GEOLOGICAL AND GEOCHEMICAL REPORT

ON THE

LOG NO.

P. Can

FILE NO:

0119

SUB-RECORDER RECEIVED

1

JAN 17

VANCOUVER, B

M.R. #

HF UM

ZO

**A P** 

**X** 🖂

**m m** 

< Z C m

Ξ Ξ

5 0 5

9

SYRUP 1 AND 2 MINERAL CLAIMS

NICOLA AND VERNON MINING DISTRICTS

# NTS 82E/13

Lat.49° 57' N. Long. 119° 47' W

By

W. A. Howell, B.Sc. consulting geologist 15294 96 A Avenue Surrey B.C. V3R-8P5

and

Guinet Management Corp. 305 - 850 W. Hastings St. Vancouver B.C. V6C-1E1

on behalf of

VERDSTONE GOLD CORP. 536-999 Canada Place Vancouver, B.C.

November 25, 1989

# TABLE OF CONTENTS

.

Page No.

Ì

1

| SUMMARY                                                                                                                            | 1                          |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| INTRODUCTION<br>Location, Access, Topography<br>Property definition<br>TABLE 1 (List of claims)<br>History<br>Current work program | 2<br>2<br>2<br>2<br>5<br>6 |
| GEOLOGY<br>Regional aspects<br>Syrup property                                                                                      | 6<br>6<br>8                |
| MINERALIZATION AND GEOCHEMISTRY<br>Regional aspects<br>Syrup property                                                              | 9<br>9<br>10               |
| CONCLUSIONS                                                                                                                        | 13                         |
| RECOMMENDATIONS                                                                                                                    | 14                         |
| BIBLIOGRAPHY                                                                                                                       | 15                         |

| APPENDIX | I   | Statement of Qualifications |
|----------|-----|-----------------------------|
|          | II  | Statement of Costs          |
|          | III | Description of Rock Samples |
|          | IV  | Certificates of Analyses    |

# LIST OF FIGURES

| FIGURE | 1 | Location Map             | 3         |
|--------|---|--------------------------|-----------|
| FIGURE | 2 | Claim Map                | 4         |
| FIGURE | 3 | Compilation Map          | 7         |
| FIGURE | 4 | Geology and Geochemistry | In Pocket |

| THE SUM OF                                                                                                      |                                                     | Γ.      |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------|
| an ser a ser anna a sea a s | DOI                                                 | LARS \$ |
| ON ACCOUNT OF                                                                                                   |                                                     |         |
|                                                                                                                 |                                                     |         |
| When No.                                                                                                        | parts - Varnon                                      |         |
|                                                                                                                 | p (-2; (3053-3054)                                  |         |
| - An w                                                                                                          | p 1-2; (3053-3)7Y/                                  |         |
| J                                                                                                               |                                                     |         |
| - W                                                                                                             |                                                     |         |
|                                                                                                                 | ,                                                   |         |
| - //                                                                                                            | -                                                   |         |
| - #                                                                                                             | ·                                                   |         |
| - #                                                                                                             | -                                                   |         |
| - #                                                                                                             |                                                     |         |
| RECEIVED FROM                                                                                                   |                                                     |         |
| RECEIVED FROM                                                                                                   | Salt UN O ON Jani 1<br>Jissuing OFEICER'S SIGNATURE | 19 4    |

#### SUMMARY

The Syrup property is located 22km west of the city of Kelowna, in the Vernon mining district. The current work program consisted of prospecting, soil sampling and geological mapping in order to understand the distribution of rock types. Mapping and sampling control was provided by an extensive road network, servicing the logging industry, and maps available from the B.C. Forest Service. A total of 383 soil samples, 3 silt samples and 44 rock samples were collected and subjected to multi-element geochemical analysis. a total of 20,600 metres of sample line were flagged and sampled and 1400 metres of baseline flagged and stationed every 50 metres.

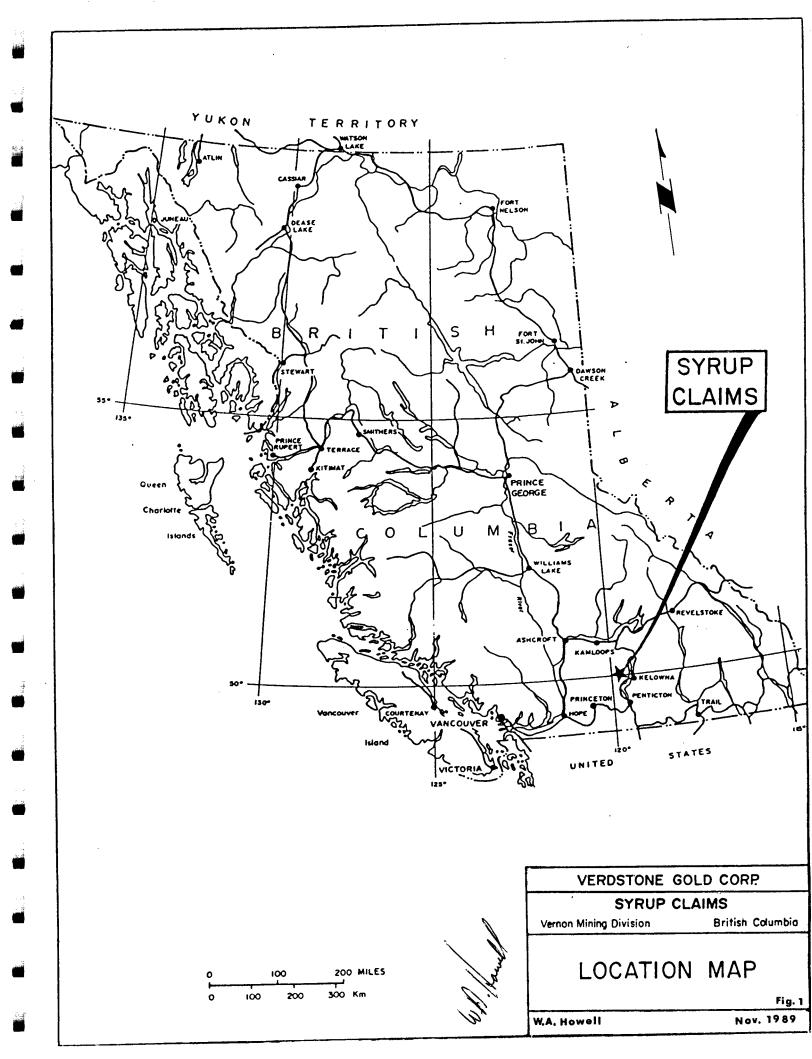
Sampling is widely spaced and of a reconnaissance nature. Although precious metal values so far detected are generally low, some areas warrant further exploration.

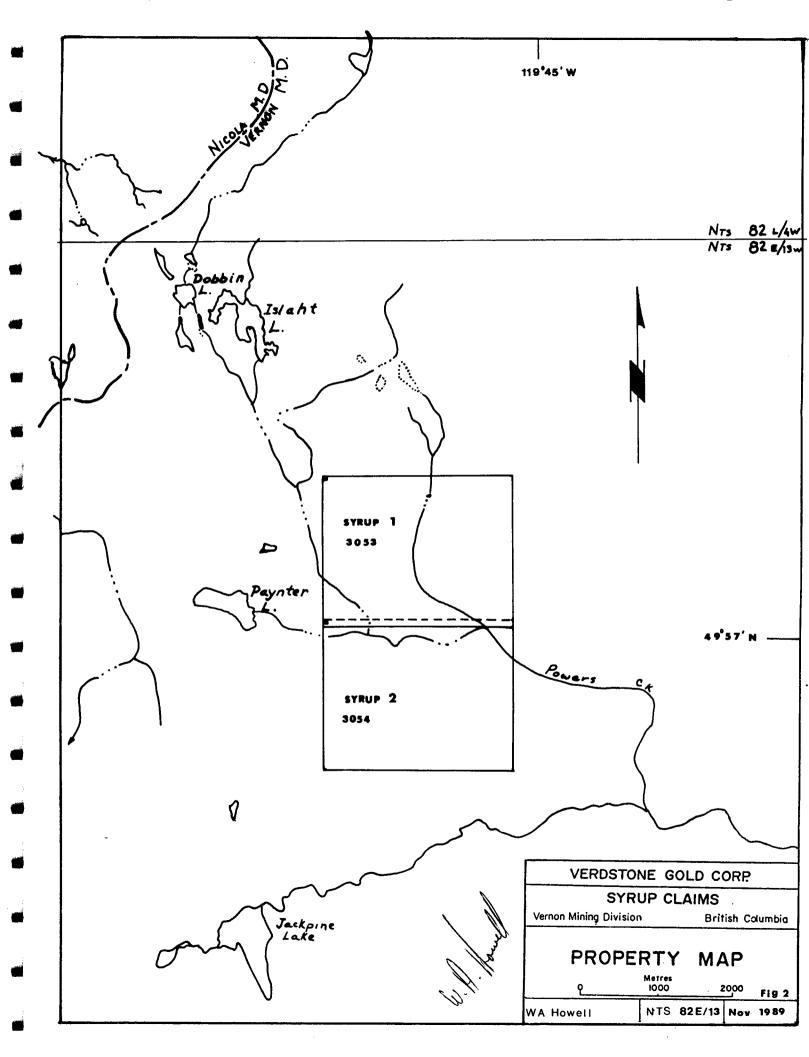
The property is underlain by Pennsylvanian to Permian volcanics and sediments of the Thompson assemblage (formerly Cache Creek Group) and/or the Upper Triassic Nicola Group and granitoid intrusive rocks believed to be of Upper Jurassic to Cretaceous age. The Thompson/Nicola rocks strike generally northwest to southeast and dip moderately to the southwest. They have also been intruded by the Old Dave ultra basic intrusions which are pre-Late Triassic in age. Brenda Mine, a large, operating copper-molybdenum mine, is located about 20 km to the south in felsic intrusive rocks believed to be of Late Jurassic age.

# INTRODUCTION

### Location, Access, Topography.

The property is located on the west side of the Okanagan valley about 22 km west of the city of Kelowna B.C. (figure 1) and just east of the height of land between the Okanagan Valley and the Nicola Valley to the north west. Access is by paved road from Westbank or Vernon along the west side of Okanagan Lake, then by the Bear Lake Main and the Horseshoe Lake Main, gravel logging roads to the property. Access within the property is provided by a network of spur roads and haul roads over much of the claim area. The property is centred on approximately latitude 49° 57'N and longitude 119° 47'W on NTS map area 82 E/13. Several small lakes are located nearby, most of which provide water to local irrigation districts in both the Nicola and the Okanagan Valleys. They also provide recreational camping and fishing areas for the general public. Topography on the claims is gentle to moderate with elevations averaging approximately 1350 m (4500 ft). About 25% of the property has been logged in the past and vegetation comprises locally mature stands of spruce, balsam and pine with immature second growth in the previously logged areas.


# Property Definition


The Syrup Property consists of two (2) metric grid system mineral claims totalling 40 units located in the Vernon Mining District of British Columbia. (Table 1, Figure 2).

### TABLE 1

| <u>Claim Name</u> | <u>Units</u> | Record No. | Record Date      |
|-------------------|--------------|------------|------------------|
| Syrup 1           | 20           | 3053       | November 20 1988 |
| Syrup 2           | 20           | 3054       | November 21 1988 |

The claims are currently owned by Verdstone Gold Corp. subject to a 2% net smelter royalty payable to the vendors. The author has examined the claims in the field and is of the opinion that they were staked in accordance with regulations.





#### History

The area west of Okanagan Lake has received the attention of prospectors since at least the turn of the century and probably prior to that time also. A.J.Schmidt, has summarized the history of the area very well. Much of the following is taken from his 1989 report.

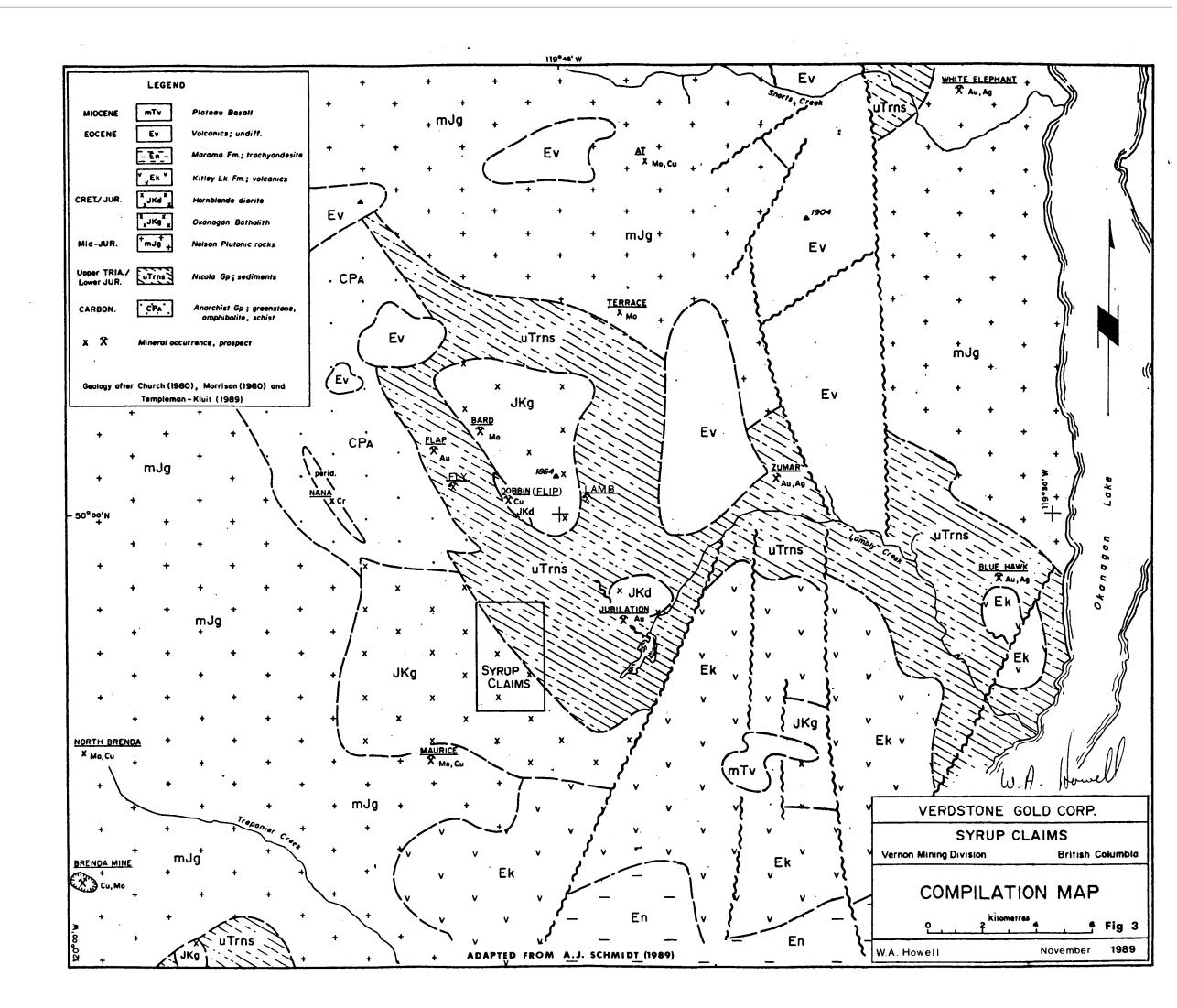
The Blue Hawk and White Elephant gold-silver prospects were located and explored in the 1920's. The active Brenda Mine (producing 30,000 tons /day), developed in 1965/68, has been in almost constant production since 1969. It is reputed to be the lowest grade porphyry copper-molybdenum mine in the world (present reserve grade 0.15% Cu, 0.03% Mo). The entire district was vigorously explored for similar deposits during 1960-1975, during which time several prospects were located. The same area was again explored for its uranium potential during a shorter flurry of activity, about 1970-78.

