LOG NO:	0226	RD.
ACTION:		
FILE NO:		1000 CO.

Geological, Prospecting, and Geochemical Report on the Flory Property FLORY 1-4 and SAM 1-2 Claims Skeena Mining Division N.T.S. 104-B/7 E Latitude 56°23' North Longitude 130°37′ West SUB-RECORDER $\bigcirc \alpha$ British Columbia ZO RECEIVED ≪ 🎰 FEB 1 9 1990 November 6, 1989 **63 2**4 \$ M.R. # -----VANCOLIVER, B.C. < Z

on behalf of **PROLIFIC RESOURCES LTD.** Vancouver, B.C.

by

C. H. Aussant, B.Sc., P.Geol., F.GAC - and -D. G. DuPré, B.Sc., P.Geol., F.GAC **KEEWATIN ENGINEERING INC.** #800, 900 West Hastings Street Vancouver, B.C. V6C 1E5

Summation Keewatin Engineering Inc.

- 2

0 0

ABSTRACT

The Flory property consists of six contiguous modified-grid claims totalling 120 units located approximately 80 km northwest of Stewart, British Columbia. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property.

The property lies within the Intermontaine Tectono-Stratigraphic Belt and occurs near the contact between the Stikine Terrane and the unmetamorphosed sediments of the Bowser Basin. The property is underlain primarily by Upper Triassic to Lower Jurassic supracrustal rocks locally intruded by Middle Jurassic or younger diorite dykes. Pleistocene basalt flows underlie the lower reaches of the Unuk River valley along the western property boundary.

The area has an exploration history dating back to the turn of the century when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Exploration Ltd. which was brought into production in mid-1988. The adjacent SNIP property is slated for production in 1990.

At this time, the Eskay Creek prospect, located 32 km northeast of the Flory property and currently being explored by Calpine and Consolidated Stikine, is the most significant showing in the area. The prospect comprises at least eight mineralized zones occurring over a strike length of 1800 m within a sequence of felsic volcanics. The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks.

A review of all available information indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962 which led to the discovery of a number of showings in the vicinity of the Flory property.

In the 1960's, Granduc Mines Ltd. conducted exploration programs in the vicinity of the Flory property, which encompassed portions of the current property area. No mineralization or alteration zones were located within the property boundaries. In 1987, a limited amount of reconnaissance mapping, prospecting, and geochemical sampling were completed on the FLORY 1 to 4 mineral claims. No mineralization was located.

An airborne electromagnetic and magnetic survey was conducted over the property in 1988. A number of north-northeast trending conductors and several magnetic highs were outlined by the survey.

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling with the objective of evaluating the property's potential for hosting economic precious metals deposits. Reconnaissance prospecting and geochemical sampling were completed in areas of reported mineralization, in the upland areas, and in the drainage courses of the claims where rock exposures were most abundant, and in the area north of Flory Lake which previous exploration efforts would have neglected due to the dense forest growth and difficult terrain.

Copper mineralization, of probable limited extent, was located adjacent to the property boundary in the southeast corner of the FLORY 2 claim. The McQuillan Ridge copper showing is reportedly located southeast of this area, but was not relocated during the current exploration program.

An area containing a number of fractured zones with quartz-carbonate flooding, stringers, and veinlets up to 10 cm wide occurring within andesite tuff was located on the SAM 1 mineral claim. Sulphide mineralization is generally restricted to the quartz-carbonate veining. A number of grab samples yielded anomalous Ag, Pb, and Zn values.

Page 3

A number of quartz veins (generally 20 to 50 cm wide) within andesite tuff were located in the north-central part of the FLORY 2 claim. Lithogeochemical sampling yielded elevated to anomlaous Au, Ag, Cu, and/or Zn values.

A grab sample of fine-grained dacite tuff located in the southeast corner of the FLORY 1 claim yielded 1.19% Zn.

TABLE OF CONTENTS

INTRODUCTION
PREVIOUS EXPLORATION
REGIONAL GEOLOGY
PROPERTY GEOLOGY
ECONOMIC GEOLOGY
1989 EXPLORATION PROGRAM
ROCK GEOCHEMICAL SAMPLING
STREAM SILT SAMPLING
HEAVY MINERAL SAMPLING
SUMMARY AND RECOMMENDATIONS 26
CERTIFICATE - C. H. Aussant
CERTIFICATE - D. G. DuPré
BIBLIOGRAPHY
<u>TABLES</u> 1 - Table of Formations

<u>FIGURES</u>

1	-	Location Map		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	2
2	-	Claim Map		•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	3
3	-	Regional Geology:	Bowser Basin.	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	9
4	-	Regional Geology:	Unuk Map Area	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	10
5	-	Property Geology.		•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	12/13

<u>MAPS</u>

- 1 1989 Exploration, Sample Locations and Results
- 2 Geology and Anomalous Results

Record to (Keewatim Engineering Inc.

INTRODUCTION

Prolific Resources Ltd. of Vancouver commissioned Keewatin Engineering Inc. to conduct a field exploration program on the Flory property located in the Unuk River area of northern British Columbia. Exploration was directed by Keewatin Engineering Inc. with geological support and field supervision provided by Taiga Consultants Ltd. as a sub-contractor to augment the Keewatin crew.

The objective of the program was to evaluate the property's potential for hosting economic precious metal deposits. Exploration consisted of prospecting, geological mapping, and geochemical sampling, which including lithogeochemical, stream silt, and heavy mineral sampling.

Location and Access

The FLORY property is located in northwestern British Columbia, approximately 80 km northwest of Stewart (Figure 1). The claims are situated in N.T.S. map sheet 104-B/7 E, centered about $56^{\circ}23'$ North latitude and $130^{\circ}37'$ West longitude.

Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area, and then via helicopter to the property. The claims can also be directly accessed by helicopter from Stewart. At some future date, road access to the area from the Stewart/ Cassiar Highway could be obtained via the Upper Unuk River and Tiegen Creek valleys.

Property Status and Ownership

The FLORY property (Figure 2) consists of six modified grid claims totalling 120 units, located within the Skeena Mining Division. Relevant claim data are tabulated below:

Claim	Record	No.of	Date of	Expiry
<u>Name</u>	<u>Number</u>	<u>Units</u>	<u>Record</u>	<u>Year</u>
FLORY 1	5720	20	Jan.09/87	1990
FLORY 2	5721	20	Jan.09/87	1990
FLORY 3	5722	20	Jan.09/87	1990
FLORY 4	5723	20	Jan.09/87	1990
SAM 1	7202	20	Feb.17/89	1990
SAM 2	7203	_20	Feb.17/89	1990
		120		

These claims are apparently the subject of an agreement between the claim holders (A. Erlark and G. N. Ross) and Ross Resources Inc., which recently optioned the property to Prolific Resources Ltd.

The claim records and maps show that portions of the north and east edges of the SAM 1, the east edge of the SAM 2 and a sliver of the west edges of the FLORY 3 and 4 claims encompass pre-existing mineral claims. The FLORY 1 to 4 claims have subsequently been overstaked.

Physiography and Climate

The FLORY property is situated within the Coast Range Physiographic Division and is characterized by northern rain forest and sub-alpine plateaux. Valleys are steep-sided and U- to V-shaped. Elevations (see Figure 2) range from 400 feet in the valley of the Unuk River to 6700 feet on McQuillan Peak.

A transitional treeline, characterized by dense sub-alpine scrub, meanders through the property at approximately the 3000-foot level. The steep terrain found above treeline is typified by intermontane alpine flora. Permanent glacial ice is found above elevations of 3500 to 4500 feet. Conifers up to 30 m tall are common below treeline, especially in the stream valleys. Water for camp and drilling purposes is generally in good supply from the numerous creeks draining the claims area.

Precipitation is heavy, exceeding 200 cm per annum, with short mild summers but very wet spring and fall periods. Thick accumulations of snow are

common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

PREVIOUS EXPLORATION

The area drained by the upper reaches of the Stikine, Iskut, Unuk, Craig, and Bell-Irving Rivers has been explored for gold since the late 1800's when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada, and the acquisition of the Johnny Mountain claims by Skyline Explorations Ltd. The Johnny Mountain deposit was brought into production in mid-1988 and the adjacent SNIP deposit is slated for production in 1990.

The mineralization at Eskay Creek (see Figure 4) was discovered is 1932 and active prospecting has continued sporadically since then. Two adits are the result of limited mining activity on this prospect. In 1988, Calpine Resources Incorporated discovered high-grade gold and silver mineralization on the #21 Zone (*Northern Miner* - November 7, 1988). A number of excellent diamond drill intersections have been obtained to date, including drill hole CA-88-06 which encountered 96 feet of 0.752 oz/ton gold and 1.13 oz/ton silver. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological ore reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver has been calculated for the #21 Zone (Consolidated Stikine Silver Ltd. - 1989 Annual Report).

The Unuk River area was covered by regional geological mapping in 1988 as part of the Iskut-Sulphurets project carried out by B.C. Ministry of Energy, Mines and Petroleum Resources (Britton et al., 1989). The whole of N.T.S. 104-B is currently being mapped by R. G. Anderson of the Geological Survey of Canada (Anderson, 1989).

The results of a regional stream sediment sampling program conducted over this area were released in July 1988 (National Geochemical Reconnaissance, 1988). Britton (et al.) report that almost every known precious metal prospect in the Unuk River area is associated with high stream sediment gold values. Known gold deposits are also associated with high but variable values for such pathfinder elements as silver, arsenic, antimony, and barium. Two stream sediment samples (Figure 5) were collected from streams draining the FLORY property. Neither sample yielded elevated values for the elements.

A review of the material in the B.C. Ministry of Energy, Mines and Petroleum Resources assessment report archives indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. during the period 1959 to 1962. This work discovered only one showing within the FLORY property boundaries. The McQuillan Ridge copper showing (Minfile #220) occurs adjacent to the southeastern boundary of the property. It is portrayed as Mid-Jurassic diorite dykes which contain minor copper mineralization.

In 1968, Granduc Mines Ltd. conducted an airborne electromagnetic and magnetic survey over McQuillan Ridge. This survey covered the entire FLORY property.

In 1969, Granduc Mines undertook geological and geophysical surveys on their JIM 1 to 22 mineral claims. This work covered the Jim-Flory copper showing (Minfile #219), located 0.75 km south of the western corner of the FLORY property. The Jim-Flory showing is described as a zone of sporadic alteration within a tuff, and skarn alteration noted in some sedimentary units. Magnetite, pyrite, and chalcopyrite occur within the altered zone. In 1911, gold values of about 64 grams per tonne were reported from the area.

The exploration completed by Granduc Mines covered most of the FLORY 3 mineral claim, surrounding Flory Lake and extending diagonally across the claim. No mineralization nor an alteration zone was located within the boundaries of the FLORY property.

In 1987, a reconnaissance mapping, prospecting, and geochemical (lithogeochemical and stream silt) sampling program was conducted over several claim groups in the Unuk River area by Paul A. Hawkins and Associates Ltd. on behalf of Axiom Explorations Ltd. Four man-days of exploration were completed on the FLORY 1 to 4 mineral claims. No mineralization was located.

An airborne electromagnetic and magnetic survey was flown over the FLORY property in 1988. A number of north-northeast trending conductors were delineated throughout the property. Several magnetic high areas were outlined by the survey. These may be delineating either underlying sills and dykes or magnetite-enriched areas within the underlying andesites.

The assessment records (Korenic, 1982) indicate that Duval Corp. undertook a regional heavy mineral survey in the Unuk River area in 1981.

REGIONAL GEOLOGY

The property lies within the Intermontane Tectono-Stratigraphic Belt, one of five parallel northwest-southeast trending belts which comprise the Canadian Cordillera (Figure 3). The FLORY property occurs near the contact between the Stikine Terrane, which makes up most of the western part of the Intermontane Belt, and the unmetamorphosed sediments of the Bowser Basin.

The Unuk River area (Figure 4) is underlain by a thick succession of Upper Triassic to Lower Jurassic volcano-sedimentary arc complex lithologies capped by Middle Jurassic marine basin lithologies. This package has been intruded by a variety of plutons representing at least four intrusive episodes spanning late Triassic to Tertiary time. These include synvolcanic plugs, small stocks, dyke swarms, isolated dykes and sills, as well as batholiths belonging to the Coast Plutonic Complex.

The stratigraphic sequence has been folded, faulted, and weakly metamorphosed during Cretaceous time, but some Triassic strata are polydeformed and may record an earlier deformational event. Remnants of Pleistocene to Recent basaltic flows and tephra are preserved locally.

SYMBOLS

Compositional layering (bedding; foliation)	-
Contact	-
Antickne; synchine	<
Harrymel-South Unuk shear	2
Pillow lavas	ž
Recent volcanic vent	÷
Gossan	•••
Adıt	=
Stream sodiment gold values >90th percentile)
Mineral occurrence	R
Placer occurrence	

MINERAL OCCURENCES

·	NAME	COMMODITY
4800mm01-12-12-20a.0a	Emma MacKay Colagh E&L Nickel Cole Cumberland/Daly Mi Madge (C-10) Mi Madge (C-10) Mi Madge (GFJ) VV Unuk Jumbo Black Bear Boulder Creek Doc Globo All	Au.Ag,Pb.Zn.Cu Au.Ag,Pb.Zn.Cu Cu,Fe Cu Ni,Cu Cu,Au,Ag Au,Ag Au,Ag,Zn Au,Ag,Zn Au,Ag,Zn Au,Ag,Cu,Zn Cu,Ho,Au,Ag Cu,Fo Fe,Cu Fe,Cu Fe,Cu Au,Pb,Zn Au,Ag,Pb,Cu Au,Ag,Pb,Cu Au,Ag

NOTE: Not to scale

Geology and mineral deposits, Unuk map area. Modified after Britton et. al. (1989)

PROPERTY GEOLOGY

PROPERTY GEOLOGY

Regional geological mapping by Britton et al.(1989) shows that the property is underlain predominantly by Upper Triassic to Lower Jurassic supracrustal rocks (Figure 5). Upper Triassic Stuhini Group sediments extend into the north-central part of the property. The Lower Jurassic Unuk River Formation, which consists of andesitic volcanics with lesser sediments, underlies most of the remaining property area. Locally, the Unuk River Formation is intruded by Middle Jurassic or younger diorite dykes. Pleistocene basalt flows underlie the lower reaches of the Unuk River valley along the western boundary of the property.

Upper Triassic <u>Stuhini Group</u> (Unit 1)

The Stuhini Group rocks occupy the nose of a north-plunging anticline, and occur as a wedge between the Unuk-Harrymel Shear Zone and the overlying Unuk River Formation. These rocks underlie the area immediately north of the property, their southern extent underlying the north-central edge of the property. The Stuhini Group rocks consist of thin-bedded siltstones, immature fine-grained wackes, chert, impure limestone, and andesitic tuffs that locally attain a considerable thickness. Andesitic tuffs may be laminated to massive, aphanitic or hornblende-feldspathic. Limestones occur as thin beds or discontinuous lenses that show extensive recrystallization and highly disrupted internal structure. Fossil evidence led Britton et al. (1989) to ascribe a Carnian to Norian age to these rocks.

Upper Triassic to Lower Jurassic <u>Unuk River Formation</u> (Unit 2)

Britton et al.(1989) described this sequence as green and grey intermediate to mafic volcaniclastics and flows with locally thick interbeds of immature fine-grained sediments. The volcanics are reported to be dominantly massive to poorly bedded plagioclase (\pm hornblende) porphyritic andesite. The sediments are predominantly grey, brown, and green, thinly bedded tuffaceous siltstone and fine-grained wacke. These Norian to Sinemurian rocks belong to the Unuk River Formation which is the lowermost unit of the Hazelton Group. The basal contact with Triassic strata appears to be near the top of a thick sequence of clastic sedimentary rocks. Neither an angular unconformity nor a widespread conglomerate marks this lower contact.

