GEOCHEMICAL SURVEY REPORT

TWILIGHT GROUP

NELSON MINING DIVISION

$$
\mathrm{N} T \mathrm{~S} \quad 82 \mathrm{~F} / 6 \mathrm{E}
$$

OWNEF: Jack Denny

OPERATORS: Eric Denny, Jack Denny
FILMED

December 1989

Respectfully submitted by
Eric Denny

$+2$

TABLE OF CONTENTS
Introduction Page No.
Location 1
Access 1
Property Description 1
Topography 5
Vegetation and Overburden 5
Exploration History 5
Geology 7
Work Done
Geochemical Program 9
Linemarking 9
Soil Sampling and Analysis 9
Results 11
Conclusions and Recommendations 11
Summary 12
List of References 13
Itemized Cost Statement 14
Author's Qualifications 15
Geochemical Lab Reports

LIST OF FIGURES

Title

Scale
Page
Figure l: Property Index Map $1: 10,000,000$ 2
Figure 2: Twilight Claims $1: 31,680$ 4
Figure 3: Geological Map of Area $1: 31,680$ 8
Figure 4: Property Plan - Grid Location 1:5000
Figure 4A: Twi Grid including Results 1:5000 10
Figure 5: Gold in Soils 1:5000
1:5000 Figure 6: Silver in Soils 1:5000
Figure 7: Lead in Soils 1:5000
: 5000
Figure 8: Zinc-in Soils 1:5000
1:5000
Figure 9: Arsenic in Soils 1:5000Map pocket""

INTRODUCTION

Location

The Twilight claims are located on the east side of Salmo River on the southwest slope of Jubilee Mountain. They are 4 kilometers southeast of Ymir an old mining town that is 24 kilometers south of Nelson, B. C.

Access

Access is by the old road to the Centre Star Mine from Ymir 4 km or by the Oscar Creek logging road a branch of which leads onto the Oscar 2 claim 6 km . Also an overgrown road from near the mouth of Porcupine Creek and an old trail from the Dewey Mine all lead to the claims.

Property Description

The property consists of three reverted crown grant claims and eleven 2 post claims as outlined below and which are shown on Figures No. 2, 3 and 4. The staked claims cover some former surveyed claims called the New York Central, Canion Fr., Mineral Zone, Redman Fr. and Riverside. On the north they adjoin the crown granted claims of the Centre Star Mine and on the south they adjoin the Dewey Jubilee, Tyne and Blue Eyed Nellie crown grants held by American owners. According to the original survey field notes these claims to the south are further north than they are shown on the claim maps and topographical maps thus narrowing the Twilight $1-5$ claims and making uncertain the ownership of some of the old workings until such time as more survey posts are found.

TWILIGHT CLAIM GROUP

Claim Name Lot No. Record No. Expiry Date
Owner

Twilight	L. 3767	4083	April 1, 1990				Jack Denny	
Blue Quartz	L. 7072	3894	August 23, 1990				"	"
Rover	L. 7073	3895	August 23, 1990				"	"
Oscar 1		4962	February 23,1990				"	"
Oscar 2		4963	"	"		"	"	"
Oscar 3		4964	"		"	"	"	"
Oscar 4		4965	"		"	"	"	"
Oscar 5		4966	"		"	"	"	"
Oscar Fr.		4967	"			"	"	"
Twilight 1		5607	April 25, 1990					
Twilight 2		5608	"	"	'		"	"
Twilight 3		5609	"	"			"	"
Twilight 4		5610	"	"			"	"
Twilight Fr.		5611	"	"			"	"

TOPOGRAPHY

The topography is shown on Figure No. 3. On the western claims the ground slopes to the west and is fairly steep. The Oscar claims are in an area of more moderate to almost level slopes. Altitudes range from 760 M to 1600 M .

VEGETATION AND OVERBURDEN

Most of the claims are covered with second growth timber about one half of it merchantable size. Fir, larch and jack pine predominate but there is also some hemlock, cedar, balsam, spruce, poplar and birch. Most of the area was burnt in the 1930's. Underbrush is moderate except in the Blue Quartz and Rover area where on the main ridge it is heavy with few trees. Overburden is light or less than one half meter deep on an average. Outcrop amounts to less than 10 percent of the surface.

EXPLORATION HISTORY

The Ymir area attracted placer miners in the late 1860's. They had panned their way up the Salmo River from the Columbia and Pend d'Oreille. Mineral exploration started about 1885 on Wildhorse Creek but the area did not become active until 1896 which was the boom year when most of the important claims were discovered and staked. By 1900 there were 9 stamp mills operating. (155 stamps in total). Tonnage treated or shipped to the end of 1899 was 30.857 tonnes. The Ymir 80 stamp mill was the largest in B. C. by 1902. The greater part of the Ymir Mine production was over by 1905; about the time the Yankee Girl started to produce. The greater part of Yankee Girl production was after the price of gold was raised from \$20. to \$35. in 1934.

The Centre Star claims were staked in 1900 and crown granted in 1905 but no intensive prospecting or development work was done on them until 1934 when the Wesko Exploration and Development Company took over the claims and worked them on a large scale until 1938. The Ymir, Yankee Girl and Centre Star are all in the large contact zone of Ymir formation (formerly called the Pend d' Oreille Formation) and the Nelson Granite to the east. The Twilight $L .3767$ was originally part of the Centre Star L. 3766, Redman L. 3769, Crowfoot L. 3770, Blind Canyon L. 3771 Group. As it is an integral part of the group it is hard to understand why it became separated. Many years ago the writer tried to buy it as a crown grant from the owner who wouldn't sell it and claimed it was the key claim to the Centre Star Group. Later it reverted to the crown. The portal of the 300 foot level of the centre Star is about 25 metres within the Twilight boundary as shown on Lakes map and proven with a crown grant post, cairn and iron pin we found in 1989 that marks the N.W. corner of the Twilight. The fact that an individual owned this claim for many years is probably the reason there has been little development on it.