The discovery, by Huntington Resources, on the Brett property about 33 km to the north-northeast of the SYRUP claims, of high grade gold mineralization in 1988, has led to the present exploration activity in the area. The recent activity has seen almost the entire west side of Okanagan Lake completely covered by mineral claims. Within the area, gold mineralization has been found in 1988 on the FLAP claims 7 kms to the north; in 1980 on the NOGAN (now Jubilation) claims 4 kms to the east; and on the ZUMAR claims in 1979 from which a 60 ton shipment, grading 0.139 opt Au and 1.23 opt Ag., was made in 1980 to the Trail Smelter.

The Location of the various mines and prospects is presented on Figure 3 which has been adapted from A.J. Schmidt's 1989 report to Verdstone Gold Corp. Chevron Minerals completed a prospecting/geological & geochemical program on the FLIP claim during 1988, and reported the presence of copper values to 2000 ppm and the presence of gold values to 200 ppb. The claim is situated 2km to the north of the SYRUP claims.

Kerr Addison Mines completed a geological and geochemical program during 1988 on the LAMB claims immediately to the east of the JACK 4 and the FLIP claims. They reported only erratic mineralization from small quartz veins and disappointing results from garnet diopside skarn development.

#### Current Work Program


The field phase of the current work program was undertaken on September 10, 1989 and completed on October 7, 1989. Not all the time during this period was spent on the SYRUP claims. Two prospectors, P. Newman and J. Boutwell prospected and conducted reconnaissance style mapping and sampling. Several lines across the claims were sampled and prospected. The network of logging roads afforded a good means of mapping and sampling control and often provide a source of outcropping bedrock otherwise not always common. W.A. Howell, geologist, reviewed the prospecting results and conducted preliminary mapping and rock sampling. During the field phase of the program, Victor Guinet was present and contributed to prospecting and geological mapping for two days on the SYRUP claims. G. Medford, PhD. was also present and made a similar contribution for one day on the SYRUP claims.

#### GEOLOGY

#### Regional Aspects

The SYRUP property is located within a north westerly trending belt of lower grade Carboniferous to Triassic metasedimentary and metavolcanic rocks island arc and oceanic derivation. Metamorphism has proceeded to o£ greenschist facies. Regionally, the rocks are intruded by granitoid plutonic rocks of the middle Jurassic Nelson suite and the Jura-Cretaceous Valhalla suite. Ultramafic rocks of undeterminable age or genesis occur as small masses throughout the Thompson-Okanagan-Shuswap area, Only the Old Dave Intrusions (northwest of the syrup claims) are known to be pre-Late Triassic in age and suspected to be of intrusive origin. Tertiary (Eocene) volcanic rocks unconformably overlay all the older formations, and are generally unmetamorphosed.

The Okanagan Valley is believed to mark the location of a major crustal break or fault separating the lower grade metamorphic assemblages on the west from higher grade metamorphic rocks to the east.



Faulting is ubiquitous throughout the region. Drainage patterns and air photo linear features commonly reflect underlying faults or fault controlled structures. This is particularly evident in the area of, and surrounding, the SYRUP claims.

#### Syrup Property

Reconnaissance mapping has shown volcanic rocks and sediments of the Thompson assemblage (formerly Cache Creek Group) and possibly Nicola Group to underlay the northeast portion of the SYRUP No.1 claim (Figure 4). The southwestern portion of the SYRUP No.1 and almost all of the SYRUP NO.2 are underlain by uniform, massively textured, hornblende / biotite quartz-diorite.

The sediments are observed in faulted contact with the intrusive rocks along the Bear Main in the vicinity of Km 30. The road cut exposes siltstones and shaley members of ? Nicola sediments with the quartz-diorite along a faulted surface trending  $130^{\circ}/80^{\circ}E$ .

Reconnaissance mapping has shown volcanic rock and sediments of the Thompson assemblage and/or Nicola Group to lay in a northwesterly to southeasterly trend across the northeastern portion of the SYRUP claims. The southwestern portion of the claims is underlain by intrusive rocks of the Jura-Cretaceous Okanagan batholith (Figure 4.) In the vicinity of the SYRUP claims, the intrusive rocks are very homogeneous, medium to coarse-grained, biotite-hornblende quartz diorite. They weather very massive and blocky. The intrusives are relatively unfractured and show little variation in alteration except for diagenetic effects. The volcanics and sediments are poorly exposed and the sediments, particularly, weather recessively. The volcanics commonly are metamorphosed to greenschist facies. They are well-fractured and blocky in nature, foliated in a NW to SE trend and are occasionally fractured with quartz veins. Sulphide mineralization is variably present, usually in quartz veins, or as an accessory or minor constituent. Within the quartz veins, pyrite content is generally greater than pyrrhotite which is greater than chalcopyrite. Within the black shales, pyrrhotite is ubiquitous along bedding planes and parting planes, and is by far the dominant sulphide mineral. The

pyrrhotite, in the black shale environment, is believed to be syngenetic in origin.

The intrusive rocks have been observed along the Bear Main (logging road) in fault contact with the older volcanics and sediments. The primary contact is along a faulted surface trending 130°/80°E. This direction has been offset left laterally in a series of step-like patterns along 030°/90°.

The black shales occasionally have limy and silty interbeds. These offer some potential as marker horizons for future mapping. The shales outcropping near the eastern side of the property do not appear to have endured the same degree of metamorphism as sediments outcropping regionally farther north and west. The former may be members of the Upper Triassic - Lower Jurassic Nicola group, while the latter, members of the earlier Carboniferous assemblages.

Major faults are postulated in a northwesterly trend and appear to be offset in a secondary northeasterly direction. This pattern has been observed in the intrusive - sediment contact mentioned above, along the Bear Main, and is reflected in the regional drainage patterns, an example of which is the "zig-zag" course of Powers Creek as it traverces the SYRUP claims. Numerous air photo linear features are undoubtedly fault related, several of them are continuous for several kilometres without visible offset, despite the relative abundance of the northeasterly trending linear features. Rejuvenation or repeated episodes of faulting along pre-existing structures may allow the presence of such unbroken lineations. In any case, the geology of both the property and the region will be complicated to some degree by fault controlled structures.

# MINERALIZATION AND GEOCHEMISTRY

### Regional Aspects

Exploration for gold and other metals has occurred in cyclical fashion within the Okanagan area, as it has done throughout British Columbia, since the arrival of the first prospectors and settlers prior to the turn of the last century. In the 1920's, work was done on the Blue Hawk and White Elephant gold-silver prospects. Some minor placer gold production from Trepanier Creek

and lode copper exploration at the head of that drainage through to the 1940's led porphyry copper explorationists to develop the operating Brenda Mine which went into production in 1969. In more recent years the discovery of gold on the Brett Property by Huntington Resources, about 33 km northeast of the SYRUP claims has spurred renewed interest in the region.

Adjacent or nearby the SYRUP claims, gold exploration work has been carried out by several operators. Chevron Minerals has reported anomalous gold values to 200 ppb, and copper values to 2000 ppm on the FLIP claims during 1988. Kerr Addison also performed an exploration program on their LAMB Claims in 1988. They apparently had a gold skarn model in mind and cited numerous features to substantiate the idea. They reported very low values for gold from skarns and sporadic values from small quartz veins. To the north, on the regional strike direction of foliation and bedding from the SYRUP claims, gold was discovered on the FLAP claim during 1988. The gold occurs in narrow quartz veins along northwesterly trending pyritic stringer zones (Schmidt, 1989). Schmidt also has drawn a comparison between the FLAP claim and the Jubilation gold prospect (NOGAN), where low concentrations of gold occur in pyrite bearing narrow quartz veinlets within brecciated and altered limy argillite.

### Syrup property

Forty-four rock samples, three silt samples and three hundred eightythree soil samples were collected from the SYRUP property.

Samples were analyzed by I.C.P. techniques for 10 elements including: Mo; Cu; Pb; Zn; Ag; Ni; Co; As; Sb; and Ba. Gold was determined by acid leach followed by atomic adsorption analysis using a 10 gram sample. All samples were analyzed by Acme Analytical Laboratories Ltd. 852 E. Hastings St. Vancouver B.C. V6A 1R6.

The data is presented in the appendix to this report. Au, Ag, and As values are also illustrated on Figure 4.

<u>Molybdenum</u> - Molybdenite mineralization was not observed in any of the samples collected. Geochemical values ranged from a background of 1 to 5 ppm to a high of 325 ppm (sample JS-6-R) from an area of very rusty argillaceous metasediments near the contact with intrusive rocks. the same area gave a result of 30 ppm for an adjacent sample (JS-5-R). A sample from greenstone collected near the intrusive contact in the southeast corner of Syrup 1 (89-BS-32R), produced a value of 63 ppm. Within soils, all values were below 10ppm.

- <u>Copper</u> Copper values in soils ranged from a low of 6 ppm to a high of 152 ppm. The high value and the adjacent sample, 109 ppm, are located in the southeastern part of syrup 1 within the area underlain by sediments (samples 44+50S , 16+00E and 16+50E). Copper values within rocks were more variable, ranging from a low of 7 ppm to a high of 535 ppm from an area of hornfelsed sediments with minor clay-silica alteration on fractures (Sample JS-12-R).
- Lead Lead values in soils ranged from 2 ppm to 75 ppm. Nine samples were 15 ppm or greater. Within rock samples, the range was 3 ppm to 41 ppm. with seven samples 15 ppm or greater.
- <u>Zinc</u> Zinc values from soils were highly variable, as is common for that metal, ranging from a low of 22 ppm to a high of 448 ppm. Values, within rocks, ranged from 4 ppm to 762 ppm. The higher values within rocks occur near the northern edge of the property from an outcropping of limy rusty black shale alongside a road connecting the Horseshoe Main with the Lambly Main along the eastern side of the property.
- <u>Silver</u> Silver values are all low, ranging from .1 to 1.1 ppm within soil and from .1 to 1.5 within rock samples. The upper end of the range is only marginally anomalous for soils generally and within normal background ranges for rock samples. Results for silver are presented on Figure 4.
- <u>Nickel</u> Nickel values from soil samples range from 6 ppm to 138 ppm. The high value was collected adjacent to samples which yielded anomalous values for copper. The coincidence of the values may be significant geologically in light of the anomalous copper associated with mafic and ultramafic rocks (gabbro and peridotite) reported from the FLIP claim

about 3km to the north.

- <u>Cobalt</u> Cobalt values in soils and rocks ranged from 4 ppm to 92 ppm and are not considered significant.
- <u>Arsenic</u> Arsenic values in soil ranged from 2 ppm to 25 ppm with 20 samples over 10 ppm. The range is considered restricted, the cause may be simply due to a lack of arsenic, or other factors, unknown at this time. Arsenic values from rock samples ranged from 2 ppm to 1199 ppm. Six samples were greater than 20 ppm. Sample 89-BS-38 yielded a result of 1199 ppm, the sample was collected from an angular, rusty quartz rich boulder apparently ripped up during the construction of a local skid road. The boulder is in the vicinity of the intrusive-sediment contact. A value of 95 ppb Au was returned from the same sample. No other analyses are considered anomalous for this sample. Results for arsenic are presented on Figure 4.
- <u>Antimony</u> Antimony values ranged from 2 ppm to 4 ppm. Antimony is clearly not a significant component in any of the samples collected.
- <u>Barium</u> Barium undergoes only a partial leach using the digestion techniques employed. The results tend to reflect barium bound in forms other than sulphate (ie. baritic feldspar), to a greater degree than the more common barium sulphate (barite). Rock sample results ranged from 3 ppm to 342 ppm (sample 89-BS-42). The soils responded with results ranging from 3 ppm to 347 ppm. The interpretation of the results for barium is indeterminate at this time.
- <u>Gold</u> Gold results derived from rock samples ranged from 1 ppb to 161 ppb. values derived from soils ranged from 1 to 213 ppb. Sixteen samples were 10 ppb or greater. Threshold anomalous values are arbitrarily considered to be between 10 ppb and 19 ppb. Seven samples yielded results 20 ppb or greater. The results for gold are presented on Figure 4. A list of rock sample descriptions is appended to this report.