Pleistocene to Recent <u>Basalt Flows and Tephra</u> (Unit 6a)

Britton et al.(1989) mapped these flows along the valleys of the Unuk River and Canyon Creek. The are reported to commonly display columnar jointing.

FLORY PROPERTY GEOLOGY

Figure 5

LEGEND

INTRUSIVE ROCKS	VOLCANIC AND SEDIMENTARY ROCKS
TERTIARY	(Pisates His strattgraphic order in Implied within sequences.)
ADDATECTORE DIRES	•
	QUATERNARY
17m – Langenynter, anderen, diebezer filmmer ant eksen) 17m – Ring Grant Chie Swame, feldiger pergityry daelin, andreiti, diebeze, geore diede	RECENT
13a - Hawdison mensenter the grained lauge-mensionly	17 LINCONSOLIDATED SEDIMENTS
12	
	70 Allevium underlain by Plainteene in Reserv based
120 Hamelundu életite quett distite	IN DISTOCENE TO DECENT
13t - Lao Brant Stock: A-laidear peoplyry, kontainneo-alaite quarte mansanteo	ASALT FLOWS AND TEPHINA
JURASSIC	
11 MC/CEL MOUNTAIN GABERCE metaneorate allulino-pyranene galateo	for Cash proy in black, based firms and inputs; mintry pillow inves
STIN TO POST-HOLEANCE INTRUSIENCE: Perphyritis to phonentile toutures; possibly hypothysial equivalence 10	TRIASSIC TO JURASSIC
	MAZELTON GROUP
100 - Garla Calan Cylar: Non-ta madlam-gradnad hamatania (corpusy) grannania in ayunna 100 - Garla Labo Cylar: Non-ta madlam-gradnad hamatania dhama	MIDDLE JURASSIC (TOARCIAN TO BAJOCIAN)
10e Anderster Diante Compter: meterconste, Ann- to method grained diside with abundant	SELTSTONE SEQUENCE (Salman Aber Formation): Dark groy, well-bestow allotters with relater associations
(INC. AND DON'T SUTT	
9	30 Chart publik campionents and areals
Ba – Joka Peaka maanuumala kembilando ellutte	Sur Thinky bedded wette
1 Man bássa harmalanda diartis, gastra diartis,	50 - Andronik pilow inter and pilow breaks with stater allatone intercede
Sel Cos Aldge biotic mensatione	LOWER JURASSIC (TOARCIAN)
TRIASSIC	FELSIC VOLCANEC SECUENCE (Advant Officenti Romation): Light weathering, intermediate to felsite processite rocks, including dust, and, crystel and State auto, legall full. Locally pyratherine (3 to 15%) and
BUCKE GLACER STOCK: Jok pro, protein in follows, medun-grained homelando-clothe quert stories	possenous. Alinor charcedone quarty une accets
	4. Visionity (satisfied dations) at Adaptation finding table
	or a glack and while, carbonaceous faible valuanies; leasily flow canded and autoinvaciand
•	LOWER JURASSIC (PLIENSBACHIAN TO TOARCIAN)
	PROCLASTIC-EPICLASTIC SEQUENCE (Bear Great Formation): Heteropassees, proy, grean, anothy
	3a — Grean and grey, massive to posity builded andreite Set — Grean seel purch dealth tolk tolk annote and like tolk annote to and builted
	teletapar phyrie
•	3" White weathering, foliait fully and breaster with quarty stringers To Antonics in all with state allocans states
METAMORPHIC ROCKS	20 Annuality pillow loves and pillow breactes with minor alletone interparts
A - F	 Statut and sector and and shapes (sector)
A Ministerity det any, cateneceus quart-inflage-contae phylite	UPPER TRIASSIC TO LOWER JURASSIC (NORIAN TO SINEMURIAN)
8 Foliais memoricanica: April groon, quarter albite chilorite contails phyllin; locally with	ANDESTITE SECURINCE (Linua River Formation): Grean and grey, intermediate to mails volcanizhestes and
galarmeri tapäi C Liada os anormatuse menocicanica; dark gravni, pingiastaso-shisnin pingias	
D Montalando playactano mytanilo; mytanilo mota-tallo	2a Gray and grant, plaglocites 2 homolonds porphytik andeals; massive to pourly solided by Gray and grant Antibiotic/P protocols billions and a billion of the solid billion of the bil
· E Handalando-piapicitida prositi; agantati: arginama F Stanagiy shaarad roots within the Unit-Hamyttel Jack sono	29 Groy, brown and green, thinly becklint, fullescous allotene and the graned vector
	Bucci, think immeteri allatane (tabidle); shak; argille Decision and another constraint and the state in a state of the state
·	2 Gray, variably bodded American (completely meryotelland along Scuth (inch value)
	TRIASSIC
·	STUHINI GROUP
	INDER TRASSIC (CARMAN TO MORIAN)
	LOWER VOLCANOSEDIMENTARY SECURICE: Brown, black and gray, mixed addimentary rocks
	1 Intercedded with medium to dark green, mafic to intermediate volicatio and volcancieses rocks
	77 Gray to black, think bailed all state, and the fact that
GOSSANOUS ALTERATION ZONES	tw — Brown and gray, die grannet fulleceous wacht; minor sitistone er eonglomenten 11 — Gray, incurs, alle, sanste immettene
$s_{a}^{b}s_{a}^{a}$, Aprile \pm quartic \pm and also \pm and an an \pm clay; locally followed to achieve	1s Groon, Ano-grained, and alle and half feldaper and heatednede physic
	10 — Carls prove basad 19 — Circy and grand, gradadile breach with sugila hamblende almoitables almoit and another h
	· · · · · · · · · · · · · · · · · · ·

SYMBOLS

Geologiaal boundary (defined, approximate, ecourned)	
Badding, topo tensum (norteental, instinut, veritat, avertained)	
Badding, topo unknown (Acrisonial, Indinus, verteel)	∔ .≭
Badding, automated dip (gentin, medantin, stasp)	<u></u>
Brattyraphia tapa in pillow valantina	
Compositional layoring in matemarphased reaks; fedication (indirest, vertical)	
Trend Bos	
Registral antialities ayrichte	
Antileum; syntem (namel, overlamed)	1't++++
Miner feld auto with M. Z or S systemetry; with plungs	× × ×
Fault (defined, assumed; 0 = dewnifeseum side)	
Thrust louit (defined, assumed; teeds on upper plate)	
Alt gitate Encoment.	
Pearl technity	®
Renne	0
Area with more than 40%. Tertilary dynas	
Limit of major phyllite some	
Valeanie vent (classrved, assumed)	
Grotegie gutten	
Material goostemical recorrectioness cample plan	Sample No. (As ppm. As ppm. S
Petassium-argen isologet soo sele; H = hamblende; age in millions of years before present	
Moved secondary: MPPLE runter	X8J

3b ppm, Au ppb)

AGE	GROUPS	FORMATIONS	MEMBERS	LITHOLOGIES
Bathonian	Bowser Lake	Ashman	Main Sequence Basal Conglomerate	Turbidites, wackes, intraformational conglomerates Chert pebble conglomerates
Bajocian to Toarcian	Spatsizi(?)	Salmon River	Pyjama Beds Basal Limestone	Thin bedded, alternating siltstones and mudstones Gritty, fossiliferous limestone
Toarcian		Mount Dilworth	Upper Lapilli Tuff Middle Welded Tuff Lower Dust Tuff	Dacitic lapilli tuff with flow- bandedd clasts Dacitic welded ash flow and lappilli tuff Dacitic dust tuff
Pliensbachian	Hazelton	Betty Creek	Sedimentary Members Volcanic Members	Hematitic volcaniclastic sediments, and turbidites Andesitic to dacitic tuffs and flows
Sinemurian to Hettangian(?)		Unuk River	Premier Porphyry Upper Andesite Upper Siltstone Middle Andesite Lower Siltstone Lower Andesite	Two fektspar + homblende porphysitic tuffs Massive tuffs with local volcaniclastic sediments Turbidites, minor limestones Massive tuffs and minor volcaniclastic sediments Turbidites Massive to bedded ash tuffs
Norian to Carnian	Stuhini		Volcanic Members Sedimentary Members	Pyrozene porphyry flows and tuffs Turbidites, limestones, conglomerates

TABLE 1. Table of Formations Unuk River Area

<u>Structure</u>

Britton mapped several faults within the property boundaries. These are assumed to be normal faults and are described as megascopic structure with small offsets. A 12 km northeast trending airphoto lineament, reported by Britton, approaches the northern boundary of the property; the significance is not known.

ECONOMIC GEOLOGY

Britton et al.(1989) list 55 mineral occurrences in the Unuk map-sheet. These showings are predominantly gold/silver occurrences and are hosted by a number of various lithologies. Most can be classified into one of four categories: stratabound, vein, skarn, and disseminations. Grove (1986) has determined that the age of the mineralizing events is variable and, notably, can be post-Triassic.

Stratabound mineralization consists almost exclusively of pyritic zones and lenses contained within a particular stratum or a restricted set of strata. The best example is the Eskay Creek prospect, currently being explored by Calpine Resources Incorporated and Consolidated Stikine Silver Ltd. Intrusivecontact (skarn) deposits show a close spatial and temporal relationship with igneous intrusions. Three deposits in this category are the E & L nickel/copper deposit (Minfile #006), the Max copper/iron skarn (Minfile #013), and the Chris-Anne copper/iron skarn (Minfile #125). Britton et al.(1989) stated:

Mineralization at the E & L occurs within two medium- to coarsegrained, olivine-pyroxene gabbro bodies. These roughly triangular plugs are each approximately 1300 square metres in area and are probably connected. They intruded a sequence of argillites, tuffaceous siltstones, and grey dacitic ash tuffs that strike northwesterly with moderate to steep southwesterly dips. Mineralization consists of pyrrhotite, pentlandite, and chalcopyrite, with lesser amounts of pyrite and magnetite. In the northwestern gabbro, mineralization extends up to the contact with the sediments, whereas in the southeastern gabbro, mineralization is confined to the pluton.

Diamond drilling has delineated pipe-like pods and disseminations of sulphides to a depth of 120 metres. Drill-indicated reserves are 2.8 million tonnes of 0.7% Ni and 0.6% Cu (Sharp, 1965).

The Max prospect lies on the northwest side of McQuillan Ridge, between the Unuk and South Unuk Rivers, at elevations between 455 and 1500 metres. Massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock. Garnet, epidote, actinolite, and diopside characterize the skarn assemblage. Drilling has indicated a reserve of 11 million tonnes at 45% iron (Canadian Mines Handbook 1973-1974, page 432).

The Chris-Anne prospect lies approximately 3 kilometres east of the Max. Skarn mineralization is reported in limestone beds which are up to 10 metres thick and that are interbedded with volcaniclastics. Magnetite and pyrrhotite-rich layers, from 0.5 to 7 metres thick, with minor chalcopyrite, extend over a distance of 1 kilometre. There are minor intrusive bodies reported on the property. Grades range from 0.1% to 0.4% copper (Allan and MacQuarrie, 1981).

The gold potential of these skarn deposits does not appear to have been tested. Based on recent skarn studies (Ettlinger and Ray, 1988), this area has many features that are associated with goldenriched skarns elsewhere in the province: sequences of calcareous and tuffaceous host rocks; structural deformation; intrusion by dioritic I-type granitoids; and contact metamorphism and recrystallization. Some auriferous skarns are enriched in cobalt, an element that may be a useful pathfinder.

High-grade precious metal quartz veins are the target of exploration programs at Mount Madge (Minfile #240 and #233) by Bighorn Development Corporation, and at the Doc prospect (Minfile #014) by Echo Bay Mines Limited. Britton et al.(1989) reports:

The Mount Madge prospects are located south of Sulphurets Creek near its confluence with Unuk River, on the east and west sides of Mandy Glacier. Two different targets are being evaluated (Kruchkowski and Sinden, 1988). On the west, the C-10 prospect (Minfile #240) is a stockwork of thin quartz veinlets, locally with thicker quartz lenses, in intensely altered, fine-grained tuffaceous andesite or dacite. Quartz veinlets locally form up to 30% of the rock. The alteration assemblage consists of quartz and sericite with up to 10% pyrite. Chalcopyrite and traces of sphalerite are also present. The rocks are strongly foliated to schistose and are very similar to the broad alteration zones seen at Brucejack Plateau 12 kilometres to the northeast (Britton and Alldrick, 1988). Soil samples locally return analyses in excess of 1 ppm gold.

Two kilometres to the east, Ken Konkin discovered a massive pyrite-siderite float boulder with visible gold. Prospecting uphill

led to the discovery of the GFJ veins (Minfile #233), apparently flat-lying, zoned siderite-quartz-sulphide veins that returned assays up to 121 grams per tonne gold (Kruchkowski and Sinden, 1988). The veins are poorly exposed. Float blocks seen this year display symmetrical zoning from margin to core across vein widths of 10 to 15 centimetres. Vein margins are 1 to 2 centimetres of thin white quartz layers separated by hairline accumulations of very finegrained tin-white sulphide, probably arsenopyrite. The core is a very coarse-grained intergrowth of siderite, milky quartz, and cubes and clusters of pyrite, with lesser amounts of sphalerite and chalcopyrite as crystals and irregular masses. Rare tetrahedrite and visible gold have been observed (K.Konkin, personal communication, 1988). The veins cut variably foliated andesitic ash tuffs with thin interbeds of foliated to schistose siltstones.

The Doc prospect (Minfile #014) is located at treeline on a ridge overlooking the South Unuk River, opposite the mouth of Divelbliss Creek. The prospect consists of several west-northwest trending quartz veins up to 2 metres wide that have surface strike lengths of up to 275 metres (Gewargis, 1986). The main veins (Q17, (022) are massive white guartz with sparse sulphide mineralization (5%) to 10%) consisting of galena, pyrite, chalcopyrite, and sphalerite, with associated specular hematite and magnetite. Precious metal values are mostly confined to the sheared edges of veins and immediately adjacent wallrock. Shear zones with very little quartz may also return good values. Seraphim (1948) observed that gold was associated with either specular hematite or with galena and pyrite, but not with chalcopyrite and pyrite assemblages. The veins are a true fissure type, crosscutting folded and metamorphosed andesitic tuffs and thin-bedded sediments, including marble, that have been intruded by irregular dioritic dykes or sills and small monzodioritic plugs. The veins are different from any others seen in the Sulphurets or Unuk map areas. They have very restricted wallrock alteration aureoles, no apparent zoning, and appear to be limited to a few large fluid pathways. In this, they display characteristics of mesothermal veins. Structural control of the vein sets has not been determined but may be due to fractures related to folds in the host rocks. Total mineral inventory of the Q17 and other veins is given as 426,000 tonnes with 9.26 grams per tonne gold and 44.91 grams per tonne silver (Northern Miner, November 7, 1988).

Porphyry-type disseminated pyrite, chalcopyrite, and molybdenite mineralization occurs immediately north and south of King Creek, west of Harrymel Creek. Two properties have been worked: the VV to the south and the Cole to the north.

The VV property (Minfile #079) is the site of a heavily weathered monzonitic intrusive body in fault contact, on the east and west, with layered andesitic lapilli tuffs and tuff breccias with minor siltstone and calcareous sandstone interbeds. The stock is 250 metres wide, at least 6 kilometres long, strikes northerly, and dips steeply to the west, parallel to the country rocks. Chalcopyrite occurs in quartz stockworks and as fine disseminations within the

monzonite. Molybdenite, sphalerite, malachite, and azurite have also been reported (Winter and McInnis, 1975; Mawer et al., 1977). Representative assays give 0.34% copper, 0.003% molybdenum, 2.1 grams per tonne silver, and 0.8 gram per tonne gold. Maximum gold and silver values obtained were 8.65 grams per tonne gold and 19.54 grams per tonne silver (Mawer et al., 1977).