Production figures for these three mines are

Mine	Year	Tonnes Mined	$\begin{aligned} & \text { Gold } \\ & \text { (Grams) } \\ & \hline \end{aligned}$	Silver (Grams)	$\begin{gathered} \text { Lead } \\ \text { (Kilograms) } \end{gathered}$	$\begin{gathered} \text { Zinc } \\ \text { (Kilograms } \end{gathered}$
Ymir	1899-1950	1330,284	3,757,841	15,733,695	4,777,153	806,401
Yankee Girl	1907-1951	367,632	4,242,837	24,279,128	6,194,719	6,474,316
Centre Star	1936-1950	51,052	425,648	3,257,554	966,422	475,639

GEOLOGY

The geology is shown on Figure 3 which is a copy of part of McAllister's map 51 - 4A. Although this is a 1951 map the geology is still shown the same on Hoy \& Andrew's maps of 1988 - 1 and O F 1989 - ll. MCAllister in his report 51 - 4 page 45 states. "The property (Centre Star) lies in a broad contact zone between the Nelson batholith and rocks of the Ymir group. The zone consists of sheared and altered argillites and quartzite cut by innumerable small bodies of granite and granite-gneiss. Small bodies of aplitic intrusive rocks are found in the workings as well as lesser amounts of andesitic rock related to the Elise formation. Lamprophyre dykes cut the orebody and follow post-ore faults."

Cockfield states (Page 20 - Memoir 191) that - - "The rock structures are complicated by faults. A number of strong fault zones striking north 30 to 50 degrees east and dipping fairly steeply southeast, cut the formation into fault blocks. Those exposed by mining operations are 15-30 feet wide and are somewhat similar to others occuring on surrounding properties as, for example, the Yankee Girl, Dundee, Nevada and others. These fault zones have the same trend as Salmo Valley below Ymir and are probably related to major regional movements. The veins occur in fault fissures striking north 60 to 80 degrees east and dipping 60 to 75 degrees northwest, the main vein-fissure, as explored to date, lying between two of the northeasterly fault zones referred to above."

Cockfield also mentions showings of interest to the southwest of the Centre Star. which we have examined.

From west to east is the Ymir Group, Nelson batholith and the Seeman group which is similar to the Ymir but of older Lower Cambrian age. (Hoy) See Figure No. 3 for geology.

FIGURE No. 3

WORK DONE

GEOCHEMICAL PROGRAM

The object of the geochemical soil sampling program was to hopefully pick up indications of the continuation of veins and fault zones proven on the Centre Star or parallel structures to these. The "south vein system", shown on Lake's map and mentioned by Cockfield, has not been developed on the Twilight. It was also hoped that the sampling would indicate the presence of the "Jubilee" vein which is supposed to run through the Rover and Blue Quartz claims and the New York Central vein further to the west and any other unknown mineral showings that might exist.

LINE MARKING

Lines were cut and blazed with an axe and measured with a hip chain with an allowance for slope correction. The 6.3 km of grid lines were marked with orange flagging with station location printed on each with a black felt pen. The main grid was made in 1988 and credited to assessment for that year. Lines are 200 meters apart with 50 meters between stations. The baseline is also the claim line for the Oscar l-4. The Twi grid stations are 25 meters apart.

SOIL SAMPLING AND ANALYSIS

129 soil samples were taken of the B horizon at depths of 8 - 30 centimeters with a steel grub hoe. Samples were placed in brown kraft paper soil envelopes and partially dried. The Sample Analysis soil samples were sent to Acme Analytical Laboratories Ltd. where they were completely dried and sieved to --80 mesh material and run for 30 element ICP (Inductively Coupled Plasma). analysis. A. 500 gram sample is digested with $3 \mathrm{ML} 3-1-2$ HCL - HNO3 - H2O at 95 degree C. for one hour and is diluted to 10 ML with water. Gold analysis is done by acid leach of a 10 gram sample and the gold detected by atomic absorption.

CHART NOT TO SCALE
BY: ERIC DENNY
Eric Senny
FIGURE No. $4 A$

The results are shown by symbol on Figures 4A, $5-10$.
Symbols were used in preference to contouring as any contouring done would be misleading and guesswork due to the wide 200 meter distance between lines as the main grid was strictly a reconnaissance type grid. Results were plotted for gold, silver, lead, zinc and arsenic because all of these showed a distinct contrast between highs and background, whereas the other minerals did not except for the occasional higher value. Anomalous values and grades of anomaly were determined from personal experience and a study of numerous exploration programs and assessment reports over many years in the Nelson area. Generally speaking the results for gold, lead and zinc correlate well and are hjgh in the Twi grid area and the west end of lines 100 north and 100 south and would tend to indicate that some of the Centre star structures follow through onto Twilight ground.

There are anomalous silver, zinc and arsenic values shown toward the east end of line loOS. There are other highs here and there. Some of these are near the Granite-Seeman contact.

CONCLUSIONS AND RECOMMENDATIONS

This widely spaced, reconnaissance type soil sampling grid has shown a definite need for further prospecting and for close spaced geological mapping of this whole area and further soil sampling on the Twilight $L .3767$ on a 25 meter grid covering the whole claim and extending beyond it to the southwest. Another 25 meter soil sampling grid should be made in the area of 100 N and 100 S from 500 W to 850 W and further south. The first gric should be followed by trenching and if successful the ground could be diamond drilled from the existing switchback road that ends on the Centre Star claim.

Further claim posts of the old surveys should be located so that the south boundary of the Twilight group could be definitely established to make sure of who owns what ground. Any old workings within the Twilight ground should be cleared and sampled. There are quite a lot of old workings that we have found but as little mineral was obvious we have only partially cleared them and marked them well until such time as their location can be plotted accurately and we can clear them out properly.

SUMMARY

The Twilight Group is underlain by the same geological structures that have hosted three major mines so it is felt that detailed geological mapping, further prospecting and soil sampling, trenching, opening up and sampling of old showings is well warranted. If this work shows good results then several diamond drill holes could be drilled at a very reasonable cost from the old Centre Star road as even from the work done so far it would appear that there is a strong possibility of intersecting the southwesterly extension of the Centre Star mineralization structures.

