TIOC NUL Q	221	RD.
NUTICAL		
FILE NO.		,

Geological, Prospecting, and Geochemical Report on the PARADIGM PROPERTY PARADIGM 2 and MIKHAIL 2 Mineral Claims FILMED Skeena Mining Division N.T.S. 104-B/10E 2 Latitude 56°34' North Longitude 130°33′ West British Columbia C R SUB-RECORDER November 6, 1989 **Z** O DEVENED **T** A FE3 1 9 1990 2 <u>x</u>a 24 VANCOUVER, B.C. <u>___</u> on behalf of イス LOKI GOLD CORPORATION **U** 🖼 Vancouver, B.C. Z S C and 0 0 ROCKY MOUNTAIN ENERGY CORP. **)** Denver, Colorado 0 0 図る C) ≮ by C. H. Aussant, B.Sc., P.Geol., F.GAC - and -D. G. DuPré, B.Sc., P.Geol., F.GAC **KEEWATIN ENGINEERING INC.** #800, 900 West Hastings Street

Vancouver, B.C. V6C 1E5

ABSTRACT

The Paradigm property consists of two modified-grid claims totalling 30 units located approximately 80 km northwest of Stewart, British Columbia. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property.

The property lies within the Intermontaine Tectono-Stratigraphic Belt and occurs near the contact between the Stikine Terrane and the unmetamorphosed sediments of the Bowser Basin. The property is underlain predominantly by Lower Jurassic supracrustal rocks of the Betty Creek Formation, consisting of interbedded volcanics with lesser sediments. The north-south trending Harrymel-South Unuk shear zone transects the western property boundary and separates the Upper Triassic Stuhini Group sedimentary rocks occurring directly west of the claims, from the Lower Jurassic rocks underlying the property. Geological mapping completed during the 1989 exploration program indicates that the western half of the MIKHAIL 2 claim may be underlain by the Stuhini Group.

The area has an exploration history dating back to the turn of the century when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Exploration Ltd. which was brought into production in mid-1988. The adjacent SNIP property is slated for production in 1990.

At this time, the Eskay Creek prospect, located 10 km northeast of the Paradigm property and currently being explored by Calpine and Consolidated Stikine, is the most significant showing in the area. The prospect comprises at least eight mineralized zones occurring over a strike length of 1800 m within a sequence of felsic volcanics. The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks.

A review of all available information indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962 which led to the discovery of the Harrymel Creek copper showing which is reportedly located on the MIKHAIL 2 claim. Field investigations did not locate any mineralization in this area.

An airborne electromagnetic and magnetic survey was conducted over the PARADIGM 2 claim in 1988. Interpretation of the data confirmed the regional geological mapping but indicated further faulting, hydrothermal alteration, and potential sulphide mineralization. In August 1989, a reconnaissance stream silt sampling program was completed on the PARADIGM 2 claim. Samples collected from the central portion of the claim yielded weakly elevated As and Ag values.

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling with the objective of evaluating the property's potential for hosting economic precious metals deposits. This work was concentrated in the upland areas and in the drainage courses where rock exposures were most abundant.

Reconnaissance prospecting and lithogeochemical/stream silt sampling were completed over selected parts of the MIKHAIL 2 claim, but did not yield any anomalous precious or base metals values. One heavy mineral sample, from a creek in the northern part of the claim, yielded an anomalous gold value of 2238 ppb. However, this creek originates beyond the property boundary, consequently, this elevated gold value may be due to mineralization located adjacent to the property area.

Extensive stream silt sampling combined with reconnaissance prospecting and lithogeochemical sampling was completed along the numerous drainage courses which cut across the PARADIGM 2 claim and in the upland areas. A number of lithogeochemical samples yielded elevated to anomalous Au, Ag, and/or As values, and several stream silt samples yielded elevated Ag or As values. Heavy mineral samples collected from creeks draining the southern half of the claim yielded elevated Ag, As, Cu, or Zn values, with one sample containing a gold value of 540 ppb. ·

^

•

.

`

•

~

-

.

.

•

-

. .

•

· .

٠

.

.

.

.

·

•

^

٠

.

....

•

TABLE OF CONTENTS

INTRODUCTION			1
Location and Access			
Property Status and Ownership			
Physiography and Climate			F
		•••	с 7
		• • •	10
	• • • •	• •	10
	• • • •	• •	10
	• • • •	• •	20
	• • • •	•••	20
	• • • •	•••	24
SUMMADY AND DECOMMENDATIONS	• • • •	• •	24
CERTIFICATE . C H Auccont		• •	20
CERTIFICATE = D C DuDuć		• •	20
		• •	30
		• •	50
Summary of Personnel			
Rock Sample Descriptions			
Certificates of Analysis			
Analytical Techniques			
many or own recommission			
TABLES			
1 - Table of Formations			13
FIGURES			
1 - Location Map			2
2 - Claim Map		• •	3
3 - Regional Geology - Bowser Basin			8
4 - Regional Geology - Unuk Map Area		۰.	9
5 - Property Geology			11/12
MAPS			- - ·
1 - 1989 Exploration, Sample Locations and Results	MIKHA	IL 2	Claim
2 - Geology and Anomalous Values	MIKHA	.íL 2	Claim
3 - Geology and Anomalous Values	PARADI	GM 2	Claim

λ.

