}}{(\text{Time On}) + (\text{Time Off})} = 0.5$ Delay Time (T_p) = 120 milliseconds Window Width (t_p) = 90 milliseconds Total Integrating

Time (T_{p})

= 900 milliseconds

BRGM IP-6 RECEIVER PARAMETERS

Figure 5

15

-

6.0 SURVEY SPECIFICATIONS

6.1. Ground Magnetometer Survey

The survey was carried out on lines 100 metres apart with readings taken every 12.5 metres.

6.2. Induced Polarization Survey

The configuration of the POLE-DIPOLE array used for the survey is shown below:

On the TOUGHNUT Grid the current electrode C_1 was SOUTH of the potential measuring dipole P_1P_2 . Here the lines were 100 metres apart and measurements were taken for x = 50 metres and n = 1, 2, 3 and 4.

On the RON Grid (western part of the STAR Grid) the current electrode C_1 was WEST of the potential measuring dipole P_1P_2 . Here the lines were 200 metres apart and measurements were taken for x = 50 metres and n = 1, 2, 3 and 4.

The dipole length (x) is the distance between P₁ and P₂ and determines mainly the sensitivity of the array. The electrode separation (nx) is the distance between C₁ and P₁ and determines mainly the depth of penetration of the array.

7.0 DATA PROCESSING

The data collected was processed in the field at the end of each survey day using a portable Compaq 286 computer and an Epson printer.

Using appropriate software, the magnetic field data was corrected for diurnal variations by merging it with the base station magnetic data. For integrity checks and for a quick review of anomalies, the final corrected magnetic data was plotted out in profile form on the printer.

The IP pseudo-sections were plotted out in the field and contoured using in-house software based on the mathematical solution known as kriging.

In the office the data was transferred to mylar using a Compaq 386 computer coupled to either a Hewlett Packard Draftsmaster II Plotter or a DL2400 Fujitsu Printer for the preparation of the final pseudo-sections and contour plan maps.

8.0 DATA PRESENTATION

The data obtained from the survey described in this report are presented on 13 pseudo-sections and 5 contour plan maps as follows:

TOUGHNUT GRID

Pseudo-Sections

Line No.	Dwg. No.
600W	89291-1
500W	89291-2
400w	89291-3
300w	89291-4
200W	89291-5
100W	89291-6

Contour Plan Maps

Chargeability N = 1 89291-7 with Interpretation 89291-8 Resistivity N = 1 89291-8 Total Field Magnetic Contours 89291-9

RON GRID

Pseudo-Sections

Line No.	Dwg. No.
800N	00201 10
1000N	89291-10
1200N	89291-12
1400N	89291-13
1600N	89291-14
1800N	89291-15
2000N	89291-16

<u>Contour Plan Maps</u>

Chargeability N = 1	89291-17
with Interpretation	

Resistivity N = 1 89291-18

9.0 DISCUSSION OF RESULTS

An IP response depends largely on the following factors:

- 1. The volume content of sulphide minerals
- 2. The number of pore paths that are blocked by sulphide grains

- 3. The number of sulphide faces that are available for polarization
- 4. The absolute size and shape of the sulphide grains and the relationship of their size and shape to the size and shape of the available pore paths
- 5. The electrode array employed
- 6. The width, depth, thickness and strike length of the mineralized body and its location relative to the array
- 7. The resistivity contrast between the mineralized body and the unmineralized host rock

The sulphide content of the underlying rocks is one of the critical factors that we would like to determine from field measurements. Experience has shown that this is both difficult and unreliable because of the large number of variables, described above, which contribute to an IP response. The problem is further complicated by the fact that rocks containing magnetite, graphite, clay minerals and variably altered rocks produce IP responses of varying amplitudes.

A detailed study has been made of the pseudo-sections which accompany this report. These pseudo-sections are not sections of the electrical properties of the sub-surface strata and cannot be treated as such when determining the depth, width and thickness of a zone which produces an anomalous pattern.

From this study the anomalies selected are shown on the individual pseudo-sections and are classified into 4 groups. These are definite, probable and possible anomalies and anomalies which have a deeper source.

This classification is based partly on the relative amplitudes of the chargeability and to a lesser degree on the resistivity response. Of equal importance in this classification is the overall anomaly pattern and the degree to which this pattern may be correlated from line to line, provided of course that the correlation is not so extensive along strike, to most probably represent only the subcrop of a geological formation.

THE TOUGHNUT GRID

The results obtained and the trenching and drilling recommendations on the 1988 data are described in a report to Lectus Developments Limited by the present writer (Lloyd October 1988 pages 14 to 17).

In 1989 the IP survey was extended for another 600 metres in a northwesterly direction and a ground magnetometer survey was completed over both the 1988 and the 1989 grids.

The 1989 IP survey extended both the SOUTHERN and NORTHERN zones for another 600 metres to the northwest. The overall characteristics or signatures of both zones remain similar (Lloyd, October 1988 pages 13 and 14).

The 1989 IP survey detected 2 additional zones.

The first new zone (ZONE A) lies immediately north of the NORTHERN ZONE with its axis extending from about 750N on line 600W to about 725N on line 300W. It correlates well with a sharp magnetic response of about 500nT above background.

The second new zone (ZONE B) lies immediately south of the SOUTHERN ZONE with its axis extending from about the baseline on line 600W to about 075S on line 400W.