REFERENCES

l. Annual Reports of the British Columbia Department of Mines
2. British Columbia Minfile
3. Ymir District Mines by R. W. Macfarlane and others 1900
4. Drysdale, C. W. Ymir Mining Camp G.S.C.Memoir 94 and map 1917
5. Lakes, Arthur Plan of Centre Star Mining Property 1936
6. Cockfield, W. E. Lode Gold Deposits of Ymir-Nelson Area G.S.C.Memoir 191 1936
7. McAllister,A.L. Ymir Map Area G.S.C. Paper 5l-4 and
Map $51-4 A$ 1951
8. Little,H.W. Nelson Map Area West Half G.S.C.Memoir 308 and Maps 1090A, 1091A and 1144A 1960
9. Hoy, T. - Andrew K. O.F. 1988-1 Maps and Report 1988
10. Hoy, T. - Andrew K. O.F. 1989-11 Maps and Report 1989

ITEMIZED COST STATEMENT

```
Labour - finishing grid and sampling, road work
    on claims, locating original survey,
    partially clearing 3 trenches, a shaft
    and an adit portal shown of Figure #4
    8 man-days @ $120. per man-day $ 960.00
Transportation
    1980 Fl50 - 4x4 Ford 4 days @ $50.per day 200.00
```

Soil Analysis
129 samples by 30 element ICP plus
geochemical gold 1109.40
Geochemical Report and Map Production
5 days @ \$120. per day
600.00
Typing, photostating, office supplies, express charges_
$\underline{250.00}$

STATEMENT OF QUALIFICATIONS

I, Eric Denny, do hereby certify that --

I have been prospecting for forty-four years the last eighteen years of which it has been my full time occupation.

Most of my prospecting has been for myself but I have also prospected for numerous companies.

I attended prospecting classes in Nelson in 1953, 1955, 1960, 1964 and 1968. Since then I have attended many lectures on geology, geochemistry and geophysics at various cities.

I have a large library that is kept up to date and a good map collection of which is well used both for my own use and in research for my geological friends and mining companies.

I have personally spent many days on the Twilight claims and surrounding area in the past few years.

This Geochemical Report is Respectfully submitted by

ICP - . 500 GRAM SAMPLE IS DIGESIED WITH 3ML 3-1-2 HCL-HNO3-H2O AI 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH HATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B H AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE
 ERIC DENNY File \# 89-4903

