LOG NO:	0202	RD
ACTION:	and an	
		د المرکز ال الم الم المرکز المرکز الم
FILE NO:		

-

- Lagent - 145

ASSESSMENT REPORT ON ON GEOCHEMICAL WORK ON THE FOLLOWING CLAIMS

LAND 2 5609(10) LAND 3 5610(10)

located

60 KM NORTH OF STEWART, BRITISH COLUMBIA SKEENA MINING DIVISION

56 degrees 24 minutes latitude 130 degrees 06 minutes longitude

N.T.S. 104B/8E

PROJECT PERIOD: Sept. 18--Oct. 16, 1989

ON BEHALF OF TEUTON RESOURCES CORP. VANCOUVER, B.C.


SUB-RECORDER RECEIVED						
JAN 2 5 1990						
M.R. # \$ VANCOUVER, B.C.	H					

REPORT BY

1

D. Cremonese, P. Eng. 602-675 W. Hastings Vancouver, B.C.

Date: Jan. 23, 1990

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
	A. Property, Location, Access and Physiography B. Status of Property C. History D. References E. Summary of Work Done	1 1 2 2
2.	TECHNICAL DATA AND INTERPRETATION	3
	 A. Geology B. Geochemistry Rock Samples a. Introduction b. Treatment of Data c. Sample Descriptions d. Discussion C. Field Procedure and Laboratory Technique D. Conclusions 	3 4 4 5 7 7 7

APPENDICES

É

 $\left(\right)$

- I Work Cost Statement II Certificate III Assay Certificates

ILLUSTRATIONS

Fig.	1	Location Map	Report Body
Fig.	2	Claims Map	Report Body
Fig.	3	Regional Geology	Report Body
Fig.	4	Rock GeochemSample Location & Metal Values Map	Map Pocket

1. INTRODUCTION

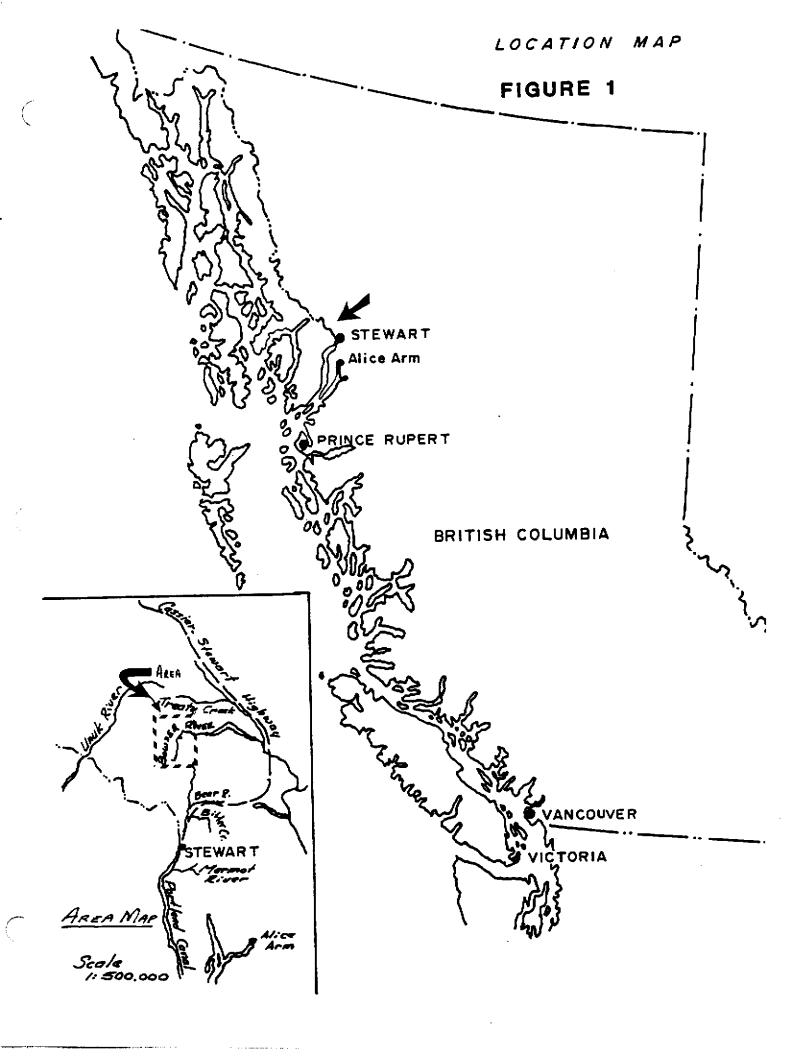
A. Property, Location, Access and Physiography