1

.

.

.

Page 1

INTRODUCTION

Loki Gold Corporation of Vancouver, and Rocky Mountain Energy Corp. of Denver, Colorado commissioned Keewatin Engineering Inc. to conduct a field exploration program on the Paradigm property located in the Unuk River area of northern British Columbia. Exploration was directed by Keewatin with field supervision and geological support provided by Taiga Consultants Ltd. as a subcontractor to augment the Keewatin crew.

The objective of this program was to evaluate the property's potential for hosting economic precious metals deposits. Exploration consisted of prospecting, geological mapping, and geochemical sampling. Geochemistry consisted of lithogeochemical, stream silt, and heavy mineral sampling.

Location and Access

The Paradigm property is located in northwestern British Columbia, approximately 80 km northwest of Stewart (Figure 1). The claims are situated within N.T.S. map-sheet IO4-B/IOE and centered about 56°34' North latitude and 130°33' West longitude. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property. The claims can also be directly accessed by helicopter from Stewart.

At some future date, road access to the area from the Stewart-Cassiar Highway could be obtained via the Upper Unuk River and Tiegen Creek valleys.

Property Status and Ownership

The Paradigm property (Figure 2) consists of two modified-grid claims totalling 30 units, located within the Skeena Mining Division. Relevant claims data are tabulated below:

١,

<u>Claim Name</u>	Record	No.of	Date of	Expiry
	<u>Number</u>	<u>Units</u>	<u>Record</u>	<u>Date</u>
PARADIGM 2	6101	12	Apr.28,1987	1990
MIKHAIL 2	7024	18	Dec. 5,1988	1989

These claims are apparently the subject of an agreement between the claim holders (Teuton Resources Inc.) and Winslow Gold Corp., which has recently optioned the property to Loki Gold Corporation and Rocky Mountain Energy Corp. The claim map shows that part of the PARADIGM 2 claim was subsequently overstaked by a series of two-post claims along Harrymel Creek.

Physiography and Climate

The Paradigm property is situated within the Coast Range Physiographic Division and is characterized by northern rain forests and sub-alpine plateaux. The north-south trending U-shaped Harrymel Creek valley occurs along the western boundary of the two claims. Elevations (see Figure 2) range from 455-610 m in the valley of Harrymel Creek to 1065 m in the eastern part of the property.

A transitional treeline, characterized by dense sub-alpine scrub, meanders through the property at approximately the 915 m elevation. Terrain above treeline is typified by intermontane alpine flora. Conifers up to 30 m tall are common below treeline, especially in stream valleys. Water for camp and drilling purposes is generally in good supply from the numerous creeks draining the claim area.

Precipitation is heavy, exceeding 200 cm per annum, with short mild summers but very wet spring and fall periods. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

1

ŝ

۲ د

-

٤

PREVIOUS EXPLORATION

The area drained by the upper reaches of the Stikine, Iskut, Unuk, Craig, and Bell-Irving Rivers has been explored for gold since the late 1800's when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Explorations Ltd. The Johnny Mountain deposit was brought into production in mid-1988, and the adjacent SNIP property is slated for production in 1990.

The mineralization at Eskay Creek was discovered in 1932, and active prospecting has continued sporadically since then. Two adits are the result of limited mining activity on this prospect. In 1988, Calpine Resources Incorporated discovered high-grade gold and silver mineralization on the '21 Zone' (*Northern Miner*, November 7, 1988). A number of excellent diamond drill intersections have been obtained to date, including drill hole CA-88-06 which encountered 96 feet of 0.752 oz/ton gold and 1.13 oz/ton silver. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological ore reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver has been calculated for the '21 Zone' (Consolidated Stikine Silver Ltd. - 1989 Annual Report).

The Unuk River area was covered by regional geological mapping in 1988 as part of the Iskut-Sulphurets project carried out by B.C. Ministry of Energy, Mines and Petroleum Resources (Britton, et al., 1989). The whole of N.T.S. 104-B is currently being mapped by R. G. Anderson of the Geological Survey of Canada (Anderson, 1989).

The results of a regional stream sediment sampling program conducted over this area were released in July 1988 (National Geochemical Reconnaissance, 1988). Britton (et al.) report that almost every known precious metal prospect in the Unuk River area is associated with high stream sediment gold values. Known gold deposits are also associated with high but variable values for such

C

-

~

pathfinder elements as silver, arsenic, antimony, and barium. One stream sediment sample (#871300) was collected from a stream draining the property, and yielded elevated to anomalous values in arsenic (590 ppm) and antimony (20.0 ppm).

A review of the material in the B.C. Ministry of Energy, Mines and Petroleum Resources assessment report archives indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. during the period 1959 to 1962. This work led to the discovery of Harrymel Creek copper showing (Minfile #080) which is reportedly located on the MIKHAIL 2 claim. Field investigations did not locate any mineralization in this area.

The assessment records (Korenic, 1982) indicate that Duval Corp. undertook a regional heavy mineral survey in the Unuk River area in 1981.