Page 1

SAMPLE\#	$\begin{array}{r} \text { Mo } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{Cu} \\ \mathrm{PPM} \end{gathered}$	$\begin{array}{r} \mathrm{Pb} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} 2 n \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { Ag } \\ \text { PPM } \end{array}$	$\begin{array}{r} N i \\ \text { PPM } \end{array}$	$\begin{array}{r} \text { Co } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Mn} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \mathrm{Fe} \\ \underset{\chi}{2} \end{gathered}$	$\begin{array}{r} \text { As } \\ \text { PPM } \end{array}$	$\begin{array}{r} U \\ \text { PPM } \end{array}$	$\begin{array}{r} A U \\ P P M \end{array}$	$\begin{array}{r} \text { Th } \\ \text { PPM } \end{array}$	$\begin{array}{r} \mathrm{Sr} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \text { Cd } \\ \text { PPM } \end{gathered}$	$\begin{array}{r} \text { Sb } \\ \text { PPN } \end{array}$	$\begin{array}{r} B i \\ \text { PPM } \end{array}$	$\begin{array}{r} V \\ P P M \end{array}$	$\begin{gathered} \mathbf{C a} \\ \% \end{gathered}$	$\begin{aligned} & P \\ & \% \end{aligned}$	$\begin{array}{r} \text { La } \\ \text { PPM } \end{array}$	$\begin{gathered} \mathrm{Cr} \\ \mathrm{PPM} \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ \% \end{gathered}$	$\begin{array}{r} \mathrm{Ba} \\ \mathrm{PPM} \end{array}$	$\begin{gathered} \text { ri } \\ \% \end{gathered}$	$\begin{array}{r} B \\ P P M \end{array}$	$\begin{aligned} & \text { Al } \\ & \% \end{aligned}$	$\begin{gathered} \mathrm{Na} \\ \% \end{gathered}$	$\begin{aligned} & K \\ & \% \end{aligned}$	$\begin{array}{r} W \\ P P M \end{array}$	$\begin{aligned} & A^{*} \\ & \text { PPB } \end{aligned}$
$7+00 \mathrm{~N} 3+50 \mathrm{~W}$	1	25	19	243	\% 4	39	12	705	3.60	4	5	ND	4	20	\% 1	2	2	53	. 20	119	12	31	. 50	128	12	4	3.31	. 02	. 09	1	5
$7+00 \mathrm{~N} 3+00 \mathrm{~W}$	2	11	19	234	\% 5	19	8	378	3.35	8	5	ND	2	13	\%1.	2	2	50	. 14	. 075	12	21	. 36	95	, 1	6	2.97	. 01	. 06	1	
$7+00 \mathrm{~N} 2+50 \mathrm{~W}$	1	22	25	281	$\stackrel{5}{5}$	41	16	895	4.05	7	5	ND	4	60	2	2	3	64	. 40	. 298	21	62	1.04	353	21	3	3.30	. 01	. 13	1	3
$7+00 \mathrm{~N} 2+00 \mathrm{~W}$	2	19	21	214	, 5	25	13	968	3.83	7	5	ND	3	28	1	2	12	60	. 24	. 070	15	42	. 68	160	18	2	2.54	. 01	. 10	2	4
$7+00 \mathrm{~N} 1+50 \mathrm{~W}$	1	16	25	233	\%	18	10	853	3.80	11	5	ND	4	17	1	2	2	59	. 14	-189	10	26	.47	194	13	7	2.80	. 01	. 07	1	1
$7+00 \mathrm{~N} 1+00 \mathrm{~W}$	1	11	29	186	. 4	17	10	517	4.07	6	5	ND	4	13	1	2	3	59	. 13	. 210	9	25	. 44	137	14	2	3.39	. 01	. 08	1	1
$7+00 \mathrm{~N} \mathrm{O+50H}$	2	16	23	377	1.0	16	11	4708	3.49	6	5	ND	1	17	4	2	6	49	. 17	195\%	10	20	. 35	213	14	8	2.55	. 02	. 06	1	3
7+00N 0+00	2	32	31	371	1.7	35	11	842	3.70	11.	5	ND		24	3	2	2	50	. 21	. 081	17	30	. 56	148	,10	16	3.22.	. 01	. 11	1	1
$5+00 \mathrm{~N} 4+00 \mathrm{~W}$	2	13	22	109	1.0	14	9	271	3.38	6	5	ND	4	17	3	2	2	44	. 13	192	7	23	. 35	81	12	7	4.96	. 01	. 06	1	11
$5+00 \mathrm{~N} 3+50 \mathrm{~W}$	2	25	165	321	1.5	24	10	898	3.28	9	6	ND	4	14	3	3	2	47	. 15	. 19	15	27	. 57	118	13	3	2.81:	. 01	. 08	1	5
$5+00 \mathrm{~N} 3+00 \mathrm{H}$	3	28	49	244	\% 6	25	12	1197	3.39	\%	5	ND	2	22	2	2		50	. 27	. 073	24	31	. 66	109	12	3	2.72	. 01	. 08	1	10
$5+00 \mathrm{~N} 2+50 \mathrm{~W}$	2	46	20	148	\% 9	17	9	1265	2.70	\% 6	84	ND	1	73	4	2	5	39	1.20	. 110	37	29	. 50	108	\% 0	9	3.78	. 02	. 08	1	3
$5+00 \mathrm{~N} 2+00 \mathrm{~W}$	1	20	24	196	\bigcirc	31	10	662	3.35	12	18	NO	2	58	3	2	7	45	. 76	. 092	28	33	. 81	115	09	2	3.26	. 02	. 13	1	3
$5+00 \mathrm{~N} \mathrm{1+50W}$	1	21	24	224	\% 6	29	9	737	3.02	12	13	ND	1	50	2	2	5	41	. 66	.17\%	29	27	. 74	99	, 06	2	2.46	. 01	. 12	1	6
$5+00 \mathrm{~N} 1+00 \mathrm{~W}$	1	16	21	153	-4	19	10	559	2.90	6	5	ND	2	29	1.	2	6	42	. 34	. 114	13	23	. 50	137	, 10	2	3.14	. 01	. 08	1	3
$5+00 \mathrm{~N} 0+50 \mathrm{~W}$	2	24	24	248	\bigcirc	20	11	785	3.19	7.	5	ND	3	20	?	2	3	47	. 21	220	12	26	. 46	173	11	4	3.00	. 02	. 09	1	4
5+00N 0+00	1	25	15	225	\bigcirc	31	10	601	3.49	6	8	ND	4	35	1	2	2	49	. 36	. 070	33	32	. 86	179	, 10	6	3.19	. 02	. 19	1.	9
$5+00 \mathrm{~N} 0+50 \mathrm{E}$	1	18	13	127	\bigcirc	14	7	585	2.76	8	5	ND	1	66	, 1/	2	2	30	. 52	.409\%	12	17.	. 31	136	06	4	3.24	. 02	. 07	1	5
$5+00 \mathrm{~N} \mathrm{1+00E}$	2	15	17	157	\% 4	17	7	467	2.58	7 \%	5	ND	3	13	\% 1	2	2	34	. 12	.139.	15	21	. 35	106	. 07	2	3.65	. 01	. 08	2	6
$5+00 \mathrm{~N} 1+50 \mathrm{E}$	2	19	21	151	\%. 5	26	10	899	2.89	16	5	ND	6	14	1.	2	2	39	. 14	. 094.	20	26	. 51	145	07	12	2.81	. 01	. 08	2	3
5+00N 2+00E	2	16	22	123	\% 8	12	10	695	3.72	11	5	ND	4	11	\%	2	2	49	.11	. 083	12	22	. 28	85	-09	3	3.34	. 01	. 07	1	1
$5+00 \mathrm{~N} 2+50 \mathrm{E}$	2	14	17	111	1.8	12	8	745	2.65	5	5	ND	4	11	1		4	35	. 11	104	10	17	. 20	106	11	5	4.07	. 01	. 06	1	6
$5+00 \mathrm{~N} 3+00 \mathrm{E}$	1	21	22	165	. 6	21	8	549	2.87	10	5	ND	4	14	1	2	2	38	. 16	. 118	16	24	. 45	114	08	4	3.11	. 01	. 08	1	12
$5+00 \mathrm{~N} 3+50 \mathrm{E}$	1	20	23	119	. 4	17	7	692	2.67	7	5	ND	1	15	.	2	2	40	. 15	. 074	13	21	. 29	125	. 08	2	1.94	. 01	. 06	1	25
$5+00 N 4+00 E$	2	13	22	134	\bigcirc	12	8	484	3.26	9	5	ND	2	17	1	2	4	44	. 18	. 084	13	20	. 34	109	09	9	2.66	. 01	. 07	1	5
$5+00 \mathrm{~N} 4+50 \mathrm{E}$	1	16	24	131	. 6	17	8	422	2.77	10	5	ND	5	14	\%	2		35	. 15	.169	13	19	. 31	104	08	13	3.54	. 02	. 06	1	6
$3+00 \mathrm{~N} 4+50 \mathrm{~W}$	2	22	23	223	. 5	23	12	615	3.06	$\bigcirc 6$	5	ND	4	12	2	2	2	43	. 13	. 135	13	23	. 41	111	13	13	4.13	. 02	. 07	1	2
$3+00 \mathrm{~N} 4+00 \mathrm{~W}$	2	20	28	151	\bigcirc	25	8	300	3.66	12	10	ND	8	10	¢ 1	4	2	50	. 11	. 166	13	33	. 51	90	11	4	4.01	. 01	. 08	1	4
$3+00 \mathrm{~N} 3+50 \mathrm{~N}$	2	20	26	178	\% 6	24	14	844	3.27	17	5	ND	4	16	\%1	2	2	44	. 15	. 275	13	30	. 42	163	16	2	3.78	. 01	. 08	1	1
$3+00 \mathrm{~N} 3+00 \mathrm{~W}$	2	25	27	449	8	57	13	422	3.80	18	5	NO	8	19	2	2	8	55	. 21	. 152	17	43	. 99	143	14	6	3.82	. 01	. 14	1	7
$3+00 \mathrm{~N} 2+50 \mathrm{H}$	1	24	27	241	$\bigcirc 7$	31	12	470	3.55	12	5	ND	7	19	1	2	2	51	. 22	. 085	16	31	. 73	141	14	2	3.76	. 01	. 11	1	2
$3+00 \mathrm{~N} 2+00 \mathrm{H}$	1	21	56	179	$\stackrel{7}{7}$	22	9	616	3.34	9	5	ND	4	11	1	2	3	50	. 12	. 109	16	26	. 50	133	,11	9	2.65	. 01	. 08	1	4
$3+00 \mathrm{~N} 1+50 \mathrm{H}$	1	22	38	189	$\stackrel{6}{ }$	25	12	717	3.33	10	5	ND	5	19	1	4	2	47	. 19	. 083	20	25	. 57	127	12	7	3.32	. 01	. 09	1	3
$3+00 \mathrm{~N} 1+00 \mathrm{~W}$	2	28	31	220	. 4	21	10	981	3.24	9	5	ND	1	29	2	2	2	39	. 38	. 102	24	22	. 44	102	+07	5	2.61	. 01	. 09	1	8
$3+00 \mathrm{NO} 0+50 \mathrm{H}$	3	30	36	176	. 6	23	9	1115	2.80	8	19	ND	1	37	4	2	2	36	. 45	. 062	36	20	. 42	110	-07	4	2.02	. 01	. 07	1.	4
$3+00 \mathrm{~N} 0+00$	1	20	27	155	3	21	8	595	2.97	¢ 9	5	ND	2	53	1	2	2	38	. 66	. 098	25	25	. 59	121	06	3	2.54	. 01	. 09	1	1
STD C/AU-S	18	57	36	132	6.7	67	30	1000	4.03	41.	20	7	38	49	18	16	21	58	. 48	. 096	39	55	. 86	175	06	35	1.97	. 06	. 14	13	47