#### CONCLUSIONS

The Syrup property is underlain by sedimentary and volcanic rocks of the Triassic to upper Jurassic Nicola Group and/or Carboniferous Thompson assemblage and by intrusive rocks believed to be part of the Jura-Cretaceous Okanagan Batholith. The rocks are cut by large and small faults in a variety of attitudes but dominated by a strong northwesterly trending set and a northeasterly trending set. these faults may have been repeatedly activated throughout the geological history of the area. Anomalous geochemical values for gold, copper, lead, zinc and arsenic have been detected from an area extending from the north central boundary of the property to the southeast corner of the SYRUP 1 claim. This area is underlain by pyritic and rusty sediments and volcanics in contact with quartz-diorite. The area is geologically similar to the zones of mineralization discovered on the FLAP claims (Medford 1989, pers. comm.) The geochemical values in soils (up to 213ppb Au) compares very favourably with the geochemical expression obtained from soils surrounding the quartz vein discovery and volcanic exhalative horizon on the FLAP property. Much of the geology on the SYRUP is covered by widespread, generally thin, overburden. The Area from the north central boundary to the southeast corner of the SYRUP 1 claim requires further exploration and a more detailed examination using geological mapping, soil sampling and geophysical techniques.

# RECOMMENDATIONS

Continued exploration of the SYRUP property is recommended to test for gold mineralization related to pyritic quartz veins and to test for base metal horizons within the volcanic and sedimentary horizons (the two types may not be mutually exclusive).

The survey grid should be extended for continuing geochemical sampling and conducting geophysical studies. Line spacing should be 100 m apart with station spacing every 25 m. along the lines. The grid and survey area can be restricted to include only that portion of the claim underlain by the volcanic and sedimentary units. Overburden depths are not expected to be excessive and shouldn't place undue interpretation difficulties on the soil geochemical surveys. Initially, magnetometer and VLF-EM surveys should be done in conjunction with the geochemical surveys and detailed mapping. The surveys can be expanded to fill-in lines or additional surveys such as I.P.surveys may be performed as required. An excavator may readily be employed because of the excellent road access and minimal overburden cover, to evaluate any anomalous areas defined. Future diamond drilling programs will be contingent on the preceeding results.

W.A. Howell

W.A. Howell, B.Sc. Consulting Geologist

November 25 1989 Surrey, B.C.

#### BIBLIOGRAPHY

To Accompany report dated November 25, 1989 by W. A. Howell, B. Sc., Geological and Geochemical report on the Syrup Claims.

- Church, B.N. (1980): Geology of the Kelowna Tertiary Outlier, B. C. Ministry of Mines, Prelim. Map 39, Scale 1:50,000
- Church, B.N. (1980): Geology of the Terrace Mtn. Tertiary Outlier, B.C. Ministry of MInes, Prelim. Map 37, Scale 1:50,000
- 3. Claim Map, B.C. Dept of Mines, NTS 82E/13W, Scale 1:50,000.
- Good, D.R. (1979): Geological, Geochemical, Geophysical Report on the Rich, Jack, et al claims; Ass. Rpt. 7214, for Pan Ocean Oil Ltd.
- 5. Hill, J.R. (1978): Geochemical Assessment Report on the COMA Claims. Ass. Rpt. 7309, for Canadian Occidental Petroleum Ltd.
- Jones A.G. (1959): Vernon Map Area, B.C. Geological Survey of Canada Memoir 296, Geological Map 1059A, Scale 1:253,440.
- 7. Little, H.W. (1961): Kettle River, West Half, B.C. (82E/W1/2) Geological Survey of Canada, Map 15-1961, Scale 1:253,440
- 8. Morrison, M. (1986): Geological Assessment Report on the Jubilation Claims. Ass. Rpt. 15,157.
- Myers, R.E., Taylor, W.A., "Metallogenic Studies of Lode Gold-Silver Occurrences in South-Central B.C. a Progress Report" B.C. Ministry of Mines Paper 1989-1, pg. 355-363.
- Myers, R.E., Taylor, W.A. and Tempelman-Kluit, D. (1989): "Lode Gold-Silver occurrences of the Okanagan Region, South-Central B.C." B.C. Ministry of Mines, Open File 1989-5.
- 11. Nicholson, R.J. (1980): Ceological and Ceochemical Report on the Nogan Claims; Ass. Rpt. 9186, for Cominco Ltd.
- 12. Okulitch, A.V. (1979) Thompson-Shuswap-Okanagan, Geological Survey of Canada, Open File Map 637, Scale 1:250,000.
- Pautler, J. (1988): Geological and Geochemical Report on the Lamb Claims Ass.Rpt. 17,854, for Ken Addison Mines Ltd.
- 14. Tempelman-Kluit, D. (1989): Penticton Map Area, B.C. (82E) Geological Survey of Canada, Open File 1969. Geological Map, Scale 1:250,000
- 15. Topographic Map. Peachland, B.C.NTS 82E/13, Scale 1:50,000

- 16. Van Rosen, G. (1979): Geological and Geophysical report on the BERT and HOPE Mineral Claims, Ass. Rpt. 7329.
- Van Rosen, G. (1976): Geochemical Report of Heavy Metal Concentration and Analysis on the C.V. Mineral Claim. Ass.Rpt. 15,233, for Laramie Mining Corp.
- 18. Wilmot, A.D. (1986): Geophysical and Geochemical Report on the Zumar Claims; Ass. Rpt. 15,400 for Skyworld Development & Resources
- 19. Wilmot, A.D. (1987): Geochemical and Drilling Report on the Zumar Claims: Ass. Rpt. 16,416 for Skyworld Development & Resources.
- 20. Ziebart, P. (1987): Prospecting Report on Jubilation Claims; Ass. Rpt. 16,504, for Chevron Canada Ltd.
- 21. Ziebart, P. (1988): Prospecting Report on FLIP claims; Ass. Rpt. 17,700 for Chevron Canada Ltd.
- 22. Minister of Mines Annual Report: 1929 pages 247-249 1930 pages 207-208 1933 pages 196-197 1950 page 115
- 23. B.C. Air Photos: BC 88077; 016, 128, 129. BCC 362; 150, 151. BCC 370; 055, 056.



î۳

-

## Appendix I

Statement of Qualifications

I, William A. Howell, hereby certify that:

- 1. I am a Geologist and reside at 15294 96A Avenue, Surrey, B.C. V3R 8P5
- 2. I am a graduate of the University of British Columbia with a degree of Bachelor of Science in Geology (1971).
- 3. I am a member of the Geological Association of Canada.
- 4. I have practised my profession as a geologist since 1971, having worked as an employee and/or consultant for several International Mining Corporations and Junior Resource Companies.
- 5. This report is based upon field work undertaken on the property September 23rd to October 5, 1989.
- 6. I have no direct or indirect interest, nor do I expect to receive any interest directly or indirectly in the property or securities of Verdstone Gold Corp.

W.A. Howell

November 25, 1989. Surrey, B.C.

William A. Howell, B.Sc. Consulting Geologist

APPENDIX II

.

# APPENDIX II : COST STATEMENT

# PERSONNEL:

<u>dia</u>

| J. Boutwell (Prospector)<br>P. Newman (Prospector)<br>V. Guinet (Prospector)<br>W. Howell (Geologist)<br>G. Medford (Consultant) | 19 days @ \$225.00/day<br>6 Days @ 225.00/day<br>2 Days @ 225.00/day<br>7 Days @ 300.00/day<br>1.5 Day @ 375.00/day<br>Plus: Disbursements of | \$ 4,275.00<br>1,350.00<br>450.00<br>2,100.00<br>562.50<br>89.51 |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| DISBURSMENTS:                                                                                                                    |                                                                                                                                               |                                                                  |
| Assays Soils 386 x \$1<br>Rocks 44 x 1<br>Shipping                                                                               | •                                                                                                                                             | 0                                                                |
| Gas and oil<br>Drafting<br>Materials and supplies<br>Air Travel<br>Base Maps<br>Miscellaneous                                    | 336.5<br>306.0<br>96.3<br>471.5<br>231.6<br>75.3<br>ST 6,332.12                                                                               | D<br>5<br>7<br>5<br>4                                            |
| RENTALS:                                                                                                                         |                                                                                                                                               |                                                                  |
| 4 x 4 truck rental<br>Room and Board                                                                                             | 16 days @ \$ 60.00/day<br>34 Man Days @ 50.00/day                                                                                             | \$ 960.00<br>1,700.00                                            |
| <b>REPORTING:</b><br>Binding, copies, word proces                                                                                | sing                                                                                                                                          | 2,000.00<br>180.87                                               |
|                                                                                                                                  | TOTAL                                                                                                                                         | <u>\$ 20,000.00</u>                                              |



| Sample | Description                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------|
| JS-1R  | Grab sample of siliceous pyritic amphibolite, mineralization appears to be associated with quartz veining. |
| JS-2R  | Grab sample from quartz vein, 3 cm. wide with fine grained pyrite.                                         |
| JS-3R  | Same location as above, quartz with 60% wall rock.                                                         |
| JS-4R  | Grab sample from quartz vein containing wall rock plus some pyrite, same location as above.                |
| JS-5R  | Grab sample of silicified pyritic rock from gossanous zone along logging road.                             |
| JS-6R  | Grab sample from 2 cm. wide quartz vein, very pyritic, 10 m.<br>from above sample.                         |
| JS-7R  | Grab sample of pyritic, schistose, mafic volcanic from a 1.5 m. wide shear zone.                           |
| JS-8R  | Pyritic crumbly schist from same location as JS-7R.                                                        |
| JS-9R  | Same location as above two samples with hematite and more pyrite.                                          |
| JS-10R | Grab sample from 6 cm. wide quartz vein with minor pyrite.                                                 |
| JS-11R | Grab sample from 3 cm. wide quartz vein, rusty and vuggy.                                                  |
| JS-12R | Same location as above sample, with 15% pyrite.                                                            |
| JS-13R | Quartz stringers in calc silicate rock.                                                                    |
| JS-14R | Grab sample of sheared siliceous volcanic rock with fine grained pyrite.                                   |
| JS-15R | Grab sample of rusty banded calc silicates.                                                                |
| JS-16R | Grab sample of fine grained siliceous andesitic rock with fine grained sulphides.                          |
|        |                                                                                                            |

Ű.

ø

| Sample #                         | Description                                                                                                                                                                                                                                                                                                     |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89-BS 5                          | Qtz veins with pyrite. obs. in coarse roadside rubble<br>but not in outcrop. local outcrop is limey interbeded<br>fine sandy tuffsand argillites with local thickening and<br>crossbedding. Rx are locally rusty but not silicified.<br>Located across the road from the "Horseshoe lake<br>recreational site." |
| 89-BS 6                          | 4cm qtz vein in small re-entrant bi qtz diorite on west side of road at the south end of horseshoe lake.                                                                                                                                                                                                        |
| 89-BS 7                          | <pre>lcm qtz vein in diorite contains pyrite and chalcopyrite.<br/>vein is uncommon, lies 090/10S total sulphide is 15%<br/>with no moly. py/cpy = 3/1 or more. Sample is "high-<br/>graded."</pre>                                                                                                             |
| 89-BS 8                          | Rusty pyritic fractures in contact phase f.g. diorite.<br>?trace cpy present.                                                                                                                                                                                                                                   |
| 89-BS 9                          | Flat E-W strike, 10S dip qtz vein/orthoclase,muscovite<br>pegmatite. very little sulphide present.<br>Old Cat stripping in this area looks like exploration<br>dating to about 18 years ago. (c.1971)                                                                                                           |
| 89-BJ 10<br>89-BJ 11<br>89-BJ 12 | chip samples across 2m each, of high sulphide, siliceous<br>sintery black shale in "nose" of road along the south side<br>of logging slash near the southeast boundary of the Jack<br>claims.                                                                                                                   |
| 89 BJ 13                         | Fine gr. grey heavy rock, o/c has 15% diss. f.g. sulphides in f.g.qtz/ser Matrix within the black shales.                                                                                                                                                                                                       |
| 89-BJ 14                         | Very hard siliceous & pyritic nubbin in the road bed.<br>Difficult to sample properly. Rock is probably a<br>siliceous tuff.                                                                                                                                                                                    |
| 89-BS 23                         | Sintery grey vertically bedded fine sandy seds. v.f.g.<br>sulphides possibly po. old sampling here is "TLE 88-83"<br>sample is on a N-S yellow flag line with white tags and<br>is located on the Bear Main adj. to km 28.                                                                                      |
| 89-B 24                          | 200m up spur road at 24km on the lambly creek road.<br>The sample is off the property. the sample is of strongly<br>quartz-carbonate altered sediments exposed in the road bed<br>and the ditch over several tens of meters.                                                                                    |
| 89-BS 27                         | Hfls/pyritic greenstone fract. py and occasional                                                                                                                                                                                                                                                                |

•

clay/silica alteration. Old trenching in this area is probably 10-14 years old.

- 89-BS 28 Greenstone breccia cemented with f.g. qtz/carb.
- 89-BS 29 Qtz vein in rusty hornfelsed blocky greenstone.
- 89-BS 30 Silt from well developed drainage. Sample is highly organically contaminated very fine silt.
- 89-BS 31 Pyritic hornfelsed tuff or fine sediment.
- 89-BS 32 Rusty, pyritic/pyrrhotitic hornfels and argillaceous tuffs. very minor qtz.
- 89-BS 33 Rusty, hard, hornfelsed fine grained greenstone. contains py&po.
- 89-BS 34 Sintery boxwork of fine silica stringers in a buff to khaki green v.f.g. volcanic matrix. The stringers are commonly composed of terminated quartz enclosing very smallvugs and open spaces.
- 89-BS 35 Highly broken, leached, rusty, ?tuff? or greenstone. In bank of old skid trail.
- 89-BS 36 Pyritic silica/sericitic alt'd greenstone in bank of old skid trail.
- 89-BS 37 Intrusive, not typical, the quartz diorite comtains minor (2mm) qtz. vein with limonitic fractures and exhibits about 30% alteration to sericite. very minor possible MoS<sub>2</sub> in qtz.
- 89-BS 38 Float boulder, about 200 lb. Silicified, Qtz veined volcanic breccia. Vuggy qtz veins up to 2 cm wide with abundant limomite & fine grained disseminated pyrite. boulder is in the road bed and is highly angular as if ripped out by a cat while building the road. There is no evidence of glacial rounding or smoothing.
- 89-BS 39 no record
- 89-BS 40Quartz vein in hornfelsed greenstone with secondary89-BS 41Biotite. (both samples)
- 89-BS 42 Hornfelsed greenstone contains 1%py and possible cpy. weathers very rusty.

