

exploration Itd. GEOLOGY · GEOPHYSICS MINING ENGINEERING

#704 - 8 TELEPH	0 WEST HASTINGS	st, vancouve 01/9	R, B.C. V6C 1E1 FAX 681-7480 D.
	ACTION:		ىر - مەسەبىرە بايا بىلەرلىرىغىنىڭ ئىشتەتلەر بوغان بىلەرلىكى كەركىيى بىلەرلىكى بىلەرلىكى بىلەرلىكى
	FUT NO	n hanna, af ang aik kelarah pana manakanya naga	
	FILE NO:		

GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

TOMMY JACK CREEK PROPERTY

Omineca Mining Division - British Columbia

Lat. 56⁰ 07' N.

Long. 127⁰ 37' W.

N.T.S. 94 D/4E

for

INTERTECH MINERALS CORP.

SUB-RECORDER RECEIVED JAN 1 7 1990 M.R. # _____\$...... VANCOUVER, B.C.

X (-U M Z O 44 2 **20 2** < Z **U** E Z 0.0 0 0 0 0 69 00 じ �

Donald G. Allen, P. Eng. (B.C.)

by

Vancouver, B.C.

December, 1989

TABLE OF CONTENTS

SUMMARY	1
CONCLUSION	2
RECOMMENDATIONS	3
ESTIMATED COST OF RECOMMENDATIONS	4
INTRODUCTION	5
LOCATION, ACCESS, PHYSIOGRAPHY	6
CLAIM DATA	6
HISTORY	7
GEOLOGY Regional Geology Property Geology Mineralization and Alteration GEOCHEMICAL SURVEYS Silt Geochemistry Rock Geochemistry Soil Geochemistry VLF-ELECTROMAGNETIC SURVEY	7 7 8 9 10 10 10 10 11
Method and Instrumentation Results	13 14
1986-1987 DRILLING RESULTS	15
DISCUSSION OF RESULTS	16
REFERENCES	

CERTIFICATE

·······

TABLE OF CONTENTS (Cont'd.)

. _ _ ...

ILLUSTRATIONS

Figure Figure		Location Map Access Map	1:10,000,000 1:1,000,000	After P. 6 After p. 6
Figure	3	Claim Map	1:50,000	After p. 6
Figure	4	Regional Geology		After p. 7
Figure	5	Geological Map	1:10,000	In pocket
Figure	6	Geochemical Map	1:10,000	
Figure	7	Geochemical Map — Sample	1:5,000	11
		Numbers		
	7a	Gold		**
	7b	Silver		
	7c	Arsenic		11
	7d	Lead		11
	7e	Zinc		11
	7f	Cadmium		
	7g	Antimony		*1
Figure	8a	VLF-Electromagnetic Survey	1:5,000	* *
		Plan		
	8b	VLF-Electromagnetic Profiles	1:5,000	After p. 14
	8c	VLF-Electromagnetic Profiles	1:5,000	After p. 14
Figure	9	Compilation Map	1:10,000	In pocket

TABLES

Table	I	Sample Descriptions	After p.	10
Table	II	Anomalous Rock Samples, 1989	After p.	10
Table	111	Drill Hole Data	After p.	15
Table	IV	Significant DDH Intersections, 1986-1987	After p.	15

APPENDICES

Appendix	I	Analytical Results
Appendix	II	Statistical Treatment of Analytical Results
Appendix	III	Affidavit of Expenses

SUMMARY

Intertech Mineral Corp. holds the Tommy Jack Creek property, under option from Noranda Exploration Co. Ltd., comprising 139 claim units. The property is situated 95 kilometres north of Hazelton, B.C. It lies in the Atna Range of the Skeena Mountains, near the confluence of Tommy Jack Creek with the Sicintine River.

The Tommy Jack Creek property was originally optioned by Noranda from Joyce Warren. They subsequently enlarged the claim holdings, and optioned the claims to Goldcap Inc. who now hold a 50% interest. Intertech Minerals Corp. has an option to earn a 50% interest from Noranda and Goldcap.

The Tommy Jack Creek claims cover a large zone of pervasive carbonate alteration. Within this zone are widespread gold-silver-lead-zincbearing quartz-carbonate veins in shear and stockwork zones in Bowser Group sedimentary rocks and in granodiorite and dacite dikes and sills. The property lies in a belt of stocks and small batholiths which host numerous important base metal and precious metal deposits. The nature of the mineralization and geological setting is compared to that of the Silver Standard Mine, 85 kilometres to the south (past production 203,839 tonnes containing 463,000 grams gold and 236,000,000 grams silver) except that gold grades on the Tommy Jack Creek property are significantly higher.

Work completed up to 1987 by Noranda includes 58.6 kilometres of grid preparation, geochemical sampling, magnetic surveys and 2452 metres of diamond drilling in 35 holes. Best drill intersections obtained are as follows:

Drill	Width	Gold		Si	ilver	
Hole	Metres	ppm oz/ton		ppm	oz/ton	
86-5	6.6	4.3	0.125	83.6	2.43	
87-14	0.6	31.05	0.93	129.0	3.76	
87-23	1.3	14.69	0.42	36.3	1.06	

Widespread mineralized quartz float carrying significant gold and silver values (up to 1.2 and 74.1 ounces per ton respectively) were found well beyond the grid area, indicating a large area of interest.

In 1987 and 1988, Intertech extended the survey grids and conducted soil, additional rock and silt geochemical sampling and VLF-electromagnetic surveys. This work generated a number of gold and multielement targets to the southwest and southeast of the area worked by Noranda, some of which need more work to fully define, prior to drill testing. Several strong VLF-electromagnetic anomalies were also found to Highest grade gold correlate with the southwest geochemical anomaly. values found to date (2.2 ounces per ton gold) are from float found in the vicinity of the southeast anomaly. A follow-up exploration program is proposed to fully define the area of interest and to test the targets by diamond drilling.

CONCLUSION

Results of work conducted by Intertech to date on the Tommy Jack Creek property have been extremely encouraging. The area of interest defined by presence of moderate to strong pervasive carbonate alteration and multielement geochemical anomalies has been enlarged to at least three kilometres by two kilometres in width and is open, particularly to the southeast.

The geologic setting and nature of mineralization of the Tommy Jack Creek property is compared to that of the Silver Standard Mine, a former high grade silver-lead-zinc (gold) producer 85 kilometres to the south. Further enhancing the potential of the property are:

- 1) relatively high gold grades (up to 2.2 ounces per ton);
- 2) stockwork-type veining in granodiorite dikes and sills;
- 3) widespread mineralization, well beyond the drilled area;
- presence of untested multielement geochemical anomalies in the grid area;
- 5) widespread carbonate (ankerite) alteration; and
- 6) presence of a number of linear and circular features which could reflect mineralized structures, but which have not been investigated.

The property is therefore considered to have excellent potential to host both high grade veins of the Silver Standard type and low grade stockworks or quartz vein zones in shears or granodiorite intrusions.

RECOMMENDATIONS

A two stage exploration program is recommended to evaluate the Tommy Jack Creek property. Stage IIa will comprise exxpansion of the the survey grid to cover the entire area of interest, prospecting and mapping to locate the source of mineralized float, geochemical soil sampling, geological mapping, blasting and hand trenching. Several lines of induced polarization survey should be run to determine its use in defining drill targets. This work will undoubtedly generate a number of targets which should subsequently be evaluated by a Stage IIb drilling program.

Estimated costs of Stage IIa and Stage IIb are \$130,000 and \$222,000, respectively, for a grand total of \$352,000.

ESTIMATED COST OF RECOMMENDATIONS

÷.,

STAGE IIa	Grid preparation,	prospecting,	geological mapping,	geochemical
	surveys, magnetic	and VLF surve	ys and trenching.	

Salaries

Geologist	30 days @ \$400/day	\$ 12,000
Sampling – line cutting –		
geophysical crew	120 man-days @ \$200/day	24,000
Room and Board	150 man-days @ \$40/day	6,000
Helicopter Support	30 hours @ \$550/hr	16,500
Travel, Vehicle rental, Freight		5,000
Induced Polarization Surveys	5 km @ \$2,000 (all incl.)	10,000
Geochemical Analysis (Au ICP) assay	25,000	
Camp supplies, equipment		5,000
VLF-EM rental		500
Reporting and engineering		10,000
Expediting Services		1,000
Claim Recording Fees		 1,000
	Subtotal	\$ 116,000

Subtotal \$11	•,•••
Contingencies _1	4,000

TOTAL STAGE IIa \$130,000

STAGE IIb Diamond Drilling

Drilling Helicopter Assay Supervision, Engineering,	1500 metres @ \$100/m (all incl.) 40 hours @ \$550/hr.	\$150,000 22,000 10,000
Report, Consulting		20,000
	Subtotal	\$202,000
	Contingencies	20,000
	TOTAL STAGE 11b	\$222,000

GRAND TOTAL \$352,000

4

INTRODUCTION

Intertech Minerals Corp. hold an option to earn a 50% interest in the Tommy Jack Creek property, comprising 139 claim units in the Sicintine River area of north-central British Columbia.

The claims cover widespread gold-silver-lead-zinc mineralization in quartz veins, in shear zones and in and around granodiorite dikes and sills in altered Bowser Group sedimentary rocks. The Tommy Jack Creek prospect is one of a number of important mineral prospects of various types which are associated with the Bulkley Intrusions. Some of the more important mines and prospects associated with these intrusions include Mount Thomlinson (41 million tonnes 0.18% MoS₂), Glacier Gulch (30 million tonnes grading 0.26% MoS₂ and 0.06% WO₃) Silver Standard Mine (past production 204,000 tonnes containing 463,000 grams gold and 235,954,000 grams silver) and the Rocher Deboule Mine (past production 123,000 tonnes containing 157,000 grams gold and 2,657,000 grams silver).

The property was formerly held by Canex Aerial Exploration who, in 1964, investigated a massive galena vein which presumably outcrops somewhere on the south side of Tommy Jack Creek. The property was optioned in 1984 by Noranda Exploration who subsequently expanded the claim holdings as the area of interest became larger. Prior to the acquisition of the property by Intertech the following work, under the direction of Noranda Exploration, has been conducted:

- 1) 58.6 kilometres of grid preparation;
- 2) geochemical sampling: 1,241 soil, 115 rock and 92 silt samples;
- 3) magnetic surveys: 55.5 line kilometres;
- 4) VLF-electromagnetic surveys: 4.0 line kilometres; and
- 5) diamond drilling: 35 holes totalling 2452.5 metres.

The purpose of this report is to summarize the results of fieldwork conducted in 1989 by A & M Exploration Ltd. on behalf of Intertech Minerals Corp. This work included preparation of an orthophoto and topographic base map; establishment of 14.1 kilometres of flagged line; VLF-electromagnetic surveys; soils, rock and silt geochemical sampling; and geological mapping and prospecting. Also summarized are results of work carried out by Intertech in 1988, and some of the work conducted by Noranda prior to 1988.

LOCATION, ACCESS, PHYSIOGRAPHY

The Tommy Jack Creek property is situated 95 kilometres north of Hazelton (Figure 1). It lies immediately to the south of the confluence of Tommy Jack Creek with the Sicintine River, which in turn flows into the Skeena River (Figure 2).

Access at present is by helicopter, about an hours flight from Smithers. Road access to within 45 kilometres is provided by logging roads up the east side of the Skeena River.

The property is in the Atna range of the Skeena Mountains. Slopes are gentle to moderately steep with elevations ranging from 800 to 1760 metres. A heavy virgin forest growth of balsam fir, hemlock and spruce covers most of the claim area up to 1500 metres elevation, above which heather, scrub fir, grass-covered areas and talus predominate.

CLAIM DATA

The Tommy Jack Creek property comprises 139 claim units as follows (see Figure 3):

		No. of			
<u>Claim Name</u>	Type	Units	Record No.	Recording Date	Expiry
Au 1	2 post	1	6256	June 12, 1984	1998
Au 2	2 post	1	6257	June 12, 1984	1998
Au 3	2 post	1	6258	June 12, 1984	1998
Au 4	2 post	1	6259	June 12, 1984	1998
Tom	Mod. Grid	20	6726	Oct. 24, 1984	1998
Tom 2	Mod. Grid	2	7303	Sept. 5, 1985	1992
Tom 3	Mod. Grid	9	7304	Sept. 5, 1985	1992
Tom 4	Mod. Grid	20	7578	May 1, 1986	1996
Tom 5	Mod. Grid	20	7579	May 1, 1986	1992
Tom 6	Mod. Grid	20	7580	May 1, 1986	1995
Tom 7	Mod. Grid	20	7581	May 1, 1986	1995
Tom Fr.	Fraction	1	9019	Oct. 20, 1987	1998
Tom 2 Fr.	Fraction	1	9020	Oct. 20, 1987	1991
Tom 35	Mod. Grid	4	9206	Oct. 20, 1987	1991
Tom 14	Mod. Grid	18	9246	Feb. 1, 1988	1997

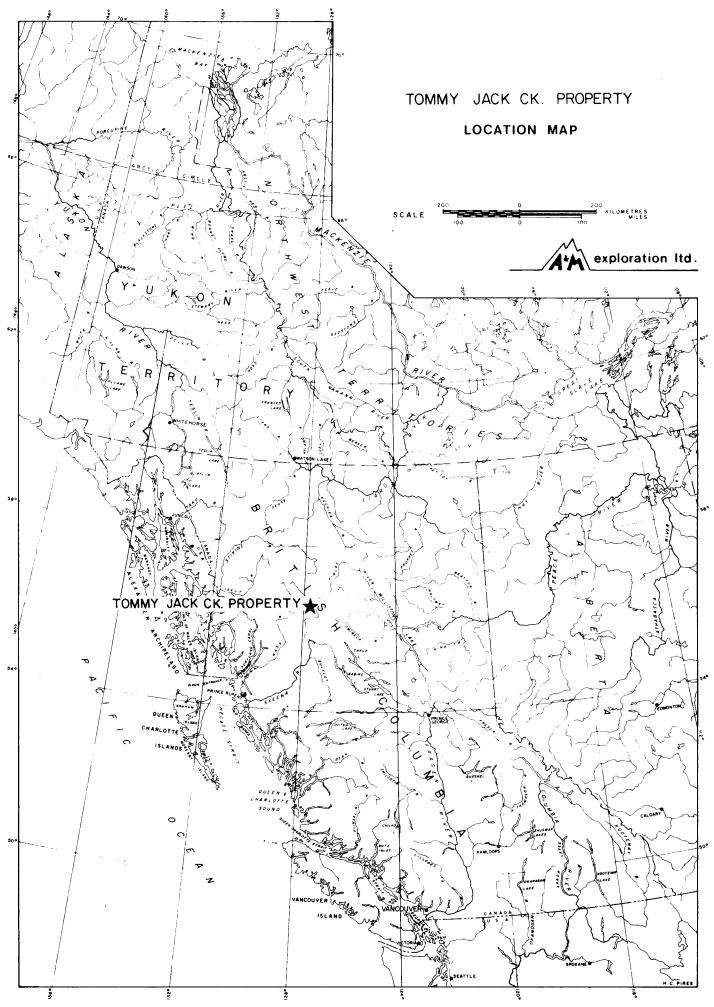
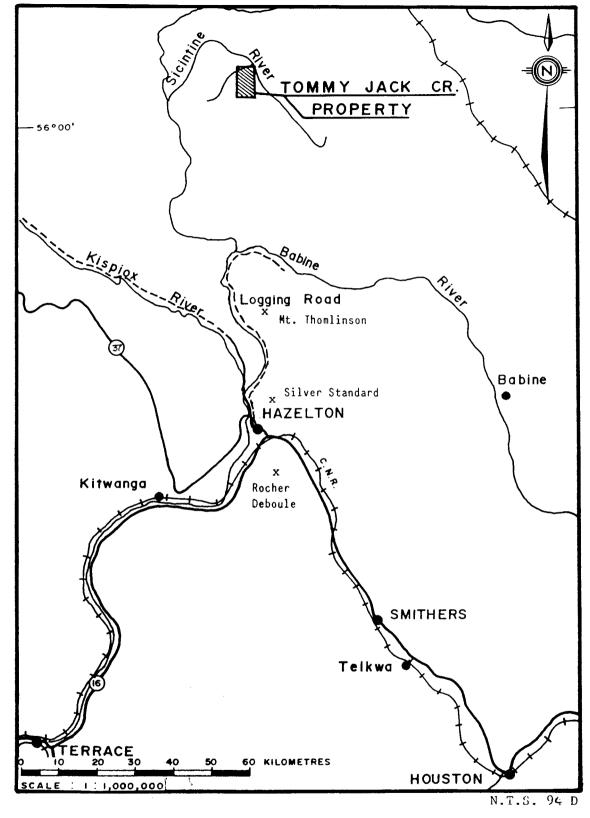
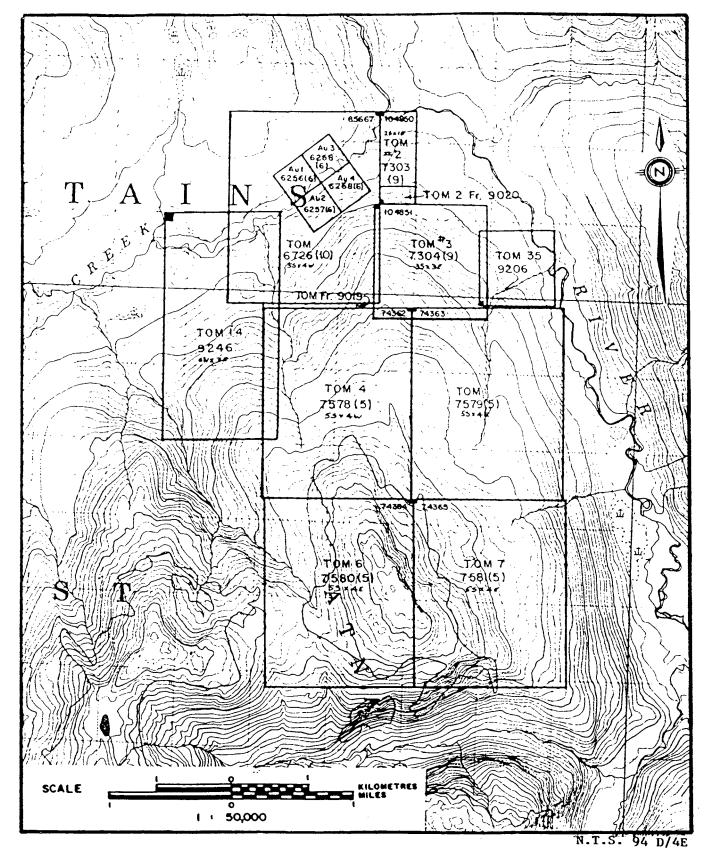



FIGURE - I



INTERTECH MINERALS CORP.

ACCESS MAP

TOMMY JACK CREEK PROPERTY

Liard Mining Division - British Columbia

INTERTECH MINERALS CORP.

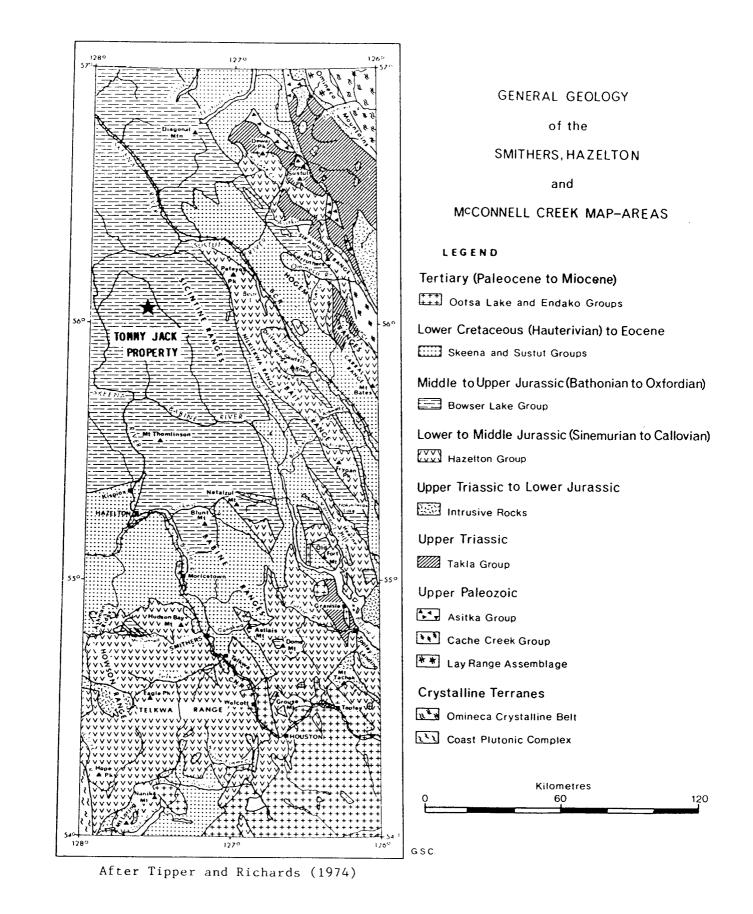
CLAIM MAP

TOMMY JACK CREEK PROPERTY

Omineca Mining Division - British Columbia

Tom and Au claims were acquired by option from Joyce Warren and the Tom 2-7, Tom 35 and Tom Fraction were staked by Noranda. Intertech Minerals Corp. holds an option to acquire a 50% interest from Noranda and Goldcap Inc. and has recently added the Tom 14 claim.

HISTORY


According to Myers (1988), the mineral showings in the area were known by Indian trappers such as Tommy Jack from Hazelton and were worked to some extent in the 1930's and 1940's. The earliest record of any work is by Canex Aerial Exploration who, in 1964 and 1965, carried out soil geochemical sampling over a 1460 by 1650 metre grid and delineated widespread silver, lead and arsenic anomalies (Thompson, 1964). Some trenching was undertaken on a massive galena vein and in 1968, three short holes were drilled near the old camp on Tommy Jack Creek. Results of the trenching and drilling are not available.

The property was acquired in 1984 by Noranda who subsequently carried out line cutting, geochemical surveys (1228 samples), two kilometres of VLF-electromagnetic survey, 18.6 kilometres of magnetic survey and 2454 metres of diamond drilling in 35 holes (Meyers 1985, 1986, 1988). Goldcap Inc. funded the exploration work in 1986 and 1987, and currently holds an equal interest in the property with Noranda. Intertech acquired an option in late 1987 and initiated a program of line cutting and geochemical sampling in 1988 (Poloni, 1988).

GEOLOGY

Regional Geology

The Tommy Jack Creek property is in the Intermontane Belt, one of the five major subdivisions of the Canadian Cordillera. The belt consists predominantly of Mesozoic volcanic and sedimentary rocks and is bounded on the east by metamorphic rocks of the Omineca Belt and on the west by granitic and metamorphic rocks of the Coast Crystalline Belt.

REGIONAL GEOLOGY

The rocks underlying the claim area are part of a thick assemblage of marine and non-marine sediments composed of shale, siltstone, sandstone and conglomerate (Figure 4). The assemblage, referred to as the Bowser Lake Group, was deposited in a broad basin (Bowser Basin) at least 200 kilometres wide and 300 kilometres long. The basin is interpreted by Eisbacher (1977) to be a marginal basin (developed along the continental margin), open to the west and filled with sediments derived from a tectonically thickened welt in the east and from older terranes and volcanic chains on the west. Subsequent sea floor spreading and subduction resulted in 1) the welding of older volcanic-plutonic terranes onto the outer continental crust and 2) uplift and deformation of rocks of the Bowser Basin.

Intrusive into the Bowser Group sedimentary rocks are a series of stocks and small batholiths of porphyritic granodiorite and quartz monzonite termed the Bulkley Intrusions. They lie in a belt 80 kilometres wide and 300 kilometres long, and include a cluster of intrusions in the Atna and Sicintine Ranges in the north and extend southward to include the Quanchus Intrusions in the Whitesail Lake area. The Tommy Jack Creek property is ten kilometres north of the known northern limit of this belt. The Bulkley Intrusions have a number of common characteristics including:

- 1) Cretaceous age (70 to 84 million years),
- 2) high level characteristics,
- 3) host to a number of important copper-molybdenum and molybdenumtungsten deposits (see Carter, 1981) such as Mount Thomlinson and Glacier Gulch, and
- 4) host to a number of important precious and base metal deposits such as the Silver Standard and Rocher Deboule Mines, both near Hazelton.

Property Geology

Geological mapping on the property has been hampered by lack of outcrops and heavy forest cover. Outcrops are mainly confined to creek beds (Figure 5). Mapping by Myers (1985, 1986, 1988) and by the writer (this study) shows that the property is underlain by shale, argillite, siltstone and arkosic sandstone of the Bowser Group. Minor amounts of

8

conglomerate have been reported in drill core. All are varying shades of grey and blue grey with altered equivalents (pervasively carbonatized) weathering to a characteristic tan or brown color. Thin, coal-bearing beds outcrop in Beaver Creek and its tributaries. The presence of plant fossils, coal beds and poorly preserved pelecypods indicate that the rocks were deposited in a shallow marine condition. Bedding attitudes appear to generally trend northwesterly to northeasterly with moderate to shallow dips to the east and west.

Narrow widely scattered dikes and sills of altered granodiorite or dacite occur throughout the area of interest. Presumably related to a stock, buried or not yet encountered in mapping, they range from about one to four metres wide. A prominent circular feature, visible on air photos, is postulated to represent an uplift related to a possible buried stock.

The amount of faulting is not well known, also because of lack of outcrop. A number of air photo lineaments undoubtedly reflect underlying faults. These features trend mainly north-northeasterly to northnorthwesterly, similar to the few orientations observed in outcrops.

Mineralization and Alteration

Gold. silver lead, zinc and copper mineralization occurs in quartz-carbonate veins which appear to be widespread on the Tommy Jack Creek property. Mineralization encountered in drill core occurs both as veinlets or stockworks in and adjacent to granodioritic or dacite dikes and as discrete sulfide-rich quartz veins. Mineralization encountered in float typically comprises coarsely banded sulfide-quartz veins containing discontinuous patches and layers of coarse pyrite, galena, sphalerite and pyrite with or without fine-grained disseminated chalcopyrite or Pyrrhotite, trace amounts of tetrahedrite and rare ruby arsenopyrite. silver minerals have been identified by Myers (1988). Carbonate minerals in the veins include calcite, dolomite and ankerite.

Galena and sphalerite also occur in veinlets on the east side of Unnamed Creek near line 7299 N. Drill hole 87-16, drilled by Noranda to test this mineralization intersected anomalous gold and silver values (51 parts per million, 200 parts per billion, respectively) over an interval of 17.7 metres at the top of the hole. Quartz veinlets ranging from about 0.1 to 2 centimetres wide, are fairly abundant (locally up to 10 per square metre) on Moret Ridge in the southern part of the property. They appear to form conjugate sets with azimuths of roughly 0.45° and 110° and dips nearly vertical. The zone appears to have no relation to the zone of carbonate alteration described below.

Elsewhere, quartz and carbonate minerals occur as scattered but widespread veinlets throughout the mapped area.

A significant feature of the Tommy Jack Creek property is pervasive ankeritic carbonate alteration which occurs over an area of 3.5 by 2 kilometres. The alteration is difficult to distinguish in fresh rock but where weathered, the sedimentary rocks (both coarse- and fine-grained clastics) have a characteristic tan color. This color has developed even in drill core exposed for a year in open core boxes. The limits shown on Figure 5, although difficult to fully define because of lack of outcrop and varying degrees of intensity, outline all areas where weak to strong carbonate alteration has been observed.

Other alteration minerals observed are sericite, which occurs in carbonate-altered granodiorite and locally in carbonate veinlets, and chlorite, developed from mafic minerals in granodiorite.

GEOCHEMICAL SURVEYS

Silt Geochemistry

A total of five silt samples were collected mainly to provide some complimentary multielement geochemical data. Sample sites and gold and silver values are plotted on Figure 7, along with those from 1988.

Rock Geochemistry

A total of 28 rock samples were collected during the course of mapping and prospecting. Sample descriptions and gold, silver and arsenic values are presented in Table 1 and samples sites and selected results plotted on Figure 6. Analytical results of mineralized samples are also tabulated in Table II along with those collected in 1985 to 1988.

Table I ROCK SAMPLE DESCRIPTIONS

Tommy Jack Creek Property

Sample No.	Description	Au ppb (oz/ton)	Ag ppm (oz/ton)	As ppm	
903200	Carbonatized sandstone with quartz veinlets; tr disseminated pyrite.	20	1.0	1	
906301	Carbonatized siltstone.	30	1.6	32	
906302	Carbonatized siltstone; tr. disseminated pyrite.	20	2.0	27	
906303	Quartz veined sandstone, 1m chip sample across several quartz veinlets.	20	1.6	-	
906308	Carbonatized and quartz veined sandstone.	30	1.3	1	
906309	Sandstone containing scattered quartz carbonate veinlets.	20	1.0	1	
906310	Carbonatized sandstone.	40	1.9	40	
906311	Carbonatized sandstone, minor disseminated pyrite.	30	1.8	26	
906312	Quartz vein float with disseminated pyrite.	210	3.1	33	
906314	Siltstone, weakly carbonatized with scattered quartz-ankerite veinlets, minor pyrite on fractures.	50	3.3	1	
906315	Argillaceous siltstone; carbonatized with carbonate veinlets, some with minor pyrite.	20	1.8	61	
906316	Carbonatized and sericitized dacite.	60	1.7	38	
906318	Well mineralized quartz boulder.	(2.17)	(17.97)	2254	
906319	Quartz float boulder, 7cm wide, with pyrite and arsenopyrite.	(0.042)	(0.29)	9969	
906320	Dacite; sericitized and intensely carbonatized.	170	2.1	74	
906321	Dacite, as above, with scattered quartz veinlets; disseminated pyrite.	60	1.8	66	
906322	Pyritic quartz float boulder, 8cm wide.	(0.049)		1669	
906323A	Quartz boulder with abundant pyrite, galena, sphalerite and chalcopyrite.	(0.999)	(55.85)	207	
906323B	70% quartz vein material from series of veins in weakly carbonatized sandstone.		1.2	20	
906324	Quartz cemented breccia.	6	0.4	15	
906325	Sheared limonite-stained sandstone and argillite.	4	0.1	19	
906326	Intensely carbonatized siltstone rubble from trench.	28	0.4	22	(
906327	Soil from trench wall above 326.	1950	2.2	15	
906328	Quartz boulders up to 30cm in diameter, rusty weathering.		0.4	42	
906329	Sandstone with abundant quartz veinlets.	4	2.2	15	
906369	Carbonatized sandstone and siltstone with scattered quartz veinlets; tr. chalcopyrite.	13	1.6	37	
906370	6-7cm quartz-carbonate vein containing minor disseminated pyrite.	32	0.3	32	
906371	2m chip sample across zone of intense carbonate- quartz veining and brecciation; pyrite dissemi- nated in veins and fragments.	10	0.6	28	
906372	2m chip sample across zone of intense quartz veining, 8m north of 371.	12	0.6	38	

Cd 3.1

Table II

Highly anomalous rock grab samples, 1987-1989

Tommy Jack Creek Property

					Material	A	ប	1	Ag
Sample No.	Location	<u>Size cm</u>	Description	Sulfides	Sampled	<u>oz/ton</u>	ppb	oz/ton	ppm
19700	above treeline		qz,py,as,gn	60.0	talus	0.206		32.07	
26778	above treeline		qz,as,py	0.5	talus	0.204		0.18	
76110	7200 N, 9313 E	10	qz,Fe,gn	1.0	float		13,730		
76111	7200 N, 9313 E	15	qz,Fe,py	2.0	float		6,780		
76121	Unnamed Creek	13	qz (banded), py	2.0	float		5,400		2,0
76122	Unnamed Creek	4	qz,ank,py,sp.gn	13.0	cobble		14,950		2
76124	Unnamed Creek	15	qz,ank,py,gn,sp	33.0	cobble		29,900		2
78072	above treeline	5	qz,py,gn?		float	0.730		4.63	
86615	near TJ87-5		qz,CO3,py,as,gn		trench		12,210		
86619	Unnamed Creek	4	py,qz,sp,gn	85.0	float	0.755		2.33	
86621	Unnamed Creek	6	py,qz,qn	90.0	float	0.922		3.33	
88881	Unnamed Creek	6	qz		outcrop	0.201		2.31	
88886	Unnamed Creek		qz,py,gn		float	0.413		1.97	
88892	Unnamed Creek		qz,py,as,qn,sp		float	0.522		3.00	
88893	Unnamed Creek		qz,py,gn		float	1.160		24.84	
88895	S of grid	boulder	qz,py,as?		float	0.249		0.83	
88897	above treeline		qz,py		talus	0.552		2.19	
88979	above treeline		?,as,gn,py		talus	0.218		0.66	
92601	Beaver Creek	boulders	qz,gn,py	50.0	float	1.080		7.96	
99081	above treeline		qz,py,as,gn,sp	50.0	float	0.221		0.83	
99085	above treeline		qz,py,as,td,gn	65.0	talus	0.164		41.65	
99091	Beaver Creek	boulder	qz,sp,td,gn,py	60.0	float	0.414		74.10	
99097	Beaver Creek	boulder	qz,py,gn	95.0	float	0.966		6.54	
TJ 5A	Unnamed Creek	boulder	qz		float	0.241			
TJ 6	6820 N, 9090 E		qz		trench	0.664			
TJ 8	Beaver Ck. tr.		qz		float	0.445			
TJ10	Moret ridge		qz		float	1.01			
906318	Unnamed Creek	7	qz,py,gn,sph		float	2.17		17.97	
906319	6670 N, 1000 E	13	qz,py,as		float	0.042		0.29	
906322	Beaver Ck. tr.	8	qz,py		float	0.049		0.48	
906323A	Beaver Ck. tr.	15	qz,py,gn,sp,cpy		float	0.999		55.85	

Apart from sampling a few well mineralized boulders of float, a number of various types of altered and veined rock types were sampled to provide analytical data to assist in interpreting the soil geochemical data. Of particular interest are the elevated values of silver (up to 3.3 ppm), gold (up to 60 ppb) and arsenic (up to 61 ppm) in many of the carbonatized and/or quartz veined sedimentary rocks. A few analyses of altered grandodiorite (Sample Nos. 906316, 906320 and 906321) also reveal weakly to moderately anomalous values of gold (up to 170 ppb), silver (up to 2.1 ppm), arsenic (up to 74 ppm), cadmium (up to 6.6 ppm) and lead (up to 240 ppm). This data suggests that the widespread carbonatization, quartz and quartz-carbonated veining, and base and precious metal mineralization are all genetically interrelated.