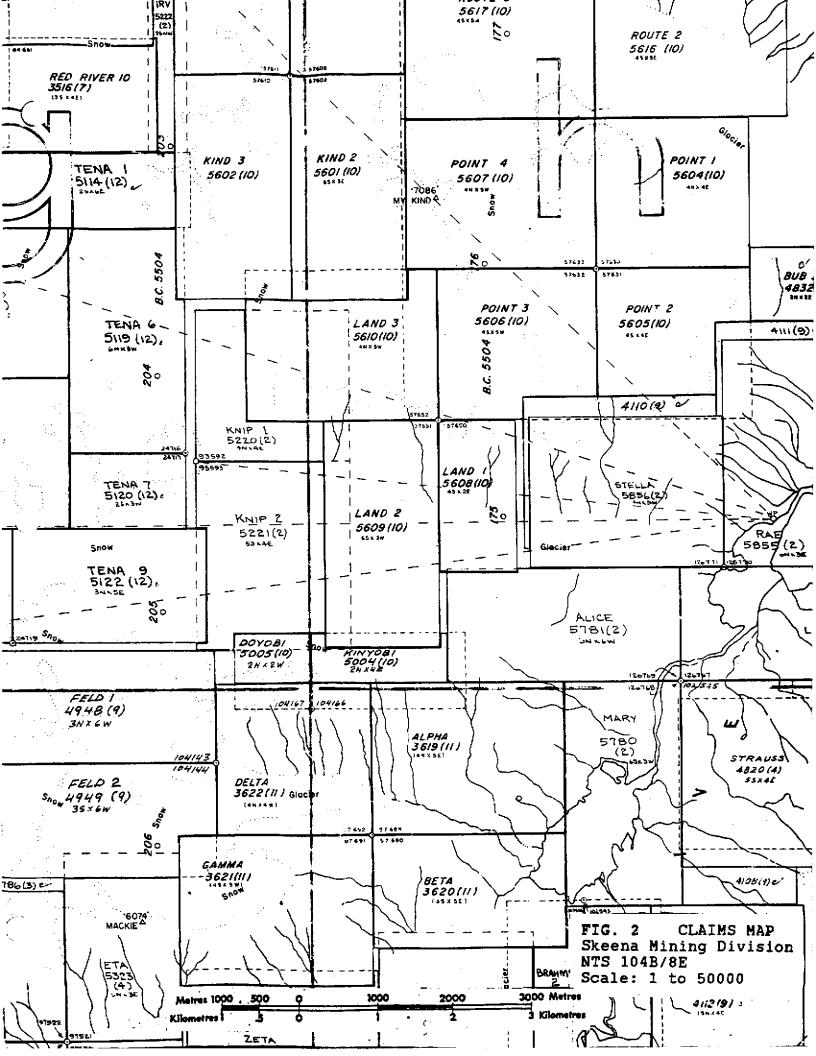
The property is located about 60 km north of Stewart, British Columbia. Access is presently limited to helicopter, either from the base at Stewart or from the end of the Tide Lake air strip (the latter located about 17 km south of the property at the terminus of the Granduc mining road). To the east, an access road running from a barge terminal at the western end of Bowser Lake to the base of Knipple Glacier passes within 6 km of the property.

The Land 2 claim is bisected by the west-east flowing Canoe Glacier which empties into Tippy Lake, a local widening of the Bowser River. The Land 3 claim, abutting to the north, laps onto an extensive icefield separating the property from Newhawk & Granduc's Brucejack Lake gold-silver zones, approximately 6 km to the northwest. Elevations vary from approximately 1,000 meters on Canoe Glacier to more than 2000 meters atop the ice cap in the northern portion of the Land 3 claim. Vegetation on exposed ground in the area changes from a mantle of mountain hemlock and balsam at low-lying elevations to shrubs, mountain grasses and heather at higher elevations. Most of the rock outcrops are characterized by steep, bluffy slopes.

Climate is relatively severe, particularly at higher elevations. Precipitation occurs year round with heavy snowfalls in winter months.

B. Status of Property


Relevant claim information is summarized below:


Name	Record No.	No. of Units	Record Date		
Land 2	5609(10)	18	Oct. 27, 1986		
Land 3	5610(10)	20	Oct. 27, 1986		

Claim locations are shown on Fig. 2 after government N.T.S. map 104B/8E. The claims are held in the name of Johann V. Foerster, on trust for Teuton Resources Corp. of Vancouver, British Columbia.

C. History

There is no record of early work on the Land claims. During the early phase of exploration in the Stewart area, circa 1902 to 1930, this area would have been considered quite remote. Also, ice and snow cover was much more extensive at that time. In the

past 60 years, significant retreat of snow and ice fields due to warming climate has exposed large tracts of virgin ground.

D. References

- 1. GROVE, E.W. (1971): Bulletin 58, Geology and Mineral Deposits of the Stewart Area. B.C.M.E.M.P.R.
- GROVE, E.W. (1982): Unuk River, Salmon River, Anyox Map Areas. Ministry of Energy, Mines and Petroleum Resources, B.C.
- 3. GROVE, E.W. (1987): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area, Bulletin 63, BCMEMPR
- ALLDRICK, D.J.(1984); Geological Setting of the Precious Metals Deposits in the Stewart Area, Paper 84-1, Geological Fieldwork 1983", B.C.M.E.M.P.R.
- ALLDRICK, D.J.(1985); "Stratigraphy and Petrology of the Stewart Mining Camp (104B/1E)", p. 316, Paper 85-1, Geological Fieldwork 1984, B.C.M.E.M.P.R.
- ALLDRICK, D.J., BRITTON, J.M. (1988); "Geology and Mineral Deposits of the Sulphurets Area, Open File Map 1988-4, Province of British Columbia, M.E.M.P.R., Geological Surveys Branch.
- 7. ALLDRICK, D.J., DROWN, T.J., GROVE, E. W., KRUCHKOWSKI, E.R., NICHOLAS, R.F. (1989): Iskut-Sulphurets Gold, Northern Miner Magazine, Ja. 1989, p. 46.

E. Summary of Work Done.

The 1989 rock and soil geochemical survey conducted over the claims area was undertaken by contractor Amphora Engineering (geologist, Ken Koňkin, headed the field program). This program was part of a larger reconnaissance program carried out over several Stewart area properties from Sept. 18 to Oct. 16 under the supervision of the author.

Field work was carried out on Oct. 1, 1989. This work consisted of reconnaissance geochemical rock sampling by Ken Konkin, geologist, and Paul DeGruchy, assistant. Altogether 16 rock geochemical samples were taken. The crew was flown into and out of the property by helicopter operating from a base in Stewart.