In 1988, an airborne electromagnetic and magnetic survey was flown over the PARADIGM 2 claim. The interpretation of the magnetic and VLF-EM data confirms the geological mapping by Britton et al.(1989). However, the airborne geophysical survey has indicated further faulting, hydrothermal alteration, and potential sulphide mineralization. One strong VLF-EM conductive zone was found in the northeast corner of the PARADIGM 2 claim, located along the flank of a magnetic high. This conductor may be caused by pyrite mineralization which is fairly common in the area.

In August 1989, a reconnaissance stream silt sampling program was completed on the PARADIGM 2 claim. Six samples collected from the central portion of the claim yielded weakly elevated arsenic values (45 to 108 ppm), two of which also contained elevated silver values (1.2 and 2.5 ppm).

REGIONAL GEOLOGY

The property lies within the Intermontane Tectono-Stratigraphic Belt, one of five parallel northwest-southeast trending belts which comprise the Canadian Cordillera (Figure 3). The Paradigm property occurs near the contact between the Stikine Terrane, which makes up most of the western part of the Intermontane Belt, and the unmetamorphosed sediments of the Bowser Basin.

The Unuk River area (Figure 4) is underlain by a thick succession of Upper Triassic to Lower Jurassic volcano-sedimentary arc complex lithologies capped by Middle Jurassic marine basin lithologies. This package has been intruded by a variety of plutons representing at least four intrusive episodes spanning late Triassic to Tertiary time. These include synvolcanic plugs, small stocks, dyke swarms, isolated dykes and sills, as well as batholiths belonging to the Coast Plutonic Complex.

The stratigraphic sequence has been folded, faulted, and weakly metamorphosed during Cretaceous time, but some Triassic strata are polydeformed and may record an earlier deformational event. Remnants of Pleistocene to Recent basaltic flows and tephra are preserved locally.

Contact	/
Anticline sy toline	×
Harrymel-South Unuk shear	
Dillow lavas	77.
Recent volcanic vent.	o.
Gossan	÷
Adıl	⊨
Stream sodiment gold values >90th percentile	0
Mineral occurrence,	×я
Placer occurrence	~

MINERAL OCCURENCES

	NAME	COMMODITY
ασύθων ΟΤμηχυΣτΩάΩε	Emma LitacKay Colaph E&L Nickel Cole Cole E&L Nickel Cole Comperiand/Calv Comperiand/Calv Cole Mit Madge (CF-10) WV VV Circs & Anno Max Unox Jumbo Black Bear Boulder Creek Doc Ciccs Anno Max	Au Ag, Pb Zn, Cu Au Ag, Pb Zn, Cu Cu, Fe Cu N, Cu Cu, Au Ag Au, Ag Zn Au, Ag, Zn Au, Ag, Zn Cu, Mo, Au, Ag Cu, Fe Fe, Cu Fe, Cu Fe, Cu Fe, Cu Au, Pb, Cu Au Ag, Pb, Cu Au Ag

NOTE: Not to scale

Geology and mineral deposits, Unuk map area. Modified after Britton et. al. (1989)

PROPERTY GEOLOGY

PROPERTY GEOLOGY

Regional geological mapping by Britton et al.(1989) shows that the claims are underlain predominantly by Lower Jurassic supracrustal rocks (Figure 5). The north-south trending Harrymel-South Unuk shear zone transects the western property boundary and separates the Upper Triassic rocks occurring directly west of the property from the Lower Jurassic rocks underlying the property. The distribution of map-units suggests that the rocks to the west of the major shear zone dip shallowly to the west, while units in the eastern part of the property display a moderate easterly dip.

Upper Triassic <u>Stuhini Group</u> (Unit 1)

The Stuhini Group rocks occupy the nose of a north-plunging anticline, and occur as a wedge between the Harrymel-Unuk shear zone and the overlying Unuk River Formation. These rocks underlie the area immediately west of the claims. Geological mapping completed during the current exploration program indicates that this unit probably underlies the western half of the MIKHAIL 2 claim. The Stuhini Group rocks consist of thin bedded siltstones, immature fine-grained wackes, chert, impure limestones, and andesitic tuffs that locally attain a considerable thickness. Andesitic tuffs may be laminated to massive, aphanitic to hornblende-feldspathic. Limestones occur as thin beds or discontinuous lenses that show extensive recrystallization and highly disrupted internal structure. Fossil evidence led Britton et al.(1989) to ascribe a Carnian to Norian age to these rocks.

Upper Triassic to Lower Jurassic <u>Unuk River Formation</u> (Unit 2)

These Norian to Sinemurian age rocks of the Unuk River Formation constitute the lowermost unit of the Hazelton Group. Britton et al.(1989) described this sequence as green and grey intermediate to mafic volcaniclastics and flows with locally thick interbeds of fine-grained immature sediments. The volcanics are reported to be dominantly massive to poorly bedded plagioclase (\pm hornblende) porphyritic andesite. The sediments are predominantly grey, brown, and green thinly bedded tuffaceous siltstone and fine-grained wacke. The basal contact with Triassic strata appears to lie near the top of a thick sequence of clastic sedimentary rocks. Neither an angular unconformity nor a widespread conglomerate marks the lower contact. This unit is not mapped on the property but is incorporated in the report for the sake of completeness.

