LOG NO:	0102	BU.
ACTION:	and the second s	
FILE NO:		The state of the s

ASSESSMENT REPORT

ON THE

SHORTS AND CHEWMI MINERAL CLAIMS

GREENWOOD MINING DIVISION

NTS 82E/8W AND 82E/9W

490 28' North latitude 49° 28′ 30″ 1180 22' West longitude //8° 23′ 50″

DAVID COFFIN

FILMED

DEC. 26 1989

SUB-RECORDER RECEIVED

DEC 27 1989

GEOLOGICAL BRANCH
ASSESSMENT REPORT

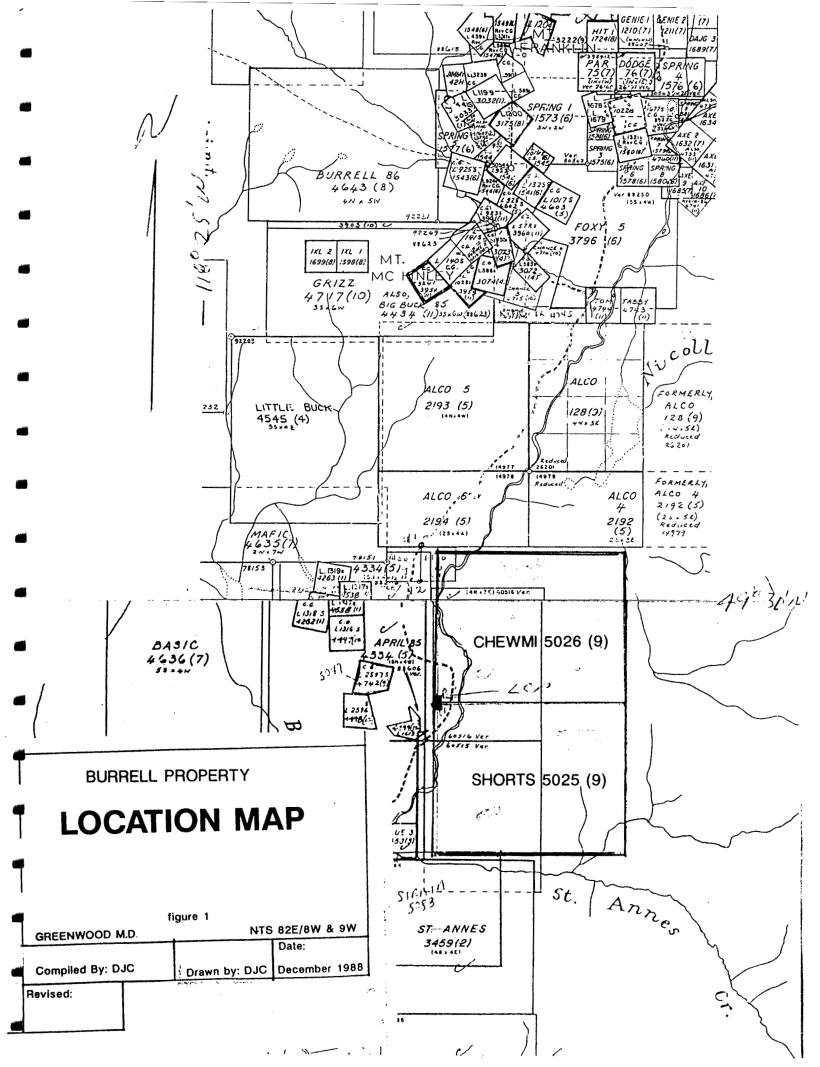
TABLE OF CONTENT

			page #
1.1	INTRODUCT	ION	. 1
1.2	PROPERTY :	STATUS	. 1
1.3	LOCATION 2	AND ACCESS	. 1
2.1	REGIONAL (GEOLOGY AND MINERAL DEPOSITS	. 2
2.2	PROPERTY 1	HISTORY	. 3
3.1	PROPERTY	GEOLOGY	. 5
3.2	LITHOLOGI	ES	. 5
3.3	STRUCTURE	•••••	. 6
3.4	ROCK GEOC	HEMISTRY	. 6
3.5	SILT SAMP	LING	. 7
		•	
4.1	GRID EMPL	ACEMENT	. 8
4.2	MAGNETOME	TER/VLF-EM SURVEYS	. 8
4.3	SOIL GEOC	HEMISTRY	. 8
5.1	CONCLUSIO	NS AND RECOMMENDATIONS	. 10
5.2	BIBLIOGRA	PHY	. 11
5.3	QUALIFICA	TIONS	. 12
	_		
APPE	NDIX A - G	EOCHEMICAL RESULTS	
APPE	NDIX B - O	OST BREAKDOWNS	
		FIGURES	
Figu	re 1	LOCATION MAPafter	pg 1
Figu	re 2	REGIONAL GEOLOGYafter	og 2
Figu	re 3	GEOLOGY AND SAMPLING in po	cket
Figu	re 4	MAGNETOMETER SURVEYafter	pg 8
Figu	re 5	VIF DIP ANGLE PROFILESafter	og 8
Figu	re 6	SOIL GEOCHEMISTRYafter]	og 9

1.1 INTRODUCTION

The following report deals with conduct and results of exploration programs conducted on the Shorts/Chewmi mineral claims (the Burrell property) during the periods Aug. 20 to 27 and Nov. 28 to Dec. 11 1989. The programs included 1:5,000 geological mapping and prospecting, rock and silt sampling, grid emplacement, magnetometer, VLF-EM and soil surveys. Recommendations for further work are included.

1.2 CLAIM STATUS

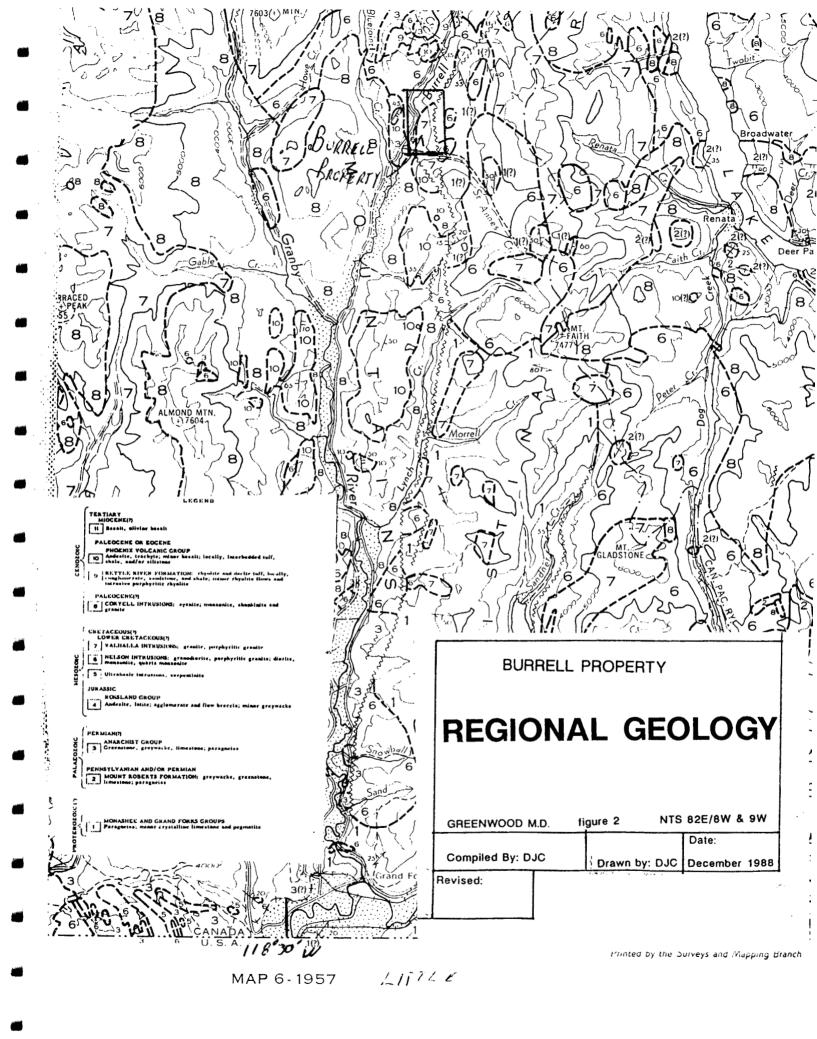

The property consists of two perimeter staked mineral claims, which have been grouped as the Burrell Group, located in the Greenwood Mining Division, on mineral title maps 82E/8W and 82E/9W.