The Cole prospect (Minfile #209) is situated approximately 4 kilometres north of the VV claims; it appears to be on strike with the same fault system and has similar intrusive and country rocks. Mineralization consists of up to 10% pyrite as disseminations and fracture fillings. Minor chalcopyrite and malachite have been reported but the bedrock source of the gold/silver soil anomalies has not been located (Korenic, 1982; Gareau, 1983). Reported assays range up to 0.43% copper, 7.12 grams per tonne gold, and 13.03 grams per tonne silver. Gold and copper values show a positive correlation on both properties.

At this time, the Eskay Creek prospect, located 32 km northeast of the FLORY claims, is the most significant showing in the area. This prospect comprises at least eight mineralized zones occurring over a strike length of 1800 m within a sequence of felsic volcanics (Mount Dilworth Formation). This property is currently being explored by Calpine and Consolidated Stikine Silver. Preliminary drilling on the #21 Zone intersected 96 feet assaying 0.752 oz/ton gold and 1.13 oz/ton silver including 52.5 feet grading 1.330 oz/ton gold and 1.99 oz/ton silver (*Northern Miner*, November 7, 1988).

The drilling results obtained to date indicate that the #21 Zone extends over 335 m and is open along strike and at depth. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver was calculated for the `21 Zone' (Consolidated Stikine Silver, 1989 Annual Report). These deposits have been variously described as silicified shear zones (Harris, 1985) or as volcanogenic deposits (Donnelly, 1976). The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks.

A review of all the available information (Minfile, assessment reports, geological maps, reports, etc.) indicates that one mineralized occurrence is known within the area currently covered by the FLORY property. The McQuillan Ridge showing (Minfile #220) occurs near the southeastern boundary of the Every of the Ever

property. It is portrayed as mid-Jurassic diorite dykes which contain minor copper mineralization and crosscut altered and limonitic schists.

The Jim-Flory showing (Minfile #219) occurs 0.75 km south of the property. It is described as a zone of sporadic alteration within a tuff, and skarn alteration noted in some sedimentary units. Magnetite, pyrite, and chalcopyrite occur within the altered zone. Gold values of about 64 grams/ tonne were reported from this area in 1911.

Two copper showings (Minfile #224 and #225) occur north of the property within and adjacent to the Flory Creek Fault zone. This zone extends across the northwestern corner of the FLORY 4 mineral claim.

Becowards (Keewatin Engineering Inc.

1989 EXPLORATION PROGRAM

The 1989 exploration program, completed between September 9 and October 16, consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemistry (lithogeochemical, stream silt, and heavy mineral sampling). Areas of known mineralization and gossans noted within the area were investigated and sampled.

A total of 87 rock, 19 stream silt, and 13 heavy mineral samples were forwarded to Bondar-Clegg & Company in Vancouver for multi-element analyses; Au by fire assay-AA and the remaining 29 elements by I.C.P. (results are presented in the Appendix, along with rock sample descriptions).

The accompanying map depicts the property geology (modified after Britton et al.,1989), with 1989 prospecting traverses, sample locations, and Au/Ag/As/Sb analytical results. Descriptions of the exploration completed and the results follow.

ROCK GEOCHEMICAL SAMPLING

Reconnaissance prospecting and geochemical sampling were completed over selected parts of the property. This work was concentrated in the upland areas and in the drainage courses of the claims where rock exposures were most abundant, and in the area north of Flory Lake which previous exploration efforts would have neglected due to the dense forest growth and difficult terrain.

The property is underlain primarily by the Upper Triassic to Lower Jurassic Unuk River Formation consisting of andesitic volcanic flows and tuffs, with narrow discontinuous argillite beds and occasional thin beds and discontinuous lenses of limestone, that have been intruded by irregular

dioritic dykes or sills. Massive discontinuous magnetite lenses occur within the volcanics underlying the southern portion of the property.

A small area underlain by argillite, silty sandstone, and quartzite (probably of Middle Jurassic age) was located in the southwestern corner of the property.

A number of argillite, chert, and quartzite outcrops were located in the northeastern corner of the FLORY 4 claim. These rocks probably belong to the Stuhini Group, which regional government mapping indicates extends into the northern edge of the property.

Copper mineralization was located adjacent to the property boundary in the southeast corner of the FLORY 2 claim. The area is underlain by andesite tuff containing massive magnetite lenses and narrow discontinuous argillite beds. Two occurrences were located. Massive sulphides (pyrite, pyrrhotite, chalcopyrite, magnetite) occur in a one-metre wide rusty weathering black argillite exposed for 10 m. A grab sample yielded 2777 ppm copper.

The second occurrence consists of minor chalcopyrite and spotty malachite staining in a 2 m wide zone adjacent to a limestone/argillite contact. The mineralization occurs in the black argillite and was traced for 25 m. A grab sample from an extensively malachite-stained area yielded 1.68% Cu.

The McQuillan Ridge copper showing (Minfile #220) is reportedly located southeast of this area; however, this showing was not re-located during the current exploration program.

An area containing a number of fractured zones with quartz-carbonate flooding, stringers, and veinlets up to 10 cm wide and isolated quartzcarbonate veinlets up to 15 cm wide, occurring within andesite tuff was located on the SAM 1 mineral claim. Two preferred orientations are recorded for the fractured zones or quartz-carbonate veinlets: 048°-075° and 156°-160°. Sulphide mineralization is generally restricted to the quartz-carbonate veining. A number of grab samples yielded anomalous Ag, Pb, and Zn values. One sample

Sectors and the Keewatin Engineering Inc.

yielded a weakly elevated Au value. In this same area, a float sample of a quartz-carboante boulder yielded 1130 ppm copper.

A summary of the sampling completed in this area, along with anomalous analytical results follows:

<u>Sample</u>	Au <u>ppb</u>	Ag	Pb	Zn	Description
FPR-28	11				5 m wide quartz-flooded stringers and fractured zone.
FPR-29	33	<u>10.7 ppm</u>	<u>4816 ppm</u>		5% sulphides, @ 160° 2 m wide fractured zone with up to 10 cm quartz-carbonate veinlets. @ 048°
FPR-30	<5				10 cm quartz-carbonate veinlet, @ 158°
FPR-31	<5				15 cm quartz-carbonate veinlet, @ 065°
FPR-32	<5				3 m wide limonitic zone, @ 065°
FPR-33	<u>270</u>	<u>2.6 oz/T</u>	<u>20.05%</u>		0.5 m wide fractured zone
					with quartz-carbonate veinlets, @ 156°
FPR-34	16	4.3 ppm	<u>2649 ppm</u>	<u>4001 ppm</u>	25 m wide fractured zone with quartz-carbonate stringers, @ 075°
FPR-35	7				2 m wide fractured zone, @ 106°

Additional exploration is required in this area to determine the significance of this mineralization. The exploration should consist of additional prospecting, detailed geological mapping, and systematic chip sampling across the fractured quartz-carbonate enriched zones to determine the width and extent of the mineralization. This area may contain mineralization similar to that found on the Mount Madge prospect in which a stockwork of thin quartz veinlets occurs in intensely altered fine-grained tuffaceous andesite or dacite.

A grab sample of fine-grained dacite(?) tuff located in the southeast corner of the FLORY 1 claim yielded 1.19% Zn. This area also requires additional investigation to determine the significance of this sphalerite mineralization. In this same area, a 14 cm quartz-carbonate veinlet yielded 1285 ppm Cu.

Page 22

Recordson a Keewatim Engineering Inc.

A number of generally 20 to 50 cm wide quartz veins within andesite tuff were located in the north-central portion of the FLORY 2 claim. Two areas were located in which the veins widen up to 2 m over a short distance. A number of grab samples yielded elevated to anomalous Au, Ag, Cu, and/or Zn values. A summary of the sampling completed in this area, along with anomalous analytical results, follows:

<u>Sample</u>	Au <u>ppb</u>	Ag	Cu _ppm	Zn _ppm	Description
FZR-38 FZR-39	335 330	46.2 ppm 44.9 ppm	- 1191	2227 1736	float, quartz vein 30 cm quartz vein, exposed for 2 m, @ 160°
FZR-40	<5	4.0 ppm	1205	-	numerous quartz stringers in andesite tuff
FZR-41	129	14.7 ppm	1923	-	50 cm quartz vein widens to 2 m in this area, 0 310°
FZR-42	791	4.37 oz/T	8200	-	20 cm quartz vein, exposed for 20 m, @ 310°
FZR-43	350	21.7 ppm	-	-	1.5 x 3.0 m quartz pod

Additional exploration work is required in this area. The elevated precious metals values associated with the quartz veining may indicate underlying mineralization similar to that found at the nearby "Doc" prospect in which precious metals mineralization is associated with several west-northwest trending quartz veins up to 2 m wide.

One sample of a highly fractured andesite with quartz veinlets (from the south-central edge of the FLORY 3 claim) yielded a weakly elevated gold (110 ppb) value, and a grab sample from a 15 cm quartz vein (from the southwest corner of the FLORY 2 claim) yielded weakly elevated gold (159 ppb) and copper (2838 ppm) values. In addition to these samples, a grab sample from gneissic quartzite located in the southwestern portion of the FLORY 3 claim yielded elevated lead (1095 ppm) and zinc (3102 ppm) values.

STREAM SILT SAMPLING

Stream sediment geochemical sampling was conducted on the property as part of the current exploration program. Samples were collected whenever streams were crossed during reconnaissance prospecting of the area. Rather than complete a statistical analysis of the geochemical results obtained during this survey, the designation of anomalous values is based on the regional Geological Survey of Canada results in Open File 1645.

Based on these criteria, there were no anomalous precious metals values detected by this survey. One sample (FPL-9), from a stream located in the northeastern corner of the FLORY 4 claim, yielded elevated chromium (824 ppm) and nickel (357 ppm) values.

HEAVY MINERAL SAMPLING

A heavy mineral stream sediment sampling survey was conducted on the property as part of the current exploration program. Heavy mineral samples were collected in parts of a creek where there is a sudden transition from high to low energy, if present, moss mat was used. Samples were sieved to -20 mesh and a 3 to 5 kg sample of sieved material was collected.

The samples were forwarded to Bondar-Clegg and Company in Vancouver for multi-element analyses: Au by fire assay-AA and the remaining 29 elements by I.C.P. The heavy mineral separation consists of floating off the light (<3.3) minerals using methylene-iodine followed by magnetic separation. A sample weight of 0.5 grams is taken for the I.C.P. and the remainder used for fire assay.

The heavy mineral sampling survey was conducted by Mr. M. Waskett-Myers of Keewatin Engineering Inc. which company has done a considerable amount of work in the Unuk River area, and in the process, has assembled a fairly substantial data base. These data were used to assess the values obtained on the property.

Heavy mineral sampling is a good first-pass tool and should be considered as a micro-prospecting approach to evaluating an area.

A total of 13 heavy mineral samples were collected from creeks draining the property area, and reflect background values in all the elements. Sample FWH-5 yielded a weakly elevated gold value of 104 ppb. Reconnaissance prospecting in this drainage area located highly fractured andesite with quartz veinlets which yielded weakly elevated gold of 110 ppb.

SUMMARY AND RECOMMENDATIONS

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling, with the objective of evaluating the property's potential for hosting economic precious metals deposits. This work was concentrated in the areas of reported mineralization, in the upland areas, in the drainage courses of the claims where rock expsoures are most abundant, and in the area north of Flory Lake which previous exploration efforts would have neglected due to the dense forest growth and difficult terrain.

The Flory Creek fault zone cuts diagonally across the FLORY 4 claim. The Minfile plots two copper occurrences within and adjacent ot this fault zone, north of the property boundary. Prospecting along this fault zone did not locate any mineralization.

Copper mineralization, of probable limited extent, was located adjacent to the property boundary, in the southeast corner of the FLORY 2 claim. The McQuillan Ridge copper showing is reportedly located southeast of this area, but was not relocated during the current exploration program.

An area containing a number of fractured zones with quartz-carbonate flooding, stringers, and veinlets up to 10 cm wide occurring within andesite tuff was located on the SAM 1 mineral claim. Sulphide mineralization is generally restricted to the quartz-carbonate veining. A number of grab samples yielded anomalous Ag, Pb, and Zn values.

Additional exploration is required in this area to determine the significance of this mineralization. The exploration should consist of additional prospecting, detailed geological mapping, and systematic chip sampling across the fractured quartz-carbonate enriched zones to determine the width and extent of the mineralization. This area may contain mineralization similar to that found at the Mount Madge prospect in which a stockwork of thin quartz veinlets occurs in intensely altered fine-grained tuffaceous andesite or dacite. A grab sample of fine-grained dacite tuff, in the southeast corner of the FLORY 1 claim, yielded 1.19% Zn. This area also requires additional investigation to determine the significance of the sphalerite mineralization.

A number of quartz veins (generally 20 to 50 cm wide, widening up to 2 m over short distances) within andesite tuff were located in the north-central part of the FLORY 2 claim. A number of grab samples yielded elevated to anomalous Au, Ag, Cu, and/or Zn values. The elevated precious metals values associated with the quartz veining may indicate underlying mineralization similar to that found at the nearly DOC prospect in which precious metals mineralization is associated with several west-northwest trending quartz veins up to 2 m wide. Additional exploration work is required in this area.

In addition to these areas, a grab sample from gneissic quartzite, in the southwest part of the FLORY 3 claim, yielded elevated lead and zinc values. Additional exploration should be completed in this area to determine the significance of these elevated values.

Stream silt geochemical samples were collected whenever streams were crossed during reconnaissance prospecting. There were no anomalous precious metals values detected by the survey. Additional stream silt sampling may be useful in evaluating the property; however, the steep topography and the deeply incised nature of the drainage courses would make this extremely difficult.

A heavy mineral stream sediment sampling survey was completed over the property as part of the 1989 exploration program, and yielded background values for all the elements.

Page 28

CERTIFICATE - C. H. Aussant

I, Claude Henry Aussant, of 31 Templebow Way N.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 400, 534 17th Avenue S.W., Calgary, Alberta.
- 2. I am a graduate of the University of Calgary, B.Sc.Geology (1976), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 4. I am the author of the report entitled "Geological, Prospecting, and Geochemical Report on the Flory Property, FLORY 1-4 and SAM 1-2 Mineral Claims, Skeena Mining Division, British Columbia", dated November 6, 1989. I personally worked on the property during the program described herein.
- 5. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of **Prolific Resources Ltd.**, in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 6th day of November, A.D. 1989.

Respectfully submitted,

PERMIT TO PRACTICE TAIGA CONSULTANTS LTD. Signature Date 4 990 PERMIT NUMBER: P 2399 The Association of Professional Engineers, Geologists and Geophysicists of Alberta

Cande funtant

C. H. Aussant, B.Sc., P.Geol., F.GAC

Page 29

CERTIFICATE

I, DAVID GEORGE DuPRE, of 56 Parkgrove Crescent in the Municipality of Delta in the Province of British Columbia, do hereby certify that:

- 1) I am a graduate of the University of Calgary, B.Sc. Geology (1969), and have practised my profession continuously since graduation.
- 2) I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 3) I am a consulting geologist with the firm of Keewatin Engineering Inc. with offices at Suite 800 900 West Hastings Street, Vancouver, British Columbia.
- 4) I am the co-author of the report entitled "Geological, Prospecting, and Geochemical Report on the Flory Property, FLORY 1 to 4 Mineral Claims, Skeena Mining Division, British Columbia", dated November 6, 1989. I personally supervised the work on the property and visited the site on two occasions between September 6 and October 15, 1989.
- 5) I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of **Prolific Resources Ltd.**, in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this 6th day of November, A.D. 1989.