All four IP zones remain open to the northwest with the NORTHERN and SOUTHERN ZONES merging on the southeastern edge of the grid and remaining open in that direction.

There is little or no positive correlation between either the NORTHERN or SOUTHERN IP zones and the magnetic data, however, a vague linear strike direction in the magnetic data is roughly subparallel to and lies near the flanks of certain portions of both the NORTHERN and SOUTHERN IP zones. Of the two new IP zones, Zone A correlates well with a sharp magnetic response of about 500 nT above background whereas Zone B has a somewhat broader less well defined magnetic response along its south flank.

THE RON GRID

The IP survey detected three zones of increased chargeability, designated C, D and E on Dwg. No. 89291-17.

ZONE C has a strike length of at least 600 metres from about 1650W on line 800N to about 1750W on line 1400N. The zone has a maximum chargeability of 38.7 milliseconds over a background of about 15 milliseconds and correlates well with a resistivity low. It

Lloyd Geophysics

remains open along strike south of line 800N. This zone is strongly recommended for trenching and for drilling.

ZONE D has a strike length of at least 200 metres from about 2500W on line 1600N to about 2500W on line 1800N. It may be truncated by a fault and appear again on line 2000N at about 2350W. There is, however, conflicting evidence for this interpretation since the zone is associated with well defined resistivity lows on lines 1600N and 1800N but not on line 2000N. The zone has a maximum chargeability of 29.0 milliseconds over a background of about 10 to 15 milliseconds. This zone is strongly recommended for trenching and/or drilling.

ZONE E has a strike length of at least 1000 metres from about 2200W on line 800N to about 2200W on line 1800N. It may be truncated by a fault and appear again on line 2000N at about 1950W. It has a less well defined signature than Zone C and therefore a lower priority for trenching and drilling.

No ground magnetometer survey was carried out over this grid.

10.0 CONCLUSIONS AND RECOMMENDATIONS

From a study of the IP and magnetic data described in this report it has been concluded that anomalies detected on both the TOUGHNUT and RON Grids are worthy of further exploration by trenching and diamond drilling.

10.1. The Toughnut Grid

The following recommendations were made in a report to Lectus Developments Limited by the writer in 1988 (Lloyd October 1988).

SOUTHERN ZONE

	Trench			
Line No.	From	<u>To</u>		
0+00	80N	160N		
1+00E	100N	180N		
2+00E	150N	225N		

If the trenching is successful the following drilling is recommended to test below the trenches:

SOUTHERN ZONE

Hole	Line	<u>Collar</u>	Angle	Direction	Length
<u>No.</u>	No.	<u>Location</u>			Of Hole
1	0+00	100N	-45°	Drill from S to N	70m
2	0+00	50N	-45°	Drill from S to N	120m
3	0+00	B.L.	-45°	Drill from S to N	180m
4	1+00E	125N	-45°	Drill from S to N	60m
5	1+00E	75N	-45°	Drill from S to N	110m
6	1+00E	25N	-45°	Drill from S to N	165m

NORTHERN ZONE

ZONE A

	Tre	nch
Line No.	From	<u>To</u>
1+00E	415 N	485N
2+00E	385N	460N
3+00E	365N	435N

If the trenching is successful the following drilling is recommended to test below the trenches:

Hole	Line	<u>Collar</u>	Angle	Direction	Length
<u>No.</u>	No.	Location			<u>Of Hole</u>
7	2+00E	400N	-45°	Drill from S to N	65m
8	2+00E	350N	-45°	Drill from S to N	115m
9	2+00E	300N	-45°	Drill from S to N	170m
10	3+00E	375N	-45°	Drill from S to N	70m
11	3+00E	325N	-45°	Drill from S to N	120m
12	3+00E	2 7 5N	-45°	Drill from S to N	18 0m

The following recommendations are based on the new 1989 data:

	<u>T</u>	rench
Line No.	From	<u>To</u>
500W	700N	800N
600W	700N	800N

If the trenching is successful the following drilling is recommended to test below the trenches:

Length				tion	Direc	<u>Angle</u>	<u>Collar</u>	<u>Line</u>	<u>Hole</u>
Of Hole							Location	No.	<u>No.</u>
140m	N	to	S	from	Drill	-45°	650N	500W	13
100m	N	to	S	from	Drill	-45°	700N	500W	14
80m	N	to	S	from	Drill	-45°	750N	500W	15
140m	N	to	S	from	Drill	-45°	650N	600W	16
100m	N	to	S	from	Drill	-45°	700N	600W	17
80m	N	to	S	from	Drill	-45°	750N	600w	18

ZONE B

		Trench
Line No.	From	To
500w	50N	50S
600w	50N	100s

If the trenching is successful the following drilling is recommended to test below the trenches:

<u>Hole</u>	<u>Line</u>	<u>Collar</u>	Angle	Direction	Length
<u>No.</u>	No.	<u>Location</u>			Of Hole
19	500W	0755	-45°	Drill from S to N	120m
20	500W	0255	-45°	Drill from S to N	100m
21	500W	025N	-45°	Drill from S to N	80m
22	600W	125S	-45°	Drill from S to N	120m

<u>Hole</u> No.	<u>Line</u> No.	<u>Collar</u> Location	<u>Angle</u>	Direction	<u>Length</u> Of Hole
23	600W	0755	-45°	Drill from S to N	100m
24	600W	025N	-45°	Drill from S to N	80m

Finally, all four zones remain open along strike to the northwest and the NORTHERN and SOUTHERN zones merge and remain open along strike to the southeast.