The distribution of well mineralized quartz boulders observed in float is plotted on Figures 6 and 9. Four grab samples of mineralized float were assayed (Sample Nos. 906318, 906319, 906322 and 906323a). Gold values range from 0.049 to 2.17 ounces per ton and silver values range from 0.29 to 55.85 ounces per ton. The most abundant float occurs in Beaver Creek and its tributaries.

Soil Geochemistry

A total of 746 soil samples were collected from the Tommy Jack Creek property, using steel bladed shovels. The most common soil types encountered were "B" horizon glacial till and sparse residual soil intermingled with rubbly suboutcrop. Samples were obtained at depths of 10 to 50 centimetres, usually well below the "A" horizon.

Site specific information was noted on specially prepared forms. Samples were placed in Kraft paper bags and shipped to Min-en Laboratories Ltd. Gold was determined by fire assay preconcentration followed by atomic absorption analysis and 30 standard elements were determined by inductively coupled plasma spectrometry. Analytical results are presented in Appendix I. Gold values are reported in parts per billion (ppb) and other elements in parts per million (ppm).

Statistical analyses on selected elements are included in Appendix II. 1988 data for silver and gold are included in the statistical study. Using these data background and ranges of anomalous values were

11

established as follows:

	Observed		Weakly		Highly
Element	Range of Values	Background	Anomalous	Anomalous	Anomalous
Gold	1 - 1950	1 - 25	26 - 50	51 - 600	+100
Silver	0.1 - 112.2	0.1 - 1.8	1.9 - 3.7	3.8 - 7.5	+7.5
Arsenic	1 - 1199	1 - 80	81 - 160	161 - 320	+320
Cadmium	0.1 - 13.6	0.1 - 0.3	0.4 - 0.6	0.7 - 1.2	+1.2
Lead	1 - 1114	1 - 50	51 - 100	101 - 200	+200
Antimony	1 - 1481	1 - 2	3 - 4	5 – 8	+8
Zinc	30 - 498	30 - 150	151 - 300	301 - 600	+600

Statistical data show significant correlation of gold with zinc, cadmium, arsenic, silver and lead (in order of increasing correlation coefficients). An interesting feature of the statistical plots is the presence of several populations. This indicates the existence of complex environmental conditions or possibly two or more styles of mineralization, or both. Environmental conditions are definitely not uniform, in that two main soil tpes were sampled. Gentle topography and local swampy areas undoubtedly have an effect on hydromorphic dispersion of the more soluble elements. Also of interest are the relatively high background values of lead, arsenic and silver.

Sample sites and computer plots of selected element values are presented on Figures 7 and 7a through 7g. Dot plots were selected as the most useful in displaying the data because it is difficult to delineate with contours, specific anomalous areas. However, using multiielement data it is possible to outline a number of clusters of anomalies which appear to trend north-northwesterly.

Three clusters of anomalies are considered to be high priority targets but require more sampling to fully define them. <u>Anomaly A</u> is characterized by gold values up to 473 ppb, silver up to 10.8 ppm, arsenic up to 1199 ppm, lead up to 171 ppm, zinc up to 275 ppm and cadmium up to 13.6 ppm. Of particular significance is that the two branches of the anomaly are subparallel to two prominent VLF-electromagnetic anomalies (described below). <u>Anomaly B</u> is characterized by gold values up to 217 ppb, silver up to 4.2 ppm, arsenic up to 436 ppm, lead up to 278 ppm, zinc up to 498 ppm, and cadmium up to 3 ppm. It lies along the projected

extension of two VLF-electromagnetic anomalies. <u>Anomaly C</u> is characterized by gold values up to 780 ppb, silver up to 6.5 ppm, arsenic up to 297 ppm, lead up to 1114 ppm, zinc up to 288 ppm, cadmium up to 3 ppm, and antimony up to 9 ppm. This anomaly is of particular interest because of its size (as much as 350 metres wide) and strength, and because high grade gold values (2.17 ounces per ton) have been found in quartz vein float. This anomaly may be the southern extension of a lead-silver anomalous area defined by wide spaced samplying by Noranda that lies on the east side of and parallel to Unnamed Creek.

VLF-ELECTROMAGNETIC SURVEY

Method and Instumentation

A total of 23.2 kilometres of VLF-electromagnetic surveying was conducted. The purpose of the survey was to assist in defining any possible structures which might host mineralization. Readings were taken at 20 metre intervals mainly on the 1988 and 1989 grid, and also on three of Noranda's lines.

The VLF-electromagnetic method utilizes an electromagnetic field transmitted from radio stations in the 12 to 24 kilohertz range (long range submarine communication signals). The signals are propagated with the magnetic component of the field being horizontal or parallel to the earth's surface in undisturbed areas.

Conductivity contrasts (caused by massive sulfides, fault structures or other highly conductive rocks) in the earth's crust, produce a local vertical component to the electromagnetic field and changes in field strength or amplitude. Zones of increased conductivity may be located and, to a degree, interpreted by measuring the various parameters of this electromagnetic field. A Sabre Model 27 VLF-electromagnetic receiver, tuned to the Seattle transmitting station, was used for all observations. This instrument is manufactured by Sabre Electronic Instruments. It measures the dip angle of the resultant field (in degrees) and the normalized horizontal component of the field strength (in relative percent). Dip angle measurements are filtered by a technique described by Fraser (1969 - Geophysics, Vol. 34, No. 6, pp. 958-967). Conductive zones are interpreted to underlie the point on a traverse line where changes in dip angle of the resultant field (from negative to positive - operator facing transmitter station) are associated with increased field strength. Fraser filtered values, show high positive values at this point. Fraser filter values for areas where lines are spaced 200 metres apart or less are presented as computer contoured plots in plan. For single lines, they are presented in profile form along with dip angle and field strength measurements.

£ - ...

Results

The VLF-electromagnetic survey is presented in the form of contoured Fraser Filtered data with lines 68N, 83N, 84N of the Noranda grid along with line 182N from 22700E to 23200E being presented in profile form. The contoured data is displayed on Figure 8a and profiles are presented on Figures 8b and 8c.

Data was collected at 20 metre stations on lines spaced at 100 metres for the west portion of the grid and at 200 metres for the east portion.

The contoured VLF-electromagnetic data shows numerous anomalies trending north-south. Many of the anomalies are weak to moderate and are not well defined, however there are strong ones of particular interest.

There is a strong, relatively wide (approximately 80 metres) anomaly which runs through line 186N at station 21200E. This anomaly appears to split into two distinct parts near line 189N as it progresses north. The southern portion of this anomaly lies within geochemical Anomaly A. The northern portion of the anomaly is located within Anomaly B, defined on Figure 9. This is interpreted as a high priority target.

Another prominent anomaly is located on line 186N near 21400E. This anomaly is actually two parallel narrow (approximately 40 metres), strong anomalies. This anomaly does not appear to be directly related to geochemical anomalies, however, the structure responsible for this anomaly is likel related to the anomaly mentioned above.

Anomalies in the western portion of the grid are relatively weak however the ones on line 192N at 20320 E and 20680E are associated with geochemical anomalies and may be of interest. Further work is needed to fully delineate them.

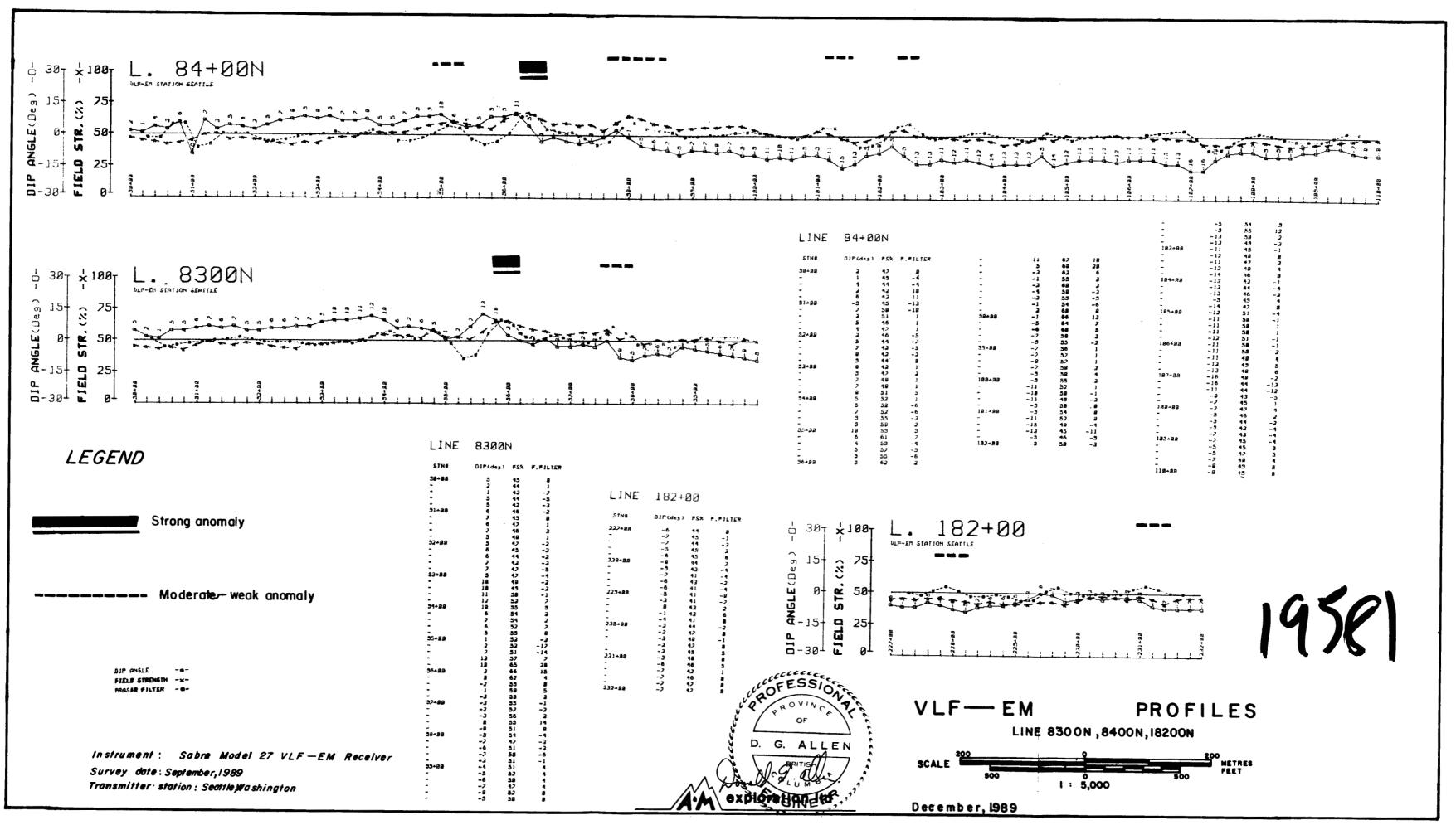
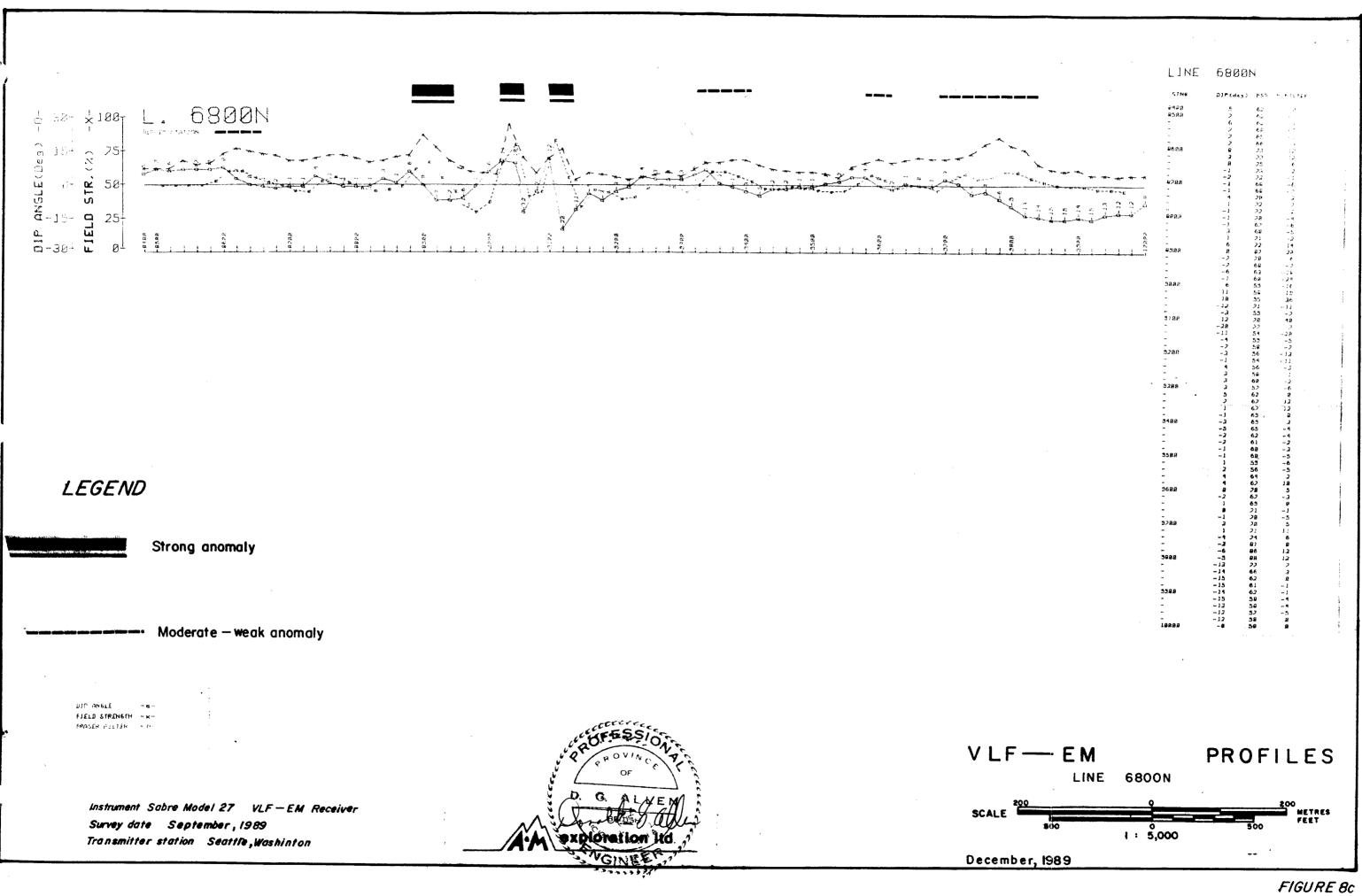



FIGURE 8b

There are also anomalies on the eastern portion of the grid but due to the wide line spacing, are not well defined. An anomaly in this area is located on line 185N near 22360E. This anomaly is narrow (20 metres) and strong and its' proximity to a geochemical anomaly makes it of particular interest.

Anomaly C has only weak VLF-electromagnetic anomalies associated with it but as only one line (182N) has been surveyed in this are the data must be regarded as inconclusive.

VLF-electromagnetic surveys in the area of previous drilling along line 83N and 84N show several anomalies of moderate intensity. The drill holes were located such that only one hole, 87-3, may have intersected the anomaly source. The drill log for this hole shows some quartz veining and shearing however these zones are narrow and not necessarily responsible for the anomalous VLF-electromagnetic response.

1986–1987 DRILLING RESULTS

Results of Noranda's drilling are briefly summarized here for the sake of providing additional background information on the property.

A total of 2452 metres of diamond drilling in 35 holes has been carried out on the Tommy Jack Creek property. Drill sites are plotted on Figures 5, 6 and 9 and drill statistics presented in Table III. Drilling was directed towards testing some of the more significant soil geochemical anomalies in the grid area. Low grade but significant gold-silver mineralization was encountered in many of the holes (see Table IV). Some of the better intercepts are as follows:

Drill	Width	L	Au	Ag							
Hole	Metres	ppm	oz/ton	ppm	oz/ton						
86- 5	6.6	4.3	0.125	83.6	2.43						
87-14	0.6	31.85	0.93	129.0	3.76						
87-23	1.3	14.69	0.41	36.3	1.06						

	Coord	inates	Elevation	Azimuth	Dip	Length
Drill Hole	N	E	Metres	Degrees	Degrees	Metres
86 - 1	9250	9580	932	051	-45	84.7
2	9248	9628	939	060	-45	83.2
3	9248	9627	939	060	-75	30.2
4	9140	9814	959	060	-45	74.1
5	9140	9857	960	053	-46	78.6
6	9560	9920	840	060	-45	83.2
7	9560	10007	835	060	-45	80.2
8	9404	9757	890	060	-45	81.6
9	9400	9821	889	060	-45	81.6
10	9398	9900	887	060	-45	84.4
87 - 1	8360	9624	1157	063	-45	77.1
2	8360	9665	1159	060	-45	75.6
3	8362	9470	1127	056	-45	76.2
4	8379	9930	1142	059	-45	75.6
5	8376	10249	1069	060	-45	75.6
6	8371	10340	1053	060	-44	84.4
7	8376	10480	1015	060	-45	77.1
8	8704	10350	988	060	44	77.1
9	8700	10540	960	060	-45	78.5
10	8700	10540	960	060	-60	17.7
11	8700	10539	960	060	-75	36.0
12	8700	10560	956	240	-45	31.4
13	8602	9980	1094	060	-45	75.6
14	8824	9802	1059	060	-45	78.6
15	8813	9742	1061	060	-45	84.7
16	7299	10695	1073	270	-60	75.6
17	8175	10310	1090	060	-45	75.6
18	8849	9921	1050	060	-45	86.3
19	9140	9857	960	060	-70	68.0
20	9141	9907	950	240	-45	74.1
21	9141	9908	950	_	-90	13.1
22	9115	9837	967	060	-45	75.6
23	9165	9840	952	060	-45	75.6
24	8825	9802	1059	060	-70	60.4
25	8849	9802	1053	059	-44	75.6

Table III Drill Hole Data

Hole	Interval, m	Width, m	gmt Au	gmt Ag	Rank*
TJ86-	1 61.6-62.75	1.15	2.57	12.7	
	78.0-79.0	1.0	3.63	23.0	
TJ86-	2 42.2-45.5	3.3	2.01	35.3	9
	46.7-47.15	.45	9.60	121.0	
	54.6-55.6	1.0	2.09	2.7	
TJ86-	4 24.1-24.9	0.8	8.90	151.0	8
	67.2-68.1	0.9	4.12	7.6	
TJ86-	5 9.8-11.8	2.0	1.95	29.6	
	21.6-28.2	6.6	4.30	83.6	1
TJ87-	1 12.9–13.9	1.0	1.89	164.0	
	16.8-21.6	4.8	1.57	23.6	7
TJ87-	8 50.1-51.0	0.9	5.04	37.0	
TJ87-1	8.1-11.6	3.5	1.00	27.0	
TJ87-1	4.0-6.5	2.5	2.54	158.0	10
TJ87-1	4 28.7-29.3	0.6	31.85	129.0	2
	38.2-39.6	1.4	1.99	5.0	
	59.1-60.6	1.5	3.27	10.3	
TJ87-1	42.1-42.7	0.6	6.24	17.5	
	49.8-50.3	0.5	7.68	27.1	
•	56.5-56.9	0.4	12.9	12.0	
	69.4-70.0	0.6	4.25	17.6	
TJ87–1		0.4	0.38	1380.0	
TJ87-1		0.7	3.63	16.1	
TJ87-1		0.5	6.48	289.0	
TJ87–2	8.5-10.2	1.7	4.69	71.3	6
	16.4-16.7	0.3	7.75	42.5	
TJ872	17.2-17.4	0.2	13.0	46.2	
	52.9-54.0	1.1	1.98	8.9	
TJ87–2	11.3-12.6	1.3	14.6	36.3	3
	13.7-13.9	0.2	48.5	1243.0	5
	22.3-23.3	1.0	3.77	80.9	
TJ87–2		0.1	40.6	274.0	
	8.5-8.9	0.4	26.1	91.8	4

Table IVSignificant DDH intersections, 1986-1987Tommy Jack Creek Property

*Rank by gold content (= width x grade)

DISCUSSION OF RESULTS

The mineralization found to date on the Tommy Jack Creek property is widespread, occurring within a broad zone of pervasive carbonate alterations. It is clear from examining the results of work to date that the area of interest has not yet been fully defined.

Significant geochemical anomalies have been discovered both to the southwest and southeast of the area surveyed by Noranda. The anomalies in the southwest (A and B) are considered to be of high priority because of their association with moderate to strong VLF-electromagnetic conductors. Anomaly C in the southwest is of high priority in that it might be the southerly extension of a long anomalous area lying to the east of Unnnamed Creek, and is completely open to the south.

The most obvious comparison of mineralization at Tommy Jack Creek with known deposit types would be with the silver-lead-zinc (-goldcadmium) veins of the Silver Standard Mine, 85 kilometres to the south. This small but highly profitable mine produced 225,000 tons of ore which at recent metal prices would have an average value of \$360 (U.S.) per ton (recovered metals). As described by Kindle (1947) a dozen or so strong quartz veins at the Silver Standard Mine occur along strong fault fissures in gently folded sedimentary rocks. They range in length from 200 to 2,000 feet (60 to 600 metres) and in width from 0.1 to 3.7 Three of these veins extended into a body of granodiorite of metres. the Bulkley Intrusions. The veins contain locally abundant calcite and siderite and irregularly distributed sulphides. Kindle (1954) noted a pronounced "nugget effect" at the mine, i.e., grades that were determined from underground sampling workings were found to be relatively lower than those obtained ultimately from mill recovery. In the case of the Tommy Jack Creek property, the veins appear to be similar in compositon, i.e., quartz-carbonate veins with irregularly disseminated sulphides, but are richer in gold (up to 2.17 ounces per ton). A more pronounced "nugget effect" might be expected and should be investigated in future work.

The presence of anomalous gold and pathfinder element values and quartz veining in the scattered dikes of granodiorite suggest that potential exists to find stockwork-type mineralization related to a buried stock.

Doveld S. alle ⁶6666666666 OF D. G. ALLEN BRITISH GIN

REFERENCES

- Allen, D. G. (1988). Summary Report on the Tommy Jack Creek Property. Private Report for Intertech Minerals Corp.
- Carter, N. C. (1981). Porphyry Copper and Molybdenum Deposits, West-Central British Columbia. B.C. Ministry of Mines, Energy and Petroleum Resources Bulletin 64.
- Dale, A. and McArthur, R. (1985). "Geochemical Report" on the Tommy Jack Creek Property. B.C. Min. Mines, Energy and Petroleum Resouces, Assessment Report 14631.
- Eisbacher, G. H. (1977). Mesozoic-Tertiary Basin Models for the Canadian Cordillera and Their Geological Constraints. Can. Jour. of Earth Sciences, Vol. 14, pp. 2414-2421.
- Kindle, E. D. (1954). Mineral Resources, Hazelton and Smithers Areas, Cassiar and Coast Districts, British Columbia. Geological Survey, Memoir 223 (Revised Edition).
- Myers, D. E. (1988). 1987 Year-End Report Tommy Jack Creek Property. Noranda Exploration.
- Myers, D. E. 1986). Report on Drilling, Geophysics and Geochemistry, Tommy Jack Creek Property. B.C. Min. Mines, Energy, and Petroleum Resources, Assessment Report 15515.
- Myers, D. E. (1985). Geology and Geochemistry of the Tommy Jack Creek Property. B.C. Min. Mines, Energy and Pet. Resources, Assessment Report 13778
- Poloni, J. R. (1988). Tommy Jack Creek Property 1988 Work Program. Assessment Report.
- Thompson, W D. (1964) Geochemical Report, Key Group, Trudy Group, Sandy Group and Nonie Group. B.C.M.M.E.P.R. Assessment Report 574.
- Tipper, H. W. and Richards, T. A. (1976). Jurassic Stratigraphy and History of North-Central British Columbia. Geological Survey of Canada Bulletin 270.

CERTIFICATE

I, Donald G. Allen, certify that:

- I am a Consulting Geological Engineer, at A & M Exploration Ltd., with offices at Suite 704 - 850 West Hastings Street, Vancouver, British Columbia.
- I am a graduate of the University of British Columbia with degrees in Geological Engineering (B.A.Sc., 1964; M.A.Sc., 1966).
- 3. I have been practising my profession since 1964 in British Columbia, the Yukon, Alaska, and various parts of the Western United States.
- 4. I am a member in good standing of the Association of Professional Engineers of British Columbia.
- 5. This report is based on fieldwork conducted personally during the period September 13 to 26, 1989. It is also based on fieldwork conducted by A. Raven and by Noranda Exploration personnel, and on reports by and conversations with D. Myers, Project Geologist for Noranda.
- 6. I have no interest nor do I expect to receive any in Intertech Minerals Corp., Noranda Mines, Goldcorp Inc. or in the Tommy Jack Creek Property.
- 7. I consent to the use of my name and this report in a Statement of Material Facts or in a Prospectus in connection with the raising of funds for the project covered by this report.

December, 1989 Vancouver, B.C.

Donald G. Allen P. Eng. (B.C.)

APPENDIX I

Analytical Results

COMP: INTERTECH MINERALS MIN-EN LABS --- ICP REPORT FILE NO: 9V-1296-RJ1 N PRO#- 515 705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 DATE: OCT-22-89 (604)980-5814 OR (604)988-4524 ATTN: A.RAVEN/D.ALLEN TYPE ROCK GEOCHEM * (ACT:F31) SAMPLE NUMBER 8 30460 .1 23 56 34670 350 18 15420 736 7 380 16 570 27 90623B 1.2 36250 20 1 2094 1.0 1 43 1 1 104.1 100 2 2 2 126 906723 B

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

ATTN: A.RAVEN/D.ALLEN

PROJ: 515

COMR: INTERTECH MINERALS

FILE NO: 9V-1296-RJ2 DATE: OCT-22-89

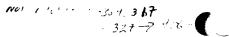
* TYPE ROCK GEOCHEM * (ACT:F31)

ATTN: A.RAVEN/	D.ALLE	: N										(604)9	80-581	14 OR	(604)	788-45	24								* 1	TYPE	ROCK	GEOC	HEM *	CAC	T:F31
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	8 PPM		BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU	PPM	PPN	PPH	MG PPN	MN PPM	MO	NA PPM	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM F	U	V PPM	ZN PPM	GA PPM	SN PPM F	W CR	AU
906324 906325 906326 906328 906329	- 1	18800 19960 9270 1520 29330	15 1 22 42 15	1 1 1 1	36 210 68 31 128	.6 1.0 .9 .3	3 3 2 13	1800 3260 640 13300 12700	.1 .1 3.1 .1 .1	17 26 19 7 29	24 52 65 50	39800 43670 31500 32140 47300	490 2250 3080 350 910	21 16 3 1 19	9060 3800 560 1910 13490	458 611 1330 866 1054	6 1 1 4 6	310 760 220 190 890	12 15 12 3 19	630 500 760 390 1120	12 12 18 10 29	1 1 1 1	8 14 5 10 19	1 1 1 1	1 1 1	81.1 41.0 22.3 13.2 116.1	101 114 306 31	1 1 1 2	1 1 1 1 3	2 124 1 20 1 51 2 205 2 81	6 4 28 4
906369 906370 906371 906372	1.6 .3 .6 .6	8370 5970 5290 3360	37 32 28 38	1 1 1	72 14 34 21	.7 .3 .5 .7	2222	21760 1360 23910 24290	.3 .1 .1 .1	21 8 14 7	49	33030 26430 34110 28830	3440	3 7 1 2	5050	963 434 1161 1174	4 4 7 7	310 50 110 60	16 3 8 5	610 530 680 500	25 11 17 20	3 1 2 3	17 5 58 46	1 1 1	1 1 1	21.3 12.3 16.3 17.9	41 34 45 54	1 1 1	2 1 2 2	1 39 2 186 2 168 2 158	13 32 10 12
				<u>.</u>									<u>.</u>																		
						<u></u>																									
		<u> </u>																				<u> </u>									
																										<u>. i</u>					
			<u> </u>				<u> </u>						· · · · · · · · · · ·					<u></u>													
			<u>.</u>								<u> </u>		· · · · · · · · · · · · · · · · · · ·													<u> </u>					
			·····																												

(C	Ì													(
COMP: INTERTED PROJ: ATTN: AL RAVEN									70		ST 151	N LA H ST., 04)980-	NORTH	I VANC	OUVER	B.C.		112							• TYF	PE ROC		DAT	TE: 00	0241-RJ1 CT-18-89 ACT:F31)
SAMPLE NUMBER 903200	AG PPM .6		AS PPM 1	B PPM 1	BA PPM 111	BE PPM	BI PPM	CA PPM 13750	CD PPM 5.1	CO PPM 7	CU PPM 18	21520	PPM 2860	LI PPM	MG PPN 1210	1471	MO PPM 1	250	3	780	PB PPM 7	SB PPM 1	PPM 5	TH PPM P 1		V PPM 5.6	PPM 340	GA PPM F		W CR PM PPM 1 42
906301 906302 906303 906308	1.1	6090 8110 24790 28530	32 27 1 1	1 1 1	69 53 59 95	.8 1.1 .9 1.2	4	240 11410 12520 32510	.1 .3 .1 .1	24 21 22 25	57 65 41 49	38350 56310 47830 47090	1310 1620 420	23 26	510 9590 11550 17410	830 835 857	4234	160 410 390 350		430 720 390 1340	2 20 18 29	1 1 1	80 85 6 11	1	1 1	19.7 58.7 52.0 28.4	58 96 112 101	222	1	1 1 1 53 1 45
906309 906310 906311 906312 906314	1.5 1.2 2.9	25410 8530 13000 2790 25630	1 40 26 33 1	1 1 1 1	45 71 44 17 64	.9 1.1 1.3 .4 1.5	4	16810 33230 20740 3060 30010	.1 1.0 .8 .9 .1	22 25 23 6 22	35 42 40 5 182	47350 47520 46630 20030 60740	1140 2050 620	7 10 3	13030 11660 12880 1040 12390		34414	500 300 320 40 260	19 14 3 13	1020 900 1020 350 1690	26 26 30 120 23	1 1 1 1 1	14 65 16 8 63	1 1 1 1	1	05.2 67.9 28.5 14.1 40.7	94 70 82 41 101	2 2 1 1 2	1 1 1	1 89 1 20 1 16 1 166 1 23
906315 906316 906319 906320 906321	1.7 1.4 10.1 2.2 1.8		61 38 9968 74 66	1 1 1 1	56 109 30 82 104	1.2 .7 .6 .5 .9	3 3 2	26150 22930 8170 27860 12950	.6 1.5 112.9 2.6 6.6	22 7 12 8 11	55 11 62 14 19	49280 23030 31880 23890 28110	3390 360 2590	2 1 1 5	8330 5100 2030 4010 7650	1155 1882	3 2 2 1 3	160 160 70 520 290	13 35 27	740 700 80 970 880	36 62 999 241 240	1 1 38 1 1	8 19 8 18 84	1 1 1 1	1 1 1 1	18.1 6.4 3.9 7.9 14.7	50 135 566 137 578	1 1 1 1	1 1 1 1	1 1 1 59 2 201 1 24 1 74
906322 906323 906318	14.5 976.4 488.0	310 300 320		4 4 11	7 7 16	1.1 .6 .5	11 1 1		27.1 314.2 638.1	22 17 25	8807	145870 72340 187850	130	1 1 1	190 100 120	52 1 1	1 6 2	40 30 20	1 7 1	30 30 130	600 36636 30850	7 1271 829	2 10 23	1 1 1	1 1 1	3.3 2.5 4.0	841 21711 41220	1 1 1	1 3 5	1 20 2 96 3 1
																														
																										u + 10 10 - 10 - 10 - 10				
													<u></u>							<u></u>										
		<u> </u>	·																											

.8 20020 .8 20620 .6 20770

.7 22340


204 108

1.0

.8

7860 3910

900

710

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 95-0242-5J1+2 DATE: SEP-28-89 * TYPE SOIL GEOCHEM * (ACT:F31)