Rock geochemical samples were analysed for gold by standard AA techniques, as well as for 30 elements by I.C.P. (Inductively Coupled Argon Plasma) at the Acme Analytical Laboratories facility in Vancouver.

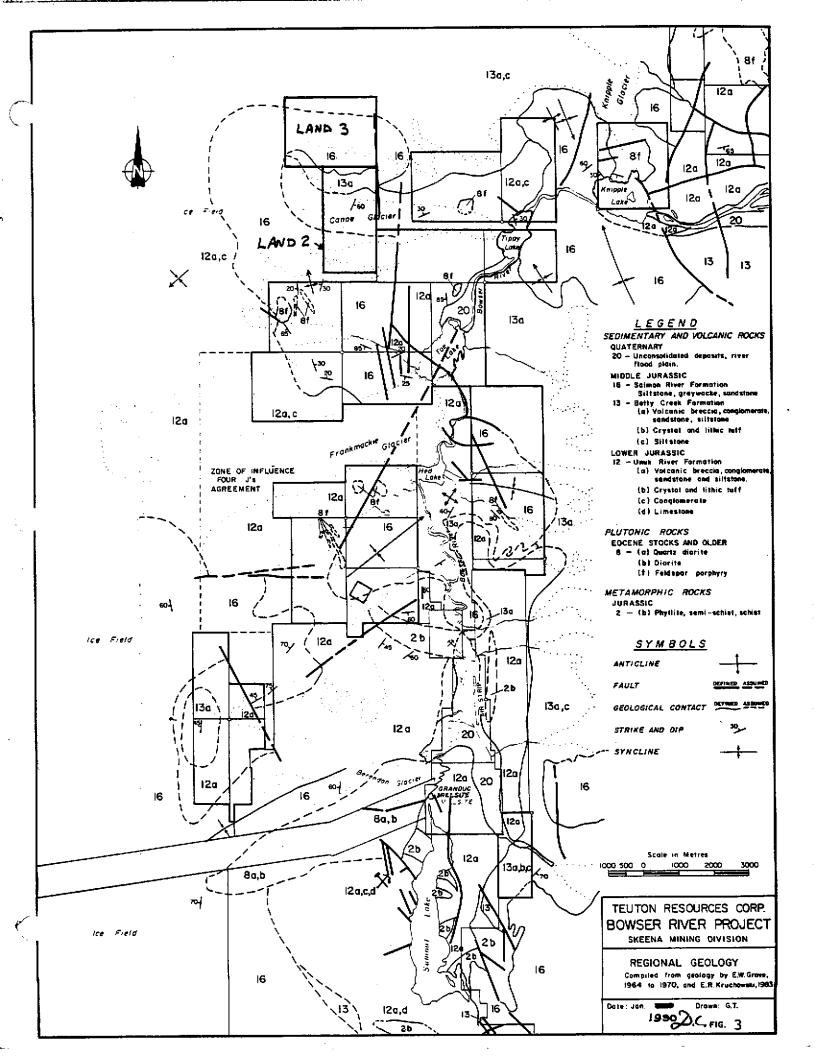
2. TECHNICAL DATA AND INTERPRETATION

A. Geology

The claims lie in the Stewart area east of the Coast Crystalline Complex and within the western boundary of the Bowser Basin. Rocks in the area belong to the Mesozoic Hazelton Group and have been intruded by plugs of both Cenozoic and Mesozoic age.

Locally, within the Hazelton Group, Lower Jurassic volcanic and sedimentary rocks of the Unuk River Formation are unconformably overlain by Middle and Upper Jurassic non-marine and marine sediments (with minor volcanics) of the Betty Creek, Salmon River and Nass Formations.

The oldest rocks in the area belong to the Lower Jurassic Unuk River Formation which forms a north-northwesterly trending belt extending from Alice Arm to the Iskut River. It consists of green, red and purple volcanic breccia, conglomerate, sandstone and siltstone with minor crystal and lithic tuff, limestone, chert and coal. Also included in the sequence are pillow lavas and volcanic flows.


In the study area the Unuk River Formation is unconformably overlain by Lower Middle and Middle Jurassic rocks from the Betty Creek and Salmon River Formations, respectively. The Betty Creek Formation consists of pillow lavas, broken pillow breccias, andesitic and basaltic flows, green, red, purple and black volcanic breccia, conglomerate, sandstone and siltstone with minor crystal and lithic tuffs, chert, limestone and lava. The overlying Salmon River Formation consists of banded, predominantly dark coloured, siltstone, greywacke, sandstone, intercalated calcarenite, minor limestone, argillite, conglomerate, littoral deposits, volcanic sediments and flows.

According to Grove (Ref. 2 & 3), the majority of the rocks from the Hazelton Group were derived from the erosion of andesitic volcances subsequently deposited as overlapping lenticular beds varying laterally in grain size from breccia to siltstone.

Intrusives in the area are dominated by the granodiorite of the Coast Plutonic Complex (to the west). Smaller intrusive plugs range from quartz monzonite to granite and are likely related phases of the Coast Plutonic Complex.

Double plunging, northwesterly-trending synclinal folds of the Salmon River and underlying Betty Creek Formations dominate

3

the structural setting of the Bowser River area. Locally, a northwest "canoe-fold" (eastward flattening plunge), large-scale, locally parallel, crenulated, open syncline, dubbed the "Tippy Lake Syncline", occurs in massive flow volcanics of the Betty Creek Formation. West of Tippy Lake, the syncline plunges eastward; east of the lake the plunge is almost flat. The plunge inflection is broad and gentle. The main glacial valley marks the point of the steepening plunge of the syncline on the west shore of Tippy Lake.