10.2. The Ron Grid

The 1989 RON Grid lies approximately 4.5 kilometres northwest of the TOUGHNUT Grid. The area lying immediately between these two grids was partially covered by a ground magnetometer survey and an IP Survey in 1984. The IP coverage was extended to complete the intervening grid in 1988. This work has been described in 2 reports to U.S.Borax And Chemical Corporation by the present writer (Lloyd October 1984; Lloyd November 1988). Trenching and drilling is recommended on the 1989 IP survey as follows:

ZONE C

Line No.	Trench					
	From	To				
800N	1600W	1700W				
1200N	1725W	1850W				

If the trenching is successful the following drilling is recommended to test below the trenches:

Length			on	Direct	<u>Angle</u>	<u>Collar</u>	Line	<u>Hole</u>
<u>Of Hole</u>						Location	No.	<u>No.</u>
140m	Е	to	rom W	Drill	-45°	1750W	800N	25
100m	E	to	rom W	Drill	-45°	1700W	800N	26
80m	E	to	rom W	Drill	-45°	1650W	800N	27
140m	E	to	rom W	Drill	-45°	1900W	1200N	28
100m	Ε	to	rom W	Drill	-45°	1850W	1200N	29
80m	E	to	rom W	Drill	-45°	1800W	1200N	30

ZONE D

	Trench					
Line No.	From	To				
1600N	2450W	25 7 5w				
1800N	2425W	25 7 5w				

If the trenching is successful the following drilling is recommended to test below the trenches:

<u>Hole</u>	Line	<u>Collar</u>	Angle	Direction	Length
<u>No.</u>	No.	Location			Of Hole
31	1600N	2600W	-45°	Drill from W to E	130m
32	1600N	2550W	-45°	Drill from W to E	90m
33	1600N	2500W	-45°	Drill from W to E	70m
34	1800N	25 7 5W	-45°	Drill from W to E	130m

<u>Hole</u> No.	Line No.	<u>Collar</u> Location	Angle	Direction	<u>Length</u> Of Hole
35	1800N	2525W	-45°	Drill from W to E	90m
36	1800N	2475W	-45°	Drill from W to E	70m

Two strong anomalous zones were also detected on line 2000N, the most northerly line on the grid. These zones should be closed off if claim holdings permit.

The width of the zones as interpreted from the IP data are considerably wider than the target sought, however, these wider zones may represent an envelope of disseminated pyrite around shear zone vein systems and may contain low grade gold.

> Respectfully Submitted, LLOYD GEOPHYSICS LIMITED

Formphoyd

John Lloyd, M.Sc., P. Eng. President

Vancouver, B.C. October, 1989

APPENDICES

-

Lloyd Geophysics

(A)

BIBLIOGRAPHY

- Cockfield, W.E. 1936: Lode Gold Deposits of the Ymir-Nelson Area, British Columbia. GSC Memoir 191
- Dasler, P.G. 1987: Summary Report on the Great Western Property for Lectus Developments Ltd., Internal Company Report
- Forster D.B. June 28, 1989: Summary Report on the Great Western Star Gold-Copper Project for Pacific Sentinel Gold Corp.
- Hoy, T and Andrew K. 1989: The Rossland Group, Nelson Map Area, SE B.C., BCMEMPR Fieldwork, Paper 1981-1
- Kaufman M. 1987: USB Star Project Summary Report 1984-1987. Internal Memorandum
- Lloyd J. October 1984: A Geophysical Report on a Ground Magnetometer and Time Domain IP Survey on the Star Prospect, Nelson, B.C., for U.S.Borax and Chemical Corporation
- Lloyd J. October 1988: A Geophysical Report on an IP Survey; Toughnut Property, Nelson, B.C., for Lectus Developments Ltd.
- Lloyd J. November 1988: A Geophysical Report on an IP Survey, Star Prospect, Nelson, B.C., for U.S. Borax And Chemical Corporation
- Mulligan R. 1952: Bonnington Map Area British Columbia. GSC Paper 52-13
- Salazar S.G. Sept 27, 1985: Assessment Report on the Great Western Group of Claims for Lindex Explorations Ltd.
- Salazar S.G. February 28, 1987: Report on the Great Western Project (Gold) for Lectus Developments Ltd.
- Salazar S.G. July 14, 1987: Report on the Great Western Project (Gold) for Lectus Developments Ltd.
- Salazar S.G. October 28, 1987: Letter Report to Roy W. Robinson, Lectus Developments Ltd. Discussion of 1987 Field Season Results.
- Salazar S.G. and Beauchamp D. 1988: Report on Great Western Project (Gold) for Lectus Developments Ltd.