ż

ż

1 51.4 160 1 55.1 128 1 64.9 121 1 64.6 108 1 80.7 117

ATTN: A.RAVEN

977-006 977-007

977-008

977-009

977-010

											(00	4) 700.	2014	UK (C	XU4) YO	6~432	4							TYPE S	IOIL G	EOCHEM	-	(AC1:F3
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PP N	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI	MG PPM	MN PPM	MO	NA PPM	NI P PPM PPM	PB PPM	SB PPM	SR PPM I	TH PPM P		ZN PPM P	GA SN	W PPM	CR AU PPM PPB
JC#01 950 00 / JC#02 JC#03 JC#04 JC#05	.7 22		1 35 100 15 21	1 1 1 1	30 42 40 47 63	1.0 .7 1.0 .8 .8	54444	360 380 300 470 800	.1 .1 .1 .1	15 17 15 13 11	35 45 38	52200 58440 54910 44810 40940	480 560 500 480 690	6 11 11	3940 3740 4530 4380 2830	976 1361 589 400 474	1 2 1 1	120 80 70 70 110	3 1430 1 1630 4 1110 3 1120 2 1130	16 22 22 18 8	1 1 1 1	3 5 2 3 5	1 1 1 1	1 52.6 1 87.5 1 59.5 1 57.7 1 77.3	87 90 101 98 77	2 1 1 1 1 1 1 1 1 1	1 1 2 1	1 2 1 5 1 1 1 3 1 439
JC#06 JC#07 JC#08 JC#09 JC#10	.1 18	2800 3700 5180 5090 5890	1 5 8 50	1 1 1 1	36 35 39 34 101	.2 .6 .9 .5 1.1	45545	1190 860 360 260 14500	.1 .1 .1 .1	5 13 12 9 19	22 30 22	13920 32910 45940 37130 40090	400 490 510 430 1000	8 10 2	4570 2180	358 1334 331 333 1290	1 2 1 1 5	80 70 70 70 130	2 400 8 1220 4 710 1 1170 6 1570	1 22 14 11 22	1 1 1 1 1 1	4 4 4 40	1 1 1 2	1 47.1 1 75.1 1 71.0 1 79.2 1 62.3	30 73 82 50	1 1 1 1 2 1 1 1 1 1	1 2 1 1	1 2 1 3 1 4 1 2 1 4
JC#11 JC#12 JC#13 JC#14 JC#15	.4 20 21 .9 24 .4 15 .2 20	950 870 940	49 34 16 1 1	1 1 1 1	66 83 83 30 113	.9 1.2 1.4 .7 .9	5 6 5 5	3450 5010 6700 420 2120	.1 .1 .1 .1	25 26 22 9 12	62 48 25	48870 47610 48980 36960 36850	970 700 730 410 680	16 16 4	6430 6250 5570 1710 3790	882 2959 2933 279 758	4 4 2 1 1	130 80 80 80 80 90	10 660 10 1700 11 1570 1 620 5 780	38 50 53 6 11	1 1 1 1	14 17 15 5 12	1 1 1 1	1 60.4 1 48.7 1 52.6 1 74.4 1 70.1	434.) 432	1 1 1 1 1 1 2 1 2 1	2 2 1 1	
JC#16 JC#17 JC#18 JC#19 JC#20	.2 24	610 230 120 570	7 1 3 6 43	1 1 1 1	133 75 149 215 148	1.4 .9 1.2 1.4		3120 600 3900 11340 6370	.1 .1 .1 .1 .1	19 7 22 15 20	17 43 61	55720 20230 48210 40750 47860	900 750 840 900 1030	4 20 19	6480 1840 6080 5550 6210	808 227 690 766 927	21122	60 90 130 120 120	11 1490 2 690 9 550 8 1880 13 1270	23 1 14 17 23	1 1 1 1	24 16 18 28 24	1 1 2 1		149	2 1 1 1 2 1 2 1 1 1	2 1 2 1 2	1 4 1 6 1 3 1 4 1 3
JC#21 JC#22 JC#23 JC#24 JC#25	.6 21 26 22 .5 29	710 250 350	11 60 28 1 12	1 1 1 1	152 155 203 63 171	1.2 1.6 1.3 1.1 1.2	76544	5990 5700 6290 640 7060	.1 .1 .1 .1	18 23 20 16 17	130 112 49	42420 53030 44100 57500 42330	1050 970 820 470 960	22 30 15	5930 6110 4180 4090 5890	495 870 1455 415 882	2 2 3 1	150 150 140 70 130	7 610 16 920 13 1030 3 840 10 1180	22 23 156 22 20	1 1 1 1 1 1	20 18 18 7 22	1 1 1 2	2 52.9	178 217 117	2 1 2 1 2 1 1 1 2 1	1 1 1 2	1 4 1 6 1 00 1 2 1 10
JC#26 JC#27 JC#28 JC#29 JC#30	.5 28 .6 24 28 .4 22 .1 15	530 800 250	1 1 22 1	1 1 1 1	74 53 295 62 37	1.2 1.1 1.1 .8 .2	4 3 4 3	820 1280 6680 430 340	.1 .1 .1 .1	15 15 17 14 5	31 40 42	51530 76340 44440 58360 14890	710 420 1200 510 460	9 22 11	6410 3120 5690 4110 1760	400 357 1136 305 111	1 1 2 1 1	130 80 170 70 80	7 620 1 940 12 1620 1 690 3 690	12 13 27 19 3	1 1 1 1	5 6 23 6 6	1 1 1 1	1 64.8 1 67.5 1 64.3 1 54.2 1 46.9		2 1 2 1 2 1 1 1 1 1	1 1 2 1 1	1 2 1 9 1 4 1 6 1 5
JC#31 JC#32 JC#33 JC#34 JC#35	.5 18 .3 19 .9 23 .6 23	180 560 140	2 7 1 1	1 1 1 1	30 44 122 153 108	.5 .7 1.2 1.3 .6	42444	420 260 1500 4070 2720	.1 .1 .1 .1	9 11 19 17 16	40 52 57	43200 50110 54390 42730 36120	270 420 750 830 640	4 21 17	1930 2920 5890 6220 7270	218 283 722 630 353	1 1 3 1	60 80 110 140 150	1 920 1 920 8 950 17 910 11 500	21 14 18 34 21	1 1 1 1	3 5 6 18 11	1 1 1 1		56 87 134 171 112	1 1 1 1 2 1 1 1 2 1	1 1 1 2	1 2 1 12 1 3 1 5 1 2
JC#36 JC#37 JC#38 JC#39 JC#40	.8 25 .6 20 .5 23 .6 30	930 340 250	1 1 5 1	1 1 1 1	215 148 125 62 88	.7 .9 1.2 .6	53	4480 3010 3620 700 1170	.1 .1 .1 .1	17 17 23 11 14	30 52 37	34390 39330 52250 35460 43980	800 810 880 640 440	19 17 13	5610 5710 6400 4990 3770	325 751 916 313 356	1 3 2 1 1	160 140 130 120 80	11 920 8 660 9 1020 9 620 4 830	27 25 44 22 13	1 1 1 1	19 18 21 6 5	1 1 1 1	1 59.2 1 66.9 1 60.4		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 1 1	1 7 1 8 1 2 1 4 1 2
JC#41 JC#42 JC#43 JC#44 JC#45	.5 32		1 8 18 1	1 1 1 1	50 60 53 226 91	.7 .9 .9 1.6 .5	66464	2410 670 670 6160 1990	.1 .1 .1 .1	11 15 14 17 9	35 ! 36 ! 95 4	41890 53910 55800 47550 27130	350 390 480 1120 570	16 / 14 / 22 /	3840 4540 4390 6280 4140	313 364 395 593 196	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80 70 100 290 110	3 1130 4 660 4 750 19 770 7 500	3 25 18 26 17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 2 4 17 7	1 1 1 1	1 84.7 1 70.4 1 73.1	75 109 106 171 67	2 1 2 1 1 1 2 1 2 1 2 1	1 1 1 2 1	1 4 1 5 1 2 1 1 1 3
JC#46 JC#47 JC#48 JC#49 JC#50 930 050	.4 24 .8 22 .9 26	850 620	1 12 12 3	1 1 1 1	32 71 165 85 135	.9 .7 1.0 .9 1.3	8 4 6 4	1460 730 4560 590 1040	.1 .1 .1 .1	13 12 16 15 25	24 4 37 4 36 5	53480 49670 40890 55810 40470	220 490 940 640 540	15 / 14 (14 (5120 4310 6190 4000 3580	259 326 540 453 706	1 1 3 1	60 100 130 120 90	2 1360 3 680 10 600 2 910 10 400	12 23 20 18 25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 4 18 5 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 95.5	88 148 132 112		2 1 1 1	
977-001 977-002 977-003 977-004 977-005	.9 21 .9 21 .7 22 .7 22	010 350 660	1 6 4 11 1	1 1 1	507 305 678 321 397	.9 .7 1.0 .8 .9	3 4 1 4	7140 3260 4630 3580 4630	.1 .1 .1 .1	12 11 13 16 18	77 3 37 4 61 3 35 9	50540 40750 54150 55250 56710	450 560 710 570 670	25 22 18 15	3820 2770 4580 4420	841 235 466 447 1038	23243	120 110 150 130 130	12 1360 1 550 11 1300 3 460 15 920	15 14 19 22 20	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	89 23 99 35 100	1	1 43.1 1 61.5 2 48.6	133 132 130 135	1 1 1 1 2 1 2 1	1 1 1 2	1 2 1 2 1 6 1 3 1 6
977-006	16	930	32	1	240	1.0	3	9450	.1	18	53 4	3360	580	the second day of the		780	4	100	8 710	25		52			140	4 4		4 2

17

17 15

.1

.1

.1

.1

53 43360

45 79260

43 42870 790 28 43700 600 30 39610 620

18 4240 780 14 4790 1630 15 5840 589

12 4840 1330

11 3080

110

MIN-EN LABS - ICP REPORT

FILE NO: 95-0242-5J3+4 DATE: SEP-28-89

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

TYPE SOIL GEOCHEM * (ACT:F31)

ALIN: A.RAVEN											(0	04)980	- 2014	OR (604)9	00-43	24								TYPE SOIL	. GEOCI	HEM T	(ACT:F31
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI MG PPM PPM	MN PPM	MO PPN	NA PPN	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH	U V ZI PPM PPM PPN			W CR AU N PPN PPB
977-011 977-012 977-013 977-014 977-015	.4 .7 .7 .6	17920 21400 14680 16220 17040	8 1 11 13 32	1 1 1 1	50 55 140 104 74	.7 .8 .9 .6 .7	44443	450 470 4150 2560 1180	.1 .1 .1 .1	14 15 15 16 19	47 31 29 54	59200 72070 42010 44240 45030	300 280 530 490 540	9 3190 11 3130 12 4360 10 4730 13 3930	279 253 599 538 576	1 1 1 1	50 50 70 70 70	2 1 8 6 9	430 340 580 490 640	33 26 33 26 59	1 1 1 1	6 8 24 18 17	1 1 1 1	1 55.1 125 1 58.1 110 1 56.1 115 1 57.9 118 1 48.7 144) 1 > 1 3 1	1 1 1 1	1 1 5 1 1 2 2 1 3 2 1 2 1 1 4
906-304 -906-305 -906-306 -906-307 906-317		17930 13800 14530 13740 13980	18 16 38 16 66	1 1 1 1	203 79 57 104 42	.8 .7 .9 .8	3 4	6780 4610 8750 4920 3940	.5 .1 1.8 .6 .7	20 24 26 25 22	49 48 53 33	44410 45310 47150 47110 44080	620 450 420 460 320	14 8060 12 6030 14 7020	1086 1012 1122 960 1015	1 3 4 2 5	100 70 70 90 50	12 14 14 13 10	780 850 810 890 720	44 53 58 36 56	1 1 2 1 2	33 18 14 23 13	2 1 2 2 1	1 51.4 133 1 49.0 120 1 52.0 143 1 50.2 124 1 45.9 134	1	1 1 1	$\begin{array}{c} 2 & 1 & 3 \\ 2 & 1 & 4 \\ 2 & 1 & 6 \\ 2 & 1 & 3 \\ 2 & 1 & 4 \end{array}$
930-051 930-052 930-053 930-054 930-055		23890 21710 18710 20290 19210	26 26 21 50	1 1 1 1	247 64 86 44 58	1.2 .8 .9 1.1 1.1	4 4 3	1320 3310 3800 4830 8410	.4 .1 1.1 .1 .1	27 14 16 18 16	30 32 32 39	43080 43580 42900 49050 44700	690 350 340 430 460	22 5400 19 5320 24 5330 27 3400	1457 407 780 493 686	3 1 3 3	110 70 70 90 80	15 5 8 5 7	1670 610 560 770 920	63 17 30 27 29	1 1 1 1	49 8 11 12 19	2 1 1 2	2 50.8 164 1 56.1 143 1 49.1 131 1 53.6 128 1 46.3 193	1	1 1 1 1	1 1 2 2 1 3 2 1 2 1 3 1 1 3 1 1 4
930-056 930-057 930-058 930-059 930-060	.5	20620 18240 14500 4360 21470	33 27 141 69 55	1 1 1 1	59 69 63 20 61	.9 .6 .9 .5		3420 810 2990 1380 4000	.1 .1 .8 .1 .1	13 12 17 11 17	34 64 15 37	42880 59530 57100 30120 51860	420 380 490 280 400	16 5000 5 1960 11 1050 1 610 26 4520	433 361 796 356 385	2 1 3 2	80 70 60 30 60	4 1 3 2	680 490 920 240 310	21 24 34 6 41	1 1 3 1	13 8 12 6 12	1 1 1 1	1 52.7 146 1 74.1 92 1 41.7 139 1 37.3 57 1 63.6 161	2	1 1 1 1	1 1 2 1 1 5 1 1 4 1 1 3 2 1 8
930-061 930-062 930-063 930-064 930-065	.5	17820 20100 15770 17210 14880	38 27 59 29 50	1 1 1 1	61 56 63 88 82	.5 .9 .9 .9 1.0	53	2650 4330 8640 9890 930	.1 .2 .2 .4 .1	14 24 18 18 26	57 56 53	47330 46950 45810 39790 81020	260 470 430 480 350		330 529 792 1174 1097	2 3 4 4 1	50 70 70 80 70	12	440 710 1220 1000 1290	71 36 61 46 50	1 1 1 1	9 11 20 22 11	1 1 2 1	1 60.4 158 1 54.4 134 1 43.1 151 1 45.2 157 1 48.0 102	2 2 1 1		1 1 2 3 1 4 1 1 4 2 1 2 1 2
930-066 930-067 930-068 930-069 930-070	-6 -7	10840 20980 11740 23790 20930	42 45 34 1 47	1 1 1 1	42 95 151 64 47	.6 .8 .8 1.1 1.0		420 1940 7180 670 810	.1 .1 .1 .1 .2	20 17 18 18 19	37 42 64	61790 54320 43930 58040 51250	320 690 560 340 340	3 1660 28 3110 10 2430 19 3930 15 5040	485 679 738 272 548	2 1 2 1	60 110 110 80 60	9 6 10 5 8	890 460 800 530 640	26 39 33 21 51	3 1 1 1	11 17 32 4 6	1 1 1 1	1 67.8 119 1 62.2 170 1 41.8 140 1 46.0 120 1 56.6 153	1 2 1 2 2	1 1 1 1 1 1 1 1	1 1 5 1 1 2 1 1 6 1 1 4 2 1 5
930-071 930-072 930-073 930-074 930-075		20450 24910 20050 30370 20510	18 8 19 49 47	1 1 1 1	117 105 83 74 69	.9 .9 1.0 1.0 .9	444	3300 1760 1890 1220 1770	.1 .1 .1 .1	17 17 13 24 19	53 32 65	49390 53540 41870 60100 58030	600 760 850 600 680	17 5540 18 5800 12 4470 18 4920 15 5680	655 425 539 627 627	1 1 1 2	80 100 120 90 90	14 8 6 8 6	790 690 750 920 600	29 33 33 88 52	1 1 1 1 1 1 1	12 10 11 10 10	1 1 1 1 1 1 1	1 52.4 162 1 61.8 164 1 59.4 120 1 57.1 219 1 61.4 155	1 1 1 2		1 2 1 3 1 2 1 10 1 12
930-076 930-077 930-078 930-079 930-080	.7 .8 .2	13290 20040 18140	31 59 50 1 12	1 1 1 1 1 1	161 301 123 106 64	1.3 1.5 1.2 1.1 .7	32	5210 7710 2970 3270 590	.1 .1 .1 .1 .1	29 21 23 17 15	55 63 41	68630 66000 49420 39950 48970	600 800 610 590 500	20 7130 44 3480 10 3800 18 5670 11 3880	987 944 892 539 613	2 7 1 1	80 160 70 70 180	14 14 11 9 5	930 1530 670 710 420	45 50 60 23 28	1 1481 6 1 1	18 30 19 15 11	1 2 1 1	1 56.6 186 1 55.2 325 1 47.1 179 1 48.7 107 1 60.5 119	1 2 1 1	1 2 1 1 1 1 1 2 1 1	
930-081 930-082 930-083 930-084 930-085	8 7	19460 20280 22450 28590 21050	20 15 1 35 24	1 1 1 1	79 83 83 64 93	.8 .9 1.0 1.0 .9	3 5 5	2020 2390 2200 810 1930	.1 .1 .1 .1	17 15 17 18 14	36 39 48	46790 45670 46110 68060 48730	680 660 750 560 680	15 5800 18 5380 19 6290 20 5000 15 4160	625 542 604 479 319	1 1 1 1	90 90 90 80 110	11 8 8 5 7	570 620 790 650 880	36 49 46 102 25	1 1 1 1	12 12 12 7 12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 58.4 131 1 59.3 138 1 61.5 152 1 62.1 167 1 62.9 141	1 2 2 2 2 2	1 2 1 1 1 2 1 1 1 2	2 1 6 1 2 1 11 1 2 1 8
930-086 930-087 930-088 930-089 930-090	.8 .7 .5	19680 20820 19270 24850 23090	23 16 44 48 1	1 1 1 1	113 76 86 46 55	1.1 .9 1.1 1.0 .9	3	4880 1190 2590 170 320	.1 .1 .1 .1	29 17 20 18 15	43 45 56	52390 46790 53540 85840 50460	1110 560 510 280 340	16 6610 17 5090 15 4780 13 3260 17 3990	1214 407 661 592 353	3 1 2 1 1	140 100 70 50 50	13 7 5 1 3	840 430 900 780 450	73 30 50 43 39	1 1 1 1	21 10 15 3 6	2 1 1 1	1 60.5 171 1 55.6 137 1 57.8 163 1 73.5 150 1 50.4 134	2 1 1 1 1 1	1 Z 1 1 1 1 1 1	2 1 2 1 8 1 9 1 4 1 8
930-091 930-092 930-093 930-094 930-095	.9	28580 7930 7110 6210 7930	1 78 414 29 31	1 1 1 1	91 32 90 50 124	1.0 .9 .8 .6 .8	2	1990 320 1270 440 3680	.1 .1 2.0 .1 .1	27 20 17 10 15	38 60 26	45930 91090 50240 48900 40610	460 260 430 350 560	16 4150 7 3100 12 3330 8 2050 18 5000	765 992 661 244 473	1 1 1 2	60 30 60 60 80	18 1 3 1 8	700 1560 770 580 690	27 77 214 18 36	1 1 1 1 1 1	6 6 14 5 17	1 1 1 2	1 48.5 258 1 68.8 98 1 52.6 202 1 63.4 87 2 48.9 154	1 1 1	1 1 2 1 1 1 1 1	
930-096 930-097 930-098 930-099 930-100	-4 -7 -7	7180 8440 8140 7810 8420	6 4 26 67 38	1 1 1 1	124 95 105 92 77	.7.7.9.7.7	334	2200 2260 2850 2 370 2050	.1 .1 .1 .2	13 16 14 14 14	30 4 27 4 29 4	41630 44240 41250 43530 43850	530 440 640 570 600	11 2800 14 5610 12 4680 14 5100 13 5470	454 488 672 439 473	2 1 1 1	100 70 80 80 70	4 9 6 7 7	570 610 640 500 680	17 34 37 35 45	1111	11 9 11 11 10	1 1 1 1	1 63.7 110 1 58.0 126 1 55.1 136 1 53.5 141 1 53.7 154	1 1 2 1	1 1 1 1 1 2 1 1 1 2	1 4

COMP: INTERTECK

ATTN: A.RAVEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 9S-0242-SJ5+6 DATE: SEP-28-89

* TYPE SOIL GEOCHEM * (ACT:F31)

A118. A.KAVER										(004770	0 001	+ 01 (00+)		64												11131
SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU FE PPM PPM		LI MG PPM PPM	MN PPM	MO	NA PPM	NI PPM F	P PPM	PB PPM	SB PPM	SR PPM	••••	V ZN M PPM	GA PPM	SN PPM PP	W CR M PPM	
930-101 930-102 930-103 930-104 930-105	.7 23980 23030 16690 26290 .7 27120	10 31 35 33 1	1 1 1 1	86 110 95 138 67	.8 .9 .7 1.1 .8	65334	1400 3760 5630 4090 300	.1 .1 .1 .1	17 17 11 18 13	49 51800 36 51310 32 43060 68 48430 44 55510	850 610 860	19 5570 21 5570 9 2530 20 4050 14 4290	462 522 216 428 261	1 1 2 1	110 120 110 130 160	638	40 80 80 70 00	45 49 30 42 30	1 1 1 1	12 15 18 13 5	1 1 59. 1 1 66. 1 2 66. 2 2 67. 1 1 62.	6 162 3 103 8 138	12222	1 1 1 1	1 1 1 1 1 1 1 1 1 1	2 2 4 6 4
930-106 930-107 930-108 930-109 930-110	.3 13450 .9 21610 .8 20110 .8 20110	1 45 90 42 54	1 1 1 1	49 106 122 193 90	.3 .7 1.0 .4 1.2	1 4 3 3 4	100 3130 730 160 6890	.1 .1 .1 .1	7 17 15 16 21	43 39930 41 45370 47 51370 55 49450 59 66800	740 910 1110	2 660 17 5350 12 3070 7 1650 18 3240	89 492 427 308 734	11112	170 120 120 70 100	8735	50 20 70 00	29 41 32 24 69	1 1 1 1	18 16 43 75 18	1 1 39. 1 1 58. 1 1 71. 1 1 73. 1 1 63.	0 179 9 109 1 109	1 2 1 1 2	1 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2
930-111 930-112 930-113 930-114 930-115	26340 26340 32810 24820 22450	114 94 33 18 36	1 1 1 1	88 83 95 95 76	.8 .8 1.5 .9 .9	44556	4580 3940 8900 10060 4180	.1 .1 .1 .1	18 17 19 18 20	33 44720 46 44540 63 48620 46 43130 46 46280	880 810 1060	23 4790 24 5550 25 5020 29 3730 18 5360	647 476 982 694 600	2 2 1 2	140 140 140 160 130	8 5 9 20 8 9	80 80 20 50 50	31 43 54 51 68	1 1 1 1	14 13 25 23 14		5 191	2 2 2 2 1	1 1 1	1 1 1 1 2 1 1 1 1 1	8 7 6
930-116 930-117 930-118 930-119 930-120	23200 19660 26750 .8 20010 .9 23550	43 40 45 11 29	1 1 1	71 60 72 61 90	1.0 1.1 1.2 .7 .9	44344	5470 3840 7810 1410 1970	.1 .1 .1 .1	16 23 18 13 16	43 46290 43 45350 43 48930 32 39960 37 46580	770 770 800	32 5390 14 5860 28 4270 16 4030 21 4300	453 579 666 405 495	3 1 3 1 2	110 140 130 120 150	11 7 7 8 3 5	20 40 80 10	33 36 22 30 25	1 1 1 1	15 14 17 7 11		4 121 2 165 7 84	2 1 2 1 1	1 1 1 1	2 1 2 1 1 1 1 1 1 1	4
930-121 930-122 930-123 930-124 930-125	22190 32110 26590 23360 22360	1 23 33 121 109	1 1 1 1	69 132 72 90 69	.9 1.5 1.0 1.1 1.2	6 7 8 7 5	14370 6850 900 6090 5920	.1 .1 .1 .1	12 27 17 23 18	59 30230 84 51780 45 60470 54 50180 38 76790	1320 830 940	28 6430 23 4830	1379 4336 406 1004 694	2 3 1 1 2	120 200 140 140 110	17 12 6 3 11 6	310 20 40 40 700	21 55 37 38 47	1 1 1 1 1	24 19 10 19 14	2 1 41. 2 1 67. 1 1 76. 2 4 61. 1 1 82.	184 5 122 5 121	1 1 2 2 2	1 1 1	1 1 2 1 1 1 1 1 1 1	3 2 1 5 1
930-126 930-127 930-128 930-129 930-130	23450 21560 18650 9 19740 19130	18 17 22 21 5	1 1 1	81 81 71 75 67	1.1 .9 1.1 .8 .7	45444	8150 11820 8130 5630 7440	.1 .1 .1 .1 .4	18 16 16 13 16	46 42840 47 36850 39 57830 29 42410 39 31990	840 790 630	17 4880 14 2960 17 3210	1167 1312 896 272 2616	2 2 1 1	140 130 110 110 80	9 14 6 9 2 4	180 100 150 140 110	37 32 31 23 268	1 1 1 1	19 22 18 13 14	1 1 56.0 2 1 47.0 1 1 57.0 1 1 65.0 1 1 46.0	5 131 0 141 3 140	1 1 2 1	1 1 1 1	2 1 2 1 1 1 1 1 1 1	2 2 2 1 2
930131 930132 930133 930133 930134 930135	17330 23110 22740 .6 11930 .7 21960	27 38 26 22 10	1 1 1 1	48 83 65 38 54	1.2 1.2 .9 .1 .6	33424	2930 7120 910 460 580	.1 .1 .1 .1	23 17 15 7 13	53 67100 88 45600 43 62890 23 30950 44 56360	590 510	18 2230 40 5040 13 2660 1 950 7 3600	863 894 482 143 275	1 2 1 1	80 80 100 90 90	16 10 1 7 2 4	30 40 30 20	87 36 74 4 47	1 1 1 1	8 15 8 8 6	1 1 51.0 1 1 61.0 1 1 64.3		1 1 1 1	2 1 1 1	$ \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	434 434
930136 930137 930138 930139 930140	.6 28900 .8 16740 23980 23030 20410	1 16 28 23 38	1 1 1 1	70 160 106 91 120	.8 .6 1.0 .9 .7	4 1 6 4 6	860 790 2320 2040 4780	.1 .1 .1 .1 .1	15 12 22 12 17	46 43770 27 40740 53 48670 43 41470 36 45090	740 1170	19 4760 10 1490 17 6160 15 3430 19 5490	260 292 994 318 527	1 1 2 1	100 100 150 150 110	4 5 11 8 7 5	60 30 60 90 70	26 19 75 38 43	1 1 1 1	10 58 14 11 15	1 1 51.4 1 1 59.6 1 1 59.8 1 1 65. 1 1 63.	94 3 196	1 1 2 2 2	1 1 1 1 1	1 1 1 1 2 1 1 1 2 1	10 6 3 2
930141 930142 930143 930144 930145	.8 19760 .8 19760 .8 19760 .5600	22 25 59 21 17	1 1 1 1 1 1	134 105 90 97 105	.9 .7 1.0 .8 1.1	53424	7600 4740 390 580 2090	.1 .1 .1 .1	15 12 16 15 15	37 40240 44 37610 47 74210 38 54590 38 48780	770 790 560	14 5100 12 3350 11 3480 11 2480 18 3320	615 373 425 458 757	1 1 1	140 120 170 160 170	56 19 17	70 20 60 40 70	41 44 27 28 41	1 1 1 1	20 16 9 10 8	2 2 54.0 1 2 53. 1 1 73. 1 1 62. 1 1 58.	133	22212	1	2 1 2 1 1 1 1 1	1 2 2 2 1
930146 930147 930148 930149 930150	24330 30800 21440 22510 28910	43 8 23 13 140	1 1 1 1	98 174 88 160 72	1.1 1.2 1.0 1.0 1.4	3 3 4 5	2090 4480 2500 3440 1600	.1 .1 .1 .1	14 20 17 13 28	40 46770 58 50380 43 49450 43 40000 56 91660	1550 850 1040	14 4950 12 3470	519 2166 676 1199 1266	1 2 2 1	180 270 140 170 130	10 16 9 7	20 20 30	67 61 41 27 350	1 1 1 1 1 1	12 19 18 23 6	1 1 57. 1 1 69. 1 1 67.0 1 1 65.9 1 1 73.0	213 154 158	21122		1 1 2 1 2 1 1 1	<u><u>a</u>nso</u><u></u>
930151 930152 930153 930154 930155	22440 27230 26420 .4 20780 19960	44 3 45 11 13	1 1 1 1	92 153 91 94 136	1.1 .7 .9 1.2 1.2	5 4 4 3	3070 4610 1140 1680 3480	.1	26 20 18 20 26	58 49910 42 46410 43 87480 60 47400 59 49110	960 620 1020	24 5670	1137 601 725 620 1004	2 1 1 3	180 170 120 140 190	13 6 1 7 10 8	10 90 70 80	162 60 63 33 45	1 1 1 1	20 24 12 27 22	2 1 60. 2 1 62. 1 1 81. 1 1 57. 2 1 57.	5 171 127 137	2 2 1 1	1 1 1 1	2 1 1 1 1 1 1 1 1 1	3 7 3 38
930156 930157 930158 930159 930160	.5 22210 .8 19370 .4 22670 .5 18620 .6 18230	16 1 1 2	1 1 1	111 133 119 115 121	.6 1.0 .7 .9 .9	33444	1250 3200 1310 1340 2300	.1 .1 .1 .1	16 18 18 16 16	42 48250 34 41610 44 46750 41 42490 39 44840	800 840 1070	10 3990 9 4090 15 4700 7 3290 14 3380	683 1015 600 641 578	1 2 1 1	170 130 150 160 150	5876	10 50 40 20 60	30 44 19 13 22	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20 18 13 16 23	1 1 75.0 1 1 63.5 1 1 67.0 1 1 67.1 1 1 58.2	i 105 i 113 i 99	1 1 2 1 2	1	2 1 1 1 1 1 1 1 1 1	6 9 2 7 5

COMP: INTERTECK

PROJ: 515 ATTN: A.RAVEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 95-0242-5J7 DATE: SEP-28-89

• TYPE COLL CEOCHEM • (ACT. E71)

ATTN: A.RAVEN											C	604)98	80 -58 1	14 OR	(604)	988-4	524								🕈 TYP	E SOIL	GEOC	CHEM 9	÷ ()	CT:F31)
SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPN	BE PPM	BI PPM	CA PPN	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PPM	SR PPM	TH PPM	U PPM F	V ZN PM PPM	I GA	SN PPM F	W C	R AU
930161 930162 930163 930164 930165	.8 .3 .3 .4	15710 20510 23980 16680 24140	1 1 19 1	1 1 1 1	76 63 84 122 68	.4.69.99	23233	320 320 320 3290 330	.1 .1 .1 .1	15 14 19 16 13	44 50 45 46	49680 50620 54900 38390 47620	520 590 660 610 700	7 15 13 9 14	2210 3320 4570 3530 3500	596 333 840 843 290	1 1 2 1	110 100 140 180 110	26545	440 520 790 760 550	33 16 42 49 39	1 1 1 1	24 11 8 15 8	1 1 1 1 1	1 57	.5 106 .3 117 .7 122 .8 136 .8 133	1	1 1 1 1	1 1 1 1	1 2 1 3 1 1 1 4 1 3
930166 930167 930168 930169 930170		18010 22080 17080 20480 21220	28 10 17 10 1	1 1 1 1	108 83 56 132 139	.8 .9 .7 1.0 1.0	43442	3910 1080 1030 5640 3770	.1 .1 .1 .1	20 19 17 18 12	58 57	44510 48730 46150 42600 52610	1260	12 15 10 20 17	5130 4860 4390 4560 2970	760 549 481 1015 199	2 1 2 1 1	170 150 120 120 90	12 10 6 11 1	820 600 640 800 670	41 45 31 48 6	1 1 1 1	31 18 7 18 11	1 1 1 1	1 5/	.0 146 .6 158 .2 113 .6 141 .5 103	. 1	1 1 1 1	1 1 1 1	1 12 1 3 1 4 1 4 1 4
930171 930185 930186 930187 930188	al states	21650 19770 22140 16060 10340	1 145 88 54 30	1 1 1 1	122 52 75 45 40	1.3 1.2 1.2 .9 .6	33332	5520 470 2170 380 490	.1 .1 .1 .9	16 19 19 15 13	83 39 129 42 64	46720 69190 65810 69480 40680	610 460 660 490 570	20 11 29 3 6	4140 1440 3760 1830 830	531 437 591 406 359	2 1 1 2	110 50 90 70 60	7 2 1 1	860 500 760 710 410	21 21 56 23 27	1 1 1 1	11 5 12 5 5	1 1 1 1 1	1 54 1 56 1 64 1 71 1 54	.0 117 .4 81 .5 148 .3 79 .4 122	1	1 1 1 1	1 · 1 1 1	1 3 1 2 1 3 1 3 1 6
930189 930190 930191 930192 930193	2	21290 20060 21850 20710	71 81 56 59 208	1 1 1 1	115 90 72 73 78	1.2 1.1 .8 1.0 1.1	6 5 5 7 6	10280 9010 3380 3270 7330	1.2 .9 .6 .1 .8	23 22 18 24 27	40 55	49880 47230 43150 50650 51190	860 760 610 680 740	26 20 18	6000 7280 5140	2000 651 434 713 1789	2 2 3 2 1	110 120 130 100 100	15 7 8 13 7	1490 500 310 260 1100	84 82 26 41 62	1 1 1 1	23 19 11 10 17	2 2 1 1 2	1 54 1 58 1 63 1 66 1 49	.5 266 .8 297 .7 115 .6 138 .7 255	1 1 2 2 1	3 1 1 1	1 2 2 2 1	1 5 1 6 1 4 1 12 1 602
930194 930195 930196 930197 930198		21510 24530 21290 32970 26310	40 14 68 41 72	1 1 1 1	77 53 83 135 83	1.0 1.0 1.0 1.1 1.0	35476	5620 1200 7930 8750 1370	.1 .1 .6 .1	16 14 14 27 18	34 41 92 52	50510 58780 46730 52130 57070	680 450 770 1310 860	18 18 23 20	6020	425 234 292 1666 400	3 1 2 2 1	100 80 110 160 120	5 3 4	580 600 470 1450 590	42 41 35 62 32	1 1 1 1	15 7 19 21 8	1 1 2 1	1 65	.1 191 .7 100 .3 143 .1 203 .2 180	2	1 1 1 1	1 1 2 1	1 14 1 7 1 10 1 10 1 2
930199 930200 930201 930202 930202 930203		28060 26390 21790	20 1 274 38 239	1 1 1 1	103 59 93 83 109	.7 .9 1.0 .7 1.3	46745	4220 370 5920 1330 5140	.1 .1 1.8 .1 2.5	16 16 19 15 18	70 32	45930 63970 46880 46420 47960	850 590 850 740 680	30 19	5240 4980 6930 5440 5750	456 364 1155 453 863	1 1 2 1	130 100 130 110 110	6	770 460 990 610 930	25 12 47 18 102	1 1 1 1	13 4 16 9 15	1 1 1 2	1 68 1 68 1 60 1 67	.4 167 .6 108 .9 199 .6 142 .3 193	2 2 1	1 1 1 1	1 1 2 1 2	1 3 1 4 1 2 1 2 1 6
930204	.5	14680	103	1	46	.7	2	450	.4	11	37	45720 .	430	2	1630	196	1	90	2	360	12	1	7	1	1 82	.8 72	1	1	1	1 2
									,									··									.			
	·																													
					<u></u>															·										