Name	Record No.	Units	Expiry Date	Owner
Shorts	5025	20	28/09/1989	S. Davies ^l
Chewmi	5026	20	28/09/1989	11 11

1.3 LOCATION AND ACCESS

The property is located on Burrell Creek, 17 kilometers north of its confluence with the Granby River and 50 kilometers north of the town of Grand Forks, B.C. The property is reached from Grand Forks by following an all-weather road along the west side of Granby River for 46 km, crossing Burrell Creek just above its confluence with the Granby River, and following a fair-weather road that leads along the creek for a further 16 km. Fair weather roads traverse the southern half of the property. A fair weather road leads to the western side of the property.

¹ A one third interest accrues to Eric Coffin and David Coffin, for a collective total of two thirds



2.1 REGIONAL GEOLOGY AND MINERAL DEPOSITS

The oldest rocks in the region are Proterozoic to Permian volcano-sedimentary formations, the youngest of which, the Anarchist group (Little, 1957), hosts a number of replacement type copper and precious metal deposits. Overlying the above formations is the Rossland Group of Jurassic aged intermediate flows and fragmentals. All of these have been intruded by a series of Cretaceous and younger felsic rocks of the Interior Batholith. Overlying all of the above are generally felsic flows and minor sedimentary rocks of Paleocene or Eocene age, which are in turn overlain by late Tertiary basalt flows. Cutting all units except the late basalt are northerly trending coarse grained and porphyritic felsic dykes.

Ore deposits in the area have largely derived from the alteration of impure limestone of the Anarchist group to chalcopyrite-magnetite skarn during intrusion of the Batholith. The most notable of these are located in the Phoenix/Deadwood camp, 20 kilometers west of Grand Forks: "22 million tons of copper ore containing gold and silver were mined..." from the camp in the early part of the century (Little, 1957). Vein deposits, which are found filling fissures and shears in both country rock and batholith near their contact, have been mined chiefly for gold and silver.

Five kilometers north of the Burrell property is the Franklin mining camp. Mineralization similar to that described above was found here in 1896. Numerous bodies of skarn and fissure vein deposition containing pyrite, chalcopyrite, galena, sphalerite and gold/silver mineralization where found. The most significant of these, the Union, mined 189,000 tons of ore at a grade of 0.4 oz/ton gold, 10 oz/ton silver and varying amounts of zinc, lead and copper from an easterly trending (080/V) fissure vein cutting Anarchist units proximal to the Cretaceous intrusive suite.

The Franklin camp has attracted renewed interest and exploration in recent years. Sumac Ventures Inc. is conducting a program of reclamation by heap leaching the contained gold and silver from the Union mine tailings pond. At the same time, mineralization which had formerly been of too low a grade to be economically processed is being tested for gold and silver by a number of mining companies.

Recent work at Franklin camp has also included the investigation of the early Tertiary "Averill" mafic intrusives for platinum group(PGE) deposition. Platinum is found in the augite or biotite rich core of small, northwesterly trending, zoned, maficrich monzonite plugs. The PGE are associated with chalcopyrite and iron sulfides.

2.2 PROPERTY HISTORY

The area was prospected in the early part of the century while the Franklin camp was active; no mineralization was reported on the east side of Burrell Creek, but a number of occurrences were staked in Anarchist greenstone west of the creek.

During 1973 and 1974, the east side of Burrell Creek was opened by logging roads. Prospecting at this time by Walter Buller discovered three areas of mineralization on which he staked small claim blocks.

In May and June of 1988 Coffin conducted a program in order to locate Buller's showings, and to assess the geochemistry of the property and its potential for further work. Two of Buller's showings, WSW and Burr, were located and sampled. Soil geochemistry was tested with a small suite of samples at the Burr showing.

The Burr showing is an area of east-west trending fractures with minor limonite and chalcopyrite in altered granodiorite which had been opened by bulldozer trenching. Four chip samples taken at this showing in '88 were anomalous in copper and zinc.

The WSW showings, located approximately 1.5 km south-southwest of the Burr showing, consist of easterly to southeasterly trending stringers mineralized with pyrite, chalcopyrite, sphalerite and galena. Three samples taken from these showings ran between 410 ppb and 1600 ppb gold, 7.5 to 29.7 ppm silver, and up to 0.84% lead and 0.75% zinc. Three short holes which had been drilled by Buller into these showings with a packsack drill indicated continuity to shallow depths; Buller did not assay his core samples.

The third Buller showing, the LJ, is reportedly located seven or eight hundred meters northwest of the Burr showing, and is described as a series of northwesterly trending stringers in Nelson granodiorite which contain sulphide mineralization and visible gold. Two samples assayed by Buller ran 1.52 oz/ton gold & 0.66 oz/ton silver, and .428 oz/ton gold & 0.29 oz/ton silver.

3.1 PROPERTY GEOLOGY

The southern and eastern part of the property is composed of syenitic Coryell intrusive and areas of Tertiary(?) intermediate flows, large areas of which have undergone siliceous and argillic alteration. Coryell syenite intrudes Permian intermediate vocanics and Cretaceous granodiorite in the southwest part of the property, and the northwest part is composed of Cretaceous Nelson and Valhalla granodiorite.

A northerly trending system of Cretaceous to Tertiary faults, known regionally as the Granby River - Burrell Creek fault, runs the length of the property along its eastern side. Siliceous and disseminated pyrite alteration is found for considerable widths away from these features. Westerly trending, cross-cutting, structures are spatially related to the Buller showings. Anomaly A, a northwesterly trending VIF-EM/soil geochemistry high adjacent to the WSW showing appears to cut both Permian volcanics and the Coryell stock.

3.2 LITHOLOGIES

The Cretaceous Nelson and Valhalla granodiorite are fine to medium grained, equigranular, and contains up to 15% hormblende or biotite as dark minerals. The bodies are differentiated by Little with reference to the smokey colour of free quartz and an allotriomorphic texture within the Valhalla; the Valhalla seen on the property usually contains 1% magnetite and this feature was used to distinguish the two during field mapping.

Coryell intrusive is salmon to pink coloured and contains 5 to 10% chlorite after ?hornblende and usually contains magnetite. It varies in grain size from fine grained containing indistinct

phenocrysts of orthoclase up to 1 cm. long in the western portion of the property, to areas containing poorly formed but well segregated megacrysts up to 15 cm long found east of the Burrell fault.

The Permian volcanic sequence found along Burrell creek are dark to medium gray-green andesite flows and fragmentals with minor limy horizons and fine grained dark tuffs. It is distinguishable from Tertiary intermediates in that small areas of epidote and chloritic alteration are usually present in the unit.

