LOG NO:	0130	RD.
ACTION:		
FILE NO:		

GEOCHEMICAL SURVEY REPORT

TWILIGHT GROUP

NELSON MINING DIVISION

82F/6E NTS

Latitude 49 degrees 16' N Longitude 117 degrees 11' W

OWNER: Jack Denny

OPERATORS: Eric Denny, Jack Denny

AUTHOR: Eric Denny

> December 1989

Respectfully submitted by

Eric Denny

U R ZO € ₽ **x** na ferr < Z GIC. SME 6 S O 0 0 **1**0 U 4

FILMED

TABLE OF CONTENTS

Introduction	<u>Page No</u> .
Location	1
Access	1
Property Description	1
Topography	5
Vegetation and Overburden	5
Exploration History	5
Geology	7

Work Done

Geochemical Program	9
Linemarking	9
Soil Sampling and Analysis	9
Results	11
Conclusions and Recommendations	· 11
Summary	12

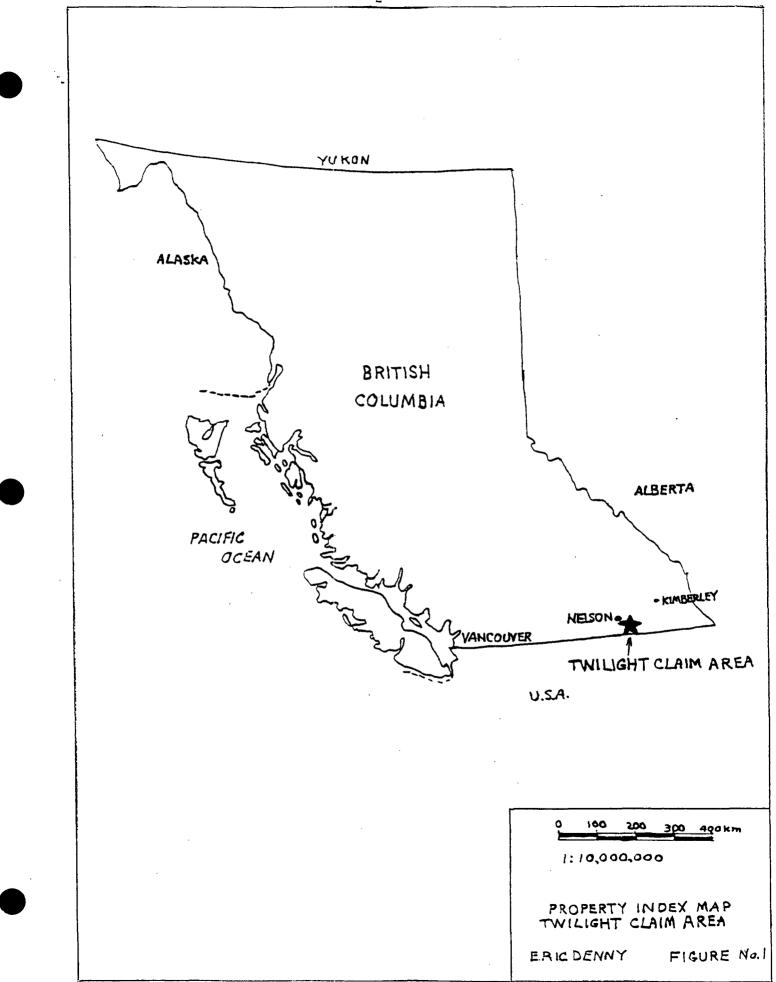
List of References	13
Itemized Cost Statement	14
Author's Qualifications	15
Geochemical Lab Reports	

LIST OF FIGURES

	Title	Scale	Page
Figure 1:	Property Index Map	1:10,000,000	2
Figure 2:	Twilight Claims	1:31,680	4
Figure 3:	Geological Map of Area	1:31,680	8
Figure 4:	Property Plan - Grid Location	1:5000	Map pocket
Figure 4A:	Twi Grid including Results	1:5000	10
Figure 5:	Gold in Soils	1:5000	Map pocket
Figure 6:	Silver in Soils	1:5000	., ,,
Figure 7:	Lead in Soils	1:5000	11 II
Figure 8:	Zinc in Soils	1:5000	
Figure 9:	Arsenic in Soils	1:5000	n n

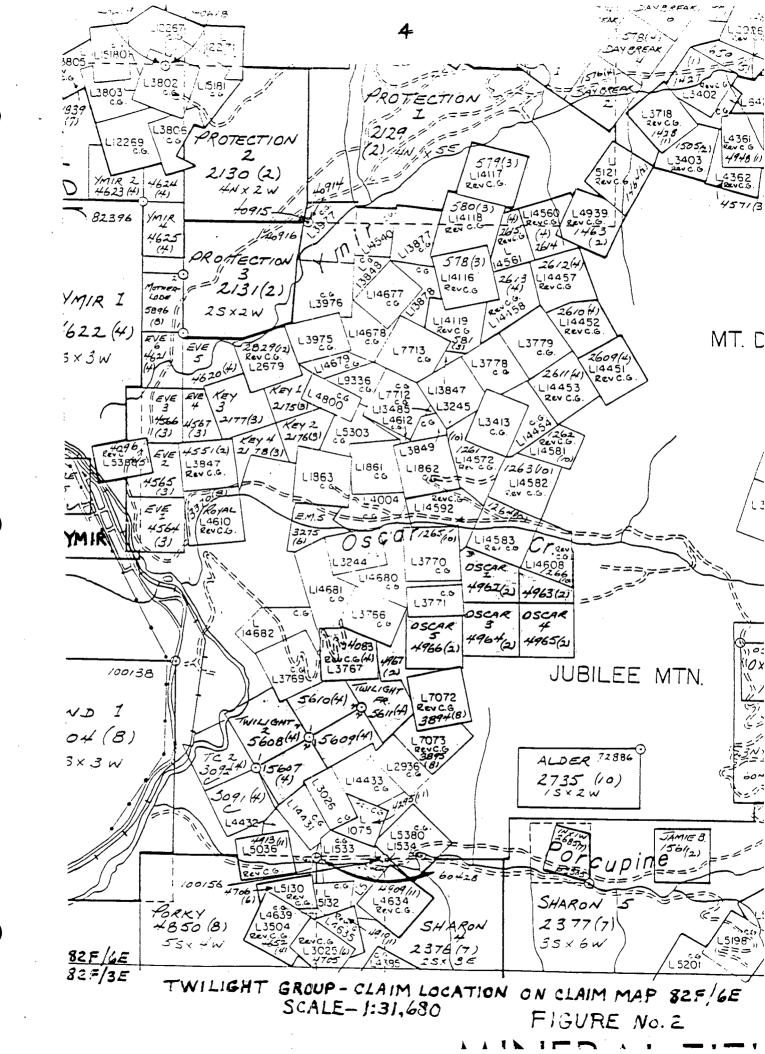
INTRODUCTION

Location


The Twilight claims are located on the east side of Salmo River on the southwest slope of Jubilee Mountain. They are 4 kilometers southeast of Ymir an old mining town that is 24 kilometers south of Nelson, B. C.

Access

Access is by the old road to the Centre Star Mine from Ymir 4 km or by the Oscar Creek logging road a branch of which leads onto the Oscar 2 claim 6 km. Also an overgrown road from near the mouth of Porcupine Creek and an old trail from the Dewey Mine all lead to the claims.


Property Description

The property consists of three reverted crown grant claims and eleven 2 post claims as outlined below and which are shown on Figures No. 2, 3 and 4. The staked claims cover some former surveyed claims called the New York Central, Canion Fr., Mineral Zone, Redman Fr. and Riverside. On the north they adjoin the crown granted claims of the Centre Star Mine and on the south they adjoin the Dewey Jubilee, Tyne and Blue Eyed Nellie crown grants held by American owners. According to the original survey field notes these claims to the south are further north than they are shown on the claim maps and topographical maps thus narrowing the Twilight 1 - 5 claims and making uncertain the ownership of some of the old workings until such time as more survey posts are found.

