LOGING	1226	11
ACTION:		:
FILE NO:		-

Geological, Prospecting, and Geochemical Report on the MIKHAIL 1 and 4 Claims Skeena Mining Division N.T.S. 104-B/10 E Latitude 56°29' North Longitude 130°34' West British Columbia

.

.

× .

•


.

.

.

November 6, 1989

on behalf of SOLOMON RESOURCES LIMITED Vancouver, B.C.

by

-

C. H. Aussant, B.Sc., P.Geol., F.GAC - and D. G. DuPré, B.Sc., P.Geol., F.GAC KEEWATIN ENGINEERING INC. #800, 900 West Hastings Street Vancouver, B.C. V6C 1E5

b-----

h

. .

ъ.,

p ----

. .

- -

. '

ι.

- -

. -

<u>م</u>. .

e - 1

μ.

P 2

Page 2

ABSTRACT

The Mikhail property consists of two contiguous modified-grid claims totalling 36 units located approximately 80 km northwest of Stewart, British Columbia. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property.

The property lies within the Intermontaine Tectono-Stratigraphic Belt and occurs near the contact between the Stikine Terrane and the unmetamorphosed sediments of the Bowser Basin. The north-south trending Harrymel-South Unuk shear zone transects the property and separates the Upper Triassic to Lower Jurassic rocks in the west half of the property from the Lower Jurassic rocks underlying the east half of the property. The northwest part of the property is underlain by the southern nose of the Melville Diorite stock.

The area has an exploration history dating back to the turn of the century when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Exploration Ltd. which was brought into production in mid-1988. The adjacent SNIP property is slated for production in 1990.

At this time, the Eskay Creek prospect, located 10 km northeast of the Mikhail property and currently being explored by Calpine and Consolidated Stikine, is the most significant showing in the area. The prospect comprises at least eight mineralized zones occurring over a strike length of 1800 m within a sequence of felsic volcanics. The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks.

A review of all available information indicates that no work has been filed for the specific area now covered by the Mikhail property. The files do,

ĥ. . .

ы.

. .

* *

۰.

- - 1

however, show that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962.

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling with the objective of evaluating the property's potential for hosting economic precious metals deposits.

A 6-12 m wide massive magnetite unit, traceable for 900 m, was located along the Melville Diorite contact. This occurrence appears similar to the Max deposit in which massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock.

A number of old trenches were found in the southeast corner of the MIKHAIL 4 claim, investigating a well mineralized zone within dark green andesite which hosts 10%-15% pyrrhotite, pyrite, and chalcopyrite. Lithogeochemical sampling yielded 0.14%-0.20% copper. In the northeast corner of the MIKHAIL 4 claim, a dark green andesite was located, hosting 10% pyrrhotite. These two showings occur along strike of each other, and were probably from the same sulphideenriched stratigraphic unit which cuts across the entire property.

Stream silt and heavy mineral samples collected from a stream cutting across and draining the northern portion of the MIKHAIL 1 claim yielded elevated to anomalous Ag, Cu, and Zn values. Felsic volcanics were found in the upper reaches of this drainage. Although no mineralization was observed, this area should be re-investigated when taken in the context of the Eskay Creek deposit.

Heavy mineral samples collected from creeks draining the southern portion of the MIKHAIL 1 claim yielded elevated to anomalous Au, Ag, and Zn values. .---۲.

.....

b. .

. ж. -

. .

. .

. .

- -۰. . .

.

-

• **.** .

ς. ,

۲ . .

. .

. r -

.

.

٠

•

٠

, ----•

ڊ ج

•

r~~ •

. ~

TABLE OF CONTENTS

Location Property	n and Acc y Status raphy and	ess and Ow	ne				•	•		•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	1
PREVIOUS EXPL	ORATION		•				٠				•	•					•		•						5
REGIONAL GEO	LOGY		•			•	·	•			•					•		•				4		٠	7
PROPERTY GEOR	LOGY		•				•			•	•					•	•	•					•	•	10
ECONOMIC GEO																									15
1989 EXPLORA	TION PROG	RAM .	•			•											•	•					•		19
ROCK GEOCHEM	ICAL SAMP	LING .	•				٠			•					•	•	•								19
STREAM SILT S	SAMPLING					•				٠	•			•	•										21
HEAVY MINERAL	SAMPLIN	G.,		•	•	•			•	•			•	•					•	•				•	21
SUMMARY AND I	RECOMMEND	ATIONS			•				•				·				•	•							24
CERTIFICATE -	- C. H. A	ussant	•	•				•			•	÷	•				•					•	•		26
CERTIFICATE -	- D. G. D	uPré .	•								•					•									27
Rock San Certific	of Perso nple Desc cates of . cal Techn	riptio Analys																							
<u>TABLES</u> 1 - Table of	Formatio	ns	•		•	•		•	•	•		•	•	•			•	•	•	•				•	13
FIGURES 1 - Location 2 - Claim Map 3 - Regional 4 - Regional 5 - Property) Geology Geology	- Bows - Unuk	er Ma	Ва ар	isi Ar	in rea	•	•	•	•	•	•	• •	•	•		•	• • •	•	•	• •	•	•	• •	2 3 8 9 11/12
	••																								•

<u>MAPS</u> 1 - 1989 Exploration, Sample Locations and Results 2 - Geology and Anomalous Values

INTRODUCTION

Solomon Resources Limited of Vancouver commissioned Keewatin Engineering Inc. to conduct a field exploration program on the Mikhail property located in the Unuk River area of northern British Columbia. Exploration was directed by Keewatin Engineering Inc. with geological support and field supervision provided by Taiga Consultants Ltd. as a sub-contractor to augment the Keewatin crew.

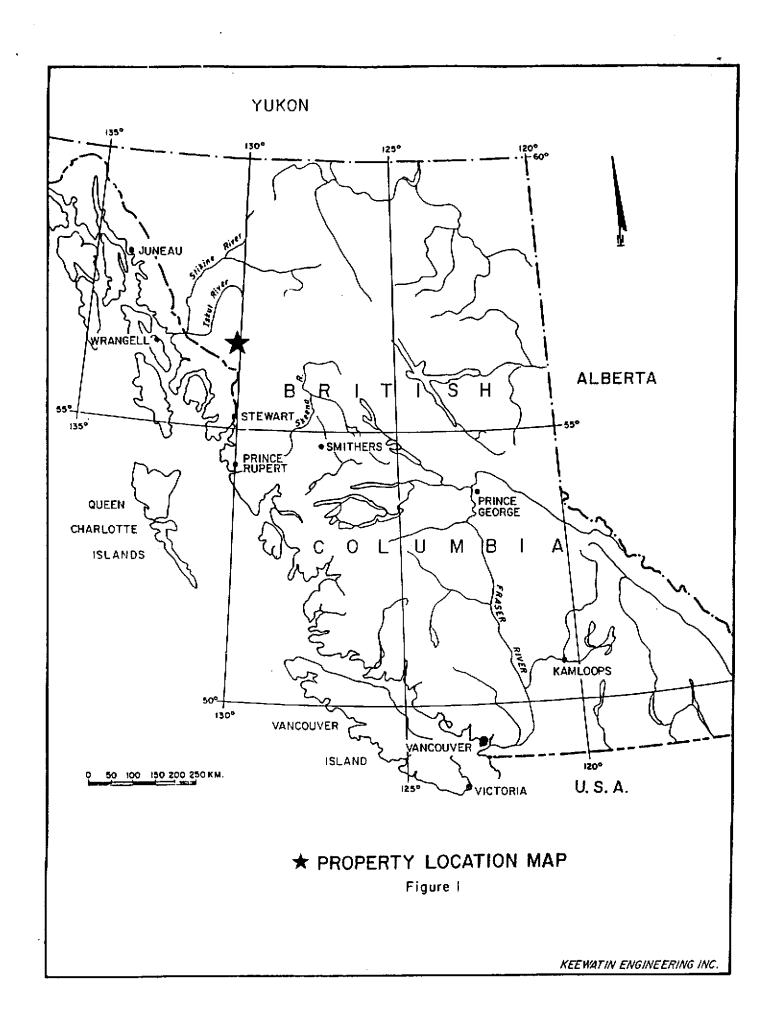
The objective of this program was to evaluate the property's potential for hosting economic precious metals deposits. Exploration consisted of prospecting, geological mapping, and geochemical sampling. Geochemistry consisted of lithogeochemical, stream silt, and heavy mineral sampling.

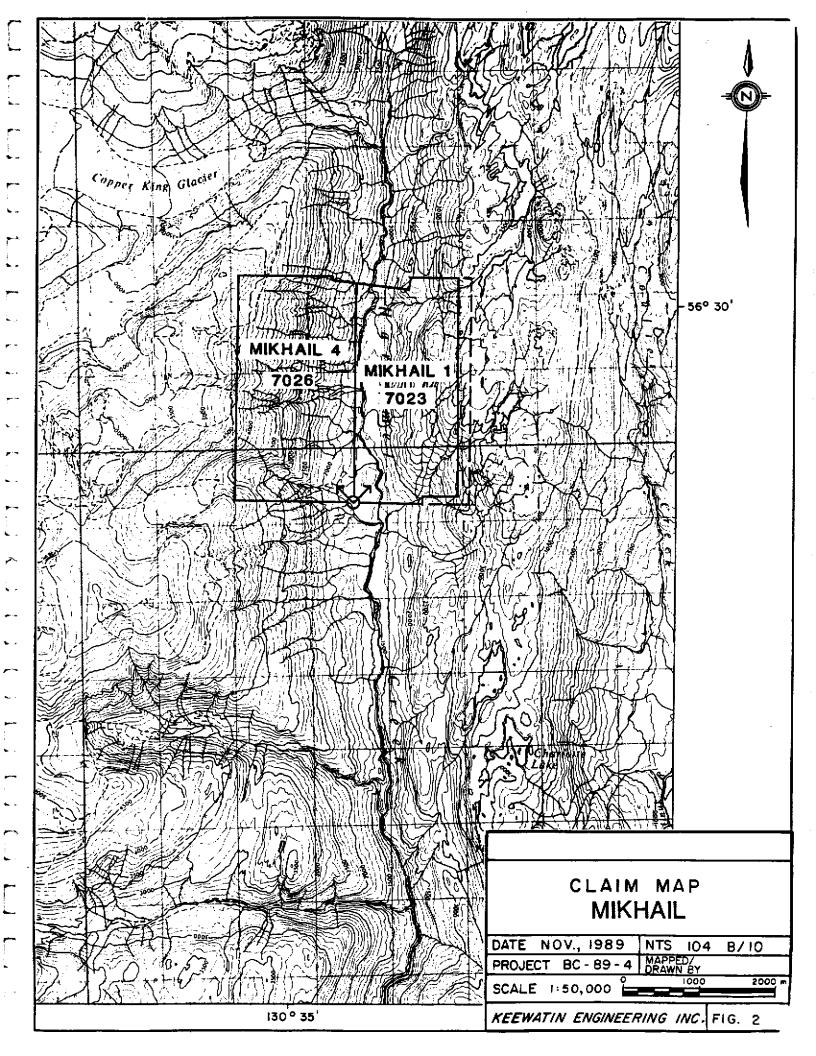
Location and Access

. .

.

τ.


٠.


The Mikhail property is located in northwestern British Columbia, approximately 80 km northwest of Stewart (Figure 1). The claims are situated within N.T.S. map-sheet 104-B/10E and centered about 56°29' North latitude and 130°34' West longitude. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property. The claims can also be directly accessed by helicopter from Stewart.

At some future date, road access to the area from the Stewart-Cassiar Highway could be obtained via the Upper Unuk River and Tiegen Creek valleys.

Property Status and Dwnership

The Mikhail property (Figure 2) consists of two modified-grid claims totalling 36 units, located within the Skeena Mining Division. Relevant claims data are tabulated below:

Υ.

-

.....

ς.

. .

. .

. -

. .

۰,

P****

r -

ω.

-

Claim	Record	No.of	Date of	Expiry
<u>Name</u>	<u>Number</u>	<u>Units</u>	<u>Record</u>	<u>Date</u>
MIKHAIL 1	7023	18	Dec.05/88	1989
MIKHAIL 4	7026	18	Dec.05/88	1989

These claims are, apparently, the subject of an agreement between the claim holder (Teuton Resources Corp.) and Solomon Resources Limited. The claim records and maps show that the Mikhail property was subsequently overstaked.

Physiography and Climate

The Mikhail property is situated within the Coast Range Physiographic Division and is characterized by northern rain forests and sub-alpine plateaux. The north-south trending U-shaped Harrymel Creek valley bisects the property. Elevations (see Figure 2) range from 520 m in the valley of Harrymel Creek to 1525 m in the western part of the property. The toes of several glaciers almost reach the western boundary of the property.

A transitional treeline, characterized by dense sub-alpine scrub, meanders through the property at approximately the 915 m elevation. Terrain above treeline is typified by intermontane alpine flora. Conifers up to 30 m tall are common below treeline, especially in stream valleys. Water for camp and drilling purposes is generally in good supply from the numerous creeks draining the claim area.

Precipitation is heavy, exceeding 200 cm per annum, with short mild summers but very wet spring and fall periods. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

r -

- -

۰.

. .

۰.

.

.

r -

٩.

-

÷ ...

.

71 - 1

٤.

.

r -

Page 5

PREVIOUS EXPLORATION

The area drained by the upper reaches of the Stikine, Iskut, Unuk, Craig, and Bell-Irving Rivers has been explored for gold since the late 1800's when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Explorations Ltd. The Johnny Mountain deposit was brought into production in mid-1988, and the adjacent SNIP property is slated for production in 1990.

The mineralization at Eskay Creek was discovered in 1932, and active prospecting has continued sporadically since then. Two adits are the result of limited mining activity on this prospect. In 1988, Calpine Resources Incorporated discovered high-grade gold and silver mineralization on the '21 Zone' (*Northern Miner* - November 7, 1988). A number of excellent diamond drill intersections have been obtained to date, including drill hole CA-88-06 which encountered 96 feet of 0.752 oz/ton gold and 1.13 oz/ton silver. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological ore reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver has been calculated for the '21 Zone' (Consolidated Stikine Silver Ltd. - 1989 Annual Report).

The Unuk River area was covered by regional geological mapping in 1988 as part of the Iskut-Sulphurets project carried out by B.C. Ministry of Energy, Mines and Petroleum Resources (Britton, et al., 1989). The whole of N.T.S. 104-B is currently being mapped by R. G. Anderson of the Geological Survey of Canada (Anderson, 1989).

The results of a regional stream sediment sampling program conducted over this area were released in July 1988 (National Geochemical Reconnaissance, 1988). Britton (et al.) report that almost every known precious metal prospect in the Unuk River area is associated with high stream sediment gold values. Known gold deposits are also associated with high but variable values for such pathfinder elements as silver, arsenic, antimony, and barium. Three stream

, ----.

ς.

-

. .

. .

-

- -

1 -

•

P -----

sediment samples were collected from streams draining the Mikhail property. One of these (sample #871365) exhibits elevated to anomalous values in arsenic (48 ppm) and antimony (3.8 ppm). Two other samples (#871368 and #871369) were collected from streams peripheral to the claim boundary, from streams which partially drain the property area. They yielded weakly elevated values in arsenic (41 and 38 ppm) and antimony (2.1 ppm).

A review of the material in the B.C. Ministry of Energy, Mines and Petroleum Resources assessment report archives indicates that no work has been filed for the specific area now covered by the Mikhail property. The files do, however, show that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. during the period 1959 to 1962.

The Mikhail property is bisected by a north-south trending cataclastic zone known as the Harrymel-South Unuk Shear Zone. The Harrymel Creek copper showing (Minfile #080) occurs within schists in this cataclastic zone. The Minfile mapping plots this occurrence 2 km south of the Mikhail property. Field investigations located copper mineralization along with trenches in the southeast corner of the MIKHAIL 4 claim. No mineralization was found in the reported location of the Harrymel Creek copper showing. The mineralization located is possibly the Harrymel Creek copper showing.

The assessment records (Korenic, 1982) indicate that Duval Corp. undertook a regional heavy mineral survey in the Unuk River area in 1981.

Page 6

ς.

Υ.

. .

÷ .

ŝ,

. .

ς.

. .

-

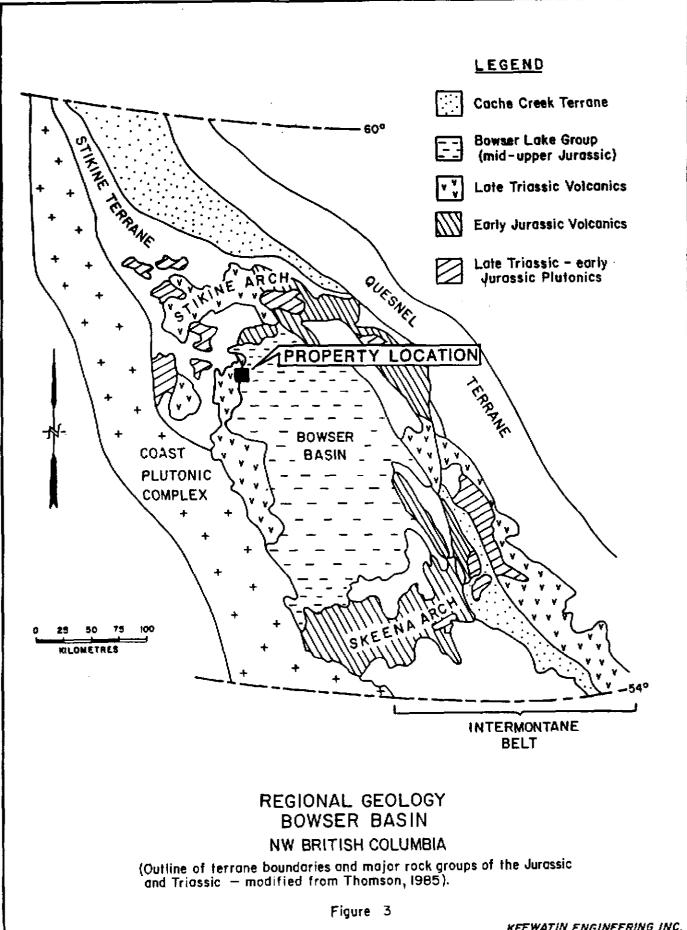
۰.

*

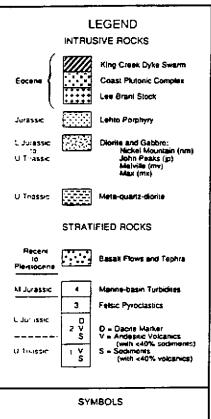
p----

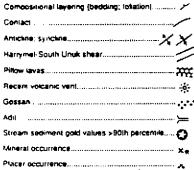
τ.

<u>, - -</u>


REGIONAL GEOLOGY

The property lies within the Intermontane Tectono-Stratigraphic Belt, one of five parallel northwest-southeast trending belts which comprise the Canadian Cordillera (Figure 3). The Mikhail property occurs near the contact between the Stikine Terrane, which makes up most of the western part of the Intermontane Belt, and the unmetamorphosed sediments of the Bowser Basin.

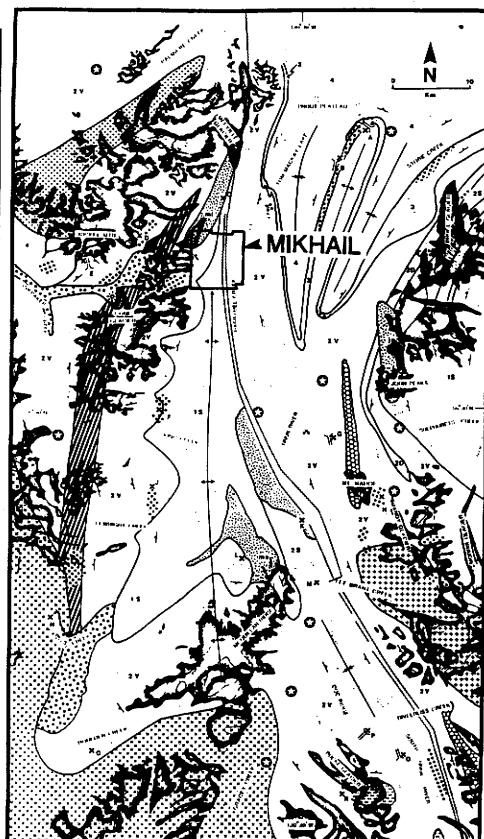

The Unuk River area (Figure 4) is underlain by a thick succession of Upper Triassic to Lower Jurassic volcano-sedimentary arc complex lithologies capped by Middle Jurassic marine basin lithologies. This package has been intruded by a variety of plutons representing at least four intrusive episodes spanning late Triassic to Tertiary time. These include synvolcanic plugs, small stocks, dyke swarms, isolated dykes and sills, as well as batholiths belonging to the Coast Plutonic Complex.