Ċ.

- . .

# APPENDIX IV

- .

- .
- .

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

# GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: SILT/ROCK AU\* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

1

| SAMPLE#                                                       | Mo<br>PPM              | Cu<br>PPM                   | Pb<br>PPM                | Zn<br>PPM                   | Aq<br>PPM                  | Ni<br>PPM                 | CO<br>PPM               | As<br>PPM               | Sb<br>PPM                            | Ba<br>PPM                   | Au*<br>PPB                |
|---------------------------------------------------------------|------------------------|-----------------------------|--------------------------|-----------------------------|----------------------------|---------------------------|-------------------------|-------------------------|--------------------------------------|-----------------------------|---------------------------|
| 89-BS-30<br>P-S-R-1<br>P-S-R-2<br>89-BS-7R<br>89-BS-8R        | 3<br>11<br>2<br>4<br>1 | 81<br>37<br>10<br>195<br>50 | 15<br>13<br>3<br>6<br>7  | 103<br>10<br>4<br>53<br>58  | .7<br>.5<br>.1<br>.4<br>.6 | 34<br>7<br>5<br>4         | 9<br>4<br>92<br>7       | 4<br>2<br>2<br>2<br>2   | 2<br>2<br>2<br>2<br>2<br>2<br>2      | 219<br>16<br>3<br>7<br>29   | 3<br>4<br>1<br>2<br>3     |
| 89-BS-9R<br>89-BS-23R<br>89-BS-24R<br>89-BS-25R<br>89-BS-27R  | 4<br>6<br>1<br>2       | 7<br>7<br>34<br>64<br>49    | 8<br>16<br>41<br>9<br>21 | 14<br>4<br>103<br>92<br>43  | 1.5<br>.1<br>.3<br>.1      | 9<br>6<br>34<br>26        | 3<br>1<br>29<br>10      | 2<br>27<br>8<br>5<br>25 | 2<br>2<br>2<br>3<br>2                | 15<br>176<br>21<br>50<br>80 | 3<br>73<br>4<br>3<br>1    |
| 89-BS-28R<br>89-BS-29R<br>89-BS-31R<br>89-BS-32R<br>89-BS-33R | 1<br>2<br>63<br>9      | 20<br>16<br>65<br>64<br>60  | 3<br>3<br>14<br>4<br>6   | 23<br>4<br>127<br>675<br>49 | .1<br>.1<br>.4<br>.3       | 13<br>8<br>77<br>65<br>48 | 5<br>5<br>13<br>9<br>16 | 2<br>2<br>2<br>5<br>3   | 2222                                 | 192<br>26<br>48<br>45<br>91 | 1<br>2<br>3<br>7<br>3     |
| 89-BS-34R<br>89-BS-35R<br>89-BS-36R<br>89-BS-37R<br>89-BS-38R | 1<br>2<br>3<br>8<br>3  | 8<br>48<br>56<br>24         | 13<br>5<br>9<br>5        | 16<br>37<br>25<br>13<br>67  | .2<br>.1<br>.3<br>.1<br>.2 | 15<br>9<br>38<br>5<br>103 | 6<br>5<br>13<br>5<br>18 | 5<br>2<br>5<br>1199     | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 98<br>51<br>43<br>55<br>178 | 56<br>3<br>161<br>2<br>95 |
| 89-BS-40R<br>89-BS-41R<br>89-BS-42R<br>STD C/AU-R             | 1<br>1<br>1<br>18      | 17<br>91<br>64<br>58        | 2<br>3<br>8<br>38        | 44<br>58<br>151<br>132      | .1<br>.2<br>.2<br>7.2      | 62<br>76<br>24<br>67      | 15<br>18<br>21<br>30    | 5<br>13<br>2<br>42      | 2<br>2<br>15                         | 17<br>342<br>129<br>175     | 1<br>4<br>2<br>495        |

|                                                     | G                      | uinet                          | Mana                   | gemen                         | it F                       | ILE #                     | 89-4                       | 037                       |                                           |                             |                        |
|-----------------------------------------------------|------------------------|--------------------------------|------------------------|-------------------------------|----------------------------|---------------------------|----------------------------|---------------------------|-------------------------------------------|-----------------------------|------------------------|
| SAMPLE#                                             | Mo<br>PPM              | Cu<br>PPM                      | Pb<br>PPM              | Zn<br>PPM                     | Aq<br>PPM                  | Ni<br>PPM                 | Co<br>PPM                  | As<br>PPM                 | Sb<br>PPM                                 | Ba<br>PPM                   | Au*<br>PPB             |
| JS-1-R<br>JS-2-R<br>JS-3-R<br>JS-4-R<br>JS-5-R      | 1<br>4<br>2<br>2<br>30 | 84<br>107<br>227<br>175<br>61  | 10<br>5<br>2<br>14     | 49<br>15<br>26<br>44<br>97    | 13616                      | 46<br>10<br>10<br>9<br>21 | 22<br>10<br>38<br>24<br>22 | 52<br>22<br>15<br>10<br>2 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 137<br>12<br>25<br>55<br>38 | 4<br>1<br>2<br>1<br>2  |
| JS-6-R<br>JS-7-R<br>JS-8-R<br>JS-9-R<br>JS-10-R     | 325<br>1<br>2<br>1'    | 137<br>204<br>273<br>288<br>13 | 10<br>6<br>5<br>6<br>2 | 36<br>226<br>375<br>299<br>14 | 1.2                        | 28<br>9<br>11<br>1<br>5   | 17<br>19<br>24<br>21<br>2  | 2<br>2<br>2<br>2<br>3     | 222222                                    | 59<br>17<br>79<br>112<br>24 | 12<br>4<br>2<br>1<br>5 |
| JS-11-R<br>JS-12-R<br>JS-13-R<br>JS-14-R<br>JS-15-R | 2<br>10<br>1<br>4<br>6 | 36<br>535<br>118<br>110<br>92  | 2<br>3<br>2<br>6<br>5  | 6<br>29<br>14<br>131<br>18    | .1<br>.4<br>.1<br>.3<br>.2 | 5<br>8<br>154<br>97<br>43 | 2<br>27<br>19<br>26<br>11  | 2<br>4<br>16<br>3<br>4    | 2<br>2<br>2<br>2<br>2<br>2<br>2           | .9<br>12<br>60<br>92<br>12  | 2<br>1<br>1<br>1       |
| JS-16-R                                             | 26                     | <u>70</u>                      | 1 <u>2</u>             | 13 <u>8</u>                   | .4                         | <b>§</b> 9                | 13                         | 8                         | 5                                         | 26                          | 1                      |
|                                                     |                        |                                |                        |                               |                            |                           |                            |                           |                                           |                             |                        |

Pani : **114** 

•

ومع

٠

.

.

~

|                                                                         | Guin                  | et Ma                      | nagem                     | ent                             | FILE                       | # 89                       | -4037                      |                        |                                      |                                 |                        |
|-------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------|--------------------------------------|---------------------------------|------------------------|
| SAMPLE#                                                                 | Mo<br>PPM             | Cu<br>PPM                  | Pb<br>PPM                 | Zn<br>PPM                       | Aq<br>PPM                  | Ni<br>PPM                  | Co<br>PPM                  | As<br>PPM              | Sb<br>PPM                            | Ba<br>PPM                       | Au*<br>PPB             |
| 48S 12+50E<br>48S 13+00E<br>48S 13+50E<br>48S 14+00E<br>48S 14+50E      | 6<br>1<br>2<br>1      | 73<br>26<br>20<br>25<br>21 | 12<br>9<br>7<br>11<br>10  | 174<br>120<br>80<br>80<br>76    | •5<br>•4<br>•3<br>•3       | 83<br>24<br>19<br>30<br>22 | 12<br>10<br>9<br>10<br>10  | 16<br>5<br>4<br>5      | 2<br>2<br>2<br>2<br>2<br>2           | 256<br>111<br>91<br>136<br>126  | 4<br>2<br>7<br>4<br>1  |
| 48S 15+00E<br>48S 15+50E<br>48S 16+00E<br>48S 16+50E<br>48S 17+00E      | 4<br>3<br>1<br>2      | 38<br>35<br>35<br>38<br>24 | 11<br>9<br>13<br>15<br>14 | 167<br>165<br>117<br>122<br>133 | ·1<br>·2<br>·1<br>·3<br>·2 | 40<br>55<br>34<br>36<br>42 | 13<br>12<br>12<br>13<br>15 | 7<br>6<br>10<br>7<br>8 | 2<br>3<br>2<br>2<br>2                | 148<br>177<br>131<br>152<br>203 | 2<br>1<br>12<br>2<br>1 |
| 48S 17+50E<br>48S 18+00E<br>48S 18+50E<br>48S 19+00E<br>48S 19+50E      | 1<br>2<br>2<br>2<br>1 | 34<br>26<br>30<br>27<br>31 | 12<br>8<br>12<br>12<br>10 | 111<br>167<br>176<br>109<br>106 | .2<br>.1<br>.1<br>.1<br>.1 | 34<br>39<br>33<br>36<br>28 | 13<br>14<br>14<br>13<br>11 | 9<br>11<br>8<br>3<br>4 | 2<br>2<br>2<br>2<br>2<br>2           | 194<br>139<br>121<br>109<br>116 | 3<br>1<br>5<br>4<br>5  |
| 48S 20+00E<br>48S 20+04E SILT<br>48S 20+50E<br>48S 21+00E<br>48S 21+50E | 2<br>1<br>1<br>1      | 49<br>45<br>65<br>32<br>18 | 18<br>7<br>14<br>11<br>7  | 107<br>55<br>130<br>131<br>74   | .3<br>.26<br>.1<br>.1      | 39<br>27<br>55<br>33<br>22 | 11<br>5<br>12<br>14<br>9   | 7<br>4<br>7<br>2       | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 149<br>121<br>154<br>137<br>87  | 4<br>2<br>2<br>1       |
| 48S 22+00E<br>48S 22+50E<br>48S 23+00E<br>48S 23+50E<br>48S 24+50E      | 2<br>2<br>3<br>1<br>2 | 21<br>29<br>73<br>24<br>29 | 10<br>8<br>9<br>11<br>8   | 109<br>106<br>107<br>157<br>173 | .32521                     | 23<br>25<br>41<br>21<br>34 | 10<br>11<br>9<br>11<br>12  | 86659                  | 222222                               | 110<br>213<br>201<br>117<br>169 | 1<br>2<br>3<br>2<br>4  |
| 48S 25+00E<br>STD C/AU-S                                                | 2<br>19               | 69<br>62                   | 14<br>40                  | 184<br>132                      | .5<br>6.5                  | 65<br>65                   | 11<br>31                   | 7<br>40                | 2<br>15                              | 172<br>176                      | 2<br>53                |

Page 11

.

|                                                                    |                                              |                                     |                                 | <b>1</b>                        | -                          |                            | -                       | l                                    | ŧ.                              |                        |
|--------------------------------------------------------------------|----------------------------------------------|-------------------------------------|---------------------------------|---------------------------------|----------------------------|----------------------------|-------------------------|--------------------------------------|---------------------------------|------------------------|
|                                                                    | Guinet                                       | Manager                             | nent                            | FIL                             | E # 8                      | 9-403                      | 7                       |                                      |                                 |                        |
| SAMPLE#                                                            | Mo C<br>PPM PP                               | u Pb<br>M PPM                       | Zn<br>PPM                       | Ag<br>PPM                       | Ni<br>PPM                  | Co<br>PPM                  | As<br>PPM               | Sb<br>PPM                            | Ba<br>PPM                       | Au*<br>PPB             |
| 47S 18+50S<br>47S 19+00S<br>47S 19+50S<br>47S 20+00S<br>47S 20+50S | 1 1<br>1 2<br>3 3<br>2 3<br>4 4              | 1 8<br>0 9<br>2 10                  | 92<br>121<br>245<br>174<br>236  | .1<br>.1<br>.2<br>.2            | 20<br>27<br>55<br>50<br>72 | 10<br>11<br>15<br>15<br>19 | 3<br>6<br>11<br>7<br>15 | 2<br>2<br>2<br>2<br>2<br>2<br>2      | 130<br>127<br>121<br>166<br>170 | 2<br>4<br>3<br>1<br>2  |
| 47S 21+00S<br>47S 21+50S<br>47S 22+00S<br>47S 22+50S<br>47S 23+00S | 1 2<br>1 1<br>2 2<br>1 5<br>1 7              | 0 7<br>9 11<br>1 10<br>8 10<br>0 10 | 100<br>117<br>121<br>116<br>134 | .2<br>.3<br>.1<br>.2<br>.1      | 31<br>28<br>26<br>44<br>44 | 11<br>11<br>15<br>15       | 6<br>5<br>8<br>11<br>10 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 110<br>142<br>139<br>206<br>264 | 2<br>1<br>3<br>4       |
| 48S 0+00E<br>48S 0+50E<br>48S 1+00E<br>48S 1+50E<br>48S 2+00E      | 2 4<br>5 3<br>2 3                            | 7 9<br>3 9<br>6 14<br>0 13<br>1 15  | 120<br>138<br>132<br>146<br>105 | .1<br>.2<br>.1<br>.2<br>.3      | 34<br>31<br>40<br>35<br>25 | 13<br>17<br>13<br>14<br>16 | 3<br>4<br>6<br>9<br>3   | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 168<br>211<br>113<br>98<br>193  | 1<br>6<br>1<br>3<br>1  |
| 48S 2+50E<br>48S 3+00E<br>48S 3+50E<br>48S 4+00E<br>48S 4+50E      | $\begin{array}{ccc}1&2\\1&2\\2&4\end{array}$ | 0 8<br>0 9<br>3 8<br>6 4<br>9 8     | 146<br>82<br>114<br>91<br>88    | .22<br>.33<br>.22<br>.22        | 49<br>25<br>27<br>44<br>26 | 20<br>10<br>10<br>13<br>11 | 7<br>8<br>9<br>5<br>7   | 2<br>2<br>2<br>2<br>2<br>3           | 182<br>109<br>129<br>98<br>115  | 1<br>2<br>3<br>2<br>3  |
| 48S 5+00E<br>48S 5+50E<br>48S 6+00E<br>48S 6+50E<br>48S 7+00E      |                                              | 6 14<br>8 8<br>1 11<br>2 10<br>6 10 | 92<br>94<br>328<br>182<br>99    | .2<br>.5<br>.1<br>.3            | 30<br>27<br>42<br>19<br>30 | 12<br>10<br>13<br>10<br>12 | 85959<br>5959           | 22222                                | 132<br>135<br>237<br>107<br>153 | 8<br>6<br>4<br>3       |
| 48S 7+50E<br>48S 8+00E<br>48S 8+05E SILT<br>48S 8+50E<br>48S 9+00E | 1 1<br>2 5<br>1 1                            | 8 13<br>7 9<br>2 13<br>9 4<br>9 15  | 78<br>114<br>354<br>80<br>100   |                                 | 25<br>20<br>23<br>23<br>32 | 10<br>10<br>11<br>10<br>11 | 7<br>5<br>7<br>2<br>4   | 2<br>2<br>2<br>2<br>3                | 110<br>107<br>143<br>116<br>167 | 2<br>1<br>5<br>18<br>1 |
| 48S 9+50E<br>48S 10+00E<br>48S 10+50E<br>48S 11+00E<br>48S 11+50E  |                                              | 8 11<br>8 13<br>2 7<br>8 11<br>2 11 | 114<br>111<br>79<br>127<br>87   | • 3<br>• 2<br>• 4<br>• 3<br>• 2 | 28<br>25<br>27<br>28<br>22 | 11<br>11<br>11<br>11<br>11 | 4<br>7<br>6<br>5<br>4   | 2<br>2<br>2<br>2<br>2<br>2<br>2      | 133<br>92<br>113<br>151<br>181  | 4<br>3<br>21<br>3<br>3 |
| 48S 12+00E<br>STD C/AU-S                                           | 1<br>18                                      | 3 13<br>0 45                        | 115<br>133                      | 7:2                             | 18<br>67                   | 11<br>31                   | 9<br>40                 | 3<br>16                              | 126<br>175                      | 5<br>49                |