PERSONNEL EMPLOYED ON SURVEY

Name	<u>Occupation</u>	Address	Dates
J Lloyd	Geophysicist	LLOYD GEOPHYSICS LIMITED #1110-625 Howe Street Vancouver, B.C. V6C 2T6	Oct. 23 - 26, 1989
D Hall	Geophysicist	11	July 27- Aug 6/89
D Klit	Geophysicist	11	July 27- Aug 6/89
T Ballantyne	Geophysicist	11	July 27- Aug 6/89
B Waddington	Geophysical Technician	"	July 30- Aug 3/89
C Pearson	Helper	'n	July 27- Aug 6/89
A Lloyd	Helper	υ.	July 27- Aug 6/89
J Zondag	Typist	"	Oct 25- 26, 1989

(B)

COST OF SURVEY AND REPORTING

Lloyd Geophysics Limited contracted the IP data acquisition on a per diem basis and the magnetic data acquisition on a per kilometre basis. Room and board, truck charges, data processing and computer plotting, map reproduction, interpretation and report writing were extra. The breakdown of these costs is shown below:

\$ 18,954.50
2,482.03
1,332.97
1,800.00
390.00
1,350.00

Total Cost

\$ 26,309.50

(C)

Certification

I, John Lloyd, of 1110-625 Howe Street, in the City of Vancouver, in the Province of British Columbia, do hereby certify that:

- I graduated from the University of Liverpool, England in 1960 with a B.Sc. in Physics and Geology, Geophysics Option.
- I obtained the diploma of the Imperial College of Science and Technology (D.I.C.), in Applied Geophysics from the Royal School of Mines, London University in 1961.
- 3. I obtained the degree of M.Sc. in Geophysics from the Royal School of Mines, London University in 1962.
- 4. I am a member in good standing of the Association of Professional Engineers in the Province of British Columbia, the Society of Exploration Geophysicists of America, the European Association of Exploration Geophysicists and the Canadian Institute of Mining and Metallurgy.
- 5. I have been practising my profession for over twenty-five years.

Vancouver, B.C. October, 1989

John Lloyd, P. Eng.

•

. -

			1 · *			·····
			2			
			· · · · · · · · · · · · · · · · · · ·			
			1			3000 2500
:						
i						
i					N = 1	2685.
			,			/ /
			•		N = 2	/ 1990.
:			, , ,		N - 3	
			-		N - 5	
			1			
			1		N = 4	
			,			
1 -						
;						
			:			
i			i			
i			•			3005 2505
i						
					N = 1	6.2
						,
1		т. г			$\dot{N} = 2$	4.2
i i i i i i i i i i i i i i i i i i i						
					N = 3	
1					N = 4	
	•					
						an a
						an mar ta mar again a ta fan ama da an ana an a
				× .		the second se