The stratigraphic sequence has been folded, faulted, and weakly metamorphosed during Cretaceous time, but some Triassic strata are polydeformed and may record an earlier deformational event. Remnants of Pleistocene to Recent basaltic flows and tephra are preserved locally.

Page 7

KEEWATIN ENGINEERING INC.

. .


. .

<u>ب</u> ب

MINERAL OCCURENCES

	NAME	COMMODITY
A B C D E F G X / J E L M N O P O R	Emma MacKay Copper King Colegh E&L Nickel Cole Cumberland/Daly Mi: Madge (C-10) Mi: Madge (C-10) Mi: Madge (CFJ) VV Chris & Anno Haa Unuk Jumbo Black Bear Boulder Creak Doc Slobo Alf	Au, Ag, Pb, Zn, Cu Au, Ag, Pb, Zn, Cu Cu, Fo Cu Cu, Au, Ag Au, Ag, Zn Au, Ag, Zn Au, Ag, Zn Au, Ag, Cu, Zn Cu, Fo Cu, Fo Fe, Cu Fe, Cu Fe, Cu Fe, Cu Fe, Cu Fb, Zn, Au, Cu Au, Ag, Pb, Cu Au, Ag

NOTE: Not to scale

Geology and mineral deposits, Unuk map area. Modified after Britton et. al. (1989)

PROPERTY GEOLOGY

Figure 4

€.

-

L

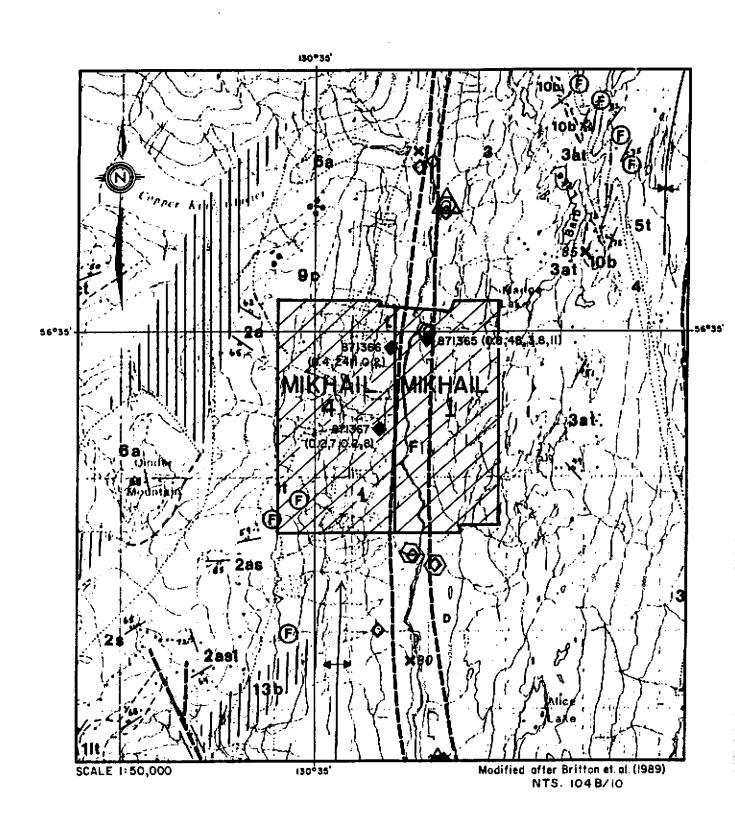
.

•

PROPERTY GEOLOGY

Regional geological mapping by Britton et al.(1989) shows that the property is predominantly underlain by Upper Triassic to Lower Jurassic supracrustal rocks (Figure 5). The north-south trending Harrymel-South Unuk shear zone transects the property and separates the Upper Triassic to Lower Jurassic rocks in the western half of the property from the Lower Jurassic rocks which underlie the eastern part of the property. The distribution of map units suggests that the rocks to the west of the major shear zone dip shallowly to the west; units in the eastern part of the property display a moderate easterly dip. The northwestern corner of the property is underlain by the southern nose of the Melville Diorite Stock.

Upper Triassic <u>Stuhini Group</u> (Unit 1)


The Stuhini Group rocks occupy the nose of a north-plunging anticline, and occur as a wedge between the Harrymel-Unuk shear zone and the overlying Unuk River Formation. These rocks underlie most of the western portion of the property, consisting of thin bedded siltstones, immature fine-grained wackes, chert, impure limestones, and andesitic tuffs that locally attain a considerable thickness. Andesitic tuffs may be laminated to massive, aphanitic to hornblende-feldspathic. Limestones occur as thin beds or discontinuous lenses that show extensive recrystallization and highly disrupted internal structure. Fossil evidence led Britton et al.(1989) to ascribe a Carnian to Norian age to these rocks.

Upper Triassic to Lower Jurassic <u>Unuk River Formation</u> (Unit 2)

Britton et al.(1989) described this sequence as green and grey intermediate to mafic volcaniclastics and flows with locally thick interbeds of fine-grained immature sediments. The volcanics are reported to be dominantly massive to poorly bedded plagioclase (\pm hornblende) porphyritic andesite. The sediments are predominantly grey, brown, and green thinly bedded tuffaceous siltstone and fine-grained wacke. These Norian to Sinemurian age rocks of the Unuk River Formation constitute the lowermost unit of the Hazelton Group.

The basal contact with Triassic strata appears to lie near the top of a thick sequence of clastic sedimentary rocks. Neither an angular unconformity nor a widespread conglomerate marks the lower contact.

Government regional geological mapping and mapping completed during the 1989 property exploration program indicate this unit may underlie the southwestern and west-central portions of the property.

٤.,

....

ς.

ŝ,

....

\$. .

ς.

PROPERTY GEOLOGY MIKHAIL PROPERTY

Figure 5

LEGEND

-

χ.,

 $\left(\right)$

райн 1 1

• -

بر م د د د

~

۲

.

r

. .

ς,

ς.

÷.

. .

: ▲ ...

1

INTRUSIVE ROCKS	VOLCANIC AND SEDIMENTARY ROCKS
TERTIARY	والمعتملية والمتنافع والمتنافع والمتعادة فالمتنافع والمتنافع والمتعادين
13 A087-1967-1967-1967	
	CHATEVHARY
13a - Langungsiyan, andyonta, dikinan dikinan anti-kimud 13a - Jing Canat Cying Summer kiningar panjaipyi disaku, antinista, dishana, quante shutta	RECENT
tige - Apartage analyzation from gradent from the state and the state of the state	
12	70 - 70 andre and a state of the state of th
	79 - Aministra anti-inite by Philippine in Provinsi based
12 Les Grunt Essein Heiniger puptyn, bambinais billit maber Mitter	
JURASSIC .	
II	de Dent gerp is blank, bannet finne eine tegeiner anter peller itente
Language and	
19 January 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	THEASEC TO JURAERC
Mar Louis Angeley, R. Sainger angelesing Angelesing Approximate property proved in the symptote	MIDOLE JURAESIC (TOARCIAN TO BAJOCIAM)
189 – Barb Lake Dyke: Jan- to reprint grained heritalisatis allertis 189 – Andrean-Claste Compton anticessatis, Alex to methodorial allefte with operation	SLITIONE RECIPCE finance film: Apropries: Cash gang, and bearing allower and anny statistics
nganganga ar dana gener mang analaning generaliyi filosokii UNUK (MQM) (SQUTTE SQUTE): madaan sa aananginkkali, mada sa inkerandaki viante	
	يور من
90 - Jahr Pupla mainadrith famytruin dirith 18 - May biyon-kampinaly dirith; yoky dirith	ى بىر تەرىپىلىغان بىرىكى ب يۇچى بىرىكى بى
12. Adalah kacabanda dalam di kaca di kacaban di kacaba 14. Cap Alapa dalam anganasianin	LOWEN JURASSIC (TCANCLAR)
TRIASSIC	A SEC ICL CARE STUDIERS Share Share the students for any producer () and a start of the start o
BUCHE OLACEP STOCK: Agin group, generate in Addated, Andrew-generat Association states group disting	
	ية الواقية وتطليقه وتعالية عنه المراجع المراجع وتطليق المراجع . 19 من طبقية مجمعية الم
	ier – Staat van under sonderne bieber verbennen in het in der sonder im der sonder in der sonder in der sonder
	LOWER JURASSIC (PLENESACIEAN TO TOARCIAN)
	ی از منبع معند می باشد. این از می به منبع می به منبع از می از می از می باشد می باشد می باشد می باشد. این از می به منبع می به منبع از می باشد از می از می از می باشد.
	in the second se
	المتجاه ويحدوك فبتجرف كية كليت تشجيعات ور
MITTANOVING EQUINILENTS OF UNITS 1, 2 UP 3	tys – singingalis pilver terus and pilver intentita ville relation allitaria intentitati 21 – Staat, main antinis allitativa, stati an ayalise intentitati
A-F	UPPER TRIASSIC TO LOWER JURASSIC (NORIAN TO SINEMURIAN)
A Makapater az é proj. La ponazona pour la faliper artika phylike 2 Falipe normanismise: kyle provi panie aktiv aktiv kilok phylike. Sonit phylike: Sonit phylike:	ANCERTE SECURICE gauge fiver formalest: Gran and priv. Prinmedia to male responsibility and
alabarnarð handi Ó - págala og smonraskum menn-skonnes: skerk gréssk, pálapísalskar-skólarið þrýrikk	· · · · · · · · · · · · · · · · · · ·
2) - fearaisteain aingealtain agus lite an ghintair Anglantair Anglantair 2) - fearaistean aingealtaise gunair, sginadh aingealtha	20 — Gany and great, phyliodiat 2 harraineth gyryindik andrean; maasse w paarly peder 26 — Gany and green, ispacionale (2 pressure) dalapar peoplysia antoinis, synthere with he
T گیتون پر موجود با منظر میشند به منابع میرود با موجود با محمد می با مربع می موجود با محمد می با مربع	31. – Georg, beyond next general, statisty bestelet, hullseenen allernine and the generat module 32. – <u>Banda, genig</u> ageninassed allernine filekäilling almine, angelline
	By Stand geng, andele angemeine antegenerati verbigenerativ with generativ assesses 31 Gay, antegen possible dimensione descriptions many statistical along Santo Linux meteop
	Theastic
	STUMM GROUP
	(PPER TRIASSIC (CARMAN TO NORIAN)
	LONGR VCLCANCOSCOMENTARY SECURICE: Security parts and prov. remot assessments repting the product of the number of
GOSSANOUS ALTERATION ZONES	N Grey an anna an gung, biain phantai allannan, abain, argille farfaleler tur Brunn ant gung, bia phantai allannan, abain, argille farfaleler tur bia fan an an argille an arainteannan
Prote ± space ± sociale ± solidances ± sing, locally followed to collisions	M _ (Corp., Samper, Salp. paraty Services Sp _ General, Nam-produced, paratylika Salk Salk Salk Salk Salk Astronomy Paratylika
s V	ta) – Canti genari katali Igo – Grup yang yangan, gadakalir kenakir with kugate Alematik Alematika katakan katali kapite-Mit
SYMBOL	S

Geniegies beaniery fielted, apprintent, amerieth	
Beading, lags beaus finitaria, badred, verbal, averand	───── <u>+</u> ┷ ┷ ┱
Bedding, Inpa minister (hartennist, bedinet, vertige)	
Brading, seamanet die igente, mettente, strapp	<u></u>
Sungay his tage to pille white the	· · · · · · · · · · · · · · · · · · ·
Considerational layoring in metamorphotod radius	-
latation (radiant, sector)	
Terrey Bro	
Paginai adalet; syitik	
Andiana; ayalaan (nintral, destained)	
literar haid main with 64. Z or 2 symmetry: with plange	
Fault järlend, angenett 2 + dermiteren sidet	
Thesas basis pictures, assumed; such an apper picture	
No photo becaused	
feel leafly	—— ®
Perma	—— ō
Ann will man the 472 Tothey dynat	111111
Lina et majar phylite sene	
Velganig vors (p)garved, annotati	* *
failanai gaaahantaai resernititemen oompin din	B71365 (0.8,48,3.8,11)
Palaanuwargan lahinin ayo sati ik + hangkanan; sati nakilanin ayokin kafari problek	Sample No. (Ag ppm, As com, Sb ppm, Au opb)

AGE	GROUPS	FORMATIONS	MEMBERS	LITHOLOGIES
Bathonian	Bowser Lake	Ashman	Main Sequence Basal Conglomerate	Turbidites, wackes, intraformational conglomerates Chert pebble conglomerates
Bajocian to Toarcian	Spatsizi(?)	Salmon River	Pyjama Beds Basal Limestone	Thin bedded, alternating siltstones and mudstones Gritty, fossiliferous limestone
Toarcian		Mount Dilworth	Upper Lapilli Tuff Middle Welded Tuff Lower Dust Tuff	Dacitic lapilli tuff with flow- bandedd clasts Dacitic welded ash flow and lappilli tuff Dacitic dust tuff
Pliensbachian	Hazelton	Betty Creek	Sedimentary Members Volcanic Members	Hematitic volcaniclastic sediments, and turbidites Andesitic to dacitic tuffs and flows
Sinemurian to Hettangian(?)		Unuk River	Premier Porphyry Upper Andesite Upper Siltstone Middle Andesite Lower Siltstone Lower Andesite	Two feldspar + hornblende porphyritic tuffs Massive tuffs with local volcaniclastic sediments Turbidites, minor limestones Massive tuffs and minor volcaniclastic sediments Turbidites Massive to bedded ash tuffs
Norian to Carnian	Stuhini		Volcanic Members Sedimentary Members	Pyroxene porphyry flows and tuffs Turbidites, limestones, conglomerates

TABLE 1. Table of Formations Unuk River Area

.

:

N.

. .

5

×

. ...

ς.

,**.** .

ы

Υ.

. مامبر

Υ.

۰.

Lower Jurassic <u>Betty Creek Formation</u> (Unit 3)

A Pleinsbachian to Toarcian age is assigned to this unit by Britton et al.(1989). This pyroclastic-epiclastic sequence is comprised of a sequence of westward facing but locally overturned interbedded volcanics and lesser sediments, underlying the eastern part of the property. The volcanics are dominantly grey and green, massive to poorly bedded units, and range in composition from basaltic andesite to dacite. Pillow lavas, breccias, and felsic pyroclastics, including spherulitic rhyolite, have been reported in the John Peaks area, but were not mapped by Britton et al.(1989) within the Mikhail property. The sedimentary rocks are, on the whole, less abundant than the volcanic rocks, and consist of black thinly bedded siltstone, shale, and argillite. Limestones are rare or absent in the Lower Jurassic section.

Jurassic <u>Melville Diorite Stock</u> (Unit 9c)

The southern extremity of this elongated stock underlies the northwestern corner fo the property along the inferred contact between Triassic and Jurassic strata. This lithotype is medium- to coarse-grained, equigranular, and ranges in composition from hornblende-biotite diorite to quartz diorite.

<u>Structure</u>

Actual fault surfaces or zones are rarely seen in the Unuk River area, but they are probably quite common and may have developed concurrently with regional folding. These are assumed to be normal faults and are probably megascopic structures with relatively little offset.

The strata in the western part of the property define a broad northplunging anticline with moderately dipping limbs. In the eastern half of the property, the east-dipping strata of the Betty Creek Formation occur on the western limb of a broad syncline.

The north-south trending Harrymel-South Unuk Shear Zone transects the property and is marked by mainly schistose rock fabrics. Britton et al. (1989) interpret this structure as a major east-dipping shear zone with normal offset, exposing different structural levels and stratigraphic sections. Υ.

.

* ~

ECONOMIC GEOLOGY

Britton et al.(1989) list 55 mineral occurrences in the Unuk map-sheet. These showings are predominantly gold/silver occurrences and are hosted by a number of various lithologies. Most can be classified into one of four categories: stratabound, vein, skarn, and disseminations. Grove (1986) has determined that the age of the mineralizing events is variable and, notably, can be post-Triassic.

Stratabound mineralization consists almost exclusively of pyritic zones and lenses contained within a particular stratum or a restricted set of strata. The best example is the Eskay Creek prospect, currently being explored by Calpine Resources Incorporated and Consolidated Stikine Silver Ltd. Intrusivecontact (skarn) deposits show a close spatial and temporal relationship with igneous intrusions. Three deposits in this category are the E & L nickel/copper deposit (Minfile #006), the Max copper/iron skarn (Minfile #013), and the Chris-Anne copper/iron skarn (Minfile #125). Britton et al.(1989) stated:

Mineralization at the E & L occurs within two medium- to coarsegrained, olivine-pyroxene gabbro bodies. These roughly triangular plugs are each approximately 1300 square metres in area and are probably connected. They intruded a sequence of argillites, tuffaceous siltstones, and grey dacitic ash tuffs that strike northwesterly with moderate to steep southwesterly dips. Mineralization consists of pyrrhotite, pentlandite, and chalcopyrite, with lesser amounts of pyrite and magnetite. In the northwestern gabbro, mineralization extends up to the contact with the sediments, whereas in the southeastern gabbro, mineralization is confined to the pluton. Diamond drilling has delineated pipe-like pods and disseminations of sulphides to a depth of 120 metres. Drill-indicated reserves are 2.8 million tonnes of 0.7% Ni and 0.6% Cu (Sharp, 1965).

The Max prospect lies on the northwest side of McQuillan Ridge, between the Unuk and South Unuk Rivers, at elevations between 455 and 1500 metres. Massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock. Garnet, epidote, actinolite, and diopside characterize the skarn assemblage. Drilling has indicated a reserve of 11 million tonnes at 45% iron (Canadian Mines Handbook 1973-1974, page 432).

The Chris-Anne prospect lies approximately 3 kilometres east of the Max. Skarn mineralization is reported in limestone beds which are up to 10 metres thick and that are interbedded with volcaniclastics. Magnetite and pyrrhotite-rich layers, from 0.5 to 7 metres thick, with minor chalcopyrite, extend over a distance of 1 kilometre. There

٤

p- -

- -

- -

ς.

- --

ς.

are minor intrusive bodies reported on the property. Grades range from 0.1% to 0.4% copper (Allan and MacQuarrie, 1981).

The gold potential of these skarn deposits does not appear to have been tested. Based on recent skarn studies (Ettlinger and Ray, 1988), this area has many features that are associated with goldenriched skarns elsewhere in the province: sequences of calcareous and tuffaceous host rocks; structural deformation; intrusion by dioritic I-type granitoids; and contact metamorphism and recrystallization. Some auriferous skarns are enriched in cobalt, an element that may be a useful pathfinder.

High-grade precious metal quartz veins are the target of exploration programs at Mount Madge (Minfile #240 and #233) by Bighorn Development Corporation, and at the Doc prospect (Minfile #014) by Echo Bay Mines Limited. Britton et al.(1989) reported:

The Mount Madge prospects are located south of Sulphurets Creek near its confluence with Unuk River, on the east and west sides of Mandy Glacier. Two different targets are being evaluated (Kruchkowski and Sinden, 1988). On the west, the C-10 prospect (Minfile #240) is a stockwork of thin quartz veinlets, locally with thicker quartz lenses, in intensely altered, fine-grained tuffaceous andesite or dacite. Quartz veinlets locally form up to 30% of the rock. The alteration assemblage consists of quartz and sericite with up to 10% pyrite. Chalcopyrite and traces of sphalerite are also present. The rocks are strongly foliated to schistose and are very similar to the broad alteration zones seen at Brucejack Plateau 12 kilometres to the northeast (Britton and Alldrick, 1988). Soil samples locally return analyses in excess of 1 ppm gold.