David G Burge, G. Sufficient, FGAC

Respectfully submitted,

BIBLIOGRAPHY

- Aerodat Limited (Dec'88-Jan'89): Airborne EM and Magnetic Survey on the FLORY 1-4 and SAM 1-2 Mineral Claims; <u>for</u> Ross Resources Ltd.
- Alldrick, D.J.; Drown, T.J.; Grove, E.W.; Kruchkowski, E.R.; Nichols, R.F. (Jan.1989): Iskut-Sulphurets Gold; <u>in</u> The Northern Miner Magazine

Anderson, R.G. (1989): A Stratigraphic, Plutonic and Structural Framework for the Iskut River Map Area (NTS 104B), Northwestern British Columbia; <u>in</u> Current Research, Part E; Geol.Surv.Cda., Paper 89-1E

Britton, J.M.; Webster, I.C.L.; Alldrick, D.J. (1989): Unuk Map Area (104B/7E,8W,9W,10E); <u>in</u> B.C.Energy Mines & Petr.Res., Geological Field Work 1988, Paper 1989-1, pp.241-250

Consolidated Stikine Silver Ltd.: - 1989 Annual Report

Geological Survey of Canada:

- Open File 1645 (1988): National Geochemical Reconnaissance; Iskut River

- Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, British Columbia; B.C.Energy Mines & Petr.Res., Bulletin 58
- ----- (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C.Energy Mines & Petr.Res., Bulletin 63
- Hawkins, Paul A., & Associates Ltd. (Oct.1987): Report on Reconnaissance Mapping and Prospecting in the Unuk River Area, Skeena and Liard Mining Divisions; <u>for</u> Axiom Explorations Ltd.; B.C. Energy Mines & Petr.Res., Assess.Rpt.16858
- Klein, J. (1968): Report on Airborne Geophysical Surveys, Stewart Area, B.C.; <u>for</u> Granduc Mines Limited; B.C. Energy Mines & Petr. Res., Assess.Rpt.1835
- Korenic, J.A. (1982): Assessment Report of Geological, Geochemical, and Geophysical Work Performed on the Cole Claim in 1981, Skeena Mining Division; B.C.Energy Mines & Petr.Res., Assess.Rpt.10474

Ostersoe, E.A. (1969): Report of Geological and Geophysical Surveys on the JIM 1-22 Mineral Claims, Skeena Mining Division, B.C.; <u>for</u> Granduc Mines Limited; B.C. Energy Mines & Petr.Res., Assess.Rpt.2503

Pegg, R.S. (1988): Geological Compilation of the Iskut, Sulphurets, and Stewart Gold camps; <u>for</u> BP Resources Canada Limited, private company report

Shensha Consultants Limited (1989): Report on Mineral Potential Evaluation of FLORY Claim Block; <u>for</u> Ross Resources Ltd., private company report

APPENDIX

Summary of Personnel Rock Sample Descriptions Certificates of Analysis Analytical Techniques

SUMMARY OF PERSONNEL

<u>Name / Address</u>	<u>Position</u>	<u>Dates</u>		<u>Man Days</u>
C. H. Aussant Calgary, Alberta	Project Geologist	Sep.9-Oct.16		4.50
B. C. Beattie Calgary, Alberta	Assistant Geologist	Sep.9-Oct.16		6.00
M. Waskett-Myers Vancouver, B,C.	Geochemist	Sep.9-Oct.16		4.25
B. McIntyre Vancouver, B.C.	Senior Prospector	Sep.9-Oct.16		3.00
S. Hardlotte LaRonge, Sask.	Senior Prospector	Sep.9-Oct.16		8.00
Don McLeod LaRonge, Sask.	Senior Prospector	Sep.9-Oct.16		7.00
Dennis McLeod Stanley Mission, Sask.	Junior Prospector	Sep.9-Oct.16		8.00
Irvine Roberts Stanley Mission, Sask.	Junior Prospector	Sep.9-Oct.16		7.00
C. Oevermann	Cook	Sep.9-Oct.16		6.25
Smithers, B.L.			TOTAL	54.00

Reewatin Engineering Inc.

.
ROCK SAMPLE DESCRIPTIONS

<u>Au ppb</u>

- FCR-004 111 1.68% Cu; grab o/c; rusty weathered argillite, argillite/ limestone sequence in andesite tuff; argillite rusty weathering, diss pyrite, spots with malachite staining, minor chalcopyrite; sample collected of malachite stained spot; black argillite convoluted foliation, brecciated; ~2 m wide zone with spotty malachite staining, traced for 25 m adjacent to limestone/argillite contact, strike 085°
- FCR-005 13 2777 ppm Cu; grab o/c; black argillite, 1 m wide band rusty weathered; exposed for 10 m; enclosed by andesite tuff; massive sulphides pyrite, pyrrhotite, chalcopyrite, magnetite; minor chalcedonic quartz
- FCR-006 159 2838 ppm Cu; grab o/c; 15 cm quartz vein, minor malachite staining, minor chalcopyrite and pyrite in massive andesite tuff, small limestone lens occurring adjacent to the veining; vein strikes 170° dips 35°E; feldspar porphyry dyke above the quartz vein strikes 130° dips 40°SW
- FCR-007 <5 grab o/c; quartz stringers with minor pyrite; in a mudstone unit 3 m wide; quartz stringers widen into pods up to 30 cm wide; sample collected of both a stringer and a quartz pod.
- FVR-004 <5 talus; argillite, diss pyrite, minor pyrrhotite
- FVR-005 <5 talus; argillite with numerous qtz stringers and veinlets
- FVR-006 <5 talus; greenish grey argillite, rusty weathering, pyrrhotite up to 2%
- FVR-007 <5 talus; boulder 6m³; greenish grey andesite tuff with magnetite stringers up to 5 cm wide, stringers pinch and swell; trace bornite
- FVR-008 10 grab o/c; 1 m wide andesite tuff, pyritic, limonite stained, cherty, fine-grained, pale grey; up to 5% diss pyrite
- FVR-009 31 grab o/c; shear zone 70 cm wide, exposed for 2 m, 032°/ 80°W; siliceous, quartz stringers and pyrite stringers
- FVR-010 <5 float; argillite from 30 cm diameter boulder; pyrrhotite and pyrite stringers
- FVR-011 <5 float; 4 cm wide quartz-carbonate veinlet in pale greenish grey andesite; pyrite crystals, speckles of malachite

Keewatin Engineering Inc.

	<u>Au ppb</u>	
FVR-012	<5	grab o/c; numerous quartz veinlets 1 mm to 10 cm in a 2 m zone 038°/50°S; in argillite, pyrite crystals up to 2% in the quartz
FVR-017	<5	grab o/c; greenish grey andesite tuff, 1-2% diss Py crystals, rusty stained gossan along the creek
FVR-018	7	grab o/c; greenish grey andesite tuff, 2% diss Py crystals, zone 3 m wide
FVR-019	13	grab o/c; same as above; gossanous area 2 x 6 m; trace pyrite
FVR-020	<5	1130 ppm Cu; float; quartz-carbonate vein, boulder sub- rounded, containing green andesite clasts; pyrite, minor pyrrhotite, malachite, trace chalcopyrite, <1% sulphides
FVR-021	71	grab o/c; quartz-carbonate vein 15 cm wide 125°/66°E, most of the vein contains angular andesite clasts up to 3 cm, large rusty pockets, and minor blebs pyrite, occ magnetite stringers; <1% diss pyrrhotite, pyrite
FVR-022	<5	689 ppm As; grab o/c; pale green andesite tuff; diss pyrite, minor pyrrhotite, 1-2% diss sulphides, porphyritic
FVR-023	11	11892 ppm Zn; grab o/c; grey fine-grained andesite tuff (dacite?); sphalerite, minor pyrrhotite, light grey spec- ularite, trace chalcopyrite, pyrite stringers
FVR-024	<5	grab o/c, pale grey cherty andesite tuff, diss pyrite, pockets of pyrrhotite, up to 1%
FVR-025	10	float; below cliff, quartz vein in fine-grained green andesite tuff, minor pyrite in the andesite, quartz is fracture filling
FZR-036	<5	grab o/c; pink, aphanitic rhyolite dyke; fractures coated with specularite
FZR-037	6	float, very fine-grained granodiorite with 1-2% diss pyrite and pyrrhotite
FZR-038	335	46.2 ppm Ag, 2227 ppm Zn; float; quartz vein, crystalline, diss sulphides, percent variable, portions <1%, other portions 10%
FZR-039	330	44.9 ppm Ag, 1191 ppm Cu, 1736 ppm Zn; grab o/c; quartz vein, same as above, 30 cm wide, 2 m exposed; malachite in wall-rock, strikes 160°

Keewatin Engineering Inc.

	<u>Au ppb</u>	
FZR-040	<5	1205 ppm Cu; grab o/c; buff coloured very fine-grained tuff; numerous quartz stringers, chrysocolla staining fracture planes; same area as FZR-039
FZR-041	129	14.7 Ag, 1923 ppm Cu; grab o/c; quartz vein, crystalline, 1% pyrite, minor chrysocolla lining fracture plane, generally 50 cm wide, area widens to 2 m, strikes 310°
FZR-042	791	4.37 oz/ton Ag, 8200 ppm Cu; grab o/c; quartz vein 20 cm wide exposed for 20 m, limonite stained, 1-2% pyrite, chalco-pyrite; minor chrysocolla staining; same area as FZR-041
FZR-043	350	21.7 ppm Ag; grab o/c; quartz vein, greyish white, 5-7% diss pyrite, quartz pod 1.5 x 3 m
FZR-044	6	grab o/c; brecciated quartz / diorite dyke 2 m wide, limonite stained, 5% pyrite, trace chalcopyrite
FZR-045	110	grab o/c; highly fractured andesite with quartz veining, limonite stained, diss 2-4% pyrite, trace pyrrhotite, minor chalcopyrite
FZR-046	8	grab o/c; beige coloured rhyolite dyke, 1-3% diss Po
FZR-047	8	grab o/c; light to medium grey diorite dyke 20 cm wide, qtz stringers, 1% diss pyrite, limonite stained, well laminated
KZR-062	<5	grab o/c; mottled mauve andesite tuff, minor pyrite
KZR-063	8	float; black argillite, rusty weathered, 1% Py as stringers and disseminations, very angular boulder 1 x 2 m
KZR-087	38	grab o/c; black argillite, very fine diss pyrite, wavy lam- inations
KZR-088	<5	grab o/c; quartzite, weakly banded, grey to black; 1-2% diss pyrite
KZR-089	<5	grab o/c; diorite, black, very fine-grained, 3-5% diss pyrite and pyrrhotite, minor pyrrhotite stringers
FOR-033	<5	grab o/c; brecciated calcite with angular volcanic fragments; minor pyrite, chalcopyrite, trace malachite; strikes 100°, 4 cm wide veinlet
FOR-034	<5	float; green andesite tuff, calcite stringers, <1% diss Py, minor pyrite stringers
FOR-035	5	grab o/c; black andesite tuff, strongly magnetic, diss mag- netite, 1% diss pyrite

Franking Keewating Engineering Inc.

<u>Au ppb</u>	
11	grab o/c; same location as FOR-035; medium grey to black andesite with magnetite bands, 2% diss pyrite
<5	grab o/c; massive diorite, minor pyrite
<5	grab o/c; rusty weathered silty sandstone, minor pyrite
<5	1095 ppm Pb, 3102 ppm Zn; grab o/c; quartzite, gneissic foliation, minor disseminated pyrite
<5	float; medium grey tuff, cherty, quartz stringers, minor disseminated pyrite, pockets up to 5% pyrite
<5	grab o/c; pale grey andesite tuff, 1% disseminated pyrite, massive, cherty
<5	1285 ppm Cu; grab o/c; quartz vein 14 cm wide exposed for 20 m, crystalline, chrysocolla staining, minor pyrite and chalcopyrite
11	grab o/c; medium grey andesite tuff, 3% diss pyrite
<5	grab o/c; medium greenish grey andesite, disseminated mag- netite, strongly magnetic, trace pyrite
9	grab o/c; black argillite, 2% diss pyrite, limonite stained
<5	grab o/c; banded green rhyodacite, minor disseminated pyrite, minor quartz veinlets
8	grab o/c; green andesite, strongly magnetic, diss magnetite, <1% disseminated pyrite
<5	float; light grey andesite tuff, rusty weathered, <1% diss pyrite, 1% pyrrhotite, minor quartz-carbonate stringers
11	grab o/c; medium grey andesite tuff, pyrite pockets, pyrite lining fracture planes, disseminated magnetite, strongly magnetic
<5	grab o/c; beige to grey quartzite, trace pyrite
9	grab o/c; grey chert, <1% disseminated pyrite
<5	grab o/c; dark grey to black andesite tuff, <1% pyrite
<5	float; 2 cm quartz veinlet in dark grey to black andesite, trace disseminated pyrite
8	grab o/c; aphanitic tuff, buff to light green-grey, variably disseminated pyrite generally <1% with spots of 10%
	Au ppb 11 <5

Keewatin Engineering Inc.

	<u>Au ppb</u>	
FPR-028	11	grab o/c; pale grey tuff, quartz flooding and stringers, very fine disseminated pyrite, calcite stringers, 5% sulphides, zone 5 m wide, strikes 160°, dips steeply east
FPR-029	33	4816 ppm Pb; grab o/c; quartz veinlets up to 10 cm wide in light grey aphanitic calcareous tuff, minor disseminated Pb, Cpy, Py in the quartz veinlets, in 2 m shear striking 048°/ vertical (5 m east of FPR-028)
FPR-030	<5	grab o/c; quartz-carbonate veining in green andesite tuff, minor pyrite, limonite stained, 10 cm wide, 158°/east dip
FPR-031	<5	grab o/c; 15 cm quartz-carbonate vein striking 245°, weakly crystalline, minor disseminated pyrite
FPR-032	<5	grab o/c; pale to medium grey tuff, quartz-carbonate stringers and veinlets, 1-2% disseminated pyrite, minor pyrite stringers, strike 245°, limonite stained zone 3 m wide
FPR-033	270	2.6 oz/ton Ag, >10,000 ppm Pb, 20.05% Pb; grab o/c; light grey tuff, highly fractured, quartz-carbonate veining and fracturing filling, portions of the quartz-carbonate veinlets have 30% Pb disseminations, minor disseminated pyrite, zone 0.5 m wide, strike 156°
FPR-034	16	2649 ppm Pb, 4001 ppm Zn; grab o/c; grey calcareous tuff, quartz-carbonate stringers, fractured, minor slickensides, chloritic along slickenside surfaces, 5% disseminated pyrite, zone 25 m wide, strike 075°
FPR-035	7	grab o/c; quartz/quartz-carbonate/carbonate stringers/ flooding/veinlets in a highly fractured medium grey tuff, minor disseminated pyrite, zone 2 m wide, strike 106°
FPR-036	<5	1836 ppm Pb; float; quartz-carbonate vein with pockets of galena, <1% disseminated pyrite, trace pyrrhotite
FPR-037	<5	grab o/c; quartz-carbonate vein in andesite tuff, 1% diss pyrite, andesite fragments in the vein, zone strikes 124°
FPR-038	18	grab o/c; quartz vein 30 cm wide striking 124°, <1% diss pyrite, trace chalcopyrite, trace malachite, magnetite bleb (10 m from FPR-037)
FPR-039/	′A <5	grab o/c; buff limestone, minor disseminated chalcopyrite, pyrite and quartz stringers, strikes 160°/ vertical
FPR-039/	′B <5	grab o/c; quartz-carbonate flooded grey andesite tuff, minor disseminated pyrite

Keewatin Engineering Inc.