Page 10

|                                                                |                         | <b>L</b><br>Suinet         | Mana                     | gemen                           | t F                        | <b>i</b> le #              | 89-4                       | <b>1</b> 37              |                                                |                                 |                       | <b>B</b> angara | Page 9 |
|----------------------------------------------------------------|-------------------------|----------------------------|--------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|--------------------------|------------------------------------------------|---------------------------------|-----------------------|-----------------|--------|
| SAMPLE#                                                        | Mo<br>PPM               | Cu<br>PPM                  | Pb<br>PPM                | Zn<br>PPM                       | Aq<br>PPM                  | Ni<br>PPM                  | Co<br>PPM                  | As<br>PPM                | Sb<br>PPM                                      | Ba<br>PPM                       | Au*<br>PPB            |                 |        |
| 46S 26+<br>46S 27+<br>46S 27+<br>46S 27+<br>46S 28+<br>47S 1+0 | 00E 1<br>50E 2<br>00E 1 | 44<br>34<br>44<br>23<br>15 | 8<br>9<br>10<br>6<br>7   | 146<br>145<br>159<br>127<br>92  | .2<br>.3<br>.2<br>.2<br>.1 | 42<br>31<br>48<br>22<br>13 | 14<br>11<br>14<br>12<br>9  | 8<br>9<br>8<br>5         | 2<br>2<br>2<br>2<br>2<br>2                     | 157<br>133<br>178<br>158<br>89  | 1<br>4<br>2<br>3<br>1 |                 |        |
| 47S 1+5<br>47S 2+0<br>47S 2+5<br>47S 3+0<br>47S 3+5            | 0E 1<br>0E 1<br>0E 1    | 41<br>46<br>32<br>35       | 9<br>13<br>5<br>9<br>8   | 196<br>155<br>116<br>134<br>247 | .2<br>.1<br>.3<br>.2       | 38<br>36<br>26<br>25<br>17 | 16<br>14<br>16<br>13<br>20 | 5<br>9<br>7<br>10<br>6   | 2<br>2<br>2<br>4<br>2                          | 231<br>155<br>209<br>169<br>145 | 6<br>3<br>1<br>2<br>1 |                 |        |
| 47S 4+0<br>47S 4+5<br>47S 5+0<br>47S 5+5<br>47S 6+0            | 0E 6<br>0E 1<br>0E 2    | 51<br>32<br>33<br>31<br>34 | 7<br>9<br>10<br>9        | 150<br>291<br>115<br>103<br>69  | .3<br>.1<br>.1<br>.1       | 51<br>49<br>34<br>34<br>20 | 16<br>21<br>13<br>13<br>9  | 8596<br>6                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 118<br>88<br>143<br>106<br>71   | 1<br>1<br>1<br>2      |                 |        |
| 47S 6+5<br>47S 7+5<br>47S 8+0<br>47S 8+5<br>47S 9+0            | 0E 2<br>0E 1<br>0E 1    | 31<br>28<br>29<br>22<br>18 | 9<br>9<br>11<br>9        | 110<br>96<br>119<br>80<br>109   | .3<br>.4<br>.1<br>.1       | 26<br>27<br>34<br>22<br>27 | 13<br>11<br>12<br>10<br>11 | 15<br>10<br>13<br>8<br>9 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | 121<br>206<br>148<br>98<br>122  | 2<br>1<br>5<br>1<br>1 |                 |        |
| 47S 9+5<br>47S 10+<br>47S 11+<br>47S 11+<br>47S 11+<br>47S 12+ | 50E 1<br>00E 2<br>50E 1 | 30<br>17<br>51<br>28<br>22 | 7<br>7<br>13<br>13<br>5  | 80<br>74<br>111<br>100<br>135   | .2<br>.1<br>.4<br>.1<br>.1 | 28<br>21<br>43<br>32<br>28 | 11<br>10<br>13<br>11<br>12 | 7<br>5<br>10<br>8<br>7   | 2<br>2<br>2<br>2<br>3                          | 157<br>111<br>239<br>187<br>119 | 53222<br>222          |                 |        |
| 47S 12+<br>47S 13+<br>47S 13+<br>47S 13+<br>47S 14+<br>47S 14+ | 00E 1<br>50E 1<br>00E 1 | 21<br>17<br>16<br>17<br>32 | 10<br>6<br>7<br>5<br>11  | 101<br>81<br>91<br>115<br>127   | •4<br>•1<br>•2<br>•3       | 23<br>25<br>22<br>31<br>28 | 12<br>11<br>10<br>12<br>14 | 96559                    | 3<br>2<br>2<br>4<br>2                          | 136<br>108<br>105<br>204<br>156 | 5<br>1<br>1<br>4      |                 |        |
| 47S 15+<br>47S 15+<br>47S 16+<br>47S 17+<br>47S 17+<br>47S 17+ | 50E 1<br>50E 2<br>00E 1 | 22                         | 7<br>10<br>10<br>12<br>8 | 111<br>100<br>110<br>101<br>126 | .1<br>.2<br>.2<br>.2       | 22<br>24<br>26<br>26<br>27 | 13<br>13<br>12<br>12<br>10 | 7<br>10<br>7<br>6<br>5   | 2<br>2<br>2<br>2<br>3                          | 118<br>160<br>149<br>102<br>90  | 1<br>20<br>4<br>1     |                 | 1      |
| 47S 18+<br>STD C/A                                             | -00E 1<br>U-S 18        | 17<br>59                   | 10<br>36                 | 98<br>132                       | 7:1                        | 25<br>68                   | 10<br>31                   | 4<br>39                  | 2<br>15                                        | $117\\173$                      | 1<br>48               |                 |        |

|                                 |                                                |      | Guin                  | et Ma                      | nagem                    | ent                             | FILE                       | ₩<br># 89                  | -4037                      | . 8                      | ю. <b>Г</b>                               |                                 |                       |
|---------------------------------|------------------------------------------------|------|-----------------------|----------------------------|--------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|--------------------------|-------------------------------------------|---------------------------------|-----------------------|
| SAMF                            | PLE#                                           |      | Mo<br>PPM             | Cu<br>PPM                  | Pb<br>PPM                | Zn<br>PPM                       | Aq<br>PPM                  | Ni<br>PPM                  | CO<br>PPM                  | As<br>PPM                | Sb<br>PPM                                 | Ba<br>PPM                       | Au*<br>PPB            |
| 46S<br>46S<br>46S<br>46S<br>46S | 9+00E<br>9+50E<br>10+00E<br>10+50E<br>11+00E   |      | 1<br>1<br>1<br>1      | 25<br>17<br>20<br>25<br>15 | 9<br>6<br>9<br>7<br>9    | 123<br>110<br>106<br>96<br>156  | :2<br>:1<br>:1<br>:2<br>:1 | 35<br>31<br>26<br>24       | 11<br>10<br>10<br>10<br>10 | 8<br>8<br>12<br>11<br>7  | 2<br>2<br>3<br>2<br>2                     | 120<br>134<br>115<br>111<br>130 | 3<br>1<br>9<br>1<br>1 |
| 46S<br>46S<br>46S<br>46S<br>46S | 11+28E<br>11+50E<br>12+00E<br>12+50E<br>13+00E | SILT | 2<br>1<br>1<br>2<br>1 | 58<br>29<br>27<br>36<br>16 | 5<br>8<br>13<br>11<br>9  | 448<br>296<br>177<br>188<br>147 | .4<br>.1<br>.1<br>.2<br>.2 | 31<br>14<br>24<br>35<br>21 | 13<br>10<br>12<br>12<br>11 | 8<br>11<br>12<br>14<br>8 | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 227<br>92<br>108<br>121<br>100  | 2<br>1<br>7<br>4<br>1 |
| 46S<br>46S<br>46S<br>46S<br>46S | 13+50E<br>14+00E<br>14+50E<br>15+00E<br>15+50E |      | 2<br>1<br>1<br>1<br>1 | 27<br>25<br>19<br>23<br>15 | 8<br>3<br>8<br>4<br>9    | 119<br>86<br>91<br>105<br>82    | .1<br>.1<br>.1<br>.1<br>.1 | 33<br>24<br>22<br>31<br>14 | 12<br>12<br>10<br>13<br>11 | 13<br>9<br>7<br>14<br>6  | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 169<br>120<br>97<br>80<br>86    | 1<br>1<br>2<br>1      |
| 46S<br>46S<br>46S<br>46S<br>46S | 16+00E<br>16+50E<br>17+00E<br>17+50E<br>18+00E |      | 1<br>1<br>1<br>1      | 28<br>27<br>18<br>17<br>18 | 6<br>8<br>11<br>75<br>8  | 111<br>115<br>124<br>145<br>103 | .1<br>.1<br>.1<br>.4<br>.2 | 23<br>24<br>17<br>22<br>24 | 15<br>14<br>11<br>13<br>10 | 10<br>10<br>5<br>7<br>3  | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 96<br>87<br>99<br>104<br>87     | 1<br>1<br>1<br>1      |
| 46S<br>46S<br>46S<br>46S<br>46S | 18+50E<br>19+00E<br>19+50E<br>20+00E<br>20+50E |      | 1<br>2<br>2<br>1<br>1 | 17<br>29<br>19<br>31<br>23 | 7<br>9<br>11<br>11       | 97<br>141<br>84<br>160<br>161   | .1<br>.1<br>.1<br>.3       | 21<br>27<br>19<br>33<br>25 | 11<br>13<br>12<br>14<br>13 | . 4<br>7<br>10<br>7<br>5 | 22222                                     | 106<br>128<br>85<br>175<br>145  | 5<br>1<br>2<br>9<br>4 |
| 46S<br>46S<br>46S<br>46S<br>46S | 21+00E<br>21+50E<br>22+00E<br>22+50E<br>23+00E |      | 1<br>1<br>1<br>1      | 18<br>18<br>17<br>12<br>21 | 12<br>10<br>7<br>9<br>9  | 94<br>60<br>89<br>68<br>131     | .1<br>.5<br>.1<br>.3       | 24<br>21<br>31<br>20<br>28 | 11<br>10<br>11<br>9<br>12  | 4<br>5<br>2<br>4<br>3    | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 115<br>99<br>101<br>99<br>123   | 65<br>1<br>2<br>1     |
| 46S<br>46S<br>46S<br>46S<br>46S | 23+50E<br>24+00E<br>24+50E<br>25+00E<br>25+50E |      | 1<br>1<br>1<br>1      | 20<br>21<br>42<br>22<br>21 | 9<br>12<br>13<br>11<br>6 | 125<br>135<br>167<br>92<br>85   | .1<br>.2<br>.2<br>.1<br>.3 | 22<br>32<br>58<br>36<br>28 | 11<br>13<br>15<br>13<br>11 | 6<br>10<br>5<br>6        | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 102<br>100<br>204<br>92<br>95   | 2<br>2<br>2<br>4<br>6 |
| 46S<br>STD                      | 26+00E<br>C/AU-S                               |      | 1<br>18               | 22<br>60                   | 12<br>38                 | 117<br>132                      | 6.5                        | 28<br>65                   | 13<br>31                   | 6<br>40                  | 2<br>15                                   | 141<br>174                      | 2<br>51               |