Tertiary volcanic sequences found in the south central portion of the property are composed of andesitic to more felsic flows. Along altered margins darker rock can be seen to contain feldspar lathes 2 to 5 mm. in length displaying a tracytic texture. Glassy outcrops within the sequence appear to represent areas of siliceous alteration but may in part be rhyolitic flows.

3.3 STRUCTURE

The north-south trending Burrell fault has been active through Coryell period and appears to be the conduit for fluids altering the Tertiary volcanics. Westerly trending structures appear to be stress features relating to the Burrell fault.

3.4 ROCK GEOCHEMISTRY

A total of 29 rock samples were collected and analyzed as per soil and silt samples. Anomalous concentrations of copper and elevated zinc and lead were found in samples of silicified and chlorite altered shearing within granodiorite in the northern portion of the property. Because of high biotite concentrations in areas the presence of high background chromium, several samples were selected and are being analyzed for platinum. Sample locations are

plotted on figure 3.

3.5 SILT SAMPLING

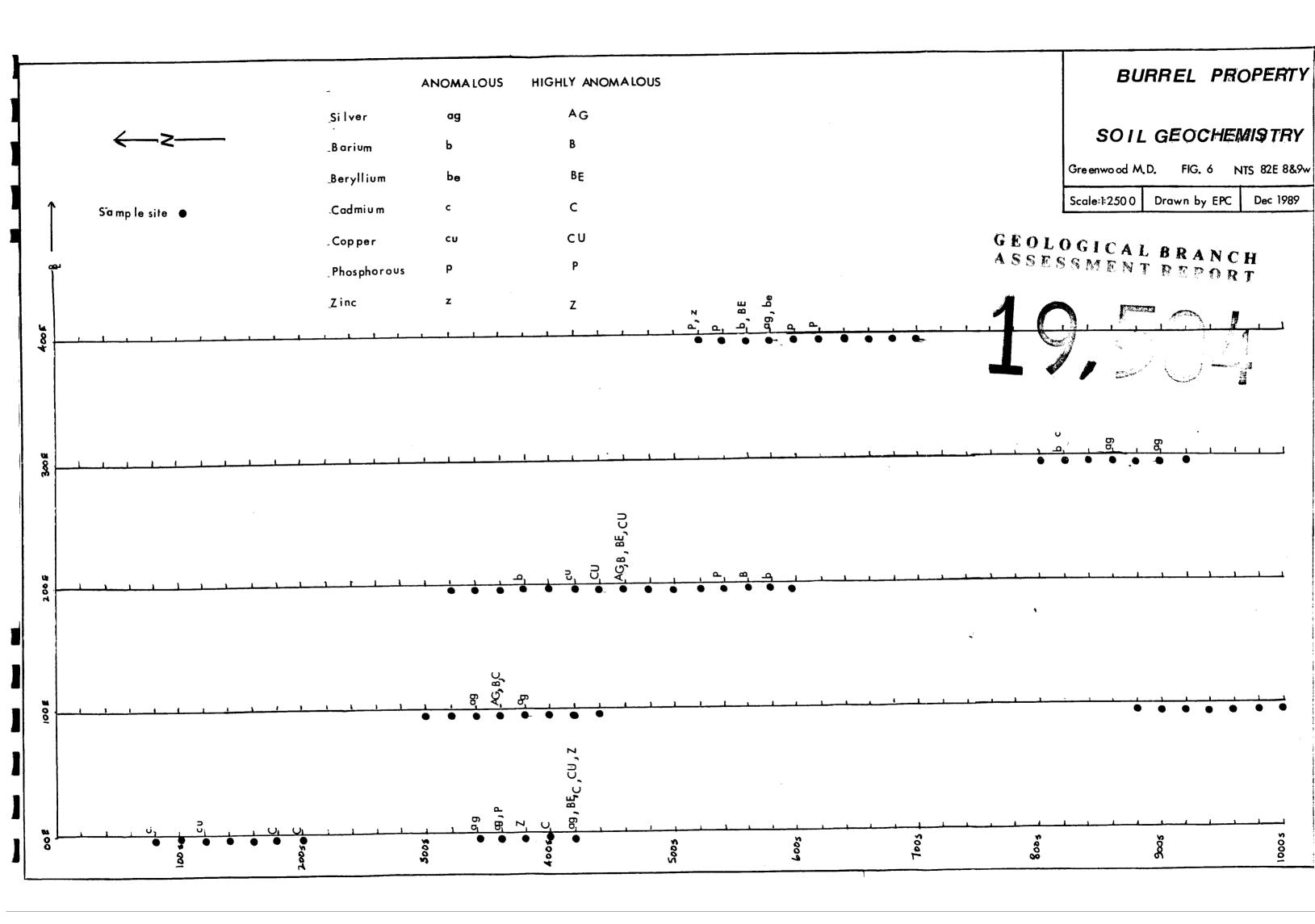
Five silt samples (BI 08-12) were collected from the St. Annes Creek drainage. The most notable anomalies, particularly with regard to regional sampling, are for arsenic. Arsenic highs are found within 500 metres of known silica healed faults. Detailed silt sampling may be useful in delineating target areas, but is restricted to mainstream sampling due to lack of silt beds in tributary creeks which are generally gullies which flow intermittently.