Regional geology is shown, for reference, on Fig. 3.

B. Geochemistry - Rock Samples

a. Introduction

Sixteen rock geochem samples were collected by geologist Ken Konkin and assistant P. DeGruchy during reconnaissance surveys over the Land 2-3 claims. Sample locations and values for moly, copper, lead, zinc, arsenic, antimony, silver and gold are shown on Fig. 4, drawn at a scale of 1:5000. Sample sites were plotted in the field on a base map prepared from a government topographic map. Sample locations were fixed according to field altimeter readings and by reference to air photos.

b. Treatment of Data

The rock geochem samples collected during the 1989 work program comprise too small a set to utilize standard statistical methods for determining threshold and anomalous levels. In lieu of such treatment, the author has chosen a simple "rule of thumb" method based on reference to several rock geochem programs of similar character carried out in the Stewart area over the last eight years. For the purposes of this discussion, anomalous levels have thus been set as follows:

<u>Element</u>	<u>Anomalous Above</u>
Moly Copper Lead Zinc Arsenic Antimony Silver Gold	20 ppm 200 ppm 160 ppm 600 ppm 150 ppm 30 ppm 3.6 ppm 100 ppb

4

c. Sample Descriptions

Following are rock sample descriptions. Those samples containing anomalous levels of any of the elements listed above have assay values appended to the descriptions (with anomalous elements featured in bold print). All samples should be prefaced by "DLR-89" in order to key with the assay certificates attached in Appendix III.

- #01 1.1 m chip across quartz vein, attitude 74/53S. Very vuggy, moderately limonitic, true width 0.3m. Host is a lithic tuff/greywacke. Trace to 1% disseminated pyrite.
- #02 1.4 m chip. Leached and silicified dacitic to andesitic tuff. Sample centered on quartz calcite veinlets, moderate limonite, trace to 1% pyrite.
- #03 0.3 m chip. Brecciated quartz vein, minor limonite and calcite. 1-2% tetrahedrite & chalcocite, some malachite and azurite staining. Vein 74/42N, exposed for 7.5 to 10 m along strike.

Mo	-	10	ppm	Cu	-	7131	ppm
Pb	-	7	ppm	Zn	_	389	ppm
As	-	559	ppm	Sb	-		ppm
Ag	_	173.4	ppm	Au	-		ppb

- #04 1.3 m chip. Sample of limonitic, buff-orange greywacke on contact with mafic dyke. No silicification.
- #05 1.1 m chip. Silicified and limonite stained andesitic tuff, 5-10 % quartz veinlets. Large medium-green coloured extrusive, or shallow intrusive, to the north.
- #06 1.5 m chip. Sheared cataclasite zone, trending 16/90, with brecciated, minor jasperoid, trace to 1% metallic grey, silvery fine-grained unidentifiable sulfides.
- #07 1.0 m chip. Porphyritic andesite, sample centered on very strongly limonitic zone, no visible sulfides, probably just mafic alteration.
- #08 Float at #07 site. Fist-sized quartz vein, trace to 1% fine-grained chalcopyrite, possibly trace tetrahedrite, some malachite and azurite staining.

Мо	-	3	ppm	Cu	-	571 ppm
Pb		62	ppm	Zn	-	193 ppm
As	-	58	ppm	Sb	-	192 ppm
Ag	-	28.2	ppm	Au	-	1 ppb

#09 Float. Very leached porphyritic andesite, silicified,

moderately limonitic, trace - 1% pyrite.

#10 0.3 m chip. Brecciated quartz and limonite vein in porphyritic volcanic host, trace - 1% disseminated pyrite, plus blue-grey metallic (sulphide?) mineral.

Mo	-	25	ppm	Cu		10	ppm
Pb	-	10	ppm	Zn	-	165	ppm
As	-	2	ppm	Sb	-	2	ppm
Ag	-	0.6	ppm	Au	—		ppb

#11 1.2 m chip. Sample centered on 15-30 cm wide vuggy quartz vein in sheared porphyritic volcanic. Vein contains 3-5% galena, 2-3% sphalerite, 1-2% chalco and pyrite. Host is cherty locally, with quartz stringers containing 2-3% pyrite. Vein trends 46/67NE.

Mo	-	62	ppm	Cu		495	ppm
Pb	-	6270	ppm	Zn	-	6792	ppm
As	-	39	ppm	Sb	-	34	ppm
Ag	-	25.0	ppm	Au	-	3	ppb

- #12 2.0 m chip. Intensely limonitic and oxidized outcrop, very siliceous porphyritic volcanic, 1-2% disseminated pyrite, moderate manganese ox.
- #13 2.0 m chip. From other side of gossanous outcrop, very intense lim./hem/Mn/ oxidation. Siliceous porphyritic volcanic, trace - 1% pyrite.

Mo		2	ppm	Cu		6	ppm
РЬ	-	57	ppm	Zn	-	71	ppm
As		8	ppm	Sb	-	10	ppm
Аg	-	5.9	ppm	Au	-	4	ppb

..

- #14 1.3 m chip. Sample from sheared and oxidized zone trending 18/74E. Leached and weathered porphyritic volcanic, strong lim. & hem. ox.; 1-2% pyrite.
- #15 Selective grab. Intensely lim. & hem. ox. angular float boulder (.4 x .3 x .3 m) of cherty sediment with 3-5 cm seam of weathered pyrite.