TWILIGHT CLAIM GROUP

Claim Name	Lot No.	Record No.	Expiry Date	Owner
Twilight	L.3767	4083	April 1, 1990	Jack Denny
Blue Quartz	L.7072	3894	August 23, 1990	n n
Rover	L.7073	3895	August 23, 1990	11 H
Oscar l		4962	February 23,1990	11 H
Oscar 2		4963	11 T T	11 II
Oscar 3		4964	[.] 1) 11 1)	" "
Oscar 4		4965		
Oscar 5		4966	11 II II	
Oscar Fr.		4967	11 II II	
Twilight 1		5607	April 25, 1990	
Twilight 2		5608	11 II II	11 H
Twilight 3		5609	11 II II	11 11
Twilight 4		5610	n n n	" "
Twilight Fr.		5611	11 II II	" "

TOPOGRAPHY

The topography is shown on Figure No. 3. On the western claims the ground slopes to the west and is fairly steep. The Oscar claims are in an area of more moderate to almost level slopes. Altitudes range from 760 M to 1600 M.

VEGETATION AND OVERBURDEN

Most of the claims are covered with second growth timber about one half of it merchantable size. Fir, larch and jack pine predominate but there is also some hemlock, cedar, balsam, spruce, poplar and birch. Most of the area was burnt in the 1930's. Underbrush is moderate except in the Blue Quartz and Rover area where on the main ridge it is heavy with few trees. Overburden is light or less than one half meter deep on an average. Outcrop amounts to less than 10 percent of the surface.

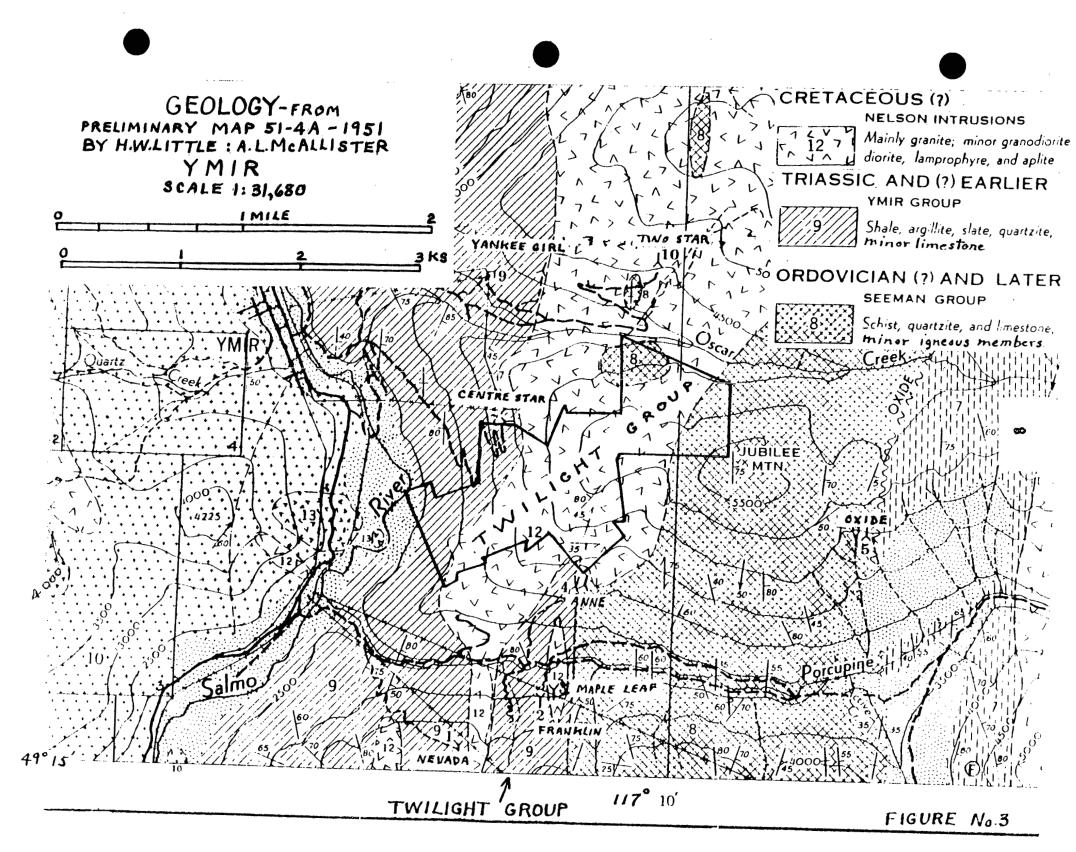
EXPLORATION HISTORY

The Ymir area attracted placer miners in the late 1860's. They had panned their way up the Salmo River from the Columbia and Pend d'-Oreille. Mineral exploration started about 1885 on Wildhorse Creek but the area did not become active until 1896 which was the boom year when most of the important claims were discovered and staked. By 1900 there were 9 stamp mills operating (155 stamps in total). Tonnage treated or shipped to the end of 1899 was 30,857 tonnes. The Ymir 80 stamp mill was the largest in B. C. by 1902. The greater part of the Ymir Mine production was over by 1905; about the time the Yankee Girl started to produce. The greater part of Yankee Girl production was after the price of gold was raised from \$20. to \$35. in 1934.

The Centre Star claims were staked in 1900 and crown granted in 1905 but no intensive prospecting or development work was done on them until 1934 when the Wesko Exploration and Development Company took over the claims and worked them on a large scale until 1938. The Ymir, Yankee Girl and Centre Star are all in the large contact zone of Ymir Formation (formerly called the Pend d' Oreille Formation) and the Nelson Granite to the east. The Twilight L.3767 was originally part of the Centre Star L.3766, Redman L.3769, Crowfoot L.3770, Blind Canyon L.3771 Group. As it is an integral part of the group it is hard to understand why it became separated. Many years ago the writer tried to buy it as a crown grant from the owner who wouldn't sell it and claimed it was the key claim to the Centre Star Group. Later it The portal of the 300 foot level of the Centre reverted to the crown. Star is about 25 metres within the Twilight boundary as shown on Lakes map and proven with a crown grant post, cairn and iron pin we found in 1989 that marks the N.W. corner of the Twilight. The fact that an individual owned this claim for many years is probably the reason there has been little development on it.

Mine	Year	Tonnes Mined	Gold (Grams)	Silver (Grams) (Lead (Kilograms)	Zinc (Kilograms
Ymir	1899-1950	330,284	3,757,841	15,733,695	4,777,153	806,401
Yankee Girl	1907-1951	367,632	4,242,837	24,279,128	6,194,719	6,474,316
Centre Star	1936-1950	51,052	425,648	3,257,554	966,422	475,639

Production figures for these three mines are


GEOLOGY

The geology is shown on Figure 3 which is a copy of part of McAllister's map 51 - 4A. Although this is a 1951 map the geology is still shown the same on Hoy & Andrew's maps 0 F 1988 - 1 and 0 F 1989 - 11. McAllister in his report 51 - 4 page 45 states. "The property (Centre Star) lies in a broad contact zone between the Nelson batholith and rocks of the Ymir group. The zone consists of sheared and altered argillites and quartzite cut by innumerable small bodies of granite and granite-gneiss. Small bodies of aplitic intrusive rocks are found in the workings as well as lesser amounts of andesitic rock related to the Elise formation. Lamprophyre dykes cut the orebody and follow post-ore faults."

Cockfield states (Page 20 - Memoir 191) that -- "The rock structures are complicated by faults. A number of strong fault zones striking north 30 to 50 degrees east and dipping fairly steeply southeast, cut the formation into fault blocks. Those exposed by mining operations are 15 - 30 feet wide and are somewhat similar to others occuring on surrounding properties as, for example, the Yankee Girl, Dundee, Nevada and others. These fault zones have the same trend as Salmo Valley below Ymir and are probably related to major regional movements. The veins occur in fault fissures striking north 60 to 80 degrees east and dipping 60 to 75 degrees northwest, the main vein-fissure, as explored to date, lying between two of the northeasterly fault zones referred to above."

Cockfield also mentions showings of interest to the southwest of the Centre Star, which we have examined.

From west to east is the Ymir Group, Nelson batholith and the Seeman group which is similar to the Ymir but of older Lower Cambrian age. (Hoy) See Figure No. 3 for geology.