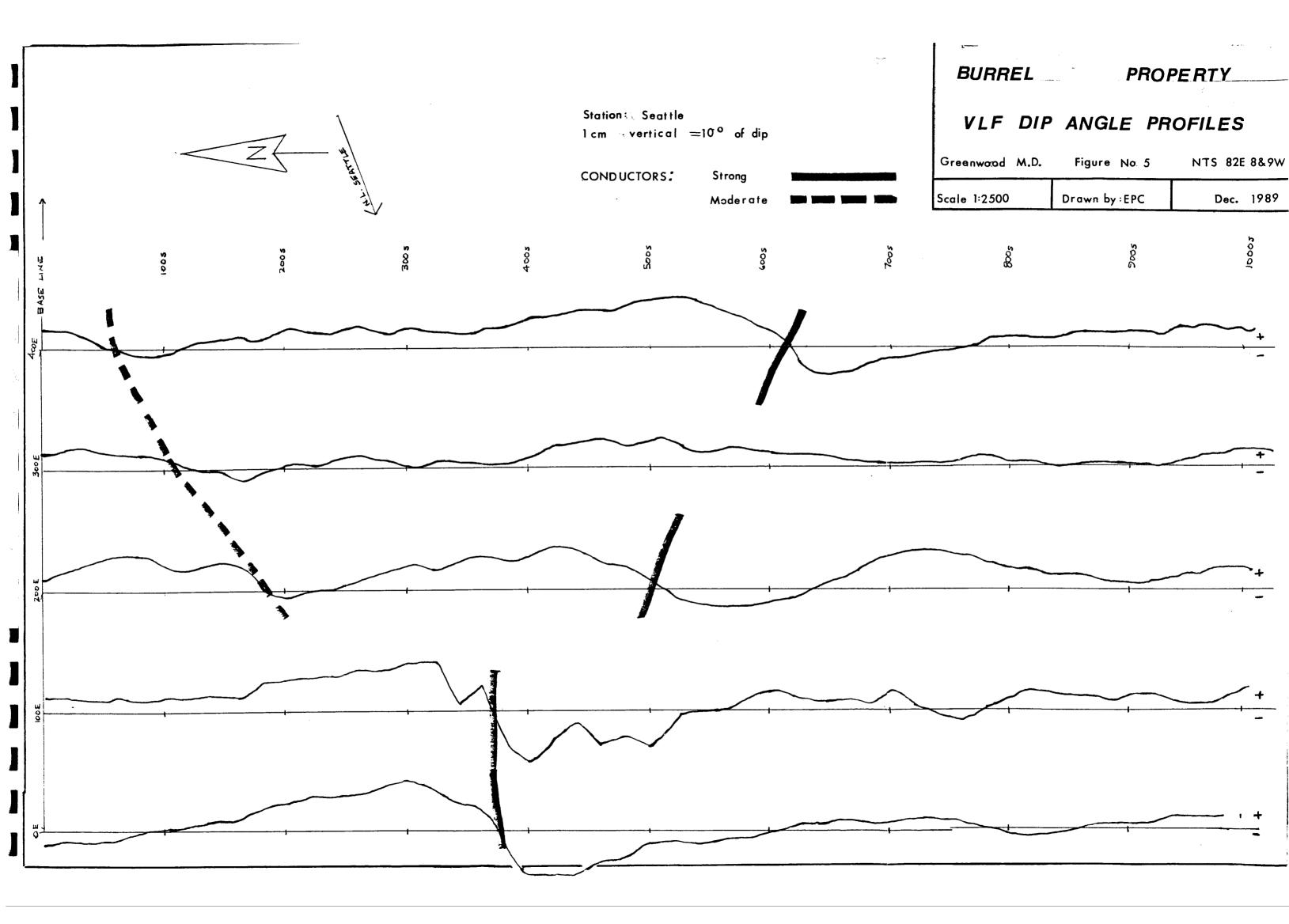
4.1 GRID EMPLACEMENT

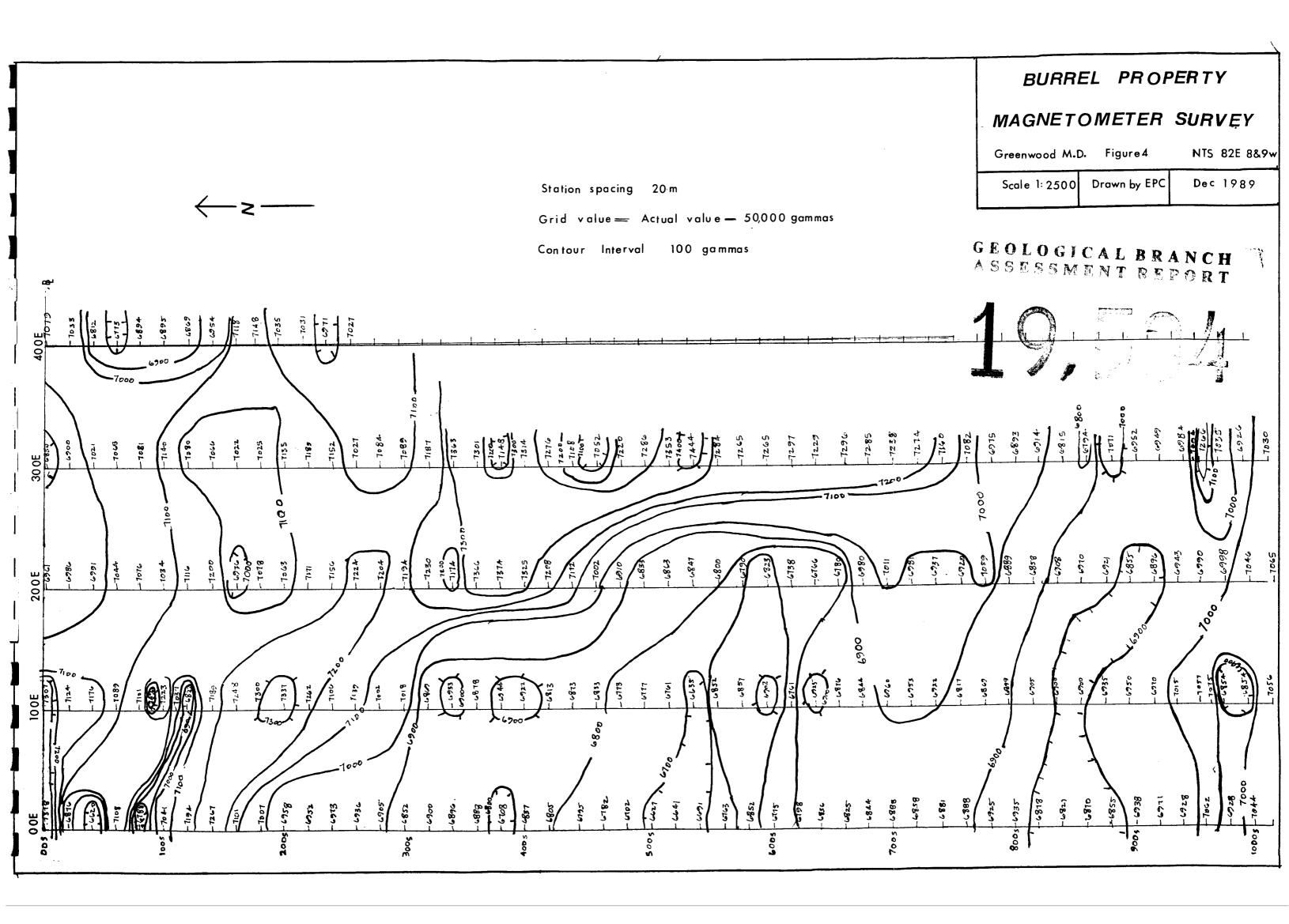
A 1400 metre picket and chain baseline was run due east from a point near Burrell Creek and 1000 meters north of St. Ann's Creek. Five grid lines, 0 +00 through 4 + 00 E, were run South to St. Anne's Creek and then used to conduct magnetometer, VLF-EM and soil geochemistry surveys. Line 11 + 00 E was run North for 500 metres. All of the cross lines were compass and flag using 20 metre stations.

4.2 MAGNETOMETER / VLF-EM SURVEYS

The magnetometer survey was conducted using a Scintrex MP-2 proton procession magnetometer with the sensor fixed to the operators shoulder pack. The survey produced several sharp anomalies in the 5-600 gamma range in the area north of the WSW showing. A strong break in susceptibility along a northwesterly trending line running through the centre of the grid appears to represent a change in lithology from the volcanics to Coryell intrusive.


The VIF-EM was conducted using a Saber Electronics receiver tuned to the transmitter in Seattle Wash. A strong linear feature, anomaly A, trends roughly 125° through the centre of the grid; soil samples from several grid lines over this feature produced zinc, lead and copper anomalies. It may represent mineralization similar to that of the WSW showing. Several subtle trends of subparallel orientation can also be recognised to the north and south of anomaly A.


4.3 SOIL GEOCHEMISTRY


A total of 59 soil samples were collected for selected geophysical target on the lower grid and analyzed by ICP for 31 elements, and by AA for gold. Sample sites are shown on figure 6.

Strong contrasts are seen in zinc, lead, copper, cadmium and

beryllium associated with anomaly A described above. Several multielement trends require further follow up.

5.1 CONCLUSIONS AND RECOMMENDATIONS

The area of Permian volcanics and the area of Tertiary volcanics directly to the east of it should undergo further grid establishment in order to complete detailed geological mapping, soil, sampling and magnetometer VLF-EM surveys. The grid work would be followed up back hoe trenching which would include examination of anomaly A.

Alteration along the length of the Burrell fault should undergo detailed geological mapping and lithogeochem surveys in order to determine structural and trace element trends, if any, within the alteration zones. Further grid work in this area would be dependent upon the results of this survey.