Two kilometres to the east, Ken Konkin discovered a massive pyrite-siderite float boulder with visible gold. Prospecting uphill led to the discovery of the GFJ veins (Minfile #233), apparently flat-lying, zoned siderite-quartz-sulphide veins that returned assays up to 121 grams per tonne gold (Kruchkowski and Sinden, 1988). The veins are poorly exposed. Float blocks seen this year display symmetrical zoning from margin to core across vein widths of 10 to 15 centimetres. Vein margins are 1 to 2 centimetres of thin white quartz layers separated by hairline accumulations of very finegrained tin-white sulphide, probably arsenopyrite. The core is a very coarse-grained intergrowth of siderite, milky quartz, and cubes and clusters of pyrite, with lesser amounts of sphalerite and chalcopyrite as crystals and irregular masses. Rare tetrahedrite and visible gold have been observed (K.Konkin, personal communication, 1988). The veins cut variably foliated andesitic ash tuffs with thin interbeds of foliated to schistose siltstones.

The Doc prospect (Minfile #014) is located at treeline on a ridge overlooking the South Unuk River, opposite the mouth of Divelbliss Creek. The prospect consists of several west-northwest

Υ.

•

. .

e - -

۰.

*

trending quartz veins up to 2 metres wide that have surface strike lengths of up to 275 metres (Gewargis, 1986). The main veins (017, Q22) are massive white quartz with sparse sulphide mineralization (5% to 10%) consisting of galena, pyrite, chalcopyrite, and sphalerite, with associated specular hematite and magnetite. Precious metal values are mostly confined to the sheared edges of veins and immediately adjacent wallrock. Shear zones with very little quartz may also return good values. Seraphim (1948) observed that gold was associated with either specular hematite or with galena and pyrite, but not with chalcopyrite and pyrite assemblages. The veins are a true fissure type, crosscutting folded and metamorphosed andesitic tuffs and thin-bedded sediments, including marble, that have been intruded by irregular dioritic dykes or sills and small monzodioritic plugs. The veins are different from any others seen in the Sulphurets or Unuk map areas. They have very restricted wallrock alteration aureoles, no apparent zoning, and appear to be limited to a few large fluid pathways. In this, they display characteristics of mesothermal veins. Structural control of the vein sets has not been determined but may be due to fractures related to folds in the host rocks. Total mineral inventory of the Q17 and other veins is given as 426,000 tonnes with 9.26 grams per tonne gold and 44.91 grams per tonne silver (Northern Miner, November 7, 1988).

Porphyry-type disseminated pyrite, chalcopyrite, and molybdenite mineralization occurs immediately north and south of King Creek, west of Harrymel Creek. Two properties have been worked: the VV to the south and the Cole to the north.

The VV property (Minfile #079) is the site of a heavily weathered monzonitic intrusive body in fault contact, on the east and west, with layered andesitic lapilli tuffs and tuff breccias with minor siltstone and calcareous sandstone interbeds. The stock is 250 metres wide, at least 6 kilometres long, strikes northerly, and dips steeply to the west, parallel to the country rocks. Chalcopyrite occurs in quartz stockworks and as fine disseminations within the monzonite. Molybdenite, sphalerite, malachite, and azurite have also been reported (Winter and McInnis, 1975; Mawer et al., 1977). Representative assays give 0.34% copper, 0.003% molybdenum, 2.1 grams per tonne silver, and 0.8 gram per tonne gold. Maximum gold and silver values obtained were 8.65 grams per tonne gold and 19.54 grams per tonne silver (Mawer et al., 1977).

The Cole prospect (Minfile #209) is situated approximately 4 kilometres north of the VV claims; it appears to be on strike with the same fault system and has similar intrusive and country rocks. Mineralization consists of up to 10% pyrite as disseminations and fracture fillings. Minor chalcopyrite and malachite have been reported but the bedrock source of the gold/silver soil anomalies has not been located (Korenic, 1982; Gareau, 1983). Reported assays range up to 0.43% copper, 7.12 grams per tonne gold, and 13.03 grams per tonne silver. Gold and copper values show a positive correlation on both properties.

p---

÷.,

- -

. .

. .

- -

. .

. .

•

r ·

•

٧.

.

۰.

At this time, the Eskay Creek prospect, located 10 km northeast of the Mikhail claims, is the most significant showing in the area. This prospect comprises at least eight mineralized zones occurring over a strike length of 1800 m within a sequence of felsic volcanics (Mount Dilworth Formation). This property is currently being explored by Calpine and Consolidated Stikine Silver. Preliminary drilling on the '21 Zone' intersected 96 feet assaying 0.752 oz/ton gold and 1.13 oz/ton silver including 52.5 feet grading 1.330 oz/ton gold and 1.99 oz/ton silver (Northern Miner, November 7, 1988).

The drilling results obtained to date indicate that the '21 Zone' extends over 335 m and is open along strike and at depth. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver was calculated for the '21 Zone' (Consolidated Stikine Silver, 1989 Annual Report). These deposits have been variously described as silicified shear zones (Harris, 1985) or as volcanogenic deposits (Donnelly, 1976). The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks.

A review of all the available information (Minfile, assessment reports, geological maps, reports, etc.) indicates that no mineralized occurrences or prospects are known within the area currently covered by the Mikhail claims.

I,

p ----

L.

. .

.

· ·

<u>,</u>, ,

- -

<u>e 18</u>

. .

.

.

pr. 14

1989 EXPLORATION PROGRAM

The 1989 property exploration, completed between September 9 and October 16, consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemistry (lithogeochemical, stream silt, and heavy mineral sampling). Areas of known mineralization and gossans noted within the area were investigated and sampled.

A total of 80 rock, 19 stream silt, and 14 heavy mineral samples were forwarded to Bondar-Clegg & Company in Vancouver for multi-element analyses; Au by fire assay-AA and the remaining 29 elements by I.C.P. (results are presented in the Appendix, along with rock sample descriptions).

The accompanying map depicts the property geology (modified after Britton et al.,1989), with 1989 prospecting traverses, sample locations, and Au/Ag/ As/Sb analytical results. Descriptions of the exploration completed and the results follow.

ROCK GEOCHEMICAL SAMPLING

Reconnaissance prospecting and geochemical sampling were completed over selected parts of the property. This work was concentrated in the upland areas and in the drainage courses of the claims where rock exposures were most abundant.

The northwestern portion of the property is underlain by the southern nose of the Melville Diorite stock. A 6-12 m wide massive magnetite unit, traceable for 900 m, was located along this diorite contact. This occurrence appears similar to the Max deposit in which massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock.

Additional work is warranted on this skarn occurrence to determine its gold potential. Particular attention should be given to the northern end of Keewatin Engineering Inc.

• •

. .

s.

• •

this unit where it appears to be abruptly cut off by a northwest trending cross-fault. A grab sample (KYR-037) collected near this proposed cross-fault, yielded elevated nickel (1142 ppm) and weakly elevated cobalt (125 ppm), chromium (475 ppm), and copper (740 ppm) values.

In the southeast corner of the MIKHAIL 4 claim, a number of old trenches were found which investigated a well mineralized zone within dark green andesite which hosts 10%-15% pyrrhotite, pyrite, and chalcopyrite. Samples collected yielded 0.14%-0.2% copper. In the northeast corner of the MIKHAIL 4 claim, a dark green andesite was located hosting 10% pyrrhotite and pyrite. Samples collected yielded weakly elevated copper (830 ppm) values.

These two showings occur along strike from one another and were probably collected from the same sulphide-enriched stratigraphic unit which cuts across the entire property. They also occur on strike with the Copper King (Cu) showing (Minfile #007), located 2 km north of the property boundary, from which up to 17 grams/tonne gold is reported to accompany the copper/iron sulphide mineralization (Vancouver Stockwatch, Jan.17, 1989). Additional exploration is required to fully evaluate the significant of this sulphide mineralization.

Disseminated to massive sulphides were located in a felsic volcanic adjacent to the quartz-diorite contact at the northwestern edge of the property. A grab sample here yielded weakly elevated gold (159 ppb) and arsenic (1626 ppm) values. This area should be re-investigated as to its significance.

In addition to the above location, felsic volcanics were found in the northeastern corner and the southwestern portion of the property. Although no mineralization was observed in these areas, they should also be re-investigated when taken in the context of the Eskay Creek deposit.

One sample of a dacite agglomerate, collected from the south-central part of the MIKHAIL 1 claim, yielded a weakly elevated (120 ppb) gold value, and a grab sample of limonite-stained limestone from a roof pendant within the diorite stock yielded an elevated (1716 ppm) barium value.

۲.

STREAM SILT SAMPLING

Stream silt geochemical sampling was conducted on the property as part of the current exploration program. Stream silt samples were collected whenever streams were crossed during reconnaissance prospecting traverses, and at 100 m intervals on selected streams. The designation of anomalous values is based on the regional G.S.C. survey results in Open File 1645, combined with a visual observation of data obtained during the 1989 exploration on a number of claim groups in the Unuk River area.

Stream silt samples were collected at regular intervals along a stream cutting across the northern portion of the MIKHAIL 1 claim and yielded weakly elevated values for Ag (1.2 to 2.2 ppm), Zn (258 to 619 ppm), and Cu (110 to 150 ppm in the upper reaches of the creek). There were no anomalous values detected in the rest of the property; however, the remaining area was silt sampled only when creeks were crossed during reconnaissance prospecting. A thorough stream silt sampling program should be completed along all the creek draining the Mikhail property.

HEAVY MINERAL SAMPLING

A heavy mineral stream sediment sampling survey was conducted on the property as part of the current exploration program. Heavy mineral samples were collected in parts of a creek where there is a sudden transition from high to low energy, if present, moss mat was used. Samples were sieved to -20 mesh and a 3 to 5 kg sample of sieved material was collected.

The samples were forwarded to Bondar-Clegg and Company in Vancouver for multi-element analyses: Au by fire assay-AA and the remaining 29 elements by I.C.P. The heavy mineral separation consists of floating off the light (<3.3) minerals using methylene-iodine followed by magnetic separation. A sample weight of 0.5 grams is taken for the I.C.P. and the remainder used for fire assay.

- -

The heavy mineral sampling survey was conducted by Mr. M. Waskett-Myers of Keewatin Engineering Inc. which company has done a considerable amount of work in the Unuk River area, and in the process, has assembled a fairly substantial data base. These data were used to assess the values obtained on the property.

Heavy mineral sampling is a good first-pass tool and should be considered as a micro-prospecting approach to evaluating an area.

A total of 14 heavy mineral samples were collected from creeks draining the property area. Sample PWH-10 was collected south of the claim boundary from a stream which partially drains the southern part of the MIKHAIL 1 claim, and yielded elevated to anomalous values for Au (2238 ppb), Ag (3.7 ppm), As (480 ppm), and Zn (842 ppm). Sample MWH-1 was collected from the same drainage area, and also yielded elevated to anomalous values for Au (220 ppb), Ag (2.8 ppm), and Zn (11,331 ppm). A limited amount of reconnaissance prospecting completed in this drainage area located a dacite agglomerate (a grab sample of which yielded a weakly elevated gold value of 120 ppb) and sheared and folded black argillite.

Sample MWH-7 from a creek adjacent to the above area also yielded elevated to anomalous values for Au (1709 ppb), Ag (1.7 ppm), Ba (861 ppm), Cu (440 ppm), and Zn (524 ppm). MWH-6 was collected from a parallel creek and yielded an elevated barium value of >2000 ppm.

Additional reconnaissance prospecting is required in this area, and stream silt samples should be collected at regular intervals along all the drainage courses.

Four heavy mineral samples were collected from a fairly large creek which cuts across and drains the northern part of the MIKHAIL 1 claim. All of these samples yielded elevated to anomalous Au, Ag, As, Cu, or Zn values:

<u>Sample</u>	<u>Au ppb</u>	<u>Ag ppm</u>	<u>As ppm</u>	<u>Cu ppm</u>	<u>Zn ppm</u>
MWH-4		5.0	197	861	2085
MWH-5	-	8.6	270	1287	3463
MWH-8	145	4.8	360	752	2124
MWH-9	-	19.6	350	1601	2975

.

. .

.

.

. .

e -

.

. .

e -

. .

•

ς.

.

.

Stream silt samples were collected at regular intervals along this creek and also yielded weakly elevated values for Ag (1.2 to 2.2 ppm), Zn (258 to 619 ppm), and Cu in the upper reaches (110 to 150 ppm). Reconnaissance prospecting completed along this drainage course did not locate any mineralization. Additional work is required to determine the significance of these elevated values.

The remaining six heavy mineral samples were collected from creeks draining the MIKHAIL 4 claim and generally reflect background values in all the elements. Sample MWH-11 yielded a weakly elevated silver value of 1.5 ppm, and samples MWH-10 and 12 yielded weakly elevated barium values of 1151 and 851 ppm respectively. λ.

. .

. .

r •

-

*

.

. .

•

e - 2

SUMMARY AND RECOMMENDATIONS

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling, with the objective of evaluating the property's potential for hosting economic precious metals deposits.

A 6-12 m wide massive magnetite unit, traceable for 900 m, was located along the Melville Diorite contact in the western portion of the MIKHAIL 4 claim. The north end of this unit appears to be abruptly cut off by a norhtwest trending cross-fault. A grab sample collected near this proposed cross-fault yielded elevated nickel, cobalt, chromium, and copper values. This occurrence appears similar to the Max deposit in which massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock. Additional work is warranted to determine the gold potential of this area. This work should consist of additional prospecting and extensive lithogeochemical sampling.

A number of old trenches were found in the southeast corner of the MIKHAIL 4 claim which investigated a well mineralization zone within dark green andesite hosting 10%-15% pyrrhotite, pyrite, and chalcopyrite. Samples yielded 0.14%-0.20% copper. In the northeast corner of the MIKHAIL 4 claim, a dark green andesite was located, hosting 10% pyrrhotite and pyrite. Lithogeochemical sampling of this material yielded weakly elevated copper values. These two showings occur along strike of each other and were probably from the same sulphide-enriched stratigraphic unit cutting across the entire property. Extensive prospecting and lithogeochemical sampling should be completed over the entire strike length of this sulphide-enriched stratigraphic unit to fully evaluate the significance of this sulphide mineralization.

Felsic volcanics were located in the northeast corner, the southwest portion, and at the northwest edge of the property adjacent to the diorite contact. A grab sample of the latter yielded elevated gold and arsenic values. These areas should be re-investigated when taken in the context of the Eskay Creek deposit.

5.

F - 1

. .

Stream silt geochemical samples were collected whenever streams were crossed during reconnaissance prospecting and at regular intervals along a creek cutting across the northern portion of the MIKHAIL 1 claim. A heavy mineral stream sediment sampling survey was completed over the property.

Stream silt and heavy mineral samples from the stream cutting across and draining the northern portion of the MIKHAIL 1 claim yielded elevated to anomalous Ag, Cu, and Zn values. A limited amount of reconnaissance prospecting, completed along this drainage course, did not locate any mineralization but did locate felsic volcanics in the upper reaches of the drainage. Additional work is required to determine the significance of these elevated values.

Heavy mineral samples from creek draining the southern portion of the MIKHAIL 1 claim yielded elevated to anomalous Au, Ag, and Zn values. A limited amount of reconnaissance prospecting in the drainage area located a dacite agglomerate (from which a grab sample yielded a weakly elevated gold value) and sheared and folded black argillite.

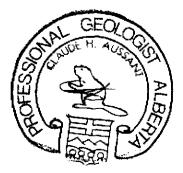
Additional reconnaissance prospecting is required over the entire MIKHAIL 1 mineral claim. Stream silt samples should be collected at regular intervals along all drainage courses within the property boundaries.

CERTIFICATE - C. H. Aussant

I, Claude Henry Aussant, of 31 Templebow Way N.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 400, 534 17th Avenue S.W., Calgary, Alberta.
- 2. I am a graduate of the University of Calgary, B.Sc.Geology (1976), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 4. I am the author of the report entitled "Geological, Prospecting, and Geochemical Report on the Mikhail Property, MIKHAIL 1 and 4 Claims, Skeena Mining Division, British Columbia", dated November 23, 1989. I personally worked on the property during the program described herein.
- 5. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of Teuton Resources Corp. or Solomon Resources Limited, in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 23rd day of November, A.D. 1989.


PERMIT TO PRACTICE
TAIGA CONSULTANTS LTD
Signature w. Nom
Date 19, 1990
PERMIT NUMBER P 2359
The Association of Productional Engineers,
Geologicts and Geoply Lucto of Albarta

Respectfully submitted,

4hera to

C. H. Aussant, B.Sc., P.Geol., F.GAC

I, DAVID GEORGE DuPRE, of 56 Parkgrove Crescent in the Municipality of Delta in the Province of British Columbia, do hereby certify that:

- 1) I am a graduate of the University of Calgary, B.Sc. Geology (1969), and have practised my profession continuously since graduation.
- 2) I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 3) I am a consulting geologist with the firm of Keewatin Engineering Inc. with offices at Suite 800 - 900 West Hastings Street, Vancouver, British Columbia.
- 4) I am the co-author of the report entitled "Geological, Prospecting, and Geochemical Report on the Mikhail Property, MIKHAIL 1 to 4 Claims, Skeena Mining Division, British Columbia", dated November 23, 1989. I personally supervised the work on the property and visited the site on two occasions between September 6 and October 15, 1989.
- 5) I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Teuton Resources Corp. or Solomon Resources Limited, in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this 23rd day of November, A.D. 1989.

Respectfully submitted,
ASSOCIATION
TOT STOR
C. D. G. Dupper 16
David G. B. Bro, B.Sc., P.Geo, FGAC
FELLOW

71.0

Υ.

N. .

ω.

BIBLIOGRAPHY

- Alldrick, D.J.; Drown, T.J.; Grove, E.W.; Kruchkowski, E.R.; Nichols, R.F. (1989): Iskut-Sulphurets Gold; <u>in</u> The Northern Miner Magazine, January 1989
- Anderson, R.G. (1989): A Stratigraphic, Plutonic and Structural Framework for the Iskut River Map Area (NTS 104B), Norhtwestern British Columbia; <u>in</u> Current Research, Part E; Geol.Surv.Cda., Paper 89-1E
- Britton, J.M.; Webster, I.C.L.; Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W,9W,10E); <u>in</u> B.C.Energy Mines & Petr.Res., Geological Field Work 1988, Paper 1989-1, pp.241-250

Consolidated Stikine Silver Ltd.: - 1989 Annual Report

- DuPré, D.G. (Sep.6, 1989): Geological Report on the Mikhail Property, Skeena Mining Division, B.C.; <u>for</u> Solomon Resources Limited
- Geological Survey of Canada:
- Open File 1645 (1988): National Geochemical Reconnaissance; Iskut River
- Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, British Columbia; B.C.Energy Mines & Petr.Res., Bulletin 58
- ----- (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C.Energy Mines & Petr.Res., Bulletin 63
- Korenic, J.A. (1982): Assessment Report of Geological, Geochemical, and Geophysical Work Performed on the Cole Claim in 1981, Skeena Mining Division; B.C.Energy Mines & Petr.Res., Assess.Rpt.10474

Northern Miner: - Nov.7, 1989

- Pegg, R.S. (1988): Geological Compilation of the Iskut, Sulphurets, and Stewart Gold camps; <u>for</u> BP Resources Canada Limited, private company report
- Shensha Consultants Limited (1989): Report on Interpretation of VLF-EM and Magnetic Survey on Mikhail and Store Claims; <u>for</u> Winslow Gold Corporation, private company report
- Woods, D.V.; Hermary, R.G. (1988): Geophysical Report on an Airborne Magnetic and VLF-EM Survey, Mikhail 1-4 Claims; <u>for</u> Dino Cremonese

h.