WORK DONE

GEOCHEMICAL PROGRAM

The object of the geochemical soil sampling program was to hopefully pick up indications of the continuation of veins and fault zones proven on the Centre Star or parallel structures to these. The "south vein system", shown on Lake's map and mentioned by Cockfield, has not been developed on the Twilight. It was also hoped that the sampling would indicate the presence of the "Jubilee" vein which is supposed to run through the Rover and Blue Quartz claims and the New York Central vein further to the west and any other unknown mineral showings that might exist.

LINE MARKING

Lines were cut and blazed with an axe and measured with a hip chain with an allowance for slope correction. The 6.3 km of grid lines were marked with orange flagging with station location printed on each with a black felt pen. The main grid was made in 1988 and credited to assessment for that year. Lines are 200 meters apart with 50 meters between stations. The baseline is also the claim line for the Oscar 1 - 4. The Twi grid stations are 25 meters apart.

SOIL SAMPLING AND ANALYSIS

129 soil samples were taken of the B horizon at depths of 8 - 30 centimeters with a steel grub hoe. Samples were placed in brown kraft paper soil envelopes and partially dried. The Sample Analysis soil samples were sent to Acme Analytical Laboratories Ltd. where they were completely dried and sieved to --80 mesh material and run for 30 element ICP (Inductively Coupled Plasma) analysis. A.500 gram sample is digested with 3 ML 3-1-2 HCL - HNO3 - H20 at 95 degree C. for one hour and is diluted to 10 ML with water. Gold analysis is done by acid leach of a 10 gram sample and the gold detected by atomic absorption.

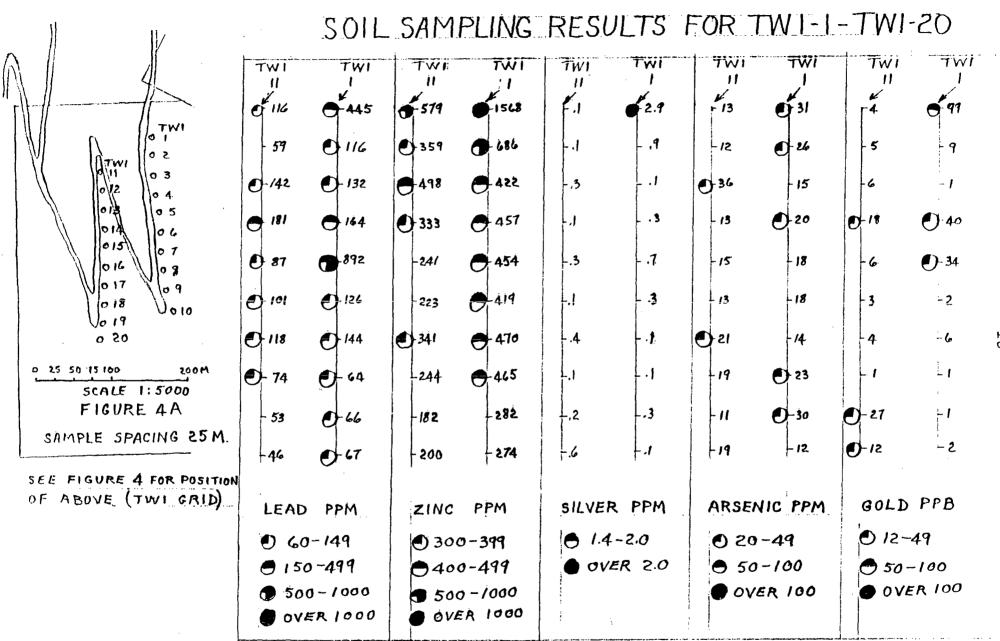


CHART NOT TO SCALE

, **x**

BY : ERIC DENNY

FIGURE No. 4A

RESULTS

The results are shown by symbol on Figures 4A, 5 - 10.

Symbols were used in preference to contouring as any contouring done would be misleading and guesswork due to the wide 200 meter distance between lines as the main grid was strictly a reconnaissance type grid. Results were plotted for gold, silver, lead, zinc and arsenic because all of these showed a distinct contrast between highs and background, whereas the other minerals did not except for the occasional higher value. Anomalous values and grades of anomaly were determined from personal experience and a study of numerous exploration programs and assessment reports over many years in the Nelson area. Generally speaking the results for gold, lead and zinc correlate well and are high in the Twi grid area and the west end of lines 100 north and 100 south and would tend to indicate that some of the Centre Star structures follow through onto Twilight ground.

There are anomalous silver, zinc and arsenic values shown toward the east end of line 100S. There are other highs here and there. Some of these are near the Granite-Seeman contact.

CONCLUSIONS AND RECOMMENDATIONS

This widely spaced, reconnaissance type soil sampling grid has shown a definite need for further prospecting and for close spaced geological mapping of this whole area and further soil sampling on the Twilight L.3767 on a 25 meter grid covering the whole claim and extending beyond it to the southwest. Another 25 meter soil sampling grid should be made in the area of 100N and 100S from 500 W to 850 W and further south. The first grid should be followed by trenching and if successful the ground could be diamond drilled from the existing switchback road that ends on the Centre Star claim.

Further claim posts of the old surveys should be located so that the south boundary of the Twilight group could be definitely established to make sure of who owns what ground. Any old workings within the Twilight ground should be cleared and sampled. There are quite a lot of old workings that we have found but as little mineral was obvious we have only partially cleared them and marked them well until such time as their location can be plotted accurately and we can clear them out properly.

SUMMARY

The Twilight Group is underlain by the same geological structures that have hosted three major mines so it is felt that detailed geological mapping, further prospecting and soil sampling, trenching, opening up and sampling of old showings is well warranted. If this work shows good results then several diamond drill holes could be drilled at a very reasonable cost from the old Centre Star road as even from the work done so far it would appear that there is a strong possibility of intersecting the southwesterly extension of the Centre Star mineralization structures.

REFERENCES

1.	Annual Reports of the British Columbia Department of Mines	
2.	British Columbia Minfile	
3.	Ymir District Mines by R. W. Macfarlane and others	1900
4.	Drysdale, C. W. Ymir Mining Camp G.S.C.Memoir 94 and map	1917
5.	Lakes, Arthur Plan of Centre Star Mining Property	1936
6.	Cockfield, W. E. Lode Gold Deposits of Ymir-Nelson Area	
	G.S.C.Memoir 191	1936
7.	McAllister, A.L. Ymir Map Area G.S.C. Paper 51-4 and	
	Map 51 - 4A	1951
8.	Little,H.W. Nelson Map Area West Half G.S.C.Memoir 308	
	and Maps 1090A, 1091A and 1144A	1960
9.	Hoy, T Andrew K. O.F. 1988-1 Maps and Report	1988
10.	Hoy, T Andrew K. O.F. 1989-11 Maps and Report	1989

13

.

ITEMIZED COST STATEMENT

Labour - finishing grid and sampling, road work on claims, locating original survey, partially clearing 3 trenches, a shaft and an adit portal shown of Figure #4 960.00 8 man-days @ \$120. per man-day \$ Transportation ζ. 1980 F150 - 4x4 Ford 4 days @ \$50.per day 200.00 Soil Analysis 129 samples by 30 element ICP plus 1109.40 geochemical gold Geochemical Report and Map Production 5 days @ \$120. per day 600.00 Typing, photostating, office supplies, express charges_ 250.00

\$3119.40

STATEMENT OF QUALIFICATIONS

I, Eric Denny, do hereby certify that --

I have been prospecting for forty-four years the last eighteen years of which it has been my full time occupation.

Most of my prospecting has been for myself but I have also prospected for numerous companies.

I attended prospecting classes in Nelson in 1953, 1955, 1960, 1964 and 1968. Since then I have attended many lectures on geology, geochemistry and geophysics at various cities.

I have a large library that is kept up to date and a good map collection of which is well used both for my own use and in research for my geological friends and mining companies.

I have personally spent many days on the Twilight claims and surrounding area in the past few years.