The area of silicification and chalcopyrite mineralization within the granodiorite should undergo detailed mapping with regard to alignment of alteration products and should be considered a target area both for gold, as reported in previous work, and for platinum as it displays several characteristics common to the Averill platinum structures found north of the property.

5.2

BIBLIOGRAPHY

Buller, W. 1975 Assessment Work Mineral Claim LJ#I Assessment report 5513

Buller, W. 1975 Assessment Work Mineral Claim WSW#I Assessment report 5535

Buller, W. 1975 Assessment Work Mineral Claim Burr#I

Church, B.N. 1986 Geological Setting and Mineralization in the Mount Attwood-Phoenix Area of the Greenwood Mining Camp
B.C. MEMPR Paper 1986-2

Coffin, D.J. 1988 Assessment Report of Burrell Group of Mineral Claims. Greenwood Mining Division

Drysdale, C.W. 1915 Geology Of Franklin Mining Camp, British Columbia.

G.S.C. Memoir 56

Little, H.W. 1957 Kettle River East Half, British Columbia Map Only, 1:250,000 G.S.C. map 6-1957

Keep, M & 1987 "Geology of the Averill Plutonic Complex, Russell, J.K. Franklin Mining Camp"

B.C.M.E.M.P.R. Paper 1987-1, pgs 49 to 53

Keep, M. & 1988 "The Geology of the Averill Plutonic Complex, Russell, J.K. Grand Forks, British Columbia"

B.C.M.E.M.P.M. Paper 1989-1, pgs. 27 to 32

Okulitch, A.V. Kootenay River, British Columbia Woodsworth, G.J. Map Only 1:1,000,000 G.S.C. Open File 481

Qualifications

5.2

I attended the Haileybury School of Mines, Ontario, in the department of Mining Technology, from 1975 to 1977. Subsequent to that I have completed university courses in geography and economics, and numerous short courses and seminars dealing with geochemistry and Cordilleran geology and mineral deposits.

Since 1974 I have worked at a variety of jobs in the Canadian mineral exploration field, including regional and detailed prospecting, detailed geological mapping, core logging, property management and program development.

Since 1986 I have been a self employed exploration consultant and partner in the firm of Vanguard Consulting Ltd. Much of the work involved contract and sub-contract supervision of early stage exploration programs for small mining companies, largely for vein type gold deposits in coastal and "interior" B.C.

I hold a direct interest in the Burrell Property.

David Coffin 26/12/89

APPENDIX A - GEOCHEMICAL RESULTS

COMP: VANGUARD CONSULTING LTD.

PROJ: BURR

ATTN: D.COFFIN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

(604)980-5814 OR (604)988-4524

DATE: SEP-07-89 * TYPE ROCK GEOCHEM * (ACT:F31)

FILE NO: 9V-1013-RJ1

SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	B1 PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PPM		TH U	PPM	PPM	GA PPM F	SN PPM PF	W CR PM PPM	
BRC101 BRC102 BRC103 BRC104 BRC105	1.4 .6 .5 .2	7680 8710 6540 2960 7090	26 8 14 13 18	1 1 1	34 42 40 20 43	1.1 1.1 1.1 .3	6 2 2 1 2	4050 1760 330 350 1170	.1 .1 .1 .1	10 6 3 11 10	6 6 26	20520 28460 17780 11710 18050	1540 2030 390	12 8 4 3 8	6100 4390 1470 2150 6530	456 669 606 173 427	3 1 2 3	400 440 410 130 120	6 1 1 2 5	820 820 290 120 290	23 18 52 3 15	2 1 1 1 2	10 6 7 2 4	6 1 3 1 4 1 1 1	27.3 20.9 12.7 10.0 39.9	59 22 42	2 1 1 1	1 1 1	1 70 1 19 1 18 1 161 1 150	5 5 5
BRC106 BRC107 BRC108 BRC109 BRC110	.5 .7 .5 .5	8170 7040 2580 3910 3110	11 21 11 12 8	1 1 1 1	124 56 34 860 46	1.3 .9 .3 .6	2 1 1	1400 2230 350 1370 370	.1 .4 .4 .1	6 9 2 5 2	9 6 28 7		1670 1700 2880 1860	5 7 1 1	2450 4190 210 310 140	652 543 152 247 192	2 4 1 3 7	370 360 270 260 290	2 1 2		21 21 7 41 18	1 1 1 1	10 11 5 25 8	2 1 4 1 1 1 2 1 1 1	15.1 26.1 4.3 8.1 4.5	8 38 24	1 1 1 1	1 1 1 1	1 48 1 52 1 104 1 81 1 87	10 5
BRC111 BRC112 BRC113 BRC114 BRC115	.4 .7 .7 .8	6920 9430 7120 11800 4890	14 16 9 17 14	1 1 1 1	39 105 223 95 16	.5 .6 .7 .8 .3	2 2 1 1 2	1080 2130 830 3920 3400	.9 .1 .3 1.0	5 5 4 9 5	4 7 100	16940 15770 13480 35300 10070	2330 1930 930	3 5 5 11 4	3600 4150 2640 7540 4620	548 432 275 563 185	11 12 2 3 3	210 180 360 120 100	3 4 3 18 6	590 630 440 590 130	33 33 19 15 6	1 1 1 1	6 12 8 9 2	1 1 1 1 3 2 1 1 1 1	16.6 14.5 10.2 44.8 24.2	67 40 39 25	1 1 1 1	1 1 1 1	1 59 1 57 1 51 1 87 1 163	5 5 5
BRC116 BRC117 BRC118 OC1 OC2	1.1 16.2 2.5 .4 .6	7820 28460 12000 820 860	18 1 11 16 14	1 1 1 1	35 29 21 18 26	1.0 .6 .2	14 7 1	1590 23110 14400 19290 17690	1.2 3.9 1.0 .7 1.1	6	5191 457 12 14		290 330 190 260	12 1 1	10930 370 430	282 1089 450 1453 1213	3 7 3 3 4	160 220 400 80 80	11 30 15 10 11	210 690 430 260 400	11 51 19 15 16	1 13 3 1 1	2 8 12 32 26	1 1 1 1 1 1 1 1	3.1	139 42 8 12	1 2 1 1	1 2 1 1	1 157 2 88 1 122 1 162 1 133	85 15 5
OC3 OC4		39910 3260	1 56	1	53 55	1.0	6	1130 102220	.8	19 38		551 3 0 63560		14	40020 9120	462 1389	10 4	70 430	22 11	490 260	52 31	6 10	3	1 1 2 1	97.3 17.5	73 59	1 2	1 1	1 61	5
		<u>-</u> -															•													
												* <u>*</u>			-															
											· ·	······································														• • • • • • • • • • • • • • • • • • • •				

COMP: VANGUARD CONSULTING INC.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

PROJ: BURR (604)980-5814 OR (604)988-4524 ATTN: D.COFFIN

FILE NO: 9V-1643-RJ1

DATE: DEC-18-89

* TYPE ROCK GEOCHEM * (ACT:F31)