ERIC DENNY FILE \＃89－4903

SAMPLE\＃
 74942.67
$3+00 \mathrm{~N} \quad 0+50 \mathrm{E}$ $3+00 \mathrm{~N} \quad 1+00 \mathrm{E}$ $3+00 \mathrm{~N} \quad 1+50 \mathrm{E}$ $3+00 \mathrm{~N} 2+00 \mathrm{E}$ $3+00 \mathrm{~N} 2+50 \mathrm{E}$
$3+00 \mathrm{~N} 3+00 \mathrm{E}$ $3+00 \mathrm{~N} 3+50 \mathrm{E}$ $3+00 N \quad 4+00 E$
$3+00 N \quad 4+50 E$ $1+00 \mathrm{~N} \quad 15+00 \mathrm{~W}$
$1+00 \mathrm{~N} 14+50 \mathrm{~W}$ $1+00 \mathrm{~N} 14+00 \mathrm{H}$ i +00 ON is +5 OW $1+00 \mathrm{~N} \quad 13+00 \mathrm{~W}$ $1+00 \mathrm{~N} 12+50 \mathrm{~N}$
$1+00 \mathrm{~N} 12+00 \mathrm{~N}$ $1+00 \mathrm{~N} 11+50 \mathrm{~W}$ $1+00 \mathrm{~N} 11+00 \mathrm{~N}$ $1+00 \mathrm{~N} \quad 10+50 \mathrm{~W}$ $1+00 \mathrm{~N} \quad 10+00 \mathrm{~W}$
$1+00 \mathrm{~N} 9+50 \mathrm{~W}$ $1+00 \mathrm{~N} 9+00 \mathrm{~N}$ $1+00 \mathrm{~N} 8+50 \mathrm{~W}$ $1+00 \mathrm{~N} 8+00 \mathrm{~W}$ $1+00 \mathrm{~N} 7+50 \mathrm{~W}$
$+00 \mathrm{~N} 7+00 \mathrm{~W}$ $1+00 \mathrm{~N} 6+50 \mathrm{~W}$ $+00 \mathrm{~N} 6+00 \mathrm{~W}$ $1+00 \mathrm{~N} 5+50 \mathrm{~W}$ $1+00 \mathrm{~N} 5+00 \mathrm{~W}$
$+00 \mathrm{~N} 4+50 \mathrm{~N}$ $1+00 \mathrm{~N} 4+00 \mathrm{~W}$ $1+00 \mathrm{~N} 3+50 \mathrm{~W}$ $+00 \mathrm{~N} 3+00 \mathrm{~N}$ $1+00 \mathrm{~N} 2+50 \mathrm{H}$
$1+00 \mathrm{~N} 2+00 \mathrm{H}$ S10 C／AU－S