· ·

ς.

Σ.

ω.

-

<u>د</u>

Ψ.

APPENDIX

Summary of Personnel Rock Sample Descriptions Certificates of Analysis Analytical Techniques

SUMMARY OF PERSONNEL

<u>Name / Address</u>	<u>Position</u>	<u>Dates</u>	<u>Man Days</u>
C. H. Aussant Calgary, Alberta	Project Geologist	Sep.9-Oct.16	8.00
B. C. Beattie Calgary, Alberta	Assistant Geologist	Sep.9-Oct.16	5.75
M. Waskett-Myers Vancouver, B,C.	Geochemist	Sep.9-Oct.16	8.00
B. McIntyre Vancouver, B.C.	Senior Prospector	Sep.9-Oct.16	5.75
S. Hardlotte LaRonge, Sask.	Senior Prospector	Sep.9-Oct.16	7.25
Don McLeod LaRonge, Sask.	Senior Prospector	Sep.9-Oct.16	8.25
Dennis McLeod Stanley Mission, Sask.	Junior Prospector	Sep.9-Oct.16	6.25
Irvine Roberts Stanley Mission, Sask.	Junior Prospector	Sep.9-Oct.16	8.25
C. Oevermann	Cook	Sep.9-Oct.16	7.50
Smithers, B.C.			TOTAL 65.00

.

. .

. .

F .

r ·

•

. .

.

. -

.

•

.

ROCK SAMPLE DESCRIPTIONS

Au ppb MCR-008 159 grab o/c; disseminated and massive sulphides pyrite > pyrrhotite > magnetite, trace chalcopyrite in felsic volcanics adjacent to quartz diorite contact; amount of sulphides variable 3-5% to massive (a massive sulphide pod exposed over 0.5 m length) MCR-009 10 grab o/c; diorite, medium grey, massive, fine-grained, rusty weathered, 1% disseminations and blebs pyrrhotite MCR-010 <5 grab o/c; felsite unit, 7 m wide, light greenish grey, within quartz diorite, 5% very finely disseminated pyrite MCR-012 <5 grab o/c; felsite phase of guartz diorite, light grey, aphanitic, near argillite/quartz diorite contact, rusty weathered, minor calcite stringers, 3% pyrite/pyrrhotite MCR-014 <5 grab o/c; chert, medium grey to black, laminated, adjacent to andesite tuff, 055°/70°NW, pyrite as 2-5% disseminations and occ stringers MVR-013 45 grab o/c; quartz diorite, 4-5 m wide, very rusty and resistant magnetic zone, 2% disseminated pyrrhotite MVR-014 12 grab o/c; same location and description as MVR-013, trace pyrrhotite MVR-015 6 grab o/c; dark quartz diorite, numerous pyrite stringers, 50% pyrite in areas (near MPR-017) MVR-016 10 grab o/c; quartz diorite, 1-2% diss pyrite/pyrrhotite, minor chalcopyrite MZR-011 7 grab o/c; fragmental chert, light to medium grey, <1% diss pyrite MZR-012 <5 grab o/c; chert, light to pale grey, <1% diss pyrite MZR-013 <5 grab o/c; fragmental tuff, pale grey, pockets of 5-7% diss pyrite MZR-014 9 grab o/c; argillite, black, <1% disseminated pyrite 9 grab o/c; felsic volcanic, pale brown to light grey, pyrite MZR-015 as 3-5% diss and as crystals, calcite-albite flooding MZR-016 grab o/c; fragmental tuff, light to medium grey, weakly 6 calcareous, 1% disseminated pyrite MZR-017 <5 clay, light grey to brown, kaolinitic

-

***** -

he a

1

۰. ب

.

ŕ

• ·

ъ.

.

. -

.

- -

ъ.

.

 τ'

• ·

h .

рета 16. г.

• ·

. .

	<u>Au ppb</u>	
MZR-022	<5	grab o/c; andesite tuff, medium grey, rusty stained, silic- eous, 1% disseminated pyrite/pyrrhotite
MZR-023	10	grab o/c; andesite, medium grey, aphanitic, 5% diss pyrrho- tite/pyrite, minor chalcopyrite
MZR-024	<5	grab o/c; sheared siliceous phase of the quartz diorite, grey, quartz with pyrite stringers, 3% disseminated Po/Py
MZR-025	14	float; siliceous phase of the quartz diorite, mainly quartz, medium to dark grey, pyrite as stringers and 3-5% disseminations, minor chalcopyrite
MZR-026	<5	grab o/c; siliceous aphanitic phase of the quartz diorite, light to medium grey, fractured, limonite stained, minor chalcopyrite, 3% disseminated pyrite/pyrrhotite
MZR-027	<5	grab o/c; sandstone, light grey, very fine-grained, strike 050°, <1% pyrite, minor quartz stringers, limonite stained
MZR-028	<5	grab o/c; aphanitic phase of the quartz diorite, light grey, limonite stained, 1% disseminated pyrite
MZR-029	<5	grab o/c; medium-grained (relative) quartz diorite, trace pyrite and pyrrhotite
MZR-030	<5	grab o/c; aphanitic phase of the quartz diorite, light to medium grey, 1% disseminated pyrite
MZR-031	<5	grab o/c; tuff, light grey, quartz flooding and stringers 10- 20 cm wide, limonite stained, pyrite as 1% disseminations and occ crystals
MZR-032	<5	grab o/c; aphanitic phase of the quartz diorite, light greenish grey, pyrrhotite/pyrite as 1-2% disseminations and as stringers
MZR-033	<5	grab o/c; aphanitic phase of the quartz diorite, light to medium grey, weakly foliated, fractured (contact zone), 1-3% pyrite lining fracture planes
MZR-034	<5	grab o/c; andesite, aphanitic, medium grey to green, weakly laminated, pyrite lining foliation planes
MZR-035	<5	grab o/c; aphanitic phase of the quartz diorite (dacite?), light grey, limonite stained, <1% disseminated pyrrhotite/ pyrite, pyrrhotite stringers
KZR-090	<5	grab o/c; silty quartzite, light grey, fractured; 5-7% pyrite as disseminations and stringers

• • • •

-

k .

۰. مە

p- -

-

a. .

т. 1

• -

. .

• •

•

F -

. .

۰.

- -

• ;

• ·

. /

.

۰.

•

--

٠

	<u>Au ppb</u>	
KZR-091	<5	grab o/c; andesite, green; 10% diss pyrrhotite, <1% chalco- pyrite, minor pyrite, as stringers and diss
KZR-092	<5	grab o/c; andesite, green; 15% diss sulphides (pyrrhotite, chalcopyrite, minor pyrite), with pockets of massive sulphide, old trench 1.5 x 5 metres
MOR-018	<5	grab o/c; quartz diorite, 3% disseminated pyrite
MOR-019	10	grab o/c; quartz diorite, grey, 1% disseminated pyrite
MOR-020	36	talus; granodiorite, quartz flooded, 1% diss pyrite
MOR-021	<5	grab o/c; andesite, light grey, pyrite lining fracture planes and as 1-3% disseminations, limonite stained
MOR-022	<5	talus; aphanitic felsic dyke (dacite?), light to pale grey, rusty weathered, 1-3% very finely diss pyrite
MOR-023	<5	talus; aphanitic phase of the quartz diorite (dacite?), light grey, 5-7% disseminated pyrite
MOR-024	<5	talus; medium-grained (relative) quartz diorite, medium grey, 1% pyrite, trace pyrrhotite
MOR-025	6	talus; aphanitic andesite, dark greenish grey, 1% diss Py, trace pyrrhotite
MOR-026	<5	talus; aphanitic phase of the quartz diorite (andesite?), light grey, 3% disseminated pyrite/pyrrhotite
MOR-027	<5	grab o/c; aphanitic phase of the quartz diorite; quartz stringers, <1% disseminated pyrite, trace pyrrhotite
MOR-028	<5	grab o/c; same as above
MOR-029	<5	grab o/c; medium-grained (relative) quartz diorite, 1% diss pyrite, trace pyrrhotite
MOR-030	<5	grab o/c; very fine-grained quartz diorite, minor quartz stringers, 1% pyrite
MOR-031	<5	talus; medium-grained (relative) quartz diorite, 1-3% diss pyrite
MOR-032	<5	grab o/c; very fine-grained quartz diorite, fractured, <1% disseminated pyrite
KOR-085	<5	grab subcrop; andesite, 15% pyrite as disseminations and stringers

Mikhail Property

. بور ا

F 14

۰.

. .

. .

₽ 3

۰.

.

•

• ~

•

*

r -

•

•

۰ ۲

•

-

.

1

κ.

•

	<u>Au ppb</u>	
KOR-087	<5	grab o/c; andesite, 15% disseminated pyrrhotite, <1% chalco- pyrite, minor pyrite, massive sulphide pockets; old trench 2 x 4 metres @ 095°
MER-013	<5	float; quartz diorite, <1% pyrite
MER-014	<5	float; diorite, greyish green, <1% pyrite
MER-015	<5	grab o/c; mainly quartz, <1% pyrite, weakly calcareous (probably very siliceous phase of the quartz diorite)
MER-016	<5	grab o/c; cherty tuff, light grey, very fine-grained, minor quartz stringers, <1% disseminated pyrite
MER-017	<5	talus; diorite, <1% disseminated pyrite
MER-018	<5	grab o/c; argillite, black; 50% magnetite; at diorite contact, massive magnetite bed 5-6 m wide, conglomerate underlying magnetite unit and adjoining limestone, irregular contact between the limestone and magnetite and conglomerate, minor limestone in the conglomerate adjacent to the lime- stone/conglomerate contact
MER-019	<5	grab o/c (same outcrop as MER-018); limestone, beige, trace pyrite
MER-020	<5	grab o/c; quartz diorite, grey, very fine-grained, trace pyrite lining fracture planes
MER-021	<5	float; medium-grained (relative) quartz diorite, epidote stringers, 2% diss pyrite and pyrrhotite
MPR-015	25	grab o/c; fractured chert, pale grey, rusty weathered, 2-4% pyrite
MPR-016	<5	grab o/c; fractured chert, pale grey, rusty weathered, 2% pyrite
MPR-017	<5	grab o/c; highly fractured quartz diorite (mainly feldspar), 10% sulphides (pyrrhotite, pyrite, trace chalcopyrite) as numerous stringers and fracture filling
MPR-018	9	grab o/c; siliceous phase of the granodiorite, medium grey, rusty weathered, sulphides lining fractures, <1% pyrite, trace pyrrhotite
MPR-019	6	grab o/c; felsic tuff (rhyolite?), light grey, 1% pyrite as crystals, blebs, pockets
MPR-020/	A <5	grab o/c; felsic tuff (rhyolite?), light grey; pyrite as crystals, blebs, pockets; 10% Po/Py

Keewatin Engineering Inc.

-

Mikhail Property

5

- م -

. .

P -

•

. .

•••

ь.

- -

b -

۰.

۲

H -

•

•

- -

.

~~

٠

•----\

. .

• •

.

77

٠

<u>A</u>	<u>u ppb</u>	
MPR-020/B		grab; brecciated quartz, 1% pyrite as diss and clots
MPR-021	<5	grab o/c; massive black magnetite, possibly brecciated?
MPR-022	<5	grab o/c; white quartz vein, rusty weathered, limonite stained; 15% pyrite as disseminations and pockets; -25 m from MPR-021, 2 m wide
MPR-023	<5	grab o/c; tuff, black, very fine-grained, rusty weathered, strongly magnetic, disseminated magnetite throughout, pyrite disseminated along fracture planes
MPR-024	<5	grab o/c; quartz diorite (at contact zone), medium grey, aphanitic to very fine-grained, limonite stained, 3-5% disseminated pyrite
MPR-025	<5	grab o/c; quartz diorite, light to medium grey, 2% pyrite as disseminations and pockets
MPR-026	<5	grab o/c; limestone, limonite stained
MPR-094	<5	grab o/c; diorite, green, brecciated; 1% diss pyrrhotite
MPR-095	<5	grab o/c; andesite, green, 10% pyrrhotite, 1% pyrite, with massive sulphide clots
MYR-01	<u>120</u>	grab o/c; volcanic agglomerate (dacitic?), mainly angular fragments, minor subrounded fragments, minor pyrite
MYR-02	9	grab o/c; sheared argillite, limonite staining, minor small folding
MYR-04	<5	grab o/c; andesite, medium to dark greenish grey, 2% diss pyrite, minor calcite veining, fractured
MYR-05	<5	grab o/c (20 m from MYR-04); andesite, medium to dark green, highly fractured, pyrite lining fracture planes, 080°/50°N
KYR-036	<5	grab o/c (10 m south of granodiorite contact); sandstone, pale to dark grey, silty, 1-2% disseminated pyrite
KYR-037	<5	grab o/c; sandstone, dark grey, minor disseminated pyrite
KYR-038	32	grab o/c; sandstone, pale grey, 3% diss pyrrhotite/pyrite

Keewatin Engineering Inc.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

-

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

<u> </u>									TE PRIVIS		<u>[-89</u>		
- F	REPORT: V89-(06780.0						PI	ROJECT: NI	IKRAIL		PACE IA	
• • • • • • • • • • • • • • • • • • •	SAMPLE Number	ELEMENT UNITS	áu FPB	A9 PPM	As Ppn	Ba PPH	Be PPH	Bi PPM	Cd PPM	Ce PPM	Co PPM	Sr PDN FTS	Cu PDM
_ *~	TI 89MP-1009	Aikhail	(5	<0.2	<5	131	<0.5	(2	<1	13	24	28	43
•	T1 89HZ-1004	↓	19 19 19	0.7	31	167	(0.5	$\langle 2 \rangle$	1	13	24 21	co 15	45 78
	T1 89%Z-10(5		15	0.7	31 40	173	(0.5	<2	e 2	19	21	10	76 32
у - 4	T1 89572-1006		12	1.3	36	259	<0.5	<2	4	20	25	16	94 95
۰ ۲	TI 89MZ-1007		15	1.2	39	185	(0.5	2	3	18	25	14	30 20
	·····							· ····					
	11 69WZ-T008		- • - •	1.6	53	230	<0.5	$\langle 2 \rangle$	4	18	33	19	150
. .	Il 89HZ-1009		15	2.2	77	180	<0.5	$\langle 2 \rangle$	5	14	36	19	140
			10	1.5	95	235	<0.5	$\langle 2$	3	15	37	14	110
*	R2 894E-R01 3		Ē	<0.2	ί. Έ	39	<0.5	$\langle 2 \rangle$	$\langle 1$	8	27	73	57
	RC 29*E-RC14		5	<0.2	17	9	<0.5	<2	<i of="" st<="" statement="" statements="" td="" the=""><td>9</td><td>14</td><td>ac.</td><td>24</td></i>	9	14	ac.	24
	32 SEME-EALE		5	:0.2	<5	7ţ	<0.5	<2	4	33		37	
	20 00 E 2002 20 00 E 2002		=	0.3	20	70	(0.5	$\langle 2$	- A	64 79 14	- 47	27 12	_74 _74
	RI 8985-R017		-	10.2		30	(0.5	\⊿ (2		14	47 18		- 14
•	N2 89%5-9019		-	0.0	. 20	30 65	(0.5	<2			16		5 <u>0</u>
⊳	R2 (PME-ROID		-	 ≺0.2	. 2V - 3	00 20						20	480 1994
	RA I MATRVIT		-	\V , 4	· ·	<u> </u>	<0.5	5	4	ং	<u> </u>		-
	83 55MG-R018		(5	<0.2	\5	50	<0.5	<2	4	32		31	•••
-	22 8940-2019		10	(0. <u>7</u>	14	33	<0.5	<2	(1	* - • •	34	29	33
-	R2 89*2-5020		23	40 . 2	<5	30	<0.5	<2	\sim	9	20	12	
• .	R2 59MP-R015		35	2.7	83	43	<0.5	2	d.	<5	17	42	7
	NG 69 4 0-2016		-	<0.2	30	20	<0.5	$\langle 2 \rangle$	(1	(5	19	20	52 20
		·		 A A		10	·						
-	22 2282-2017 To object to t		/= -		-	18	<0.5	<2	<u>a</u>	/5	114	85	530
	12 2042-3413 72 0045 5335			<0.2	2t 	S3	(0.5	<2	4	5	18	20 27	79
	13 80HP-5019		-	10.2	31	41	<0 .5	4	d	3		77	42
	82 894Z-8011			/0.2	• • 	267	<0.5	÷	4	41	-	123	
	30 89MZ-8012		<u>(5</u>	<i>⊻</i> ≬, <u>⊊</u>	10	73	<0.5	(2	4		1	<u></u>	4
i	52 99MZ-8010		.5	<0.2	37	37	<0.5	<2		<5	15	24	23
	PD 8987-9014		-	3.5	29	74	<0.5	\sim	a.	12	ę		53
•	32 85¥2-£018	Ť	-	().C	(5	95	<\$.5	$\langle 2$	<1	5	24 24	18	
	R2 8982-9013	michail	ŝ	0.3	(5	133	<0.5	(2	i	13	15	.C 15	200
	en en de la caracteria de			4 BW	~¥	***	/ Y B Q	<u>.</u> e	·+	10	T-A	20	۷ دی۔
.													

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

<u> </u>										<u> 2-001</u>			
	REFORT: V89-00	5780.0						PX	NDJECT: M	IKHA IL		PAGE IE	
· · · · · ·	SAMPLE	ELEMENT	Sa	La	Li	Mo	Nb	Ni		 Rb	· 85	50	Şn.
•	NUMBER	SWITS	FP#	PPM	PPH	PPM	ррн	PPM	PPM	PPM	PPM	БЪж	DDM
+-→	11 85MP-1008		2	5	6	1	5	55	16	29	(5	÷	(30
	T1 89MZ-1004		-	10	17	4	4	34	23	<20	<5	7	<20
•	XI 89XZ-1003		ŝ	5	16	5	3	38	25	<20	5	-	(2)
.	T1 89%Z-L006		3	10	17	5	2	39	31	(20	~5	ę	<20
	T1 89#Z-1007		4		20	5	3	45	32	<20	5	-	
r .	T1 89¥E-1008		2	5	21	7	3	52	38	<30	6		<20
	71 89MZ-1009		÷	7	24	9	3	52	43	<20	6	13	/20
•	21 89KZ-1010		(2	7	9	8	2	75	28	<29	9		/
	R2 69%1-5012		5	5	3	6	5	37	$\langle 2$	<20	<5	-	<20
·	R0 8948-8014			5	4	1 #	4	34	(2	<20	₹5	5	(20
. . 	20 29#E-2015	• •	10	14		<1	Ę	6	<2	<20	₹.	•	<u>/24</u>
	12 99¥E-9019		10	5	-	1	5	47	13	<20	<5	2	/20
-	X2 2902-3017			4	- 2	3	3	37	2	<20	i i i i i i i i i i i i i i i i i i i	2	
	20 00ME-2012		-	15	2 5 2	6	å	11	<2	<20	ँ	-	1949) 1958 1944
	82 8945-8019			2	2	<1	42	3	15	<20	12	-	141 22
								-				•	
• .	RZ 59M0-R018		9	10	2	1	5	5	2	<20	<5	2	<u>с</u> .
	83 99 0 0-8019		÷.	?		2	4	9	$\langle 2 \rangle$	<20	<5	3	22 22 753
-	RC 39M0-2020		7	Ę	2	4	4	<u>10</u>	4	$\langle 20$	(5	-	(25)
	RD BOWD-DOID		13	3	10	1	5	7	23	<20	<5	-	∕eta Neta
-	12 89MP-R016		14	41	10	$\langle 1$	9	85	(2	<20	<5	2	- 20
	32 85-P-3017		 3	41	2	3	9	97	$\langle 2$	<20	্র	Ξ	
	30 85M2-8010		1	2	÷	1	5	22	$\langle 2 \rangle$	< <u>50</u>	(5	2	۰.
	23 5945-2019		12	5	2	<.	5	20	1		(†	-	· · · · · · · · · · · · · · · · · · ·
- `-	R2 39*7-5011		3	A.9.	1	3	n 	4	32		/5		
	P3 797-7912		10	13		1	5	3	35	(20	<5	<	
• · ·					• •			-		·			
 4	32 8942-9013		Ę	<1	2	1	3	15	B	$\langle 20$	<5	÷	28.4 4 M
	92 884 7 -3914		2	Ξ	-	2	5	32	3	<20	<u>(۲</u>	-	-20
	52 ESHE-SNIE		1.5	-	-	2	9	13	$\langle 2 \rangle$	25	3	2	$\langle 2 \rangle$
 -4	R2 9343-9016		(2)	7	12	3	23	27	3	74	10	ş	(20
₽~wl													

Bondar-Clegg & Company Ltd. 130 Pemberton Ave.