	ſ)	ł]	1	ļ						- 1
								2053 2069 2006	2053	1862 1758 1597 1586	2065 2422 2277 7160	2500 2604 2366 2310	2337 - 2195 - 2529 - 2313	2042 2348 2259 005Z - 3270	14 80 1631 1727 1821
	2126 2256 2407	2222 23 5 9 2153	2178 21(8 2167	1829 1869 1905				1901 1978 1998	2073 2073 2000 1934	1750 1724 1761	2103 2049 1960	1741 1587 1265	1656 1656 150 1002	2192	
_	2049 2251 2647 2500 2432	2145 2594 2395 2243	2096 2071 1990	1939 1954 2251				- 1867 - 1842 - 1746 - 16 81	- 1948 - 1803 - 1735 - 1808	- 1752 - 1871 - 1731 - 1944 - 000	1894 0 z - 2049	1861 2030 1979	2520 2520 2600 	2516	2972 2950 30 2060 77725
	2385 2299 220 2366	1946 1800 2553 2553	859 20402000 0002 216D	2338 2172 2093				+ 1620 + 1652 + 1756 + 1960	+ 1811 1915 1911 1743	- 1954 - 1856 - 2033 - 1899	<u> 2128 1842 1734 1955 195 </u>	1930 1645 1346 1905 1	- 1811 1903 1918	2828 2432	2752 2980 2516 7 - 2187
	2031 2051 2291 2655 250	2568 2584 7379	1864 C 11337 7181 7181	1361 9569			1885 1769 1772	- 2008 - 1845 - 1694 - 1607	159D 1828 1848 1848	2177 2013 1783 1783	2111 2062 2054 1961	2154 2330 2200 + 2412	2740 - 2799 - 2699 - 2265 - 21	2218 7645 2985 000 2510	-2459 -2287 -2403 -2303
	3106 2856 -2293 2070	2649 2649 2328	2984) 2014 23925	1734 1999 27402	1597 1674 1761		- 1744 - 1718 - 1639	- 1787 - 1695 - 1647	1699 1699 1699 1710 1710	1912 1736 1595	1933 1933 1758 1954	2 0 6 2050 1828 1913	278 JRo 278 JRo 2703 2350 2350	2163 2163 1986 2040	2639 5 2075 2075
	2078 2033 1962 0002 < 2085 2000	21130 1782 2171 2082	2141 2273 2411 2741		02 02 1936 1510		1522 1567 1635	+ 1604 + 1584 + 1634	1992 1829 1658 1500,448	2423 2000 22239	10/1 1685 1903 2052	2358	2353 2251 2251 2251	2063	2372 2372 2069 1902
	2092	1940 1871 2037 1949	2900	2700 31169 2864 7790	27962 22480		1372 1221 1290	+ 1535 1547 1547 1514	-1500 - 1467 -1844 -1914	1571 1868 1895 1904	- 1838 - 1845 - 1750 - 1621	1923 1742 2081 2095	2372 1995 1995 1900	2112 2098 1971	- 1926 - 2027 - 2254 - 2234
	2109	20159	3075 000 8058 3085	E 3048 3372 3281 (353)	2672 7417 1974		722.30 7012 833 BD 27149	1748 12038 27503	1580 1836 1767	2000 - 1904 1871	2048 1680 1591	1815 1957 1955 2027	2088 2236 1735	2200 22403 22436 +27247	- 1907 - 2014 - - 2024 - 2024
	2172 2095 1984	2076 2016 2143	2442 2559 2152 7152	3315 0 0	2235 2015 2015 2015		2518 2500 2261 1891	2296 2040 3352 27500	2482°2 2410 2218 10000	21262 206 1495 2127 2272/	1055 2129 2232	2197 2558 0052 2881	2030 2258 2331 2145	-2133 -2147 -2154 -2070	2000 - 1882 - 2048 - 2048 - 2083 - 1776
	2003	2765 2716 25 2502	2314 000	785 785 7964 7964			1884 1825 1628	2004 1442 > 1983	1751 1799 1717		1669 1647 1731	0 ² 2098 2098 25013 2500 2500	2140 2183 2138 2000 - 1890	214D 2112 2012 1959	1992 2157 (600
	2358 2388 2196 1970	+ 2448 - 2445 - 2372 - 2400	2392 2555 2332 2694	2986 27624			2011	2468 1918 1918 2088		2515 2515 0 0 g 2351 2759	2207 2207 0101872 2478	2088 1791 1664	2003 2061 1965 1997	2191 2242 7321 2418	
	+ 20029 + 20053 - 2053 - 2151	2705 235 2609 2466	+ 2729 + 2753 + 2780 2780 2869	2393 2297 2071 2172	2500 - 2664		2248 2248 2495	+2154 +1896 +1800 +1771	2384 2222 2253	2417 1848 - 1848 - 2000 - 2323	- 1837 - 1837 - 00016446 - 2423	- 0002 - 1960 - 2287 - 1701 - 1616	- 223 - 2049 - 2135 	2257 2299 2289 1871	1912 1833 1888 1933
	2051 1955 2049 2199	2 2584 2592 2520 2121	2885 2214 207 2257	2277 2297 2290 23800 -	2453 2413 2557 2783		1933 4650 6 d 9/7 - 21/28	2093 2095	22425 2280 2214 7065	2549 2737 2549	183/ 1564 1712 2077	1525 005 1977 222000 1774	1731 1394 1550 1644	■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	- 1714 1254 - 1810 1502
	2059 2204 2016	2033 2262 2309 2024	2098 2064 2164 2147	25800 2398 sz - 2750 2750	2709		2638 3005 2690	2187 2780 2998	1938 1938 1514 1501	2836 2179 2179 2137 2137	2493 2358 2195		1744	1622 1639	1445 1452 (1452 (
	1919 1919 1890 2006 000 ²	2137 2029 2094	2301 2253 2448	2257 2257 2296 0052 2683	2121 2294 2127 2063		2799 3058 2728 2936	2058 2971 23530	118 11902 2309 2309	2405	2700 2700 2005 2906	2093 2462	- 2169 - 2181 - 2181 - 2093	1514	1410 - 1299 1408 1615