Mo	-	72	ppm	Cu	-	58	ppm
Рb	-	141	ppm	Zn	-	91	ppm
As	—	49	ppm	Sb	-	13	ppm
Ag	-	1.9	ppm	Au	-	55	ppb

#16 1.5 m chip. Volcanic breccia or agglomerate, strong intense lim. & hem. ox.; trace to 1% pyrite. Sample centered on 50-60% sub-angular volcanic rock fragments in an andesitic matrix.

d. Discussion

The majority of samples taken registered non-anomalous values in the metals indicated. Those few samples containing occasional anomalous values were generally from small quartz veins carrying minor sulfides.

Gold was disappointingly low in all samples. Anomalous silver values were returned in four samples with a high of 173.4 in #03. The higher silver values appear to be associated with tetrahedite (as indicated by elevated arsenic/antimony).

The values obtained during the survey and the rock sample descriptions suggest an environment similar to that at Knipple Lake to the east (small, argentiferous quartz veins associated with a felsic volcanic sequence now known as the Mt. Dilworth Formation).

.C. Field Procedure and Laboratory Technique

Rock geochem samples were taken in the field with a prospector's pick and collected in a plastic sample bag.

After standard sample preparation for rocks, a .500 gram subsample was digested with 3ml of 3-1-2 HCl-HNO3-H20 at 95 degrees Centigrade for one hour, then diluted to 10 ml with water. The resulting solution was tested by Inductively Coupled Argon Plasma to yield quantatitive results for 30 elements. Gold was analysed by standard atomic absorption methods from a 10 gram subsample.

D. Conclusions

The 1989 geochem survey located several small quartz-sulfide veins, some carrying minor values in silver. Auriferous mineralization was not encountered.

Because only a small portion of the property could be covered during the limited reconnaissance, the author recommends further work. This should entail methodical stream sediment (preferably heavy mineral) geochemical surveys to isolate areas worthy of follow-up by prospecting, rock and/or soil geochemistry and geological mapping.

Respectfully submitted,

D. Cremonese, P.Eng. January 23, 1990

APPENDIX I -- WORK COST STATEMENT

•

.

ţ

1

Field Personnel: Contractor Amphora Engineering Ken Konkin, Geologist	
Oct. 1/'89 1 day @ \$350/day \$ Paul DeGruchy, Assistant	350
Oct. 1/'89 1 day @ \$220/day	220
Helicopter Vancouver Island Hel. (Stewart Base) Crew drop-offs/pick-ups	
Oct. 1/'89: 1.5 hrs. @ \$658.50	988
Food 2 man-days @ \$30/man-day	60
Crew mobilization/travel (Vancouver base)/project support costs	
7% of \$3,280 (split with other projects)	230
Accommodation/Truck Rental/Sample Transport/Misc.	105
Assays Acme Analytical Geochem Au, I.C.P. and rock sample preparation 16 @ \$13.75 sample	220
Report Costs Report and map preparation, compilation and research D. Cremonese, P.Eng., 1.5 days @ \$400/day Draughting RPM Computer Word Processor - 4 hrs. @ \$25/hr. Copies, blow-ups, jackets, maps, etc.	600 120 100 30
TOTAL <u>\$</u>	3,023
Amount Claimed Per Statement of Exploration: \$3,000	
Apportionment: 52.5% to Land 3 claim 47.5% to Land 2 claim	
Based on # of samples taken each claim, and estimate of time spent on each claim.	

8

and the second second

APPENDIX II - CERTIFICATE

I, Dino M. Cremonese, do hereby certify that:

.

- 1. I am a mineral property consultant with an office at Suite 602-675 W. Hastings, Vancouver, B.C.
- I am a graduate of the University of British Columbia (B.A.Sc. in metallurgical engineering, 1972, and L.L.B., 1979).
- 3. I am a Professional Engineer registered with the Association of Professional Engineers of the Province of British Columbia as a resident member, #13876.
- 4. I have practiced my profession since 1979.
- 5. This report is based upon work carried out on the Land 2-3 mineral claims, Skeena Mining Division in October of 1989. Reference to field notes made by geologist Ken Konkin is acknowledged. I have full confidence in the abilities of all samplers used in the 1989 reconnaissance geochemical program and am satisfied that all samples were taken properly and with care.
- 6. I am a principal of Teuton Resources Corp., beneficial owner of the Land 2-3 claims: this report was prepared solely for satisfying assessment work requirements in accordance with government regulations.

Dated at Vancouver, B.C. this 23rd day of January, 1990.

P. Lemoneu

D. Cremonese, P.Eng.

and the state of the strengthered of the state of the

ASSAY CERTIFICATES

APPENDIX III

<u>/</u>

-

ACME ANAL CAL LABORATORIES LTD.

٠

852 B. HASTINGS ST. VAL IVER B.C. V6A 1R6

PHONE (604) 253-3158 'FAX (6(

253-1716

-1

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR NG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS'3 PPM. - SAMPLE TYPE: P1-P2 ROCK P3 SILT AU* ANALYSIS BY ACID LEACH/AA FROM 10 GN SAMPLE.