130 Pemberton Ave. North Vancouver, B.C.

~

h ...

-

-

V7P 2R5

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

MIPCNI: V89-09	780.0							ROJECT: HI	<u>19: 2-007-89</u> Ikhail	PAGE 10
 SAMPLE NUMBER	ELEMENT UNIIS	Sr PPM	Ta PFM	Te FPM	V PPM	¥ PPM	Y PPH	Zn PPM	Zr PPM	
11 80x5-1008		40	<10	<10	75	<10	5	67	2	
T1 89MZ-1004		36	<10	< 10	49	<10	13	259	4	
71 8692-1003		31	<10	<10	46	<10	11	302	3	
I1 89MZ-1005		38	$\langle 10 \rangle$	<10	52	<10	13	346	3	
T1 89MZ-1007		24	<10	<10	52	<10	12	332	3	
 T1 89%Z-1008		41	<10		81	<10	15	489	4	
71 E9MZ-100S		45	10	<u>(1</u> 0	80	(10	14	619	3	
TI 89%Z-1010		50	<10	<10	47	10	16	497	3	
82 6548-8016		28		<10	87	(10	4	13	7	
RC 2945-8014		28	<10	<10	121	(10	7	25	4	
 							· · · · · · · · · · · · · · · · · · ·		•	
20 55YE-301E		29	<10	<10	65	(10	4	34	63	
32 SEHE-RO16		15	<10	<1 0	33	<10	Ę	28	5	
11 (THE-2017				10	136	<10	4	31	3	
32 884549018		16	<10	-10	33	<19	5	15	14	
81 89HE-8019			(10	<10	4	<10	14	ŝ	2	
82 89 4 0-8018		60	<10	<10	53	<10	ç	15	2	
92 CCYCLR010		40	< <u>1</u> 0	<10	144	(10	5	39	3	
1 <u>0</u> 1745-2600		14	<10	<10	33	<10	4	48	14	
32 898 0- 8018		14	(10	< 10	na	<10	6	44	7	
P2 89MP-9013		93	(10	<10	53	<10	2	43	2	
		24	<10	(10	32			19	<u>.</u>	
RD 85*8-3018		14 14	< <u>10</u>	<10	37	<10	3	<u>50</u>	7	
20 6549-8015		-3	211 211	10 10	57	(10	4	3	Ē	
ar constavio P2 SCH2-P011		9	10	<10	-/	<10 <10	9 5	13	3	
72 377277941 32 9992-3012		2 43	N19 710	<10	<1	<10 <10	-	• •	3	
 38 10°272V18	······································		5 A B	<u> </u>	<u></u>	<u> </u>	4	• É	<u> </u>	
R2 29%Z-2013		20	<10	<10	29	<10	7	35	3	
R2 3682+3014		 55	<10 <10	<10	20 24	<10	11	125	2	
34 550475014 32 52¥Z-3015		30 37	10	<10 <10	21	<10 <10	ŝ	50	4 \{1 \\4	
R2 89MZ-2016			<10 <10	12	38	<10	13	133	2	
		<u>282</u>	/1V	i.i	00	×1V	U.	100	÷	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B C. V7P 2R5 (604) 985-0681 Telev (14-352667)

p ...

-

ber 14

Geochemical Lab Report

-

·								DA	TF PRINTE	D: 10-001	-89		
	REPORT: V89-D6	5874.0						PR	ROJECT: MI	KHAIL		PAGE 1A	
·	SAMPLE NUMBER	ELEMENT UNITS	Au PPB	Ag PPH	As PPN	Ba PPM	Be PPN	Bi PPM	Cd PPM	Ce PPil	Co PPN	Cr PPN	Cu PPH
Probaty	R2 89FV-R014	-	12	2.1	G	60	< በ.5	<2	<1	14	2	73	31
	NH R2 89M0-R021	mikhail	<5	0.8	18	46	<0.5	<2	<1	<5	67	154	305
. N .	R2 8910 R022	*	(5	N.2	<5	62	<0,5	<2	4	24	3	64	2
F	R2 89N0-RN23		<5	0.2	<5	137	<0.5	12	d	<5	9	37	15
×	R2 8980-R024		<5	<0.2	11	69	<0.5	<2	<1	16	33	63	31
	R2 89M0-R025		6	<0.2	<5	43	<0.5	<2	4	4	39	91	38
, ,	R2 89M0-RN26		<5	0.3	14	43	<0.5	<2	<1	6	15	57	146
	R2 89#0-R027		<5	<0.2	<5	101	<0.5	<2	<1	16	21	49	9
	R2 89N0-RN28		S	<0.2	6	37	<0.5	<2	<1	<5	21	118	33
	R2 89N0-R029		<5	<0.2	6	16	<0.5	<2	d	14	19	26	6
· · · · · · · · · · · · · · · · · · ·	R2 8980-R030		<5	<0.2	11	15	<0.5	<2	<1	7	17	66	9
<u>-</u> -	R2 89N0-R031		<5	<0.2	16	76	<0.5	<2	<1	<5	43	55	57
	R2 89#0-R032		<5	<0.2	10	54	<0.5	<2	<1	<5	15	65	12
•	R2 89NV-R013		45	0.4	6	20	<0.5	<2	<1	5	10	23	70
<u> </u>	R2 898V-R015		6	0.9	18	14	<0.5	<2	(1	<5	133	81	641
·	R2 894V-R016		10	0.4	20	28	<0.5	<2	(1	8	19	54	89
1	R2 898Y-R01 /		120	0.3	24	135	<1.5	<2	<1	8	8	46	53
·	R2 89NY-R02	•	9	3.0	69	157	<0.5	<2	4	20	3	33	86
	R2 898Y-R04	, 7	<5	0.9	<5	118	<0.5	<2	<1	<5	30	18	254
•	R2 8911Y-R05 /4	, Khail	<5	0.9	. 9	7	<n.5< td=""><td><2</td><td><1</td><td><5</td><td>38</td><td>41</td><td>830</td></n.5<>	<2	<1	<5	38	41	830

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

٤.

p.....

<u>م</u>

Geochemical Lab Report

REPORT: V89-DA Sample Number	ELEMENT	 Ga					PR	OJECT: MI	KHAIL		PAGE 1B	
NUMBER		Ga										
		PPN	ia PPN	Li PPH	No PPN	ND PPN	Nî PPH	РЬ РРЛ	Rb . PPN	Sb PPN	Sc PPN	Sn PP#
R2 89FV-R014		5	7	1	2	3	6	11	55	<5	3	<20
R2 89H0-R021		12	4	9	2	5	281	4	<20	5	4	<20
R2 89N0-R022		<2	14	<1	6	3	4	12	<20	-65	4	<20
R2 89110-R023		10	2	7	3	4	10	<2	<20	ও	6	<20
R2 89N0-R024		9	6	10	10	4	10	<2	<20	< 5	7	<20
R2 89N0-R025		54	4	14	5	27		23	<20	10	11	<20
R2 89110-R026		7	2	1	5	4	36	<2	<20	<5	2	<20
R2 89N0-R027		12	7	15	<1	12	25	<2	44	s	14	<20
R2 89M0-R028		8	2	3	5	4	23	<2	<20	<5	5	<20
R2 89/10-R029		9	6	3	3	6	8	<2	<20	<5	2	<20
R2 89M0-R030		10	2	3	4	4	16	<2	<20	<5	5	<20
R2 89N0-RN31		2	<1	2	41	2	7	<2	<20	<5	1	<20
R2 89M0-R032		6	2	1	32	2	3	27	<20	<5	1	<20
R2 89HV-R013		12	2	5	4	11	27	47	26	S	d	<20
R2 89MV-R015		11	<1	4	5	8	130	<2	<20	<5	3	<20
R2 89MV-R016		15	. 3	3	2	7	34	7	<20	<5	2	<20
R2 89HY-RI1		7	2	2	4	4	7	26	<20	7	4	<20
R2 89MY-R02		3	7	1	5	2	28	36	<20	8	6	<20
R2 89NY-R04		11	<1	8	1	5	3	<2	<20	<5	5	<20
R2 89MY-R05		11	4	4	4	6	. 9	<2	<20	<5	7	<20
	R2 89H0-R022 R2 89H0-R023 R2 89H0-R023 R2 89H0-R024 R2 89H0-R025 R2 89H0-R025 R2 89H0-R028 R2 89H0-R028 R2 89H0-R030 R2 89H0-R030 R2 89H0-R031 R2 89H0-R031 R2 89H0-R031 R2 89HV-R015 R2 89HV-R016 R2 89HY-R02 R2 89HY-R02 R2 89HY-R04	R2 89H0-R022 R2 89H0-R023 R2 89H0-R024 R2 89H0-R025 R2 89H0-R026 R2 89H0-R028 R2 89H0-R028 R2 89H0-R029 R2 89H0-R030 R2 89H0-R032 R2 89H0-R031 R2 89H0-R032 R2 89H0-R031 R2 89HV-R015 R2 89HV-R016 R2 89HY-R02 R2 89HY-R02 R2 89HY-R04	R2 89H0-R022 <2	R2 89H0-R022 <2	R2 89H0-R022 <2	R2 89H0-R022 (2 14 (1 6 R2 89H0-R023 10 2 7 3 R2 89H0-R024 9 6 10 10 R2 89H0-R025 54 <1	R2 89H0-R022 (2 14 (1 6 3 R2 89H0-R023 10 2 7 3 4 R2 89H0-R024 9 6 10 10 4 R2 89H0-R024 9 6 10 10 4 R2 89H0-R026 7 2 1 5 4 R2 89H0-R028 8 2 3 5 4 R2 89H0-R030 10 2 3 4 4 R2 89H0-R030 10 2 3 4 4 R2 89H0-R030 10 2 3 4 4 R2 89H0-R032 6 2 1 32 2 R2 89H0-R013 12 2 5 <	R2 89H0-R022 <2 14 <1 6 3 4 R2 89H0-R023 10 2 7 3 4 10 R2 89H0-R024 9 6 10 10 4 10 R2 89H0-R024 9 6 10 10 4 10 R2 89H0-R025 54 <1 14 5 27 46 R2 89H0-R026 7 2 1 5 4 36 R2 89H0-R026 7 2 1 5 4 36 R2 89H0-R028 8 2 3 5 4 23 R2 89H0-R028 8 2 3 5 4 23 R2 89H0-R030 10 2 3 4 4 16 R2 89H0-R031 2 <1 2 7 3 4 16 R2 89H0-R031 2 <1 2 7 3 4 16 <t< td=""><td>R2 89H0-R022 (2 14 (1 6 3 4 12 R2 89H0-R023 10 2 7 3 4 10 (2 R2 89H0-R023 10 2 7 3 4 10 (2 R2 89H0-R024 9 6 10 10 4 10 (2 R2 89H0-R025 54 <1</td> 14 5 27 46 23 R2 89H0-R025 54 <1</t<>	R2 89H0-R022 (2 14 (1 6 3 4 12 R2 89H0-R023 10 2 7 3 4 10 (2 R2 89H0-R023 10 2 7 3 4 10 (2 R2 89H0-R024 9 6 10 10 4 10 (2 R2 89H0-R025 54 <1	R2 89H0-R022 <2 14 <1 6 3 4 12 <20 R2 89H0-R023 10 2 7 3 4 10 <2	R2 89H0-R022 (2 14 (4) 6 3 4 12 (20) (5) R2 89H0-R023 10 2 7 3 4 10 (2) (20) (5) R2 89H0-R023 9 6 10 10 4 10 (2) (20) (5) R2 89H0-R024 9 6 10 10 4 10 (2) (20) (5) R2 89H0-R026 7 2 1 5 4 36 (2) (20) (5) R2 89H0-R026 7 2 1 5 4 36 (2) (20) (5) R2 89H0-R027 12 7 15 (1) 12 25 (2) 44 (5) (2) (2) (5) R2 89H0-R028 8 2 3 5 4 23 (2) (2) (5) R2 89H0-R030 10 2 3 4 4 16 (2) <th< td=""><td>R2 89M0-R022 (2 14 (1 6 3 4 12 (20) (5) (1) R2 89M0-R023 10 2 7 3 4 10 (2) (20) (5) (1) R2 89M0-R023 10 2 7 3 4 10 (2) (20) (5) (1) R2 89M0-R024 9 6 10 10 4 10 (2) (20) (5) 7 R2 89M0-R025 54 (1) 14 5 27 46 23 (20) 10 11 R2 89M0-R026 7 2 1 5 4 36 (2) (20) (5) 7 R2 89M0-R028 8 2 3 5 4 23 (2) (2) (5) 5 R2 89M0-R030 10 2 3 4 4 16 (2) (20) (5) 5 R2 89M0-R030 10 2 3<</td></th<>	R2 89M0-R022 (2 14 (1 6 3 4 12 (20) (5) (1) R2 89M0-R023 10 2 7 3 4 10 (2) (20) (5) (1) R2 89M0-R023 10 2 7 3 4 10 (2) (20) (5) (1) R2 89M0-R024 9 6 10 10 4 10 (2) (20) (5) 7 R2 89M0-R025 54 (1) 14 5 27 46 23 (20) 10 11 R2 89M0-R026 7 2 1 5 4 36 (2) (20) (5) 7 R2 89M0-R028 8 2 3 5 4 23 (2) (2) (5) 5 R2 89M0-R030 10 2 3 4 4 16 (2) (20) (5) 5 R2 89M0-R030 10 2 3<

Bondar-Clegg & Company Ltd. 130 Pemberton Ave North Vancouver, B.C. V7P 2R5

.

7 ÷....

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES	
--	--

 			DIVISION OF				<u>D</u> A		D: 10-0CT-89	
 REPORT: V89-06	5874.0						PF	ROJECT: MI	KHAIL	PAGE 1C
SAMPLE	ELENENT	Sr	Ta	Te	V	W	Y	Zn	Zr	
NUMBER	UNITS	PPH	PPil	PPN	PPN	PPM	PPN	PPN	PPH	
 R2 89FV-R014		26	<10	<10	39	<10	1	8	4	
R2 8980-R021		28	<10	<10	85	<10	3	87	2	
R2 89H0-R022		11	<10	<10	5	<18	4	4	5	
R2 89N0-R023		6	<10	<10	87	<10	6	68	2	
R2 8940-R024		17	<10	<10	100	<10	11	70	<1	
R2 8910-R025		12	18	31	157	<10	12	134	2	
R2 8980-R026		16	<10	<10	21	<10	5	88	3	
R2 8910-R027		69	<10	<10	62	<10	10	48	2	
R2 89M0-R028		26	<10	<10	100	<10	4	30	7	
R2 8910-R029		43	<10	<10	64	<10	8	51	2	
 R2 89/10-RD30		45	<10	<10	75	<10	6	26	3	
R2 8910-R031		5	<10	<10	12	<10	4	10	2	,
R2 8900-R032		6	<10	<10	16	<10	4	15	2	
R2 89MV-R013		sš	<10	<10	19	<10	4	70	4	
R2 89HV-R015		14	<10	<10	35	<10	3	27	7	
R2 89#V-R016		18	<10	<10	48	<10		30	6	
R2 89NY-R01		40	<10	<10	12	<10	6	37	2	
RZ 6911Y-R02		17	<10	<10 <10	12	<10	21	455	1	
R2 8984-R02		48	<10	<10	144	<10	3	4JJ 34	2	
R2 89NY-R05		32	<10	<10 <10	144	<10 <10	3 9	51	2	
				~						

Bondar-Clagg & Company Ltd. ί. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667 ١.

-

۴

٣

Geochemical Lab Report

i

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 10-0CT-89

									TF PRINTE				
·	REPORT: V89-D6	\$871.0						PR	OJECT: NI	KHAIL		PAGE 1A	
	SAMPLE	ELEMENT	Âu	Âg	As	8ə	8e	Bi	Cd	Çe	Co	Çr	Cu
• •	NUNBER	UNITS	PPB	PPN	PPH	PPH	PPN	PPN	РРЛ	PPN	PPN	PPN	PPN
	R2 89#C-R008	Arkhail	159	1.4	1626	6	<0.5	<2	4	11	291	33	707
	R2 89MC-R009	V	10	0.4	26	100	<0.5	<2	<1	17	23	49	207
⊾	R2 89MC-R010		(5	<0.2	16	59	<0.5	<2	4	5	11	149	22
	R2 89MC-R012		<5	0.4	34	40	<0.5	<2	<1	<5	<u>32</u>	337	160
* *	R2 89HC-R014		(5	<0.2	10	134	<0.5	<2	<1	12	17	67	52
<u>.</u>	R2 89NE-R020		(5	<0.2	<5	12	<0.5	<2	<1	17	13	59	26
	R2 89HE-R021		<5	< 1 .2	5	13	<0.5	<2	<1	11	42	92	7
	R2 89HP-RD21		<5	N.4	5	70	<0.5	<2	1	14	ЗЛ	a	138
h ~	R2 89MP-R022		<5	0.2	<5	60	<0.5	<2	4	6	64	99	10
F	R2 89MP-R023		<5	<0.2	8	26	<0.5	<2	4	34	91	81	8
	R2 89HP-R024		<5	<0.2	13	18	<0.5	(2	<1	16	18	86	4
	R2 89HP-R025		<5	<0.2	<5	12	<0.5	<2	<1	21	31	70	47
r ~	R2 89MP-R026		Ś	<0.2	6	1716	<0.5	<2	<1	17	22	36	26
	R2 89HZ-R017		<5	<0.2	7	213	<0.5	<2	<1	<5	19	22	23
•	R2 89NZ-R022		<5	<ī1.2	<s .<="" td=""><td>27</td><td><0.5</td><td><2</td><td><1</td><td>7</td><td>20</td><td>77</td><td>94</td></s>	27	<0.5	<2	<1	7	20	77	94
	R2 89HZ-R023		10	A.3	<5	32	<0.5	<2	<1	8	18	89	193
¥	R2 898Z-R024		<5	2.2	ن د	495	<0.5	<2	<1	37	47	50	735
	R2 89MZ-R025		14	0,6	6	34	<0.5	<2	<1	۰. د5	62	83	592
77	R2 89NZ-R026		<5	0.4	<5	81	<0.5	<2	<1	20	28	98	229
i	R2 89MZ-R027		(5	<0.2	8	360	<0.5	<2	(1	15	26	55	101
<i>*</i>	R2 89NZ-R028	· ••===		<0.2	<5		<0.5	<2	<1	16	17	103	36
	R2 89M2-R029		<5	<0.2	<u>دې</u>	32	<0.5	<2	d	25	24	77	45
<i>۲.</i>	R2 898Z-R030		<5	Π.3	<5	120	<0.5	<2	<1	<5	9	167	92
	R2 89MZ-R031		<5	0.3	9	888	<0.5	<2	4	<5	10	109	17
·····.	R2 89hZ-R032		<5	<0.2	5	90	<0.5	<2	<1	<5	18	158	40
•	R2 89MZ-R033		<5	<0.2	9	26	<0.5	<2	<1	17	41	119	111
**	R2 89HZ-R034	Ť	<5	<0.2	6	57	<1.5	<2	4	6	16	134	206
<u>х</u>	R2 89HZ-R035	mikhail	<5	N. 2	5	8	<0.5	<2	4	16	8	50	184

,

٩

Bondar-Clegg & Company Ltd. 130 Pemberton Ave.