This Geochemical Report is Respectfully submitted by

Eric Denny

3+00N 2+50W

3+00N 2+00W

3+00N 1+50W

3+00N 1+00W

3+00N 0+50W

3+00N 0+00

STD C/AU-S

1 24

1

1 22

2 28

3

18

21

30

20

57

27 241

38 189

31 220

36 176

27 155

56 179

.7 31

.7 22

.6

.4 21

.6 23

.3

36 132 6.7

25

21

67

12

12

10

9 1115

8

9

470 3.55

616 3.34

717 3.33

981 3.24

595 2.97

30 1000 4.03

2.80

12

9

10

9

8 19

9

41

5 ND

5 ND

5 ND

5 ND

5

20

ND

ND

7 38

7 19

4 11

5 19

1 29

1

2 53

37

49

1 2

1

1 4

2 2

4

1 2

18

2

2

16

2 51

3 50

2 47

2 39

2

2

21

36

.22 .085

.12 .109

.19 .083

.38 .102

.45 .062

38 .66 .098

58 .48 .096

16

16

20

24

36

25

39

31 .73

26

25

22 .44

20 .42 110

25 .59

.50

55 .86 175

.57 127

141

133

102

121

. 14

-11

12

.07

.07

.06

.06

2 3.76

9 2.65

7 3.32

5 2.61

4 2.02

3 2.54

35 1.97 .06

.01

.01

.01

.01

.01

.01

.11

.08

.09

.09

.07

.09

.14

2

4

8

1

47

1

1 3

1

1 4

1

<u>ੇ13</u>ਂ

PHONE(604)253-3158 FAX(60 53-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

.

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: Soil -80 Mesh AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE. $\sqrt{2}$

- SAMPLE TYPE: Soil -80 Mesh 89 DATE REPORT MAILED: SIGNED BY.... DATE RECEIVED: NOV 28 1989 File # 89-4903 ERIC DENNY Page 1 SAMPLE# Cu PЬ Ni Mn U Th Sr Sb Мо Zn Ag Со Fe As Au Cd Bi v Са ρ La Cr Mg Ba Τi В AL Na κ ¥. Au* % PPM PPN PPM PPM PPM PPM PPM PPM * PPM PPM PPM PPM PPM PPM PPM PPM PPM * % PPM PPM * PPM * PPM % % PPM PPB .4 7+00N 3+50W .1 25 19 243 39 12 705 3.60 5 ND 4 20 2 2 53 .20 .119 12 31 .50 128 .12 4 3.31 .02 .09 5 4 234 .5 378 3.35 2 13 7+00N 3+00W 2 11 19 19 8 8 5 ND 1 2 2 50 .14 .075 12 21 .36 95 .11 6 2.97 5 .01 .06 1 22 25 281 .5 41 16 895 4.05 7 5 4 60 2 2 3 3 3.30 7+00N 2+50W 1 ND 64 .40 .298 21 62 1.04 353 .21 .01 .13 1 3 2 19 21 214 .5 25 13 968 3.83 7 5 3 28 2 12 60 .24 2 2.54 7+00N 2+00W ND 1 .070 42 .68 160 .01 .10 15 . 18 2 4 5 2 7+00N 1+50W 1 16 25 233 .6 18 10 853 3.80 11 ND 4 17 1 2 59 .14 .189 10 26 .47 194 . 13 7 2.80 .01 1 1 .07 7+00N 1+00W 11 29 186 10 517 4.07 5 13 2 3 .13 .210 9 25 2 3.39 .01 1 .4 17 6 ND 4 59 .44 137 .14 .08 1 1 5 7+00N 0+50W 2 16 23 377 1.0 16 11 4708 3.49 6 ND 1 17 4 2 6 49 .17 .195 10 20 .35 213 .14 8 2.55 .02 .06 1 3 35 5 3 2 7+00N 0+00 2 32 31 371 1.7 11 842 3.70 11 ND 24 2 50 .21 .081 17 30 .56 1 148 :10 16 3.22. .01 .11 1 1 5 17 5+00N 4+00W 2 13 22 109 1.0 14 9 271 3.38 6 ND 4 1 2 2 44 .13 .192 7 23 .35 81 .12 7 4.96 .01 .06 1 11 25 321 1.5 24 10 898 3.28 9 3 3 2 47 27 .57 5+00N 3+50W 2 165 6 ND 4 14 . 15 .119 15 118 .13 3 2.81 .01 .08 1 5 5+00N 3+00W 3 28 49 244 .6 25 12 1197 3.39 5 ND 2 22 2 2 3 50 .27 .073 24 31 .66 109 .12 3 2.72 .01 .08 10 6 20 148 17 9 1265 2.70 73 4 2 5 39 1.20 .110 37 29 .50 5+00N 2+50W 2 46 .9 6 84 ND. 1 108 .09 9 3.78 .02 .08 3 1 5+00N 2+00W 20 24 196 .7 31 10 662 3.35 12 18 ND 2 58 3 2 7 45 .76 .092 28 33 .81 115 09 2 3.26 .02 .13 3 1 1 2 5+00N 1+50W 21 24 224 29 9 737 3.02 12 13 ND 1 50 2 5 .66 .117 29 27 .74 99 .06 2 2.46 1 .6 41 .01 .12 1 6 5+00N 1+00W 1 16 21 153 .4 19 10 559 2.90 6 5 ND 2 29 1 2 6 42 .34 .114 13 23 .50 137 . 10 2 3.14 .01 .08 3 1 785 7 5+00N 0+50W 2 24 24 248 .8 20 11 3.19 5 ND 3 20 2 2 3 47 .21 .220 12 26 .46 173 .11 4 3.00 .02 .09 4 5+00N 0+00 1 25 15 225 .4 31 10 601 3.49 6 8 ND 4 35 1 2 2 49 .36 .070 33 32 . 86 179 .10 6 3.19 . 02 .19 9 1 127 18 13 .8 14 7 585 2.76 8 5 ND 1 66 2 2 30 .52 .409 12 17 .31 136 4 3.24 5 5+00N 0+50E 1 .06 .02 .07 1 17 7 7 5 3 13 2 2 .12 .139 21 .35 5+00N 1+00E 2 15 17 157 .4 467 2.58 ND 1 34 15 106 .07 2 3.65 .01 .08 2 6 .5 5 5+00N 1+50E 2 19 21 151 26 10 899 2.89 16 ND 6 14 1 2 2 39 .14 .094 20 26 .51 145 .07 12 2.81 .01 .08 2 3 5+00N 2+00E 2 16 22 123 .8 12 10 695 3.72 11 5 ND 4 2 2 49 .11 .083 12 22 .28 85 09 3 3.34 11 .01 .07 1 1 5 5+00N 2+50E 2 14 17 111 1.8 12 8 745 2,65 5 ND 4 11 2 4 35 .11 .104 10 17 .20 106 .11 5 4.07 .01 .06 1 6 5 5+00N 3+00E 21 22 165 .6 21 8 549 2.87 10 ND 4 14 2 2 38 .16 .118 16 24 .45 114 .08 4 3.11 .01 .08 12 1 1 1 23 5+00N 3+50E 1 20 119 .4 17 7 692 2.67 7 5 ND 1 15 1 2 2 40 .15 .074 13 21 .29 125 .08 2 1.94 .01 .06 1 25 3.26 2 13 22 134 .5 12 484 5 2 17 2 .18 .084 20 .34 5+00N 4+00E 8 0 ND 1 4 44 13 109 .09 9 2.66 .01 .07 1 5 5+00N 4+50E 24 17 422 2.77 2 2 .15 .169 1 16 131 .6 8 10 5 ND 5 14 35 13 -19 .31 104 .08 13 3.54 .02 .06 1 6 3+00N 4+50W 2 22 23 223 .5 23 615 3.06 5 4 12 2 2 .13 .135 12 6 ND 2 43 13 23 .41 111 .07 2 :13 13 4.13 .02 1 3+00N 4+00W 2 20 28 151 .9 25 8 300 3.66 12 10 ND 8 10 1 4 2 50 .11 .166 13 33 .51 90 .08 4 .11 4 4.01 .01 1 7 3+00N 3+50W 2 20 26 178 .6 24 14 844 3.27 5 ND 4 16 1 2 2 44 .15 .275 13 30 .42 163 .16 2 3.78 .01 .08 1 1 25 57 3+00N 3+00W 2 27 449 .8 13 422 3.80 18 5 ND 8 19 2 2 8 55 .21 .152 17 43 .99 143 14 6 3.82 .01 . 14 1 7