	2160 2000 1942 2042 2402	2017 1838 2040° 0 2 -2188	2418 1994 1874 1874	2506 27599 7597 2695	2979 22552 2979 22557	$\mathbb{D}(\mathbb{C}$	3249 2551 2155 2355	3094 2092 30040 c 3652	2352 2698	2176 2259 2258 2394	2616 2012	2654 2730 2658	2744 2267 2674 2591	1596 1610 1712 1712	- 1764 - 1 808 - 1734 - 1624
 	2203	2174 2195 2084	2080 1280 1776 1895	2039 2028 22273 22273	2515 2337 2095		2645 2438 2500 2197 2201	2414 22410 2733 2479	2735 2633 2456 7261	2339 2500 2624 2634	218t 2230 2030 1893	2958 2618 2748 2105	27759 2567 2537 2599	1434 1991 2291 2000 2000	- 1546 - 1561 - 1782 - 1788/
_	2023 2000 1821 1757	2125 1854 2002	1865 1865 1810 1740	2000 - 1957 - 1748 - 1806	- 1964 - 1964 - 1921 - 1762 - 1000		2159 1927 1916	- 2247 - 2237 - 2257	- 2249 - 2232 - 2148	2920 2773 2773 2773 275000 235000 235000	2164 22402 2383	2082 2082 2121	2500 2550 2550 2550		1806 1806 1931
	1667 1678 1558	1969 1821 1641	+ 1770 + 1735 + 1752 + 1745	- 1780 - 1800 - 1683 - 1683	- 1750 - 1763 - 1763 - 1804	0002	1994 2561 2793	2130 2036 2207 2264	2015	1358 1358	2982 2507 27607	2/146 2288 2753 2752	2332 22224 2028 2036	- 2293 - 2390 - 2342 - 2250	2100 2194
	+ 1504 + 1570 + 1493 + 1367	- 1730 - 1662 - 1540 - 1522	- 1757 - 1742 - 1784 - 1920	+ 1849 + 1850 + 1776 + 1722	1978 1978 1888 2197		2568 2349 2366 2625 00 <u>52</u>	2101 2021 1829 00 02 214	2007 1984 2210 2062		2389 2389 2399 2298	2/31 2560 2289 72140	2336 22559 2814 2814	2140 2174 2174 2111 2077	2342 1981 1977 - 2406
	1274 1368,5 1 (81	1724 1798 1739 1704	- 1892 - 1812 - 1712 - 1757	1701 1715 1846 1939	-2135 -2044 			3586 3510 357 3565	2005 7200 23375 23375	2020 0003 2644 2783	- 2527 - 2527 - 2314 	2242 2160 2373 20154	2121 22241 2298	2351 2207	2027) 2150 2170 2140
	1422 1326 1370 2155	1704 1904 1812 7215	- 1885 - 1975 - 1928	- 1836 - 1954 - 2048 - 2055	0002 1911 22467 72277		2863 28771 2737	3040 0 3040 0 2993 3039	3514 2796 2343 3649	2187 2728	20099 ² 2295 2386	25500 2481 22500 2481 2242	2305 2330 7746	2110 2110 0002 2114	
	7224a 7083 1785 770	- 250 2458 - 2364 - 2149	2233 2297 2375	+ 2152 2201 + 2245 + 2245	- 2056 - 1678 - 1767 - 23 95	0002	27255 2718 2525	2864 2952 2302 2701	1147 7252 250 7891 00 1792	0 2694 0 2627 7621 2115	2295 2295 0002 2113	- 2125 - 2247 - 2404 - 2525	20 <u>53000</u> 2753 2394 2145	2710 2710 3132	2 2197 2197 2279 2279 2279
	1693 1508 1529 0 0 54	1586 1586	2401 215 25598 222 30 2230 2187	2282 2462 0 0 1939 21 32	2148 2041			2974 3084 2361	2875 2339 2748 7221	2037 2446 2325 2093	2263 2500 2500 2431	2199 1984 • d 949 2340	-2135 -2251 -2240 	2806 7301 2300 2300 2369	3000 72504 72504
	- 1563 - 1568 - 1616	1666 1571 1776 1627	2097 2006 1853	- 2035 - 1896 - 1998 - 2007	2089 2274			3201 3919 500 2569 2421 2210	24 05 2888 2369 220t	2550 - 2703 - 2550 - 2007	2193 231 2313	2351		2192 1980 2123	2341 2878 2350
	1579 1571 1511 1 5 0 0 1543	1622 1573 1528	2202 2118 2257	2005 2225 250 2459	2125 2125 2129 2020		2757 2500 2173 4973	2192 2166 2217	2733 2591 2500 2300	2615 2522 2424	1882 7206	H 16	2731 2731 2731	2232	- 1948
	1612 1450 1545	1410	206 2130 2061 2153	+2454 -2222 -2501 -2387	2559 2275 2 0 7 2023 1807		2107 2204 1974	+ 2237 + 2177 + 2112 + 2125	+ 2332 + 2297 - 2190 - 2318	+2543 2526 2321 -2208	2618 2678 2619 2564	2409 2306 2499 2499	2199 2254	2331 2331 22923 2492	+ 2303 + 2271 - 2347 - 2596 c
								2117 2062 2016 0 0 0 2 - 1901	1973 9861 1939 2564	2212 2316 2053 2487	2526 2497 2804 2674	2007 2203 2007 2203	2433 2355 2322 2457	- 1638 - - 1638 - - 2135 - 0002 - - 2550	2394 2114 2002 2102 2102
								2122 2534 2804 - 2024	2585 2654 2785 28C	-Z328 -2533 -2680	25 <u>0</u> 0 <u>427</u> - 2243 - 2247 - 2247 - 2326	2162 2324 2450 2439	2525 2518 2565 2565	2045 2297	2443
								3306 2931 3000 2908	2933 3097 2922 2777	2500 214 3380 3000 3000	2351 2306 2357	- 2349 - 2397 - 2358	- 2333 - 2333 - 2321 - 2439	2243 2265 2518	
								+ 2634 2893 + 2927 - 2999	2500 +2390 +2391 +2372	2860 - 286 - 2833 - 2689	+2182 +254 +2512 +2512 +2372	+ 2512 - 2459 0 0 s z - 2576 - 2844	+ 2453 - 2371 - 2288 - 2349	2500 + 2562 2451 2451 -2756 -2756	+2285 +2268 +2138 +1904
								¥ _{28/9} / / /	1 ₂₄₂₅	⊥ ₂₆₃₉		2551	12216		//// 1 ₁₉₂₂