Page 8

. Lie Lie Lie

· ·

| , San Star San San San San                                                       | G                     |                            | Mana                      | gemen                           | t F                        | ILE #                      | 89-4                       | 037                    |                                           |                                 |                       | Page 7 |
|----------------------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|------------------------|-------------------------------------------|---------------------------------|-----------------------|--------|
| SAMPLE#                                                                          | Mo<br>PPM             | Cu<br>PPM                  | Pb<br>PPM                 | Zn<br>PPM                       | Aq<br>PPM                  | Ni<br>PPM                  | Co<br>PPM                  | As<br>PPM              | Sb<br>PPM                                 | Ba<br>PPM                       | Au*<br>PPB            |        |
| 45S 28+00E<br>45S 28+50E<br>45S 29+00E<br>45S 29+50E<br>45S 30+00E               | 2<br>1<br>1<br>4<br>1 | 36<br>41<br>37<br>62<br>27 | 13<br>8<br>8<br>17<br>11  | 171<br>121<br>227<br>214<br>141 | .1<br>.1<br>.4<br>.3       | 47<br>31<br>61<br>65<br>23 | 17<br>17<br>15<br>14<br>13 | 3<br>4<br>4<br>6<br>4  | 22222                                     | 196<br>148<br>139<br>249<br>112 | 1<br>1<br>2<br>1<br>1 |        |
| 45S 30+50E<br>45S 31+00E<br>45S 31+50E<br>45S 32+00E<br>45S 32+50E               | 1<br>1<br>2<br>1<br>2 | 30<br>20<br>29<br>23<br>22 | 14<br>10<br>14<br>9<br>10 | 129<br>152<br>137<br>119<br>92  | .1<br>.14<br>.2<br>.6      | 31<br>25<br>28<br>23<br>22 | 15<br>12<br>13<br>12<br>14 | 4<br>3<br>4<br>2<br>3  | 22222                                     | 120<br>110<br>131<br>92<br>95   | 3<br>3<br>1<br>1<br>1 |        |
| 45S 33+00E<br>45S 33+50E<br>45S 34+00E<br>45S 34+50E<br>45S 34+50E<br>45S 35+00E |                       | 33<br>28<br>32<br>24<br>27 | 15<br>7<br>12<br>9<br>10  | 131<br>121<br>234<br>131<br>132 | .4<br>.2<br>.1<br>.2       | 46<br>32<br>51<br>30<br>27 | 14<br>12<br>16<br>12<br>11 | 26<br>32<br>5          | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 317<br>199<br>190<br>125<br>161 | 4<br>1<br>4<br>3      |        |
| 45S 35+50E<br>45S 36+00E<br>45S 36+50E<br>45S 37+00E<br>45S 37+50E               | 2<br>1<br>2<br>1<br>1 | 34<br>35<br>43<br>30<br>31 | 13<br>9<br>9<br>10<br>10  | 139<br>92<br>172<br>139<br>130  | .3<br>.4<br>.1<br>.4<br>.4 | 38<br>29<br>66<br>27<br>31 | 14<br>14<br>20<br>13<br>13 | 6<br>3<br>15<br>4<br>5 | 2<br>3<br>2<br>2<br>2<br>2                | 122<br>127<br>216<br>123<br>131 | 1<br>3<br>1<br>2<br>2 |        |
| 45S 38+00E<br>45S 38+50E<br>46S 2+00E<br>46S 2+50E<br>46S 3+00E                  | 2<br>1<br>2<br>1<br>2 | 73<br>73<br>39<br>45<br>43 | 9<br>11<br>12<br>10<br>7  | 123<br>155<br>146<br>134<br>111 | .1<br>.2<br>.1<br>.1       | 46<br>53<br>32<br>38<br>37 | 18<br>20<br>15<br>13<br>15 | 10<br>6<br>5<br>2      | 22222                                     | 243<br>188<br>127<br>347<br>117 | 5<br>1<br>4<br>5<br>1 |        |
| 46S 3+50E<br>46S 4+00E<br>46S 4+50E<br>46S 5+00E<br>46S 5+50E                    | 1<br>3<br>1<br>2      | 28<br>35<br>28<br>21<br>30 | 11<br>6<br>10<br>9<br>7   | 140<br>139<br>107<br>119<br>85  | .1<br>.4<br>.2<br>.2       | 33<br>52<br>32<br>28<br>38 | 12<br>14<br>12<br>10<br>11 | 2<br>6<br>2<br>4<br>3  | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 121<br>98<br>115<br>93<br>111   | 1<br>3<br>1<br>3<br>1 |        |
| 46S 6+00E<br>46S 6+50E<br>46S 7+00E<br>46S 7+50E<br>46S 8+00E                    | 1<br>3<br>2<br>1<br>1 | 25<br>32<br>45<br>25<br>24 | 10<br>12<br>11<br>4<br>6  | 126<br>86<br>79<br>103<br>86    | .1<br>.3<br>.7<br>.3<br>.2 | 22<br>32<br>45<br>35<br>28 | 12<br>12<br>12<br>13<br>12 | 4<br>6<br>15<br>7<br>6 | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 96<br>120<br>214<br>131<br>111  | 31<br>1<br>8<br>3     |        |
| 46S 8+50E<br>STD C/AU-S                                                          | 1<br>18               | 37<br>63                   | 9<br>35                   | 103<br>132                      | 6. <sup>3</sup>            | 40<br>66                   | 12<br>31                   | 5<br>38                | 2<br>15                                   | 125<br>172                      | 2<br>49               |        |

.

|                                                                    | . <b>B</b>            | uinet                      | Mana                    | gemen                          | t F                        | LE #                       | <b>89-4</b>                | <b>037</b>            |                                           | <b>.</b>                        | 8.                    | Page 6 |
|--------------------------------------------------------------------|-----------------------|----------------------------|-------------------------|--------------------------------|----------------------------|----------------------------|----------------------------|-----------------------|-------------------------------------------|---------------------------------|-----------------------|--------|
| SAMPLE#                                                            | Mo<br>PPM             | Cu<br>PPM                  | Pb<br>PPM               | Zn<br>PPM                      | Aq<br>PPM                  | Ni<br>PPM                  | CO<br>PPM                  | As<br>PPM             | Sb<br>PPM                                 | Ba<br>PPM                       | Au*<br>PPB            |        |
| 45S 9+00E<br>45S 9+50E<br>45S 10+00E<br>45S 10+50E<br>45S 11+00E   | 1<br>1<br>2<br>1      | 21<br>23<br>21<br>20<br>32 | 7<br>8<br>7<br>11<br>8  | 83<br>84<br>65<br>72<br>133    | .1<br>.2<br>.1<br>.3       | 23<br>29<br>22<br>20<br>45 | 9<br>11<br>10<br>7<br>11   | 2<br>4<br>2<br>4      | 22222                                     | 126<br>104<br>104<br>100<br>122 | 2<br>3<br>1<br>1<br>1 |        |
| 45S 11+50E<br>45S 12+00E<br>45S 12+50E<br>45S 13+00E<br>45S 13+50E | 1<br>1<br>1<br>1      | 16<br>20<br>26<br>23       | 8<br>7<br>5<br>7<br>6   | 94<br>103<br>89<br>313<br>127  | .1<br>.3<br>.1<br>.4<br>.1 | 22<br>24<br>24<br>26<br>21 | 9<br>11<br>9<br>14<br>11   | 4<br>3<br>6<br>8<br>4 | 2<br>3<br>2<br>2<br>2<br>2                | 91<br>79<br>120<br>143<br>115   | 1<br>2<br>1<br>13     |        |
| 45S 14+00E<br>45S 14+50E<br>45S 15+00E<br>45S 15+50E<br>45S 16+00E | 1<br>1<br>2<br>1      | 42<br>24<br>21<br>15<br>24 | 7<br>11<br>7<br>8<br>12 | 123<br>113<br>164<br>75<br>91  | .22<br>.22<br>.22<br>.22   | 32<br>27<br>29<br>18<br>23 | 15<br>11<br>14<br>10<br>13 | 8<br>5<br>3<br>3<br>3 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 208<br>133<br>121<br>83<br>97   | 1<br>2<br>2<br>1<br>2 |        |
| 45S 16+50E<br>45S 17+00E<br>45S 17+50E<br>45S 18+00E<br>45S 19+50E | 2<br>1<br>3<br>3<br>1 | 27<br>13<br>24<br>15<br>24 | 12<br>6<br>9<br>7<br>7  | 91<br>58<br>77<br>83<br>215    | .3<br>.1<br>.1<br>.1       | 24<br>16<br>16<br>15<br>20 | 13<br>8<br>10<br>7<br>12   | 45253                 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 98<br>77<br>43<br>154           | 1<br>2<br>1<br>1      |        |
| 45S 20+00E<br>45S 20+50E<br>45S 21+00E<br>45S 21+50E<br>45S 22+00E | 1<br>2<br>1<br>1      | 20<br>44<br>38<br>28<br>28 | 11<br>13<br>6<br>15     | 168<br>101<br>116<br>112<br>88 | .3<br>.4<br>.4<br>.1<br>.3 | 20<br>26<br>24<br>20<br>23 | 12<br>12<br>13<br>11<br>12 | 4<br>7<br>9<br>6<br>5 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 175<br>150<br>155<br>78<br>113  | 1<br>2<br>2<br>1<br>2 |        |
| 45S 22+50E<br>45S 23+00E<br>45S 23+50E<br>45S 24+00E<br>45S 24+50E | 1<br>1<br>1<br>1      | 40<br>26<br>19<br>45<br>22 | 8<br>9<br>10<br>11<br>7 | 115<br>86<br>106<br>120<br>101 | •1<br>•4<br>•1<br>•1       | 21<br>23<br>19<br>24<br>11 | 16<br>12<br>13<br>16<br>11 | 4<br>5<br>5<br>3<br>6 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 108<br>102<br>130<br>128<br>121 | 2<br>2<br>1<br>1      |        |
| 45S 25+00E<br>45S 25+50E<br>45S 26+00E<br>45S 26+50E<br>45S 27+00E | 1<br>1<br>1<br>1      | 26<br>21<br>20<br>45<br>30 | 11<br>8<br>9<br>5<br>12 | 108<br>102<br>120<br>81<br>115 | .1<br>.1<br>.3<br>.1<br>.1 | 25<br>25<br>29<br>28<br>22 | 13<br>11<br>11<br>15<br>13 | 46646                 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 158<br>114<br>140<br>95<br>154  | 5<br>1<br>213<br>5    |        |
| 45S 27+50E<br>STD C/AU-S                                           | 1<br>18               | 21<br>61                   | 9<br>38                 | 99<br>132                      | 6.5                        | 24<br>67                   | 12<br>30                   | 4<br>39               | 3<br>15                                   | 155<br>175                      | 47<br>47              |        |

,

,

| Radellee Blattan. Bl. 6                                                           | Gu                    | inet                         | Manag                   |                                 | FI                          | LE #                        | 89-40                      | <b>3</b> 7                                     | <b>.</b>                                  | <b>.</b>                        | <b>B</b>              |
|-----------------------------------------------------------------------------------|-----------------------|------------------------------|-------------------------|---------------------------------|-----------------------------|-----------------------------|----------------------------|------------------------------------------------|-------------------------------------------|---------------------------------|-----------------------|
| SAMPLE#                                                                           | Mo<br>PPM             | Cu<br>PPM                    | Pb<br>PPM               | Zn<br>PPM                       | Aq<br>PPM                   | Ni<br>PPM                   | Co<br>PPM                  | As<br>PPM                                      | Sb<br>PPM                                 | Ba<br>PPM                       | Au*<br>PPB            |
| 44S 25+00E<br>44S 25+50E<br>44S 26+00E<br>44S 26+50E<br>44S 27+00E                | 2<br>2<br>1<br>1<br>1 | 35<br>30<br>19<br>22<br>21   | 6<br>8<br>4<br>8<br>7   | 145<br>87<br>100<br>169<br>87   | .1<br>.3<br>.1<br>.3<br>.2  | 39<br>35<br>27<br>31<br>21  | 14<br>12<br>10<br>11<br>10 | 5<br>5<br>5<br>4<br>5                          | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 138<br>151<br>85<br>91<br>98    | 3<br>22<br>22<br>7    |
| 44S 27+50E<br>44S 28+00E<br>44+50S 14+00E<br>44+50S 14+50E<br>44+50S 15+00E       | 3<br>4<br>1<br>1<br>1 | 31<br>33<br>23<br>22<br>40   | 11<br>6<br>8<br>9<br>11 | 157<br>235<br>90<br>111<br>22   | .2<br>.3<br>.2<br>.1<br>1.4 | 34<br>52<br>21<br>26<br>28  | 11<br>12<br>10<br>11<br>4  | 56556                                          | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 131<br>111<br>95<br>151<br>100  | 1<br>4<br>1<br>1<br>1 |
| 44+50S 15+50E<br>44+50S 16+00E<br>44+50S 16+50E<br>44+50S 17+00E<br>44+50S 17+50E | 2<br>3<br>4<br>1      | 36<br>109<br>152<br>26<br>30 | 6<br>10<br>7<br>8<br>10 | 297<br>140<br>131<br>216<br>149 |                             | 45<br>96<br>138<br>30<br>50 | 17<br>15<br>13<br>12<br>13 | 3<br>11<br>12<br>6<br>5                        | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2      | 154<br>201<br>175<br>120<br>163 | 2<br>5<br>3<br>1<br>4 |
| 44+50S 18+00E<br>44+50S 18+50E<br>44+50S 19+00E<br>44+50S 19+50E<br>44+50S 20+00E | 1<br>1<br>2<br>1      | 18<br>15<br>12<br>38<br>16   | 6266<br>6               | 89<br>52<br>74<br>56<br>79      | .2<br>.2<br>.1<br>.3<br>.3  | 30<br>16<br>17<br>41<br>28  | 9<br>9<br>8<br>9<br>9      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 132<br>79<br>110<br>251<br>113  | 1<br>2<br>1<br>1      |
| 44+50S 20+50E<br>44+50S 21+00E<br>44+50S 21+50E<br>45S 2+50E<br>45S 3+00E         | 1<br>2<br>1<br>1<br>2 | 18<br>49<br>20<br>19<br>34   | 9<br>6<br>2<br>7<br>11  | 74<br>57<br>75<br>107<br>98     | .3<br>.3<br>.3<br>.2<br>.2  | 20<br>34<br>20<br>15<br>37  | 9<br>7<br>8<br>9<br>11     | 2<br>2<br>2<br>4<br>3                          | 3<br>2<br>2<br>2<br>2<br>2                | 60<br>154<br>105<br>82<br>118   | 3<br>2<br>1<br>1      |
| 45S 3+50E<br>45S 4+00E<br>45S 4+50E<br>45S 5+00E<br>45S 5+50E                     | 1<br>1<br>1<br>1      | 34<br>30<br>23<br>25<br>28   | 3<br>10<br>8<br>7<br>8  | 86<br>94<br>77<br>86<br>93      | .2<br>.3<br>.3<br>.1        | 42<br>31<br>22<br>22<br>28  | 13<br>13<br>9<br>10<br>10  | 4<br>2<br>2<br>2<br>2                          | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 100<br>157<br>123<br>114<br>105 | 1<br>2<br>3<br>1      |
| 45S 6+00E<br>45S 6+50E<br>45S 7+00E<br>45S 7+50E<br>45S 8+00E                     | 2<br>1<br>1<br>1      | 32<br>25<br>29<br>24<br>52   | 6<br>6<br>3<br>5<br>2   | 114<br>101<br>105<br>95<br>129  | .4<br>.2<br>.4<br>.3<br>.3  | 39<br>27<br>28<br>27<br>39  | 11<br>11<br>10<br>10<br>18 | 5<br>4<br>7<br>9                               | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 101<br>98<br>153<br>96<br>115   | 5<br>1<br>11<br>2     |
| 45S 8+50E<br>STD C/AU-S                                                           | 18<br>18              | 21<br>63                     | 6<br>38                 | 97<br>132                       | .2<br>6.8                   | 22<br>67                    | 9<br>30                    | . <b>2</b>                                     | 2<br>14                                   | 64<br>172                       | 1<br>52               |

. **B**ina.