ERIC DENNY FILE # 89-4903

																															-	
S	SAMPLE#	No PPM				Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe X		U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca X	P X	La PPM	Cr PPM	Mg X	Ba PPM	ti X	B PPM	Al X	Na %	K X	W PPM	Au* PP8
3	+00N 0+50E	2	16	29	133	8. Û	16	7	494	2.67	6	5	ND	1	12	1.19	2	2	35	. 13	.084	24	21	.41	69	.08	5	3.15	.01	.07	5 2	3
-	+00N 1+00E	ī	16			.8	15	7	879	2.39	5	5	ND	1	11	1	2	Ž	33		.080	17	16	.25	96	.09		3.26	.01	.05	1	1
3	+00N 1+50E	2	11	19	93	.1	13	6	274	3.08	9	5	ND	1	9	ોં	2	. 2	38	.09	. 160	12	18	.29	73	.08	2	3.10	.01	.06	2	1
3	+00N 2+00E	1	20	19	112	.6	19	8	468	2.76	18	5	ND	1	49	1	2	2	33	.50	.080	38	27	.45	116	.08	3	3.74	.01	.08	1	7
3	+00N 2+50E	1	24	32	224	.2	18	9	1502	2.71	10	5	ND	1	59	2	2	3	34	.90	.094	13	21	.39	250	.07	7	1.70	.01	. 10	1	4
3	+00N 3+00E	1	29	21	148	.5	21	9	1178	2.94	11	5	ND	1	41	2	2	2	37	.46	.119	40	27	.41	135	,07	4	3.68	.02	. 10	1	2
3	+00N 3+50E	1	20	22	112	1	19	8	547	2.90	13	5	ND	1	41	88 i (2	2	35	.42	.114	16	17	.31	141	.07	4	1.83	.01	.07	1	2
3	+00N 4+00E	1	20	20	147	.2	12	7	1296	2.51	7	5	ND	1	17	88 1 -	2	2	33	.23	. 176	12	14	.21	145	.07	2	1.49	.01	.07	1	1
3	+00N 4+50E	1	27	27	197	.2	24	13	1806	3.42	±13	5	ND	2	31	\$\$ 1 `	2	3	44		. 199	13	21	.41	140	.10	8	2.94	.02	.09	1	1
1	+00N 15+00W	1	43	390	1171	2.2	61	17	1573	3.66	29	5	ND	3	66	12	2	4	47	.50	.273	16	44	.94	257	.14	6	4.28	.01	.20	. 2	188
1	+00N 14+50W	1	20	1160	1590	.9	24	9	977	3.11	86	5	ND	4	36	17	2	8	32	.31	.223	12	17	.31	220	.14	6	3.49	.02	.09	2	61
1	+00N 14+00W	2	38	1276	2245	.5	29	21	5390	5.85	97	5	ND	1	72	34	2	2	58	.82	.108	19	39	.77	258	.10	10	3.21	.01	. 14	3	59
1	+00N 13+50W	î	27	141	279	.3	34	15	1812	3.63	20	5	ND	4	54	4	2	7	50	.40	.177	25	32	<u>. 84</u>	415	,16	8	3.79	.01	. 15	1	14
1	+00N 13+00W	1	25	43	258	.1	33	18	2684	4.09	14	5	ND	2	48	3	2	3	59	.40	165	21	43	1.07		.19	2	2.75	.01	.22	- 1	1
1	W02+51 N00+	1	28	43	203	.3	33	17	2877	3.38	15	5	ND	2	57	3	2	2	47	.44	.094	20	27	.62	233	13	8	3.78	.01	. 19	81 C	4
1	+00N 12+00W	2	23	32	154	.3	31	13	1137	3.27	12	5	ND	2	21	88 t -	2	6	44		. 104	15	25	.57	128	11		3.13	.01	. 13	ं 2	21
1	00N 11+50W	1	20	29	152	.2	40	12	1282	3.20	17	5	ND	3	47	2 1	2	5	42		. 190	15	29	.64	310	,12	2	3.50	.01	. 14	1.1	1
1.	+00N 11+00W	3	27	27	178	.3	46	20	1302	3.74	14	5	ND	6	45	1	3	8	50	.37	.347	23	32	.65	292	.14	4	3.93	.01	. 15	3.	1
1.	00N 10+50W	2	31	36	179	.5	52	15	1121	3.29	12	5	ND	5	21	81	2	4	46	.21	.150	13	34	.71	176	.12	5	3.56	.01	.13	1	8
1.	00N 10+00W	1	22	29	200	.7	44	13	1256	3.15	9	5	ND	4	20	1	. 2	2	45	.17	.207	16	34	.66	182	,12	12	3.50	.01	. 12	§1.	4
11	00N 9+50W	2	29	19	200	1.0	36	11	613	2.83	13	5	ND	4	24	2	2	4	42		.131	11			137	.13		4.17	.01	.10	88 1 (1
1-	00N 9+00W	2	20	17	232	.7	33	13		3.08	13	5	ND	1	23	2	2	2	44		.166	12			192	31 3		3.05	.01	. 10	(1)	2
11	00N 8+50W	1	20	27	193	.4	92	25	1486	5.00	10	5	ND	5	50	2	2	10	96	.37		19	119 2		464	.27		3.41	.02	.33	1	1
1+	00N 8+00W	2	27	33	178	.2	35	13		3.76	16	5	ND	5	12	8a 1 8	2	2	55		. 150	17		.75	94	,12		3.22	.01	.16	1	8
1+	00N 7+50W	2	29	29	172	.2	30	11	650	3.87	17	5	ND	4	11	総打 い	2	4	54	. 10	. 156	14	30	.67	96		12	3.33	.01	.11	1	2
																											_					
	00N 7+00W	3	27	28	291	-4	6 3 -	15	697		28	5	ND	4	11		2	3	51	.10		12		.56	91	.09		3.52		.09	ž 1 –	4
	00N 6+50W	2	23	30		1.0	28	11		3.50	23	6	ND	6	9	State -	6	2	49	.08		11		.40	95	.12		4.20	.01	.07	81	6
1+	00N 6+00W	2	34	37	213	.4	39	11		4.49	36	5	ND	9	. 8	Xet -	2	2	44		.105	15		.55	83	.05			.01	.08	3	8
1+	00N 5+50W	2	27	23 -		1.7	30	11		2.88	17	5	ND	6	9	2	2	4	44		. 109	12		.37	119	.12		4.14	.01	.06	1	3
1+	00N 5+00W	3	28	26	251	1.0	27	8	898	2.69	16	5	ND	6	7	1	4	2	41	.05	. 164	9	17	.31	68	311	10	4.96	.01	.05	2	1
																											_				_	
	00N 4+50W	2	19	24		1.0	16	9		3.12	14	5	ND	5	11	2	2	2	43		. 197	5		. 19	64	.12		5.94	.01	.04	Ş	2
	00N 4+00W	5	26	33	272	.8	27	9		3.41	21	5	ND	6	8		2	2	50		. 149	9		.30	81	.11		5.18	.01	.06	1	1
	00N 3+50W	5	31		523	.8	52	12		3.61	23	5	ND	6	15	3	2	11			. 100	13			137	.09			.01	.09	: 2	4
	00N 3+00W	3	39		331	.8	42	14		3.45	18	7	ND	5	21	<u>_</u> 4	2	2		.27		32						3.44		.11	2	3
1+	00N 2+50W	3	29	33	312	.4	32	13	982	3.23	19	6	ND	5	20	2	2	4	48	.27	.131	17	25	.60	151	,11	7	3.32	.01	.10	1	2
		_												_			_															
	00N 2+00W	2	24	30	287	.5	29	11	1541		18	5	ND	5	15	3	2	8		.14		13	23		198	.13		4.36	.01	.07	. <u>1</u> -	1
ST	D C/AU-S	18	59	42	132	6.7	67	31	1012	4.03	43	19	7	38	49	18	15	22	59	.48	.095	39	57	.86	174	.06	35	1.99	.06	.13	13	51
		3																														

Page 2

ERIC DENNY FILE # 89-4903

.

.