North Vancouver, B.C. 7 V7P 2R5

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

 REPORT: V89-06	871.0							TE PRINTE ROJECT: MI			PAGE 1B	
 SAMPLE	FLENENT	6a	 	Li	No	Nb	N1	 Pb [.]	Rb	Sb	Sc	Sn
NUMBER	UNITS	PPN	PPH	PPM	PPH	PPN	PPH	PPN	PPN	PPil	PPM	PPN
 R2 89%C-RIIN8		<2	6	1	3	2	20	<2	<20	<5	1	<20
R2 89MC-R009		11	8	2	1	6	9	<2	<20	ও	8	<20
R2 89MC-R010		8	2	13	3	Э	45	<2	<20	<5	8	<20
R2 89/IC-R012		14	2	6	1	7	130	15	<20	<5	6	<20
 R2 89NC-R014		15	5	7	2	6	24	<2	<20	ده	8	<20
 R2 89ME-R020		6	7	1	2	4	15	2	<20	<5	3	<20
82 89HE-R021		5	4	2	1	4	25	<2	23	<5	3	<20
R2 89MP-R021		<2	2	2	14	<1	16	<2	25	ও	<1	<20
R2 89NP-RD22		<2	<1	2	57	<1	16	<2	<20	(5	3	<20
 R2 89MP-R023		<2	24	4	12	<1	80	<2	<20	<5	8	<20
 R2 89#P-R024		6	5	4	5		17	<2	<20	<5	2	<20
R2 89MP-R025		5	8	4	2	4	35	<2	<20	<5	10	<20
R2 89MP-R026		<2	8	4	3	17	43	<2	<20	<5	11	<20
R2 89HZ-R017		5	<i< td=""><td>2</td><td>3</td><td>ii</td><td>2i</td><td><2</td><td><20</td><td><u>ا ا</u></td><td>9</td><td><20</td></i<>	2	3	ii	2i	<2	<20	<u>ا ا</u>	9	<20
R2 89NZ-R022		10	Э	4	1	5	29	<2	<20	<u>(</u> 5		<20
 R2 89112-R023		3	2		4	3	63	<2	<20	<5	2	<20
R2 8911Z-R024		8	30	3	2	9	37	19	<20	< 5	1	<20
R2 89MZ-R025		5	<1	2	<1	4	135	<2	<20	<5	1	<20
R2 89HZ-R026		6	11	3	2	4	48	<2	<20	<5	3	<20
R2 89MZ-R027		8	5	3	2	17	48	<2	20	<u>s</u>	12	<20
 R2 89MZ-R1128		4	6	10	3	4	24	<2	<20	<5	3	<20
R2 89MZ-R029		7	10	2	1	6	11	<2	29	S	3	<20
R2 89HZ-R030		5	<1	5	1	4	11	<2	<20	<5	6	<20
R2 89M2-R031		4	<1	2	1	17	10	<2	<20	<5	8	<20
R2 89NZ-R032		9	2	2	1	6	45	<2	<20	<5	5	<20
 R2 69NZ-R033		4	8	2	26	4	37	<2	55	(5	4	<20
R2 89HZ-RN34		9	2	3	6	5	18	<2	68	<5	10	<20
R2 89MZ-R035		9	9	2	<1	6	10	<2	<20	<5	2	<20

Bondar-Ckigg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C.

V7P 2R5

Ľ

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

										D: 10-0CT-89		
	REPORT: V89-06	871.0						PR	OJECT: MI		PAGE	10
	SAMPLE	ELENINT	Sr	 Ia	le			Y	Zn	Zr -		
	NUMBER	UNITS	PPIN	PPN	PPN	PPN	PPN	PPN	PPN	PPN		
	R2 89HC-RAA8		34	12	<10		<10	2	33	5		
	R2 89MC-R009		143	<10	<10	156	<10	7	46	11		
	R2 89MC-R010		11	<10	<10	110	<10	4	54	4		
-	R2 89HC-R012		52	<10	<10	86	<10	5	115	9		
	R2 89MC-R014		35	<10	<18	115	<10	8	96	4		
	R2 89ME-R020	· • • • • • • • • • • • • • • • • • • •	42	<10	<10	107	<10	10	13	2		
	R2 89ME-R021		59	<10	<10	53	<10	6	12	6		
	R2 89MP-R021		123	55	<10	6	<10	2	15	2		
	R2 89MP-R022		5	<10	<10	25	<10	2	8	7		
	R2 89NP-R023		33	<10	<10	379	<10	6	21	4		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	R2 89/1P-R024		166	<10	<10	48	<10	7	11	3		
	R2 89MP-R025		100	<10 <10	<10	60	<10	, 9	27	2		
	R2 8911P-R026		39	<10	<10	49	<10	, 9	48	3		
	R2 89MZ-R017		50	<10 <10	<10	20	<10	8	25	1		
	R2 89NZ-R017		44	<10	<10	20 80	<10	6	35	4		
	KZ 0702-M022		44	<#u	<u> </u>					4		
	R2 89HZ-RD23		9	<10	<10	34	<10	9	7	5		
	R2 8917-RN24		265	<10	<10	49	<10	5	97	11		
	R2 89HZ-R02S		19	<10	<10	65	<10	4	26	4		
	R2 89NZ-R026		32	<10	<10	44	<10	7	16	7		
	R2 89HZ-R027		56	<10	<10	49	<10	10	47	1		
-	R2 8911Z-R1128		50	11	<10	41	<10	7	55	i		
•	R2 89MZ-R029		42	<10	<10	92	<10	9	22	4		
	R2 89HZ-RA30		7	<10	<10	20	<10	9	30	1		
-	R2 89MZ-R031		121	<10	<10	17	<10	8	40	2		
	R2 89NZ-RN32		78	<18	<10	52	<10	6	28	4		
	R2 89HZ-R033		28	(1)	<10	69	<10	10	11	3		
	R2 89NZ-RN34		34	<10	<10	140	<10	10	38	2		
	R2 89HZ-R035		31	<10	<18	45	<10	6	44	6		
_												

Homas a legg & Company Ltd. For Frankenton Ave. North Vancouver, B.C. V7P 285 ς., (644) 985-0681 Telex 04-352667

-

٢

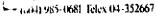
1

ï



## Geochenneal Lab Report

.


<b>ADMSIGNOLINE</b>	R APL INSPI	CHON& HS	HING SERVICES
---------------------	-------------	----------	---------------

RUMBER         UNITS         PPB         PPD         P	NUMBER         UNITS         PPB         PPD         PP	NUMBER         UNITS         PPB         PP	R2         BYROFR         DBS         PPB         PPB </th <th>NUMBER         UNITS         PPB         PPD         PP</th> <th>NUMBER     UNITS     PPB     P</th> <th>REPORT: U89-A</th> <th>17575.0</th> <th></th> <th></th> <th></th> <th></th> <th>1087 H219</th> <th> DA</th> <th>I<u>E_PRINTE</u> 10.1[CT:_UN</th> <th><u>10: 29.00</u>1 Иж</th> <th><u>-89</u></th> <th>PAGE 10</th> <th></th>	NUMBER         UNITS         PPB         PPD         PP	NUMBER     UNITS     PPB     P	REPORT: U89-A	17575.0					1087 H219	DA	I <u>E_PRINTE</u> 10.1[CT:_UN	<u>10: 29.00</u> 1 Иж	<u>-89</u>	PAGE 10	
R2       BYKO ⁻ R       IBS       Phi (1)       C5       2.0       96       12       GI.5       8       C1       C5       125       475       14         R2       KYR       O38(Phi Pha)       32       0.5       78       23       GI.5       8       C1       C5       125       475       14         R2       BYKO ⁻ R       IBS       Phi (Pha)       32       0.5       78       23       GI.5       3       C1       C5       24       297       15         R2       BYKO ⁻ R       IBS       Phi (Pha)       32       0.5       78       23       GI.5       3       C1       C5       24       297       15         R2       BYKO ⁻ R       IBS       Phi (Pha)       C5       0.6       101       22       GI.5       3       C1       C5       24       297       15         R2       BYKO ⁻ R       IBS       Phi (Pha)       C5       0.6       101       22       GI.5       3       C1       C5       14       20       20       21       21       21       21       21       21       21       21       21       21       21       21 <th21< th=""><th>R2       BYKO⁻R       IBS       Phi (1)       ID       ID<!--</th--><th>R?       BYKO-R       BSS       $\sigma_1$ ibba: 1       CS       1.6       11       12       GL, 5       8       CL       CS       125       141         R?       BYKO-R       BSS       $\sigma_1$ ibba: 1       32       0.5       18       23       GL, 5       3       CL       CS       125       141         R?       BYKO-R       BSS       $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R?       BYKO-R       BSS       $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R2       BYKO-R       BSS       $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R2       BYKO-R       BS7       $\sigma_1$ ibba: 1       CS       0.6       61       43       G0.5       3       CL       CS       50       101       202         R2       BYKZ-R       B91       $\sigma_5$       0.6       123       S9       G1.5       3       CL</th><th>R2       R3       R1       C5       2.0       96       12       GL.5       8       C1       C5       125       C1         R2       R7       KYR       D36       m.       $EA_{a,1}$       32       0.15       78       23       GL.5       8       C1       C5       125       C7       141         R2       R7       KYR       D36       m.       $EA_{a,1}$       32       0.15       78       23       GL.5       3       C1       C5       24       277       15         R2       B9KO¹R       D35       m.       $EA_{a,1}$       C5       0.16       101       22       GL.5       3       C1       C5       24       277       15         R2       B9KO¹R       D35       m.       $EA_{a,1}$       C5       0.16       101       22       GL.5       3       C1       C5       24       277       15         R2       B9KO¹R       D35       m.       E4       C5       0.16       101       22       GL.5       3       C1       C5       53       50       202       202       202       202       202       202       202       202</th><th>R2       BYXO*R       D32       C5       2.0       96       12       GL.5       8       C1       C5       125       44         R2       KYR       D36       M*       FA       23       GL.5       8       C1       C5       125       44         R2       BYXO*R       D36       M*       FA       23       GL.5       7       C1       C5       24       297       14         R2       BYXO*R       D36       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       D36       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       B35       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       B37       M*       FA       61       43       GL.5       3       C1       C5       54       50       202         R2       BYXO*R       B37       M*       FA       143       GL.5       3       C1       C5       57</th><th>R2       B9K0-R       IBS       $n_1$ ibba: 1       C5       2.1       96       12       G1.5       8       C1       C5       125       G7       H4         R2       KYR       038 (m)       Kba: 1       32       0.5       78       23       G1.5       8       C1       C5       125       G7       141         R2       B9K0-R       IBS       $n_1$ ibba: 1       32       0.5       78       23       G1.5       3       C1       C5       24       297       15         R2       B9K0-R       IBS       $n_1$ ibba: 1       C5       0.6       101       22       G0.5       3       C1       C5       24       297       15         R2       B9K0-R       IBS       $n_1$ ibba: 1       C5       0.6       61       43       G0.5       3       C1       C5       64       71       14         R2       B9K2-R       B971       $n_1$ ibba: 1       C5       0.6       73       59       C1.5       28       C1       86       57       154         R2       B9K2-R       1991       C5       0.6       73       59       C1.5       75       C1       <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>נו) זיויו</th></t<></th></th></th21<>	R2       BYKO ⁻ R       IBS       Phi (1)       ID       ID </th <th>R?       BYKO-R       BSS       $\sigma_1$ ibba: 1       CS       1.6       11       12       GL, 5       8       CL       CS       125       141         R?       BYKO-R       BSS       $\sigma_1$ ibba: 1       32       0.5       18       23       GL, 5       3       CL       CS       125       141         R?       BYKO-R       BSS       $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R?       BYKO-R       BSS       $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R2       BYKO-R       BSS       $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R2       BYKO-R       BS7       $\sigma_1$ ibba: 1       CS       0.6       61       43       G0.5       3       CL       CS       50       101       202         R2       BYKZ-R       B91       $\sigma_5$       0.6       123       S9       G1.5       3       CL</th> <th>R2       R3       R1       C5       2.0       96       12       GL.5       8       C1       C5       125       C1         R2       R7       KYR       D36       m.       $EA_{a,1}$       32       0.15       78       23       GL.5       8       C1       C5       125       C7       141         R2       R7       KYR       D36       m.       $EA_{a,1}$       32       0.15       78       23       GL.5       3       C1       C5       24       277       15         R2       B9KO¹R       D35       m.       $EA_{a,1}$       C5       0.16       101       22       GL.5       3       C1       C5       24       277       15         R2       B9KO¹R       D35       m.       $EA_{a,1}$       C5       0.16       101       22       GL.5       3       C1       C5       24       277       15         R2       B9KO¹R       D35       m.       E4       C5       0.16       101       22       GL.5       3       C1       C5       53       50       202       202       202       202       202       202       202       202</th> <th>R2       BYXO*R       D32       C5       2.0       96       12       GL.5       8       C1       C5       125       44         R2       KYR       D36       M*       FA       23       GL.5       8       C1       C5       125       44         R2       BYXO*R       D36       M*       FA       23       GL.5       7       C1       C5       24       297       14         R2       BYXO*R       D36       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       D36       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       B35       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       B37       M*       FA       61       43       GL.5       3       C1       C5       54       50       202         R2       BYXO*R       B37       M*       FA       143       GL.5       3       C1       C5       57</th> <th>R2       B9K0-R       IBS       $n_1$ ibba: 1       C5       2.1       96       12       G1.5       8       C1       C5       125       G7       H4         R2       KYR       038 (m)       Kba: 1       32       0.5       78       23       G1.5       8       C1       C5       125       G7       141         R2       B9K0-R       IBS       $n_1$ ibba: 1       32       0.5       78       23       G1.5       3       C1       C5       24       297       15         R2       B9K0-R       IBS       $n_1$ ibba: 1       C5       0.6       101       22       G0.5       3       C1       C5       24       297       15         R2       B9K0-R       IBS       $n_1$ ibba: 1       C5       0.6       61       43       G0.5       3       C1       C5       64       71       14         R2       B9K2-R       B971       $n_1$ ibba: 1       C5       0.6       73       59       C1.5       28       C1       86       57       154         R2       B9K2-R       1991       C5       0.6       73       59       C1.5       75       C1       <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>נו) זיויו</th></t<></th>	R?       BYKO-R       BSS $\sigma_1$ ibba: 1       CS       1.6       11       12       GL, 5       8       CL       CS       125       141         R?       BYKO-R       BSS $\sigma_1$ ibba: 1       32       0.5       18       23       GL, 5       3       CL       CS       125       141         R?       BYKO-R       BSS $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R?       BYKO-R       BSS $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R2       BYKO-R       BSS $\sigma_1$ ibba: 1       CS       0.6       101       22       GL, 5       3       CL       CS       24       271       15         R2       BYKO-R       BS7 $\sigma_1$ ibba: 1       CS       0.6       61       43       G0.5       3       CL       CS       50       101       202         R2       BYKZ-R       B91 $\sigma_5$ 0.6       123       S9       G1.5       3       CL	R2       R3       R1       C5       2.0       96       12       GL.5       8       C1       C5       125       C1         R2       R7       KYR       D36       m. $EA_{a,1}$ 32       0.15       78       23       GL.5       8       C1       C5       125       C7       141         R2       R7       KYR       D36       m. $EA_{a,1}$ 32       0.15       78       23       GL.5       3       C1       C5       24       277       15         R2       B9KO ¹ R       D35       m. $EA_{a,1}$ C5       0.16       101       22       GL.5       3       C1       C5       24       277       15         R2       B9KO ¹ R       D35       m. $EA_{a,1}$ C5       0.16       101       22       GL.5       3       C1       C5       24       277       15         R2       B9KO ¹ R       D35       m.       E4       C5       0.16       101       22       GL.5       3       C1       C5       53       50       202       202       202       202       202       202       202       202	R2       BYXO*R       D32       C5       2.0       96       12       GL.5       8       C1       C5       125       44         R2       KYR       D36       M*       FA       23       GL.5       8       C1       C5       125       44         R2       BYXO*R       D36       M*       FA       23       GL.5       7       C1       C5       24       297       14         R2       BYXO*R       D36       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       D36       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       B35       M*       FA       23       GL.5       3       C1       C5       24       297       14         R2       BYXO*R       B37       M*       FA       61       43       GL.5       3       C1       C5       54       50       202         R2       BYXO*R       B37       M*       FA       143       GL.5       3       C1       C5       57	R2       B9K0-R       IBS $n_1$ ibba: 1       C5       2.1       96       12       G1.5       8       C1       C5       125       G7       H4         R2       KYR       038 (m)       Kba: 1       32       0.5       78       23       G1.5       8       C1       C5       125       G7       141         R2       B9K0-R       IBS $n_1$ ibba: 1       32       0.5       78       23       G1.5       3       C1       C5       24       297       15         R2       B9K0-R       IBS $n_1$ ibba: 1       C5       0.6       101       22       G0.5       3       C1       C5       24       297       15         R2       B9K0-R       IBS $n_1$ ibba: 1       C5       0.6       61       43       G0.5       3       C1       C5       64       71       14         R2       B9K2-R       B971 $n_1$ ibba: 1       C5       0.6       73       59       C1.5       28       C1       86       57       154         R2       B9K2-R       1991       C5       0.6       73       59       C1.5       75       C1 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>נו) זיויו</th></t<>													נו) זיויו
R7       87K0-R       183       C5       11.6       C1       C5       11.6       C1       C5       3       C1       C5       5.3       511       212         R7       89K0-R       187 $a_1 + b_{a_1}$ C5       11.6       G1       43       C11.5       3       C1       C5       5.3       511       212         R7       89K2-R       191       C5       11.6       78       39       C11.5       28       C1       8       36       57       154         R7       89K2-R       191       C5       11.6       78       39       C11.5       28       C1       85       6.7       154         R7       89K2-R       191       C5       11.6       78       39       C11.5       3       C1       C5       6.7       154         R2       89K2-R       191       C5       11.6       78       39       C11.5       3       C1       C5       6.7       11.4       11.5         R2       89K2-R       199       C5       11.4       41       12       C11.5       5       C1       C5       14       13       13         R2 <td>R7       87K0-R       183       $(5, -1)$ $(5,$</td> <td>R7       87K0-R       183       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K0-R       187       $a_1 + b_{a_1}$       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K2-R       0911       $a_1 + b_{a_1}$       c5       11.6       61       43       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       3       c1       c5       67       39       157         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5</td> <td>R7       87K0-R       183       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K0-R       187       $a_1 + b_{a_1}$       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K2-R       0911       $a_1 + b_{a_1}$       c5       11.6       61       43       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       3       c1       c5       67       39       157         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5</td> <td>R7       87K0-R       183       c5       11.6       61       43       c0.5       3       c1       c5       51       202         R7       89K0-R       187       $a_1 + b_{a_1}$       c5       11.6       61       43       c0.5       3       c1       c5       51       202         R7       89K2-R       0911       $a_1 + b_{a_1}$       c5       11.6       61       43       c0.5       3       c1       c5       51       202         R7       89K2-R       0911       $a_1 + b_{a_1}$       c5       11.6       78       39       c0.5       3       c1       c5       67       194         R7       89K2-R       191       c5       11.6       78       39       c0.5       3       c1       c5       47       39       197         R2       89K2-R       199       c5       11.4       49       c0.5       5       c1       c5       18       13       139         R2       89K2-R       199       c5       11.4       49       c0.5       5       c1       c5       18       13       139         R2       89K2-R       1994       c5</td> <td>R7       87K0-R       183       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K0-R       187       $a_1 + b_{a_1}$       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K2-R       0911       $a_1 + b_{a_1}$       c5       11.6       61       43       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       3       c1       c5       67       39       157         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5</td> <td>147 KYR 036 M R2 KYR 037 R2 KYR 038°M</td> <td>ibhai (i T jeha i l</td> <td><b>(</b>5</td> <td>2<b>.</b>8</td> <td>96</td> <td>12</td> <td>&lt;1.5</td> <td>8</td> <td>&lt;1</td> <td>۲۶</td> <td>125</td> <td>61%</td> <td>528 741 157</td>	R7       87K0-R       183 $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, -1)$ $(5, $	R7       87K0-R       183       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K0-R       187 $a_1 + b_{a_1}$ c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K2-R       0911 $a_1 + b_{a_1}$ c5       11.6       61       43       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       3       c1       c5       67       39       157         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5	R7       87K0-R       183       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K0-R       187 $a_1 + b_{a_1}$ c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K2-R       0911 $a_1 + b_{a_1}$ c5       11.6       61       43       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       3       c1       c5       67       39       157         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5	R7       87K0-R       183       c5       11.6       61       43       c0.5       3       c1       c5       51       202         R7       89K0-R       187 $a_1 + b_{a_1}$ c5       11.6       61       43       c0.5       3       c1       c5       51       202         R7       89K2-R       0911 $a_1 + b_{a_1}$ c5       11.6       61       43       c0.5       3       c1       c5       51       202         R7       89K2-R       0911 $a_1 + b_{a_1}$ c5       11.6       78       39       c0.5       3       c1       c5       67       194         R7       89K2-R       191       c5       11.6       78       39       c0.5       3       c1       c5       47       39       197         R2       89K2-R       199       c5       11.4       49       c0.5       5       c1       c5       18       13       139         R2       89K2-R       199       c5       11.4       49       c0.5       5       c1       c5       18       13       139         R2       89K2-R       1994       c5	R7       87K0-R       183       c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K0-R       187 $a_1 + b_{a_1}$ c5       11.6       61       43       c11.5       3       c1       c5       51       202         R7       89K2-R       0911 $a_1 + b_{a_1}$ c5       11.6       61       43       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       28       c1       8       36       57       154         R7       89K2-R       191       c5       11.6       78       39       c11.5       3       c1       c5       67       39       157         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5       5       c1       c5       174         R2       89K2-R       199       c5       11.4       49       c11.5	147 KYR 036 M R2 KYR 037 R2 KYR 038°M	ibhai (i T jeha i l	<b>(</b> 5	2 <b>.</b> 8	96	12	<1.5	8	<1	۲۶	125	61%	528 741 157
<b>R2 89R2-R 077</b> (5) 0.4 71 12 (0.5 4 (1 (5) 21 24 3)	<b>R2 89R2-R 077</b> (5) 0.4 71 12 (0.5 4 (1 (5 71 74 37	<b>R2 89RP-R 194</b> (5 0.4 47 12 (0.5 4 (1 (5 21 24 37	<b>R2 89RP-R 194</b> (5 0.4 47 12 (0.5 4 (1 (5 21 24 37	<b>R2 89RP-R 194</b> (5 0.4 47 12 (0.5 4 (1 (5 21 24 37)	<b>R2 89RP-R 194</b> (5 0.4 47 12 (0.5 4 (1 (5 21 24 37	- K2 89K0-R H87 - R2 89K2-R 09fi	n, khail In, khail A	<5 (5	11.6 10.8	61 123	43 59	(045 (045	3 28	ণ ব	< ጎ 8	53 36	57	1770 2020 1544 1575
						R2 89hP-R 1194	, V	۲۲	11.4	47	12	<11.5	4	<1	<5	21	24	1 39 37 1141