	Wwonvo	wnonnm	NN－NN	$\rightarrow \mathrm{NW}$－N	N	$\rightarrow \rightarrow-$－	$\rightarrow \mathrm{N}-\mathrm{N}$
MN	NW以～が	NOMN	NNNON	NWNON		A～NONO	Nへこのロ
N	WWN		NWN二心	NWNNW	心灾忩家	ONONN	Nいから
WN	WNNN N WNNO	$\underset{\sim}{N}$		N	～NNN N －MNAO	齐気云云灾	N゙忒がい
Q	$\triangle \infty \infty \infty 0$	0	N：N： $\mathrm{N}=$				
a	血へべべ	Now		がへがい	WWWN0	$\stackrel{\text { a }}{\sim}$	かいい い
$\mathbf{w}=$	いえへ	∞	$\vec{\sim}$	いいべへい	$\vec{\sim}$	ごへかo	－¢－V
$\stackrel{\rightharpoonup}{\mathbf{O}}$	\＆Nへ心N NGNON	No Nu wo			N~N	むがった。	
00	wwnwn部 $\dot{A}_{ \pm}^{\circ}$	NN』Wん oq \％in io	w wn wn －Noㅇㅇ웅			$\begin{aligned} & \text { wnN N } \\ & \text { ong in } \end{aligned}$	NNMNN
		O	$=$				
$\stackrel{\rightharpoonup}{\circ}$	avuvu	unuau	vuncu	unusum	vivinuc	numun	vucum
～${ }^{3}$	증	증 증 증	종 증 증	증 긍즤 증 즘	증	즘 즌증증	증 등증 증 중
w	いuo	00		Avown	NN	WN－\rightarrow－	
A	N	v	二小ざ呙	～へへへへ		\％	n \％
∞							
जn	NNNNN	anNan	nunno	nNownon	Nuru	NonNon	NNN
$\sim \infty$	An	N	$\stackrel{\rightharpoonup}{\circ}$	N－mun	Nw－vN0	－wn	WNNNN
\cdots		き太太合	行运合	べすべ心	今行年め	NA心W゙い	
灾灾	N～シ8ioio	웅ㅇㅇㅇ			－0～	O～NNO	웅훙헤
\%n	$\cdots \sim-0>0$	$\overline{98}$		$\therefore \text { जra }$			$\text { Q } 8$
い	べ岕い	○べこべ		－	N	かい忒	い㞤へご
N N	NNWNa	V	い以	WNWN．N．			$\xrightarrow{\sim}$
㤩		wivinio	Qưun	$\dot{\sim}) \dot{\sim}$		¢isivis	Wis
示呙	$\stackrel{\rightharpoonup}{\sim} \vec{\sim}$		ㅇơ呙式い		心NAN～N心以ルN工	$\underset{\sim}{N} \vec{o} \vec{A} \vec{N}$	
$\stackrel{\square}{\square}$	$\rightarrow Q=\stackrel{\rightharpoonup}{N}$		$\because N \sim$	$\vec{n} \stackrel{N}{n} \stackrel{N}{n}=$		$\stackrel{\rightharpoonup}{-} 0 \%$	80%
W				へいかNか	$\infty \sim \infty$	の心NAA	voncous
	wnwnum				M M M M M	AN－W	
8		으N心年	以～が式	nugun	ducio	$\sim_{\infty} 0$	准
8	90900	엉oㅇ	OOㅇㅇㅇ	어0000		웅ㅇㅇ	ㅇoㅇoㅇ
$\dot{\omega} \dot{\sim}$		웅ㅇㅇㅇㅇ	$\dot{\Rightarrow} \dot{a} \dot{\omega} \dot{=}$	$\dot{\vec{N}} \dot{\vec{w}} \dot{\vec{v}} \stackrel{\rightharpoonup}{\star} \dot{\vec{\omega}}$	$\dot{\sim} \dot{\sim}$	$\dot{8} \dot{0} \dot{0} 0$	$\dot{\sigma} \dot{\circ} \dot{0} \dot{0}$
\square							