PROJ: 515 ATTN: A.RAVEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7W 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 95-0242-538+9 DATE: SEP-28-89

• TYPE SOIL GEOCHEM • (ACT:F31)

ATTN: A.KAVEN											(004)90	0-201	14 UK	(004)	908-4	524								TTPE	SOIL	GEOCH	ICH -		1 ar J I
SAMPLE NUMBER	AG AL PPH PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	L1 PPM	MG PPN	MN PPM	MO PPM	NA PPM	N I PPM	P PPM	PB PPN	SB PPM	SR PPM	TH U PPM PPI				SN PPM PP	W CR	
930205 930206 930207 930208 930208 930209	.4 13620 25070 .5 22520 .6 24830 .7 20940	15 1 7 24 10	1 1 1 1	69 63 44 37 31	.9 1.2 1.2 1.5 .9		1570 4090 260 280 690	.1 .1 .1 .1	16 13 14 20 17	28 41 40 45 45	58370 57170 67070 76720 74550	240 260 330 280 310		1640 2630 3380 4770 4830	668 166 272 861 407	1 2 1 2	60 70 60 50 50	1 1 1 1	430 710 590 620 740	16 7 21 32 184	1 1 1 1	4 11 3 3 3	1	1 72.7 1 51.5 1 58.5 1 58.1 1 68.5	87 95	1 1 1 2	2 1 1 1	1 1 1 1 1 1 1 1 1 1	8 7 10 12 2
930210 930211 930212 930213 930214	25950 19090 20770 22450 -6 20320	1 23 37 25 11	1 1 1 1	102 34 35 70 29	1.4 1.3 1.3 1.3 1.2	3 6 4 3	1310 340 190 3310 190	.1 .1 .1 .1 .1	13 17 17 15 16	45 23 41 45 43	39020 66190 82900 58520 79510	440 420 400 370 370	10 10 15	3390 4600 3860 4370 3920	214 598 429 318 341	1 2 2 1	90 100 60 70 70	4 1 2 1	590 690 490 550 780	17 33 36 42 20	1 1 1 1	7 3 4 12 5	1	61.3 75.1 82.4 60.2 70.2	93	1 2 2 2 2	1 2 1 1	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	8 2 12 4
930215 930216 930217 930218 930219	.9 17680 .9 17680 .9 19760 .5 10340 .8 16620	18 39 16 36 154	1 1 1 1.	57 37 40 30 41	1.6 1.2 1.3 .9	64 63 3	260 770 470 720 640	.1 .1 .1 .1 .1	23 15 18 15 14	39 39 37 14 38	84140 76020 88340 36430 63020	310 290 340 520 430	8 9 4	2980 2490 4000 1980 2590	851 324 607 741 429	2 1 2 1 1	80 50 70 40 60	5	860 690 1040 560 1020	49 37 24 7 19	1 1 1 1	10 5 5 3 5		87.5 62.5 88.1 58.0 72.8	36	2 1 2 1 2	2 1 2 1 1	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{array} $	6 10 12
930220 930221 930222 930223 930224	.4 16370 13550 31040 25410 .8 10340	66 167 416 7 75	1 1 1 1	43 74 99 75 26	.9 .7 1.9 1.4 1.1	56 78 113	460 640 620 270 270	.1 .1 3.3 .1 .1	15 11 18 18 18	36 28 99 26 31	68150 33890 43840 49540 57150	300 470 680 580 440	11 24 18	5580	506 1547 3914 1232 414	2 2 3 3 1	70 70 220 100 60	5 23 10	1430 1060 2340 860 1050	21 13 36 32 22	1 1 1 3	5 11 20 10 5	1 2 3 2	74.9 51.7 46.8 80.5 57.6	114 224 129	1 1 2 1	1 1 2 1	1 1 1 1 2 1 3 1 1 1	6 6 14
930225 930226 930227 930228 930229	.5 15640 .8 16440 27400 .3 3690 .6 22870	274 50 74 46 9	1 1 1 1	38 34 56 42 40	1.3 1.1 1.4 .9 1.2	55634	270 270 480 220 220	.1 .1 .1 .1	18 16 15 26 14	29 41 44 8 38	82870 69470 51370 63420 68450	560 450 370 410 540	4 17 1	1220 2570 4550 750 2540	883 410 413 1453 272	2 1 1 3 2	80 70 70 40 90	1 4	2030 1170 610 1260 610	65 23 15 19 13	1 1 9 1	9 7 5 6 7	1 1 2 1 1 1 2 1	66.4 107.5 55.0 23.0 85.3	91 96 109 67 81	2 2 1 1 2	4 1 1 3 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2000 S
930230 930231 930232 930233 930234	.8 23290 .6 24490 23180 .8 23220 .8 15580	19 56 38 26 6	1 1 1 1	32 52 70 49 49	1.2 1.3 1.4 1.0 .8	6 53 4	240 590 620 290 830	.1 .1 .1 .1	17 22 19 16 12	42 50 48 39 39	81510 74490 53250 74680 35650	330 480 450 320 340	26 25 12	4510 5340 6120 3440 1590	407 555 464 318 311	1 1 2 1 2	70 70 80 50 80	1 4 8 1 4	540 400 510 520 480	12 31 41 30 12	1 1 1	4 6 12 4 12	221	77.8 74.1 63.2 60.3 59.1	96 161 131 99 83	2222	1 1 2 1	1 1 1 1 1 1 1 1 1 1	2 10 10
930235 930236 930237 930238 930239	.3 19690 20670 19370 18230 12190	20 155 297 440 433	1 1 1 1	39 72 69 67 49	1.2 1.3 1.6 1.6 1.4	65 67 67	990 600 950 550 660	.1 .1 .9 2.7 .7	14 21 23 20 21	37 50 54 79 71	63160 47850 50340 51650 55920	160 430 580 660 560	27 17 11	4720	215 1221 858 2120 847	13232	50 90 80 80 70	11	410 810 1350 2620 1260	16 37 35 54 56	1 1 1 4	4 15 32 23 16	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	54.8 53.8 41.0 32.3 34.9	81 144 174 147 211	1 1 2 1	1 1 1 2	1 1 2 1 1 1 1 1 1 1	12 6
930240 930241 930242 930243 930244	.7 12790 .3 5880 .9 17270 .6 10880 .8 16370	216 260 66 31 76	1 1 1 1	63 42 34 22 24	1.6 1.2 1.0 .9 1.3	3 3 3	230 360 750 210 140	.1 .1 .1 .1	27 26 11 11 19	51 33 41 27 43	71520 78940 44770 46350 83070	540 320 220 240 240	1 10 1	2080 740 2060 960 2600	1629 846 213 280 674	32112	70 40 50 40 30	3	2290 1530 1010 860 830	31 12 4 6 16	4 7 1 1	19 13 9 3 3	$ \begin{array}{cccc} 1 & 1 \\ $	62.1 33.9 45.1 69.8 56.9	93 88 75 52 65	1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1	54 49
930245 930246 930247 930248 930249	.4 18480 .7 13930 .9 19080 .23780 .7 30090	56 211 42 30 1	1 1 1 1	40 48 42 70 60	1.5 1.3 1.3 1.3 1.3	5 5 6 2	170 330 480 480 680	.1 .1 .1 .1	20 26 16 21 17	42 65 37 52 40	83850 107080 87490 50780 59960	250 280 270 750 600	3 8 16		1068 1186 455 670 434	1 1 3 1	60 40 50 120 110	1	1260 1390 1050 600 720	34 33 22 129 30	1 5 1 1	3 5 3 10 4	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	83.3 61.0 80.8 64.7 73.4	74 80 72 153 109	1 1 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 1 1 1 1 1 5 1 1 1	4 2 6 2
930250 930251 930252 930253 930254	.8 26250 .8 26250 .9 26800 .9 26800 .24830	12 12 30 12 5	1 1 1 1	51 66 49 46 86	1.4 1.5 1.6 1.4 1.4	8 8 7	860 770 430 750 930	.1 .1 .1 .1 .1	18 20 19 19 20	42 47 43 49 52	59110 64430 62420 63210 52650	450 600 460 440 650	17 15 15	6070 6010 6190 6220 6700	468 673 557 546 824	1 3 2 2 2	80 100 80 70 110	74659	700 730 680 870 1040	46 37 34 23 28	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 4 2 3 8	1 1 1 1 1 1 1 1	64.6 69.5 75.8 66.0 62.8	111 119 115 102 132	22222	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		12 2 4 3 2
930255 930256 930257 930258 930259	25280 28090 24810 21270	2 8 1 65	1 1 1 1	46 43 51 34 36	1.4 1.3 1.2 1.0 1.2	644	920 480 900 420 520	.1 .1 .1 .1 .1	18 15 13 15 15	45 42 38 36 44	54650 54610 40200 59300 57320	360 370 450 310 410	15 15 11	5890 5830 5370 4550 5080	561 414 391 592 395	2222	70 70 70 70 70	85724	710 780 960 910 850	22 36 53 13 21	1 1 1 1 1	32214		58.6 65.6 63.3 74.5 56.4	98 104 96 85 92	1 2 2 2	1 2 2	2 1 1 1 1 1	2 6 7 10
930260 930261 930262 930263 930264	.7 23770 .6 15420 .4 15900 .4 13350 .5 24280	38 1 21 7 1	1 1 1 1	41 31 39 31 151	1.4 1.2 1.0 .7 1.3	5 6 3	220 300 280 220 450	.1 .1 .1 .1	17 13 21 9 27	43 23 28 19 64	71480 56590 68870 40610 42970	470 340 420 370 730	4	3570 3	495 1326 5275 550 5372	22214	80 80 80 80 140	5 1	810 2040 2170 1740 1720	25 12 41 4 38	1 1 2 1 1	3 4 5 12	1 1 1 1 1 1 1 1 2 1	77.2 77.0 82.3 98.3 83.0	91 64 77 48 136	2 1 1 1 1	1 1 2 1		5

ATTN: A.RAVEN

MIN-EN LABS --- ICP REPORT

•

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

DATE: SEP-28-89

FILE NO: 95-0242-5J10+11

• TYPE SOIL GEOCHEM • (ACT:F31)

ATTN: ALKAVEN									(004)3	00-00	14 ON (004	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4324									TIPE 30		CUEN		
SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU FE PPM PPM	K PPN	LI MG PPN PPM	MN PPM	MO PPM	NA PPM	NI PPM P	P I PM PI	98 24 I	SB PPM	SR PPM	TH PPM	U PPM	V 2 PPM PI	IN GA PM PPM			R AU Ph PPB
930265 930266 930267 930268 930268 930269	.7 21560 22180 29590 .7 32160 23360	30 1 7 1 15	1 1 1 1	44 92 117 66 93	1.4 1.4 1.5 1.3 1.5	3 800 3 5140 5 6160 4 580 5 4380	.1 .1 .1 .1 .1	16 18 26 14 26	50 65490 33 54400 120 51330 49 53630 75 51080	320 820 1020 460 1120			1 3 4 1 3	70 150 180 100 210		10 90 30	7 1 8 6 5	1 1 1 1	3 10 14 1 12	1 1 1 2	1 1 1 1	63.5 8 83.2 10 65.8 10 49.4 1 65.5 14	0 1 6 1	1	1 2 2 1 3	
930270 930271 930272 930273 930273 930274	.9 28600 .9 28600 25790 23030 .9 22500	2 13 31 15 18	1 1 1 1	62 57 58 87 79	1.3 1.4 1.7 1.7 1.6	4 770 4 300 4 340 3 2670 2 2120	.1 .1 .1 .1 .1	17 20 20 21 23	39 62400 45 79280 49 78440 62 57840 44 51410	590 590 790 1080 950		526 616 570 750 1087	2 1 3 1	110 150 150 230 210	1 11 4 8 5 9	70 60 20	2 7 3 0 5	1 1 1 1	435109	1 1 1 1	1 1 1 1	85.5		1 1 1 1	2 1 1 1	1 6 1 13 1 11 1 5 1 9
930275 930276 930277 930278 930279	18480 20240 .7 18710 .5 21320 218200	1 20 35 23 1	1 1 1 1	92 73 61 56 41	1.1 1.1 1.2 1.0 .7	4 4090 3 1520 2 4140 3 410 2 160	.1 .1 .1 .1 .1	16 21 16 17 8	37 36060 49 44940 49 63750 40 60680 20 42520	870 870 680 630 460	21 5640 15 5230 7 3630 14 4770 7 1710	860 489 490 751 133	3 3 2 1 1	210 170 150 140 130	10 6 1 8 2 9 1 11	50 80 60 00	4 9 7 6 1	1 1 1 1	15 9 12 7 4	1 1 1 1	1 1 1 1		6 2	1 1 2 1	2 1 1 1	1 12 1 5 1 3 1 4 1 2
930280 930281 930282 930283 930283 930284	21610 .6 24150 27360 11110 .8 28640	1 14 13 35 37	1 1 1 1	57 28 96 48 66	1.1 1.4 1.6 .8 1.2	4 4180 3 230 4 7250 2 700 3 670	.1 .1 .1 .1 .1	16 16 13 16	37 42430 29 81060 62 41740 49 42400 57 53800	500 240 810 490 640	1 1060 20 6000	708 390 1769 154 297	3 1 2 3 3	120 100 200 160 140	15 26 5 5 9 6	90 80 90 40	8 3 7 6	1 1 3 1	10 3 20 13 5	1 1 1 1	1 1 2 2	51.4 14 71.7 8 56.3 1	7 2 4 1 2 2 0 2	1 2 1 1 1	2 2 1 2 2	1 1 1 2 1 3 1 3
930285 930286 930287 930288 930289	17980 17600 24660 24660 14990	25 99 71 40 18	1 1 1 1	73 66 48 118 53	.9 1.2 1.3 1.5 1.1	4 2470 3 6830 3 1400 4 8270 1 1500	.1 .1 .1 .1 .1	14 19 24 22 10	31 53680 66 62700 76 61320 48 53370 32 44130	710 640 560 890 660	13 5000 11 4560 8 3200 20 4270 8 2580	167	2 2 2 1	150 450 140 170 130	5 6 9 6 10 20 2 5	80 7 30 30 4 70 1	1 4 9 1	1 3 1 1	9 24 14 26 15	1 1 1 1	1 1 1 1	57.8 13 40.4 10 46.1 17 32.5	9 1 3 1 9 1	1 1 1 1	2 1 2 1	1 3 1 4 1 4 1 12 1 5
930290 930291 930292 930293 930294	21260 23410 22750 17950 .8 16060	63 13 43 25 65	1 1 1 1	54 100 68 78 51	1.2 1.4 1.5 1.3 1.2	3 310 3 6480 2 2590 3 4820 4 690	.1 .1 .1 .1 .1	15 15 14 12 14	47 65090 43 45530 42 50630 34 45330 50 68050	490 830 690 690 390	22 4180 24 3340 5 2480	525 1122 599 568 533	1 1 2	100 160 120 130 80	10 20 7 14 6 9 1 9	00 50 00 70	1 7 8	1	5 21 13 19 6	1	1 1 1 1		2 1 5 1 2 2 8 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
930295 930296 930297 930298 930299	.5 16650 19050 .9 24190 .7 11590 .6 24550	83 96 23 18 170	1 1 1 1	32 48 53 30 93	.9 1.2 1.1 .4 1.0	3 1930 3 2250 2 860 3 110 4 900	.1 .1 .1 .1 .1	12 17 20 7 18		330 410 650 440 1000	6 2650 11 3010 14 4980 2 910 19 6480	204 520 402 166 471	1	80 80 150 120 170	1 11 9 8 2 8 11 5	30 4 76 1 50 90 3	6 6 9 8 6	1 1 1 1	6 8 4 5 6	1 2 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	47.3 17 53.1 12 55.6 61.4 15	3 1 4 1 0 1	2 1 1 2	1	
930300 930301 930302	22280 30020 21640	34 22 2	1 1 1	78 61 44	1.1 1.1 .8	6 3780 5 320 5 710	.1 .1 .1	16 18 14	32 51430 55 63840 18 50230	720 680 650	18 5170 24 6300 14 6760	802 395 375	1	160 130 130	4 10 7 5 6 5	60 2 20 2 90 2	6 7 0	1 1 1	11 3 4	1 2 2	1 1	72.3 10 66.1 13 85.2 7		2 1 1	1 1 2	1 2 1 1
																	•									
·																										

PROJ: 515

ATTN: A.RAVEN/D.ALLEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 9V-1296-SJ1+2

DATE: OCT-20-89

* TYPE SOIL GEOCHEM • (ACT:F31)

NUMBER PPM PPM<	SAMPLE	AG	AL	AS	8	BA	BE	BI CA	CD	со	CU FE	ĸ	LI MG	MN	MO	NA	NI P	PB	SB	SR	ТН	U V ZI	N GA	SN	W CR AU
$ \begin{array}{c} 330-173 \\ \overline{330} - 177 \\ \overline{310} - 176 \\ \overline{310} - 186 \\ 3$				PPM	PPM				PPM				PPM PPM		PPM		PPM PPM			PPM		PPM PPM PPI	I PPN		PM PPM PPB
$\begin{array}{c} 330-175 \\ 390-177 \\ 390-182 \\ 390-187 \\ 390-182 \\$	930-173	.2	14670		1	35	.8	2 190	.1	10	22 57370	380	3 1330	585	4	100	1 1330		1	10	1	1 81.0 5	1 1	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					1						25 94350 55 52460				1				1	2 10	1			2	1 1 2
$\begin{array}{c} 330-178 \\ 370-180 \\ 1.0 \\ 530-170 \\ 1.0 \\ 530-180 \\ 1.0 \\ 1.5 \\ 1$	930-176	.7	27420		1	66	.8	3 230	.1	15	50 70560	560	14 3740	313		100	1 520	33	<u>i</u>	9	<u>i</u>	1 79.2 11	5 1	<u>ż</u>	1 8 15
$ \begin{array}{c} 930-177\\ 930-181\\ 1.8 \\ 2310-181\\ 1.5 \\ 24500 \\ 1.8 \\ 2310-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2110-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2110-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2110-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2110-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2110-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2110-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2110-181\\ 1.8 \\ 2210-181\\ 1.8 \\ 2110-181\\ 1.8 \\ 2210-181\\ 1.8 \\ $					1								22 5310 7 2320		32				1		1			2	1 10 29
$\begin{array}{c} 930-181 \\ 930-182 \\ 930-183 \\ 930-183 \\ 930-183 \\ 930-183 \\ 930-183 \\ 930-183 \\ 930-183 \\ 930-184 \\ 930-183 \\ 930-184 \\ 930-183 \\ 930-184 \\ 930-183 \\ 930-184 \\ 930-183 \\ 930-184 \\$	930-179				1		1.1	4 7090	.9	17	56 43820	880	24 5090	1475	5	120		69	ī	17	i	1 64.1 21	1 1	Ž	1 12 30
$ \begin{array}{c} 930-183 \\ 930-183 \\ 930-136 \\ 1.5 \\ 1570 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1$					<u>i</u>				<u>.1</u>	19					4		13 750	54	1		1			ź	1 11 84
$ \begin{array}{c} 930-184 \\ 390-130 \\ 1.5 1550 \\ 1.5 150 \\ 1.5 1550 \\ 1.5 150 \\ 1.5 1550 \\ 1.5 1550 \\ 1.5 150 \\ 1.5 1550 \\ 1.5 150 $					1			2 21 00	-1				26 4260	423	1 2			43	1		1			2	1 8 30
$ \begin{array}{c} 390-304 \\ 390-305 \\ 2.2 1980 \\ 1.5 1575 \\ 70 \\ 1.6 21 \\ 1.5 1575 \\ 70 \\ 300 \\ 300 \\ 1.5 15750 \\ 1.5 1575 \\ 1.5 1575 \\ 1.5 1575 \\ 1.5 1575 \\ 1.5 1575 \\ 1.5 15$	930-184	.9	12290	27	1	53	.5	2 1180	. j	9	23 29260	510	3 920	253	2	50	2 510	4	<u>i</u>	6	1	1 34.0 69	2 1	ĩ	1 2 11
$ \begin{array}{c} 390 \cdot 306 \\ 390 \cdot 307 \\ 1.0 \left(6200 \right) 88 \\ 1.4 \left(6200 \right) 81 \\ 1.4 \left(6200 \right) 82 \\ 1.4 \left(6200 \right) 81 \\ 1.4 \left(6200 \right) 82 \\ 1.4 \left(6200 \right) 81 \\ 1.4 \left(6200 \right) 82 \\ 1.4 \left(6200 \right) 81 \\ 1.4 \left(6200 \right) 81 \\ 1.4 \left(6200 \right)$				70	1				:1		54 45010							63 52		13 13	1			1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1				.1	18	49 48970		17 5460		3				2		1			2	1 11 49
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	390-307	1.0	16290	88	į	- 46	.8	4 430		14	56 56220	500	8 2790	265	1	80	2 720	42	ź	6	ł	1 60.7 134	i 1	2	1 9 29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1				:1				14 3440 16 5070		3				3	-	1			2	1 7 28
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	96			.1						4		8 810	49	1	22	1	1 53.8 151	1	2	1 9 18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	390-312	.9	18000	77	1	67	.8	3 4580		18					4	120		35 27	1		1			1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1					20 22					5			45 79	1		1			2	1 10 25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				56	1		1.1	4 2340	.1	16	49 61370		16 2820	424	4	90	1 1020	31	1	11	1	1 64.2 121	1	1	1 7 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1														1		1			2	1 11 38
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1										3		1 270	52	Ĩ	5	1	1 46.4 44	1	Ĩ	1 4 49
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	390-320	1.0	19360	61	<u> </u>	75			.1		43 44990		20 5910		4				1		<u> </u>			2	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	390-321 390-322			56 49	1								25 5500 23 6720		65			34	1		1	1 56.0 137		2	1 9 8
930-325 1.7 22670 65 1 78 1.0 5 3000 .1 26 37 57930 590 21 5680 911 4 100 10 750 45 1 14 1 1 59.3 154 1 2 1 10 4 930-326 9 20730 49 1 65 1.1 2 2630 .1 16 35 51740 560 17 5170 514 2 90 6 470 28 1 11 1 1 59.6 115 1 2 1 8 1 930-327 6 16930 72 1 44 1.2 2 1390 .1 15 35 71970 280 7 2370 482 2 50 1 800 27 1 7 1 68.9 89 1 1 1 4 6 930-328 1.9 20410 55 1 66 1.0 3 2050 .1	930-323	.9	20420		1	48	.9	3 3150	.1	22	38 50100	360	17 7840	686	- Ę	70	9 840	30	į	11	į	1 61.0 130	1	ź	
930-326 .9 20730 49 1 65 1.1 2 2630 .1 16 35 51740 540 17 514 2 90 6 470 28 1 11 1 1 50.6 115 1 2 1 8 1 930-327 .6 16930 72 1 44 1.2 2 1390 .1 15 35 71970 280 7 2370 482 2 50 1 800 27 1 7 1 1 68.9 89 1 1 1 4 6 930-328 1.9 16590 41 1 49 .7 3 570 .1 9 32 39680 450 11 220 210 1 70 1 660 20 1 5 1 1 4.4 4 930-329 .9 20410 55 1 66 1.0 3 2050 .1 13 5800 926 4 70					1				.1										1		1	······		~ 2	
930-328 1.9 16590 41 1 49 7 3 570 .1 9 32 39680 450 11 2220 210 1 70 1 660 20 1 5 1 1 48.3 80 1 1 1 4 4 930-329 .9 20410 55 1 66 1.0 3 2050 .1 16 38 47940 630 15 6020 529 3 90 7 820 34 1 9 1 155.4 128 1 2 1 9 1 155.4 128 1 2 1 9 1 155.4 128 1 2 1 9 1 155.4 128 1 2 1 9 1 155.4 128 1 2 1 9 1 1 55.4 128 1 2 1 9 1 1 1 53.3 152 1 1 1 1 1 1	930-326	.9	20730		1	65		2 2630		16	35 51740	560	17 5170	514	Ż	90	6 470	28	į	1 <u>1</u>	1	1 59.6 115	1	Ž	1 8 1
930-330 930-331 .7 15940 .6 5 1 50 1.0 3 1500 .6 19 56 48000 400 12 5540 765 3 60 10 760 50 1 10 1 10 1 1 50 1 10 1 1 53.3 152 1 1 1 9 17 30 3 15 1 1 9 17 30 3 15 1 1 1 9 17 30 3 15 1 1 1 7 30 1 2 1 1 2 54 10 12 5540 1 2 54 1 1 2 54 1 10 1 5 5 1 1 1 1 1 1 1 5 3.3 152 1 1 1 1 2 5 1 1 1 2 5 5 5 1 1 5 5 1 1 1 1	930-328	1.9	16590	41	1	49	.7	3 570	1	9	32 39680	450	11 2220	210	1	70	1 660	20		5	1	1 48.3 80	1	1	1 4 4
930-331 .7 15940 65 1 50 1.0 3 1500 .6 19 56 48000 400 12 5540 765 3 60 10 690 48 1 7 1 1 48 3 136 1 1 1 7 36				· · · · · · · · · · · · · · · · · · ·	1				<u>- 1</u>										1		1			2	<u> </u>
	930-331	.7	15940	65	į		1.0	3 1500		19	56 48000	400	12 5540	765	3	60	10 690	48	į	7	1	1 48.3 136	1	1	1 7 30
930-333 8 25410 63 1 88 1.2 3 1230 1 23 53 65750 720 21 5820 756 3 120 5 710 46 1 7 1 1 62.6 131 1 1 1 11 18	930-333	.8	25410	63	1	88	1.2	3 1230		23	53 65750	720	21 5820	756	3	120	5 710	35 46	1	7	1		2	1	
<u>930-334</u> 1.1 22810 72 1 82 1.2 4 2540 .1 18 50 54520 850 16 6260 612 3 120 9 880 30 1 11 1 1 158.6 136 1 1 1 10 38									.1						3			30	1	11	1	1 58.6 136		1	1 10 38
930-336 1.2 20290 49 1 78 1.0 4 3240 1 19 59 52180 570 16 4520 533 1 100 6 710 19 1 10 1 1 56.4 116 1 1 8 1	930-336	1.2	20290	49	1	78	1.0	4 3240		19	59 52180	570	16 4520	533	1	100	6 710	- 19	1	10	1			1	1 7 74
930-337 .6 20450 49 1 67 1.1 4 740 .1 22 55 54370 580 17 5760 655 3 100 9 460 29 1 6 1 1 56.2 125 1 1 1 10 2 930-338 .7 16700 73 1 60 1.0 3 390 .1 23 69 57160 480 15 3970 601 3 90 8 420 28 1 5 1 1 45.0 140 1 1 1 5 1 930-339 2.5 21170 25 1 67 1.0 3 690 .1 13 38 46650 820 17 4420 582 3 130 7 1010 13 1 8 1 1 56.0 123 1 2 1 10 6					1										33			29 28	1	=	1			1	
		2.5	21170	25	1	67	1.0	3 690	.1	13	38 46650	820	17 4420	582	3	130	7 1010		<u>i</u>	8	<u>i</u>	1 56.0 123	1	ż	
930-340 1.5 19400 69 1 65 1.3 4 4910 .1 19 58 59990 530 21 4870 767 2 90 7 990 35 1 16 1 1 55.3 134 1 2 1 9 4 930-341 2.1 19740 41 1 66 1.3 3 3370 .1 17 60 48260 590 12 5240 870 3 100 10 1600 23 1 14 1 1 43.0 130 1 2 1 10 31	930-341				1 1	66			.1						23			35 23	1		1			22	
930-342 .7 21070 40 1 33 .9 4 230 .1 17 51 76610 350 8 3770 431 1 70 1 740 22 1 4 1 1 68.7 94 1 2 1 6 2	930-342	.7 3	21070		1	33	.9	4 230		17	51 76610	350	8 3770	431	1	70	1 740	22	į	4	i	1 68.7 94	1	Ž	1 6 2
930-344 2.0 20050 83 1 70 .8 3 3930 .2 15 37 48760 600 13 3850 365 1 100 7 620 24 1 13 1 1 52.0 105 1 1 1 8 8	930-344	2.0	20050	83	<u>i</u>	70	.8	3 3930		15	37 48760	600	13 3850	365	1	100		24	1	13	1		1	1	1 8 8
930-345 .8 18650 36 1 84 .9 4 2680 .1 14 28 37470 600 20 4900 519 1 90 8 760 22 1 11 1 1 147.9 121 1 1 1 9 9 930-346 .6 17110 66 1 66 1.1 2 2070 .1 16 40 51010 550 16 3810 378 1 100 5 630 21 1 11 1 1 53.3 118 1 2 1 7 2	930-346	.8 .6	18650 17110	36 66	1	84 66		4 2680 2 2070							1			22	1		1		1	1	
	930-347	1.8	23030	61	1	105	1.3	5 3940	.1	24	61 53160	830	17 5520	1823	4	120	16 1440	46	į	16	2	1 50.4 156		1	1 13 30
930-348 1.5 14010 69 1 54 1.0 4 4600 .1 13 43 55740 470 6 3230 333 1 90 1 710 21 1 17 1 1 65.1 87 1 1 1 4 4 930-349 1.4 19990 64 1 101 1.1 3 3080 .1 17 38 45630 780 17 4960 802 1 110 9 990 28 1 14 1 1 50.5 152 1 1 1 10 8					1				1						1			28	1		1		1	1	

PROJ: 515

ATTN: A.RAVEN/D.ALLEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 9V-1296-SJ3+4

DATE: OCT-20-89

• TYPE SOIL GEOCHEM • (ACT:F31)