Lower Jurassic <u>Betty Creek Formation</u> (Unit 3)

A Pleinsbachian to Toarcian age is assigned to this unit by Britton et al.(1989). This pyroclastic-epiclastic sequence is comprised of a sequence of Keewatin Engineering Inc.

(Modified after Britton et.at.(1989)

PROPERTY GEOLOGY PARADIGM PROPERTY

5

Figure

KEEWATIN ENGINEERING INC.

LEGEND

INTRUSIVE ROCKS	VOLCANIC AND SEDIMENTARY ROCKS		
TERTIARY	Bintes für nienigrepflit verter is implice safet verpennen.)		
ADET-TECTONEC DYNES	· · · ·		
	GUATERNART		
the Carly-system, and state dispose places and alternal 176 - The Carly Carl Security States with the states and alternal	RECENT		
120 Hindisso antereste für geginnet inner antereste	Uncondectorial and and a second		
	fil Allentind understate by Perspectate and Perspectate		
	N FRANCENE TO RECENT		
الأعد في من عندين منها بالمراجلة بالمراجلية ويريدوني من المراجل المراجل عن عندي المراجل عنها. « المراجل المراجل	BASALT FLOWE AND TENAN		
JURAESIC			
	den – Linet gerer en bisek, kannet fanne and ingelet, stimp yellen brekt an – Annet kannet		
19			
ر بالمركز و بالمركز و بر المركز و بالمركز			
10) – Beng Laine Cysige, Kane de Angeligen genaturet kanteliktete offente 10) – Anne an Charles Constanting anti-angelige fit for the Statistica statistical distributions	MOCLE JURASSIC (TOARCIAN TO BAJOCIAN)		
menneting at darb genor rerep, geginnlag, genonflite filosolis			
The second			
	المانتين منها والمركبة المنها والمركبة المركبة المركبة المركبة المركبة المركبة المركبة المركبة المركبة المركبة المركبة المركبة		
In the second state was a second state of the	واستعادت سيعيكة مستدد قاب وتخلفه واستالخ ليبت خمما سزالم وتخضعا		
ja – Antalaine kanadalaine kanada aka aka aka aka aka aka aka aka aka	LOWER JURASSIC (TOARCIAM)		
TRANK	All SC VOLONIC SPOLENCE Alexan Diverts Automatics Lines undereng intermedian in Ante Announce and a state and a state of the set and and and and and any presence of a 1/3/ and		
a new sport. 	personen. Aller einen beitet einen beitigt.		
· · · · · · · · · · · · · · · · · · ·	-an internet particul dividu lands of a constant particul land		
	17 – Alexa and alah, and an an alexa shake a shake in a surface and a surface of the statement of the surface o		
•	LOWER JURASSIC (PLIENSBACHIAN TO TOARCIAN)		
	1 AND CLASSES STOLENES STOLENES STOLENES STOLENES STOLENES STOLENESS AND		
	24 Gray, provide and propin statistic and, land for, separate and differ and, magnets to and and the		
	feldarer plyntik 37 - veiger samptening, felsis jurk van kruiskist officiensis sielingen		
METAMORPHIC ROCKS	34 Annual and a state state state and a state state		
METANORMIC SCUMULINTE OF UNITS 1, 2 44 3	3 Benet, Sainty Sectional additioners, and a sufficient statements		
A-F			
A biogeoille dat pro, sèrgeoisean quarte biligeoisean a faithe de la company anne anne anne anne anne anne anne a	UPPER TRIASSIC TO LOWER JURASSIC (NORMAN TO SIME BURGAN)		
	2 And the state state state interests of the property summary beginness, when comparisons and interests		
C - Alatie in proposition analyzin and a state parter, proposition and a state of the	20 - Georg and proset, physically 2 hornalised party sectors in sector and the sector sector in the sector of the		
E regenationeter autopatelleter gannet; appliellet straffentite E stransasta autopatelleter gannet; applielleter filmet	که شی امد کیرو چون بردی که شی امد کیرو جون بردی که مکرد بردیکه بردیکه با به میشود از مکرد بردی بردی و بردی میدو بردی است. که شی بردی میدود بردی که بردیکه بردیکه بردیکه بردیکه بردیکه بردی میدود بردی بردی بردی بردی بردی ا		
	2 Benet, singer annen and allers an antistation in and a		
	2 Gray and a state and a sugger a summing the substant and a state and the state of the substant and the sub		
	TRIASSIC		
	STURM GROUP		
	UPPER TRIASSIC (CARNIAN TO NORIAN)		
	CONTR VOLCANOSEDARENTARY SECURACE: Brown, and and party result and movies reside		
COSCANOUS & TERATOR TOURS	الا		
UUGGANUUG ALTERATION LUNES	If Gray, insure, still, party insulate		
· · · · · · · · · · · · · · · · · · ·	in Carpen, and prove and a support of the set, and the set of the		

11111 -10 H A

5

ŝ,

.

.

.

4 .

.

ŗ .