DA	TE RE	CEIV	ED:	OCT 1	D 1989	DA	TË R	EPOR	т ма	ILED	: (יי _ן בי	ļ r	7/8	9 s	IGNE	D BY	ĸ(+ • • • •	ј то	DYE, (C.LEON	G, J.	WANG;	CERTI	FIED E	3.c. /	SSAYE	RS	
								Teu	ton	Res	our	ces		′Fi	le	# 8	9-4	225		Pag	r fe 1	L									
SAMPLE#	Mo PPN	Cu PPM	Pb Ppm	Zn PPM		NI PPM	Co PPN	Mn PPN	Fe X	As PPN	U PP H	Au PPM	Th PPM	Sr Ppn	Cd PPM	Sb PPM	Bî PPM	V PPN	Ca X	P X	La PPN	Cr PPM	Mg X	Ba PPM	TÍ X	B PPN	AL X	Na X	K X	V Au PPN PP	
BUR-89-01 CWR-89-02 CWR-89-03 CWR-89-04 CWR-89-05	21151	27 26 5 15 19	36 6 9 4 8	199 110 40 121 102		5 11 1 5 25	18 22 5 29 26	2069 2543 642 421 1093	5.64 4.19 1.94 9.90 11.59	10 2 2 3 2	5 5 5 5 5	nd Nd Nd Nd	1 1 2 1 1	21 461 57 17 81	1	2 2 9 2	2 2 2 53	51 52 21 72 30	9.71 2.03 .68	.081 .091 .063 .061 .055	11 7 6 2 2	5 16 2 16 62	1.10 2.85 .38 1.23 1.22	22 1494 168 9 12	.01 .01 .01 .12 .05	5 10 7 18 2	1.48 .77 .48 1.69 .88	.01 .01 .01 .01 .01	.15 .12 .17 .91 .52		7 6 4 8 11
CWR-89-06 CWR-89-07 CWR-89-08 CWR-89-09 CWR-89-10	3 2 1 1	43 4 6 15	21 15 21 17 1142	32 69 84 28 80	2.7 6.1 5.7	1 1 1 1	9 8 3 3 11	156 3696 1962 1471 1479	9.81 5.51 .78 1.09 1.24	27 2 2 2 2 21	5 5 5 5 5	ND ND ND ND ND	1 1 1 1	4 16 66 29 17	1 1 1 1 1	3 2 2 2 6	2 2 2 2 2 2	4 10 10 13 10	.44 2.19 1.19	.014 .010 .037 .053 .045	2 6 12 17 17	9 2 18 2 10		6 84 1366 1019 873	.01 .01 .01 .01 .01	17 2 9 27 22	.24 1.20 .25 .30 .48	.01 .02 .01 .01 .01	.09 .09 .17 .20 .24	3 3 1 1	3 36 3 1 1
CWR-89-11 CWR-89-13 CWR-89-14 CWR-89-15 CWR-89-16	1 6 1 1	9 23 83 26 66	17 522 1460 838 15286	136 1785 863 4115 50313	4.1 49.9 17.9 149.8		6 15 15 15 15 15 15 15 15 15 15 15 15 15	2338 2225 967 1064 7462	1.63 2.07 4.97 2.78 1.17	2 37 241 112 53	5 5 5 5 5	ND ND ND ND	1 1 3 2 1	88 55 19 28 183	1 36 6 24 447	24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15 6 23 17 1	.36		13 10 18 23 11	2 13 2 7 1	.09 .13	1274 1703 81 1053 54	.01 .01 .01 .01 .01		.37 .56 .82 .74 .07	.01 .01 .01 .01 .01	.20 .17 .22 .21 .01		1 3 4 1 1
CWR-89-17 CWR-89-18 CWR-89-19 CWR-89-20 TNR-89-01	20 9 21 44 2	68 72 97 768 11	2350 823 3351 16377 98		59.4 40.2 294.5 227.0 19.1	1 3 5 6	9 15 12 23 4	2000 1505 394 3671 1078	3.98 4.29 4.78 25.65 1.30	519 502 496 1875 48	annya	ND ND ND ND ND	1 3 1	34 27 11 17 262	26 18 75 1	65 25 68 319 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 18 20 45 9	.42 .26 .16	.028 .050 .051 .014 .011	8 13 13 33 3	16 2 5 3 3	.01 .07 .02 .08 1.40	402 1074 60 78 79	.01 .01 .01 .01 .01	6 8 7 9 2	.24 .59 .35 .83 .20	.01 .01 .01 .01 .01	.18 .18 .21 .16 .07	1 1 1 16	2 2 2 36 1
THR-89-02 THR-89-03 THR-89-04 THR-89-05 THR-89-06	1 4 1 1 1	51 15 3 7 82	175 14 10 11 11	167 140 29 27 75	45.5 .9 2.6 .4 1.0	45 5 1 7 37	25 29 1 5 25	765 1954 758	4.72 3.45 .96 1.34 5.28	48 87 21 13 11	5 5 5 5	ND ND ND ND ND ND		31 101 38 38	~~	8 17 3 2 2	~~~~~	38 3 2 20		.025	2 6 3 2	55 33 1 19 81	2.16 1.10 .29 .65 2.82	284 105 39 75 258	.01 .20 .01 .07 .16	12 2 5	2.45 1.41 .26 .79 3.29	.01 .02 .01 .01 .02	.09 .17 .03 .09 .02		1 1 1 3 1
TNR-89-07 TNR-89-08 TNR-89-09 TNR-89-10 TNR-89-11	7 8 2 1 3	11 31 40 67 60	7 37 5 14 2	20 50 88 205 118	2.5 2.5 1.0 1.0	7 10 33 4	5 17 27 18	1014 739 975	7.94 4.10 6.48 7.11 7.86	97 5 10 23 13	5 5 5 5 5	ND ND ND ND	1 1 1 1	110 [,] 29 14 16 8	1 1 1 2 2	35 2 2 2 2 2	2 2 2 3	22 132 194 191	19.82 2.95 1.38 1.26 .48	-017 -064	- N.		.09 .73 4.13 3.26 3.77	11 86 13 104 53	.01 .09 .18 .30 .28	10	.10 .93 4.23 3.86 4.15	.01 .01 .01 .02 .02	.01 .05 .01 .01 .02		1 1 1 2
TNR-89-12 TNR-89-13 TNR-89-14 TNR-89-15 TNR-89-16	4 1 8 1 1	45 33 43 40 39	11 6 12 8 6	145 70 435 144 84	.8 .1 .7 .2 .3	6 25 33 114 25	17 23 9 24 24	584 1102 842	6.09 4.71 2.09 5.01 5.15	21 2 39 131 -5	5 5 5 5 5	ND ND ND ND	1 1 1 2	22 9 58 94 17	2 1 2 2 1	2 2 7 2	3 2 2 2 2	138 94 16 76 103	2.13 12.16 8.65		6 2 2 3	93 16 63 278 20	3706 1.92 .42 .56 2.71	59 14 26 24	227 217 22/2 27 2/2 2/2 2/2 7	5 2 17	3.35 3.08 .41 1.07 3.59	.02 .02 .01 .03 .05	.02 .01 .01 .02 .04	1 1 1 1	1 1 1 1
STD C/AU-R	2 18	39 61	9 41	89 137	.2 6.7	35 67	36 31		6.99 4.00	5 39	5 20	NÐ 7	1 38	19 48	1 18	2 15	2 22	100 58	1.52 .48	.028 .090	3 39	24 56	2.94 .87	20 1 73	.12 ,06		3.43 1.94	.06 .06		11 52	1 25