.

	<u>Au ppb</u>	
FPR-040	<5	float; crystalline quartz veins with minor pyrite as diss- eminations and pyrite blebs in fractured pyritic (5%) tuff
FPR-041	20	grab o/c; fractured greenish grey andesite tuff, pyrite stringers, quartz stringers, pockets of 5-10% pyrite, remaining area minor disseminated pyrite
FPR-042	<5	grab o/c; very fine-grained quartz diorite, pyrrhotite stringers, <1% disseminated pyrite (cooked andesite?)
FPR-043	<5	grab o/c; quartz veining 3-5 cm wide with pockets of pyrite and inclusions of argillite, in black argillite with minor pyrite
FPR-044	15	grab o/c; rhyodacite tuff, highly fractured, limonitic, calcareous, trace pyrite
KPR-066	6	grab o/c; dark green andesite, 2% disseminated pyrrhotite, minor pyrite, disseminated magnetite, rusty weathered
KPR-067	28	grab o/c; fractured green andesite, zone 4-5 m wide, strikes 050°, numerous calcite stringers and fracture fillings, 3% disseminated pyrite
KPR-068	<5	grab o/c; 15 cm wide grey quartz vein with <1% diss pyrite in dark grey andesite tuff (same location as KPR-067)
KPR-069	9	grab o/c; quartz vein, minor disseminated Po,Py, numerous green (epidote?) stringers throughout
KPR-090	7	grab o/c; black argillite, minor pyrite, strike 030°/vertical
KPR-091	<5	grab o/c; black argillite, 5% disseminated pyrite
KPR-092	<5	grab o/c; pinkish grey andesite tuff, fractured, minor quartz flooding, with recrystallization of adjoining andesite
KPR-093	<5	float, quartz, minor pyrite

KEEWATIN ENGINEERING INC. STREAM SEDIMENTS

Project:	FLORY.	STREAM S	EDI	IMEN	TS	Resu	lts P	lottec	l By: .			<u></u>						
Area (Grid)	l:					Map	·				N	. T.S .:						<u>.</u>
Collectors:						Date	:											
			:	SEDI	MENT	DAT	Α_		STREA	AM D	ATA							
Sample	NOTES		Ţ	σ		λ	anid	ł	ive	1 L	Ľ.	ė.	LIN I					
Number			Ğ	San	Silt	Cla	õ	8	Ă	Ŵ	õ.	ci v C	SP	60			-	
EVIDOL	Sitt callert African these anots				7					i,V	0.1							
EVI 017	Silve torage the promitions			\checkmark	~			V		2.0	0.1							
T. T. POL													[
FZLOIR					V					10	001						·	
F2L-014					r					10	0.05		 			└──┤		
F22-020				_	~	 				1.5	0.2							
									ļ				 			<u> </u>		
K21027					V		 	∦		20	0.1		∦			┟──┤		
KZLU28										3.0	02							
								ļ				<u> </u>	 					····
K21035	Grano. diverté de.				~			∦		20	0.15	}	·			├ ──┤	}	
K22036					V			- <u></u>		2.0	سور .ل ^{ار}	<u> </u>			<u>.</u>	╞──┤		
							ļ	∦	ļ	 		<u> </u>		ļ		↓ ↓		
FOL037			V					₩				 	┨	~		┟───┼	{	
FULU 38			~	[<u> </u>			0.5	0.05	<u> </u>			[╞══╁		
				· .				╢				<u> </u>	ļ		_	├ ──- 		<u> </u>
K-01054	· · · · · · · · · · · · · · · · · · ·		~		~		ļ	 		4.0	0,00	'	·			$ \longrightarrow $		
KULUSS				<u> </u>	~					20	0.04	<u> </u>	╡────		<u> </u>	╞──┤		
												<u> </u>	┦───		<u> </u>			<u> </u>
FELOGE					<u> </u>			╢	+	30	0.1	╂				+-+		
FELO67										60	10.1					╞──┤		
						┨───		╢	+		0.2		-		<u> </u>	\vdash		
FPL 009					⊢ ∕			∦		1.0	1 crix	 	-			╂╂		
				<u> </u>	<u> </u>		+	╬┈┈		120	0.1					╞───┥		
K-PL 029			~	<u> ′</u>	 ∕		┨	╢		12.0'	0.1	┨───				╂──┤		
XPL030			-	┢	<u> ~</u>		+	╫───		4.0		†	+	 		┝──┤		
				<u> </u>	<u> </u>	<u> </u>	 	#	1	 	 	1				╞╼╾╉		
	·			╂				╫		<u> </u>		+		<u></u>		┟──┤		
			<u> </u>	+		<u> </u>		╢───		<u> </u>	+	1	1			┝──╉	†	

23-2-1

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 11-0CT-89

REPORT: V89-F	16872.0						PR	OJECT: FI	ORY		PAGE 1	à
SAMPLE NUMBER	FLEMENT	Au PPB	Ag PPN	As PPN	Da PPN	lie PPM	D i PPM	Cd PPM	Ce PPM	Co PPM	Cr PPM	Cu PPit
R2 89FC-R004	FLORY	111	5.0	52	228	<(1.5	<2	2	25	48	187	>2000
R2 89FC-R005	↓	13	1.2	79	66	<0.5	13	4	<5	352	26	2777
R2 89FC-R1106		159	9.4	68	99	<0.5	2	4	<5	373	23	2838
R2 89FC-RNN7		<5	0.7	<5	127	<0.5	</td <td><1</td> <td><5</td> <td>18</td> <td>179</td> <td>200</td>	<1	<5	18	179	200
R2 89F0-RN33		<5	0.2	11	6	<0.5	<2	<1	<5	1	64	560
R2 89F0-RN34		<5	<0.2	23	12	<0.5	</td <td><1</td> <td><5</td> <td>31</td> <td>32</td> <td>199</td>	<1	<5	31	32	199
R2 89FV-RNN4		<5	<0.2	27	174	<0.5	<2	<1	<5	16	97	22
R2 89FV-R005		<5	<0.2	<5	41	<n.5< td=""><td><?</td><td><1</td><td><5</td><td>2</td><td>349</td><td>59</td></td></n.5<>	</td <td><1</td> <td><5</td> <td>2</td> <td>349</td> <td>59</td>	<1	<5	2	349	59
R2 89FV-RIIN6		<5	N. 3	<5	80	<0.5	11	<1	<5	64	213	318
R2 89FV-RNN7		<5	<0.2	<5	156	<0.5	</td <td>. <1</td> <td><5</td> <td>28</td> <td>92</td> <td>12</td>	. <1	<5	28	92	12
R2 89FV-RIIN8	,	10	0.6	15	44	<0.5	<2	<1	<5	20	126	58
R2 89FV-RNN9		31	0.3	35	155	<n.5< td=""><td><2</td><td><1</td><td><5</td><td>17</td><td>114</td><td>81</td></n.5<>	<2	<1	<5	17	114	81
R2 89FV-R010		<5	<1.2	<5	627	<n.5< td=""><td><2</td><td><1</td><td><5</td><td>29</td><td>.52</td><td>187</td></n.5<>	<2	<1	<5	29	.52	187
R2 89FV-RD11		<5	N.2	9	61	<n.5< td=""><td>. <2</td><td>1</td><td><5</td><td>13</td><td>137</td><td>231</td></n.5<>	. <2	1	<5	13	137	231
R2 89FV-RN12		<5	<11.2	<5	74	<n.5< td=""><td><2</td><td><1</td><td><5</td><td>5</td><td>141</td><td>125</td></n.5<>	<2	<1	<5	5	141	125
R2 89FZ-RN36		<5	<0.2	<5	27	<0.5	</td <td><1</td> <td>74</td> <td>3</td> <td>74</td> <td>56</td>	<1	74	3	74	56
R2 89FZ-RN37		6	<0,2	< 5	7	<0.5	<2	<1	<5	71	38	411
R2 89FZ-RN38		335	46.2	<5	22	<0.5	<2	155	<5	10	275	432
R2 89FZRN39		330	44.2	6	92	<11.5	<2	113	<5	10	189	1191
R2 89FZ-RN4N		<5	4.0	8	41	<0.5	</td <td>.5</td> <td>66</td> <td>6</td> <td>96</td> <td>1205</td>	.5	66	6	96	1205
R2 89FZ-RN41		129	14.7	<5	375	<0.5	<2	2	<5	13	316	1923
R2 89FZ-R042	T	221	<u>>50.0</u>	7	48	<d.5< td=""><td>9</td><td><1</td><td><5</td><td>20</td><td>297</td><td>8200</td></d.5<>	9	<1	<5	20	297	8200
R2 89FZ-R/143	FIOFY	350	21.7	<٢	19	<0.5	<2	1	<5	14	243	261

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 11-0CT-89

REPORT: V89-06	5872.0						PR	OJFCT: FI	ORY		PAGF 18	
SAMPLE NUMBER	ELEMENT	Ga PPN	La PPM	Li PPN	No PPN	Nb Ppm	Ni PPM	Pb PPM	Rb PPM	Sb PPĦ	Sc PPM	ې Pf
R2 89FC-RNN4		17	14	5	162	6	227	8	<20	<5	6	
R2 89FC-R005		58	<1	22	7	18	59	<2	136	48	10	
R2 89FC-RNN6		41	<1	23	9	22	62 -	19	<20	27	11	<
R2 89FC-R007		12	<1	12	3	4	11	<2	<20	<5	13	<
R2 89F0-RN33		<2	<1	3	<1	23	3	<2	<20	6	<1	`<
R2 89F0-RN34	•	- 31	<1	18	<1	17	25	3	<20	<5	6	
R2 89FV-RNN4		13	<1	7	· 1	9	9	<2	<20	<5	15	•
R2 89FV-R1115		3	3	<1	9	2	8	3	<20	<5	<1	•
R2 89FV-RNN6		38	<1	9	<1	19	347	<2	<20	<5	10	
R2 89FV-RNN7		9	<1	13	3	6	8	<2	<20	<5 _.	4	
R2 89FV-RNN8		. 5	<1	2	10	2	10	<2	<20	. <5	10	
R2 89FV-RUN9		15	<1	7	2	10	11	<2	<20	<5	9	
R2 89FV-RN1N		17-	<1	10	3	5	13	</td <td><20</td> <td><5</td> <td>18</td> <td></td>	<20	<5	18	
R2 89FV-R011		10	<1	5	2	5	5	19	<21	<5	3	•
R2 89FV-R012		9	<1	3	9	5	3	</td <td><20</td> <td><5</td> <td><1</td> <td></td>	<20	<5	<1	
R2 89FZ-R036		5	41	<1	<1	8	2	13	<211	<5	<1	
R2 89FZ-RN37		8	< <u>1</u>	7	6	5	22	<2	<20	<5	2	
R2 89FZ-RN38		<2	` < 1 .	<1	6	<1	12	531	<20	<5	· <1	
R2 89FZ-RN39		<2	<1	<1	12	<1	t5	414	<20	<5	<1	
R2 89FZ-RN4N		8	39	2	2	4	4	123	<20	<5	1	
R2 89FZ-R041		2	<1	2	10	1	17	85	<20	<5	<1	
R2 89FZ-RN42	•	<2	<1	<1	13	<1	31	308	<20	<5	· <1	
R2 89FZ-RN43		<2	<1	<1	17	<1	20	507	<21	<5	<1	
			,									

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 11-0CT-89

•									- <u></u>	
SAMPLE NUMBER	ELEMFNT UNITS	Sr PPN	Ta PPN	Te PPN	V PPM	H PPM	Y PPN	Zn PPM	Zr PPN	
R2 89FC-R004		31	<10	12	1440	<10	36	139	17	
R2 89FC-R005		41	<10	<10	137	<10	7	164	13	
R2 89FC-R006		39	<10	<10	141	<10	7	169	13	
R2 89FC-R007		63	<10	<10	91	, <10	4	67	<1	
R2 89F0-RN33		194	<10	<10	8	<10	1	18	<1	
R2 89F0-RD34		49	<10	<10	147	<10	3	. 77	5	
R2 89FV-RNN4		138	<10	<10	183	<10	4	47	3	
R2 89FV-RNN5		3	<10	<10	44	<10	3	3	5	
R2 89FV-R006		58	<10	<10 -	85	<10	4	43	8	
R2 89FV-RNN7		89	<10	<10	54	<10	4	41	2	
R2 89FV-RIIN8	<u> </u>	20	<10	<1[85	96	5	4	<1	
R2 89FV-RNN9		118	<10	<1月	118	<10	8	71	2	
R2 89FV-R010		19	<10	<10	223	<10	7	108	<1	
R2 89FV-R011		63	<10	<10	38	<10	· 3	132	2	
R2 89FV-R012		38	<10	<10	22	<10	2	22	<1	
R2 89FZ-RN36	••••	9	<10	<10	32	<10	<1	6	25	
R2 89FZ-RN37		27	<10	<1()	51	<10	- 4	22	9	
R2 89FZ-RN38		1	<10	<10	4	11	<1	<u>,2227</u>	<1	
R2 89FZ-RN39		5 ្	<10	<10	9	<10	<1	1736	<1	
R2 89FZ-RN4N		11	<10	<10	20	<10	. 9	96	1	
R2 89FZ-RN41		36	<10	<10	24	<10	<1	24	<1	
R2 89FZ-RN42		. 2	<10	<10	8	<10	K1	18	<1	
R2 89FZ-R043		1	<10	<10	5	<10	<1	8	<1	
			,							
								<u></u>		·····

·--··

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

	2/072 0							A FOTA EL	ADV	-07		
REPORT: V89-I								UJECI: FL			PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	Au PPB	Ag PPN	As PPN	Ba PPN	Be PPM	Bi PPM	Cd PPM	Ce PPM	Co PPII	Cr PPH	Ci PP
R2 89FE-R022	FLORY	<5	7.6	12	68	<0.5	<2	2	8	30	19	15
R2 89FE-RD23	₩	<5	0.2	6	263	<0.5	<2	<1	<5	15	37	4
R2 89FE-R024		<5	2.6	<5	19	<0.5	<2	<1	<5	5	217	128
R2 89FE-R025		11	<0.2	10	26	<0.5	<2	<1	<5	28	52	14
R2 89FP-R027		8	0.2	12	11	<0.5	<2	<1	<5	18	92	5
R2 89FP-R028		11	0.4	12	29	<0.5	<2	<1	<5	19	49	4
R2 89FP-R029		33	10.7	18	769	<0.5	<2	5	6	6	53	18
R2 89FP-R030		<5	0.7	<5	619	<0.5	<2	2	<5	10	100	
R2 89FP-R031		<5	1.0	7	65	<0.5	<2	<1	9	7	168	ç
R2 89FP-R032		. <5	0.5	. 10	51	<0.5	<2	2	16	10	20	
R2 89FP-R033		270	>50.0	91	50	<0.5	<2	45	<5	28/	78	1
R2 89FP-R034		. 16	4.3	68	34	<0.5	<2	87	7	17	25	
R2 89FP-R035		7	0.5	14	15	<0.5	<2	2	5	7	54	
R2 89FP-R036		<Ś	3.3	13	29	<0.5	<2	23	<5	7	156	
R2 89FP-R037		<5	<0.2	12	26	<0.5	<2	<1	<5	12	191	
R2 89FP-R038	. <u> </u>	18	1.7	5	391	<0.5	<2	<1	<5	11	263	5
R2 89FP-R0396	à	<5	<0.2	<5	117	<0.5	<2	<1	<5	6	18	
R2 89FP-R039	B	<5	<0.2	<5	19	<0.5	<2	<1	<5	8	79	
R2 89FP-R040		<5	<0.2	8	60	< N. 5	<2	<1	8	5	159	
R2 89FP-R041		20	<0.2	8	72	<0.5	<2	<1	<5	12	69	
R2 89FV-R017		<5	0.3	<5	93	<0.5	<2	<1	<5	24	55	
R2 89FV-R018		7	0.2	14	29	<0.5	<2	<1	<5	20	42	
R2 89FV-R019		13	0.2	<5	46	<1.5	<2	<1	<5	25	30	
R2 89FV-RD20		<5	2.2	<5	901	<0.5	<2	<1	<5	5	235	11
R2 89FV-R021			0.5	<5	251	<0.5	<2	<1	<5 _	7	164	2
R2 89FV-RD22	<u> </u>	<5	0.3	689	46	<0.5	<2	<1	9	25	6	1
R2 89FV-R023		11	0.2	<5	125	<0.5	<2	50	16	10	9	2
R2 89FV-R024	T	<5	0.2	<5	29	<0.5	<2	<1	<5	28	53	1
R2 89FV-R025	FLORY	10	0.8	7	145	<0.5	<2	<1	<5	15	99	1

.