																	·												<u> </u>
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM			LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI P PPM PPM	PB PPM			TH PPM PP	U M		ZN G PM PP			CR A
BRC 119 BRC 120	1.0	10310	1	1	583	.6 1.1	7 4	8250 7370	1.3	10 4	111	18060	730	15	8830 4310	838 796	5 1	260	10 470	33 32 64	2	31	1	1 4	9.6 2	62	1 :	1 2	115
BRC 121 BRC 122	.9	7970 2010 12130	60 1	į	103 19 52	2 .6	3 8	6240 8410	.í	2 5	9 17	5600 15460	2100 450	5 3 7	1790 5960	158	9	430 30 280	5 700 5 60 7 920	64	1	15 2 47	1 2	i i	7.8 11.3 27.3	18	1 2	i 2	63 1 245 79 1
BRD 101	1.8	17200	<u> </u>	<u>i</u>	- 68	1.5	31	13800	1.1	18	41	35660	1240	30	16550	277 776	21 11	280 630	20 1310	61 40	4	42	2	1 8	32.9 1	04	1	1 2	158
BRD 102 BRD 103	.6 1.2	10430 11340 1640 8600	10 7	1	54 39	.5 .6	4 5	6490 7970	1.4 3.7	7 7	475	17050 16480	1810	11 12	7350 8500	495 486	3 6	550 390	8 410 9 400 3 80	28 32	1	17 13	2	1 3	33.7 4		1	1 2	136 140 276
BRD 104 BRD 105	2.1	1640 8600	65 60	1	18 13	.1 .6	3 '	1940 15780	1.1	2 6	83 1286	4720 14790	680 330	1 9	570 5460	252 608 348	3 4	40 110	4 150	160 23 27	1	2 27 15	1	1 3	6.2 2 86.8	48	1 1	1 2	276 228 1 86
BRE 001 BRE 002	1.4	11470	29	1	61 81	1.0		3390 7360	2.4	10	92	32850 27630	2160	13 15	9120 9130	718	54 67	370	6 520 9 580	27	7	15 18	1		3.3 1.0 1		1 1		86 112 3
DRC 001 DRC 002	1.4	13620 30420 7420 21210	1 23	1	81 22 146	1.6	9 '	11430	1.5	18	117	47140 31040	600	31	11510 3000	976	7	9360 780	9 880 19 1350	44 35 25 39 70	1	18 28		1 8	35.9 1 35.5	03	1 1	1 1	112 3 49 79 36
DRE 001 DRE 002	1.8	21210 22570	1	1	146 27 37	.8	7 13	6740 3610 11760	.1	23 14	209	92480 45920	1640	29	10220 11880	655	13	260 810	1 800 10 1300	39 70	1	12 15	1	1 7	77.6 5	10		1 1	36 30
DRE GOE			<u> </u>	· · · ·				11100				13720	- 000		7.000		<u> </u>						•••					-	
																										,		····	
											·																		
																													
																									.,				
														-						7									

COMP: VANGUARD CONSULTING INC.

PROJ: BURR

MIN-EN LABS — ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

ATTN: D.COFFIN (604)980-5814 OR (604)988-4524

DATE: DEC-18-89

FILE NO: 9V-1643-SJ1+2

* TYPE SOIL GEOCHEM * (ACT:F31)

SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	L I PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM PP		B S		TH PPM P	U PM		ZN G	A SA			
BSOE 80S BSOE 100S BSOE 120S BSOE 140S BSOE 160S	.4 15430 .5 13800 1.0 19730 .8 17170 .9 19130	1 1 1 1	1 1 1 1	111 95 175 73 101	.7 .7 1.0 .6 .6	4 2 4 5 4 3	2580 2320 5120 3380 2510	1.5 .5 .9 .2	7 7 6 7 7	11 25 12	18690 20540 15720 20040 20720	510 740 500 500 580	11 18 11	3160 3110 2420 2820 3070	737 334 527 378 464	1 1 1 1	150 150 320 150 220	11 147 8 140 10 74 8 130 9 120	0 1 0 1 0 1	1.1	1 10 1 10 1 20 1 11 1 11	1 1	6 15 13	39.6 27.2 40.5	63 65 47 70 67	1 1 1 1 1 1 1 1 1	1 1 1 1	18	5 5 5 5
BSOE 180S BSOE 200S BSOE 340S BSOE 360S BSOE 380S	.1 10370 .6 13620 1.3 14890 1.5 29340 1.1 24060	1 1 1 1	1 1 1 1	152 162 95 159 164	.4 .5 .5 .7 1.0	4 2 6 4 6 1	310 2620 580 1650 3020	2.1 2.1 .1 .1	6 7 10 9 10	17 11 14	11960 16690 44740 25890 25520	450 590 620 530 740	10 7 12		2249 2290 316 782 567	1 1 1 1 2	390 260 200 270 260	9 130 11 149 2 213 7 376 22 118	0 3 0 1 0 1	-	1 13 1 12 1 15 1 12 1 13	1 1 1	1 3 17 10 12 5	34.5 08.7 53.4 1	68 93 75 17 71	1 1 1 1 1 1 1 1	1 1 2 1 2	11 2 24 13	5 5 5 5 5
BSOE 400S BSOE 420S BS1E 300S BS1E 320S BS1E 340S	.2 10190 1.3 25680 1.0 20320 .7 11800 1.2 19170	1 1 1 1	1 1 1 1	240 119 185 81 166	.4 2.9 .7 .5 .6	5 4 4 3 4 3 6 3	760 290 3480 3320 3290	3.0 5.9 .7 .3 .1	6 19 6 6 7	39 14 8	12120 31000 16420 16220 18170	700 1190 610 600 690	15 11 8 16	4620 2310 2620 2760	2124 2937 653 340 305		1100 1010 350 260 230	11 75 11 178 10 203 8 53 9 148	0 65 0 1 0 1	6 8	1 17 2 19 1 18 1 15 1 17	1 1	1 4 11 3 13 3	48.5 4 33.0 1 37.3	39 61 03 84 00	1 1 1 3 1 1 1 1	1 1 1 1	5 13 12 15 17	5 5 5 5
BS1E 360S BS1E 380S BS1E 400S BS1E 420S BS1E 440S	1.7 26040 1.3 27310 .8 18030 .9 31940 .9 20900	1 1 1 1	1 1 1 1	373 252 142 197 229	.7 1.1 .7 1.0	6 4 6 2 7 2	730 910 2340 2760 2600	1.3 .1 .7 .1	6 7 6 8 7	14 11 15	12090 19150 18290 18000 17140	500 610 550 580 740	10 15	3130 3190 2550 2040 2430	93 433 483 626 693	1 1 1 1	360 340 220 370 380	8 82 10 31 9 119 10 130 11 71	0 1 0 3	3 5 0 9	1 24 1 20 1 11 1 13 1 11	1 1 1	9 9	34.8 38.8 32.2 1	23 75 82 04 98	1 1 1 1 1 1 1 1	1 1 1 1	14	5 5 5 5
BS1E 880S BS1E 900S BS1E 920S BS1E 940S BS1E 960S	.9 25680 .5 11490 .7 13700 1.0 10460 .8 22220	1 1 1 2 1	1 1 1 1	137 124 94 108 149	.7 .3 .4 .5	6 1 7 2 6 5	1860 1880 2470 100 2290	.1 .1 .1 .1	8 6 8 8 7	8 9 8	23150 18420 32650 27970 21400	580 500 610 1020 590	10 10 10	2570 2010 2880 3880 2540	617 381 325 516 589	1 1 1 1	270 300 260 220 310	8 1506 7 104 2 1256 5 1766 8 1376	0 1 0 1 0 1	9 4 4 8 9	1 11 1 11 1 14 1 22 1 14	1 1	7 4 10 7 17 6	41.8 77.3 64.2	71 60 57 52 61	1 1 1 1 1 1 1 1 1 1	1 1 2 2 1	18 1	5
BS1E 980S BS1E 1000S BS2E 320S BS2E 340S BS2E 360S	.6 14680 .9 11960 .5 17670 .7 20990 .4 17180	1 1 1 1	1 1 1 1	224 138 121 197 201	.5 .3 .8 .8	5 3 4 1 6 2 4 2	2100 8690 1680 2100 2640	.1 .2 .1 .4	7 9 6 7 5	8 9 13 8	18340 31000 17690 20120 16370	460 750 550 550 510	12 10 9 7	3860 2160 2550 2060	1024 498 628 844 811	2 1 1 2 1	310 170 210 160 140	7 144 4 170 9 162 8 89 7 161	0 1 0 1 0 1	5 6 8 6 6	1 16 1 16 1 10 1 9	1	15 7 7 3 6 3	70.5 35.4 1 38.9 1	73 77 27 13 99	1 1 1 1 1 1 1 1	1 2 1 1	19 11 14 1	
BS2E 380S BS2E 400S BS2E 420S BS2E 440S BS2E 460S	.1 15990 .5 15990 .9 10940 .8 9260 2.1 25500	1 1 18 18	1 1 1 1	295 226 152 153 395	1.1 .6 1.2 .9 2.8	4 2 4 8 2 6	2040 2330 3290 5460 2230	.1 .1 1.0	6 5 4 3 6	11 27 30	19760 14480 10930 8080 20850	650 490 610 590 1430	7 11 7	2390 1740 1830 1450 3770	919 599 339 255 369	2 1 2 1 4	160 230 280 510 360	7 170 5 172 10 74 7 58 21 56) 1) 1	5 6 4 9	9 1 11 1 34 1 25 1 39	1	1 2	27.0 23.2 17.2	12 81 44 46 76	1 1 1 1 1 1 1 1	1 1 1 1	9 8 9 7 22	
BS2E 480S BS2E 500S BS2E 520S BS2E 540S BS2E 560S	1.1 18220 .7 19560 .9 14870 .6 23830 .2 19410	1 1 1 1	1 1 1 1	193 159 179 218 413	1.0 .6 .6 .8 1.1	4 2 5 1 6 2 5 2	730 2630 1910 2040 2420	.1 .1 .1 .1	6 7 5 7 9	10 8 12 14	13760 17840 13710 18420 24450	470 950 490 690 1370	11 8 11 14		166 616 879 869 2579	1 1 2 1 3	360 260 290 220 240	11 310 10 1300 7 2130 10 2500 7 650) 2) 1) 2	3 1 9 3 7	1 19 1 13 1 12 1 12 1 10	1 1	1 2 1 2 1 3	36.1 1 28.4 1 34.9 1	55 02 34 14 18	1 1 1 1 1 1 1 1	1 1 1 1	13 10 14 10 13	5
BS2E 580S BS2E 600S BS3E 800S BS3E 820S BS3E 840S	.8 11620 .5 19800 .8 17220 .3 9230 .6 9860	1 1 1 1 9	1 1 1 1	270 245 188 279 108	.5 .8 .7 .6	4 3 6 3 5 3 4 2	5120 5200 5010 5870 2460	.7 .1 .1 1.2	6 7 7 6 6	12 13 13	14060 19410 19980 14870 17260	710 770 640 770 530	10 10 7 8	2940 2910 2010 2360	1611 1432 672 2036 622	2 1 2 2 1	320 250 210 260 170	8 78 10 115 13 96 11 93 9 52	2	1 2 1 3	1 13 1 14 1 11 3 16 1 10	1	1 3	36.4 39.3 28.9 1	27 92 88 00 60	1 1 1 1 1 1 1 2 1 1	1 1 1 1	10 5 13 10 15 5 12 5	5
BS3E 860S BS3E 880S BS3E 900S BS3E 920S BS4E 520S	1.3 15280 .9 12720 1.2 37200 .9 21110 1.0 24660	1 1 1 1	1 1 1 1	202 112 178 160 214	.7 .4 .8 .5	4 1 7 2 7 1 6 1	6660 680 2260 1730 1790	.1 .1 .1 .1	7 6 9 6 7	11 15 12	20040 19670 24420 16890 19670	490 420 580 490 700	8 13 9 14	2520 2000 2600 1870 2170	749 246 717 549 853	1 1 1 1	220 260 240 280 240	10 1110 10 2070 7 1860 10 1290 10 4620) 1) 1) 1	4	2 16 1 12 1 13 1 11 1 16	1	1 4	42.7 48.1 1 35.3	78 60 07 60 59	1 1 1 1 2 1 1 1 1 1	1 1 1 1	13 12 14 16 11	5
BS4E 540S BS4E 560S BS4E 580S BS4E 600S BS4E 620S	.9 16850 1.1 32810 1.3 34780 .7 22510 .5 19040	1 1 1 1	1 1 1 1	175 264 225 247 137	.7 1.7 1.5 .7 .8	6 3 7 3 4 2	720 810 8760 2010 2850	.1 .1 .1 .1	6 9 6 6	18 18 12	15440 25040 23000 16820 17820	590 1090 900 750 860	28 27 15	1590 3830 3140 2010 2260	389 607 290 628 471	1 3 1 1	260 320 410 300 290	9 2866 16 696 17 1436 11 2476 11 856) 1) 1) 1	5 8 5 8 9	: :=	2	1 3 1 2	39.0 ° 28.4 1	11 23 95 30 00	1 1 2 1 2 1 1 1 1 1	1 2 1 1	12 23 19 10 13 15	5
BS4E 640S BS4E 660S BS4E 680S BS4E 700S BI 01	.3 23250 .1 7030 .3 15120 .2 14590 .5 7950	1 1 1 1	1 1 1 1	234 143 137 123 68	.7 .4 .7 .5	1 2 4 2 4 1	2420 2190 2590 1730 3920	.1 .3 .1 .1	6 4 6 6	8 8 7	17390 11640 15810 19810 22210	770 520 540 480 620	5 10 8	2100 1390 2010 2350 3410	545 840 568 248 152	1 1 1 1 2	330 230 210 340 90	11 3199 7 760 8 1490 8 1370 7 1380) 1) 1) 1	1 0 4 1 3		1 1	1 2	26.3 29.8 38.1	86 51 72 59 43	1 1 1 1 1 1 1 1 1 1	1 1 1 1	10 5	5 5 5 5 5

COMP: VANGUARD CONSULTING INC.

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

ATTN: D.COFFIN

PROJ: BURR

(604)980-5814 OR (604)988-4524

FILE NO: 9V-1643-SJ3

* TYPE SOIL GEOCHEM * (ACT:F31)