SYMBOLS

Geological boundary biological approximate, comminist	
Saddrag, pape lessen plantarisal, inginesi, verbali, averanterij	
Bestelling, sage undersom förfögenst, ändnud, mittallj	<u> </u>
Bedding, admented dip (gemin, madarate, statip)	
Bearligegenia anyo in pillen vitaariiti	······································
Compositional loyaring in managenergeneed roots; follotion (hullhold, rootpat)	
7amilita	
Paginat avertes: synahre	
Jeditag; gydan (spinal, netward)	10 10
jähen tall auto olik 14, 2 m 8 ppermany, olik pheriph	
fank igeloot, gegenet: D = deunfluten titti	
Traget budt görfanni, mannfrägt tantt an upper pittig	
Al proper transmitter	
Freed totality	©
	U
Area with more than 42% Terflary dybell	
Cind of major physics physics	- <i>مریخ خ</i> ری ج مریخ می می دو م ^ر
Vitilities of the second statement of the second se	* *
	s71365 (0.8,48,3.8,11)
Annual freedom to the address for the party of the second s	Sample Na. (Ag ppm, As ppm, Sb ppm, Au ppb)
Palainium, argen köhtöni sija ana; H = Aarniakrida; aga in millioni äi yaan balan prokiti	
Herena anteriorate Marile number	

AGE	GROUPS	FORMATIONS	MEMBERS	LITHOLOGIES
Bathonian	Bowser Lake	Ashman	Main Sequence Basal Conglomerate	Turbidites, wackes, intraformational conglomerates Chert pebble conglomerates
Bajocian to Toarcian	Spatsizi(?)	Salmon River	Pyjama Beds Basal Limestone	Thin bedded, alternating siltstones and mudstones Gritty, fossiliferous limestone
Toarcian		Mount Dilworth	Upper Lapilli Tuff Middle Welded Tuff Lower Dust Tuff	Dacitic lapilli tuff with flow- bandedd clasts Dacitic welded ash flow and lappilli tuff Dacitic dust tuff
Pliensbachian	Hazelton	Betty Creek	Sedimentary Members Volcanic Members	Hematitic volcaniclastic sediments, and turbidites Andesitic to dacitic tuffs and flows
Sinemurian to Hettangian(?)		Upuk River	Premier Porphyry Upper Andesite Upper Siltstone Middle Andesite Lower Siltstone Lower Andesite	Two feldspar + hornblende porphysitic tuffs Massive tuffs with local volcaniclastic sediments Turbidites, minor limestones Massive tuffs and minor volcaniclastic sediments Turbidites Massive to bedded ash tuffs
Norian to Carnian	Stuhini		Volcanic Members Sedimentary Members	Pyromene porphyry flows and tuffs Turbidites, limestones, conglomerates

. 1 .

1

r "1

1 7

🕐 1 1 Tay

.

۲.

7

Keewatin Engineering Inc.

 $c \wedge$

e 14

*

٦

. .

• >

. . .

TABLE 4). Table of Formations Unuk River Area

r.

٠

. .

westward facing but locally overturned interbedded volcanics and lesser sediments, underlying most of the property. The volcanics are dominantly grey and green, massive to poorly bedded units, and range in composition from basaltic andesite to dacite. Pillow lavas, breccias, and felsic pyroclastics, including spherulitic rhyolite, have been reported in the John Peaks area, but were not mapped by Britton et al.(1989) within the Paradigm property. The sedimentary rocks are, on the whole, less abundant than the volcanic rocks, and consist of black thinly bedded siltstone, shale, and argillite. Limestones are rare or absent in the Lower Jurassic section.

<u>Structure</u>

Actual fault surfaces or zones are rarely seen in the Unuk River area, but they are probably quite common and may have developed concurrently with regional folding.

The strata west of the property define a broad north-plunging anticline with moderately dipping limbs. On the property, the easterly dipping strata belonging to the Betty Creek Formation occur on the western limb of a broad syncline.

The north-south trending Harrymel-South Unuk shear zone transects the western property boundary and is marked by mainly schistose rock fabrics. Britton et al.(1989) interpreted this structure as a major easterly dipping shear zone with normal offset, exposing different structural levels and stratigraphic sections.

ECONOMIC GEOLOGY

Britton et al.(1989) list 55 mineral occurrences in the Unuk map-sheet. These showings are predominantly gold/silver occurrences and are hosted by a number of various lithologies. Most can be classified into one of four categories: stratabound, vein, skarn, and disseminations. Grove (1986) has determined that the age of the mineralizing events is variable and, notably, can be post-Triassic.

Stratabound mineralization consists almost exclusively of pyritic zones and lenses contained within a particular stratum or a restricted set of strata. The best example is the Eskay Creek prospect, currently being explored by Calpine Resources Incorporated and Consolidated Stikine Silver Ltd. Intrusivecontact (skarn) deposits show a close spatial and temporal relationship with igneous intrusions. Three deposits in this category are the E & L nickel/copper deposit (Minfile #006), the Max copper/iron skarn (Minfile #013), and the Chris-Anne copper/iron skarn (Minfile #125). Britton et al.(1989) stated:

Mineralization at the E & L occurs within two medium- to coarsegrained, olivine-pyroxene gabbro bodies. These roughly triangular plugs are each approximately 1300 square metres in area and are probably connected. They intruded a sequence of argillites, tuffaceous siltstones, and grey dacitic ash tuffs that strike northwesterly with moderate to steep southwesterly dips. Mineralization consists of pyrrhotite, pentlandite, and chalcopyrite, with lesser amounts of pyrite and magnetite. In the northwestern gabbro, mineralization extends up to the contact with the sediments, whereas in the southeastern gabbro, mineralization is confined to the pluton. Diamond drilling has delineated pipe-like pods and disseminations of sulphides to a depth of 120 metres. Drill-indicated reserves are 2.8 million tonnes of 0.7% Ni and 0.6% Cu (Sharp, 1965).