Cate :

بت الله

Page 5

| Colora Cara Cara Cara                                                            | G                          | uinet                      | Mana                     |                                | t F                              | ILE #                      | €:                         | <b>6</b> .037          |                                      | <b>.</b>                        | e 🔹                    |
|----------------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------|--------------------------------|----------------------------------|----------------------------|----------------------------|------------------------|--------------------------------------|---------------------------------|------------------------|
| SAMPLE#                                                                          | Mo<br>PPM                  | Cu<br>PPM                  | Pb<br>PPM                | Zn<br>PPM                      | Aq<br>PPM                        | Ni<br>PPM                  | Co<br>PPM                  | As<br>PPM              | Sb<br>PPM                            | Ba<br>PPM                       | Au*<br>PPB             |
| 44S 7+00E<br>44S 7+50E<br>44S 8+00E<br>44S 8+50E<br>44S 9+00E                    | 5<br>3<br>1<br>2           | 26<br>14<br>24<br>15<br>26 | 4<br>5<br>9<br>10<br>13  | 58<br>84<br>75<br>75<br>64     | .4<br>.3<br>.2<br>.3<br>.3       | 20<br>16<br>28<br>23<br>39 | 6<br>8<br>10<br>9<br>10    | 2<br>2<br>4<br>2<br>2  | 2<br>2<br>2<br>2<br>2<br>2<br>2      | 119<br>113<br>155<br>134<br>165 | 1<br>4<br>1<br>1       |
| 44S 9+50E<br>44S 10+00E<br>44S 10+50E<br>44S 11+00E<br>44S 11+50E                | 3<br>1<br>1<br>1<br>1      | 48<br>18<br>16<br>12<br>18 | 8<br>10<br>6<br>13<br>10 | 51<br>69<br>91<br>93<br>82     |                                  | 27<br>23<br>25<br>14<br>17 | 8<br>7<br>10<br>8<br>9     | 3<br>2<br>4<br>2<br>2  | 2<br>2<br>2<br>2<br>2<br>2<br>2      | 177<br>133<br>107<br>85<br>87   | 4<br>13<br>2<br>5<br>2 |
| 44S 12+00E<br>44S 12+50E<br>44S 13+00E<br>44S 13+50E<br>44S 14+00E               | 1<br>1<br>3<br>2<br>1      | 22<br>14<br>19<br>28<br>14 | 56579                    | 73<br>66<br>59<br>82<br>72     | .2<br>.4<br>.2<br>.2<br>.3       | 15<br>11<br>23<br>15<br>10 | 8<br>8<br>7<br>9<br>6      | 7<br>2<br>9<br>3<br>4  | 2<br>2<br>2<br>2<br>2<br>2           | 105<br>91<br>74<br>99<br>82     | 1<br>12<br>4<br>1      |
| 44S 14+50E<br>44S 15+00E<br>44S 15+50E<br>44S 16+00E<br>44S 16+50E               | 1<br>1<br>2<br>2<br>2      | 12<br>11<br>55<br>22<br>28 | 13<br>10<br>6<br>11<br>9 | 101<br>73<br>97<br>92<br>97    | .2<br>.2<br>.3<br>.3<br>.3<br>.2 | 15<br>12<br>38<br>17<br>22 | 8<br>6<br>15<br>9<br>11    | 6<br>5<br>10<br>5<br>2 | 22222                                | 108<br>76<br>145<br>78<br>111   | 1<br>2<br>1<br>1<br>2  |
| 44S 17+00E<br>44S 17+50E<br>44S 18+00E<br>44S 18+50E<br>44S 19+00E               | 2<br>2<br>2<br>2<br>2<br>3 | 23<br>22<br>29<br>51<br>46 | 9<br>7<br>5<br>7<br>6    | 121<br>87<br>97<br>112<br>113  | .2<br>.3<br>.4<br>.3<br>.2       | 22<br>16<br>19<br>37<br>42 | 10<br>9<br>16<br>13        | 7<br>5<br>4<br>7       | 22222                                | 86<br>57<br>72<br>148<br>151    | 1<br>3<br>4<br>3<br>1  |
| 44S 19+50E<br>44S 20+00E<br>44S 20+50E<br>44S 21+00E<br>44S 21+50E               | 2<br>2<br>2<br>3<br>2      | 29<br>25<br>42<br>28<br>21 | 62885                    | 109<br>62<br>172<br>105<br>62  | .32<br>.32<br>.1                 | 34<br>26<br>65<br>53<br>27 | 13<br>10<br>17<br>13<br>10 | 9<br>8<br>9<br>13<br>6 | 3<br>2<br>2<br>2<br>2<br>2           | 108<br>98<br>170<br>117<br>131  | 18<br>5<br>1<br>2      |
| 44S 22+00E<br>44S 22+50E<br>44S 23+00E<br>44S 23+50E<br>44S 23+50E<br>44S 24+00E | 2<br>6<br>8<br>3<br>3      | 58<br>62<br>32<br>40<br>35 | 9<br>11<br>8<br>10<br>5  | 104<br>287<br>246<br>159<br>96 | .2<br>.2<br>.3<br>.2<br>.2       | 68<br>71<br>42<br>40<br>35 | 21<br>17<br>11<br>13<br>11 | 25<br>5<br>7<br>4      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 100<br>139<br>116<br>131<br>116 | 5<br>2<br>1<br>1       |
| 44S 24+50E<br>STD C/AU-S                                                         | 2<br>19                    | 33<br>62                   | 4<br>36                  | 72<br>132                      | •2<br>6.7                        | 29<br>67                   | 12<br>31                   | 8<br>38                | 2<br>15                              | 139<br>172                      | 5<br>51                |

. .

Page 4

.

| , <b>1</b> ., <b>1</b> ., <b>2</b> ., <b>1</b> ., | <b>8</b> . <b>8</b> .                                         | Gi               | uinet                      | . Mana                   | gemen                       | <b>t</b> F              | <b>E</b><br>ILE #          | 89-4                   | <b>1</b><br>037            |                                           |                                 | <u>.</u> .            |
|---------------------------------------------------|---------------------------------------------------------------|------------------|----------------------------|--------------------------|-----------------------------|-------------------------|----------------------------|------------------------|----------------------------|-------------------------------------------|---------------------------------|-----------------------|
| Si Si                                             | AMPLE#                                                        | Mo<br>PPM        | Cu<br>PPM                  | Pb<br>PPM                | Zn<br>PPM                   | Aq<br>PPM               | Ni<br>PPM                  | Co<br>PPM              | As<br>PPM                  | Sb<br>PPM                                 | Ba<br>PPM                       | Au*<br>PPB            |
| 4<br>4<br>4                                       | 2S 5+50E<br>2S 6+00E<br>2S 6+50E<br>2S 7+00E<br>2S 7+50E      | 1<br>1<br>1<br>1 | 13<br>14<br>13<br>25<br>19 | 5<br>8<br>5<br>11<br>10  | 83<br>98<br>81<br>73<br>81  | .1<br>.1<br>.4<br>.1    | 15<br>17<br>20<br>37<br>25 | 7<br>8<br>7<br>7<br>9  | 2<br>2<br>2<br>2<br>2<br>5 | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 118<br>112<br>123<br>198<br>121 | 1<br>4<br>1<br>2<br>1 |
| 4<br>4<br>4                                       | 2S 8+00E<br>2S 8+50E<br>2S 9+00E<br>2S 9+50E<br>2S 10+00E     | 1<br>1<br>1<br>2 | 14<br>11<br>9<br>21<br>30  | 10<br>5<br>8<br>13<br>69 | 85<br>102<br>69<br>96<br>81 | .1<br>.1<br>.3<br>.3    | 21<br>12<br>12<br>31<br>12 | 7<br>6<br>5<br>9<br>3  | 2<br>3<br>2<br>3<br>4      | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 116<br>89<br>98<br>271<br>194   | 1<br>2<br>4<br>1<br>5 |
| 4<br>4<br>4                                       | 2S 10+50E<br>2S 11+00E<br>2S 11+50E<br>2S 12+00E<br>2S 12+50E | 2<br>1<br>1<br>1 | 30<br>11<br>28<br>14<br>7  | 11<br>7<br>17<br>11<br>9 | 83<br>79<br>61<br>61<br>62  | .5<br>.14<br>.1         | 14<br>17<br>50<br>17<br>6  | 3<br>8<br>9<br>8<br>6  | 6<br>2<br>6<br>4<br>2      | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 246<br>71<br>199<br>105<br>40   | 2<br>1<br>2<br>1<br>1 |
| 4<br>4<br>4                                       | 2S 13+00E<br>2S 13+50E<br>2S 14+00E<br>2S 14+50E<br>2S 15+00E | 1<br>1<br>1<br>1 | 14<br>14<br>10<br>16<br>11 | 6<br>6<br>10<br>10<br>5  | 78<br>68<br>119<br>81<br>86 | .1<br>.3<br>.2<br>.1    | 15<br>14<br>12<br>15<br>10 | 8<br>7<br>6<br>8<br>6  | 3<br>3<br>4<br>3<br>5      | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 132<br>119<br>147<br>127<br>104 | 1<br>1<br>1<br>2      |
| 4<br>4<br>4                                       | 2S 15+50E<br>2S 16+00E<br>4S 0+00E<br>4S 0+50E<br>4S 1+00E    | 1<br>1<br>1<br>1 | 8<br>17<br>21<br>17<br>16  | 10<br>13<br>7<br>7<br>8  | 73<br>75<br>88<br>87<br>72  | .1<br>.3<br>.22<br>.2   | 7<br>13<br>29<br>31<br>23  | 5<br>7<br>10<br>9<br>8 | 6<br>3<br>4<br>6<br>3      | 2222<br>2222<br>2222                      | 61<br>93<br>107<br>96<br>91     | 3<br>1<br>2<br>1<br>1 |
| 4<br>4<br>4                                       | 4S 1+50E<br>4S 2+00E<br>4S 2+50E<br>4S 3+00E<br>4S 3+50E      | 1<br>1<br>1<br>1 | 17<br>19<br>18<br>23<br>20 | 11<br>8<br>7<br>5<br>9   | 78<br>92<br>70<br>79<br>78  | .1<br>.4<br>.1<br>.3    | 21<br>24<br>21<br>26<br>25 | 9<br>9<br>8<br>10<br>9 | 4<br>5<br>3<br>5<br>4      | 22223                                     | 113<br>131<br>105<br>134<br>127 | 2<br>2<br>3<br>1<br>2 |
| 4                                                 | 4S 4+00E<br>4S 4+50E<br>4S 5+00E<br>4S 5+50E<br>4S 6+00E      | 1<br>1<br>1<br>1 | 29<br>28<br>14<br>16<br>15 | 15<br>11<br>8<br>8<br>10 | 89<br>89<br>79<br>58<br>56  | .23<br>.32<br>.22<br>.1 | 37<br>59<br>27<br>23<br>20 | 11<br>11<br>9<br>7     | 3<br>7<br>4<br>5<br>3      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 151<br>180<br>78<br>88<br>130   | 4<br>1<br>3<br>4<br>2 |
| 4<br>S                                            | 4S 6+50E<br>TD C/AU-S                                         | 1<br>18          | 21<br>61                   | 21<br>36                 | 115<br>132                  | 6.3<br>6.5              | 18<br>67                   | 8<br>30                | 6<br>41                    | 2<br>15                                   | 163<br>174                      | 3<br>48               |