1

Geochemical Lab Report

...

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-0	16873.0							PROJECT: FL	D: 18-001 0RY	-89	PAGE 18		
			J										
SAMPLE	ELEMENT	Ga ррм	La	Li	По	Nb	Nî DOM	РЬ	Rb	Sb	Sc	Sn Dom	
NUIDEN	00110		rrii	PPN .	PPN	PPN	PPN	PPN	PPN	PPN		PPfi	
R2 89FE-R022		5	1	3	2	9	15	28	99	8	9	<20	
R2 89FE-R023		9	<1	7	1	5	5	<2	33	<5	1	<20	
R2 89FE-R024		2	<1	3	2	1	16	6	<20	<5	1	<20	
R2 89FE-R025		7	<1	10	2	4	23	<2	<20	<5	6	<20	
R2 89FP-R027	· · · ·	6	<1	3	2	4	15	<2	29	<5	5	<20	
R2 89FP-R028		7	<1	4	3	15	13	<2	<20	<5	4	<20	
R2 89FP-R029		<2	<1	3	2	23	7	4816	<20	11	2	<20	
R2 89FP-R030		. 7	<1	3	1	16	4	50	<20	<5	2	<20	
R2 89FP-R031		12	3	2	3	9	3	25	31	<5	1	<20	
R2 89FP-R032		10	6	2	3	10	<1	54	<20	<5	2	<20	
R2 89FP-R033		13	<1	17		8	17	>1000	<20	28	5	<20	-
R2 89FP-R034		6	2	10	3	14	12	2649	<20	8	6	<20	
R2 89FP-R035		<2 `	2	6	<1	26	7	391	71	<5	3	<20	
R2 89FP-R036		9	<1	4	2	10	8	1836	26	<5	3	<20	
R2 89FP-R037		9	<1	4	2	5	13	30	<20	<5	4	<20	
R2 89FP-R038		7	<1	1	4	4	14	19	<20	<5	1	<20	
R2 89FP-R039	A	<2	1	4	<1	23	9	16	33	<5	5	<20	
R2 89FP-R0396	3	6	<1	4	1	14	5	<2	31	<5	4	<20	
R2 89FP-R040		5	3	4	11	2	4	2	<20	<5	2	<20	
R2 89FP-R041		5	<1	5	2	3	7	<2	<20	. <5	5	<20	
R2 89FV-R017		10	<1	11	2	5	21	<7	<20	<5	3.	<21	
R2 89FV-R018		4	<1	9	1	- 3	24	(2	42	<5	4	<20	
R2 89FV-R019		4	<1	2	- 5	. 3	6	(2	<20	<5	2	(20)	
R2 89FV-R020		9	<1	5	3	7	8	4	(20	<5	2	<20 <20	
R2 89FV-R021		, 9	<1	2	1	6	5	<2	<20	<5	3	<20	
R2 89FV-RN22		12	1	7	2	11		(7	53	ر 5	4	<20	-
R2 89FV-R023		11	- 6	3	2	10	<1	()	37	24	1	· <20	
R2 89FU-R024		8	4	10	2	4	23	(7	29	<u>د</u> م د5	7	<20	
R2 89EU-R025		7	<1	12	1	2	10	(7	57	رج دح	12	(20	
		•	••		•	-	7.0	``	,	· •	16	120	

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

DEDADT . 1190 . 0/	973 D							RUTELLA	PAGE 10		
REPURT: V87-06		<u></u>			·						
SAMPLE NUMBER	ELEMFNT UNITS	Sr PPM	Ta PPN	Te PPN	V PPN	H PPM	Y PPN	Zn PPN	Zr PPN		
R2 89FE-R022		117	<10	<10	37	<10	6	117	1		
R2 89FE-R023		43	<10	<10	42	<10	3	70	6		
R2 89FE-R024		5	<10	<10	16	<10	<1	18	<1		
R2 89FE-RD25		28	<10	<10	128	<10	3	38	2		
R2 89FP-R027		57	<10	<10	74	<10	2	28	4		
R2 89FP-R028		153	<10	<10	24	<10	7	75	1		
R2 89FP-R029		392	<10	<10	10	<10	7	319	<1		
R2 89FP-RD30		36N	<10	<10	19	<10	4	155	<1		
R2 89FP-R031		129	<10	<10	9	<10	4	63	1		
R2 89FP-R032		184	<10	<10	10	<10	.7	126	3		
R2 89FP-R033		184	<10	<10	17	<10	5	830	1		
R2 89FP-R034		497	<10	<10	55	20	9	4001	1		
R2 89FP-R035		529	<10	<10	. 30	<10	5	57	1		
R2 89FP-RD36		278	<10	<10	12	<10	4	8 76	<1		
R2 89FP-R037		42	<10	<10	34	<10	<u>` 3</u>	46	<1		
R2 89FP-R038		119	<10	<10	8	<10	2	17	<1		
R2 89FP-R039A		215	<10	<10	38	<10	8	17	<1		
R2 89FP-R039B		130	<10	<10	33	<10	4	29	<1		
R2 89FP-R040		12	<10	<10	10	<10	7	28	2		
R2 89FP-R041		14	11	<10	69	<10	3	32	2		
R2 89FV-R017	• ,	19	<10	<10	69	<10	2	76	2		
R2 89FV-R018		8	<10	<10	60	<10	2	8	1		
R2 89FV-R019		42	<10	<10	26	<10	2	10	3		
R2 89FV-R020		79	<10	<10	23	<10	2	24	<1		
R2 89FV-R021		28	<10	<10	12	<10	2	34	<1		
R2 89FV-R022	· · · · · · · · · · · · · · · · · · ·	230	<10	<10	58	<10	6	102	1		
R2 89FV-R023		250	<10	<10	12	89	7	<u>11892</u>	2		
R2 89FV-R024		30	<10	<10	133	<10	4	43	2		
R2 89FV-R025		13	<10	<10	128	<10	4	111	<1		

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE_PRINTED: 23-0CT-89

REPORT: V89 (16968.0						PR	OJECT: FL	ORY		PAGE 1A	
SAMPLE NUMBER	FLEMENT UNITS	Au PPB	Ag PPM	As PPM	Ba PPM	Be PPM	Bi PPM	Cd PPN	Ce PPN	Co PPM	Cr PPN	Cu PPM
R2 89F1 -R026	FLORY	<5	<0.2	<5	49	<n.5< td=""><td>4</td><td><1</td><td><5</td><td>15</td><td>81</td><td>22</td></n.5<>	4	<1	<5	15	81	22
R2 89FE-K027		9	<0.2	<5	169	<0.5	3	<1	<5	14	39	49
R2 89FE-R028		<5	<0.2	<5	70	<0.5	<2.	<1	<5	3	98	18
R2 89FE-R027		8	0.2	14	13	<Ո.5	6	<1	<5	25	19	170
R2 89E0-R035		5	<0.2	13	73	<1.5	7	<1	6	36	33	141
R2 8910-R036		11	<0.2	14	89	<0.5	6	<1	6	31	37	236
K2 89FP-K042	,	<5	<0.2	<5	19	<0.5	6	<1	<5	9	15	49
R2 89FP-8043		· <5	<0.2	<5	337	<0.5	23	<1	15	8	95	45
R2 89FP H044		15	<0.2	21	33	<0.5	5	<1	7	12	75	25
R2 89F7-HU44		6	<0.2	<5	208	<0.5	. 1	<1	<5	6	32	21
R2 89F7-K045		110	<0.2	10	6	<n.5< td=""><td>10</td><td><1</td><td><5</td><td>29</td><td>108</td><td>125</td></n.5<>	10	<1	<5	29	108	125
R2 89F7-K046	1	8	0.2	8	45	<0.5	7	<1	<5	15	83	30
R2 89F7-R047	FISAY	8	2.7	7	200	<0.5	<2	<1	<5	8	132	385

Geochemical -Lab Report

REPORT: V89-N	5968.0						PR	OJFCT: FI	ORY		PAGE 1B	
SAMPLE NUMBER	ELEMENT UNITS	Ga PPfi	La PPM	Li PPM	No PPN	Nb PPH	Ni PPN	Pb PPN	Rb PPM	Sb PPN	Sc PPM	S PF
	. <u></u>											
R2 89FE- RD26		13	<1	8	2	. 6	13	2	77	11	. 4	<
R2 89FE-R027		10	2	11	1	3	17	<2	90	10	7	<
R2 89FE-R028		11	1	7	<1	6	20	3	78	7	3	<
R2 89FE-R029		18	<1	8	2	5	10	<2	93	13	10	<
R2 89F0-RD35		19	<1	11	3	4	12	<2	76	15	18	<
R2 89F0-R036		15	<1	10	3	4	11	<2	161	12	7	<
R2 89FP-R042		17	<1	12	1	7	2	3	119	14	4	<
R2 89FP-R043		62	<1	26	<1	29	11	73	173	45	9	<
R2 89FP-R044		9	3	6	1	4	71	10	78	8	4	<
R2 89FZ-R044		21	<1	24	1	12	33	2	90	19	10	<
R2 89FZ-RD45		13	<1	4	<1	10	9	. 9	51	10	1	
R2 89FZ-R046		`13	<1	20	4	6	20	<2	125	11	12	· •
R2 89FZ-R047		3	<1	9	4	<1	64	27	166	6	9	
		•										
				•								

Geochemical. Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 23-0CT-89

REPORT: V89-	N6968.D						PROJECT: FLOR		ORY	PAGE 1C
SAMPLE NUMBER	ELEMENT UNITS	Sr PPM	Ta PPN	Te PPN	V PPM	U PPM	Y PPN	Zn PPN	Zr PPN	
			<u> </u>							
R2 89FE- R026		70	<10	<10	98	<10	4	24	1	
R2 89FE -R027		45	<10	<10	64	<10	7	68	<1	
R2 89FE R028		22	<10	<10	33	<10	4	34	<1	
R2 89FF-R027		17	<10	<10	407	<10	6	88	<1	
R2 89F0-R035		53	<10	<10	325	<10	12	101	<1	
R2 89F0-R036		11	<10	<10	206	<10	9	101	<1	
R2 89FP-R047		19	<10	<10	135	<10	9	46	<1	
R2 89FP-H043		156	<10	38	85	<10	5	331	2	
- R2 89FP-R044		14	<10	<10	46	<10	9	76	<1	
R2 89F7-6044		799	<10	<10	60	<10	3	17	<1	
R2 89F7 K045		53	<10	<10	5	<10	9	4	<1	
R2 89FZ-R046		16	<10	<10	96	<10	2	16	<1	······································
R2 89FZ-R047		28	<10	<10	79	<10	3 .	22	<1	

nomin (Chyg & Company Edd. 150 Pemberion Ave. 2566th Vancouver, B.C. 3779 2R5 (ra)4) 985-0681 Telex 04-352667

.

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

	RIPORT: V89-I	17573.0	·					000 PP	11 <u>6 1981911</u> 1997 - 1997 1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997	<u>D: 29-001</u> UK	_89	PAGE 16	
	SAMPI F NUMBER	FLEMENT UNITS	Au PPB	Ay Frin	As PPN	fta PPN	Ke FFN	Ki PPh	Cd FFM	Cir Pirn	Co 1'1'1	Ci 1997	Ci PPT
	R7 89KO-R (18) R7 89KO-R (18)	2 FIORY	<5 <5	<(1,2 	ረኝ ለዓ	150 369	<11.5 <11.5	2 <2	<1 <1	<5 <5	16 19	33 33	ير. 1611
	R7 89KO-R N84	FIORY	<5	2.4	5	46	<0.5	9	59	t.,	13		4',
				·									
										,.			
· · ·												<u> </u>	
	·····												
			-		<u></u>							· _ . _ .	
<u></u>			<u> </u>							``		····	
					,				,				

Geochemical Lab Report

रभा

1

				A DIVISIO	NOF INCHEV	APE INSPECTI	ON & TESTIN	G SERVICES	IE PRINIE	D: 22-001	-82		
	REPORT: V89-A	7573.0						PF	OUECT: UN	UK		PAGE 1B	. .
	SAMPLE NUMBLR	FI FMENT UNITS	Ga PPM	La PPN	1 i PPn	Но РРП	Nb PPn	Nî PPM	РБ РРП	Rb FFn	5.5 PPr6	5. PP n	56 PPM
							· · · · · ·						 :
	·												
-	R2 89K0-R N82 R2 89K0-R D8 3		13 16	<1 <1	4	<1 1	11) 7	21 11	<2 <2	<21] <2[]	сь С,	6 14	<21) <21)

<1

R7 89K0-R **N84** 11 1 4

3

1095

<21

8

. . •

Bondat-Clegg & Company Ed. Fo Perifection Ave. Forth Vincouver, B.C. V (P 2R5 ((44) 985-0681 Telex 04-352667

Geochemicai Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SURVICES

	REPORT: V89-07	1573.0						رم ربا	ATE PRINTE ROJECT: UN	D: 22-0C1 8 UK	9 F'AGF	1C
	SAMFLE NUMBER	FI EMENT UNITS	Sr PPM	la PPN	le PFM	V PPM	u PPn	Y PPM	Zn PPN	71 FPn		
												- <u></u> <u></u>
'. 												
	K2 89K0-R 1 <mark>182</mark> R2 89K0-R (18 3		265 91	<10 <10	<11) <10	51 153	<11 <11	} 6	21	? <1		
	R2 89K0-R U84		42	<10	<10	21	29	4	3102	<1		
ľ	-											
ļ												
										<u>`.</u>		
l												•
) .									•			
 						- <u></u>						- -
									······			 · -
 		· · · · · · · · · · · · · · · · · · ·										
,												
]												
									,			

Bonan Clegg & Company Ed. 160 Pendection Ave. 1664th Vancouver, B.C. V 7P 2R5 (604) 985-0681 Iclex 04-352667

Geochemical Lab Report^{*}

REPORT: V89-	17574.0]				DA PR	UL PRINTE	D:_27:0C1 UK		PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	Au PPB	Ag FPM	As PPH	Ba PPM	Be PPM	Bi PPN	Cd PFM	Ce PPN	Co PPn	Cr PPtt	Cu Pin
R2 89FE-R 09 K2 89FE-R 09 R2 89FE-R 09 R2 89FE-R 09	EICAY BI FICAY	<5 9 <5 <5	<11.2 11.2 11.2 (1.2 <11.2	6 9 13 6	33 32 465 248	<n.5 <n.5 <0.5 <8.5</n.5 </n.5 	<br 3 <2 3	<1 <1 <1 <1	34 33 <5 <5	 7 41 21	68 79 91 78	42 97 164 211
		,										
K2 89KP-R 1191 R2 89KP-R 1191	FIORY	7 <5	().3 N.3	45 8	169 85	<11.5 <1.5	3 . <2	<1 <1	6 <5	د, 8	45 311	49 . 87
R2 89KP-R 1197 R2 89KP-R 1197	3 FIDAY	<5 <5	0.3 <0.2	<5 <5	349 21	<n.5 <n.5< td=""><td>3 <2</td><td><1 <1</td><td>7 10</td><td></td><td>39 144</td><td>1112 25</td></n.5<></n.5 	3 <2	<1 <1	7 10		39 144	1112 25
		·					·					
		<u></u>										
······································												
		;										
	· · ·											

.