The Max prospect lies on the northwest side of McQuillan Ridge, between the Unuk and South Unuk Rivers, at elevations between 455 and 1500 metres. Massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock. Garnet, epidote, actinolite, and diopside characterize the skarn assemblage. Drilling has indicated a reserve of 11 million tonnes at 45% iron (Canadian Mines Handbook 1973-1974, page 432).

The Chris-Anne prospect lies approximately 3 kilometres east of the Max. Skarn mineralization is reported in limestone beds which are up to 10 metres thick and that are interbedded with volcaniclastics. Magnetite and pyrrhotite-rich layers, from 0.5 to 7 metres thick,

with minor chalcopyrite, extend over a distance of 1 kilometre. There are minor intrusive bodies reported on the property. Grades range from 0.1% to 0.4% copper (Allan and MacQuarrie, 1981).

The gold potential of these skarn deposits does not appear to have been tested. Based on recent skarn studies (Ettlinger and Ray, 1988), this area has many features that are associated with goldenriched skarns elsewhere in the province: sequences of calcareous and tuffaceous host rocks; structural deformation; intrusion by dioritic I-type granitoids; and contact metamorphism and recrystallization. Some auriferous skarns are enriched in cobalt, an element that may be a useful pathfinder.

High-grade precious metal quartz veins are the target of exploration programs at Mount Madge (Minfile #240 and #233) by Bighorn Development Corporation, and at the Doc prospect (Minfile #014) by Echo Bay Mines Limited. Britton et al.(1989) reported:

The Mount Madge prospects are located south of Sulphurets Creek near its confluence with Unuk River, on the east and west sides of Mandy Glacier. Two different targets are being evaluated (Kruchkowski and Sinden, 1988). On the west, the C-10 prospect (Minfile #240) is a stockwork of thin quartz veinlets, locally with thicker quartz lenses, in intensely altered, fine-grained tuffaceous andesite or dacite. Quartz veinlets locally form up to 30% of the rock. The alteration assemblage consists of quartz and sericite with up to 10% pyrite. Chalcopyrite and traces of sphalerite are also present. The rocks are strongly foliated to schistose and are very similar to the broad alteration zones seen at Brucejack Plateau 12 kilometres to the northeast (Britton and Alldrick, 1988). Soil samples locally return analyses in excess of 1 ppm gold.

Two kilometres to the east, Ken Konkin discovered a massive pyrite-siderite float boulder with visible gold. Prospecting uphill led to the discovery of the GFJ veins (Minfile #233), apparently flat-lying, zoned siderite-quartz-sulphide veins that returned assays up to 121 grams per tonne gold (Kruchkowski and Sinden, 1988). The veins are poorly exposed. Float blocks seen this year display symmetrical zoning from margin to core across vein widths of 10 to 15 centimetres. Vein margins are 1 to 2 centimetres of thin white quartz layers separated by hairline accumulations of very finegrained tin-white sulphide, probably arsenopyrite. The core is a very coarse-grained intergrowth of siderite, milky quartz, and cubes and clusters of pyrite, with lesser amounts of sphalerite and chalcopyrite as crystals and irregular masses. Rare tetrahedrite and visible gold have been observed (K.Konkin, personal communication, 1988). The veins cut variably foliated andesitic ash tuffs with thin interbeds of foliated to schistose siltstones.

The Doc prospect (Minfile #014) is located at treeline on a ridge overlooking the South Unuk River, opposite the mouth of Divelbliss Creek. The prospect consists of several west-northwest trending quartz veins up to 2 metres wide that have surface strike lengths of up to 275 metres (Gewargis, 1986). The main veins (Q17, Q22) are massive white guartz with sparse sulphide mineralization (5% to 10%) consisting of galena, pyrite, chalcopyrite, and sphalerite, with associated specular hematite and magnetite. Precious metal values are mostly confined to the sheared edges of veins and immediately adjacent wallrock. Shear zones with very little quartz may also return good values. Seraphim (1948) observed that gold was associated with either specular hematite or with galena and pyrite, but not with chalcopyrite and pyrite assemblages. The veins are a true fissure type, crosscutting folded and metamorphosed andesitic tuffs and thin-bedded sediments, including marble, that have been intruded by irregular dioritic dykes or sills and small monzodioritic plugs. The veins are different from any others seen in the Sulphurets or Unuk map areas. They have very restricted wallrock alteration aureoles, no apparent zoning, and appear to be limited to a few large fluid pathways. In this, they display characteristics of mesothermal veins. Structural control of the vein sets has not been determined but may be due to fractures related to folds in the host rocks. Total mineral inventory of the Q17 and other veins is given as 426,000 tonnes with 9.26 grams per tonne gold and 44.91 grams per tonne silver (Northern Miner, November 7, 1988).