ERIC DENNY FILE \# 89-4903
Page 3

SAMPLE\#

$1+00 \mathrm{~N}$	$1+50 \mathrm{~W}$	2	21	33	230	. 7.	32	9	263	3.18	15	5	ND	5	9	1	3	2	45	. 09	. 088	15	25	. 53	129	09	3	3.97	. 01	. 09	1
$1+00 \mathrm{~N}$	$1+00 \mathrm{~W}$	1	16	18	181	. 4	16	8	846	2.52	10	5	ND	2	21	1	2	2	36	. 24	. 19	9	17	. 27	135	12	2	3.74	. 01	. 05	1
$1+00 \mathrm{~N}$	O+50W	1	17	18	155	. 5	15	7	326	2.36	6	5	ND	3	13	1	2	,	32	. 14	. 126	10	16	. 29	123	10	3	4.25	. 01	. 04	1
$1+00 \mathrm{~N}$	0+00	1	9	22	169	. 4	12	7	1347	2.51	8	5	ND	2	13	1	2	2	36	. 11	. 083	10	15	. 25	160	, 10	2	2.70	. 01	. 05	1
1+00N	0+50E	1	16	18	168	-3.	11	6	2659	2.23	6	5	ND	1	19	1	2	2	34	. 15	195	7	11	. 14	232	$\bigcirc 12$	3	2.97	. 02	. 05	1
$1+00 \mathrm{~N}$	1+00E	1	11	22	103	2	8	6	2158	2.09	6	5	ND	1	14	1	4	2	34	. 12	. 091	8	11	. 15	110	09	2	2.17	. 01	. 04	$\therefore 1$
$1+00 \mathrm{~N}$	$1+50 \mathrm{E}$	1	23	20	221	4	26	10	6212	2.55	20	5	ND	,	12	2	3	2	33	. 11	. 174	11	18	. 20	249	08	2	2.53	. 01	. 06	1
$1+00 \mathrm{~N}$	$2+00 \mathrm{E}$	1	23	25	172	3	24	13	1918	2.97	14	5	ND	1	23	\% 1	2	2	32	. 26	. 111	13	19	. 24	157	. 08	2	2.62	. 01	. 06	1
$1+00 \mathrm{~N}$	2+50E	1	24	28	112	. 5	27	15	1077	3.24	9	5	ND	1	22	1	3	2	32	. 21	. 069	18	17	. 27	78	. 07	2	3.13	. 01	. 05	1
$1+00 \mathrm{~N}$	$3+00 \mathrm{E}$	1	20	26	135	\bigcirc	21	12	2290	2.78	9	5	NO	4	14	1	2	2	34	. 13	114	13	17	. 29	124	. 08	2	2.52	. 01	.07	,
1+00N	$3+50 E$	1	26	21	135	$\bigcirc 3$	39	8	334	3.45	16	5	ND	2	12	1	2	2	23	. 08	. 088	25	21	. 29	97	03	3	2.39	. 01	. 05	1
$1+00 \mathrm{~N}$	$4+00 \mathrm{E}$	1	18	17	109	-3	16	8.	666	2.72	5	5	ND	5	12	1	2	2	34	.10	. 117	13	17	. 27	107	\% 09	7	3.40\%	. 01	. 05	1
$1+00 \mathrm{~N}$	$4+50 \mathrm{E}$	1	15	28	115	, 1	18	9	806	4.52	13	5	ND	5	12	1	5	2	44	. 10	. 193	17	26	. 38	64	. 07	2	2.20	. 01	. 08	1
1+00S	$16+50 \mathrm{~W}$	1	33	87	192	\% 3	29	13	1541	3.06	6	5	ND	2	42	5	2	2	$4 \hat{0}$. 38	. 120	17	26	. 72	207	© 1	7	4.00.	. 01	.17	!
$1+005$	$16+00 \mathrm{~W}$	1	36	100	187	\% 4	28	13	1824	3.13	7	5	HD	3	51	5	2	2	42	. 38	. 087	16	27	. 78	251	13	2	4.14	. 01	. 19	1
1+00S	15+50W	1	54	89	315	. 6	39	16	1240	3.65	18	5	ND	4	24	4	3	3	45	. 21	. 095	18	32	. 93	189	11	6	3.91	. 01	. 22	114
1+00S	$15+00 \mathrm{~W}$	1	24	100	382	5	28	10	973	2.98	17	5	HO	3	58	7	2	4	34	. 58	. 316	14	20	. 48	259	13	2	4.13	. 02	. 13	1. 26
$1+005$	$14+50 \mathrm{~W}$	1	25	71	437	. 8	28	14	1463	3.78	25	5	HD	4	63	7	3	4	47	. 62	. 091	29	36	. 66	229	.13	2	4.14	. 02	. 23	145
1+00s	$14+00 \mathrm{H}$	1	24	116	326	. 6	26	12	567	3.57	37	5	HD	5	40	3	3	2	43	. 45	. 131	20	25	. 69	185	11	8	4.01	. 01	. 20	142
$1+00 \mathrm{~S}$	$13+50 \mathrm{~W}$	1	26	69	334	. 5	39	15	1662	3.54	123	5	ND	2	56	4	2	2	36	. 47	301	23	23	. 57	319	10	8	4.09	. 01	. 17	1. 11
1+005	$13+00 \mathrm{~W}$	3	33	67	343	. 5	47	20	2958	3.91	80	5	ND	3	45	4	2	3	52	. 39	. 130	22	30	. 90	225	813	2	3.69	. 01	. 19	19
1+00s	$12+504$	1	31	31	177	4	31	14	1861	3.11	20	5	ND	2	61	2	2	2	44	. 44	103	15	29	. 74	342	,13	3	3.26	. 01	. 17	+
$1+005$	$12+00 \mathrm{~W}$	1	34	34	182	4	49	21	1267	-3.64	28	5	ND	3	54	\% 2	2	2	49	. 38	. 089	23	42	1.14	234	14	5	3.93:	. 01	. 23	116
$1+005$	$11+50 \mathrm{~W}$	2	38	25	170	. 5	47	16	1867	3.65	19	5	ND	3	67	1	2	2	46	. 44	. 076	19	31	. 76	249	14	2	4.00	. 01	. 17	18
1+00s	$11+00 \mathrm{~W}$	1	36	26	153	. 6	50	15	1076	3.37	14	5	ND	4	56	1	2	2	40	. 39	. 147	20	41	. 85	267	09.	2	2.63	. 01	. 23	16
1+00S 1	$10+50 \mathrm{~W}$	2	37	31	370	\bigcirc	65	16	3215	3.70	18	5	ND	2	56	4	2	2	45	. 41	. 098	25	36	. 69	295	12	7	3.13	. 01	. 14	,
$1+00 \mathrm{~S} 1$	$10+00 \mathrm{~W}$	1	26	22	139	\bigcirc	38	14	1297	3.10	7	5	ND	3	23	1	2	2	45	. 17	. 096	14	36	. 77	128	13	2	3.47	. 01	. 17	1
1+00s 9	$9+50 \mathrm{~W}$	1	21	24	191	. 5	42	13	1402	2.90	7	5	HD	4	32	2	5	2	42	. 30	. 163	12	30	. 65	194	12	2	3.17	. 01	. 15	+
$1+0059$	$9+00 \mathrm{~W}$	1	20	30	245	5	32	10	1559	2.61	10	5	ND	3	47	3	2	4	38	. 33	. 205	10	22	. 43	307	012	2	3.33	. 02	. 13	1
$1+0058$	$\mathrm{B}+5 \mathrm{OW}$	1	21	88	304	2.2	30	11	1407	2.77	16	5	ND	4	20	4	2	2	41	. 14	. 137	11	22	. 41	165	11	2	3.33	. 01	. 09	1
$1+0058$	$8+00 \mathrm{~W}$	2	28	26	331	\bigcirc	51	11	498	3.03	17	5	ND	5	28	4	2	2	48	. 20	. 097	13	38	. 74	194	112	5	3.51	. 01	. 13	1
1+005 7	$7+50 \mathrm{H}$	2	26	45	303	1.4	51	12	1973	3.03	16	5	ND	1	24	4	2	2	41	. 16	. 270	12	35	. 42	238	10	2	2.86	. 01	. 07	1
$1+0057$	$7+00 \mathrm{~W}$	2	23	28	308	2.3	62	13	1314	3.17	31	5	ND	3	24	2	2	2	39	. 23	. 276	12	34	. 37	210	07	2	3.32	. 01	. 08	15
$1+0056$	6+50W	2	27	22	246	1.5	48	13	632	3.09	25	5	ND	4	14	2	2	2	39	. 11	. 158	11	34	. 50	121	09	3	4.09	. 01	. 07	1
1+00S 6	$6+00 \mathrm{~W}$	1	14	62	248	1.8	30	9	1121	2.56	15	5	ND	3	17	2	2	2	32	. 14	172	9	14	. 21	146	11	6	4.93	. 01	. 05	1
1+00S 5	5+50W	2	18	27	179	8	30	9	981	2.56	18	5	ND	3	13	2	2	2	35	. 08	. 093	9	16	. 25	127	$\stackrel{10}{ }$	7	3.29	. 01	. 06	4
1+00s 5	$5+00 \mathrm{~W}$	3	26	43	299	8	39	11	710	3.03	16	5	ND	4	10	3	2	3	39	. 07	. 112	14	22	. 42	133	\% 08	2	3.29	. 01	. 08	12
SID C/A	AU-S	18	58	36	132	7.0	66	30	1015	4.09	42	18	7	39	49	19	16	22	59	49	095	40	56	87	175	06	36	1.98	06	13	135