)

-

L 800 E	1050 N	
1442	1000 N	
1664 1805 2104 2241		
2420 2556 2497 2339		
2535 2581 2785 2551 2313		
2393 2483 2434 2287	800 N	
2315 2436 2486 2187	750 N	
2164 2227 2092 2145	700 N	
2089 2151 2160 2116	650 N	
- 2128 - 2137 - 2039 - 2018	600 N	
> 1974 1960 > 2017 z 2050	550 N	
2032 1981 1962 1911	500 N	
1902 1907 1874 1598	450 N	
1399 1511 1261 1330	400 N	LEGEND
+ 1279 1447 1500 1566 1108	350 N	CONTOUR INTERVALS
1023 776 2049 2322	300 N	100 nT 500 nT
1921 1722 1849 1576	250 N	2500 nT BASE LEVEL OF 55500 nT REMOVED FROM ALL READINGS
1297 1594 1900 3026	200 N	INSTRUMENT
2767 2566 2274 2371 2282	150 N	EDA OMNI PLUS EDA OMNI IV BASESTATION
2177 2304 2174 2082	100 N	GEOLOGICAL BRANCH ASSESSMENT REPORT
2002 1692 2085 2280 2355	50 N	10100
2113 2111 2110 2579	BL O	
2803 2690 2626 2186	50 S	
1986 2384 2679 3446	100 S	To Accompany a Report by
3259 2941 2539 2098	150 S	JOHN LLOYD M.Sc., P. Eng. September 1989
2141 2137 1968 1914	200 S	SCALE 1 : 2500 50 0 50 (metres) 100 150 200
2496 2047 2273 1798	250 S	
2309 2677 2870 2082	300 S	PACIFIC SENTINEL GOLD CORP.
1692 2353 2628 2564	350 S	TOUGHNUT PROPERTY Nelson Mining Division
2341 2266 2117 2110		Nelson, British Columbia
2000 1952 1786 2055	450 S	TOTAL FIELD MAGNETIC CONTOURS
) / 72100	500 S	NTS 82 F/6
$\int \int \frac{1}{2164}$		Map Scale 1 : 2500 Drawing : 89291-9

850 N		
000 11		
800 N		
750 N		
		H .
700 N		
650 N		
550 N		\mathbf{N}
500 N		
		GEOLOGICAL BRANCH ASSESSMENT REPORT
450 N		
400 N		10/10/
400 H		
350 N		LEGEND
		INDUCED POLARIZATION SURVEY
300 N		POLE-DIPOLE ARRAY
250 N		DIPOLE SEPARATION : 50 METERS
	CL	JRRENT ELECTRODE SOUTH OF POTENTIAL DIPOLE
200 N		CONTOUR INTERVALS
	an a	250 OHM-M
15U N		2500 OHM-M
100 N		
50 N		
BL_ 0		
50 S		
100.0		
		To Accompany a Report by
150 S		JUHN LLUYD M.Sc., P. Eng. September 1989
200 S		SCALE 1 2500 50 0 50 (metres) 100 150 200
250 S		
		PACIEIC SENTINEL COLD CORP
	a An an	TACHTO SENTINEL GUED CONT.
350 S		TOUGHNUT PROPERTY 88 & 89
000 0		Nelson Mining Division
400 S		Nelson, British Columbia
		RFSISTIVITY N = 1
450 S		
500 s		NTS 82 F/6
		Map Scale I: 2500 Drawing : 89291-8
		LLOYD GEOPHYSICS LIMITED
	· · · ·	