Porphyry-type disseminated pyrite, chalcopyrite, and molybdenite mineralization occurs immediately north and south of King Creek, west of Harrymel Creek. Two properties have been worked: the VV to the south and the Cole to the north.

The VV property (Minfile #079) is the site of a heavily weathered monzonitic intrusive body in fault contact, on the east and west, with layered andesitic lapilli tuffs and tuff breccias with minor siltstone and calcareous sandstone interbeds. The stock is 250 metres wide, at least 6 kilometres long, strikes northerly, and dips steeply to the west, parallel to the country rocks. Chalcopyrite occurs in quartz stockworks and as fine disseminations within the monzonite. Molybdenite, sphalerite, malachite, and azurite have also been reported (Winter and McInnis, 1975; Mawer et al., 1977). Representative assays give 0.34% copper, 0.003% molybdenum, 2.1 grams per tonne silver, and 0.8 gram per tonne gold. Maximum gold and silver values obtained were 8.65 grams per tonne gold and 19.54 grams per tonne silver (Mawer et al., 1977).

The Cole prospect (Minfile #209) is situated approximately 4 kilometres north of the VV claims; it appears to be on strike with the same fault system and has similar intrusive and country rocks. Mineralization consists of up to 10% pyrite as disseminations and fracture fillings. Minor chalcopyrite and malachite have been reported but the bedrock source of the gold/silver soil anomalies has not been located (Korenic, 1982; Gareau, 1983). Reported assays range up to 0.43% copper, 7.12 grams per tonne gold, and 13.03 grams per

tonne silver. Gold and copper values show a positive correlation on both properties.

At this time, the Eskay Creek prospect, located 10 km northeast of the Paradigm property, is the most significant showing in the area. This prospect comprises at least eight mineralized zones occurring over a strike length of 1800 m within a sequence of felsic volcanics (Mount Dilworth Formation). This property is currently being explored by Calpine and Consolidated Stikine Silver. Preliminary drilling on the '21 Zone' intersected 96 feet assaying 0.752 oz/ton gold and 1.13 oz/ton silver including 52.5 feet grading 1.330 oz/ton gold and 1.99 oz/ton silver (Northern Miner, November 7, 1988).

The drilling results obtained to date indicate that the '21 Zone' extends over 335 m and is open along strike and at depth. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver was calculated for the '21 Zone' (Consolidated Stikine Silver, 1989 Annual Report). These deposits have been variously described as silicified shear zones (Harris, 1985) or as volcanogenic deposits (Donnelly, 1976). The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks.

A review of all the available information (Minfile, assessment reports, geological maps, reports, etc.) indicates that the Harrymel Creek copper showing (Minfile #080) is the only reported occurrence located on the Paradigm property. Field investigations did not locate any mineralization in this area and it is believed that the occurrence is plotted incorrectly on the Minfile map. The Minfile describes this showing as occurring within schist in the Harrymel-South Unuk cataclastic zone near a north-trending fault which dips 60°-85°W. The showing consists of a well mineralized zone within quartz-epidote schist which hosts abundant pyrite, chalcopyrite, and some pyrrhotite.

The Copper King showing (Minfile #007) occurs adjacent to the western boundary of the PARADIGM 2 claim. The showing generally comprises small replacement bodies of massive fine-grained pyrrhotite and chalcopyrite which occur along the western edge of the Harrymel-South Unuk cataclastic zone and

in felsite lenses 3-9 m long and 0.3 m wide. At some locations, up to 17 grams/tonne Au is reported to accompany the copper/iron sulphide mineralization.

1989 EXPLORATION PROGRAM

The 1989 property exploration program, completed between September 9 and October 16, consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemistry (lithogeochemical, stream silt, and heavy mineral sampling). Areas of known mineralization and gossans noted within the area were investigated and sampled.

A total of 59 rock, 47 stream silt, and 11 heavy mineral samples were forwarded to Bondar-Clegg & Company in Vancouver for multi-element analyses; Au by fire assay-AA and the remaining 29 elements by I.C.P. (results are presented in the Appendix, along with rock sample descriptions). Of these, 3 rock, 2 stream silt, and 3 heavy mineral samples were collected from the MIKHAIL 2 claim, the remaining samples from the PARADIGM 2 claim.

The accompanying map depicts the property geology (modified after Britton et al.,1989), with 1989 prospecting traverses, sample locations, and Au/Ag/ As/Sb analytical results. Descriptions of the exploration completed and the results follow.

ROCK GEOCHEMICAL SAMPLING

MIKHAIL 2 Claim (Maps 1 and 2)

The MIKHAIL 2 claim is located in an area of low relief and is extensively covered by a thin blank of Quaternary alluvium. The scarcity of drainage courses cutting across the claim, combined with the low relief, limits the amount of rock exposure in the area.

The eastern half of the claim is underlain by andesitic volcanics of the Lower Jurassic Betty Creek Formation. Rock exposures in this area occur as narrow north-south trending ridges, paralleling the strike of the underlying volcanics. The western portion of the claim is extensively covered by Quaternary alluvium with a thick cover of alder. Rock exposures are rare and are confined to drainage courses, primarily Harrymel Creek.