Geochemica Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

REPORT: V89-N	7574.0						DA PR	TF PRINTE	D: 27-0CT	-89	PAGE 1B	•••••
SAMPLE NUMBER	FI FMFNT UNITS	Ga PPM	la . PPN :	t i PPN	llo PPn	Nb PPM	Ni PPN	РЬ РРЛ	Rb Pi'll	Sb PPM	Sc PPn	Sn PPH
R2 89FE-R 094	· · · · · · · · · · · · · · · · · · ·	4	14	4	3	2	<1	<2	<21]	<5	2	
R2 89FE-R 095		3	16	3	4	2	2	<2	<21	<5	1	<211
R2 89FE-R 096		11	<1	10	2	5	31	<2	<2N <20	, (5	6	<20
K2 07FE-K U77		11		3	2	6	16	~~	<211	()	3	×20
R2 89KP-R 09N R2 89KP-R 091		1N 6	3	۲. ج	9 12	4	9 21	<2 <2	25 <211	<5 <5	8	<21) <21)
R2 89KP-R 092		14	4	6	3	6	2	<2	27	<5	15	[]</td
					·							
		. <u></u>										
											-	
							,					
·				·								
·												
		<u></u>			et ·					'		
								. *				

Geochemicat Lab Report

REPORT: V89-07	574.0						PR	OJFCT: UN	UK	PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Sr PPN	Ta PPN	Te PPN	V PPH	N PPN	ү РРИ	Zn PPN	Zr PFN	• • • ••• ••••
R2 89FE-R 094		4	<10	<10	2	<10	7	31	1	
R2 89FE-R 195		4 78	<10 <10	<10 <10	2 ពេរា	<10 <10	3	9 29	1	
K2 89FE-R 097		72	<10	<10	59	<10	4	14	2	
		•								
R2 89KP-R 1191 R2 89KP-R 1191		32 45	<1[] <1[]	<11) <10	135 70	<10 <10	8 3	45 19	<1 <1	
82 89KD_P 192		122	(11)	<u></u>	122		9	35	(1	
K2 89KP-R 093		8	<18	<10	6	<10	12	11	1	
			,					-		
						•				
						14				
				•						
										•
		<u>. </u>			- <u></u> -					··
							·			

.

•

•

;

-

١

Geochemical Lab Report *

- - - - - - -

.

A DIVISION OF INCHCAPE INSPECTION & HISTING SERVICES

REPORT: V89-	N6965.N						PR	OJFCT: UN	UK		HAGE TA	
SAMPLE NUMBER	ELEMENT UNITS	Au PPR -	Ag PFM	As PPN	8a PPN	Be PPM	81 PPN	Cd PPN	Ce PPfi	C o PPn	Cr PFM	Cu PFM
			•				·					
R2 89FE-RN64	FIJAY	<5	<11.2	<5	122	<0.5	</td <td><1</td> <td><5</td> <td>1/</td> <td></td> <td>33</td>	<1	<5	1/		33
R2 89FE-R065	FIJRY	11	<11.2	<5	13	<0.5	<2	1	12	41	38	62
		·										
R2 89KP-RD66) FIORY	. 6	0.4	<5	22?	<11.5	4	1	<5	41	84	72
R2 89KP-R067	1 : : : : : :	28	<(1.2	<5	62	<0.5	<2	1	<5	27	34	190
R2 89KP-R069	j Flory	9	<0.2	<5 <5	45 6	<1.5	2	<1	5	3	44	4 136
												-
R2 89KZ-RN62 R2 89KZ-RN63	FIONY	<5 8	<0.2 <11.2	<5 6	556 274	<#1.5	<2 3	<1	1N 12	е 15	64	36

-

,

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-F	16965.0						PR	OJECT: U	iuk 		PAGE 1B	
SAMPLE NUMBER	FI FRFNT UNITS	Ga PPN	l a PPN	l i PPN	flo PPri	Nb PPN	Ni PPN	Pb PPN	rd PPN	S6 Ppn	Sc PPN	Sn PPN
			×									
R2 89FE-R064		13	6	20	3	6	18	<2	97	6	13	<2()
R? 89FE-RN65		17	11	10	7	8	22	<2	42	8	6	<20
	· · · ·											
R2 89KP-R066		14	<1 _.	12	. 2	8	32	<2	<20	5	15	<21)
R2 89KP-R067 R2 89KP-R068 R2 89KP-R069	3	13 7 13	2 <1 2	7 3 3	6 2 <1	9 5 10	8 7 3	<2 3 2	4N 27 53	<5 <5 6	3 2 1	<21) <21) <21) <2U
	•											
K2 89KZ-RN62 R2 89KZ-RN63		11 18	7 7	5 11	2 3	47	4	<2 4	48 105	<5 11	10 10	<20 <20

,

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-N	5965.0						PR	OJECT: UN	UK	PAGE 1C
SANPLE NUMBER	EI EMENT UNITS	Sr PPH	Ta PPN	Te FPN	V PPN	н РРП	Y PPN	Zn PPn	7т РРИ	
R2 89FE . R064		29	19	<10	113	<10	9	70	1	
R7 89FE-R065	-	14	<10	<10	121	<10	13	152	1	
R2 89KP-R066		79	13	<18	180	<11)	5	33	<1	
R2 89KP-RN67 R2 89KP-RD68 R2 89KP-RD69		71 7 74	<10 <10 <10 <10	<10 <10 <10	111 124 28	<10 <10 <10	7 3 4	8 3 5	2 <1 2	
					·					
K2 89K2-RN62		34	<10	<11)	124	<10	5	37	<1	

 aunidal-Clegg & Company 1 (d. 150 Femberton Ave.
 North Vancouver, B.C.
 N7P 2R5
 (6(4) 985-0681 Telex 04-352667

Geochenneai Lab Report

KFPORT: V89-1	17572.0			HON& H STP	NG SERVICES	<u>TE PRINI</u> OJECT: UN	<u>-8</u> 9	PAGE 1A				
SAMPLE NUMBER	ELEMENT	Au PPR	Ag PPN	As PPN	lia PPM	Re PPM	B.i PPM	Cd PPM	Ce PPn	Co PFin	Cr PPN	Cu PPM
					·							·
		•										
									. · · ·			
	· .											
R2 89KZ-R 87 R2 89KZ-R 88 R2 89KZ-R 89	FLORY	38 <5 <5	().3 N.3 ().3	44 211 35	152 356 59	<#.5 <#.5 <#.5	8 4 4	<1 <1	<5 16 6	14 11 28	39 51 61	63 13 3211
										- · .		
			•									
												
	· · · · · · · · · · · · · · · · · · ·			· · · · · · ·	 				•			
· · · · · · · · · · · · · · · · · · ·												
										 .		
										• ··		
	*											

•

÷

Geochemicat Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-N75	72.0							T <u>F PRIN</u> TF OJECT: UN	n:_27-0c1 Iuk	[-8 9	PAGE 18		
SAMPLE NUMBER	EI FMENT UNITS	Ga PPN	La PPN	l.i PPN	Но РРИ	NP NH	Ni. PPM	Pb PFM	Rb PPN	Sb PPM	Sc PPH	Si PP	
										•			
• 		·											
			·										
					-								
H2 89KZ-R 87 H2 89KZ-R 88 H2 89K7-R 89		23 17 13	<1 3 <1	9 7 4	/ 4 2	9 111 7	18 រក 5	<2 <2 4	<21) <21) <21)	10 5 11	8 9 7	<7 <2 <7	
· · · · · · · · · · · · · · · · · · ·		<u></u>								-			
				·						·		,	
· 		<u> </u>											
										. •			
												•	
									·				
•													
· · · · · · · · · · · · · · · · · · ·													
										·			
									·····	• •			

Bondar-Clegg & Company Ltd. The Pendseton Ave. 1904 Files (C. 1997) 1904 Autoniver, B.C. 1979 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

REPORT: V89-07	572.N						PR	OJECT: UN	UK	PAGE 1
Sample Number	ELEMENT UNITS	Sr PPN	Ta PPN	Te PPN	ע רויזים	H PPN	Y PPM	Zn FFM	Zr PPN	<u> </u>
								×		
									;	
K2 89KZ-K 87 R2 89KZ-R 88 K2 89KZ-R 89		82 28 30	<10 <10 <11	<11) <10 <10	105 65 116	/ <10 <10 <10	5 14 14	41) 43 33	<1 2 <1	-
										_
······	· · · · · · · · · · · · · · · · · · ·									• ••
										•
						•				•
				· · · · · · · · · · · · · · · · · · ·		·····	·····			
					·					
····-		<u> </u>							<u> </u>	
								. •		

Hond a -Clegg & Company Edd. FO Pemberton Ave. Praorth Vancouver, B.C. A 7P 2R5 (604) 985-0681 Telex 04-352667

Geochémicai Lab Report

A DIVISION OF ENCHAPPEINSPECTION & TESTING SERVICES NATE PRINTED • 20-001-89

REPORT: V89-1	16961.0						PR	OJECT: UN	-87	PAGE 1A			
SAMPLE NUMBER	ELEMENT UNITS	Au PPR	Ag PPM	As PPM	Ba PPN	Be FPN	Bi PPN	Cd PPN	Ce PPN	Co PPN	Cr PPM	Cu PPN	
T1 89F0L037	FIJRY	<5	0.2	<5	190	<1.5	6	<1	<5 [—]	24	60	110	-
T1 89 F0L038		<5	ຄ.3	<5	264	< 8.5	5	<1	<5	24	76	106	
11 89FPL09	1 1	<5	0.2	<5	169	2.2	9	3	<5	42	824	85	
T1 89FVL001		<5	0.3	<5	80	3.1	<2	<1	<5	34	36	147	
T1 89FVL002		<5	0.5	<5	30	<0.5	6	2	<5	30	59	102	
T1 89FZL018		<5	N.3	<5	192	<0.5	5	<1	<5	22	62	98	
T1 89FZL019		<5	0.2	<5	215	<0.5	8	3	<5	24	62	101	
T1 89FZL020	FISRY	<5	U.2	<٢	164	<0.5	5	<1	<5	27	32	96	

.

.

Hondlas Clegg & Company Ltd. 150 Cemberton Ave. 3 South Vankouver, B.C. V7P 2185 (604) 985-0681 Telex 04-352667

Ceochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

		1					ALE PRINIE	<u>:D: 20-00</u>	- 07				
	REPORT: V89-06960.0							. Pf	ROJECT: U	NUK		PAGE 1B	
	SAMPLE NUMBER	ELFMENT UNITS	Ga PPN	La PPN	Li PPM	No PPN	NЬ РРМ	Ni PPM	РЬ PPN	Rb PPN	Sb PPN	Sc PPM	Sn PPN
	T1 89F0L037		18	<1	15	2	8	39	11	<2们	9	9	<20
Ŧ	11 89F0L038		18	<1	17	1	8	49	9	<20	10	9	<20
É.	T1 89FPL09		34	<1	25	3	22	357	6	• <20	26	5	25
	T1 89FVL001		47	<1	17	<1	27	37	15	<20	26	9	21
	T1 89FVL002		17	<1	8	<1	7	36	22	<20	11	5	<20
	T1 89FZLD18	•	18	<1	16	2	7	42	23	<20	10	11	<20
	T1 89FZL019		20	<1	16	2	8	43	- 15	<20	9	11	<20
	T1 89FZL020		15	<1	12	1	7	22	2	<20	6	7	<20
	•												

Geochemical Lab Report

A DIVISION OF INCHCAPPEINSPECTION & TESTING SERVICES -NATE PRINTED: 20-001-89

	REPORT: V89-D					Pf	OJECT: UN	PAGE 1C			
	SAMPLE NUMBER	EI EMENT UNITS	Sr PPN	Ta PPN	Te PPN	V PPN	H PPM	Y PPH	Zn PPN	Zr PPN	
	T1 89F0L037		85	<10	<10	160	<1N	6	114	2	
	11 89F0L038		83	<18	<10	154	<10	6	145	<1	
-	T1 89FPL09	* · · · ·	72	<10	21	102	<10	4	8 5	<1	
	11 89FVL001		127	<10	<10	137	<10	7	137	5	_
	T1 89FVL002		• 78	<10	<10	108	<10	4	96	7	
Î	11 89FZL018		73	<10	<10	174	<10	5	105	<1	
	11 89FZL019		94	<10	<10	183	<10	5	106	<1	
	11 89FZL020		76	<10	<10	123	<10	5	97	3	

Банала с кадаж 6 опирану 130. 1904: найстон Аус 2004: Алассияст, В.С. V 71/2185 4204) 985-0681 Telev 04-352667

Geochemicat Lab Report *

A DIVISION OF INCHEMPERSPECTION & 11 STING SERVICES

REPORT: V89-F	17576.11						PROJECT: UNUK				PAGE 1A		
SAMPLE NUMBER	FL FMFNT UNITS	Au PPB	Ag FIPM	As PPM -	Ba PPN	Be PPN	Bi PPN	Cd Fifin	Ce PPN	Co PPN	Cr FPM	с. РР1	
								· .					
				,									
11 8 9KZ-L 035 T1 89KZ-L 036	FIORY FISRY	<5 <5	<11.2 <0.2	36 37	166 151	<0.5 <0.5	6 3	<1 <1	5 <5	19 17	52 5በ	88 8(I	
										• '		•.,	
	······································					·							
	•									•			
							· .						
·			······							· .			
					· · ·								
			- <u></u>								•		

and a second second

•

Hondon Clegg & Company Ltd. For Penderton Ave. Fourth Vancouver, B.C. V. P 2R5 (604) 985-6681 Telex 04+352667

Geochemicat Lab Report

REPORT: V89-N75	576.0	· · · · · · · · · · · · · · · · · · ·					DA PR	IE PRINTE OJECT: UN	<u>D: 27-0C1-</u> UK	<u>87</u>	PAGE 1B	
SAMPLE NUMBER	FLEMENT UNITS	Ga PPN	la PPN	l i PPN -	ло Рри	Nb PPM	Nî PPN -	Pb PPN	Rb PPN	Sb PPn	Sc fifn	Si PP
	• •								· ·			
			(۰. ۱		•
•												
11 89KZ-L 1835 T1 89KZ-L 036		19 18	<1 <1	13 12	2	10 10	32 31	4	<2N <2N	111	8 8	<br </td
						ч. Х		• •		• • •		
•			•				. *				,	
									· · · · · · · · · · · · · · · · · · ·			
· · ·	·.						- <u></u>					
	<u> </u>	······································				·· - 						·
			<u>.</u>									
			· · ·									
						· 						
		•										
· .			•••••									

Bandar-Clegg & Company Ltd. Geochemical 130 Peudletton Ave. Lab Report Souh Vancouver, B.C. 🐋 V7P 2R5 **BONDAR-CLEGG** (104) 985 (1681 Telex 04-352667 A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 27-0CT-89 PAGE 1C PROJECT: UNUK RFPORT: V89-N7576.0 . . Sr Ĩa Te V Y Źr SAMPLE **FI EHFNT** N Zn NUMBER UNITS PPN PPN PPN PPN PPN PPN PPN PPN 11 89KZ-L 035 65 <10 <10 165 <10 6 87 2 159 5 T1 89KZ-L 036 61 <10 <10 <10 82 4