Bondar v legg & Company Idd. 1 sr (vinberton Ave. 1 Garli Vanconver, IEC. 1 V7P 2R5

-

•





.

#### Geochenicai Lab Report

	REPORT: V89-07	575.0	<u>-</u> .						O HECT: UN		- 87	PAGE 18	
-	SAMPLE NUMBER	FI FNFNT UNITS	Ga PPN	La PPN	l i PPM	по РРП	Nb Frin	Nî PPN	РЬ PPM	Rb PPn	Sb PFM		5 PH
	RZ KYR 036		42	4	18	3		26	<7	5.14	45	+	2
	R2 KYR 037		16	<1	10	2	B	1142	2	88	14 9	3	(7 - (7
	R7 KYR <u>0</u> 38		15	<1	7	1	()	187	</td <td>36</td> <td>,</td> <td>ć</td> <td></td>	36	,	ć	
			JN	4	20	5	4	11	4	括	17	11	<
	R2 89KO-R 1185 R2 89KO-R 1187		9 9	<1	5 E	4	·.	41	<2	52	15	ł	1
	R2 89KZ-R 090		411	<1	65	6	20	11	15	31,5	11	12	4
	82 89K7-R 1191		11	<1	7	}		24	<2	23	16	ţ	v
	R2 89KZ-R 092		13	<1	6	4	1	\$`t	<2	1</td <td>15</td> <td>2</td> <td>~</td>	15	2	~
	R2 898P-R 094		14	<1	5	<1	6	8	<2	<211 <20	11	3 6	•
	85 8500-K 082		15	<1	5	1	6	1	</td <td>ΩΠ.</td> <td></td> <td>6</td> <td>Ì</td>	ΩΠ.		6	Ì
											<u>.</u>		
-													
-											••••••••••••••••••••••••••••••••••••••		
-													
-													

 Bonday Clegg & Company Ltd. Eto Femberton Ave.
 North Vancouver, B.C. V7P 2R5 .

-



#### Geochenneal Lab Report

ł

(GU	1 2005 4) 985-0681 Telex 04-352	667			BON	VDAR-CI	EGG				
<u> </u>	000001.000.02	C75 0		A DIVISIO	NOLINCHU	APE INSPECTO	IONA II SH?	04	IE PRINTE 10.1ECT: UN	<u>1): 29-001-89</u> IUK	PAGE 10
	REPORT: V89-A7	FL FINENT	Sr.	 	lė	Ų.	ų	¥	 Zo		
<b>L</b> .	NUMBER	UNIIS	탄비	1/F/11	8198 	141M	1997 	19191 	<b> '!'  </b>	(*1*)1 	
<b>~</b> -						. 64		40	116	11	
<u>.</u>	R2 KYR 1136 R2 KYR 1137		113 24	36 <11]	44 15	190 74	<10 <10	12 2	115 94	4	
	R2 KYR II38		89	<10	- 341	88	<1Н	4	42	ł	
• -											
-											
Х											
<b>a</b> -1	:										
<b>x</b>	:										
r	R2 89K0-R 085		8	s.10 (11)	<11 	111 46	<10 <10	6 4	45 51	4	
	87 89KO-R 1187 82 89KZ-R 11911		2 <b>8</b> 36	<11 } ⇒11	<10 71	40 112	<10 <10	8	42	12	
<u>~</u>	R2 89KZ-8 1191		9	<18	<11	51	(11)	<u> </u>	20	К	
·	K2 89KZ-R 1192		111	<18	 : 111		(1f)	.5	18	6	
	K? 89MP-R <b>119</b> 4		15	<111	<14	107 ' 170	<19 .40	5 9	27 36	- 3 1	
<i>-</i> -	82 898P-R <b>095</b>		100	<10	<10	3 (1)	- <b>1</b> 14	,	11	,	
•											
											•
¥ -											
<b>r</b> -											
• -					<del></del>						
		<u> </u>									
ς.											
ه بر											
· · · · · · · · · · · · · · · · · · ·											
-											
•											
<u></u>											
· · · · · · · ·			<u> </u>				<del>*</del>				
<b>*</b> **.											
÷, ⊾											
:						<u> </u>					
·									. •	i	

Bonnar Elegg & Cumpany 11d. ١. ForPaulsaton Ave. Liotth Vincouver, B.C. V/P 2R5 10041 985-0681 Telex 04-352667



### Geochanicai Lab Report

<u> </u>				A DEVISION	VOLINCHC)	PE INSPECTI	ONA H SHN	DA	IE PRINTE	D:.27-001	-82	-	
· · · · · · · · · · · · · · · · · · ·	REPORT: V89-11	7574.0						FR	OJFC1: UN	UK		AGE 1A	
Ţ.,	SAMF'LE NUMBER	ELEMENT UNITS	Au PPR	Åg PPN	As PPN	8a PPN	8e PPH	81 FPN	Cd FPtl	Ce PPN	60 1991	Ст РРМ	נים. היויו
<u></u>													
87													
њ. е													
<u></u>													
κ.													
-													
ι,													
<u>~</u> ~													
<b>k</b> -													
**													
-													
			.5		ð	,	<n.5< td=""><td>1</td><td>&lt;1</td><td>&lt;5</td><td>19</td><td>82</td><td>1//</td></n.5<>	1	<1	<5	19	82	1//
<u></u>	R2 89MP-R 020	<u>/1</u> 1%%&~(	<5	1.1	8	6	(1), J	,		-,,	• *		
•						·						• • •	
			···										
· 								· · · · · · · · · · · · · · · · · · ·					
~													
: •													
<u> </u>							<u> </u>						
		<u> </u>											
<b>p</b>													
-1 ₩-2													
									····· · · · · · · · · · · · · · · · ·				

Bundar (14egg & Company Ltd. 100 Pendorton Ave. North Vancouver, B.C. VOP 2R5

<u>-</u>---

(014) 985-0681 Telex 04-352667



#### Geochemicat Eab Report*

A DIVISION OF INCHC	APE INSPECTION &	TESTING SERVICES

	A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES OATE_PRINTED: -N7574_N PROJECT: UNUK									<u>D:_27-0CT-89</u> NK PAGE 18				
	· · · · · · · · · · · · · · · · · · ·		J			<u>.</u>					-	n		
sample Number	EL EMENT Units	Ga PPN	1 a PPN	1 i PP8	нь РРИ	N6 PPM	ni PPN	Pb PPM	Rb PPh	lib Pl'n	Sc PPM	S PP		
	·													
R2 898P-R 02	n	5	2	2	2	4	45	220	<20	۲,	2	G		
N2 0710 - N U21			-	-										
										., .				
							<u> </u>			., .				
										<b></b> .				
· · · · · · · · · · · · · · · · · · ·										••••				

Boodar Clegg & Company 4.1d. Ho Paulienton Ave. North Vancouver, B.C. V7P 285 (n14) 985-0681 Telex 04-352667

-

.



Geochémical Lab Report

ini.	1) 985-1681 Telex (14-352	667			DUN	ENHIT-U	LEUU				
	REPORT: V89-N7			A DIVISIO	N OF INCECA	IPE INSPECT	ION & TESTIN	<u> </u>	IE PRINIE	<u>D: 27-0CT-89</u> Iuk	PAGE 1C
	SAMPLE NUMBER	ELEMENT	Sr PPN	Ta PPri	Te PFN	V PPN	u PPN	ץ የየክ	Zn PPN	Zr PP11	
			·							<u></u>	
•											
										. ·	
• •									-		
-											
<b>-</b> -											
•••••											
	R2 89MP-R 020		24	<10	<10	33	<10	4	79	3	
		. <u> </u>									
<b>.</b> ,											
<i></i>											
-											
<b>.</b> .											
<b>~</b> ~											
 		·····					. <u> </u>				· · ·
<b>p</b>											
<b>.</b> .											
						<del></del>					
									, ,		

Landar v kog set omjany tal. 1943: ndvaron öve Fradi Vanconver, B.C V 71/285 - (104) 985-0681 Telex 04-352667



#### Geocheimese Lab Report*

1985-0681 Telex (14-33	52667				NINHU-I							
REPORT: V89-01	7576.0	. <u> </u>	4 DIVISIO	IN OF INCHE	APE INSPEC	HONATISH	NGSERVICE DA PE	TF PRINTE	D: 27-0CT IUK	- 89	PAGE 1A	
SANPI.E	FLEMENT	Au PP8	Ag Finn	As PPK	Ba PPN	Be PPN	Bi PPN	Cd FPN	Ce PPN	Со РРИ	Cr PPN	) Pi
NUMBER	UNITS	110	/ I 01									
11 89KO-1. 084j	n, rhai l	10	<0.2	152	185	<1.5	4	4	15	32	141	1
11_89KP-L_075	A. HALL	10	0.2	48	306	<0.5	5	<1	19	35	166	
11 89KP-L 035 11 89KP-L 035 71 89KP-L 037	m. rhail m. phail	ও ও	<0.2 <11. <u>2</u>	40 41	227 192	<0.5 <0.5	5 7	41 41	17 18	28 27	68 61	1
11 89KZ-L 037	mileha:1	6	0.2	55	310	<0.5	5	<1	14 •	23	78	
								<u> </u>				
										-		
										·		
										· · ·		
·								•				

L monitor e legg & Company Fid. Twi Pends non Ave. Ecordi Vanconver, B.C. V 14 2RS

٢

•





#### Geocheinneat Lab Report *

REPORT: V89-07	576.0							OJECT: UN	<u>D: 27-0CT</u> UK	_==	PAGE 1B	
Sample Number	FLEMENT UNITS	Ga PPN	La PPA	1.1 РРЛ	No PPN	nd Ppn	N) PPN	Pb PPN	Rb PP게	S6 PPN	Sc PPB	P
11 89KO-L 086		18	4	12	4	11	114	7	<20	23	Ţ	<
		40		13	5	9	141	15	<20	11	8	<
11 89KP-L 035 11 89KP-L 036		19 16	6 5	11	4	, 8	56	6	<211	10	8	<
11 89KP-L 037		16	6	15	5	9	60	6	<21	8	7	<
11 0787-1 037		14	U	3.1		,				-		
11 89KZ-L 037		18	3	14	4	111	69	14	<21	ч	6	<
·			· · · · ·	. <b></b>								
				 . <u></u>								
	- <b></b>			-	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••••••••••••						

Bonarat-Clegg & Company Ltd. 180 Pemberton Ave. Fourth Vancouver, B.C. 3, 7P 2R5 (604) 955 0681 Telex 04-352667

-

i



Geochemical ... Lab Report

_

RFPORT: V89-07	576.0						Pf	OJECT: UN		PAGE 10
SANPLE NUMBER	EI EMFNT UNI IS	Sr PPN	Ta PPN	Te PPri	V РРЛ	U PPN	<b>ү</b> РРВ	Zn PPN	Žr PPN	
31 89KO-L U86		41	<10	<1()	86	<10	9	184	B	
11 89KP-1 035	•	50	<10	<10	101	<10	11	152	2	
11 89KP-1, 036 11 89KP-1, 037		62 62	<10 <10	<10 <10	99 107	<10 <10	<b>11</b> 11	108 155	3 3	
11 89KZ-L 077		48	<10	<10	97	(1))	8	202	3	
							<b></b>			
	·		<b>.</b>	· · · · · · · · · · · · · · · · · · ·						
				<u>.</u>	<b></b> , <b></b> _					
·										
	. <u> </u>	<u> </u>								· <u>-</u> · · ·
					<u> </u>					
									· <b></b> · ·	<u>-</u>
	<u> </u>									

 Bondar-Clegg & Company Ltd. 180 Peruberton Ave. North Vancouver, B.C. V7P 2R5

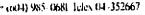


۲

La (14) 985-0681 Telex 04-352667



Geochemicat Lab Report


	REPORT: VB9-1	16960 0				.514 1350413	HON& IESH	<u> </u>	TE PRINTE	<u>:D: 20-001</u> Iuk	- 89	PAGE 2A	
				]				L					
	SANPLE NUMBER	ELENENT UNITS	Au PPB	Ag PPH	Аб РРЛ	Ba PPi1	Ве РРЛ	81 PPN	Cd PPN	Ce PPN	Co PPM	Ст РРМ	1) 199 
-													
<b>.</b>	·									. <u> </u>			
	T1 89HCL011	) mithail	15 <5	<0.2 0.2	<5 <5	157 143	<0.5 <0.5	3	<1 2	18 13	29 38	54 113	 5 8
	11 09HCL013 TI 89HCL015		8	<0.2	<5	268	<0.5	5	2	23	36	92	8
	T1 89HCL016	michail	<5 9	<0.2 <0.2	<5 <5	157 101	<0.5 <0.5	6 3	2 1 ,	18 17	27 20	96 63	5) 3/
													-
				<u>-</u> .	<u> </u>					<u> </u>			
				·									
		· · · · · · · · · · · · · · · · · · ·				<u> </u>			<u> </u>				
					,								
		·											
		_, <u>.</u>									<i>d</i>		
					•								
-													

.

Bondar's legg & Company E.d. BO Pemberton Ave. North Vancouver, B.C. V7P 2R5 (004) 985-0681 Jelex 04-352667

 $\sim$ 

.





# Geochemical Lab Report

~ (OU)	4) 985-0681 telex 04-3	52667			DU	NUMIN U	LLUU						
- 				A DEVINIO	NOFINHU	APE INSPECT	ilona lesti	<u></u> DA	TE PRINTE	D: 20-001	-89	1465 - 20	
	REPORT: V89-0	6960.0						PH	OJECT: UN	UK		PAGE 28	· · · · ·
	SAMPLE NUMBER	EL ENENT UNITS	Ga PPM	La PPN	l i PPN	No PPN	Nb PPM	N I PPM	РЬ РРМ	Rb PPN	Sb PPM	Sc PPN	Sn PPN
	- <u>-</u>												
	T1 89NCL011		12		7	2	6	42	4	<20			<20
	11 89MCL013		13	5	9	Э	7	102	4	<20 <20	7 10	7 9	<20 <20
	T1 89MCL015 T1 89MCL016		14 15	8 8	12 11	6 3	6 8	75 66	7 6	<20	10	8	<20
	T1 89HCL017	<u> </u>	10	7	8	3	6	46	<2 ,	<20	٢٢	4	<20
		• ·			<u>,                                     </u>						<b>-</b>		
		<u> </u>											<b>.</b>
				· · ·	<b>. </b>								-
												-	
	· · · · · · · · · · · · · · · · · · ·					<u></u>							
													·
										•			
							· · _ · <b></b> · ·						

.

Hondar-Clegg & Company Ltd.
 B0 Periobetron Ave.
 North Vancouver, B.C.
 V7P 2R5
 (x)44) 985-0681 Telex 04-352667

**___** 

٠

-



## Geochemical_ Lab Report

REPORT: V89-0	6960.0						<u>D; 20-0CT-89</u> Uk	PAGE 2C				
 SAMPLE NUMBER	FLEMENT UNITS	Sr PPit	та Ррп	Te PP#	V PPN	N Ppn	Y PPN	Zn PPM	Zr PPN	<u> </u>		
 T1 898CLD11 T1 898CLD13 T1 898CLD15	-	45 49 46 52	<10 <10 <10 <10	<10 <10 <10 <10	74 82 92 98	<10 <10 <10 <10	10 8 11 11	76 83 162 109	7 5 7 6			
T1 89NCL016 T1 89NCL017		44	<10	<10	75	<10 <10	7	53	1			
 					_						_	
					<u> </u>							
 ·												
 •	· · · · · · · · · · · · · · · · · · ·											
 	<u></u>				<del></del> .							
 	· · · ·	<u> </u>										

٠

Boudar-Clegg & Company Ltd.
 130 Pemberton Ave.
 North Vancouver, B.C.
 V7P 2R5
 (604) 985-0681 Telex 04-352667

.