1

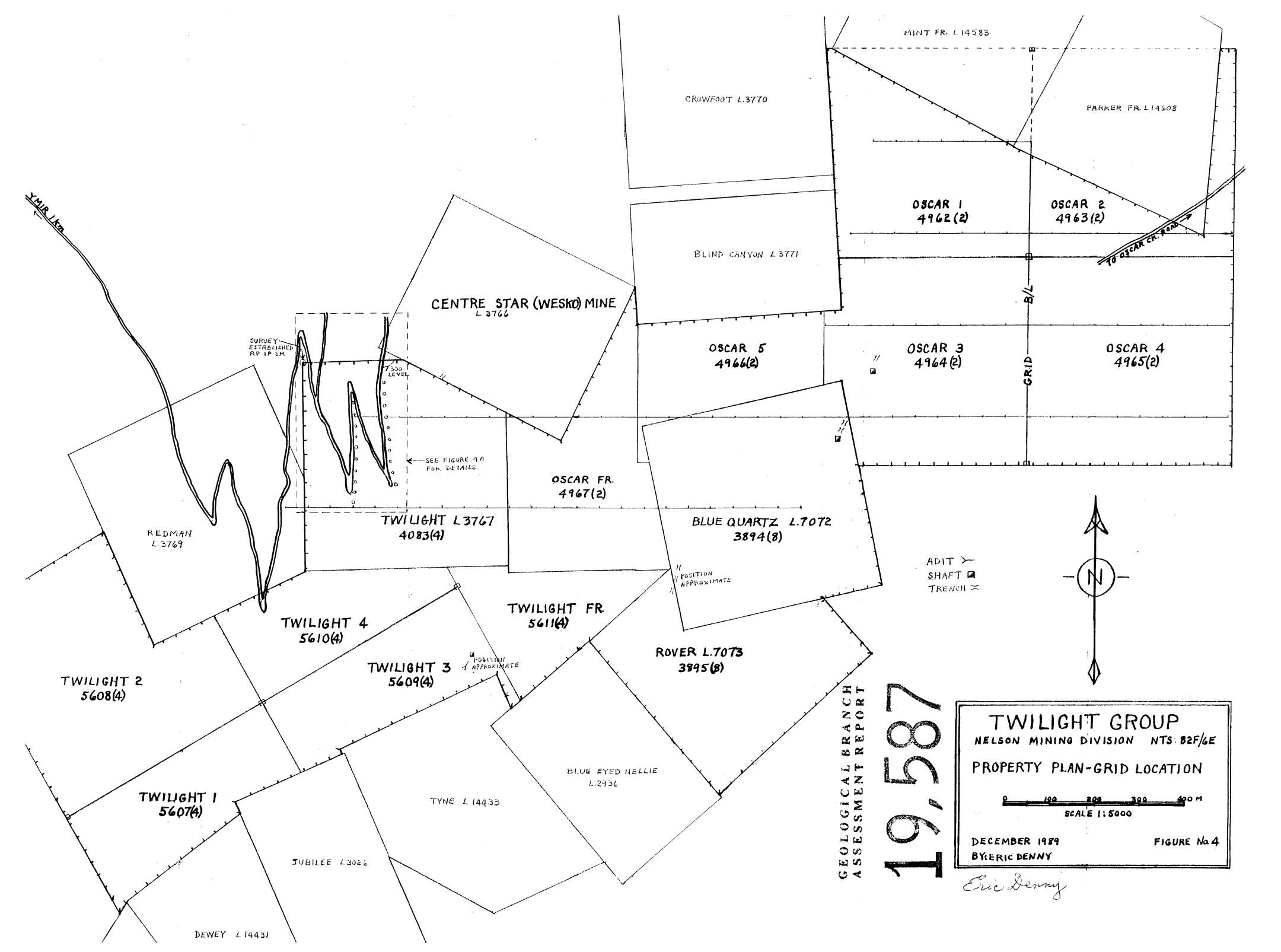
SAMPLE#	No PPM	Cu PPM	Pb PPM	Zn PPM	-	NI PPM	Co PPM	Mn PPM	Fe X	As "PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bí Ppn	V PPM	Ca X		La PPM	Cr PPM	Mg X	Ba PPM	ti X	B PPM	Al X	Na X	K X	₩ ₽₽ 	
1+00N 1+50W 1+00N 1+00W 1+00N 0+50W 1+00N 0+00 1+00N 0+50E	2 1 1 1	21 16 17 9 16	33 18 18 22 18	181 155	.7 .4 .5 .4 .3	16 15 12	9 8 7 7 6	263 846 326 1347 2659	3.18 2.52 2.36 2.51 2.23	15 10 6 8 6	5 5 5 5	ND ND ND ND	5 2 3 2 1	9 21 13 13 19	1	3 2 2 2 2	2 2 2 2 2	45 36 32 36 34	.11	.119 .126	15 9 10 10 7	25 17 16 15 11	.53 .27 .29 .25 .14	129 135 123 160 232	.09 .12 .10 .10 .12	2 3 2	3.97 3.74 4.25 2.70 2.97	.01 .01 .01 .01 .02	.09 .05 .04 .05 .05		7 1 3 1 1
1+00N 1+00E 1+00N 1+50E 1+00N 2+00E 1+00N 2+50E 1+00N 3+00E	1 1 1 1	11 23 23 24 20	22 20 25 28 26	103 221 172 112 135	.2 .4 .3 .5 .8	8 26 24 27 21	10 13 15	2158 6212 1918 1077 2290	2.55 2.97 3.24	6 20 14 9 9	5 5 5 5 5	nd Nd Nd Nd	1 1 1 4	14 12 23 22 14	1 2 1 1 1	4 3 2 3 2	2 2 2 2 2	34 33 32 32 34	.11 .26	.091 .174 .111 .069 .114	8 11 13 18 13	11 18 19 17 17	. 15 .20 .24 .27 .29	110 249 157 78 124	.09 .08 .08 .07 .08	2 2 2	2.17 2.53 2.62 3.13 2.52	.01 .01 .01 .01 .01	.04 .06 .06 .05 .07		14 4 1 3 8
1+00N 3+50E 1+00N 4+00E 1+00N 4+50E 1+00S 16+50W 1+00S 16+00W	1 1 1 1	26 18 15 33 36	21 17 28 87 100	135 109 115 192 187	.3 .3 .1 .3 .4	39 16 18 29 28	8 9 13 13	334 666 806 1541 1824	3.45 2.72 4.52 3.06 3.13	16 5 13 6 7	5 5 5 5 5	nd Nd Nd Nd Nd	2 5 2 3	12 12 12 42 51	1 1 5 5	2 2 5 2 2	2 2 2 2 2	23 34 44 40 42	. 10 . 10	.088 .117 .193 .120 .087	25 13 17 17 16	21 17 26 26 27	.29 .27 .38 .72 .78	97 107 64 207 251	.03 .09 .07 .11 .13	7 2 9	2.39 [°] 3.40 [°] 2.20 [°] 4.00 [°] 4.14	.01	.05 .05 .08 .17 .19		2 3 5 7 12
1+005 15+50W 1+005 15+00W 1+005 14+50W 1+005 14+00W 1+005 13+50W	1 1 1 1	54 24 25 24 26	89 100 71 116 69	315 382 437 326 334	.6 .5 .8 .6 .5	39 28 28 26 39	10 14 12	1240 973 1463 567 1662	3.65 2.98 3.78 3.57 3.54	18 17 25 37 123	5 5 5 5 5	ND ND ND ND ND	4 3 4 5 2	24 58 63 40 56	4 7 7 3 4	3 2 3 3 2	3 4 2 2	45 34 47 43 36		.316 .091 .131	18 14 29 20 23	32 20 36 25 23	.93 .48 .66 .69 .57	259 229 185	.11 .13 .13 .11 .10	2 2 8	3.91 4.13 4.14 4.01 4.09	.01 .02 .02 .01 .01	.22 .13 .23 .20 .17		14 26 45 42 11
1+005 13+00W 1+005 12+50W 1+005 12+00W 1+005 11+50W 1+005 11+00W	3 1 1 2 1	33 31 34 38 36	67 31 34 25 26	343 177 182 170 153	.5 .4 .4 .5 .6	47 31 49 47 50	14 21 16	1861 1267 1867	3.91 3.11 3.64 3.65 3.37	80 20 28 19 14	5 5 5 5	ND ND ND ND	3 2 3 3 4	45 61 54 67 56	4 2 2 1 1	2 2 2 2 2 2	3 2 2 2 2	52 44 49 46 40	.39 .44 .38 .44 .39	.103 .089 .076	22 15 23 19 20	30 29 42 31 41	.14 .76	225 342 234 249 267	.13 .13 .14 .14 .09	3 5 2	3.69 3.26 3.93 4.00 2.63		.19 .17 .23 .17 .23	1111	19 5 16 8 6
1+00S 10+50W 1+00S 10+00W 1+00S 9+50W 1+00S 9+00W 1+00S 8+50W	2 1 1 1 1	37 26 21 20 21	22 24 30	370 139 191 245 304	.5 .3 .5 .5 2.2	65 38 42 32 30	14 13 10	1297 1402 1559	3.70 3.10 2.90 2.61 2.77	18 7 7 10 16	5 5 5 5	ND ND ND ND ND	2 3 4 3 4	56 23 32 47 20	4 1 2 3 4	2 2 5 2 2	2 2 2 4 2	45 42 38	.41 .17 .30 .33 .14	.096 .163 .205	25 14 12 10 11	36 36 30 22 22	.77 .65 .43	295 128 194 307 165	.12 .13 .12 .12 .11	2 2 2	3.13 3.47 3.17 3.33 3.33	.01 .01 .01 .02 .01	.14 .17 .15 .13 .09		1 2 2 3 1
1+005 8+00W 1+005 7+50W 1+005 7+00W 1+005 6+50W 1+005 6+00W	2 2 2 2 1	28 26 23 27 14	45 28 22	246	.9 1.4 2.3 1.5 1.8	51 51 62 48 30	13 13	1973 1314 632	3.03 3.03 3.17 3.09 2.56	17 16 31 25 15	5 5 5 5 5	ND ND ND ND ND	5 1 3 4 3	28 24 24 14 17	4 2 2 2 2	2 2 2 2 2 2	2 2 2 2 2	41 39 39	.20 .16 .23 .11 .14	.270 .276	13 12 12 11 9	35	.42 .37 .50	194 238 210 121 146	.12 .10 .07 .09 .11	2 2 3	3.51 2.86 3.32 4.09 4.93	.01 .01 .01	.13 .07 .08 .07 .05		2 1 5 1 3
1+005 5+50W 1+005 5+00W STD C/AU-S	2 3 18	18 26 58	43	179 299 132	.6 .8 7.0	30 39 66	9 11 30		2.56 3.03 4.09	18 16 42	5 5 18	ND ND 7	3 4 39	13 10 49	2 3 19	2 2 16	2 3 22	39		.093 .112 .095	9 14 40	16 22 56		127 133 175	.10 .08 .06	2	3.29	.01	.06 .08 .13	1 1 13	4 2 51