DATE: DEC-18-89

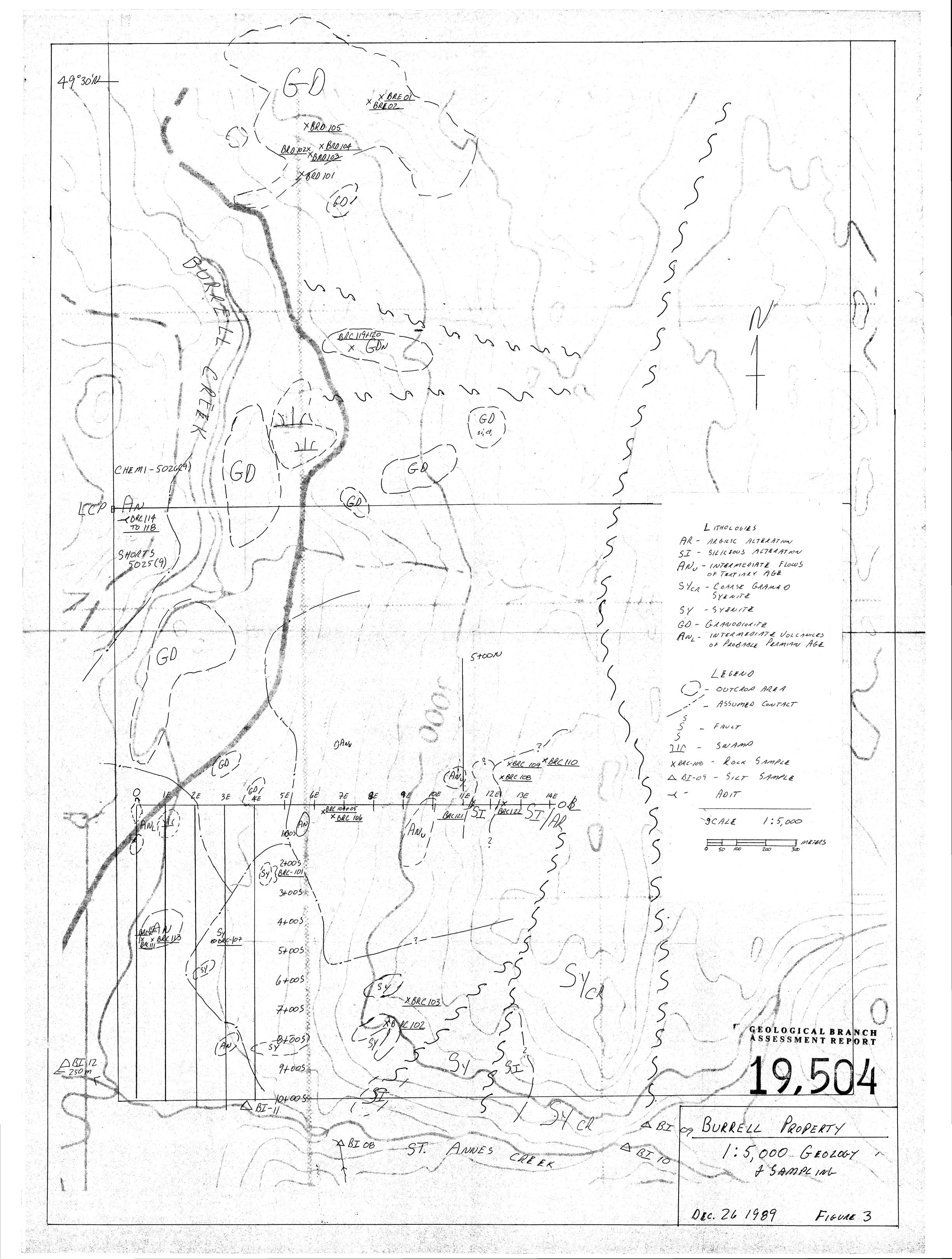
IN: D.COFFIN									(004)	700-2	0014 UK (0	J4 J 7 OC	, 4,,,,,								ITPE	301 L	GEUC	HEM "	()	ACI:F
SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU FE PPM PPM	K PP M	LI MG PPM PPM	MN PPM	MO PPM	NA PPM	NI P PPM PPM	PB PPM	SB PPM	SR PPM	TH PPM	U PP M	V PPM	ZN PPM	GA PPM I	SN PPM PI	W (CR A
BI 02 BI 03 BI 04 BI 05 BI 06	.3 2180 .8 7170 1.0 8750 .7 9240 .6 5620	8 1 2 21 21	1 1 1 1	22 67 111 75 75	.1 .3 .7 .7	2 4530 4 3370 3 4510 3 3940 4 4680	.1 .1 .1 .1	7 6 6 7 8	3 47140 6 20410 7 23750 16 20950 6 39760	680	3 1070 6 3550 7 3000 8 4190 5 2060	436	1 2 1 3 1	70 120 150 140 100	1 1900 6 1300 4 1190 7 1120 2 1480	13 11 12 19 9	1 1 1 1	9 12 25 20 22	3 2 1 2 2	1 1 1 1 1	96.4 44.4 41.0 51.5 81.6	32 33 44 49 37	1 1 1 1	2 1 1 1	1 1	7 18 16 27
31 07 31 08 31 09 31 10 31 11	.6 6750 1.3 5980 .7 3590 .6 7250 .8 3060	20 29 8 35 36	1 1 1 1	84 52 35 55 32	.5 .5 .3 .5	4 2780 5 6430 3 2450 3 5870 4 4140	.1 .1 .1 .1	10 4 6 10	5 16040 7 49400 3 20940 6 22520 5 57970	840 420 1010	6 2020 6 3120 5 1670 7 3630 4 1850	219 213 194 337 253	2 1 1 1	90 130 70 130 70	2 570 1 2510 1 820 4 2110 1 1440	14 18 6 12 3	1 1 1 1	17 21 10 24 13	1 3 2 2 2	- 1	35.3 151.7 51.0 52.1 147.8	32 52 29 45 42	1 1 1 1 1	1 1 1 2	1 1 1 1 1 1 1 1	12 23 12 14 17
3I 12 3I 13 3I 14	.7 7120 .7 4690 .8 3320	1 31 16	1 1 1	71 32 18	.1 .7 .4	5 7810 3 2790 3 1910	.1 .1 .1	13 5 4	7 82310 6 21290 6 18790	670 450 290	7 3080 10 2510 8 1940	414 281 163	1 2 1	140 90 70	1 3000 2 640 2 350	18 18 16	1 1 1	25 13 10	4 2 1	1 1 1	210.9 41.2 55.2	65 38 23	1 1 1	2 1 1	3 2 1 1 1 1	28 11 12
														· · ·						=,						
									·																	
																						··		-,, -		
																	 		-							
													· · · · · · · · · · · · · · · · · · ·													
				· · · · · · · · · · · · · · · · · · ·																	···			, , , , , , , , , , , , , , , , , , ,		
	·			***************************************							***************************************					·						· · · · ·				
					·····			-,,	, , , , , , , , , , , , , , , , , , ,								****									

APPENDIX B - COST BREAKDOWNS

BURRELL PROJECT 1989

COST BREAKDOWN - AUGUST 20 -27 PERIOD

Consulting:


David Coffin 8 days @ \$325.00	\$ 2,600.00
Eric Coffin 8 days @ \$225.00	1,800.00
Subtotal	\$ 4,400.00
Expenses:	
Vehicle (9 days @ \$50 + 1,164 km @ \$0.15)	\$ 624.60
Gas	96.20
Motels	86.40
Groceries and Meals	246.31
Propane, supplies	219.04
Rock Analyses, 22 @ \$15.50	341.00
Airphotos, mylars, base maps	191.99
Add: 15%	270.83
Subtotal, Expenses	\$ 2,076.37
TOTAL COSTS (AUGUST 20-27)	\$ 6,476.37

BURRELL PROJECT 1989

COST BREAKDOWN - NOVEMBER 30 - DECEMBER 11 PERIOD

Consulting:

David Coffin 13 days @ \$325.00	\$ 4,225.00
Eric Coffin 9 days @ \$225.00	2,025.00
Stuart Davies 6 days @ \$225.00	1,350.00
Subtotal	\$ 7,600.00
Expenses:	
Vehicle 13 days @ 30.00	\$ 390.00
Fuel, Bus Fares	254.32
Motels	175.26
Groceries and Meals	279.61
Propane, supplies	33.17
Rock Analyses, 15 @ \$14.75	221.25
Soils, 59 @ \$12.75	752.25
Silts, 14 @ \$12.75	178.50
VLF, Magnetometer, Chainsaw rental	325.00
Long Distance Charges	17.94
Subtotal, Expenses	\$ 2,627.30
TOTAL COSTS (NOV. 30 - DEC. 11)	\$10,227.30