Ass in	•	· .		
and - 200 H - 200 H			1	
$\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	300 E			
	/T ^{7.9}			
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$		900 N		
43	-7.4			
	- 6.6			
-750 H -750 H -750 H -55 H -56 H		800 N		
	-6.0	750 N		
	+5.2	/ 30 N		
		700 N		
	-5.1	но се 1		
		650 N		
	- 4. b	600 N		
-50 N 53 50 N 54 50 N 54 55 50 N 55 55 55 55 55 55 55 55 55 55 55 55 5	- 4.0			
		550 N		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} -60 \text{ N} \\ -50 \text{ S} \\ -$	+5.5			GEOLOGICAT BRANGE
$\begin{array}{c} -60 \text{ N} \\ -50 \text{ S} \\$	-5.7			ASSESSMENT REPORT
LICE LICENTIAL CONTOUR INTERVALS 		450 N		101.00
A3 A3 A3 A43 A44 A45 A45 A45 A45 A45 A45 A45 A45 A45	- 6. 4			
	6.9	400 N		
222 INDUCED POLARIZATION SURVEY _300 A POLE-DIPOLE ARRAY 33 DIPOLE SEPARATION : 50 METERS _250 H CURRENT ELECTRODE SOUTH OF POTENTIAL DIPOLE 33				LEGEND
	-7.2			INDUCED POLARIZATION SURVEY
DIPOLE SEPARATION : 50 METERS 		300 N		POLE-DIPOLE ARRAY
LURRENT ELECTRODE SOUTH OF POTENTIAL DIFUCE LORRENT ELECTRODE SOUTH OF POTENTIAL DIFUCE LIC LINE CONTOUR INTERVALS LIC LINE CONTOUR SOUTH OF ANOMALOUS CHARGEABULTY ZONES AS DERIVED FROM PSEUDOSECTIONS N = 1 TO 4 LIC LINE CONTOURS AS DERIVED FROM PSEUDOSECTIONS N = 1 TO 4 LIC LINE CONTON SOUTH OF ANOMALOUS CHARGEABULTY ZONES AS DERIVED FROM PSEUDOSECTIONS N = 1 TO 4 LIC LINE CONTON SOUTH OF ANOMALOUS CHARGEABULTY ZONES AS DERIVED FROM LIC LINE CONTON SOUTH OF ANOMALOUS CHARGEABULTY ZONES AS DERIVED FROM Nelson British Columbia LIC LINE CONTON SOUTH OF ANOMALOUS LIC LINE CONTON SOUTH OF ANOMALOUS CONTACTORS IN A CONTON SOUTH OF ANOMALOUS CHARGEABULTY IN = 1 NTS 82 F/6 Nep Scale 1 : 2500 Drawing : 89291-7 LICOYD GEOPHYSICS LIMITED	-9.0	250 N	0	DIPOLE SEPARATION : 50 METERS
	- 9.5			JRRENT ELECTRODE SOUTH OF POTENTIAL DIPOLE
11.2 1.3 NGCC 11.3 1.3 SUPPACE FROMESC 11.3 1.3 SUPPACE PROJECTION OF ANOMALOUS CHARGEABILITY ZONES AS DERIVED FROM PSEUDOSECTIONS N = 1 TO 4 11.7 Image: Suppace Projection of Anomalous Chargeability Zones as Derived From PSEUDOSECTIONS N = 1 TO 4 11.7 Image: Suppace Projection of Anomalous Chargeability Zones as Derived From PSEUDOSECTIONS N = 1 TO 4 11.7 Image: Suppace Projection of Anomalous Chargeability Zones as Derived From PSEUDOSECTIONS N = 1 TO 4 11.7 Image: Suppace Projection of Anomalous Chargeability Zones as Derived From PSEUDOSECTIONS N = 1 TO 4 11.7 Image: Suppace Projection of Anomalous PSEUDOSECTION N = 1 TO 4 11.7 Image: Suppace Projection of Anomalous Prosted Projection of Anomalous Projection of Anomalous Projec		200 N	•	CONTOUR INTERVALS
IRA	+ 10.2	150 N		1.0 MSEC
	- 18.4			25.0 MSEC
12.3 CHARGEABLITY ZONES AS DERIVED FROM PSEUDOSECTIONS N = 1 TO 4		100 N		SURFACE DROJECTION OF ANOMALOUS
II.7	- 17.3	50 N		CHARGEABILITY ZONES AS DERIVED FROM PSEUDOSECTIONS N = 1 TO 4
	- +11.7	00 m		DEFINITE
13.3 		BL 0		
	- 13.3			MININI POSSIBLE
	12 a	50 S		••••• AT DEPTH
<td< th=""><th>1</th><th>100 S</th><th></th><th>To Accompany - Desire L</th></td<>	1	100 S		To Accompany - Desire L
	9.9			JOHN LLOYD M.Sc., P. Eng.
	7 4	150 S		September 1989
5.4 	1.1	200 S		SCALE 1 : 2500
250 s 5.3 300 s 6.9 350 s 8.2 400 s 5.7 450 s 6.9 450 s 6.9 Map Scale 1 : 2500 Drawing : 89291-7 LLOYD GEOPHYSICS LIMITED	-5.4			ou o 50 (metres) 100 150 200 Et Fel
-300 S -300 S -300 S -300 S -350 S -400 S	· · · · · · · · · · · · · · · · · · ·	250 S		
5.9 	+5.3	300 s		PACIFIC SENTINEL GOLD CORP.
	-6.9			TALICUNILIT DEADEDTY 00 . 00
A00 S A00 S Nelson, British Columbia NELSON, British Columbia CHARGEABILITY N = 1 NTS 82 F/6 Map Scale 1 : 2500 Drawing : 89291-7 LLOYD GEOPHYSICS LIMITED		350 S		Nelson Minina Division
5.7 	48.2			Nelson, British Columbia
450 S 500 S D E 		"∪U >		
^{6.9}		450 S		CHARGEABILITY N = 1
Map Scale 1 : 2500 Drawing : 89291-7 LLOYD GEOPHYSICS LIMITED	⊥ _{6.9}			NTS 82 F/6
LLOYD GEOPHYSICS LIMITED	900 E	500 s		Map Scale 1 : 2500 Drawing : 89291-7
LLUIU GEUFMISIUS LIMIIEU				LINYD GENDUVOLOG I IMITED
				LLUID GEUFFISIUS LIMITED

RON GRID 18+00N ____ 10-00NL ----133-00**N** 12+00N ----11+00N2---t0+-00* -----8+00N ----بمرجعة المحراة · 7+00% 6400 4+00N -----2+00N ----0+00 B.L. . .

ه

\mathbb{N}	
LEGEND	
INDUCED POLARIZATION SURVEY	
POLE-DIPOLE ARRAY DIPOLE SEPARATION : 50 METERS	
JRRENT ELECTRODE WEST OF POTENTIAL DIPOLE	
CONTOUR INTERVALS	
250 OHM-M	
1000 OHM-M	
GEOLOGICAL B'R'A"NCH ASSESSMENT REPORT	
To Accompany a Report by JOHN LLOYD M.Sc., P. Eng.	
September 1989	
SCALE 1 : 2500	
50 0 50 (metres) 100 150 200	
PACIFIC SENTINEL GOLD CORP.	_
RON GRID 1989	
Nelson Mining Division	
Nelson, British Columbia	
RESISTIVITY N = 1	
NIS 82 $F/6$ Man Scale 1:2500 Drawing • 90201-19	
map ocare i · 2000 Drawing · 03231-18	
LLOYD GEOPHYSICS LIMITED	

. -

N = 3

N = 4

27.2

•

-

-

20.3

•