Page 3 -

.

ERIC DENNY FILE # 89-4903

,


SAMPLE#	Mo PPM	Cu PPM	РЬ РРМ	Zn PPM	Ag PPM	Nİ PPM	Co PPM	Mn PPM	Fe X	As Ppm	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPH	V PPM	Ca X	Р Х	La PPM	Cr PPM	Hg X	Ba PPM	Ti X	B PPM	Al %	Na %	K X	W PPM	Au* PPB
																	••••														
TW1-1	2	120	445	1568	2.9	141	36	6402	4.69	31	5	ND	1	61	29	2	2	52	.41	. 170	25	36	.88	201	.09	2	4.51	.01	. 16	<u> </u>	99
TW1-2	3	78	116	686	.9	126	28	8757	4.62	26	5	ND	1	87	14	2	3	38	.94	. 195	23	24	.59	242	.08	- 4	3.52	.01	. 16	1	9
TW1-3	1	40	132	422	.1	56	17	2633	3.30	15	5	ND	1	77	9	2	2	41	.81	. 103	18	27	.76	252	.10	7	3.24	.01	.20	1	· 1
TW1-4	1	37	164	457	.3	41	15	2160	3,25	20	5	ND	2	48	9	2	4	42	. 39	.116	17	29	.78	261	.10	2	3.19	.01	. 18	1	40
TW1-5	1	31	892	454	.7	27	13	1984	3.14	18	5	ND	2	56	9	2	2	40	.62	.176	16	25	.65	391	.12	2	3.40	.01	. 18	1	34
																														(******* *	
TW1-6	1	22	126	419	.3	24	10	2038	2.88	18	5	ND	2	63	9	2	2	32	.51	.368	15	19	.46	392	.12	4	3.19	.02	. 15	1	2
TW1-7	1	18	144	470		26	10	3233	2.64	14	5	ND	1	60	15	2	4	32	.66	.259	15	19	.48	416	- 11		3.15	.01	. 16	- 8 i 1	6
TW1-8	1	18	64	465		23	11	5201	2.83	23	5	ND	1	65	10	2	2	31	.53		14	18	.40	628	.12		3.38	.02	. 16	1	1
TW1-9	1	32	66	282	.3	45	13	782	3.54	30	5	ND	6	37	3	2	2	44		. 197	23	42	.78	219	14		4.60	.01	. 19	1	1
TW1-10	1	24	67	274		29	15	3260	3.57	12	5	ND	1	63	4	2	2	47			15	45	.88	435	11		3.23	.01	.23	1	2
		- ·					12				-		•	•••		-				1838						-					-
TW1-11	1	24	116	579	1	39	13	4635	2.49	13	5	ND	1	115	21	2	2	28	1.12	233	12	15	.36	344	.09	5	2.86	02	.13	2	4
TW1-12	i	40	59	359	1	47	17	3859	3.26	12	ŝ	ND	i	49	10	2	6	41		.123	18	26	.66	359	ii		3.52	.01	. 15	1	5
TW1-13	;	45	142	498	388 3 8.	41	19	3770	3.40	36	Ē	ND	2	65	18	5	2	42			18	25	.69	366	13		3.86	.01	. 19	1	Å
TW1-14	i	37	181	333		28	15	6693	2.79	13	ś	ND	1	100	21	2	2	37		.138	16	25	.66	589	.10		2.83	.01	.23	1	18
TW1-15	i	38	87	241	3	35	15	2581	3.27	15	Ś	ND	2	52	1	ž	5	43		.097	15	29	.76	304	.12		3.49	.01	.18		6
	•	20	07					2501	3.27			NU	-	22		-	-		. 4.2			27		204		-	3.4/		. 10		Ŭ
TW1-16	1	32	101	223		37	16	2008	3.03	13	5	ND	2	60		2	2	41	16	.104	15	26	.69	228	.11	2	3.13	.01	. 19	. 1	z
141-10	i	31	118	341	4	64	20	5235	3.44	21	ś	ND	7	79	8	2	5	42		.181	18	29	.60	363	11		3.34	.01	.17		6
TW1-18		31	74	244	1	35	16	1897	3.29	19	5	ND	ž	41	8 Z -	7	ž	41		.157	16	31	.79	258	10		2.91	.01	.23		4
TW1-19	1	17	53	182	.2	24	11	1135	2.77		5	ND		57			2	37		.156	17	24	.60	193	10		2.97	.01	.18		27
		39	46	200	200.0	40	15	1145	3.33	19	2		- 4	82		5	5	43		.252	19	33	.76	267	.09		3.38	.01	. 10		12
TW1-20	•	39	40	200	.6	40	15	1142	3.33		2	ND	3	92	2	2	2	43	.40		19	33	.10	201	• • • •	2	3.30	.01	.20		12
SID C/AU-S	18	57	37	132	6.7	67	30	1020	4.02	40	20	7	38	49	19	15	23	59	.48	.095	40	58	.86	178	.06	33	1.95	.06	. 13	12	51

Page 4

......

- 1630 W - 1630 - 1550 - 1560 - 1350 - 1350 - 1250	- 1150 - 1150 - 1150 - 1100 - 1150 - 150 - 150 - 150 - 150 - 150 - 150 - 150 - 250 - 250 - 150 - 250 - 150	- 50 W - 50 W - 50 C - 100 - 150 - 150 - 200 - 350 - 350 - 450 - 450 - 450 - 450 - 450 - 450
-700 N		- m -
- 500		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
- 300		1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +
-100N		$-\frac{1}{4} + \frac{1}{4} + 1$
- 50 - 54 - 00- - 54 - 1002 - 11- - 11- - 12- -	3 3 7 N M 7 N 7 N 7 N 7 N 7 N 7 N 7 N 9 12 - 49 $0 12 - 49$ $0 50 - 100$ $0 0 VER 100$	TWILIGHT GROUP NELSON MINING DIVISION NTS 82F/6E SOIL GEOCHEM - GOLD IN PPB <u>2 100 200 300 400 M</u> SCALE 1: 5000 DECEMBER 1989 FIGURE No.5 BY:ERIC DENNY

......