OFF PROPERTY - SEE PAGE TWO

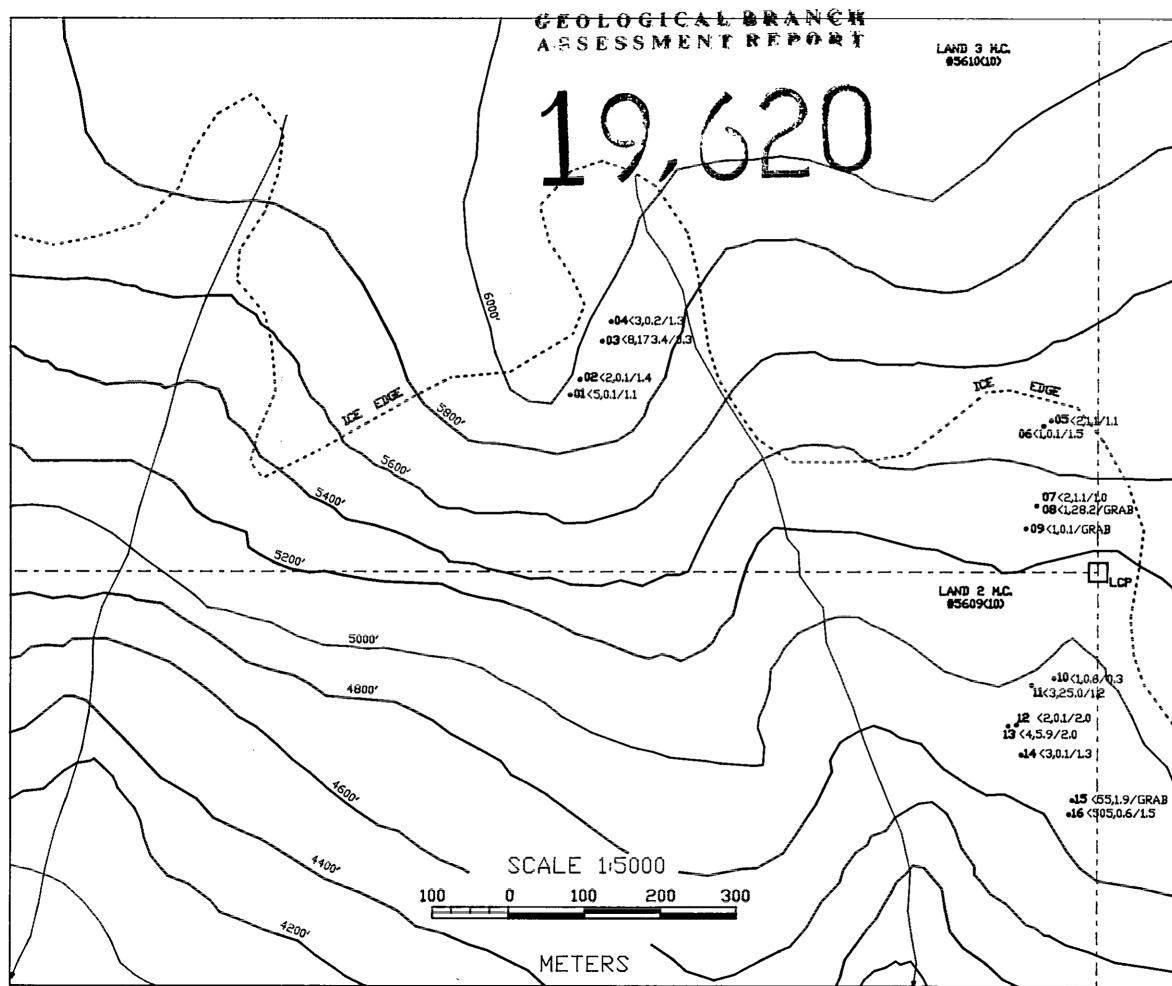
D.C.