														00 (00477		.											and the second s		
SAMPLE NUMBER	AG PPM	AL PPM	AS PPN	B PPM	BA PPM	8E PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM I	FE PM PI	K PM	LI MG PPM PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM	SB PP n		TH I PPM PPI	-	V ZN M PPM		SN PPM P	W CI	
930-350 930-351 930-352 930-353 930-353 930-354	.1 .9 1.3	14920 11590 15550 19010 19700	93 136 59 116 47	1 1 1 1	46 30 39 61 69	.8 .9 .6 1.2 1.3	4 3 3 6 4	140 500 220 2030 2670	.1 .1 .1 .1	18 17 13 28 20	62 65 47 71 44 50 67 60 56 48	20 29 50 4 40 6	80 90 70 10 40	7 3120 3 2570 5 2390 16 5940 17 6310	487 558 473 1095 1287	21143	80 50 90 100 120	4 1 3 1 9 1	960 820 830 610 180	17 27 41 135 53	2 2 1 2 2	9 8 7 11 12	1 1 1 1	1 45. 1 53. 1 43. 1 54. 1 51.	2 85 8 82 4 195	1 1 1 1 1	2 2 1 2 2		8 56
930-355 930-356 930-357 930-358 930-359	.4 .5 .3	17450 18260 9330 15010 22480	57 55 38 45 104	1 1 1 1	86 59 33 38 76	.9 1.2 .6 .9 1.3	5 2 2 3 2	2360 2050 2520 160 2120	.3 .1 .1 .1 .1	17 24 10 16 16	43 418 63 566 33 363 47 723 51 544	40 57 50 3 60 3	80 20 30 10 20	16 5210 14 4820 2 1400 4 2510 17 3700	1122 787 245 406 515	23224	90 90 60 70 130	10 1 1	780 680 620 710 930	25 37 10 24 44	1 2 1 2 1	12 12 7 6 11		47.	8 61 7 88	1 1 1 1	1 1 1 1	1 7	5 27
930-360 930-361 930-362 930-363 930-364	1.1 3.9 .8	17550 18730 28140 17080 23420	76 82 96 60 51	1 1 1 1	74 60 126 58 98	1.0 .6 1.5 .8 1.1	3 3 3 4 4	1850 820 1890 2930 2500	.1 .1 .8 .1	13 13 23 17 25	30 44 33 450 42 719 42 430 45 480	60 58 40 114 30 69 00 90	20 20	_	493 324 941 556 1800	3 2 4 4 3	100 90 180 110 150	5 (2 10 8 9	580 540 550 790 560	36 38 101 39 52	1 1 2 1	10 9 14 13 13			9 128 2 118 7 152 1 150 9 187	1 1 1 1	1 1 1 2	1 7 1 5 1 7 1 9	, ,,
930-365 930-366 930-367 930-368 930-369	.8 1.5 3.2	16950 20120 24560 20820 18700	92 69 288 51 57	1 1 1 1	42 45 88 105 62	.8 1.0 1.2 1.3 1.3	34445	240 280 590 5940 1800	.1 .1 1.6 .1 .1	11 15 15 15 19	34 597 37 596 50 658 48 399 37 515	90 40 40 85 30 71 60 44	00 50 10	5 1540 11 2850 16 3620 17 4250 19 6690	397 841 535 681 421	1 2 3 3 3	70 80 120 120 80	1 9 5 11 8 14 9 4	790 730 740 760 750	23 17 68 46 39	1 1 1 1	5 5 7 19 11	1	52. 62. 57. 48. 50.	1 99 5 180 1 179	1 1 1 1	1 2 2 1 1	1 2 1 6 1 7 1 8 1 9	5 2 7 1 8 6
930-370 930-371 930-372 930-373 930-373 930-374	1.7 2.2 2.9	18990 15300 11540 23660 22800	53 79 57 40 46	1 1 1 1	65 56 55 89 101	1.0 1.1 .5 1.4 1.2	44364	3900 2340 2170 3180 6120	.4 .1 .9 .1 .3	14 14 16 18 15	40 466 27 481 32 443 46 396 55 427	80 53 90 28 80 60	50 50 50	20 4180 13 3960 9 2390 28 5430 17 3830	578 121 732 322 1241	32444	80 70 60 100 110	4 10 4 4 14 12	90 80 20 80 80	21 38 28 50 42	1 1 3 1	12 7 12 19	1 1 1 1 1 1 1 1	46.8 39. 44.4 49.0	3 111 4 106 0 278	1 1 2 1	1 1 1 1	1 8 1 4 1 4 1 11 1 9	1 2
930-375 930-376 930-377 930-378 930-379	.6 .4 .3	21240 16130 21670 23170 22260	35 32 12 3 6	1 1 1 1	132 105 136 66 44	1.3 1.2 1.1 1.1 1.0	54322	4480 3380 900 450 110	.1 .1 .1 .1	26 27 18 14 11	75 535 56 448 51 465 44 520 32 700	00 54 10 56 10 44	0 50 50		1000 1141 669 423 207	54531	130 70 80 80 60	14 8	360 310 30 50 50	40 48 18 15 2	2 1 1 1	17 15 10 3		58. 48. 57. 72.8 115.7		1 1 1 2	1 2 1 1	1 10 1 8 1 8 1 7 1 6	3 9 3 1 7 2
930-380 930-381 930-382 930-383 930-383 930-384	.3 .3 1.5	23350 17340 25300 22100 21200	10 23 1 11 23	2 1 1 1	52 114 56 387 333	1.0 .9 1.2 1.2 1.2	44333	230 3090 900 12420 6810	.1 .1 .1 .1 .1	14 18 16 13 16	29 622 49 470 29 696 62 459 52 485	70 30 10 24 80 56	0 0 0	11 3490 14 4280 16 6800 24 3800 27 4760	832 512 623 357 469	24435	90 50 60 130 110	84 58 69	240 70 360 250	21 29 20 17 22	1 1 1 1	3 9 3 79 49		74.8 53.9 125. 53.9 58.0	9 121 1 106 9 136	1 1 1 1	1 1 2 1	1 5 1 5 2 16 1 9 1 8	2
930-385 930-386 930-387 930-388 930-388 930-389	.5 .6 .7	18470 17830 16920 21500 19850	32 30 33 28 22	1 1 1 1	164 216 182 205 277	1.0 .9 1.0 .9 .7	44435	5750 4200 3940 4890 4480	.1 .1 .1 .1 .1	18 25 16 22 17	40 463 37 475 34 414 48 491 25 425	00 47 00 38 20 40	70 50 50	13 6950 11 5620 16 5690 18 7390 18 5290	636 907 586 533 375	5 8 5 4 3	80 90 70 90 80	9 5 13 6 13 7	40 50 70 70	53 54 39 25 21	1 1 1 1	29 32 24 22 20	1 1 1 1 1 1 1 1		9 141 1 117	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 1	1 9 1 9 1 9 1 11 1 8	> 1 > 9 3
930-390 930-391 930-392 930-393 930-394	.8 .8 .9 .6	19780 20910 21100 19780 21070	18 19 32 27 33	1 1 1 1	277 335 301 352 225	.6 1.1 1.1 .9 .9	45454	4590 8870 5160 10180 4210	.1 .1 .1 .1 .1	19 19 19 18 15	49 432 53 419 35 471 56 433 35 383	30 58 80 58 20 62	10 10 10	17 4400 20 6000 16 6600 18 5490 20 5650	622 929 563 652 323	44553	90 90 110 110 100	12 8 13 5 10 7	60 10 80 60 10	25 28 31 29 22	1 1 1 1	21 48 31 57 29	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	58.8 54.4 62.5 54.8 40.5	4 118 5 117	1 1 1 1	1 2 1 1	1 8 1 11 1 11 1 10 1 6	2 39
930-395 930-396 930-397 930-398 930-399 930-399	2.3 1.7 1.6 .6	29010 24000 25280 24360 19260	20 21 25 19 35	1 1 1 1	260 285 383 400 240	1.7 1.1 1.2 1.1 1.0	64443	4360 8600 9490 8250 8090	.1 .1 .1 .5	26 30 19 21 24	80 539 49 468 58 454 69 459 77 473	20 87 90 69 30 67 80 67	0 0 0 0 0	22 6040 27 5530 24 5710 24 4850	1337 1673 891 2524 976	47564	160 140 130 110 100	16 11 14 7 20 11 9 6	90	43 58 41 33 48	1 1 1 1	38 58 62 50 21	1 1 1 1 1 1 1 1 1 1	64.0 60.2 60.7 56.4 51.0	2 176 7 145 155	1 1 1 1	2 2 2 2 1	1 12 1 13 1 12 1 12 1 8	1 3 4
930-400 930-401 930-402 930-403 930-404	.8 .8 .9 .2	17030 23840 18890 18870 12680	40 30 37 29 36	1 1 1 1	228 172 227 157 50	1.2 1.2 1.1 1.1 1.1 .7	33454	5830 4030 6650 7810 1230	.1 .1 .8 .1	20 21 23 27 12	53 477 48 491 58 462 69 502 29 399	10 71 50 80 40 95 20 49	0	13 6880 4 1950	951 588 1154 856 1310	6 5 4 3 3	100 100 110 120 80	9 7 14 8 18 8 2 14	70 780 40 10 30	36 35 40 37 9	2 1 3 2 1	25 16 27 25 9	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50.2 55.4 52.8 59.5 59.7	2 149 150 3 147 5 128 7 64	1 1 1	1 2 2 2	1 9 1 11 1 10 1 11 1 5	892
930-405 930-406 930-407 930-408 930-409	.6 .6 .5	17930 19920 21430 20350 18990	51 57 79 69 49	1 1 1 1	26 32 35 33 40	.7 .9 1.0 1.1 1.0	4 5 3 5 4	280 350 260 200 400	.1 .1 .1 .1	11 15 15 16 18	38 458 45 596 45 660 43 607 57 648	00 34 10 34 00 26	0 0 0	5 2910 9 4750 10 4050 10 4150 12 5040	249 419 446 837 681	23334	70 60 60 50 40	4 8 1 8 3 8	50 90 50 70	13 22 32 30 31	1 1 1 1	67454	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52.2 64.9 60.1 65.5 60.4	90	1 1 1 1	2 1 2 2 2	1 6 1 8 1 7 1 6 1 5	19 10 1

PROJ: 515

ATTN: A.RAVEN/D.ALLEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 9V-1296-SJ5+6

DATE: OCT-20-89

• TYPE SOIL GEOCHEM • (ACT:F31)

SAMPLE NUMBER	AG AL PPM PPM	AS PPM I	B E PPM PF	BA BE PM PPM	BI CA PPM PPM	CD PPM	CO CU PPM PPM	FE PPM			IG MN M PPM	MO NA PPM PPM	NI F PPM PPM	PB PPM	SB SI PPM PPI		U V Z		SN W PPM PPM	
930-410 930-411 930-412 930-413 930-414	2.8 26080 2.3 25880 10.8 21230 .8 25560 7.3 26090	46 82 645 114 135	1 7	10 1.7 34 1.1 71 1.3 33 1.4 34 1.5	4 4770 2 4630 5 8970 5 4980 6 9750	.1 .1 6.7 .1 1.5	21 80 21 58 22 81 24 69 28 89	49880 52020 52790 59630 55560	700 980	23 568 25 498 13 457 39 711 18 490	0 735 0 1743 0 1067	6 190 2 140 3 140 3 140 5 170	16 1090 8 970 14 1880 14 860 14 2050	27 70 35	1 1 1 1 2 2 1 1 1 2	3 1 2 1 5 1	1 49.8 16 1 64.1 15 1 37.0 27 1 65.9 14 1 41.9 20	3 1 5 1 8 1	2 1 2 1 1 1 2 1 2 1 2 1	1 15 10 11 25 13 102 11 3 15 42
930-415 930-416 930-417 930-418 930-419	1.1 25960 2.5 25750 .7 27140 .6 23060 1.8 18970	48 76 57 17 54	1 9	37 1.4 97 1.6 93 1.3 95 1.1 39 1.1	5 3430 7 5430 6 4510 2 5050 4 9470	.1 .1 .1 .1	29 71 25 77 27 55 16 29 16 34	59950 58920 58160 51850 47090	1090 1210 660	24 666 26 730 27 792 29 416 20 501	0 1066 0 1794 0 508 0 548	5 170 4 190 6 170 3 140 5 120	15 930 13 880 15 800 1 1330 6 1300	94 51 53	1 14 1 20 1 14 1 20 1 34	0 1 4 1 0 1	1 70.2 14 1 57.9 17 1 79.0 15 1 58.7 16 1 51.2 14	6 1 5 2 7 1 6 2	2 1 2 1 1 1 1 1 2 1	15 15 12 50 13 6 9 7 9 24
930-420 930-421 930-422 930-423 930-423 930-424	2.2 22560 1.1 12360 .9 25510 .9 19890 1.2 24240	49 1199 47 71 56	1 4 1 10 1 5 1 8	1 1.0 57 .9	4 3500 6 630 6 3940	.1 3.6 .1 .1 .1	20 48 19 70 16 35 16 36 17 40	49770 74680 44990 67760 49020	460 1060 630 870	20 769 2 73 17 634 9 423 24 677	0 514 0 398 0 495	3 150 2 90 4 160 3 120 2 140	11 750 1 650 7 780 1 770 9 790	29 30 23 19	1 20 4 11 1 13 1 0 1 13	1 1 3 1 6 1	1 61.1 14 1 70.1 14 1 72.8 13 1 81.8 9 1 65.2 15	2 1 3 2 2 2	2 1 2 1 2 1 2 1 1 1	13 20 1 170 12 18 9 17 12 10
930-425 930-426 930-427 930-428 930-429	1.4 23220 .8 24710 1.4 21730 3.6 23780 5.2 25060	71 46 43 72 44	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		6 3840 6 4070 7 4010 8 3850 4 5050	.1 .1 .1 .1	18 42 23 51 19 40 22 70 14 62	44280 50220 44020 63210 37770	860 900 1150	19 761 21 671 19 762 18 770 18 341	0 1485 0 519 0 1320 0 566	3 160 4 190 3 140 3 160 3 190	11 640 15 1110 10 590 11 670 7 2090	44 23 171 42	1 1 1 1 1 1 4 1 1 1	5 1 4 1 5 1	1 60.9 13 1 63.7 14 1 64.0 12 1 65.7 16 1 45.3 13	4 1 7 2 2 1	2 1 1 1 2 1 2 1 1 1	13 15 12 9 13 3 10 435 11 18
930-430 930-431 930-432 930-433 930-433	1.8 22800 2.0 23510 2.3 18690 .8 16240 2.4 21190	110 43 57 53 136	1 7 1 7 1 5 1 5	39 1.1 79 .7 78 .7 8 .5 8 1.0	4 3900 5 3150 4 7090 2 4070 4 5410	.1 .3 .3 .1	17 49 15 29 11 29 10 13 19 54	52240 40460 38720 34620 54950	960 1060 760 830	20 462 23 601 13 541 12 531 21 640	0 563 0 361 0 197 0 874	2 170 3 160 2 180 4 140 3 130	7 770 9 910 6 1250 6 420 10 1310	30 21 12 71	1 14 1 12 2 2 1 12 2 19	2 1 1 1 3 1 5 1	1 65.3 16 1 59.3 15 1 51.0 13 1 64.5 7 1 65.8 20	5 2 4 1 5 2	1 1 1 1 1 1 1 1	8 25 12 18 11 2 9 4 12 40
930-435 930-436 930-437 930-438 930-439	2.4 18220 1.7 16300 2.4 15720 2.9 19940 3.4 17760	106 88 159 98 77	1 7 1 5 1 6 1 8	5 1.1 8 .8 5 .8 4 1.1 4 1.0	4 3030 3 3410 4 3510	.3 2.0 1.8 .8 .3	16 46 27 59 23 70 14 46 20 52	45350 45680 49280 45000 44740	1120 760 760 720	17 603 14 578 13 562 19 543 16 541	0 1383 0 1025 0 477	3 120 4 150 3 110 3 110 3 90	12 1060 15 990 11 940 7 1070 14 930	99 123 35	4 12 5 14 5 10 2 10 2 11		1 50.3 190 1 49.0 17 1 49.1 21 1 51.3 16 1 45.0 190	5 1 4 1 7 1	1 1 1 1 2 1 1 1 2 1	10 79 8 40 8 102 10 68 9 42
930-440 930-441 930-442 930-443 930-444	6.5 17420 5.2 22480 2.2 17860 2.9 18530 2.0 18230	86 41 40 42 40	1 11 1 5 1 8	0.7 2.1.1 7.7 3.6 5.5		1.6 1.5 1.9 .4 .3	20 67 18 52 19 56 12 25 15 34	51820 47360 45930 40770 43950	840 690 710 880	18 522 21 437 18 633 16 418 19 488	0 1383 0 377 0 334	6 80 5 110 3 90 3 100 3 110	10 1010 16 1610 12 920 2 830 1 890	58 52 49	2 14 1 16 2 12 1 11 2 14		1 46.7 18 1 43.9 22 1 48.2 18 1 56.2 15 1 50.4 16	B 1 B 1 2 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 45 8 10 9 60 7 4 9 6
930-445 45M 930-446 930-447 930-448 930-449	5.9 21300 1.1 27820 1.2 25560 1.9 25740 .9 21380	160 88 70 248 48	$ \begin{array}{c} 1 & 4 \\ 1 & 3 \\ 1 & 4 \end{array} $	7 .7 9 .5 5 .7 3 .6	4 280 7 640 6 410 6 420	3.0 .1 .1 1.6 .1	25 77 20 47 17 46 16 39 16 38	58250 106050 65430 68510 73740	560 450 540	16 744 15 291 18 453 16 397 15 412	0 626 0 524 0 565 0 548	5 150 1 80 5 70 3 70 4 100	14 1050 1 640 4 800 1 860 1 850	61	6 14 3 5 3 8 1 7 4 8	2 1 3 1 7 1	1 54.5 222 1 67.5 14 1 50.4 172 1 51.9 138 1 55.8 136	1 2 3 1 3	1 1 1 1 1 1 1 1 1 1	13 373 7 8 7 4 9 3 7 1
930-450 930-451 930-452 930-453 930-454	6.2 14780 1.0 19480 1.8 28410 .8 13830 1.1 15110	297 57 119 61 23	$ \begin{array}{c} 1 & 4 \\ 1 & 5 \\ 1 & 3 \\ 1 & 3 \\ 1 & 3 \end{array} $	9 .2 6 .3 1 .8 2 .3 3 .6	5 350 4 370 3 250 6 370	4.4 .1 .1 .1	10 32 13 28 21 47 12 30 15 29	51860 52690 103240 44330 70680	440	2 154 11 231 18 375 1 88 3 135	0 460 0 655 0 313 0 737	3 140 2 90 2 80 3 70 2 100	1 1310 1 830 1 1150 4 830 1 2020	14	9 9 2 8 2 10 3 7 2 11	3 1) 1 7 1	1 89.8 95 1 62.6 95 1 74.0 173 1 66.5 75 1 102.0 82	2 5 1 2 2	1 1 1 1 1 1 1 1	4 780 6 2 6 10 2 2 4 2
930-455 930-456 930-457 930-457 930-458 930-459	1.6 16970 1.5 21080 2.8 23850 1.7 24880 1.3 25240	42 46 21 28 62	1 11 1 11 1 10 1 11	7 .9 3 .8 2 1.1	8 3990 5 3770 7 5820 7 2410 5 4380	1.3 .6 .1 .1 .1	22 60 24 63 22 42 23 38 22 45	46530 54110 46880 49210 55380	980 1110 1250	14 539 18 588 29 533 37 520 33 545	0 632 0 1263 0 849 0 959	7 150 7 200 5 190 8 190 6 220	14 960 9 680 11 1300 7 910 9 1160	43 40 38 43 52	4 18 4 19 1 27 1 18 1 23	2 1 7 1 3 1	1 51.1 120 1 59.6 144 1 53.7 154 1 61.8 159 1 63.1 155	1	2 1 1 1 1 1 1 1 1 1	10 22 12 24 11 8 12 16 13 20
930-460 45M 930-461 930-462 930-463 45M 930-464 45M	3.0 22940 1.8 26050 1.5 24950 1.9 23900 1.5 20790	41 14 34 36 23	1 10	0 1.0 0 .8 2 .9 0 .6	6 3200 7 4320 6 3320	.1 1.0 .9 .1 .8	20 33 19 35 24 40 20 37 21 44	44550 45910 52860 49100 44460	1040 900 920	28 430 23 484 23 639 31 448 23 546	0 678 0 532 0 807 0 771	6 180 5 170 6 180 5 150 6 140	7 1210 7 850 9 740 8 740 12 900	52 35 51 50 45	1 31 1 15 2 20 1 25 1 18) 1	1 55.1 146 1 59.7 156 1 63.3 157 1 61.4 161 1 56.2 150	5 1 7 1 1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 11 11 12 12 2 12 2 12 2 12 28
930-465 930-466 930-467 45M 930-468 45M 930-469	1.4 22840 1.6 28160 1.2 21090 1.5 23430 2.1 31940	23 46 15 54 35	1 15 1 7 1 9	0.8 0.9 0.7 5 1.1 2.9	7 2460 7 4740 6 2440 9 3090 7 550	1.1 1.3 .3 .1 .1	24 43 26 60 21 41 25 64 20 63	45790 61160 48410 50120 65700	1070 1930 890 1080 880	18 627 16 499 20 730 20 650 15 441	0 1555 0 773 0 1330	6 160 6 340 6 130 6 170 2 130	14 870 10 1740 11 580 14 710 3 850	38 64 29 54 51	5 17 4 26 6 14 4 17 3 10		1 56.7 162 1 67.8 181 1 59.7 130 1 56.9 169 1 53.3 155	1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 6 13 10 12 4 13 9 10 12

PROJ: 515

ATTN: A.RAVEN/D.ALLEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 9V-1296-SJ7+8

DATE: OCT-20-89

• TYPE SOIL GEOCHEM * (ACT:F31)

ATTA: A.KAYCA/D.ALLLA																						
SAMPLE NUMBER	AG AL PPM <u>PPM</u>	AS PPM	B PPM	BA PPM F	BE PM	BI CA PPM PPM	CD PPM	CO PPM	CU FE PPM PPM	K PPN	LI MG PPM PPM	MN PPM	MO NA NI PPM PPM PPM	P PPM	PB PPM	SB SR PPM PPM	TH U PPM PPM	V PPM	ZN PPM I	GA SN PPM PPM	W C	CRAU PMPPB
930-470 930-471 930-472 930-473 930-474	.1 19540 .4 20980 .6 21510 .5 20710 .7 23360	1 41 17 55	1 1 1 1	35 33 43 49 55	.6 .6 .5 .7 .7	2 250 1 420 4 380 4 2160 3 360	.1 .1 .1 .1	14 14 15 18 17	40 51420 46 53180 45 56620 48 63620 49 67250	340 340 570 650 640	9 3990 12 5100 12 4870 13 4940 13 5080	485 484 504 666 445	4 70 6 5 80 7 5 90 4 1 110 2 4 120 5	720 1010 740 830 830	17 27 30	1 7 1 7 1 9 2 13 2 11	1 1 1 1 1 1 1 1 1 2	59.3	83 89 108 123 126	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1	8 2 10 1 7 6 7 5 9 2
930-475 930-476 930-477 930-478 930-479	1.9 21970 3.2 21430 .8 20470 1.1 23290 1.0 23510	78 86 53 28 7	1 1 1 1	68 72 77 61 81	.9.7.9.9.9	3 4800 5 3340 1 1060 3 2280 4 2100	.3 .5 .1 .1	14 17 18 16 15	40 46410 50 55640 44 54940 43 60610 45 43750	780 820 880 760 870	18 3680 20 3620 17 3120 18 5710 18 5860	702 580 1112 410 616	2 140 6 3 150 3 3 160 4 3 150 5 4 150 11	1710 1110 1120 1180 700	226 38 29	1 22 4 17 2 24 1 15 1 14	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	53.8 46.1 57.8	180 126 183 124 121	1 1 1 1 1 1 1 1 1 1		9 16 8 690 6 8 9 125 10 4
930-480 930-481 930-482 45M 930-483 930-484	1.3 25960 .8 22660 .4 22840 .2 17320 .7 22260	19 11 21 32 15	1 1 1 1	60 73 79 58 73	.8 .8 .8 .6 .8	3 1380 3 860 4 1460 4 1530 3 530	.1 .6 .1 .1	19 13 20 21 17	50 47950 34 48170 37 45030 41 44670 44 49330	690 810 880 760 820	14 4920 15 4860 15 3580 12 5620 14 3130	586 388 962 875 465	3 100 9 5 130 4 4 150 7 3 110 8 4 130 5	1000 760 720 520 650	34 19 25 35 15	1 9 1 11 1 12 2 11 1 10	1 1 1 1 1 1 1 1	59.8 54.9 50.2	121 123 125 113 124	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8 5 8 15 8 10 9 5 4
930-485 930-486 930-487 930-488 930-488	.2 17990 .4 21410 .4 21080 .4 24970 1.4 21460	12 15 25 11 15	1 1 1 1	89 64 77 148 1 76	.8 .5 .6 .1 .7	4 2000 1 460 3 1720 5 2710 6 3480	.9 .1 .1 .1 .5	26 20 17 27 21	56 43030 55 55820 42 47540 70 55010 56 51030	910 650 810 1510 900	12 4680 16 5270	1322 641 501 1117 884	4 150 14 4 120 9 5 140 9 6 250 15 4 160 12	720 560 690 720 930	36 34 17 42 38	2 14 1 10 1 13 2 19 2 16	1 1 1 1 1 1 1 1 1 1	57.0 60.5 64.0	128 125 117 152 141	$ \begin{array}{cccc} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 2 \end{array} $	1	8 5 7 10 9 3 11 2 10 1
930-490 930-491 930-492 930-493 930-494	.6 18630 .5 19010 .9 29300 .6 23530 .6 30740	14 7 1 1	1 1 1 1	47 38 72 54 69	.6.4.7.7.7.7	5 460 3 390 8 1040 7 550 6 950	.1 .1 .1 .1	14 11 21 17 18	36 62820 34 48700 46 62780 34 55420 43 58600	560 590 700 740 680	10 3060 3 2300 21 6600 9 5330 20 7250	725 240 694 1267 587	4 90 1 2 100 1 3 120 7 4 120 5 3 120 7	1010 1070 540 1010 580	27 6 25 29 20	1 8 1 9 1 9 1 8 1 7	1 1 1 1 1 1 1 1	87.9	87 72 107 98 111	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i 1 1 1 1	5 2 5 4 10 2 12
930-495 930-496 930-497 930-498 930-498	.1 18790 .2 15590 .4 18930 1.0 22580 1.7 41750	1 11 11 17	1 1 1 1	74 38 49 43 349 1	.3.4.5.5.7	2 750 2 510 5 760 6 1140 5 6920	.1 .1 .1 .9	4 8 14 18 37	15 14880 22 33480 32 53690 40 56010 191 53960	820 480 430 410 2230	6 1630 3 1640 8 3810 13 5640 40 8970	465 277 640 558 2789	1 160 1 2 110 1 2 70 3 4 70 5 8 350 30	1480 1050 940 790 1310	4 9 21 51	1 14 1 8 1 8 1 7 1 28	1 1 1 1 1 1 1 1	53.7 61.9 74.4 62.2 78.7	44 53 77 83 196	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1	8 2 5 3 6 4 8 2 7
930-500 930-501 930-502 930-503 930-504	.8 22590 .9 19550 1.4 28050 1.0 27200 1.0 24150	20 1 17 1 7	1 1 1 1	54 44 65 45 55	.0.2.9.5.6	6 1270 5 690 6 650 2 430 4 620	.1 .1 .1 .1	20 9 20 10 15	40 59260 17 22370 48 60310 29 32440 38 57710	350 450 650 480 550	11 4680 4 2250 18 6110 7 3310 12 4440	832 455 686 299 360	5 70 4 2 90 6 3 100 6 2 90 2 5 100 2	940 490 620 650 550	24 8 28 3 17	1 9 1 5 1 8 1 6 1 8	1 1 1 1 1 1 1 1 1 1	66.6 83.9 68.6 65.2 59.3	85 49 109 69 90	1 1 1 1 1 2 1 1 1 1	1 1 1 1 1 1	10 10 12 2 11 1 10 2 10 1
930-505 930-506 930-507 930-508 930-509	1.1 29190 .6 21890 .6 25620 .6 20510 .5 22740	2 11 1 25	1 1 1 1	80 41 64 48 42	.6.4.5.5.4	5 2030 3 320 6 400 6 490 3 250	.1 .1 .1 .1	15 12 15 13 13	34 44500 29 51200 34 78110 32 52740 36 61030	840 570 430 520 550	18 6660 5 2930 8 3950 11 4460 5 2970	394 315 298 264 232	6 140 7 4 100 3 3 90 1 4 100 5 2 120 1	500 760 660 570 600	19 6 15 12 15	1 10 1 8 1 8 1 8 1 8	1 1 1 1 1 1 1 1 1 1	76.2 119.0 88.1 76.5 91.5	97 79 80 76 77	1 1 2 1 1 1 1 1 1 1	1 1 1 1	13 12 9 1 8 2 10 1 8 3
930-510 930-511 930-512 930-513 930-514	.5 15610 .4 18150 .2 16550 .4 13720 .3 18540	20 3 24 11 1	1 1 1 1	45 40 41 37 33	.5 .8 .6 .5 .6	1 180 3 560 2 360 2 230 1 330	.1 .1 .1 .1 .1	15 17 18 14 15	24 62610 39 70680 46 72740 35 73990 29 78650	630 490 490 380 370	7 3480 3 1650 4 1670	537 1095 795 347 865	4 90 2 1 130 1 1 70 1	760 1130 920 1030 98 0	9 11 25 10 9	1 9 2 13 1 11 1 13 1 8	1 1 1 1 1 1 1 1 1 1	64.9 38.3 61.1 60.9 64.3	73 80 84 77 79	2 1 1 1 1 1 1 1 1 1	1	2 1 3 2 6 2 5 1 3 3
930-515 40M 930-516 930-517 930-518 930-519	5.1 28340 .2 25050 .7 27440 1.0 17650 .8 24800	28 14 5 1 11	1 1 1 1	62 63 42 36	.5 .6 .7 .2 .6	6 4650 1 310 3 310 2 370 5 240	.1 .1 .1 .1 .1	26 18 19 13 17	160 65590 43 75760 50 69760 33 53530 39 80530	1250 780 660 680 540	27 5120 13 4730 15 5480 3 2470 5 3560	2159 473 571 431 314	2 130 1 3 130 1	1590 1350 830 1010 870	53 28 25 15 9	2 24 1 10 1 9 1 9 1 8	1 1 1 1 1 1 1 1 1 1	86.0 91.9 121.8	176 108 116 76 103_	1 1 1 1 2 1 2 1	1 1	6 10 9 3 1 2 6 1 9 1
930-520 930-521 930-522 930-523 930-524	1.1 21000 1.2 24730 .5 14690 .9 25150 1.1 21120	19 34 24 1 10	1 1 1	37 55 34 79 64	.4.6.4.8.8	5 410 3 570 1 190 4 3220 2 5670	.1 .1 .1 .1	15 13 11 13 15	34 62800 43 60970 35 64500 20 46650 38 50750	530 670 570 590 570	5 2880 8 3330 2 1210 22 4980 22 4420	374 252 297 209 858	4 120 3 2 140 1 4 200 5	1410 1280 690 780 1600	19 21 11 8 30	1 8 1 10 1 6 1 12 1 20	1 1 1 1 1 1 1 4 1 2	74.2 73.2	89 127 67 120 136	2 1 2 1 2 1 2 1 1 1	1 1	7 2 9 3 1 1 9 4
930-525 930-526 930-527 930-528 930-529	1.4 21930 7.9 22890 1.5 20990 1.4 19060 1.6 14140	23 57 173 62	1 1 1 1	61 59 68 35 50	.7 .8 .9 .7 .5	1 2270 1 5720 4 2990 1 360 1 660	.1 .1 .1 1.1 .1	15 12 13 17 11	53 73550 44 57830 36 45100 40 93670 32 56400	620 360 530 360 480	17 3440 10 1500 23 3590 7 3250 2 840	394 268 985 490 574	2 120 4	970 1630 1260 1300 730	13 4 19 26 33	1 12 1 17 1 12 1 8 1 8	1 1 1 1 1 1 1 1	64.2	102 84 157 96 93	1 1 1 1 2 2 1 1	1 1	6 5 6 3 0 4 8 3 1 10

PROJ: 515

ATTN: A.RAVEN/D.ALLEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 9V-1296-SJ9+10

DATE: OCT-20-89

• TYPE SOIL GEOCHEM * (ACT:F31)

CANOLE			01 04							
SAMPLE NUMBER	AG AL AS PPM PPM PPM	B BA BE PPM PPM PPM	PPM PPM PPM	CO PPM	CU FE K PPM PPM PPM	LI NG M <u>PPM PPM P</u> PI		P PB PPM PPM	SB SR TH U PPM PPM PPM PPM	
930-530 930-531 40M 930-532 930-533 930-533	1.5 15230 123 .8 14600 276 .6 18470 98 1.1 16680 75 2.2 22250 2	1 55 .6 1 60 .8 1 53 .7 1 46 .6 <u>1 89 .8</u>	1 540 2.6 2 1010 .1	19 18 15 11 11	51 72840 610 51 72620 470 37 68000 600 31 50740 610 23 39430 710	8 1760 79 7 1490 1220 8 3560 469 3 1420 45 17 4710 819	8 2 100 1 5 5 120 1 7 2 100 1	1100 30 1840 27 1000 14 910 15 810 19	1 11 1 2 9 1 1 7 1	28.8 112 1 1 1 185 47.6 122 1 1 1 2 90.6 99 1 1 8 4 71.2 88 2 1 1 3 2 86.4 132 1 1 14 1
930-535 930-536 930-537 930-538 930-539	4.7 36290 50 2.3 22330 100 3.9 25310 72 3.8 22040 102 .5 19920 118	1 78 1.2 1 59 .9 1 108 1.1 1 75 1.2 1 66 .7	5 930 .1 1 1340 1.4 5 4130 2.4 2 3580 .8 2 310 .1	19 13 20 18 14	56 56980 630 37 53790 620 65 48680 680 67 47790 690 46 65330 430	24 4380 41 17 3280 27 28 4830 240 26 5000 112 11 3660 31	2 5 100 1 1 3 110 12 0 3 100 11	1190 38 930 63 1160 55 1280 56 540 43	1 9 1 1 15 1 1 14 1	53.5 178 1 1 1 8 3 46.8 153 1 1 1 6 21 54.8 169 1 1 1 120 50.4 186 1 1 1 14 67.1 156 1 1 1 610
930-540 930-541 903-501 903-502 903-503	2.9 18890 88 .3 19060 33 .1 17050 38 .1 20830 15 .1 20130 26	1 52 .6 1 85 .5 1 84 1.0 1 87 1.0 1 44 .7	3 290 .1 2 1020 .1 2 1180 .1 3 1180 .1 1 520 .1	12 11 25 26 12	42 47800 680 27 44230 740 59 48270 840 54 47500 840 25 41730 560	3 1820 274 3 1690 299 10 4780 900 14 5300 1138 9 3760 450	5 4 90 1 0 4 110 19 3 3 140 14	590 46 620 3 560 20 710 43 990 27	1711	98.2 115 1 1 1 5 15 106.4 74 2 1 1 4 8 46.3 91 1 1 9 9 53.5 133 1 1 8 4 45.5 94 1 1 7 8
903-504 903-505 903-506 903-507 903-508	.1 21830 20 .1 22230 8 .2 22000 54 .1 22830 8 .4 23060 60	1 81 .8 1 85 .9 1 74 1.0 1 74 .7 1 133 .9	2 420 .1 3 700 .1 2 780 .1 3 380 .1 5 960 1.1	19 21 21 13 26	42 51620 1030 42 47320 1160 52 51590 930 34 44790 1010 69 51640 1370	12 4220 873 15 4690 873 14 5140 924 11 4380 422 13 5320 1153	3 180 12 4 160 12 3 190 2	1080 61 850 43 1080 46 820 35 760 50	1 10 1 1 1 10 1 1 1 11 1 1 1 10 1 1 1 10 1 1 1 13 1 1	56.4 147 1 1 1 7 16 56.1 127 1 3 1 10 11 55.8 138 1 1 1 9 5 51.4 100 1 1 8 2 58.6 183 1 1 8 11
903-509 903-510 903-511 903-512 903-513	.3 21870 102 .2 24560 20 .1 21260 48 .1 20270 28 .1 19160 36	1 97 1.1 1 91 1.1 1 93 1.1 1 78 .8 1 57 1.0	4 840 .1 2 550 .1 2 970 .1 3 440 .1 1 460 .1	27 21 25 15 13	66 54660 910 49 50810 1350 53 51700 1160 34 46850 670 32 38950 740	13 5430 116 14 5660 802 15 5290 1084 12 3560 698 10 3150 542	2 2 220 12 4 2 190 9 3 3 120 5	880 53 920 59 780 55 1100 33 1410 27	2 12 1 1 2 13 1 1 1 13 1 1 1 9 1 1 1 9 1 1	54.0 147 1 1 1 7 16 57.1 149 1 1 1 9 9 54.9 143 1 1 1 7 5 55.5 119 1 1 1 7 2 45.0 102 1 1 1 7 5
903-514 903-515 903-516 903-517 903-518	.2 20030 20 .1 18290 51 .3 19010 41 .1 15620 4 .1 19040 21	1 68 .7 1 52 .6 1 60 .9 1 49 .6 1 49 .8	3 470 .1 2 410 .1 3 390 .1 2 600 .1 3 870 .5	16 17 20 12 15	39 45970 840 44 45660 800 45 48480 850 26 32240 880 43 49870 620	11 4240 512 10 3800 697 10 4280 991 8 3470 863 12 5570 484	7 2 130 4 2 150 7 3 2 140 10	860 34 1060 46 1140 52 1020 25 820 37	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47.3 121 1 1 1 7 8 49.5 124 1 1 1 7 7 51.8 128 1 1 1 7 4 45.5 71 1 1 7 3 51.3 140 1 1 7 18
903-519 903-520 903-521 903-522 903-523	.2 17870 14 .1 18840 64 .4 19330 57 .1 18420 48 .1 24520 32	1 51 .8 1 70 .9 1 70 .8 1 67 .7 1 77 .7	3 550 .1 2 1030 .1 4 1010 1.1 4 660 .7 3 790 .3	16 21 14 19 24	38 45480 540 47 51950 640 41 43920 920 51 43660 850 57 49240 1050	12 4820 635 13 5300 1023 10 4370 612 12 4910 916 15 5850 1017	2 90 10 2 1 140 8 5 2 120 11	770 39 860 59 1050 33 920 45 1050 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46.1 112 1 1 1 7 16 50.6 145 1 1 1 7 38 47.6 119 1 1 7 29 48.6 125 1 1 1 7 35 57.0 147 1 1 10 31
903-524 903-525 903-526 903-527 903-528	.1 19370 35 .1 18620 75 .1 21250 3 .1 21930 1 .1 20470 14	1 61 .7 1 41 .7 1 47 .5 1 52 .6 1 91 .8	2 400 .1 3 470 .5 1 320 .1 4 1180 .1 4 780 1.4	11 15 13 23 35	35 33980 930 39 48820 630 30 39020 580 54 45410 630 87 55110 650	10 3330 355 8 4230 631 8 3440 519 15 7650 875 14 5880 2497	3 170 6 2 110 4 1 100 4 4 90 15		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	43.0 89 1 1 1 8 45 48.5 105 1 1 1 6 32 45.8 78 1 1 1 8 6 60.3 104 1 2 19 1 57.4 129 1 1 10 30
903-529 903-530 903-531 903-532 903-533	.1 21440 53 .1 18260 28 .6 19790 33 .1 20330 7 .1 23780 90	1 75 1.2 1 50 .6 1 49 .5 1 94 .7 1 120 .8	5 1840 .5 4 1950 .1 2 1600 1.9 4 3090 .1 2 3150 1.1	19 12 15 15 21	52 53790 810 28 45040 530 47 50740 610 31 44910 650 72 51140 770	11 5030 1177 11 4700 498 10 4160 652 13 5970 692 21 6820 833	5 110 5 4 120 4 4 130 7	1220 48 1000 24 1340 33 1360 28 690 32	1 11 1 1 1 10 1 1 1 11 1 1 1 18 1 1 1 19 1 1	51.4 139 1 1 1 8 26 50.3 101 1 1 1 8 8 54.0 117 1 1 1 8 8 57.0 123 1 1 1 0 2 57.7 104 1 1 1 1 5
903-534 903-535 903-536 903-537 903-538	.2 23490 7 .4 20810 21 .2 24840 20 .2 23870 13 1.4 23370 2	1 95 .9 1 113 .8 1 142 .7 1 85 .8 1 156 1.1	2 2470 .2 4 6490 .1 5 4250 .1 6 2400 .1 4 9830 .1	19 15 23 28 12	54 50410 670 37 44330 690 109 51230 660 81 56020 640 69 42200 820	19 7430 720 16 6030 1046 20 7040 754 20 7700 1086 19 4430 446	6 140 8 4 190 13 5 140 11	620 23 1850 25 920 31 1050 33 1700 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57.7 118 1 1 1 11 6 51.4 143 1 1 1 1 1 1 59.1 132 1 1 1 10 4 61.3 116 1 1 11 3 50.7 128 2 1 12 8
903-539 903-540 903-541 903-542 40M 903-543 40M	.1 15470 1 .1 19580 1 .1 21180 1 .1 21430 17 .2 16230 15	1 138 .9 1 66 .6 1 59 .4 1 75 .8 1 74 .4	4 8160 .1 1 490 .1 2 580 .1 2 2540 .1 4 9820 .1	18 12 9 21 17	23 46440 860 22 40310 560 21 27940 740 44 51830 1050 34 44440 820	9 2300 3715 12 4380 707 11 4070 386 12 4730 1500 8 3830 1575	4 130 4 2 170 4 7 150 7	2540 32 1830 13 1240 5 190 37 1220 25	1 28 2 1 1 9 1 1 1 8 1 1 1 11 1 1 1 16 1 1	56.0 125 1 1 1 9 1 50.4 90 1 1 1 8 14 47.4 66 1 1 9 2 73.6 121 1 1 13 10 62.2 109 1 1 11 5
903-544 903-545 903-546 903-547 903-548	.2 21840 24 .5 25930 20 .1 26110 34 .1 19700 4 .1 26210 1	1 104 .8 1 59 .7 1 73 .5 1 48 .7 1 77 .8	3 4480 .5 1 800 .1 3 460 .1 2 350 .1 2 1090 .1	23 16 15 10 16	51 45780 740 51 54730 670 45 48480 930 29 33920 590 45 52250 530	15 6870 1007 17 4550 533 13 4570 544 9 2740 610 18 6280 532	4 100 5 4 140 8 1 1 80 3 1	860 40 050 30 080 26 150 13 840 33	1 11 1 1 1 9 1 1 1 9 1 1 1 9 1 1 1 7 1 1 1 8 1 1	58.1 115 1 1 1 12 9 59.0 103 1 1 10 7 66.6 117 1 1 13 6 47.7 68 1 1 10 6 60.4 104 1 1 11 8