ERIC DENNY FILE \# 89-4903

Page 4

SAMPLE\#	Mo	Cu	Pb	$2 n$	Ag	Ni	Co	Mn	Fe	As	U	Au	Ih	Sr	Cd	Sb	Bi	V	Ca	P	La	Cr	Mg	Ba	Ii	B	Al	Na	K	W	$A^{*}{ }^{*}$
	PPM	\%	PPM	PPM	PPM	PPM	PPM	PPH	PPM	PPM	PPM	x	\%	PPM	PPM	\%	PPM	\%	PPM	\%	\%	\%	PPM	PPB							
IW1-1	2	120	445	1568	2.9	141	36	6402	4.69	31.	5	ND	1	61	29	2	2	52	. 41	.170	25	36	. 88	201	09	2	4.51	. 01	. 16	2	99
1W1-2	3	78	116	686	9	126	28	8757	4.62	26	5	NO	1	87	14.	2	3	38	. 94	. 195	23	24	. 59	242	08	4	3.52	. 01	. 16	$\because 1$	0
1W1-3	1	40	132	422	.1.	56	17	2633	3.30	15	5	ND	1	77	9	2	2	41	. 81	. 103	18	27	. 76	252	, 10	7	3.24	. 01	. 20	1	
161-4	1	37	164	457	, 3	41.	15	2160	3.25	20	5	ND	2	48	9	2	4	42	. 39	. 116	17	29	. 78	261	10	2	3.19	. 01	. 18	1	40
1W1-5	1	31	892	454	.7	27	13	1984	3.14	18	5	ND	2	56	9	2	2	40	. 62	. 176	16	25	. 65	391	12	2	3.40	. 01	. 18	1	34
1W1-6	1	22	126	419	, 3	24	10	2038	2.88	18	5	ND	2	63	9	2	2	32	. 51	. 368	15	19	. 46	392	12	4	3.19	. 02	. 15	1	2
1W1.7	1	18	144	470	. 1	26	10	3233	2.64	14	5	ND	1	60	15	2	4	32	. 66	. 259	15	19	. 48	416	11	2	3.15	. 01	. 16	1	6
IWI-8	1	18	64	465	1	23	11	5201	2.83	23	5	ND	1	65	10	2	2	31	. 53	. 440	14	18	. 40	628	12	5	3.38	. 02	. 16	1	1
161-9	1	32	66	282	. 3	45	13	782	3.54	30	5	ND	6	37	3	2	2	44	. 42	. 197	23	42	. 78	219	14	4	4.60	. 01	. 19	1	1
1W1-10	1	24	67	274	\cdots	29	15	3260	3.57	12	5	ND	1	63	4	2	2	47	. 62	. 208	15	45	. 88	435	,11	3	3.23	. 01	. 23	1	2
1W1-11	1	24	116	579	\% 1	39	13	4635	2.49	13	5	ND	1	115	21	2	2	28	1.12	.233.	12	15	. 36	344	09	5	2.86	. 02	. 13	2	4
1W1-12	1	40	59	359	$\stackrel{1}{1}$	47	17	3859	3.26	12	5	NO	1	49	10	2	6	41	. 39	. 123	18	26	. 66	359	11	2	3.52	. 01	. 15	1	5
ivi-i3	i	45	142	498	. 3	41	17	3170	3.40	36	5	N0	2	65	10	2	2	42	4.4	. 103	18	25	. 60	366	13	2	3.86	. 01	. 19	1	6
TW1-14	1	37	181	333	.1.	28	15	6693	2.79	13	5	ND	1	100	21	2	2	37	. 85	. 138	16	25	. 66	589	10	2	2.83	. 01	. 23	1	18
TH1-15	1	38	87	241	\% ${ }^{3}$	35	15	2581	3.27	15	5	ND	2	52	7	4	5	43	. 43	. 097	15	29	. 76	304	12	4	3.49	. 01	. 18	1	6
141-16	,	32	101	223	$\bigcirc 1$	37	16	2008	3.03	13	5	ND	2	60	4.	2		41	. 46	. 104	15	26	. 69	228	\$1	2	3.13	. 01	. 19	1	3
1W1-17	1	31	118	341	, 4	64	20	5235	3.44	21	5	ND	3	79	8	2	2	42	. 66	. 181 ,	18	29	. 60	363	11	2	3.34	. 01	. 17	1	4
TH1-18	1	31	74	244	, 1	35	16	1897	3.29	19	5	ND	3	41	4	3	3	41	. 34	. 157	16	31	. 79	258	10	6	2.91	. 01	. 23	1	1
1W1-19	1	17	53	182	\bigcirc	24	11	1135	2.77	11	5	ND	4	57	3	3	2	37	. 41	. 156	17	24	. 60	193	10	2	2.97	. 01	. 18	1	27
141-20	1	39	46	200	$\bigcirc 6$	40	15	1145	3.33	19	5	ND	3	82	3	5	5	43	. 46	. 252	19	33	. 76	267	09\%	3	3.38	. 01	. 26	1	12
SID C/AU-S	18	57	37	132	6.7	67	30	1020	4.02	40	20	7	38	49	19	15	23	59	. 48	. 095	40	58	. 86	178	O6.	33	1.95	. 06	. 13	12	51

$-100 \mathrm{~N}$
$-\infty$

	TWILIGHT GROUP NELSON MINING DIVISION NTS 82F/6E SOIL GEOCHEM - GOLD TN PPB DECEMEER 1989 FIGURE Na. 5 By:ERIC DENNY

-700N

```
~
```



```
~~
```


	TWILIGHT GROUP NELSON MINING DIVISION NTS 82F/6E SOIL GEOCHEM - LEAD IN PPM- DECEMBER 1989 FIGURE No. 7 BY:ERIC DENNY
	Esic Denny

```
\M\mp@code{OM}
```

-700N

```
        ~N
    \sigma
N N
```


$\underset{\sim}{\approx} \underset{\sim}{\sim} \underset{\sim}{\sim}$
$-100 \mathrm{~N}$
$-\infty$

Gric Denny


```
    \
```