Teuton Resources F	ILE #	89-4225
--------------------	-------	---------

1

Dago

SAMPLE# No CU PD Zm Ag Ni Co Nn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W PPN PPM PPM PPM PPM PPM PPM PPM X PPN PPM PPM PPM PPM PPM PPM PPM PPM X PPM X PPM X PPM X PPM X X X PPN	PPB
	<u> </u> 2∙
THR-69-10 1 3E 14 70 2 24 24 592 7:41 2 3 40 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u></u> ਟੇ• ਼
DLR-89-01 1 18 11 82 10 2077 5 70 10 10 10 10 10 10 10 10 10 10 10 10 10	Š
DLR-89-02 1 4 13 96 11 1 4 PLT 7 10 11 11 11 11 11 11 11 11 11 11 11 11	
DIB-80-03 10 7121 7 700 1721 1 10 53 02 12 12 12 12 12 12 12 12 12 12 12 12 12	ŝ 5
DIB-80-04 1 22 4 172 4 2 C 1227 2.30 229 5 NO 1 81 9 567 2 3 3.72 .066 8 29 .02 629 011 6 25 01 15	i i i i i i i i i i i i i i i i i i i
DLR-89-04 1 22 6 132 .2 1 13 891 7.20 3 5 ND 1 31 1 2 3 18 1.03 .302 35 1 .06 337 .01 6 .91 .01 .37 1	έ ¥ Ι
	j P
DLR-89-05 2 51 2 207 1.1 1 7 840 6.13 2 5 ND 1 60 1 4 2 3 .88 .364 33 6 .03 117 .01 7 .76 .01 .29 1	ŝ.
DLR-03-06 2 8 8 76 1 1 4 799 2.81 2 5 ND 1 16 1 3 2 8 31 137 30 0 0 117 00 7 .78 .01 .29	2
DLR-89-07 3 19 27 142 11 4 7 1446 5.12 6 5 ND 1 22 4 6 2 20 1 .05 243 01 2 .64 .02 .14	ğ 1 I
DLR-89-08 3 571 62 193 28 2 5 3 1423 3.02 54 5 NO 1 150 1 150 1 1 1.02 31 5 .29 160 01 4 1.83 .03 .11	Ś Z
DLR-89-09 5 5 24 121 2 2 1278 2 21 8 5 5 4 121 2 2 1278 2 21 8 5 5 4 12 12 12 12 12 12 12 12 12 12 12 12 12	ŝ 1 -
	å 1 -
DLR-89-10 25 10 10 165 .6 4 11 3448 6.28 2 5 ND 1 00 2 2 7 7 6 45 017 77 7 1 11 7	ġ i i
DIR-89-11 67 605 6270 6203 3500 7 16 01 00 20 20 5 NU 1 90 62 2 2 3 6.45 013 23 3 14 70 0110 7 16 01 00 000	â 1
DUD BO 12 7 11C1 2.02 DY 7 ND 1 63 102 34 41 2 1.79 074 18 14 19 53 010 47 77 60 67	i i i i i i i i i i i i i i i i i i i
DIA-RO-13 2 4 FT TA 12 TT 04 47 5 NU 1 10 11 7 2 7 37 100 26 3 00 51 01 12 77 04 45	2 J 2 A
	ç ç I
	<u> </u>
	§ 3
DLR-89-15 72 58 141 91 1.9 15 54 5301 17.07 49 9 ND 3 64 2 13 2 23 6.50 031 5 9 39 7 01 2 1 42 01 01 1	6 2
DLR-89-16 6 44 50 122 6 10 36 999 6.27 70 6 km 2 17 5 10 2 23 8.30 .05 5 9 .39 7 01 2 1.42 .01 .01	55
STD C/AU-R 18 60 43 132 6.6 65 31 955 6.06 44 18 7 7 19 5 10 2 27 -28 -079 9 6 -41 86 077 4 1.73 .02 .14	Š 21
	505


- ASSAY REQUIRED FOR CORRECT RESULT - for pb 7 13/

۲

١.

۶-

.

	SAMPLE	SAMPLE VIDTH	Mo	Cu	Pip	Zn	As	Sio	Ag	Au	
		A7314	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	
	DLR-89-01	1.1m	1	18	ш	82	7	2	0.1	5	
	DLR-89-02	1.4m	1	4	13	96	2	2	0.1	2	
- NI	DLR-89-03	0.3m	10	7131	7	389	559		173.4	8	
EN	DLR-89-04	1.3m	1	22	6	132	3	2	0.2	3	
	DLR-89-05	1.1m	2	51	2	207	2	4	1.1	2	
	DLR-89-06	1.5m	2	8	8	76	2	3	0.1	1	
	DLR-89-07	1.0m	3	19	27	142	6	4	1.1	2	
	DLR-89-08	GRAB	3	571	62	193	58	192	28.2	1	
	DLR-89-09	GRAB	5	5	24	121	5	3	0.1	1	
	DLR-89-10	0.3m	25	10	10	165	2	2	0.6	1	
	DLR-89-11	1.25	62	495	6270	6792	39	34	25.0	З	
	DLR-89-12	2.0m	3	6	28	78	4	7	0.1	2	
	DLR-89-13	2.0m	2	6	57	71	8	10	5,9	4	
	DLR-89-14	1.3m	3	11	8	75	3	13	0.1	3	
	DLR-89-15	GRAB	72	58	141	91	49	13	1.9	55	
	DLR-89-16	1.5m	6	44	50	122	20	10	0.6	21	
· · · · · ·											
	LEGEND										
	ICE EDGE										
	CONTOUR INTERVAL (200 feet)										
	•14 <3,0.1/1.3 ROCK GEDCHEMICAL SAMPLE SITE										
\`······ / /	(Sample no. Au (ppb), Ag (ppm) /Sample Width (meters))									b	
						nn oi LDR-8					
		TEU	TON	RES	JUR	ES		<u>,</u>			
				ND				- <u>-</u>			
		1989	RD	CK C	5EDC	HEM.		Y			
			iamp ND I					Þ.	, C ,		
	NTS 1049/0E SCALE 15000					ENA M.D.					
	DVG BY RPH HAP	PING			T FIG	URE NO,	4				