- 1600	- 1550 1500	<u>o</u> çtı-	00+1-	-1350	00£1-	-1250	- 1200	- 1150	0011 -	-1050	0001-	- 950	- 900	- 850	- 8 uo	- 150	- 700	- 650	09 9 -	- 550	- 500	- 450	- 400	- 350	- 300	- 250	- 200	- 150	- 100	- 50 W	00 1	- 50 E	- 100	- 150	- 200	-250	- 300	- 350	00.4-	-4 50E
-700 N	·														3 - - - -	J H J K J K								. 4		۲	در	9' - -	4	- 1.0	L:1									
- 500															بند بند بند	SMENT REP()		·	0.1 -	O 1.5	9· -	۲.	L'=	۰.6	4	89	÷.4	80 I	+ . -	ו גע	۶. ع	G -1.8	- <i>(</i> e		•	·9. •
- 300																ろ い ぼ ろ				a				g.•	8	L	7	9°.'	4.1	ور ۲	-,3	1	8		9'-	ನ 1	ح	 i	2.	ત્ <u>ય</u> કે
-100 N	- 2.2	<i>e</i> :	•	с. г.	<u> </u> -	ب	• v.	2	ا بى	10	L -	- 1.0	L'-	4	2'-	રા •	4	- 1.0	4	L'1- O	-1.0	- 1.0	8 -	. 8	8	4	5	7	1	در	+	ຄ. ເ	2.	۰. 4.	۰. ع	م	8	£. 1	۲, بی	
-00 * + : 1005	2.1 	8. "	٠.6	ا . ما ا	ء.5	-,4	. ا	٦. ٢	9	ن. ب	۰.3	۰. م	م	۲,2 ب۲	6 . 1	O 1.4	. 2.3	D - 1:5	8.1.8	ور. ۱	8.1			× ×	• 1	.VER .4 – 2 VER	.0		VEL	SON	MI		g D M –	1115	LVE	R 1 390	J P its N F	82F/		
																												11		RIC E							FIGU		Na. 6	

- 1630 VV	-1550	-1500	-14 50	-1400	-1350	-1300	-1250	- 1200	- 1150	0011 -	-1050	- 1 000	-950	- 900	- 850	- 800	- 150	- 700	- 650	- 6 90	- 550	- 500	- 450	- 400	05E -	- 300	- 250	- 200	- 150	- 100	- 50 W	- 00	- 50 E	- 100	- 150	- 200	-250	-300	- 350	-400	-450E
-700 N													former Chit												- 14	- 19	- 25	- 21	- 25	- 29	- 23	- 3/									
- 500												CAL BRAN	ESSMENT WEDDET		X C								ſ	- 22	6 165	- 49	- 20	- 24	- 24	- 21	- 24	- 15	- 13	LI -	- 21	- 22	- 17	- 22	- 23	- 22	- 24
- 300											·	C A											- 23	- 28	* 26	- 27	- 27	- 56	- 38	- 3/	- 36	- 27	- 29	- 18	- 19	- 19	- 32	- 21	- 22	- 20	-27
-100 N		0- 340	• 1160	1276	O- 141	- 43	- 43	-32	- 29	- 27	- 36	-29	- 19	- 17	-27	- 33	- 29	- 28	-30	-37	- 23	- 26	-24	- 33	- 36	- 34	- 33	- 30	- 33	8	81-	- 22	- 18	- 22	- 20	1 2 5	- 28	- 26	- 21	11-	- 28
	9- 39	001-0		0-116	e) -6	0-67	- 31	- 34	- 25	- 26	- 31	- 22	- 24	- 30	8 8 •	-26	-45	- 28	- 22	Or 62	- 27	- 43			× N	 6 1: 5 	AD P 0-14 50-4 700-1	9 9 9 000	D	SOI	SON		NIN CHE 100 189	G D M – SCAL	1115	AD	N]N 300	J P ITS PPN FIGU	82F/ 1_	-	

0631 - 0621 -	-1450 -1450	-1350	0061-	- 1250	- 11 50	0011 -	-1050	0001-	- 950	- 900	- 650	- 800	- 750	- 700	- 650	- 6 30	- 550	- 500	- 450	- 400	- 350	- 300	- 250	- 200	- 150	- 100	- 50 W	00 1	- 50 E	- 100	- 150	- 20 0	-250	-300	- 350	- 4.00	-450E
-700 N									202	N PORT				þ							- 243	- 234	-281	- 214	- 233	- 186	3 77	3 71									
- 500																		**		- 109	()- 321	- 244	- 148	- 196	- 224	- 153	- 248	- 225	- 127	- 157	- 151	- 123	-111	- 165	- 119	- 134	+ 131
- 300									GEOLOGICAL	ASSESS									- 223	- 151	- 178	6 449	- 241	- 179	- 189	- 220	921-	-155	- / 33	- 141	- 93	- 112	- 224	- 148	- 112	- 147	791-
-100 N	• 1171 • 1590 • 2245	-279	- 258	- 203	- 152	-178	-179	- 200	-200	- 232	- 193	- 178	- 172	- 291	- 149	- 2/3	- 251	- 251	-200	- 272	G -523	O - 331	1 312	- 287	- 230	- 18/	- 155	- 169	891 -	- 103	- 221	- 172	- 112	- 135	- 135	- 109	- 115
- 192 - 0 - 187 00 0-315	9 382 9 437 9 326	9 -334	O 343	- 177	- 182 - 170	- 153	. 370	- 139	- 191	- 245	O 304	C -331	6- 303	6. 308	- 246	- 248	- 179	- 299			N	 3 4 5 	NC P 00-3 100-4 500-	199 199 1000	n de la constante de la constan La constante de la constante de	SOI	SON LG	MI EO	NIN CHE	g D M –	[(V IS ZI 200 E I: S	NC	N TN 300	ITS PPI	Igo M		
									·																11	3Y: E	RIC. D	ER 19 DENN De	17	 Y				FIGU	RE N		

1650W - 1600	-1500	-14 50	- 14 00	-1350	00£1-	-1250	- 120û	- 1150	0011 -	-1050	- 1000	- 950	- 900	- 650	- 8 00	- 750	- 700	- 650	- 6 30	- 550	- 500	- 450	- 400	- 350	- 300	- 250	- 200	- 150	- 100	- 50 W	00 1	- 30 E	- 100	- 150	- 200	-250	- 300	- 350	- 400	-450E
-700 N												B R A N C H R E P O R T	4											4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L-	L -	11 -	ور ۱	e 1	11 -									
- 500											4. () () ()	U L C A L J M E N T	SACON LIN										- 6		- رو	- e	- 12	- 12	9 -	L -	- 6	89 1	L-	- 16	11-	1	. 01 -	. 7	6.	0/-
- 300											Ç D	A S S E S										۹ ۱	-12	. 7	- 18	- 12	6-	01 -	- 9	000 1	6- '	- (e	، بر	5-	- 18	0/	11 -	- /3		- 13
-100 N	D- 29	78	26 02	O - 20	- 14	- 15	- 12	-17	-14	- 12	- 9	- /3	-13	- 10	-16	11-	C -28	O -23	1 36	-17	- 16	- 14	D - 21	6 ²³	- 18	- 19	- 18	- 15	01 -	9 -	. 8	- 6	9 1	C 20	- 14	- 9	6 -	- 16	، ي	£1 -
-00 9 T = 1 1003	21 -	Ø 22	3 7	6 -123	0 2 4 0	6 - 20	6 , 28	- 19	- 14	~ 18	L -	L -	- 10	21-	- 17	-16	O 31	6. 25	- 15	- 18	- 16			× ×	• •	εΝΙC 20-4 50-1 0VER	.9 00	Γ	NELS	SON LG <u>e</u> MBE		NIN CHE 100 789	g D M –		ION SEN	N [[C 300	J P NTS IN F	82F/ PPM	-	
																												<u></u>	Eu	ico	Øe,	nny	£							4