#### A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-06781.0 ( COMPLETE )

REFERENCE INFO:

CLIENT: KEEWATIN ENGINEERING INC. PROJECT: PARADIGN SUBMITTED BY: TERRANIN RES. LAB DATE PRINTED: 4-OCT-89

-

-				NUMBER OF	LOWER		
	ORDER		ELEMENT	ANALYSES	DETECTION LIMIT	EXTRACTION	NETHOD
	1	fa	Goto – Fire Assay	ė3	5 PPB	FIRE-ASSAY	Fire Assay AA
	2	Âg	Silver	93	D.2 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	3	As	Arsenic	93	5 PPM	HNOB-HOL HOT EXTR	Ind. Coupled Plasma
	4	Ba	Barium	93	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	5	8e	Beryllium	93	0.5 PPH	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	$\ell_1$	[3]]	Bismuth	93	2 PPM	HNOR HICL HOT LEXTR	Ind. Coupled Plasma
` <u></u>	7	Cd	Cadmius	93	1 PPH	HN0.3-HCL HOT EXTR	Ind. Coupled Plasma
		Ce	Cerium		5 FPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	9	Co	Cobait		1 PPH	HND3-HCL HD1 EXTR	Ind. Coupled Plasma
	10	Cr	Chromium	ر. د	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	10	Cu	Соррет		1 PPM	HNOSHIEL HOT FXTR	Ind. Coupled Plasma
	12	Ga	Gailium	() () ()	2 PPM	PN03-HCL HOT FXTR	•
		00			2 FF/I	BUD PATE	Ind. Coupled Plasma
	13	la	Lanthanum	93	1 PP#	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	14	li	Lithium	43	1 PPN	HNO3-HOL HOT EXTR	Ind. Coupled Plasma
	15	۳o	Noiybdenum	<b>دع</b>	1 PPh	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	16	NБ	Niobium	23	1 664	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	17	Nî	Nickel	93	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
			· · · · · ·		·····		
	18	PЬ	Lead	53	2 ያዎሽ	HN03-HCL HOT FXTR	Ind. Coupled Plasma
	19	8b	Rubidium	93	20 PP#	HNOB-HOL HOT EXTR	Ind. Coupled Plasma
	20	Сb	Anti-eony	ίc	5 PPH	IINOB-HOL HOL EXTR	Ind. Coupled Plasma
	21	Sc	Scandium	έt	1 伊伊州	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	22	Sn	Tin	93	20 FPH	UNC3 HCL HOT EXTR	Ind. Coupled Plasma
		r	(hann)				
	23	Sr In	Strontium Tantojum	93 0)	1 PPH	HN03-HCL HOT EXTR	Ind, Coupled Plasma
	24 25	Ta Ta	Tantaium Taliumium	93 93	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	25	le 	Tel:unium	23	10 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	26	V 	Vanadium	93	1 PPM	HNO3-HCL HOT EXTR	Ind. Coupled Plasma
	27	ų	Tungsten	<u>93</u>	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	28	Y	Yttrium	93	1 FPN	HN03 HCL HOT EXTR	Ind. Coupled Plasma
	29	Zn	Zinc	23	1 PPH	HN03-HCI HOT EXTR	Ind. Coupled Plasma
	30	2r	Zirconium	93	1 PPM	HNO3 HCL HOT EXTR	Ind. Coupled Plasma

		•			
	Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5		B	2	Geochemical Lab Report
_	(604) 985-0681 Telex 04-352667		BONDAR-C		
		<u> </u>	VISION OF INCHCAPE INSPECTI	ION & TESTING SERVICE	
<u> </u>	REPORT: V89-06781.0 ( COMPLE	TE )			REFERENCE INFO:
	CLIENT: KEENAIIN ENGINFERING PROJECT: PARADIGH	INC.			SUBNITTED BY: TERRAMIN RES, LAB DATE PRINTED: 4-OCT-89
<b>.</b>	SANPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER
	T STREAM STDIMENT, STLI R ROCK OR BED ROCK	41 52	1 -80 2 -150	41 52	DRY, SIEVE -80 41 CRUSH,PULVERIZE -150 52
	REPORT COPIES TO: KEENA TATGA	TIN ENGINEE CONSULTANTS		INV	DICE TO: KEENATIN ENGINEERING INC.
<u> </u>					
ι.					
0					
<u> </u>					
► -					
, [					
<u> </u>					
<b>.</b> .					
,					
<u>ب</u>					
				· · · · · · · · · · · · · · · · · · ·	
<b>Г</b>					
					······································

	÷				•-	B.~		Bi	(đ	Ce	Ćo		£u	Ga	La	Li	No	Nb		NI P	b R	b St	s Sc	50	Sr	Ta	Te	۷	¥	۷	Zn	2r
	FIELD NUMBER	LOCAT	Au(30g 1(ppb)	-	As (ppa)	(000)	Be (ppm) (	nom)	(000)	(000)	(1009)	(ppm)	(000)	(ppm)	(ppm)	(ppa)	(ppm)	(ppm)	(pp)	m) (ppe	) (ppm						(ppa)	(pps)	(ppa)	(ppa)	(pp=)	(ppm)
					*** 146		-0.5	-7	120	=====× 15	34	97	401	<b>·</b> 9	-1	6	17	5		91 Ja	5 -2		10	-20	63	-10	-10	75	64	16	11331	7
57820001	89 H WH 1	-		2.8	197	210		-2			60	119	861	16	-1	15	15	7		76 18	19 - Z	0 1	5 11	-20	69	19	-10	153	-10	21	2085	10
67820002		· ·			270	101		-2	-	-5	72	78	1287	11	-1	16	18	5	; ;	76 19	×0 -2	o z	8 9	-20	36	-10	-10	101	12	21	3463	. 7
67820003		-		8.6 0.5	44			-2		22	35	162	83	23	12	8	7	ş	,	59	16 -2	o -	5 1	-20	201	-10	-10	176	-10	12	303	i 12
67820005	89 M WH 4			1.7	182		-0.5	-2	-	25	84	749	440	34	8	13	26	22	5 1	22	74 – Z	0 1	5 12	<u>ع</u>	144	12	42	227	-10	17	524	2
67820006				4.8	360			-6	27	18	78			-2	-1	13	22		5	89 Z	50 d	0 4	5 '	> -2	50	-10	-10	77	-10	22	2124	•
68850013		•	IK 145 IK 40	4.0 19.6	350	93		-2		16	104	131	1601	11	-1	14	31		7 1	38 2	06 1	m 5	0 1	-2	) 81	-10	-10	126	11	28	297	, 1
68850014			IK =-0 IK 11	0.3	42	1151			· -1	6	29	335	85	6	-1	5	4	, ,	4 1	40	6 (	·9 -	5	6 -2	1 <b>34</b>	-10	-10	90	) -10	7	8	5 (
68850015			IK -5	15	100				. 1	9	38		472	3	-1	5	11	)	3	69	14	IS 1	0 1	0 -2	<b>134</b>	5 -10	) -10	132	2 -10	- 14	24	2 10
68850016	-		IK 7	0.3	79		-0.5	-7	-1	B	29	89	123	4	1	5	9	)	3	60	3	94	6	7 -2	0 160	) -10	) -10	97	7 -10	1 9	14	9
68850017	•		1K 6	-0.2	41	168	•		-1	19	30	108	61	6	5	4	. 4	4	5	51	-2	58	6	7 -2	0 17	7 -11	0 -10	) 16	9 -10	/ 11	6	1
68850018		-	1K 85	-0.2	34		-05	- 	1	13	30	149	62	é	, 3		; 4	6	5	71	-2 -	20	7	6 -2	0 17	2 -10	0 -10	) 163	i -10	) 9	5	7
68850019 68850020			tx -5	-0.2	14	49	9 -0.5	-;		9	28				• 2	•	5 3	3	-	102	-		-5	5 -2	-					1 <b>1</b>	10	

MIKHAIL PROPERTY HEAVY MINERAL RESULTS

•

#### 

HEAVY MINERAL RESULTS

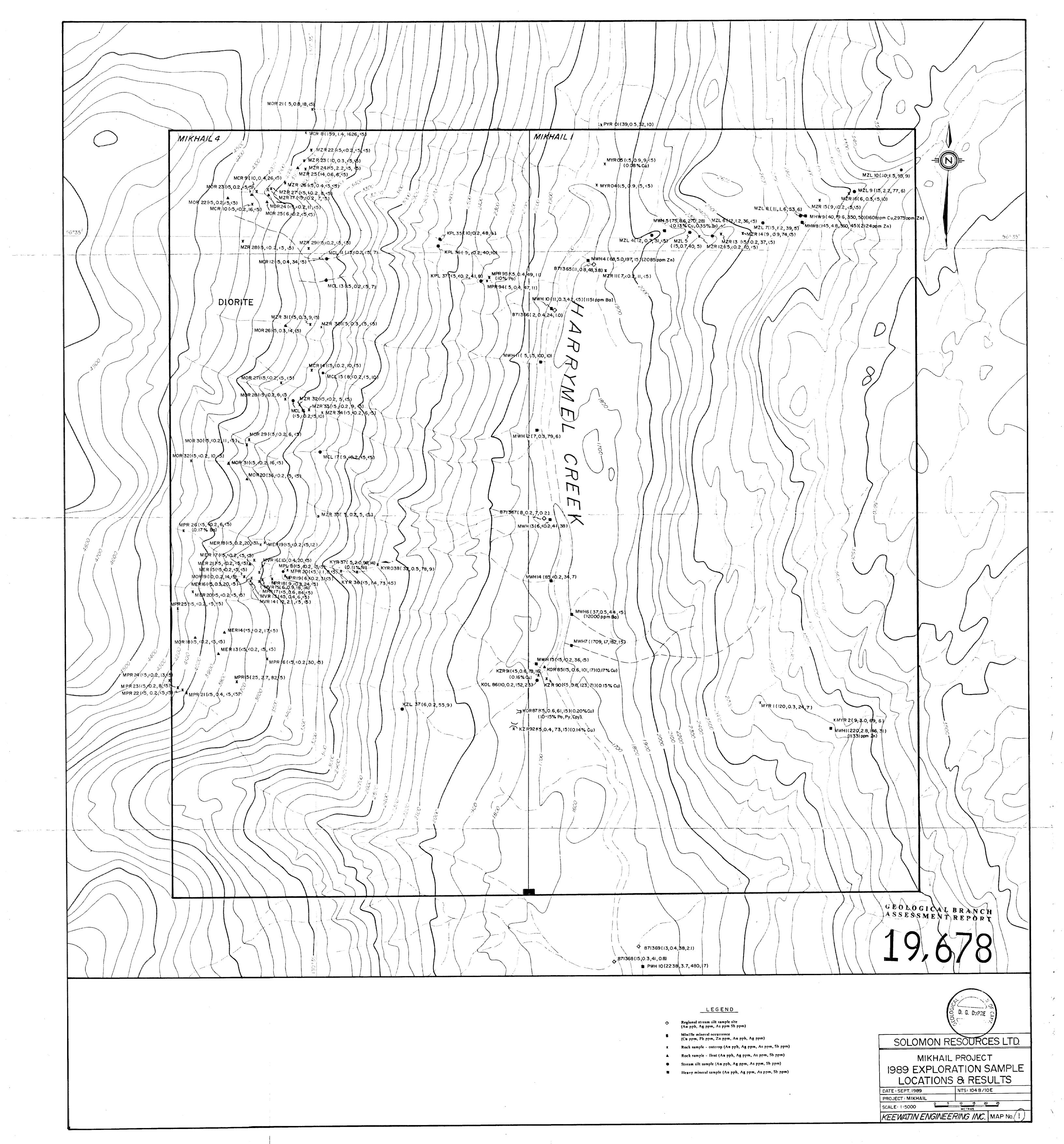
-

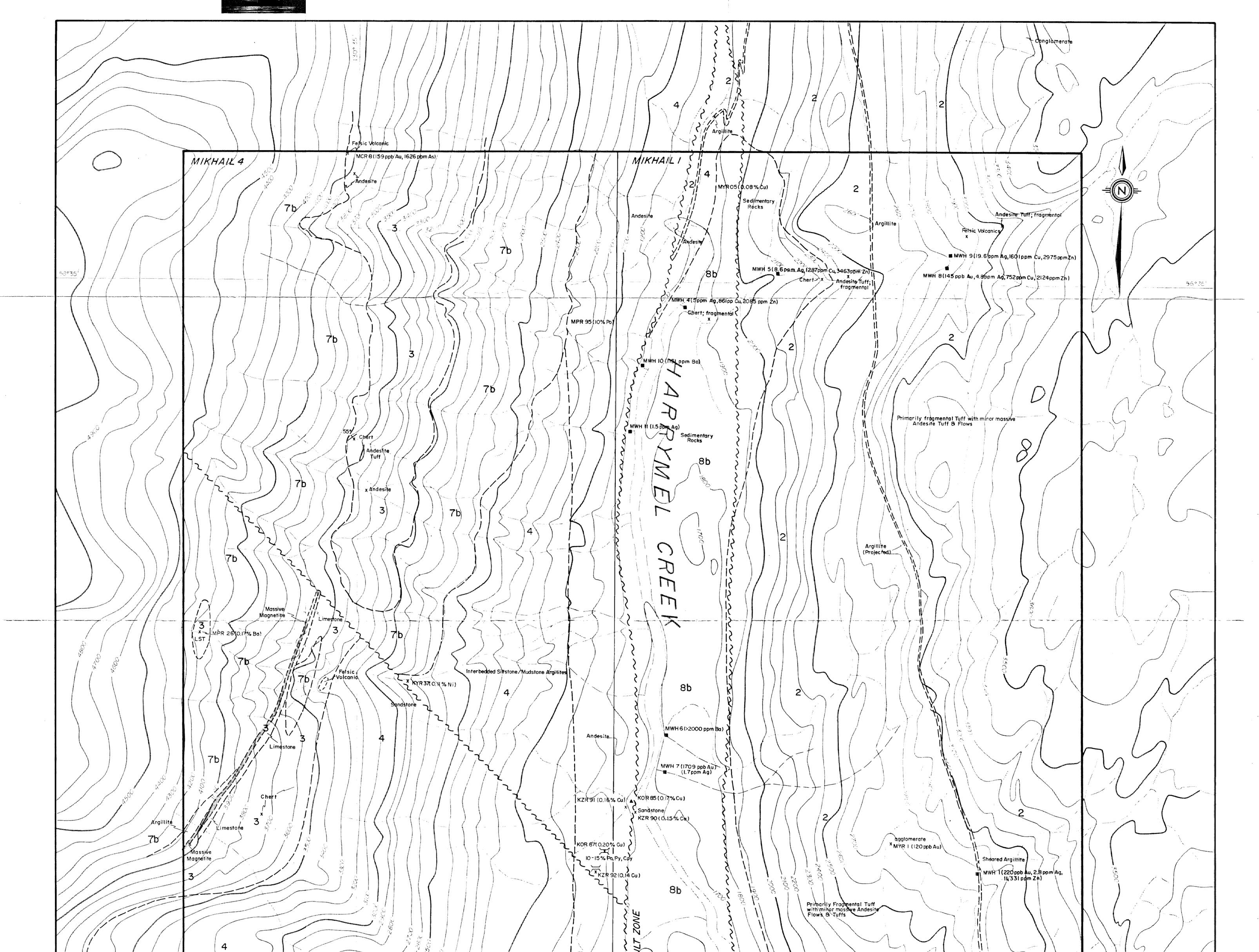
LAS	FIELD	Au(30g	Ag	As	Ba	Be	Bi	Cd	Ce	Co	Cr	Cu	Ga	La	Li	Ho	Nb	)H	Pb	Rb	5b	3c	Sn	17	Ta	(Diban)	V	y	Y	2n	2r
NUMBER	NUMBER	LOCATI(ppb)	(ppm)	(pps)	(pps)	(pps)	(pps)	(ppm)	(ppm)	(pps)	(ppa)	(ppm)	(ppa)	(pps)	(pp <b>a</b> )	(pps)	(pps)	(mqq)	(ppm)	(ppa)	(ppm)	(pps)	(ppw)	(aqq)	(ppa) (		(ppe)	(ppm) ·	(pps)	(ppm) (	(pps)
67820016	6 89 P WH10	LOK 2238	°3:7	4250	157	-0.5	-2	7	17	57	173	411	18	-1	15	18	10	100	75	-20	17	10	-20	88	-10	-10	141	-10	21	. 842	16

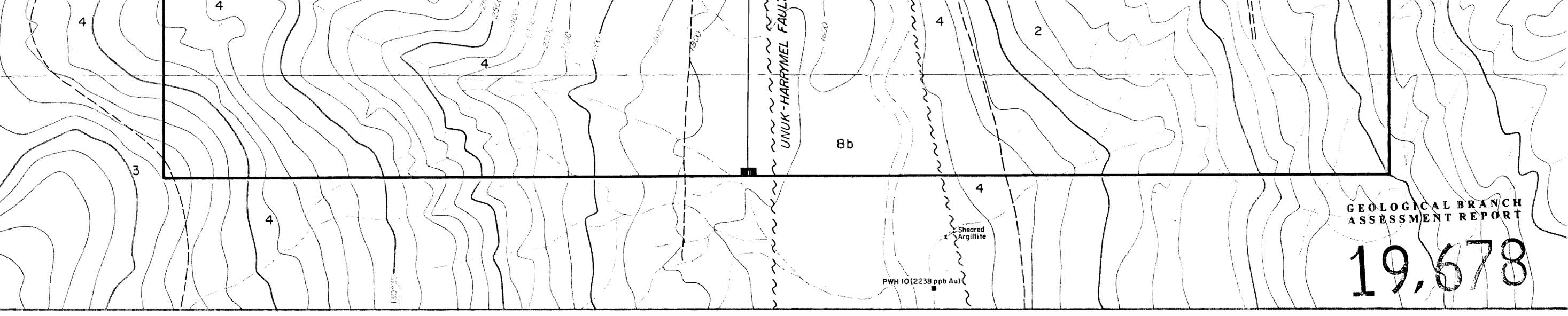
•

•.

-


•


ţ


#### SUMMARY OF EXPENDITURES

#### Mikhail 1 & 4

Personnel and Crew		\$25,092.13
Transportation - helicopter/fixed wing/fuel		12,323.10
Camp - food/accommodation		4,860.75
Assay/Report/Drafting/Secretarial		11.553.80
	TOTAL EXPENDITURES:	\$53,829.78







#### Volcanic Sedimentary Rocks

- Pleistocene to Recent Basalt flows and tephra: dark brown to black, minor pillow lavas
- Lower Jurassic (Pliensbachian to Toarcian) Betty Creek Formation: pyroclastic-e to bedded, pyroclastics and sedimen Betty Creek Formation: pyroclastic-epiclastic sequence, heterogeneous, grey-green, massive to bedded, pyroclastics and sedimentary rocks (black, thinly bedded siltstone, shale, and argillite)
- Upper Triassic to Lower Jurassic (Norian to Sinemurian) Junuk River Formation: andesite sequence, green and grey, intermediate to mafic volcaniclastics and flows, with locally thick interbeds of fine-grained immature sediments, minor conglomerates, and limestone
- Upper Triassic (Carnian to Norian)

•

- 4
- Stuhini Group: brown, black, grey; mixed sedimentary rocks (siltstone, shale, argillite, limestone, chert), with minor mafic to intermediate volcanics and volcaniclastic rocks

#### Intrusive Rocks

- Tertiary
  5 Post-Tectonic Dykes
- King Creek Dyke Swarm: feldspar porphyry dacite, andesite, diabase, and hornblende to quart diorite; limits of the unit shown indicate where the dykes exceed 50% of the exposed bedrock
- 9 Hawilson Monzonite - fine grained monzonite
- 6 Coast Plutonic Complex: hornblende-biotite-quartz diorite to granodiorite.
- Jurassic
- Issec Unuk River Diorite Suite: a) Max: biotite-bornblende diorite, quartz diorite, granodiorite b) Melvelle: hornblende-biotite diorite, quartz diorite

#### Metamorphic Rocks

- 8
- Metamorphic equivalents of Units 1, 2, or 3 a) bornbleade, mytonite gneiss, mytonite b) Unuk-Harrymel Fault Zone, strongly sheared rock within fault zone

#### SYMBOLS

- Geological contact (observed, assumed)
- Bedding with dip سلسہ
- Foliation ~~~
- + **Regional anticline**
- ~~~~ Fault (defined, assumed)
- _____ Airphoto lineament
- Regional stream silt sample site ٥ (Au ppb, Ag ppm, As ppm Sb ppm)
- Minfile mineral occurrence ¥ (Cu ppm, Pb ppm, Zn ppm, Au ppb, Ag ppm)
- X Rock sample - outcrop (Au ppb, Ag ppm, As ppm, Sb ppm)
- Rock sample float (Au ppb, Ag ppm, As ppm, Sb ppm)
- Stream silt sample (Au ppb, Ag ppm, As ppm, Sb ppm)
- Heavy mineral sample (Au ppb, Ag ppm, As ppm, Sb ppm)
- Ĭ Trench