PROJ: 515

ATTN: A.RAVEN/D.ALLEN

MIN-EN LABS --- ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 9V-1296-SJ11+12

DATE: OCT-20-89 • TYPE SOIL GEOCHEM * (ACT:F31)

(604)980-5814 OR (604)988-4524

SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU PPM	FE PPN	K PPM	LI M PPN PP			A NI M PPM			SB SR PPM PPM		U PPM	V PPM	ZN PPM P			W CR M PPM	AU PPB
903-549 903-550 903-551 903-552 40M 903-553	.2 18040 .1 23440 .3 25370 .2 30840 .2 25280	44 20 59 28 23	2 1 1 1	43 74 67 170 72	.4 .8 .7 1.1 .9	4 3 3 5	340 1000 790 3170 860	.1 .1 4.3 .1	11 18 16 21 18		43800 50180 51150 50140 57210	570 790 690 1790 700	7 269 12 497 16 571 22 659 13 584	0 103 0 46 0 135	3 3 11 2 4 11 5 3 32	0 6 0 5 0 15		25 22 35	1 7 1 8 1 9 1 17 1 10		1 0	50.9	78 102 96 159 104	1 1 1 1	1 1 1 1	1 6 1 11 1 11 1 17 1 11	26924
903-554 903-555 903-556 903-557 903-558 40M	.4 24470 .3 25940 .9 22950 .9 29360 1.2 29700	5 1 16 53 18	1 1 1 1	87 70 43 120 134	1.1 1.2 .7 1.1 1.3	3 4 5 4 6	2100 1470 450 4300 5420	1.2 .1 .1 .1	24 19 14 20 22	36 30 70	51780 47890 64220 46910 50680	830 630 480 1340 1380	16 605 15 560 7 296 22 696 22 784	0 74 0 46 0 96	2 3 9 2 2 10 0 6 20	0 11 0 1 0 14	1080 850 750	23 22 19 24 48	1 12 1 9 1 7 1 15 1 18	1 1 1	1	56.8 35.7 71.1	119 110 76 153 156	1 1 1 1	1 1 1 1	1 12 1 14 1 7 2 15 1 14	5 37 3 5 8
903-559 40M 903-560 903-561 903-562 903-563	3.7 29500 .8 21480 1.2 23240 1.1 20520 .6 24670	1 39 21 5	1 1 1 1	127 64 52 43 103	1.3 .6 .7 .4 .5	3 3 6 4 5	7490 1410 330 410 5280	.1 .5 .1 .1	22 15 16 14 12	34 43 32	50400 49970 74240 59710 38180	1370 920 660 510 990	21 633 9 489 10 440 10 354 19 480	0 68 0 44 0 48	7 3 13 5 4 10 9 4 11	0 6 0 1 0 1	850 840 910	41 16 22 19 25	1 24 1 9 1 8 1 7 1 18	1 1 1	18	38.2 77.3 70.0	193 80 91 76 105	1 1 1 1	1 1 1 1 1	1 11 2 10 1 7 1 6 1 11	36 7 5 14 4
903-564 40M 903-565 903-566 903-567 903-568	1.6 26820 .7 23080 1.8 24390 2.0 27450 .4 24570	14 34 33 28 58	1 1 1 5	94 85 49 109 65	.9 .8 .8 1.0 .9	3 4 5 5 6	4760 4770 370 6360 1820	.5 .1 .4 .1	18 14 17 15 15	38 39 51 41	51150 46620 75690 44670 58320	980 880 560 990 550	26 792 18 501 13 350 13 394 13 459	0 450 0 73 0 73 0 73 0 46	3 16 2 4 11 3 4 17	03 01 03	970 880 1040 790 740	25 23 18 21 36	1 16 1 15 1 8 1 15 2 10	1 1 1	1 7	73.8 71.9 76.5	141 118 102 128 116	1 1 1 1	1 1 1 1	1 13 1 10 1 7 1 10 1 9	7 32 5 44 16
903-569 40M 903-570 903-571 903-572 903-573	1.6 30710 .6 21120 1.3 24290 .6 19390 3.0 30850	1 10 54 11 31	1 1 1 1	148 49 54 45 131	1.1 .6 .7 .7 1.1	4 1 8 2 6 1	6280 790 510 420 10140	.5 .1 .1 .1	23 13 18 15 20	32 46 35	45410 61000 75050 76140 71230	1380 530 660 590 1010	27 694 12 332 10 438 6 253 32 494	0 414 0 492 0 425	3 11 1 12 2 11	0 1 0 1 0 1	860 730 1150	44 11 25 14 19	1 19 1 8 2 8 1 8 1 20	1	18	8.4 37.1 21.0	158 83 97 85 150	1 1 1 2	1 1 1 1	1 15 1 6 1 8 1 4 2 17	11 13 12 2 5
903-574 903-575 903-576 903-577 40M 903-578	1.7 22910 1.0 24490 .6 17360 5.5 28020 .8 21160	27 42 50 13 18	1 1 1 1	81 78 75 112 38	.8 .8 .5 1.2 .9	43	1070 6300 2130 9950 530	.1 .1 .1 .1	13 17 14 17 18	48 45 70	44870 46680 49960 42460 90730	630 690 590 1100 370	17 4860 19 5100 8 3600 19 5830 9 3600) 728) 503) 1145	3 18 3 11 4 16	08 02 010		17 19 34 31 31	1 20 1 15 1 11 1 27 1 9	1 1 1 1	17	2.2	122 118 99 181 88	1 1 1 1	1 1 1 2	1 11 1 12 1 8 1 13 1 7	13 3 38 9 5
903-579 40M 903-580 903-581 903-582 903-583 40M	.9 14850 .7 16170 2.4 17970 1.1 11470 .7 16850	13 51 23 15 52	1 1 1 1	59 34 62 47 62	.6 .6 .9 .5 .8	6 5 3 1 3	3210 200 4460 3620 3600	.1 .1 .1 .1	16 15 16 13	31 62 36	76070 78420 45540 41970 49120	450 330 880 350 490	6 3020 7 2270 15 3050 9 1350 14 2330) 362) 812) 158	37 413 29	01 06 05	1220 960 1670 570 960	13 27 15 2 15	3 12 1 8 1 17 1 12 1 13	1 1 1 1	1 9	7.2 1.2 3.0 6.5 8.7	84 80 186 96 83	1 1 1 1	2 1 1 1	1 4 1 5 1 8 1 2 1 6	2 12 6 5 27
903-584 903-585 903-586 903-587 903-588 40M	.4 20830 1.2 27200 .8 22340 1.3 31180 .5 14720	19 29 82 3 4	1 1 1 1	51 70 59 70 41	.5 .9 .8 .8 1.0	6 7 7 6 5	390 590 360 630 940	.1 .1 .1 .1	15 18 19 16 16	43 45 52	63700 78800 98820 61820 84340	440 630 540 610 430	8 2670 17 4420 12 3160 25 5350 4 1840) 591) 585) 418	4 8 3 10	0 1 0 1 0 6	1210 1280 1030 1050 2030	25 20 25 20 20	2 8 1 8 1 8 1 7 1 10	1 1 1 1	18		80 98 104 142 85	1 1 1 1 1	1 1 1 1	1 5 1 9 1 7 1 10 1 3	1 3 11 5 2
903-589 903-590 903-591 903-592 903-593	1.8 26220 1.7 20340 1.6 19130 1.3 18710 .6 14790	11 26 30 30 37	1 1 1 1	84 87 56 34 32	.8 .7 .9 .6 .5	5 6 4 3	3130 5310 2760 380 300	.1 .1 .1 .1	16 14 15 15 11	30 30 35	44620 45870 44670 73390 54690	730 500 540 320 500	22 6850 32 4440 18 6250 8 3190 5 2230) 242) 652) 342	4 8 4 8 2 6	05 08 01	1220 860 870 740 730	19 25 35 31 15	1 13 1 17 1 11 1 8 1 7	1 1 1 1	15	9.5 8.7	159 126 125 100 62	1 1 1 1	1 1 2 1	1 13 1 10 1 11 1 6 1 4	18 5 36 14 3
903-594 903-595 40M 977-016 977-017 20M 977-018 40M	.9 23210 1.8 19960 1.3 20360 1.2 37170 1.8 25930	42 42 36 8 10	1 1 1 1	34 70 140 311 458	.7 1.2 1.0 1.6 1.0	5 7	280 6770 4760 6850 2680	.1 .1 .1 .1 .1	16 25 23 30 13	45 53 71	57660	380 470 1350 1720 1100	12 2590 17 3560 15 6030 21 5820 17 3480) 1637) 809) 3921	5 19	0 6 0 12 0 18	910 1330 880 1630 840	19 57 43 90 22	1 8 1 19 3 33 1 57 1 93	1 1 1 1	16 15 17	8.2 1.4 2	92 108 137 201 131	2 1 1 1 1	3 1 2 1	1 6 9 1 12 1 15 1 11	5 4 7 2 9
977-019 40M 977-020 977-021 977-022 977-022 977-023	1.4 25860 1.2 25820 1.0 26530 1.3 26010 1.4 26990	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1	286 263 136 325 296	1.0 .8 .9 .9 1.0	3	7050 6870 4870 8630 7560	.1 .1 .1 .1	19 13 17 15 17	28 43 49	41690	1050 840 1010 1170 1110	19 6080 21 4550 20 4670 20 4700 20 5630) 277 805 724	3 17	0 4 0 5 0 12	740 490 540 740 730	44 28 28 19 62	1 45 1 45 1 34 1 47 1 41	1 1 1 1	17	2.0	140 109 142 144 147	1 1 1 1	1 1 1 1	1 13 1 11 10 12 12	13 6 10 14 9
977-024 977-025 977-026 977-027 977-028	.8 22210 .8 21170 .6 25960 .8 21030 1.0 21630	14 13 1 3 11	1 1 1 1	114 239 102 239 313	.8 .7 .9 .6 .8	235	2180 3380 1110 4920 8700	.1 .1 .1 .1	18 13 13 13 14	34 25 42	50110 38480 54950 41410 40140	990 890 600 520 790	16 5630 16 3340 29 3680 19 3530 18 3600	563 301 358	2 16 1 15 3 11) 7) 1) 5	490 520 750 360 800	35 18 5 21 19	1 15 1 15 1 8 1 25 1 46	1 1 1 1	19	4.0 1 0.3 1 6.4 1	27 11 06 29 77	1 1 1 1	1 1 1 1	11 8 7 9 11	7 6 5 3

	-		
COMP:	INTERTECH	MINERALS	LTD.

AG PPM

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST. NORTH VANCOUVER B.C. V7N 112

FILE NO: 9V-1296-SJ13+14

DATE: OCT-20-89

ATTN: A.RAVEN/D.ALLEN

PROJ: 515

SAMPLE NUMBER

								102 M	ESI 1	DIN SI.	, NUK	CIN VI	ANCOUN	VEK, B	s.c. v	(/ M 11	2										L.	AIE:	001	-20-89
4									(604)980	-5814	OR	(604)	988-45	24								٠	TYPE	SOIL	- GEC)CHE	4 •	(AC	T:F31)
AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI PPM	CA PPN	CD PPM	CO PPM	CU	FE PPN	K PPM	LI	MG PPN	MN PPM	MO PPM	NA PPM	N I PPM	P PPM	PB PPM	SB PPM	SR PPM	TH	U	V PPM	ZN PPM	GA PPM	SN PPM	W PPM	CR	AU PPB
12870 17480 18360	13 67 38	1 1 1	50 47 60	.5 .5 .8	3 4 3	1300 360 5140	.1 .1 .1	11 41 19	33 85 53	34950 93860 47280	510 390 790		1670 3150 5410		1 10 7	110 70 120	2 9 10	1230 1030 870	92 42 38	1 1 1	7 7 17	1 1 1	1	58.3 46.1 49.6	94 113 129	1	1	1 1 1	5 1 10	36 37 49

977-029 977-030 977-031 977-032 977-033	.1 12870 13 .1 17480 67 2.3 18360 38 1.1 20220 101 2.0 17930 90	1 50 .5 3 1300 .1 1 47 .5 4 360 .1 1 60 .8 3 5140 .1 1 65 1.0 4 3790 .1 1 61 .8 4 5140 .1	41 85 93860 390 1 19 53 47280 790 1 24 64 52900 830 1	4 1670 743 1 110 0 3150 2167 10 70 9 5410 998 7 120 9 6100 1070 3 130 3 5400 557 3 140	2 1230 92 1 9 1030 42 1 10 870 38 1 10 640 41 1 8 1040 29 1	7 1 1 58.3 94 7 1 1 46.1 113 17 1 49.6 129 15 1 1 55.2 120 13 1 2 47.0 135	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
977-034 977-035 977-036 977-037 977-038	1.5 21290 311 1.7 30270 111 .5 18150 138 1.4 20860 338 .4 23230 36	1 85 .9 7 4730 2.2 1 74 1.2 3 2780 .2 1 68 .8 4 3040 .1 1 59 1.0 2 9000 1.6 1 63 .6 5 3040 .1	21 59 53920 730 2 28 63 84480 640 1 28 59 57970 490 2	8 7210 1076 5 140 1 6280 576 4 170 8 2680 912 4 110 0 3950 1623 3 90 9 6760 620 4 160	13 710 45 1 11 790 34 1 4 890 31 1 7 1860 38 1 7 590 27 1	14 1 1 56.3 143 10 1 2 59.7 140 14 1 1 58.1 143 18 1 39.5 138 12 1 1 65.1 120	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
977-039 977-040 977-041 977-042 977-043	.6 20910 47 1.5 23490 12 1.3 22230 54 .4 21730 39 .3 25400 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 64 44440 1150 2 21 48 51040 950 1 16 37 64750 420 1	17 4460 565 3 120 12 6190 1747 6 200 19 7120 840 5 160 16 7120 840 5 160 17 6 100 1 90 12 6430 387 2 100	1 750 33 1 13 1170 27 1 12 940 48 1 4 650 17 1 4 460 26 1	12 1 1 63.2 223 21 1 1 56.7 138 19 1 58.8 155 16 1 1 63.0 120 6 1 1 61.2 110	1 1 1 8 9 1 1 1 13 30 1 1 1 11 35 1 2 1 7 28 1 2 1 10 6
977-044 977-045 977-046 977-047 977-048	4.7 26500 459 2.0 20420 926 1.1 30020 67 2.9 33220 361 3.8 26230 113	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22 46 53320 760 2 18 53 57360 600 2 39 157 70750 1610 3	5 5790 3429 2 120 10 3150 3041 3 120 13 5830 568 3 110 2 6660 5851 8 250 5 5790 1223 4 150	16 2770 101 1 9 1360 63 1 8 860 43 1 33 990 50 1 11 2300 51 1	25 1 1 43.6 175 23 1 1 47.4 210 9 1 59.3 135 20 2 1 62.1 190 22 1 1 53.1 195	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
977-049 977-050 977-051 977-052 977-053	.7 24590 27 1.0 27190 12 4.3 23490 21 1.0 24870 25 .8 26440 29	1 94 .7 5 3870 .1 1 64 .8 5 1480 .1 1 82 1.1 5 8390 .1 1 75 .6 6 2910 .1 1 65 .8 5 890 .1	15 45 46640 530 1 15 49 42900 860 2 21 55 54490 790 2 20 53 56090 700 1	8 6310 955 4 130 6 4960 464 3 100 10 5400 843 4 140 1 6350 667 3 150 9 6910 629 5 120	8 570 34 1 4 920 37 1 7 1810 39 1 11 840 24 1 9 560 33 1	11 1 1 69.7 127 7 1 1 58.8 106 18 2 3 48.8 160 11 1 64.0 132 6 1 1 67.3 123	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
977-054 977-055 977-056 977-057 977-058	.6 21350 41 1.9 28360 61 1.8 28790 114 2.5 15970 471 .1 10610 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21 79 55040 560 2 20 43 63770 340 2 24 64 52400 620 7 16 22000 260	12 5050 573 4 110 14 6660 842 4 110 12 3520 947 1 90 7 2970 4423 3 100 3 1270 146 2 70	3 770 16 1 11 1250 52 1 1 1770 16 1 13 2440 58 1 2 460 2 1	20 1 1 63.0 120 17 1 1 51.6 127 20 1 1 46.0 143 22 1 1 28.3 171 5 1 1 44.6 45	1 1 1 9 42 1 2 1 14 61 1 2 1 8 5 1 2 1 8 5 1 2 1 4 16 1 1 1 4 2
977-059 977-060 977-061 977-062 977-063	.5 14530 37 .7 23780 24 1.8 25900 18 1.3 23830 27 1.4 24160 30	1 28 .3 3 520 .1 1 57 .4 5 710 .1 1 73 1.0 3 3690 .1 1 81 .8 5 4260 .1 1 77 .9 6 3940 .1	17 48 61260 440 1 18 44 55540 580 2 22 54 52130 810 1 19 50 62650 850 2	6 1880 317 1 70 6 4840 606 3 90 9 6090 522 2 130 8 8040 1250 3 150 2 7860 900 6 180	1 750 2 1 1 610 22 1 6 910 11 1 11 920 49 1 9 1050 28 1	7 1 1 70.6 72 5 1 1 61.5 105 9 1 1 63.6 124 13 1 1 63.9 142 14 1 1 64.8 160	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
977-064 977-065 977-066 977-067 977-068	1.2 25110 1 1.4 23900 41 2.8 14660 50 1.0 22400 24 1.3 17090 17	1 88 .7 5 3530 .1 1 46 .6 4 740 .1 1 68 .5 2 7170 .1 1 65 .4 4 330 .1 1 82 .7 4 3090 .1	16 39 73580 490 1 19 53 41050 730 1 19 59 64510 570 1 21 36 45710 860 1	5 7690 645 3 180 4 4510 494 3 120 2 2200 527 4 150 6 4250 558 3 120 1 2610 1727 2 180	11 790 22 1 1 770 15 1 4 850 15 1 5 680 12 1 6 990 19 1	12 1 1 61.9 157 5 1 1 66.2 98 44 1 1 57.7 88 33 1 1 58.6 108 19 1 1 58.9 97	1 1 1 12 8 2 1 1 8 7 1 1 1 8 8 1 1 1 7 7 1 1 1 6 2
977-069 977-070 906-327 906-330 906-331	.8 26110 12 .8 30250 28 4.3 7470 430 .4 24000 21 3.0 28000 16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27 74 52850 1150 2 35 183 115760 1000 14 29 51980 640 1 13 31 46770 620 2	8 5570 562 2 150 0 6770 869 3 200 2 800 2517 1 50 0 4500 394 1 140 8 5540 234 4 110	6 740 22 1 16 880 27 1 1 2160 69 11 4 680 20 1 8 720 25 1	8 1 1 63.0 119 10 1 1 64.4 146 28 1 1 33.1 263 5 1 1 75.2 87 6 1 1 63.0 122	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
906-332 906-333 906-334 906-335 906-336	1.1 22180 16 2.9 23750 6 1.7 23420 21 1.1 35510 53 1.0 23320 33	1 85 .7 5 2170 .1 1 78 .5 3 1620 .1 1 97 .8 5 2260 .1 1 48 .6 4 250 .1 1 97 .6 4 380 .1	13 39 37580 630 1 15 30 42950 1010 1 16 43 68100 500 2 13 32 43600 850 2	8 6970 587 3 160 9 5980 267 3 150 8 6860 418 4 160 0 4320 373 1 100 1 6080 261 2 140	8 730 19 1 10 750 8 1 9 750 19 1 2 600 29 1 6 340 11 1	9 1 1 59.8 130 7 1 1 53.1 103 10 1 58.7 161 3 1 1 62.7 143 6 1 1 64.0 128	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
906-337 906-338 906-340 906-341 906-342	1.4 21750 37 1.4 20770 21 1.9 21500 73 2.7 26350 70 .7 17030 228	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 27 64460 540 22 56 44270 980 1 19 83 50230 1070 2 38 63 76900 660 2	5 4460 313 2 90 6 2770 397 3 90 6 6340 956 2 130 4 6260 1508 3 150 0 3010 2267 1 80	5 620 34 1 1 600 18 1 13 800 83 1 12 730 57 1 4 920 123 1	6 1 1 57.2 123 4 1 1 74.7 85 12 1 1 54.1 170 20 1 1 64.8 214 19 1 1 53.8 266	1 1 1 8 7 1 1 1 4 4 1 1 1 1 96 1 1 1 1 10 1 2 1 2 217
906-343 906-344 906-345 906-346 906-347	1.6 19470 93 1.3 16510 287 .9 20540 138 4.2 22390 162 .8 14430 220	1 86 .9 5 5100 1.3 1 65 .8 3 6700 2.3 1 67 .5 3 4640 .1 1 70 .7 4 7970 .2 1 50 .5 2 520 .1	28 47 73010 700 1 13 53 44640 630 1 12 67 38380 540 3	9 6200 850 3 120 2 3120 2209 2 90 6 3280 313 2 100 6 3970 573 2 80 5 1700 468 3 70	14 620 49 1 5 830 111 1 3 350 34 1 6 920 55 1 1 570 56 1	17 1 1 53.1 208 14 1 1 64.8 258 12 1 1 68.8 130 17 1 1 50.5 258 6 1 69.4 116	1 1 1 10 2 1 1 1 1 6 1 1 1 7 21 1 1 1 8 9 1 1 1 3 50

PROJ: 515

ATTN: A.RAVEN/D.ALLEN

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 9V-1296-SJ15 DATE: OCT-20-89

• TYPE SOIL GEOCHEM * (ACT:F31)

ATTAL ALKAVEN/D-ALLEA									(004	//00	- 3014		04770	N 431	-7										ITE -	5012	GEUCI			
SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B PPM		BE PM	BI PPM	CA PPM	CD PPM	CO PPM	CU			LI	MG PPM	MN PPM	MO PPM P		NI Pm i		PB PPM F		SR PP m	TH PPM I	U PPM	V PPM			SN PPM P		CR A PM PP
906-348 40M 906-349 20M 906-350 906-351 906-352	.5 23150 .6 14260 .4 22100 1.0 20830 .4 20450	60 436 91 67 39		65	.8 .6 .6 .4 .5	5	3610 3820 680 2170 490	.1 4.0 .1 .1 .1	17 23 16 11 13	34 39 40 33	52550 58750 51850 41390 53660	730 690 710 580 800	29 13 15 15	5000	778 2086 668 220 307	3 1 8 1 1 2 1 1 1	10 40 10 10 20	3231	660 630 530 460 370	41 102 34 12 29	1 2 1 1	12 11 8 10 6	1 1 1 1	1 1 1 1	72.0 24.7 76.3 79.5 103.9	187 147 134	1 1 2 2	2 2 1 1	1 1 1 1	8 1 6 6 2 5 1 6
906-352DUP 40M 906-353 906-353DUP 40M 906-354 906-354DUP 40M	3.3 26840 3.1 26350 6.6 24010 4.6 20060 .8 21120	93 53 169 210 37	1 1 1 1	152 1 77 1 77	.0 .1 .0 .9 .6	8 5 5 1	9460 6800 9510 0230 1100	.1 .1 4.1 3.0 .1	20 22 20 16 14	69 60 68	50890 48490 47000 40580 46270	1020	19 24	5180	1239 1537 1107 1147 381	3 1 5 1 3 1 3 1 2 1	60 10 90	11 1) 13 10	950 780	48 48 39 34 34	1 1 1 1	24 25 26 24 7	1 1 1 1	1 1 1 1	58.0 56.4 48.8 49.5 67.8		1 1 1 1	1 2 1 1	1 1	12 2 11 3 12 4 11 2 7
906-355 40M 906-357 906-358 906-359 40M 906-360	1.0 17960 1.5 20870 .8 14050 4.0 21290 .9 21680	48 103 91 230 51	1 1 1 1	95 72	.5 .8 .4 .9 .6	6 2 4	5850 7240 5210 8630 5530	.7 .3 .1 2.5 .1	15 24 11 21 17	58 46 67	43230 50480 38260 52150 45580	910	21 (11 20 (1730	684 1031 162 1083 462	3 1 3 1 4 1 3 1	20 90 10	12 2 8 1	560 640 500 160 370	31 80 22 278 47	1 1 1 1	14 16 14 20 14	1 1 1 1	1 1 1 1	65.0 60.8 56.1 48.4 63.5	196 94 260	1 1 1 1	1 1 1 2	1	8 1 11 4 5 1 10 14 10 2
906-361 906-366 906-367 906-368 906-369	2.1 24110 .7 20810 1.1 30640 2.2 27230 1.5 27810	55 26 16 37 45	1 1 1	47 73 99 73	.0 .3 .6 .7 .7	5 6 5 7	6140 440 720 1540 670	.1 .1 .1 .1	21 13 16 17 16	28 43 47 43	49870 47350 52240 49150 54460	710 980 660	8 22 19 22	6220 3450 5200 6250 6260	724 313 504 588 453	4 1 2 1 1 1 4 1 3 1	20 30 50 10	7 (9) 8 (400 560 780 480	56 17 29 28 36	1 1 1 1	19 6 6 9 5	1 1 1 1	2 1 1 1	82.5 73.8 69.0 66.5	159 134	1 4 2 2 1	1 1 1 2	1 1 1 1	11 3 9 1 10 1 12 1 11 0
906-370 40M 906-371	1.4 25720 4.5 27860	55 126	1		.8 .1	4 6 1	2930 2300	.1 2.0	18 20		51190 40640	820 760	23 (21 (6560 4720	529 3209	2 1 3 1	20 10	10 ! 18 20	560 040	37 57	1 1	11 26	1 1	1 1	65.9 46.5	168 171	3 1	1 1		10 9 13 13
																														- '
												<u></u>																	<u></u>	
									<u>, , ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,</u>	<u>.</u>				<u> </u>																
											·····																			
															<u></u>		<u></u>													

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMPLOSING AFERICAL TRANSPORTS NORTH VANCOUVER, B.C. CANADA V7M 1T2 TELEPHONE (604) 980-5814 OR (604) 988-4524 TELEX, VIA U.S.A. 7601067 • FAX (604) 980-9621

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Assay Certificate

9V-1296-RA1

(

Company: INTERTECH MINERALS Project: 515 Attn: A.RAVEN/D.ALLEN Date: OCT-22-89 Copy 1. INTERTECH MINERALS, VANCOUVER, B.C. 2. A & M EXPLORATION, VANCOUVER, B.C.

He hereby certify the following Assay of 1 ROCK samples submitted OCT-18-89 by DON ALLEN.

Sample	AU	AU
Number	G/TONNE	OZ/TON
906323B	.04	.001

Certified by

MIN-EN LABORATORIES

APPENDIX II

Statistical Treatment of Analytical Results

.

• .

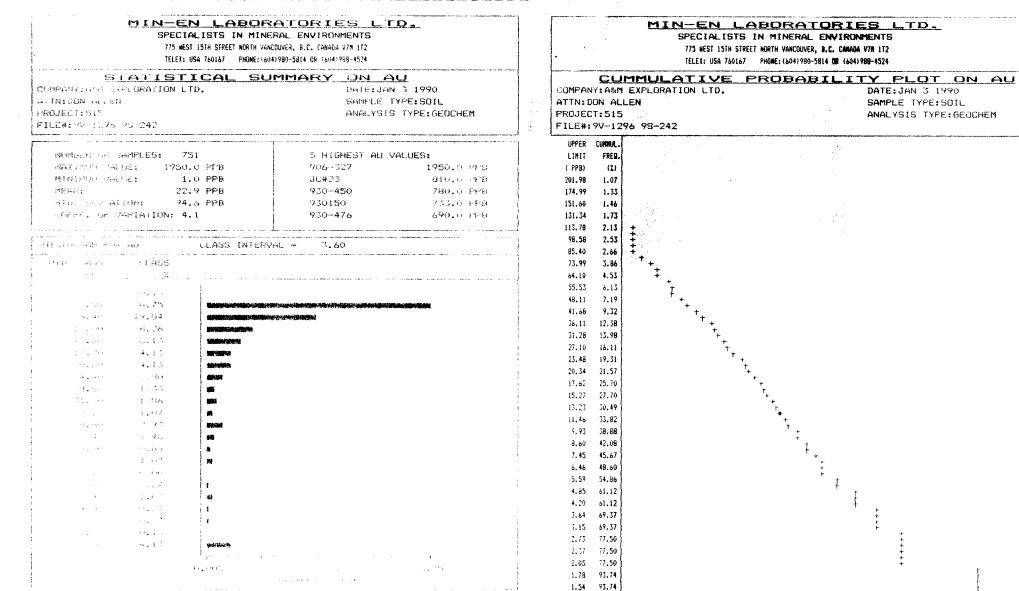
MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS

775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

TELEX: USA 750167 PHONE: (504) 980-5814 DR (604) 988-4524

CORRELATION COEFFICIENTS


CUMPANY:A&M EXPLORATION LTD. ATTN:DON ALLEN PROJECT:515 FILE#:9V-1296 98-242

DATE:JAN 3 1990 SAMPLE TYPE:SOIL ANALYSIS TYPE:GEOCHEM

THE TABLE BELOW REPRESENTS THE PEARSON CORRELATION MATRIX SHOWING THE INTER-ELEMENT CORRELATION COEFFICIENTS. THOSE VALUES THAT EXCEED THEIR CRITICAL VALUE FOR .01 LEVEL OF SIGNIFICANCE ARE SHOWN IN DARKER PRINT AND UNDERLINED.