Geochemical Lab Report

REPORT: V89-06	999.0						PR	DJFCT: UN	UK		PAGE 1A	
SAMPLE NUMBER	ELEMENT	Au FPB	Ag frfriti	As PPN	Ba PPN	Be PPN	Bi PPN	Cd PPN	Ce PPN	Co PPM	Cr PPM	Cu PPN
11 89FE-L 65 11 89FE-L 67 -L1 89FE-L 67	FISHY FIERT FISHT	21 <5 <5	<0.2 0.2 0.9	8 32 21	154 208 58	<n.5 <n.5 <n.5< td=""><td>3 4 2</td><td><1 <1 1</td><td><5 11 76</td><td>21 25 32</td><td>40 51 43</td><td>74 107 52</td></n.5<></n.5 </n.5 	3 4 2	<1 <1 1	<5 11 76	21 25 32	40 51 43	74 107 52
Т1 89КО-L 54 Т1 89КО-L 55	FJORY FJORY FJORY	27 19	<11.2 <1.2	15 16	68 71	<11.5 <0.5	4 <2	<1 <1	 \$ \$	25 26	59 63	9 <u>1</u> 107
T1 89KP-L 29 T1 89KP-L 30	FIORY FIORY	11 16	<n.2 <0.2</n.2 	25 17	122 155	<ก.5 <ก.5	<2 - 6	<1 1	<5 <5	26 23	60 41	8
										·		
T1 89KZ-L 27	Flory Plory	9	<0.2	21 25	. 59 54	<0.5 <0.5	2 <2	<1 <1	৫ ৫১	24 27	63 56	

,

Geochemical Lab Report

REPORT: V89-06	5999.0				a i 1350 i V i		DA PR	TE PRINTE	D: 23-0CT	-89	PAGE 1B	
SAMPLE NUMBER	EI EMENT UNITS	Ga PPN	l.a PPN	Li PPN	No PPN	Nb PPN	Ni PPn	РЬ РРП	Rb PFriti	Sb FPM	Sc Ffin	Sn PPN
11 89FE-L.45 11 89FE-L 67 11 89FE-L 76		16 20 13	2 7 29	12 14 14	2 2 7	7 10 22	28 37 43	<2 <2 <2 <2	6N <2N <2D	11 14 9	9 11 6	<20 <20 <20 <21
11 89KO-L 54 11 89KO-L 55	:	13 13	2 2	9 9	2 2	6 - 6	4N 39	<2 <2	<20 28	- 9 9	7 7	<21) <21)
1									:	:		
11 89KP-L 29 11 89KP-L 30		15 17	<1 <1	12	2 2	7 8	38 31	<2 <2	<21i <21i	111 8 -	1 9	<20 <20
			·	·			1 a.					
						· .						
11 89K7-L 27	<u> </u>	14	? 	8	 2 1	6,	411	<2 <2	<2N		6	<211 <211

.
Bondar-Clegg & Company Ltd. Do Pemberion Ave. North Vancouver, B.C. V7P 2R5 (n(14) 985 (168) Telex (14-352667

Geochemical Lab Report

L.

. .

.

REPORT: V89-D	6999.0						Pf	OJFCT: UN	UK	PAGE 1
SAMPLE NUMBER	FI EMENT UNITS	Sr PPM	Ta FPN	Te PPN	V PPH	u PPri	Y PPN	Zn PPN	Zr PPN	
11 89FE- <u>C</u> 65 11 89FE-L 67 11 89FE-L 76		58 85 39	<10 <10 <10	<10 <10 <1U	149 145 65	<10 <1N <10	6 1N 22	67 116 203	2 13 19	
	· ·									
11 89KO-L 54 11 89KO-L 55		9N 87	<10 <10	<10 <10	114 118	<1N <10	6 7	1113 1110	3 3	
									· .	
11 89KP-L 29 11 89KP-L 30		67 64	<10 <10	<1N <111	138 148	<10 <10	6 7	64 79	1 2	
·						•				
11 89KZ-L 27		711	<10	<10	108	<10	6	103	3	

Brandar-Clegg & Company Ltd. (30 Pemberton Ave.
North Vancouver, B.C.
V7P 2R5 (004) 985-0681 Telex (04-352667)

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES. BATE PRINTED: 31-007-89 REPORT: V89-06873.5 PROJECT: FLORY PAGE 1 ELEMENT SAMPLE Pb NUMBER UNITS PCT FIORY R2 89FF-R033 20.05

. /

30 Pemberton Ave. North Vancouver, B.C. V7P 2R5 604) 985-0681 Telex 04-35266	i d. 57		B	DNDAR-CLEGG			Certificate of Analysis	
REPORT: V89-068	73.6	A 1	DIVISION OF INCH	ICAPE INSPECTION & T	ESTING SERVICES	PRINTED: 13-0CT- CT: FLORY	89 Page 1	
SAMPLE NUMBER	ELEMENT UNITS	Ag Opt			••••••••••••••••••••••••••••••••••••••	/		
R2 89FP-R033	· · · · · · · · · · · · · · · · · · ·	2.60	Flor	7		<u></u>	······································	· · ·
					•			
					· · ·			
			·····					
							· · · · · ·	
· · · · ·			·					
······································								
				· 		<u> </u>		
				· · · · · · · · · · · · · · · · · · ·				
					<u> </u>			

egg & Company Jerton Ave. vancouver, B.C.	Ltd.			B.C		Cer of A	tificate nalysis
2R5) 985-0681 Telex 04-352	2667			BONDAR-CLEG	G		
	<u> </u>		A DIVISION O	F INCHCAPE INSPECTION &	TESTING SERVICES	TED: 17-0CT-89	
REPORT: V89-N6	872.6				PROJECT:	FLORY	PAGE 1
SAMPLE NUMBER	ELEMENT UNITS	Ág Opt	Cu PCT			·	
R2 89FC~R004 R2 89FZ-R042		4.37	1.68	Flory	- <u></u>		
			······································				
						L.	
<u></u>							
· · ·							
							<u>,</u>
							<u> </u>
			- <u></u>				

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemical. Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-06781.0 (COMPLETE)

REFERENCE INFO:

SUBMITTED BY: TERRAMIN RES. LAB

DATE PRINTED: 4-0CT-89

CLIENT: KEEWATIN ENGINEERING INC. PROJECT: PARADIGM

OR	DER	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	METHOD
	1 6	. Gold - Fire Assay	93	5 PPB	FIRE ASSAY	Fire Assay AA
	2 A	g Silver	93	0.2 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	3 A	s Arsenic	93	5 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	4 B	a Barium	93	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	5 B	e Beryllium	93	. 0.5 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	6 B	i Bismuth	93	2 PPN	HNOR HICL HOT LIXTR	Ind. Coupled Plasma
	7 C	d Cadmium	93	1 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	8 C	e Cerium	?3	5 FPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
1	9 C	o Cobalt	3	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	10 C	r Chromium	63	1 PPM	HNOB HOL HOT EXTR	Ind. Coupled Plasma
	11 C	u Copper		1 PP#	UN03 HCL HOT FXTR	Ind. Coupled Plasma
	12 G	a Gallium	<u>(</u>)]	2 PPM	UN03-HCL HOT FXTR	Ind. Coupled Plasma
	13 l	a Lanthanum	÷3	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
_	14 L	i Lithium	43	1 PP#	HNC3-HCL HOT EXTR	Ind. Coupled Plasma
	15 M	o Nolybdenum	<i>د</i> ع	1 PP#	HNG3-HOL HOT EXTR	Ind. Coupled Plasma
	16 N	b Niobium	رز	- 1 PPN	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	17 N	i Nickel	93	1 PPM	HN03-HCL HOT. EXTR	Ind. Coupled Plasma
	18 P	b Lead	<u>;</u> ;;	2 595	AND'S HOL OT EXTR	Ind. Coupled Plasma
	19 R	b Rubidium	03	20 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
1	20 C	b Antimony	د د:	5 FPM	HNOD-HOL HOT EXTR	Ind. Coupled Plasma
	21 S	c Scandium	<u></u>	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	22 S	n Tin		20 PPM	UNCO HOL HOT EXTR	Ind. Coupled Plasma
	23 S	r Strontium	. 93	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	74 T	a Tantalum	93	10 PPM	HNC3-HC1 HOT EXTR	Ind. Coupled Plasma
	25 T	e Tellurium	23	10 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
1	26 V	Vanadium	93	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	27 W	Tungsten	93	10 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
•	28 Y	Yttrium	93	1 PPH	HN03 HCL HOT EXTR	Ind. Coupled Plasma
	29 Z	n Zinc	23	1 PP#	HN03-HCI HOT EXTR	Ind. Coupled Plasma
	30 2	r Zirconium	έć	1 PPN	HNCO HOL HOT EXTR	Ind. Coupled Plasma

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

.

Geochemical. Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-06781.0 (COMPLE	TE)				REFERENCE INFO:						
CLIENT: KEEWATIN ENGINFERING PROJECT: PARADIGM	INC.				SUBMITTED BY: TERRAMIN RES. LAB DATE PRINTED: 4-OCT-89						
SAMPLE TYPES	NUMBER	SIZE	FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER						
T STREAM SEDIMENT,SILT R ROCK OR BED ROCK	41 52	1 2	-8N -15N	41 52	DRY, SIEVE -80 41 CRUSH, PULVERIZE -150 52						
REPORT COPIES TO: KEENA TAIGA	TIN ENGINFERI Consultants	ING INC. LTD.			INVOICE TO: KEEWATIN ENGINEERING INC.						
		*	,								
······				•							
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·						
· · · · · · · · · · · · · · · · · · ·											

.gg & Company Ltd. erion Ave. ancouver, B.C. R5 1985-0681 Telex 04-352667

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-D6872.6 (COMPLETE)			REFE	RENCE INFO:
CLIENT: KEEWATIN ENGINEERING INC. PROJECT: FLORY		-	ITTED BY: UNKNOWN PRINTED: 17-OCT-89	
ORDER ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	NETHOD
1 Ag Silver 2 Cu Copper	1	0.02 OPT 0.01 PCT	HF-HN03-HC104-H	Cl Atomic Absorption Atomic Absorption
SAMPLE TYPES NUMBI	R SIZE FI	RACTIONS	NUMBER S	AMPLE PREPARATIONS NUMBER
R ROCK OR BED ROCK	- 2 -1	50	2 A	S RECEIVED, NO SP 2

KEEWATIN ENGINEERING INC.

.

HEAVY MINERAL RESULTS FOR FLORY PROPERTY

FOR FLORT FROPERIT

LAB NUMBER	F I E L D NUMBER	LOCA	Au(30g TI(ppb)	Ag (ppm)	As (ppm)	Ba (pps)	Be (ppm)	Bi (ppa)	Cd (ppm)	Ce (ppm)	Co (ppm)	Cr (pps)	Cu (ppe)	Ga (ppa)	La (ppm)	Li (ppm)	Mo (ppa)	Nb (ppm)	Ni (ppm)	Pb (ppm)	Rb (ppa)	Sb (ppm)	Sc (ppm)	Sn (ppm)	Sr (ppa)	Ta (ppm)	Te (ppm)	V (ppa)	V (ppm)	Y (ppm)	Zn (ppa)	Zr (ppm)
	idzes szizs	******			3520020	*****	faced a:	******	tesess	*=====	*==***	*****	******		******		eissez	22.2.2.2	82 02 28			******		******	******	*****			230921	1210239		
6885000	189 F W	H 1 FLOR	Y 8	0.5	46	65	-0.5	-2	-1	-5	35	74	136	7	1	5	4	6	26	-2	36	7	6	-20	136	-10	-10	133	-10	6	58	7
6885000	2 89 F W	H 2 FLOR	iv 23	0.5	45	59	-0.5	4	-1	-5	35	92	134	7	-1	7	3	6	25	-2	~ 109	. 9	6	-20	156	-10	-10	127	-10	6	66	5
6885000	3 89 F W	H 3 FLOR	iy 11	0.3	35	33	-0.5	2	-1	-5	30	66	145	8	-1	5	2	5	20	-2	49	5	7	-20	185	-10	-10	136	-10	5	70	6
68850004	4 89 F W	H 44FLOP	iy 16	0.5	51	80	-0.5	4	-1	12	36	134	151	8	-1	7	4	8	39	-2	95	10	9	-20	194	-10	-10	163	-10	11	69	8
6885000	5 89 F W	H S'FLOF	iy 104	0.4	48	67	-0.5	-2	-1	-5	36	100	144	6	-1	7	4	4	54	7	44	8	6	-20	70	-10	-10	233	-10	6	59	3
6885000	6 89 F W	H 6' FLOP	iy 10	0.3	43	27	-0.5	2	-1	-5	29	53	136	3	-1	5	2	3	24	-2	74	-5	5	-20	110	-10	-10	109	-10	4	67	4
6885000	8 89 F W	H 7 FLO	1Y 68	0.2	29	24	-0.5	-2	-1	-5	23	62	54	5	-1	5	2	4	26	-2	-20	-5	5	-20	146	-10	-10	120	-10	. 4	62	5
6885000	9 [:] 89 F W	H 8"FLO	RY 11	0.3	51	62	-0.5	-2	-1	-5	44	95	110	3	-1	7	4	4	58	-2	84	11.	4	-20	61	-10	-10	208	-10	6	27	2
6885001	D 89 F M	H 9 FLO	RY -5	0.2	42	47	-0.5	4	-1	-5	26	60	88	6	-1	5	2	4	- 25	-2	53	6	5	-20	122	-10	-10	113	-10	6	63	5
6885001	1 89 F W	H10'FLO	RY 43	0.3	39	106	-0.5	3	-1	· -5	30	109	107	6	-1	7	3	4	68	-2	33	7	6	-20	70	-10	-10	210	-10	7	63	- 4
6885001	289FW	H11 ['] FLOI	NY 10	0.4	52	98	-0.5	. 3	-1	-5	33	113	125	5	-1	8	5	3	60	-2	80	10	7	-20	67	-10	-10	285	-10	7	58	3

.

.

PROPERTY

HEAVY MINERAL RESULTS

LAB	FIELD	Au(3)	Dg A	j As	Ba	Be	Bi	Cd	Ce	Co	Cr	Cu	Gæ	La	Li	Ho	Hb	Ni	Pb	Rb	Sb	Sc	Sn	Sr	Ta	Te	V	V) Y	Zn	Zr
NUKBER	NUMBER	LOCATI(ppb) (ppm) (ppe)	(pps)	(ppa)	(pps)	(ppm)	(ppn)	(ppm)	(ppm)	(ppm)	(ppæ)	(ppm)	(ppm)	(pps)	(ppm)	(ppm)	(pps)	(ppm)	(ppm)	(ppe)	(ppm)	(ppn)	(ppm)	(ppm)	(pps)	(ppe)	(ppm)	(ppm)	(ppm)
75770031 75770032	89 K WHS 89 K WH6	COO 1 COO 4	1 O.3 5 1.3	2 -5 5 -5	40 31	-0.5 -0.5	.8 7	-1 -1	-5 -5	28 23	52 60	143 106	10 11	7 6	7 7	2 1	5	20 17	-2 -2	41 20	9 10) 4) 5	-20 -20	95 140	13 ~10	-10 -10	87 93	-10 -10) 4	45	5

SUMMARY OF EXPENDITURES

Flory 1-4/Sam 1 & 2

Personnel and Crew		\$21,861.51
Transportation - helicopter/fixed wing/fuel		12,596.56
Camp - food/accommodation		4,064.25
Assay/Report/Drafting/Secretarial		12,146.57
· · · · · · · · · · · · · · · · · · ·	TOTAL EXPENDITURES:	<u>\$50.668.89</u>