Page 3

Guinet Management FILE # 89-4037

|                                                                    | G                     | uinet                      | Mana                      | gemen                       | it F                       | ILE #                      | 89-4                     | 037                   |                                           |                                 |                        |
|--------------------------------------------------------------------|-----------------------|----------------------------|---------------------------|-----------------------------|----------------------------|----------------------------|--------------------------|-----------------------|-------------------------------------------|---------------------------------|------------------------|
| SAMPLE#                                                            | Mo<br>PPM             | Cu<br>PPM                  | Pb<br>PPM                 | Zn<br>PPM                   | Aq<br>PPM                  | Ni<br>PPM                  | Co<br>PPM                | As<br>PPM             | Sb<br>PPM                                 | Ba<br>PPM                       | Au*<br>PPB             |
| 40S 13+00E<br>40S 13+50E<br>40S 14+00E<br>40S 14+50E<br>40S 15+00E | 1<br>1<br>3<br>1      | 14<br>10<br>10<br>38<br>11 | 14<br>10<br>10<br>13<br>6 | 89<br>82<br>108<br>82<br>69 | ;1<br>;1<br>1:1<br>;1      | 21<br>13<br>14<br>27<br>16 | 8<br>7<br>8<br>11<br>7   | 2<br>3<br>7<br>8<br>3 | 2<br>2<br>2<br>3<br>2<br>2                | 163<br>85<br>128<br>258<br>101  | 1<br>3<br>74<br>1      |
| 40S 15+50E<br>40S 16+00E<br>42S 9+00W<br>42S 8+50W<br>42S 8+50W    | 1<br>1<br>1<br>1      | 15<br>11<br>16<br>20<br>26 | 16<br>8<br>7<br>13        | 119<br>66<br>82<br>79<br>79 | .1<br>.1<br>.1<br>.2       | 15<br>15<br>37<br>41<br>34 | 7<br>7<br>8<br>10<br>10  | 24255<br>5            | 2<br>2<br>2<br>2<br>2<br>2<br>2           | 152<br>123<br>116<br>144<br>147 | 2<br>2<br>10<br>5<br>3 |
| 42S 7+50W<br>42S 7+00W<br>42S 6+50W<br>42S 6+00W<br>42S 5+50W      | 1<br>1<br>2.<br>1     | 19<br>19<br>15<br>23<br>18 | 14<br>10<br>11<br>13<br>8 | 60<br>63<br>56<br>72<br>82  | .1<br>.3<br>.1<br>.2       | 45<br>43<br>33<br>43<br>34 | 9<br>9<br>11<br>10       | 27<br>455             | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 188<br>115<br>71<br>104<br>87   | 1<br>2<br>7<br>1<br>2  |
| 42S 5+00W<br>42S 4+50W<br>42S 4+00W<br>42S 3+50W<br>42S 3+50W      | 1<br>1<br>1<br>1      | 21<br>23<br>48<br>48<br>15 | 10<br>12<br>7<br>9        | 92<br>102<br>68<br>60<br>66 | .2<br>.3<br>.6<br>.4<br>.2 | 42<br>52<br>54<br>29       | 10<br>10<br>8<br>7<br>9  | 6<br>3<br>5<br>3<br>3 | 2<br>2<br>3<br>2<br>2                     | 103<br>162<br>191<br>208<br>106 | 5<br>1<br>1<br>1       |
| 42S 2+50W<br>42S 2+00W<br>42S 1+50W<br>42S 1+00W<br>42S 0+50W      | 2<br>1<br>1<br>2<br>2 | 62<br>22<br>18<br>28<br>16 | 15<br>10<br>11<br>10<br>4 | 53<br>69<br>65<br>67<br>54  | .9<br>.42<br>.24<br>.2     | 98<br>43<br>30<br>49<br>23 | 10<br>11<br>8<br>11<br>7 | 65<br>862             | 52<br>32<br>22                            | 384<br>198<br>118<br>251<br>142 | 10<br>1<br>1<br>2      |
| 42S 0+00E<br>42S 0+50E<br>42S 1+00E<br>42S 1+50E<br>42S 2+00E      | 1<br>2<br>1<br>1<br>1 | 33<br>17<br>18<br>19<br>18 | 7<br>12<br>10<br>11<br>13 | 55<br>56<br>57<br>79<br>77  | .25423                     | 34<br>30<br>31<br>28<br>27 | 11<br>8<br>9<br>9<br>8   | 4<br>5<br>5<br>2<br>4 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 149<br>82<br>102<br>100<br>72   | 1<br>1<br>1<br>1       |
| 42S 2+50E<br>42S 3+00E<br>42S 3+50E<br>42S 4+00E<br>42S 4+50E      | 1<br>2<br>1<br>1<br>1 | 12<br>30<br>19<br>22<br>16 | 11<br>17<br>11<br>9<br>16 | 62<br>66<br>71<br>68<br>52  | .1<br>.4<br>.4<br>.2<br>.3 | 13<br>39<br>24<br>29<br>24 | 7<br>12<br>8<br>9<br>8   | 6<br>4<br>7<br>2<br>5 | 2<br>3<br>2<br>2<br>2<br>2                | 52<br>139<br>86<br>129<br>85    | 2<br>1<br>1<br>1       |
| 42S 5+00E<br>STD C/AU-S                                            | 1<br>18               | 21<br>62                   | 11<br>41                  | 84<br>132                   | 6.7                        | 23<br>67                   | 9<br>30                  | 4<br>43               | 2<br>15                                   | 124<br>176                      | 2<br>47                |

.

Page 2

.

.

• •

852 E. HASTINGS ST. VANCOUVER B.C. V6A 1R6

PHONE(604)253-3158 FAX(604)253-1716

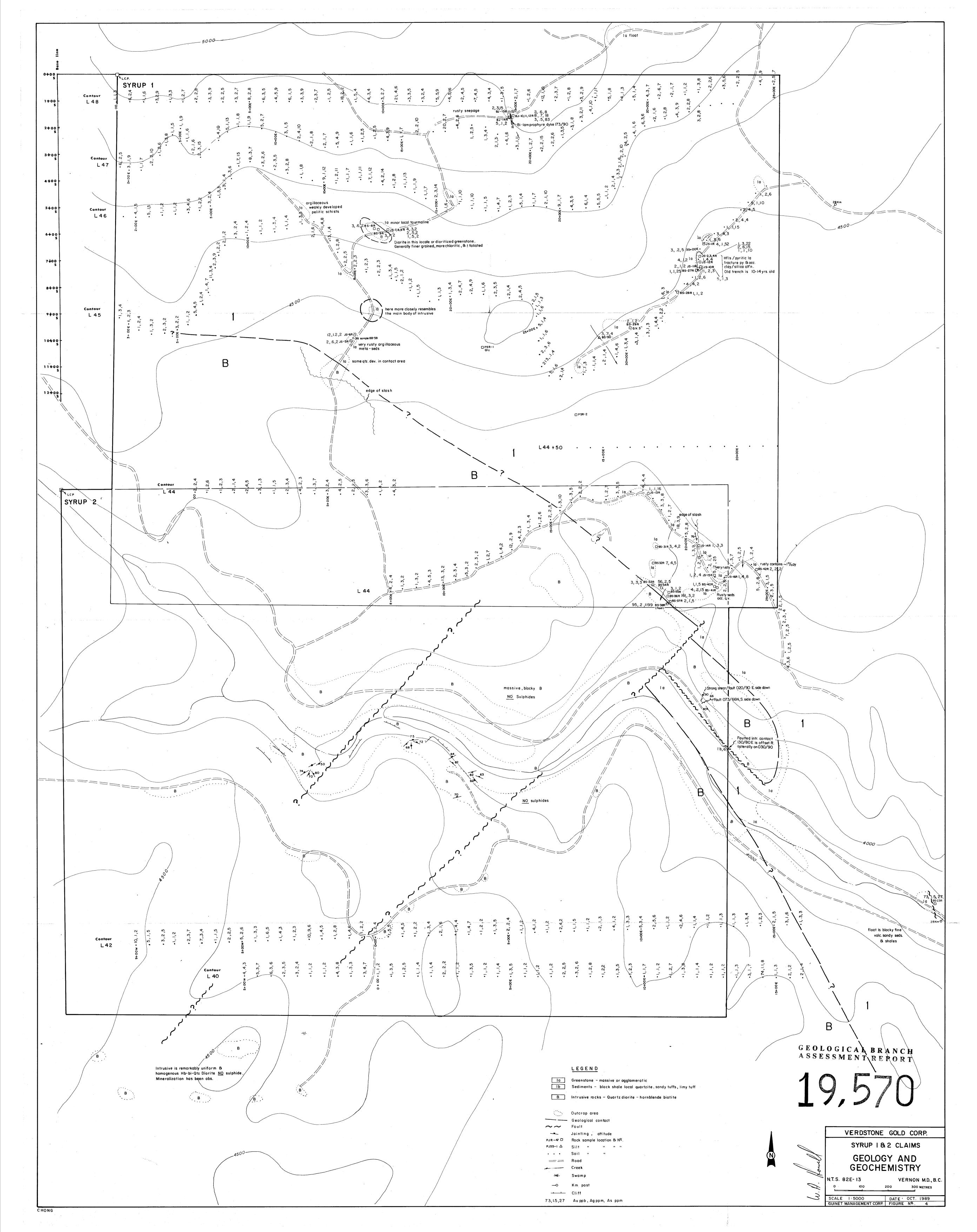
#### GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. AU\* ANALYSIS BY ACID LEACH/AA FROM 10 GH SAMPLE - SAMPLE TYPE: P1-P13 SOIL P14 ROCK

ct 6/87 SIGNED BY. DATE RECEIVED: OCI 2 1989 DATE REPORT MAILED: Page 1

Guinet Management File # 89-4037

| SAMPLE#                                                            | Mo<br>PPM             | Cu<br>PPM                  | Pb<br>PPM                | Zn<br>PPM                    | Aq<br>PPM                  | Ni<br>PPM                  | Co<br>PPM               | As<br>PPM             | Sb<br>PPM                       | Ba<br>PPM                       | Au*<br>PPB            |
|--------------------------------------------------------------------|-----------------------|----------------------------|--------------------------|------------------------------|----------------------------|----------------------------|-------------------------|-----------------------|---------------------------------|---------------------------------|-----------------------|
| 405 5+00W<br>405 4+50W<br>405 4+00W<br>405 3+50W<br>405 3+50W      | 1<br>1<br>1<br>1<br>1 | 59<br>48<br>32<br>18<br>19 | 12<br>16<br>16<br>8<br>9 | 39<br>68<br>113<br>68<br>82  | .43<br>.33<br>.22          | 64<br>94<br>54<br>33<br>46 | 4<br>10<br>14<br>9<br>9 | 3<br>7<br>6<br>5<br>4 | 2<br>2<br>2<br>2<br>2<br>2<br>2 | 381<br>222<br>144<br>106<br>141 | 45623                 |
| 40S 2+50W<br>40S 2+00W<br>40S 1+50W<br>40S 1+00W<br>40S 0+50W      | 1<br>1<br>1<br>3      | 18<br>11<br>27<br>33<br>23 | 8<br>6<br>13<br>11       | 49<br>70<br>105<br>51<br>44  | .1<br>.3<br>.3<br>.4       | 34<br>13<br>47<br>35<br>38 | 9<br>6<br>12<br>6<br>13 | 2<br>2<br>8<br>3<br>7 | 2<br>2<br>3<br>2<br>2           | 162<br>132<br>227<br>127<br>191 | 1<br>1<br>4<br>1<br>3 |
| 40S 0+00E<br>40A 0+50E<br>40A 1+00E<br>40S 1+50E<br>40S 2+00E      | 111111                | 21<br>26<br>25<br>20<br>23 | 6<br>18<br>6<br>13<br>12 | 46<br>93<br>63<br>62<br>40   | .1<br>.2<br>.1             | 29<br>31<br>31<br>26<br>27 | 8<br>11<br>9<br>7       | 2<br>5<br>5<br>4<br>4 | 222222222                       | 143<br>146<br>96<br>87<br>153   | 1<br>1<br>1<br>1      |
| 40S 2+50E<br>40S 3+00E<br>40S 3+50E<br>40S 4+00E<br>40S 4+50E      | 1<br>1<br>1<br>1      | 21<br>13<br>18<br>15<br>17 | 7<br>7<br>9<br>7<br>10   | 64<br>58<br>55<br>58<br>67   | .2<br>:1<br>:1<br>:1       | 28<br>15<br>24<br>22<br>27 | 10<br>6<br>8<br>7<br>8  | 2<br>2<br>5<br>2<br>4 | 22222                           | 117<br>59<br>96<br>87<br>130    | 2<br>1<br>1<br>1      |
| 40S 5+00E<br>40S 5+50E<br>40S 6+00E<br>40S 6+50E<br>40S 7+00E      | 1<br>1<br>1<br>2      | 15<br>13<br>13<br>11<br>18 | 10<br>9<br>13<br>14      | 109<br>42<br>62<br>126<br>62 | .3<br>.1<br>.1<br>.2       | 27<br>24<br>21<br>15<br>25 | 10<br>6<br>7<br>6<br>8  | 52225                 | 22222<br>22222                  | 105<br>81<br>89<br>283<br>152   | 1<br>1<br>1<br>2      |
| 40S 7+50E<br>40S 8+00E<br>40S 8+50E<br>40S 9+00E<br>40S 9+50E      | 1<br>1<br>1<br>1      | 22<br>17<br>11<br>26<br>13 | 9<br>6<br>8<br>10        | 88<br>85<br>88<br>57<br>63   | .2<br>.2<br>.2<br>.3<br>.2 | 24<br>18<br>22<br>31<br>17 | 9<br>8<br>6<br>8<br>7   | 6<br>8<br>2<br>5<br>3 | 2<br>2<br>3<br>2<br>2<br>2      | 141<br>146<br>113<br>140<br>65  | 3<br>1<br>1<br>1<br>1 |
| 40S 10+00E<br>40S 10+50E<br>40S 11+00E<br>40S 11+50E<br>40S 12+00E | 1<br>1<br>2<br>1      | 15<br>16<br>33<br>22<br>14 | 10<br>10<br>10<br>7<br>9 | 48<br>85<br>75<br>88<br>61   | .1<br>.2<br>.3<br>.1       | 25<br>19<br>32<br>29<br>22 | 8<br>9<br>8<br>10<br>8  | 7<br>2<br>7<br>8<br>4 | 2<br>2<br>2<br>2<br>3<br>3      | 184<br>129<br>251<br>155<br>94  | 1<br>1<br>1<br>1      |
| 40S 12+50E<br>STD C/AU-S                                           | 1<br>19               | 18<br>62                   | 7<br>40                  | 80<br>132                    | 7:0                        | 20<br>69                   | 8<br>31                 | 2<br>45               | 2<br>14                         | 125<br>174                      | 1<br>49               |


GEOCHEMICAL ANALYSIS CERTIFICATE ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. AU\* ANALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE. - SAMPLE TYPE: P1-P3 ROCK P4 SOIL DATE RECEIVED: OCI 6 1989 DATE REPORT MAILED: File # 89-4131 Page 1 Guinet Management PROJECT Ba Au\* PPM PPB Ni PPM CO PPM As PPM Pb Zn PPM PPM Sb SAMPLE# Cu PPM Aq PPM Mo PPM PPM

1UN M

E 2 E STI ST. ICOU B. VOA

ACMINIALY L L LATO S L

| 89-BJ-10R<br>89-BJ-11R<br>89-BJ-12R<br>89-BJ-13R | 70<br>45<br>34<br>3 | 107<br>88<br>110<br>63 | 20<br>22<br>21<br>13 | 762<br>304<br>596<br>86 | .6<br>.7<br>.5 | 374<br>187<br>211<br>103 | 11<br>17<br>16<br>20 | 8<br>18<br>83<br>15 | 2<br>2<br>2<br>2<br>2 | 153<br>109<br>72<br>130 | 2<br>8<br>3<br>2 |
|--------------------------------------------------|---------------------|------------------------|----------------------|-------------------------|----------------|--------------------------|----------------------|---------------------|-----------------------|-------------------------|------------------|
| 89-BJ-14R                                        | 10                  | 40                     | 6                    | 276                     | .1             | 57                       | 7                    | 2                   | 2                     | 178                     | 5                |