	AG	AS	CD	PB	SB	ZN	AU	
AG	t.00	0.08	0.08	0.17	0.08	0.22	0.36	
AS		1. OO	0.82	0.25	Ŏ"Q1	<u>0.32</u>	0.29	
CD 03			1.00	0.26	-0.01	0.29	<u>0.17</u>	
PB				1.00	0.02	0.28	0.46	
SB					1.00	<u>0.17</u>	0.01	
ZN						1.00	0.21	
AU							1.00	

98.00 2% 57 107 157 207 307 407 507 607 707 407 857 907 957 947 CUMMULATIVE PROBABILITY

93.74

93.74

1.33

1.15

1.00

MIN-EN LABORATORIES LTD. SPECIALISTS IN MINERAL ENVIRONMENTS 775 NEST 15TH STREET NORTH VANCOUVER, B.C. CAMADA V7N 112 TELEX: USA 760167 PHONE: (604)980-5814 OR (604)980-4524				3		SPECIALI 775 WEST 15 TELEX: USA	LABORATOR ISTS IN MINERAL ENVI ITH STREET NORTH VANCOUVER, B.C. C 760167 PHONE: 16041980-5814 DR	RONMENTS ANADA V7N 172 (604)988-4524
MFANY:A&H E) OMFANY:A&H E) ITTN:DON ALLEN R0JECT:515 TLE#:9V-1296	EXPLORATION IN	STICAL SUP N LTD.	DATE: SAMPL	LAG JAN 3 1990 PLE TYPE:SOIL .YSIS TYPE:GEOCHEM	COMPANY: AS ATTN: DON / PROJECT: 5	&M EXPLORATION LTD.		ITY PLOT ON AG DATE:JAN 3 1990 SAMPLE TYPE:SD1L ANALYSIS TYPE:GEOCHEM
NUMBER OF S MAXINUM VAL MINIHUM VAL MEAN: SID. DEVIAT COEFF. OF V	ALUE: 1 ALUE: ATION:	112.2 PPM 0.1 PPM 1.4 PPM 4.2 PPM	5 HIGHEST 4 JC#23 930-412 930-077 930-526 930286	AG VALUES: 112.2 PPM 10.8 PPM 10.4 PPM 7.9 PPM 7.8 PPM	UPPER CUMMU LIMIT FRE (PPM) 17 6.15 1.2 5.50 1.4 4.92 2.1 4.40 2.8 3.94 3.6	EE. 12 13 13 14 13 14 13 14 15 16 17 16 17 17 17 17 17 17 17 17 17 17		
HISTUGRAM FOR MID CLASS	DR AG CLASS	CLASS INTERVA	/AL = 0.18		3.52 4.9 3.15 5.8 2.82 7.5	86 + + + + + + + + + + + + + + + + + + +		
PPM	······································				2.52 9.4	38 [†] +		
	0.13 9.05				2.02 15.0		+ ;+	
12. 30	7.99				1.81 17.6	1	* *	
0.55	12.52				1.45 28.2	23	`+ +	
0.23 0.91	14.78 5.59				1.29 34.4	1	· ‡	
1.07	11.45				1.16 38.4	(*	
1., 27	7.05			-	0.93 49.9	1	‡	
E, 4%	6.92			;	0.83 55.5	53	+	· •
1.83 7.81	4.25 2,40				0.74 63.5			ŧ
1.61 (.179	2.40				0.66 70.3	•		· ‡ _
17	2.66	23CMTWP53020			0.59 //./ 0.53 77.1	1		
2.33	1.35	envinere):s			0.48 82.8			÷ .
2152	1.45	1994-349845			· 0.43 82.5	82		+- •
1. 71 1. 182	6,40 : 92	1971 Alian additis taur			9,38 88.0	(
1. 1818 1. 197	1,95	Mar and Market a			0.34 88.0	}		
atte	() - () () - ()	6649			0.30 88.0 0.27 90.8	1		•
54 F (24 	11			0,24 90.5	(*
$\Sigma_{1} \gg t$	0.15	÷			90.8			4- 8-
1. A. M.	4.7	的社会地认为一些的教 授先生中心中的			u.20 94.0			+
		and the second s		4. <u> </u>	0.17 94.0	1		
			・1111-1121 ・11日におビュー(ス)	1. 1. 11/4	0.16 94.0	1		۲ ۲ ۴
				the second se	0.14 94.0	f		,
					0.11 94.0	5		! +

C

(

SPECIALISTS IN MIL 775 WEST 15TH STREET NORTH V	DRATORIES LTD. INERAL ENVIRONMENTS VANCOUVER, B.C. CANADA V7N 1T2 16041980-5814 OR (604)988-4524	SPECIALIS 775 WEST 1576	LABORATORIES LTD. STS IN MINERAL ENVIRONMENTS IN STREET NORTH VANCOUVER, B.C. CANADA V7N 172 760167 PHONE: (604)980-5814 DR (604)988-4524
STATISTICAL S CUMPANY: A&M EXPLORATION LTD. ATTN: DON ALLEN PROJECT: 515 FILE#: 9V-1296 95-242	UMMARY ON AS DATE:JAN 3 1990 SAMPLE TYPE:SOIL ANALYSIS TYPE:GEOCHEM	CLIMMULATIVE COMPANY: A&M EXPLORATION LTD. ATTN: DON ALLEN PROJECT: 515 FILE#: 9V-1296 95-242	E PROBABILITY PLOT ON AS DATE:JAN 3 1990 SAMPLE FYPE:SUIL ANALYSIS TYPE:GEDCHEM
NUMBER OF SAMPLES: 751 MAXIMUM VALUE: 1199.0 PPM MINIMUM VALUE: 1.0 PFM MEAN: 50.9 PPM STD. DEVIATION: 85.9 PPM COEFF. OF VARIATION: 1.7	5 HIGHEST AS VALUES: 930-421 1199.0 PPM 977-045 926.0 PPM 930-412 645.0 PPM 977-057 471.0 PPM 977-044 459.0 PPM	UPPER CUMMUL. LIMIT FREQ. (PPM) (2) 396.60 1.33 337.39 1.60 287.01 2.13 + 244.16 2.93 + 207.71 3.99 + 176.70 3.99 +	
HISTOGRAM FOR AS CLASS INTER MID CLASS CLASS	RVAL = 10.35	176,70 3,99 + 159,31 5,19 + 127,87 5,26 +	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		92.54 11.19 78.72 14.51 66.97 19.97 56.97 25.43 48.46 52.36 41.23 38.08 35.07 44.47 29.84 51.26 25.39 55.66 21.59 60.72 18.37 65.51 15.63 69.94 1.52° 72.97 11.31 76.17 9.62 79.63 8.18 79.76 6.96 82.42 5.92 85.49 5.04 85.49 5.04 85.49 5.04 85.49 5.04 85.49 5.04 85.49 5.04 85.49 5.04 85.55 1.91 87.88 1.62 97.88 1.62 97.88 1.62 97.88 1.62 97.88 1.62 97.88 1.62 97.88 1.62 97.80	

SPECIALIST 775 WEST 15TH ST	ABORATORIES LTD. 3 IN MINERAL ENVIRONMENTS REET NORTH VANCOUVER, B.C. CANADA V7N 1T2 7 PHONE: (504)980-5814 OR (504)988-4524		SPECIA 775 WEST IELEX: U	N LAFORATORI NLISTS IN MINERAL ENVIR ISTH STREET WORTH VANCOUVER, B.C. CAN SA 760167 PHOME: (604)980-5814 DR (6	DNMENTS ADA V7N 1T2
STATISTICA CUMPANY:A&M EXPLORATION LTD. ATTN:DON ALLEN PROJECT:515 FILE#:9V-1296 98-242	DATE: JAN 3 1990 SAMPLE TYPE: SOIL ANALYSIS TYPE: GEOCHEM	1 PRO			TY PLOT ON CD DATE: JAN 3 1990 SAMPLE (YPE: SUIL ANALYSIS TYPE: GEOCHEM
NUMBER OF SAMPLES: 751 MAXIMUM VALUE: 13.6 FPM MINIMUM VALUE: 0.1 PPM MEAN: 0.3 PPM STD. DEVIATION: 0.9 PPM COEFF. OF VARIATION: 2.9	1 977-045 11.6 P 1 930-412 6.7 P	PPM (F PPM) PPM 3 PPM 3 PPM 3	PPER CUMMUL. INIT FREQ. PPN) (2) 3.81 1.07 3.45 1.07 3.45 1.07 5.13 i.20 2.83 1.46 2.57 1.86		
MID CLASS CLASS	55 INTERVAL = 0.07		2.33 2.26 2.11 2.53 1.91 2.93		
PEM Z 0.10 0.13	ni. 2016 - Richard Bannard Chanad Sana Sana Sana Sana Sana Sana Sana		1.57 4.13 4.42 4.53 1.42 4.53 1.17 5.59 4.06 6.39 9.95 6.52 79 6.66 0.72 8.00 9.65 7.19 9.55 9.99 9.55 9.99 1.53 9.99		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.48 11.58 1.44 11.58 1.44 12.65 1.52 12.65 1.53 12.65 1.33 12.65 1.33 12.65 1.59 12.65 1.71 14.15 1.71 14.25 1.72 14.25 1.74 14.25 1.14 15 1.14 15	* * * * * *	
1.2727 42.2727 2569 1.2727			1, 16 (17, 45) 2, 16 (15, 4) 4, 15 (15, 4)	5- 4 7 8	

MIN-EN LABORATORI	ES LTD.
-------------------	---------

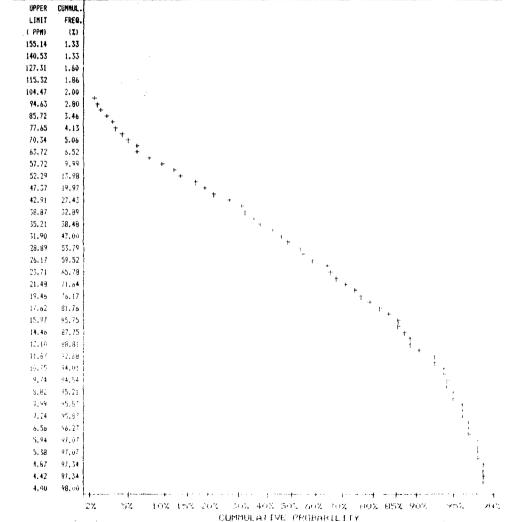
SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

TELEI: USA 760167 PHONE: (604)980-5814 DR (604)988-4524

STATISTICAL SUMMARY ON PB

CUMPANY:A&M EXPLORATION LTD. ATTN:DON ALLEN PROJECT:515 FILE#:9V-1296 95-242	DATE:JAN 3 1990 SAMPLE TYPE:SOIL ANALYSIS TYPE:GEOCHEM
NUMBER OF SAMPLES: 751	5 HIGHEST PB VALUES:
MAXIMUM VALUE: 1114.0 PPM	930-450 1114.0 PPM

MINIMUM VALUE: 1.0 PPM	930150	350.0 PPM
MEAN: 37,1 PPM	906-359 40M	278.0 PPM
STD. DEVIATION: 49.0 PPM	930-130	268.0 PFM
COEFF. OF VARIATION: 1.3	930-476	226.0 PPM


HISTOGRAM FOR	P8	CLASS INTERVAL	_ = 3.95	
MID CLASS	CLASS			
F'PM	7.			
1.00	0.13	1.		
2.97	2.53			
6.92	2.13			
10.87	4.66		建筑条件	
14.82	6.39			
18.77	9.85			
22.72	9.72			
16.07	10.79			i sa shakara
30-02	7.85			
14.57	9.45	ICONTRACTOR AND A DESCRIPTION OF THE OWNER		944H
23, 52	5.35		書を取ります。	
421.47	4.79		制制的建筑的时间 建苯基苯基苯基苯基苯基	
48,41	3.86			
Sec. 31	4.53	The spin state of the state of	*****	
and the	1			
1984, 2017	2.40	State And And Address of the Address		
	1,86	Sain Performand E		
1993 B (1	0.67	法制作用		
10 s 1 l	1.1	和 時代通知		
4,67		WEX .		
4.10.		9 3		
2 19 - 19 19	. 27		by y	
		tops is a marked in a	· • • · · · · · · · ·	
		10 July 10 March 10 July 10 Ju		11. 792

MIN-EN LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7N 1T2

TELEX: USA 760167 PHONE: (604) 780-5814 OR (604) 983-4524

CUMMULATIVE	PROBABILITY PLOT ON PB
COMPANY: A&M EXPLORATION LTD.	DATE: JAN 3 1990
ATTN: DON ALLEN	SAMPLE TYPE: SOIL
PROJECT: 515	ANALYSIS TYPE: GEOCHEM
FILE#:9V-1296 95-242	

MIN-EN LABOI SPECIALISTS IN MIN 775 KEST 15TH STREET NORTH V TELET: USA 760167 PHONE: (MIN-EN SPECIALIS 775 WEST 15TH TELEX: USA 76 CUMPANY: A&M EXPLORATION LTD. ATTN: DON ALLEN PROJECT: 515 FILE#: 9V-1296 9S-242					
STATISTICAL SI COMPANY:A&M EXPLORATION LTD. ATTN:DON ALLEN PROJECT:515 FILE#:9V-1295 95-242	AT PR						
NUMBER OF SAMPLES: 751 MAXIMUM VALUE: 1481.0 PPM MINIMUM VALUE: 1.0 PPM MEAN: 3.2 PPM STD. DEVIATION: 54.0 PPM COEFF. OF VARIATION:16.8	5 HIGHEST SB 930-077 906-327 930228 930-450 930241	VALUES: 1481.0 PFM 11.0 PFM 9.0 PFM 9.0 PFM 7.0 PFM 7.0 PFM		UPPER CUMMUA LIMIT FREG PPN) (2) 4.89 1.44 4.69 1.44 4.49 1.46 4.30 1.46 4.12 1.46		· · · · · · · · · · · · · · · · · · ·	
HISTOGRAM FOR SB CLASS INTER MID CLASS CLASS PPM 7 1.00 0.15 1.05 87.88 1.15 0.00 1.35 0.00 1.45 0.00 1.55 0.00 1.45 0.00 1.55 0.00 1.45 0.00 1.55 0.00	RVAL = 0.10			3.78 3.20 3.62 3.20 3.47 3.20 3.33 3.20 3.05 3.20 2.92 5.33 2.60 5.33 2.57 5.33 2.56 5.33 2.56 5.33 2.57 5.33 2.56 5.33 2.56 5.33		╈╋┲┺╋┲┶┶┥┥╸	
1.65 0.00 1.95 0.00 2.95 0.00 2.13 0.00 2.25 0.00 2.35 0.00 2.45 0.00 2.55 0.00 2.65 0.00 2.75 0.00 2.65 0.00 2.75 0.00 2.75 0.00 2.75 0.00 2.75 0.00 2.75 0.00 2.75 0.00				2.26 5.33 2.17 5.33 2.07 5.33 1.99 11.96 1.90 11.98 1.92 11.98 1.97 11.98 1.97 11.98 1.54 11.98 1.54 11.98			an de skrivete skrivete serve versen en

2.95

1, 00

0.00

24

ing north

.... p

and a second

IN-EN LABORATORIES LTD. SPECIALISTS IN MINERAL ENVIRONMENTS

775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7H 1T2 TELEX: USA 760167 PHONE:(604)980-5014 DR (604)988-4524

	IY: A&M	EXPL	ULA ORATIO	IN LTD.	DATE: JAN 3 1990
	ON ALL	.EN			SAMPLE TYPE:SUIL
	T:515				ANALYSIS TYPE: GEOCHEM
1.5.#:	90-129		5-242		
	CUMMUL.				
LINIT	FREG.				
(PPH)	(2)				
4.89	1.46				
4,69	1.46				
4.49	1.46				
4.30	1.46			•	
4.12	1.46				
3.95 3.78	3.20 3.20	Ŧ			
3.62	3.20	Ŧ			
3.47	3.20	Ŧ			•
3.33	3.20	ŧ			
3.19	3.20				
3.05	3.20	t			
2.92	5.33		‡		
2.80	5.33		ţ.		
2.58	5.33		‡		
2.57	5.33		ŧ		
2.46	5.33		‡.		
2.36	5.33		Ŧ		
2.26	5.33		Ŧ		
2.17	5.33		Ł		
2.07	5.33		ł		
1.99	11.98			F	
1.90	11.98			ţ.	
1.82	11.98			Ŧ	
1.75	11.78			F	
1.57	11.78			I	
1.54	11.48				
1.47	11.48			ŀ	
1.41	11, 28			ţ	
1.35	11.48			ţ	
1.25	11,78			t.	
1.24	11.99			+	
1.19	11.99			ţ	
1.14	11.20			1	
1,09	11.76			Ŧ	
1.04	31.98			Ť	
1.00	98.50			t .	a manana a farmana posta na sporta na fara a parana parana posta na surgen a surgen a surgen a surgen a surgen
		1	5%		20% 30% 40% 50% 60% 70% 30% 85% 80% 93% 9

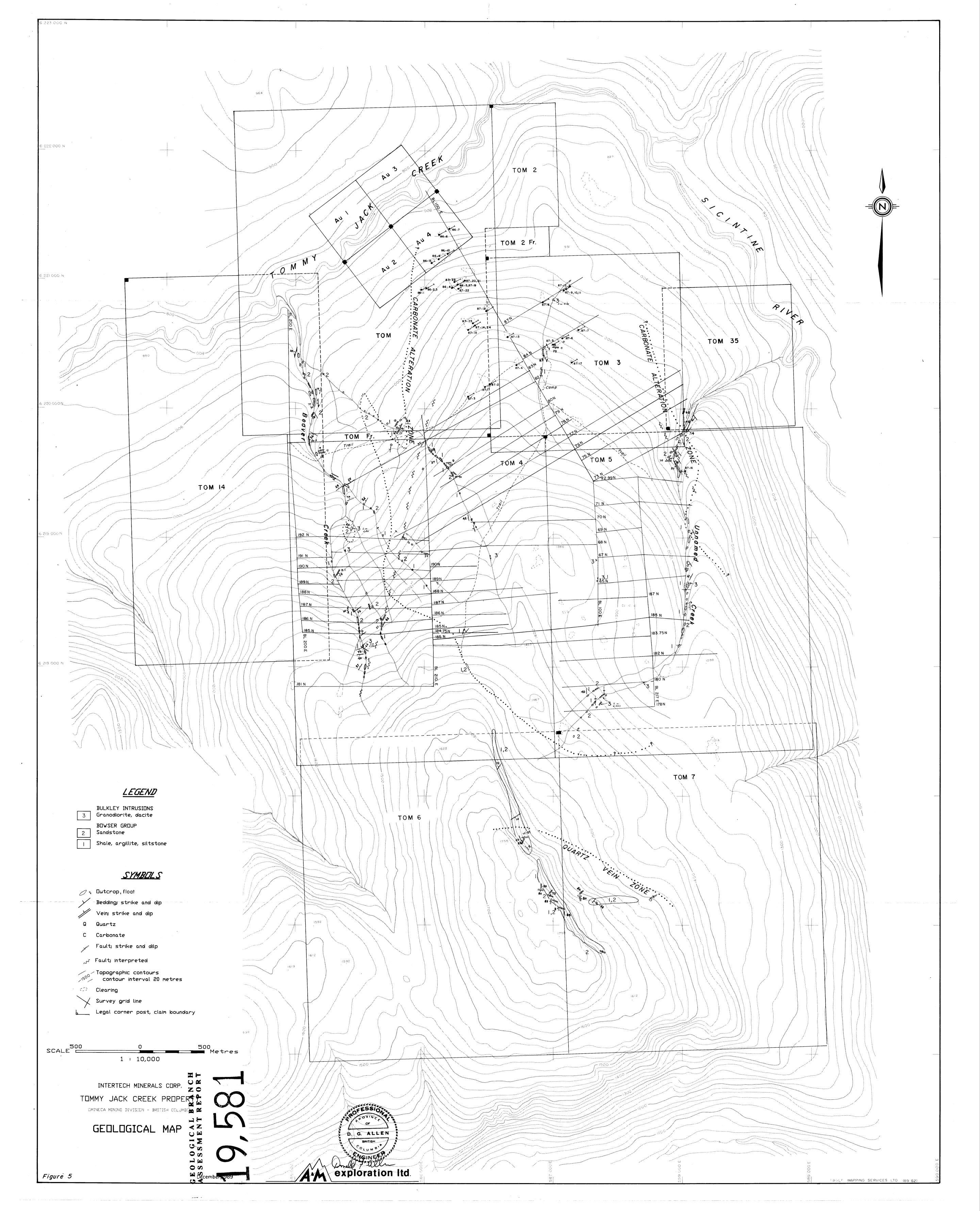
MIN-EN LABORATORIES LTD. SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7H 1T2 TELEZI: USA 760167 PHONE: (604) 980-5814 DR (604) 988-4524				•-	MIN-EN LABORATORIES LTD. SPECIALISTS IN MINERAL ENVIRONMENTS 775 WEST 1STH STREET NORTH VANCOUVER, B.C. CANADA V7N 172 TELEX: USA 760167 PHUNE: (604)980-5814 DR (604)980-4524			
S COMPANY:A&M E ATTN:DON ALLE PROJECT:515 FILE#:9V-1296	XPLORATION L N		MMARY ON ZN DATE: JAN 3 SAMPLE TYPE ANALYSIS TY	1990 : 601L	COMPANY ATTN:DO PROJECT	:A&M EXPLORATI N ALLEN	ON LTD.	ABILITY PLOT ON ZE DATE:JAN 3 1990 SAMPLE TYPE:SUIL ANALYSIS TYPE:GEOCHEM
MAXIMUM VA MINIMUM VA MEAN: STD. DEVIA	UE: 30	0 PPM 0 PPM 5 PPM 3 PPM	5 HIGHEST ZN VALU 906-354 930-077 930190 906-353DUP 40M 930-373	498.0 PPM 325.0 PPM	UPPER LIMIT (PPN) 260, 40 249, 56 239, 17 229, 22 219, 68	FREB. (X) 1.20 1.86 1.86 1.86		
HISTOGRAM FO	₹ ZI¥	CLASS INTERVA	L = 8.95		210.53 201.77	3.46 + +		
MID CLASS PPM	CLASS				193.37 185.32	í i	_	
$\begin{array}{c} 91.47 \\ 100.42 \\ 109.37 \\ 118.52 \\ (27.27) \\ 136.32 \\ 145.17 \\ 154.42 \\ (65.07) \\ (65.07) \\ (65.07) \\ (75.02) \\ 187.92 \\ (76.32) $	5.52 7.86 6.92 (0.39 9.59 9.72 8.39 7.46 4.93 1.60 2.26 2.66 1.07					15.85 20.37 25.63 31.67 37.95 44.74 55.53 62.18 56.05 70.17 73.50	` [*] * [*] *	** * * * * * * * * * * * * *
2000,27 2000,20 2000,20 2000,20 2000,20 2000,20	0.77 0.67 0.00 0.00 0.15 0.57	2007 2007 2007 2007 2007 2007 2007			87,75 86,79 82,61 79,18 75,88	96.07 88-81		
5,00,000		0.00%	4, 79% F RETRIENELY - 1)	177.48%	57, 57 55, 77 64, 0) 61, 35 58, 79	1		· · · · · · · · · · · · · · · · · · ·

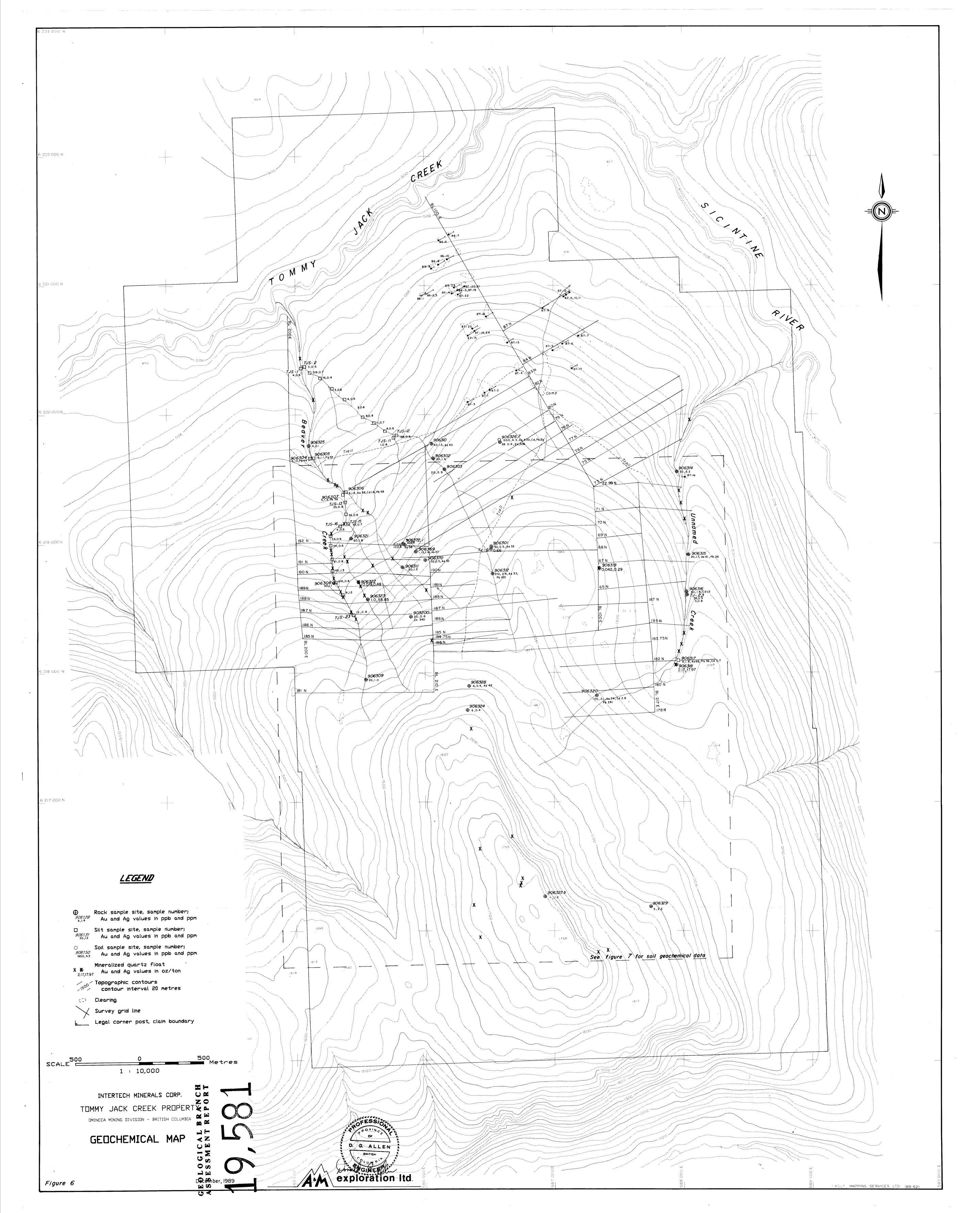
APPENDIX III

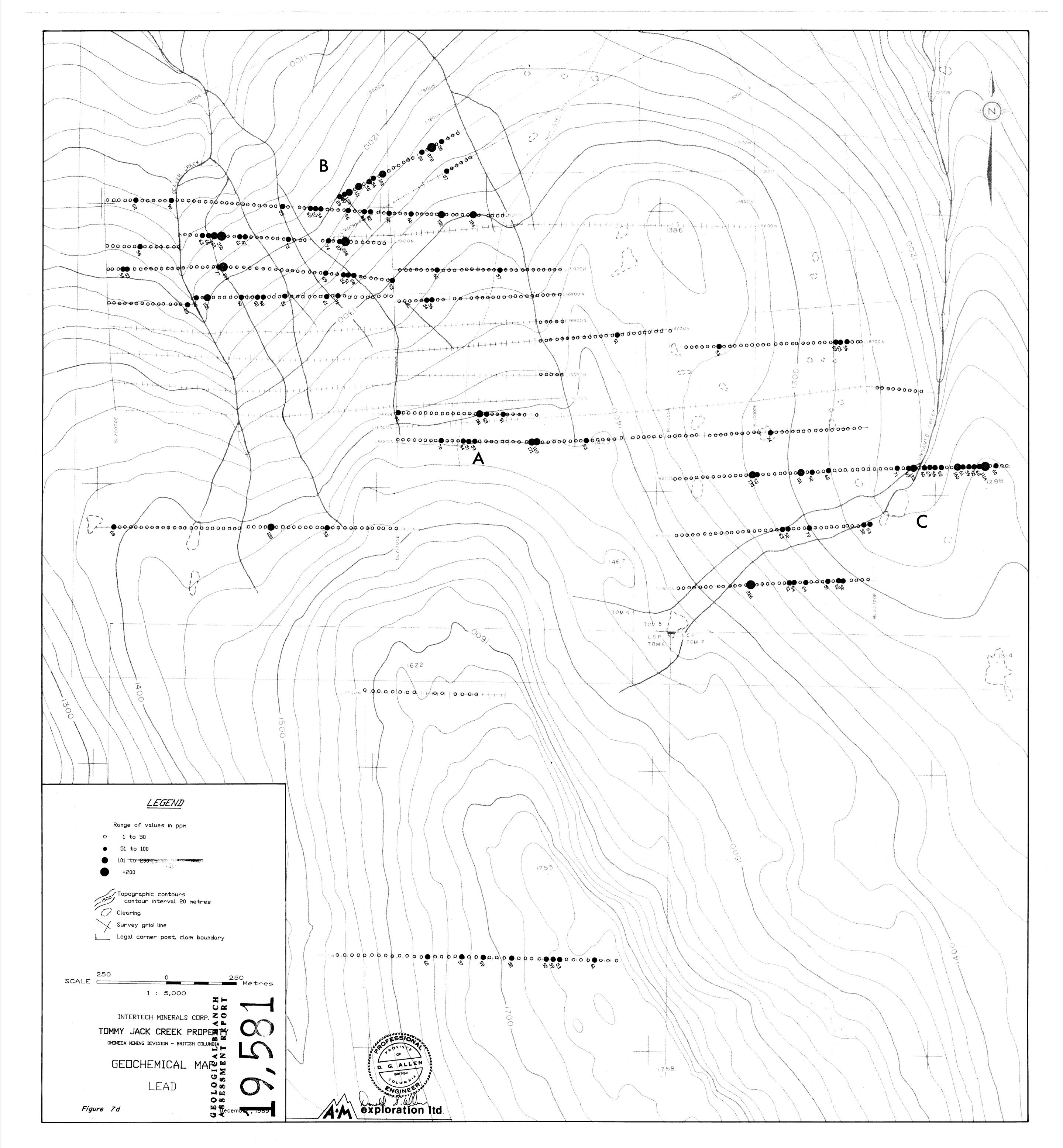
Affidavit of Expenses

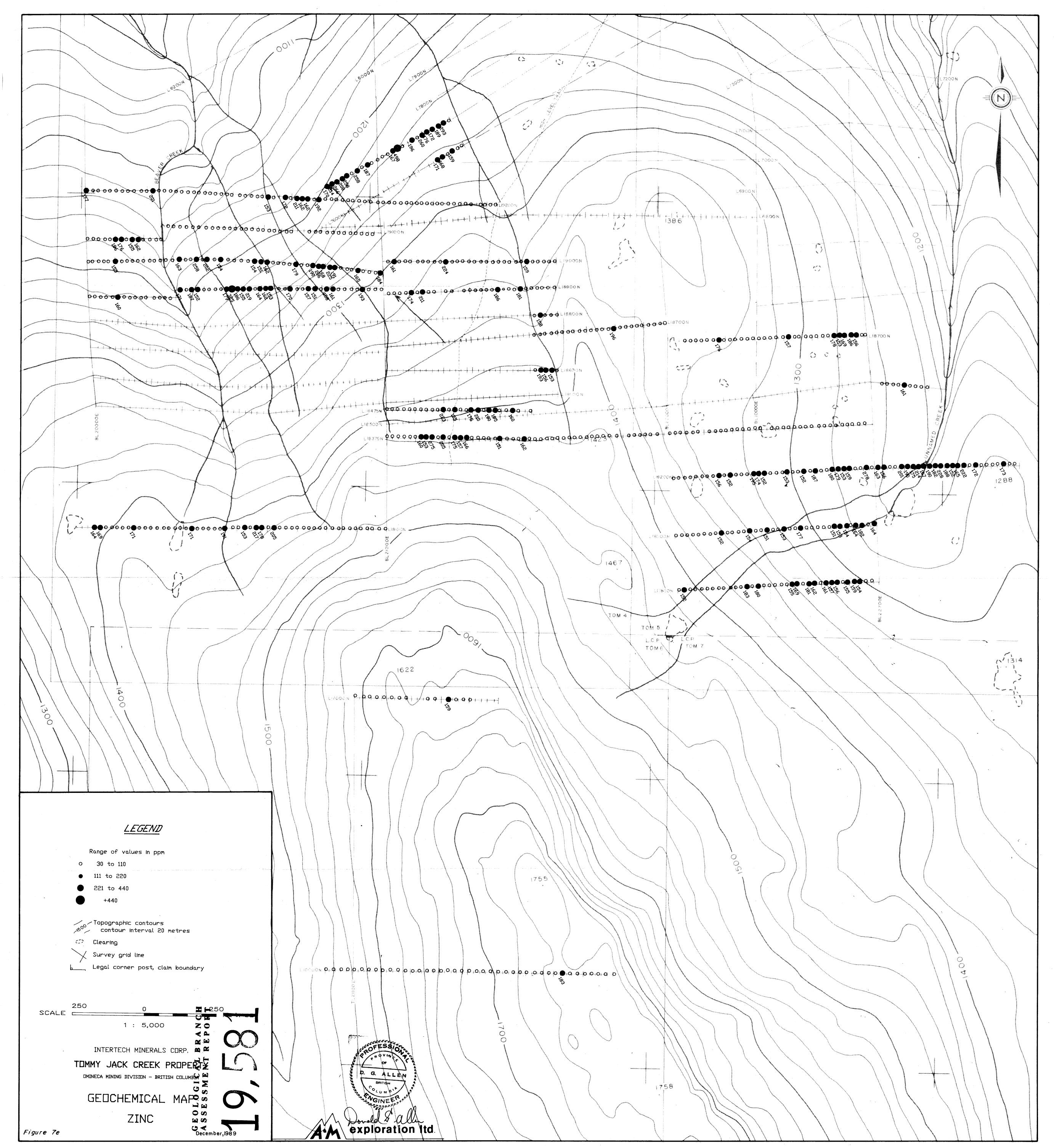
AFFIDAVIT OF EXPENSES

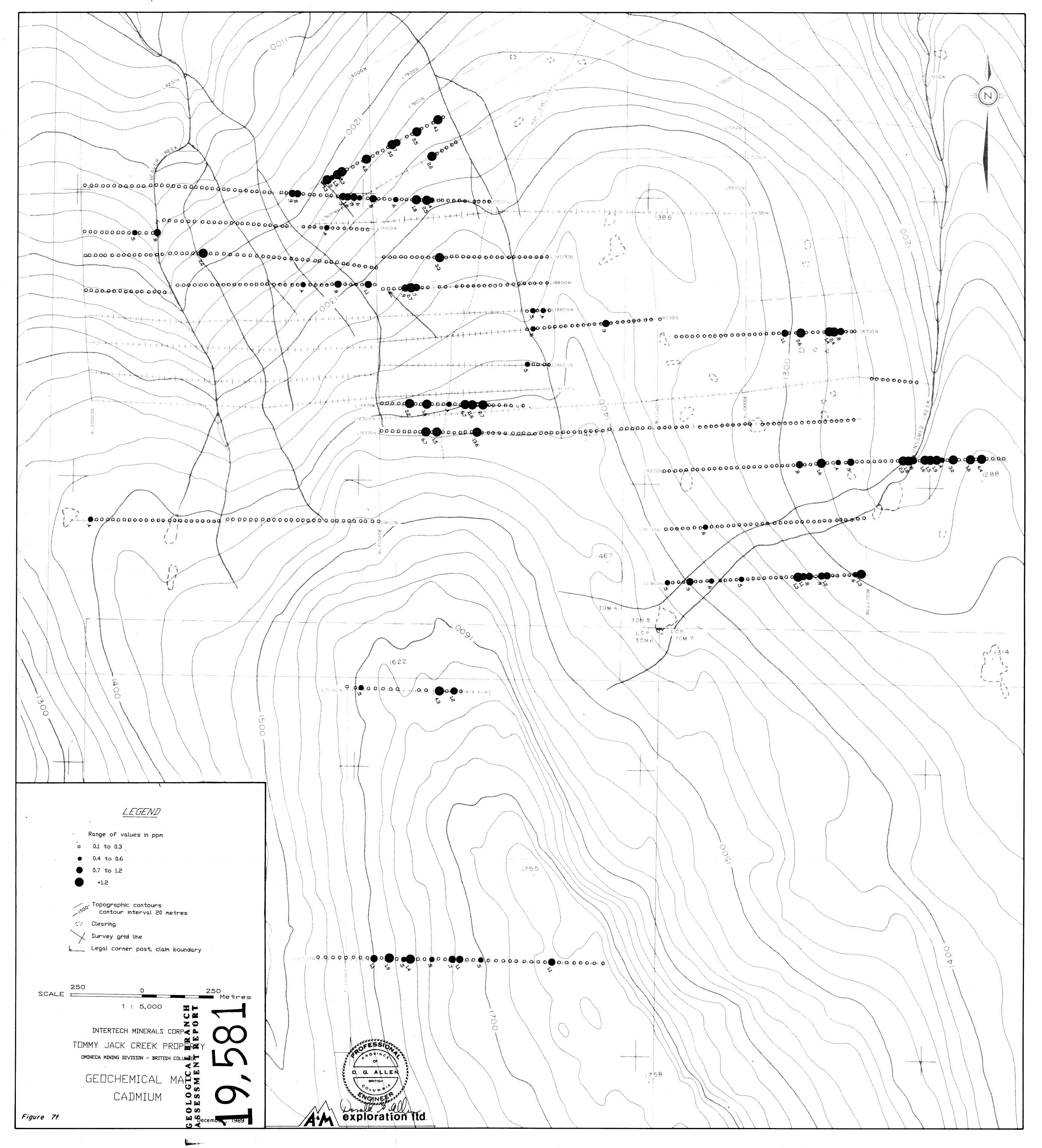
This will certify that geological, geochemical and geophysical surveys were carried out on the Tommy Jack Creek property, Omineca Mining Division, British Columbia, to the value of the following:

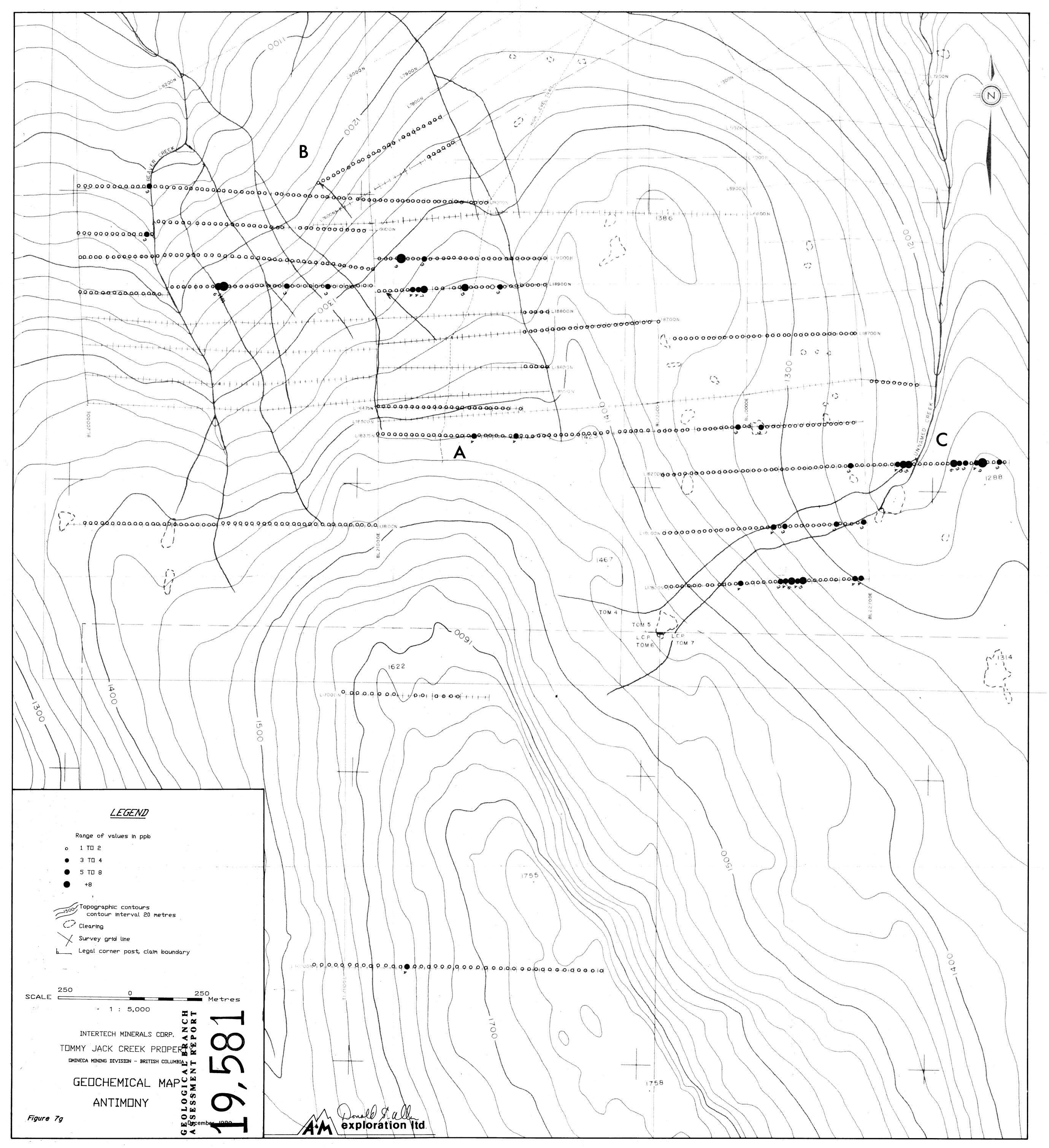

Mobilization and Fieldwork

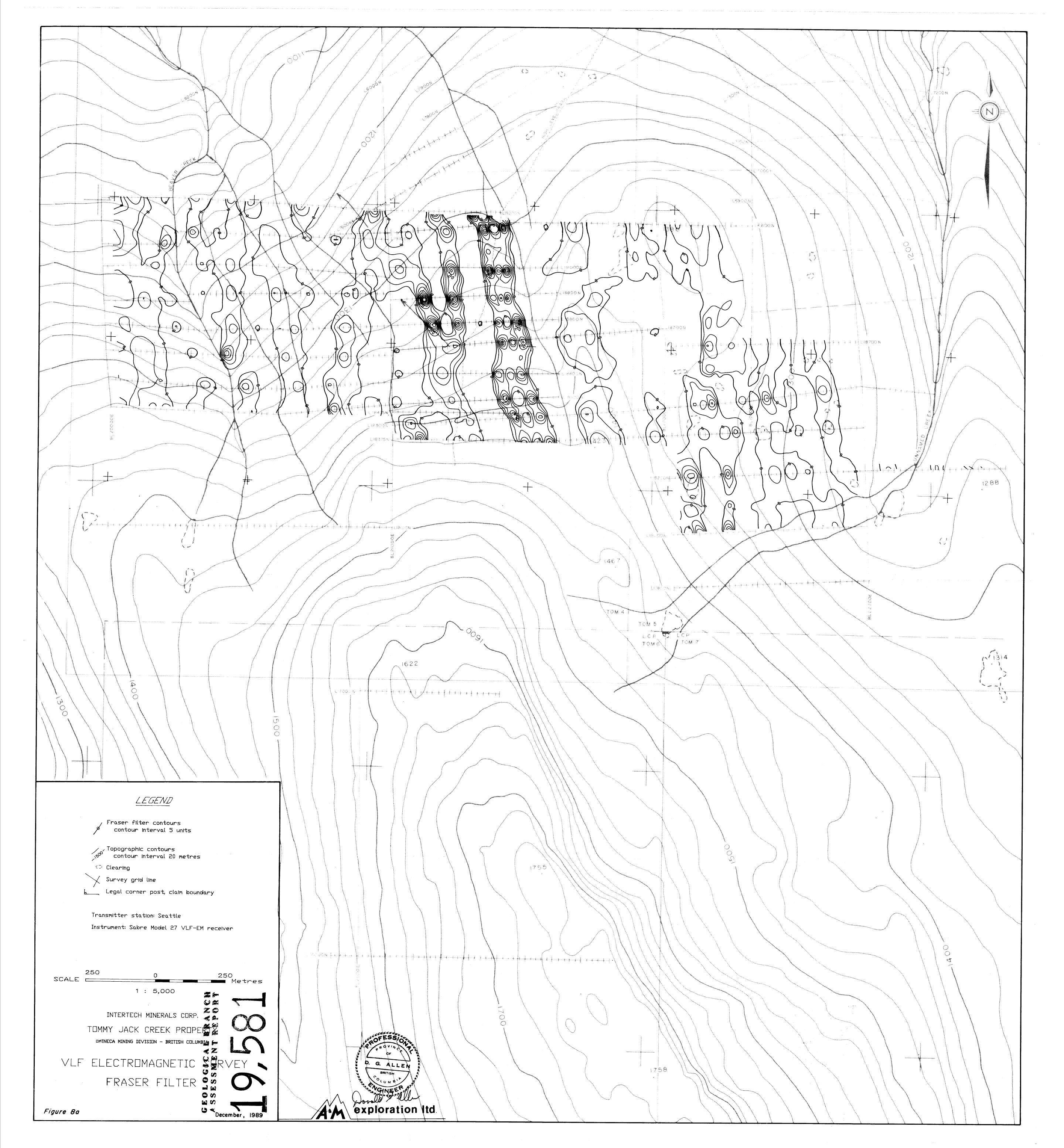

Personnel

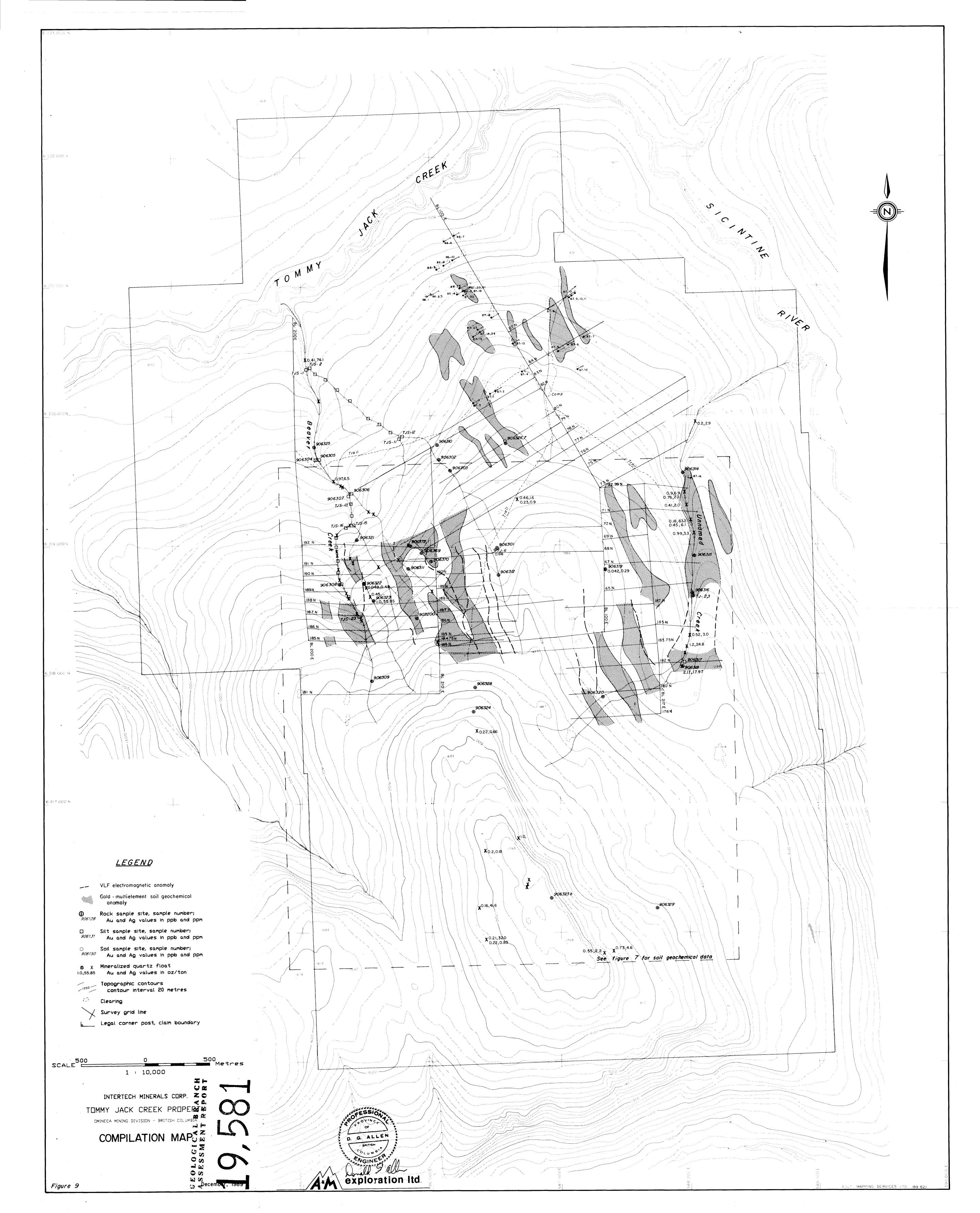

Engineer Geophysicist Labourer Labourer	D.G. Allen E. Sykes S. Travis J. Cuvelier	10.5 days @ \$450/day 15 days @ \$300/day 12.5 days @ \$220/day 15 days @ \$200/day	\$ 4,725.00 4,500.00 2,750.00 3,000.00
Geochemical Anal Statistical Anal Field Supplies Communication Room & Board Vehicle Rental, Equipment Rental Helicopter Report Preparati	yses Transportation, Fr	eight VLF—EM 15 days @ \$15/day	16,097.35 751.07 579.19 38.55 1,183.53 2,076.91 225.00 11,752.40
Personnel	_		
ę	D.G. Allen E. Sykes	7 days @ \$450/day 2.5 days @ \$300/day	3,150.00 750.00
Topograhphic Bas Drafting	e Map and Orthopho Draftsman Maps Supplies	to 80 hours @ \$20/hr	6,000.00 1,600.00 436.38 400.00
Computer Compili Typing/Compilati Supplies	ng	105.5 hours @ \$25/hr 24 hours @ \$20/hr	2,637.50 480.00 75.00

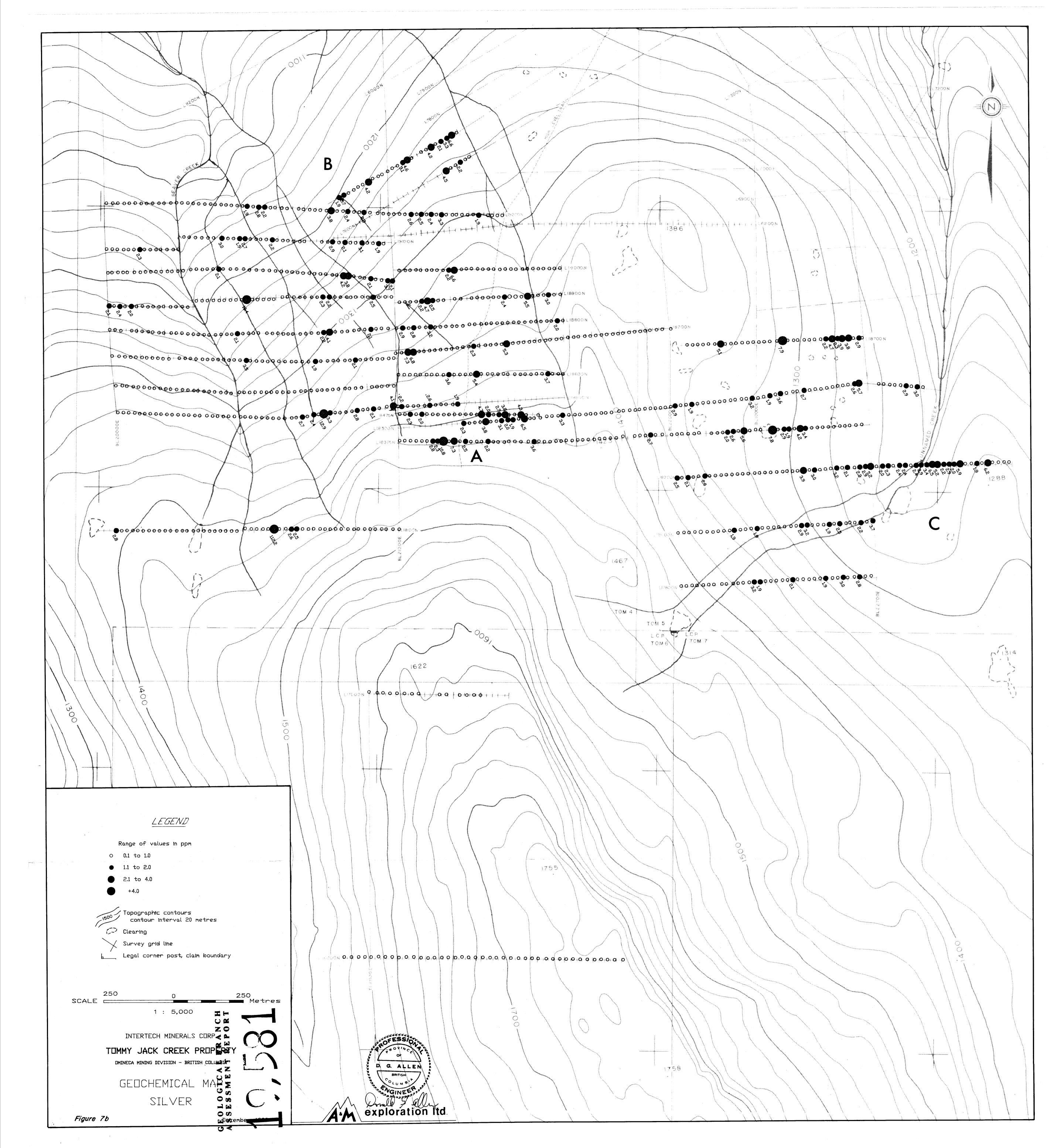

TOTAL \$63,208.18

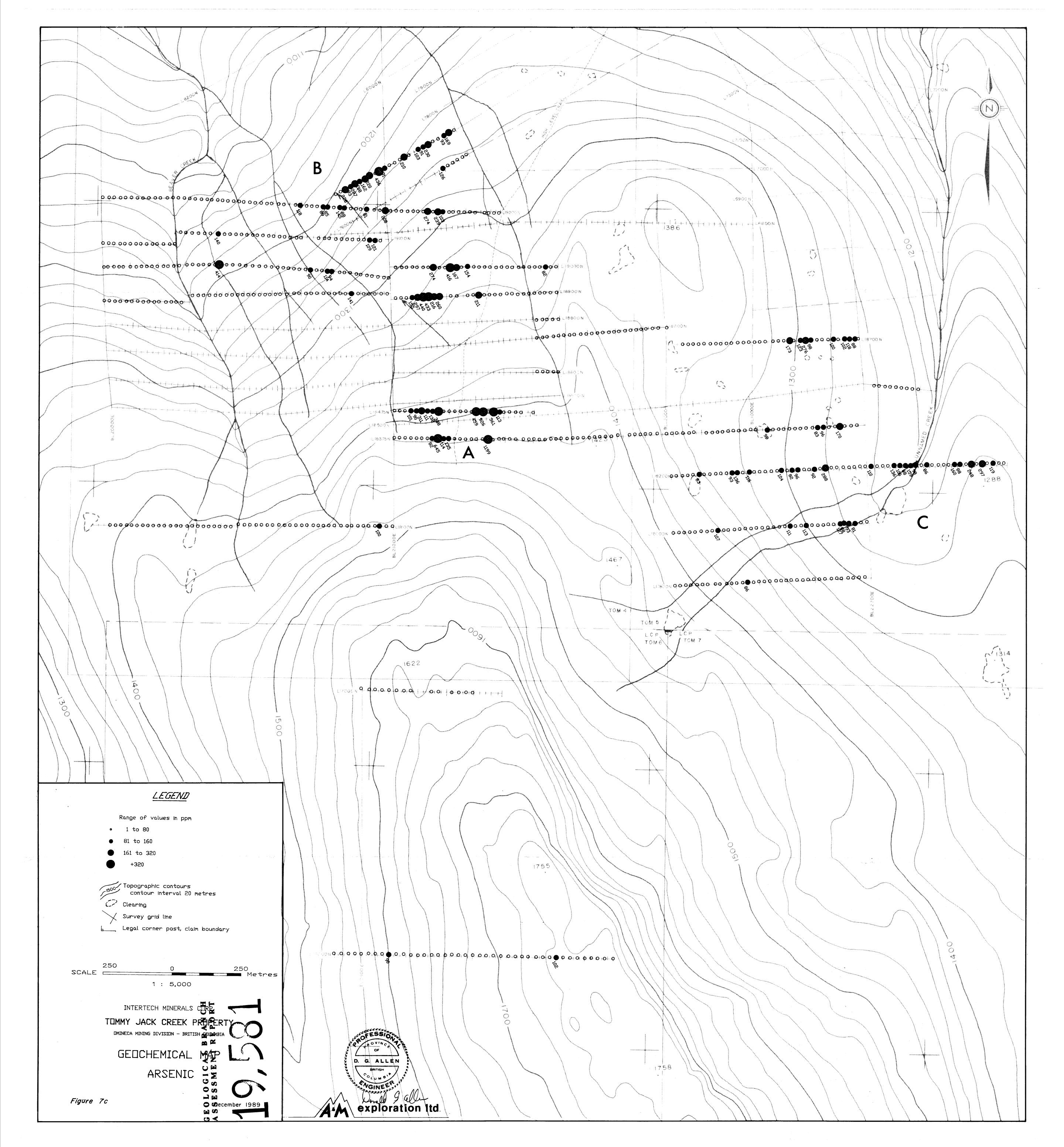

Ronald g. alle

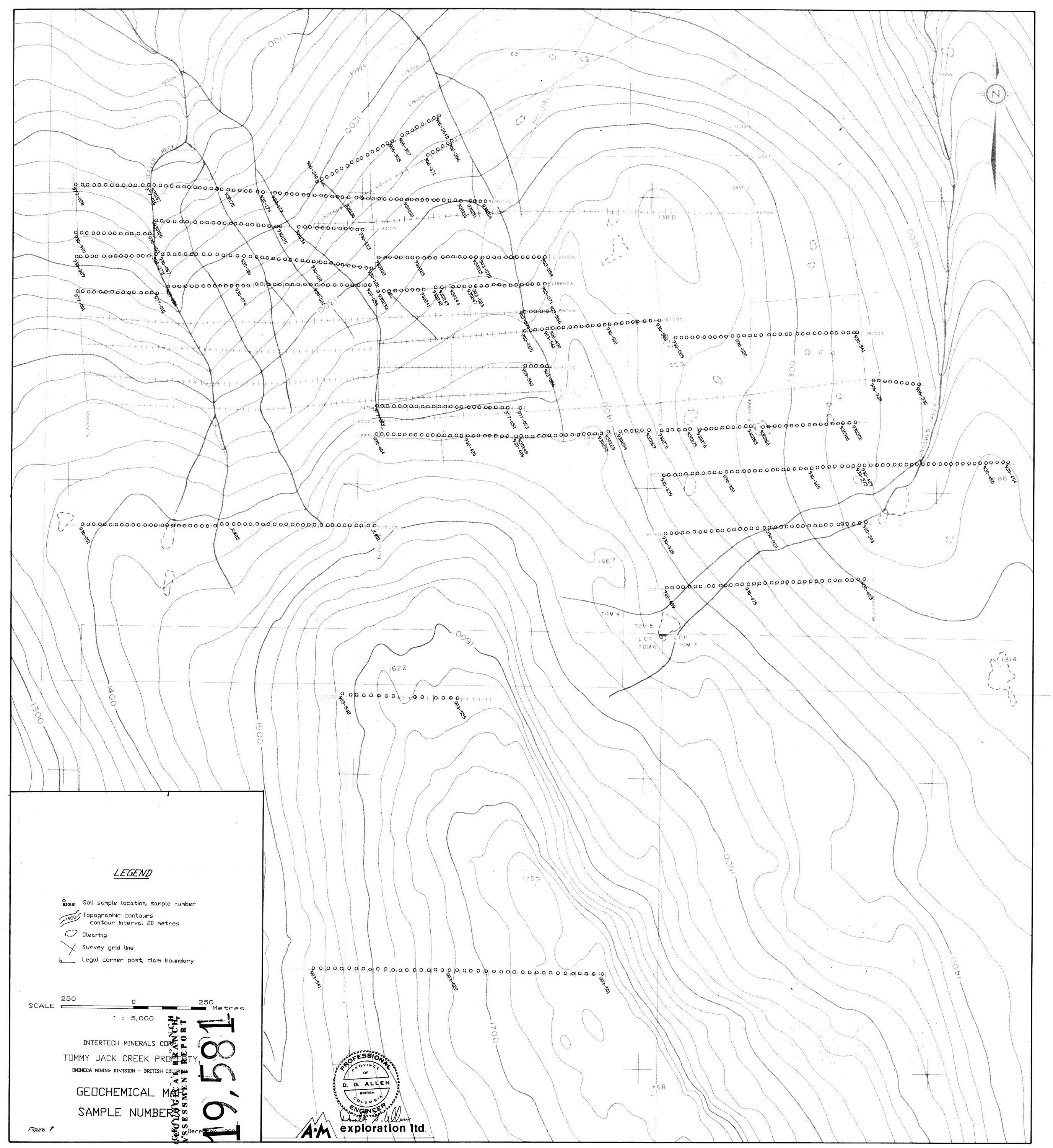


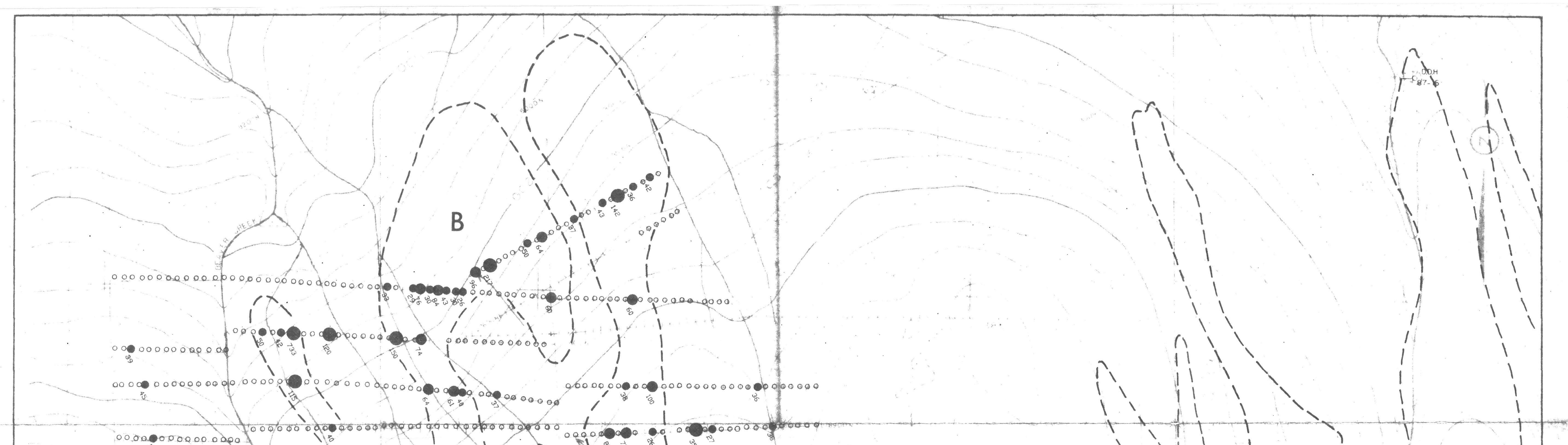


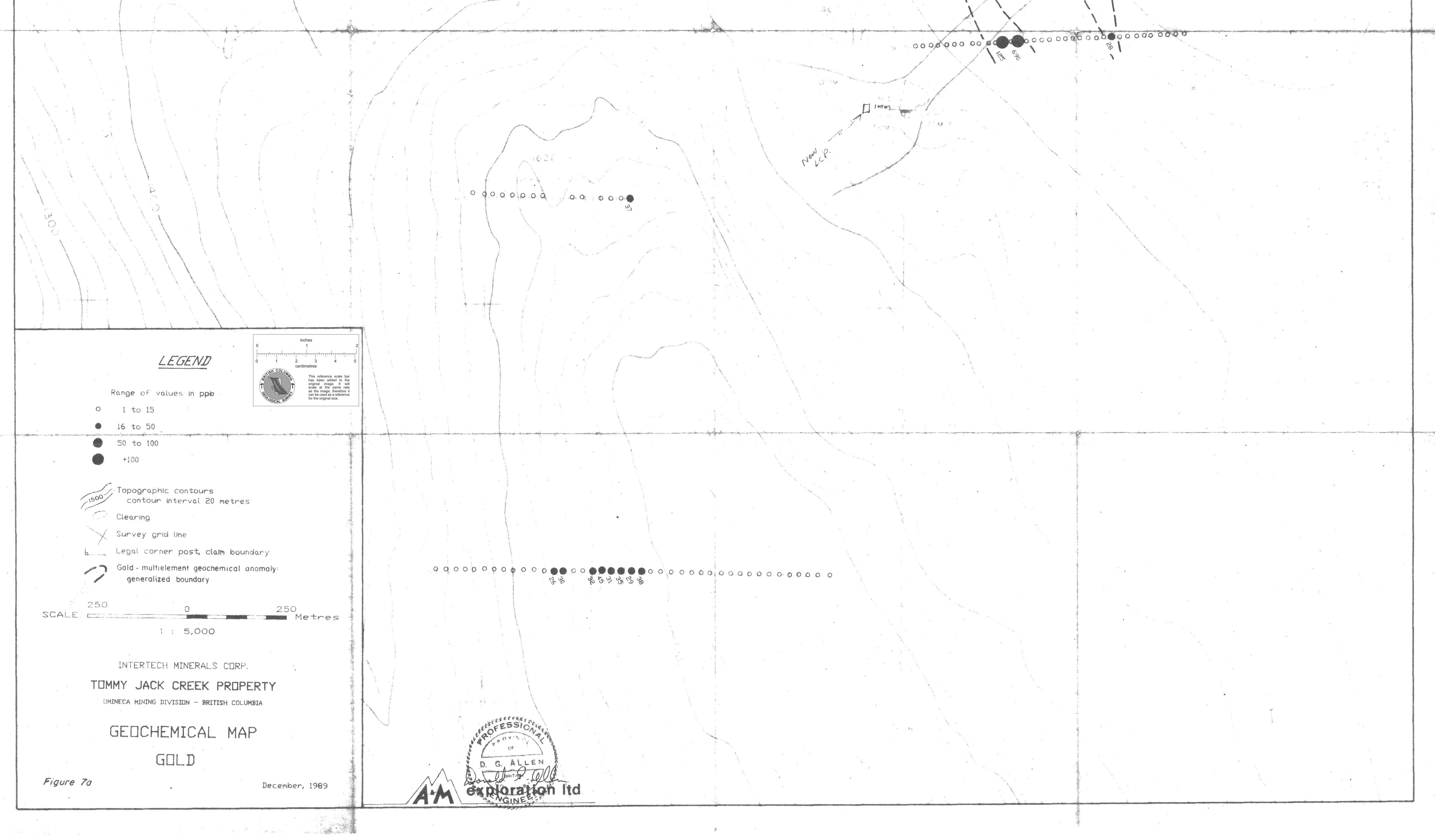

-




erdistered^{en m}ært i Yr


1





S S A 6.3

800 6-2 906 -2-308 00

00000000