Reconnaissance prospecting and geochemical sampling were completed over selected parts of the claim. This work was concentrated in the upland areas and in the drainage courses of the claim where rock exposures were most abundant. No anomalous precious metals values were detected by this exploration program.

The Minfile occurrence map indicates the Harrymel Creek copper showing (Minfile #080) as occurring on the MIKHAIL 2 claim. Prospecting completed in this area did not locate any mineralization.

PARADIGM 2 Claim (Maps 3 and 4)

Reconnaissance prospecting and geochemical sampling were completed over selected parts of the PARADIGM 2 claim. This work was concentrated in the upland areas and in the numerous drainage courses which cut across the claim, where rock exposures were most abundant.

The property is underlain by andesitic volcanics, primarily fragmental tuffs and flows, of the Lower Jurassic Betty Creek Formation. Narrow 2-3 m wide black argillite/chert beds were found in a number of locations within this volcanic assemblage. Adjacent to the Unuk-Harrymel fault zone, a number of isoclinal folds were observed. Abrupt changes in the general strike of this unit in the northern part of the claim indicate that additional structural complications occur in this area. A chert clast conglomerate was located in the southeastern corner of the claim.

Lithogeochemical sampling completed in the area of structural complications yielded elevated to anomalous values in Au, Ag, or As for a number of samples. Three grab samples of fragmental tuff, collected in the same vicinity, yielded elevated Au, Ag, and As values:

	<u>Au ppb</u>	<u>Aq ppm</u>	<u>As ppm</u>
PPR-3	-	20.9	554
PPR-4	678	10.0	478
PER-2	182	11.5	579

A float sample (PZR-3) of fragmental tuff collected downslope from this area yielded an anomalous zinc value (3393 ppm).

In addition, a grab sample (PVR-3) from an andesite tuff located adjacent to a narrow shear yielded elevated Ag (16.5 ppm) and As (334 ppm) values, and a grab sample (PPR-6) from a fragmental tuff adjacent to a projected fault yielded an elevated chromium (850 ppm) value.

This area required additional work to determine its gold potential, with particular attention given to the area from which a grouping of samples yielded elevated precious metals values.

In the north-central portion of the claim, within the drainage area from which the August 1989 stream silt sampling program delineated weakly elevated As and Ag values, a number of samples of andesitic fragmental tuff yielded elevated to anomalous values for Au, Ag, As, or Sb:

	<u>Au ppb</u>	<u>Aq ppm</u>	<u>As ppm</u>	<u>Sb ppm</u>
PCR-3	604	-	>2000	120
PCR-2	-	35.4	-	-
PZR-8	271	-	-	-
PZR-9	-	-	843	-

Two float samples of fragmental tuff collected from a stream located directly south from this area yielded elevated Au, Ag, or As values (PER-9: 114 ppb Au; POR-13: 421 ppb Au, 22.3 ppm Ag, 664 ppm As). This area requires additional exploration to determine the significance of these elevated values.

In the south-central portion of the claim, two grab samples of an andesitic fragmental tuff yielded elevated to anomalous arsenic values (PPR-12: 967 ppm; PPR-13: 1236 ppm). In the southeast corner of the claim, two grab samples of a chert clast conglomerate yielded elevated arsenic values (PZR-20: 686 ppm; PZR-19: 987 ppm).

These areas should also be re-investigated as to their significance, with particular attention given to the area underlain by the chert clast conglomerate when taking in the context of the Eskay Creek deposit.

STREAM SILT SAMPLING

Stream silt geochemical sampling was conducted on the property as part of the current exploration program. Stream silt samples were collected whenever streams were crossed during reconnaissance prospecting traverses and at 100 m intervals on selected streams. The designation of anomalous values is based on regional G.S.C. survey results in Open File 1645 combined with a visual observation of data obtained during the 1989 exploration on a number of claim groups in the Unuk River area.

Based on these criteria, they were no anomalous precious metals values detected on the MIKHAIL 2 claim; however, only two stream silt samples were

claim.

collected. A thorough stream silt sampling program should be completed on this

The PARADIGM 2 claim was extensively silt sampled. Five samples yielded elevated Ag or As values:

	<u>Ag ppm</u>	<u>As ppm</u>
VL-05	1.1	-
VL-06	2.4	109
PVL-11	-	614
PCL-04	1.3	204
ZL-13	1.1	_

Samples PVL-5 and PVL-6 were collected in the northern portion of the claim, from a creek draining an area in which lithogeochemical sampling yielded elevated to anomalous Au, Ag, or As values (samples PPR-3, PPR-4, PER-2). Sample PVL-11 was collected from a creek paralleling the above creek and draining the same general area. A small shear zone was mapped directly upslope of this sample site. Lithogeochemical sampling completed adjacent to this shear yielded elevated silver and weakly elevated arsenic values.

Sample PCL-4 was collected from a stream located in the north-central portion of the claim, where stream silt sampling in August 1989 yielded weakly elevated arsenic and silver values. Lithogeochemical sampling in the drainage area of the creek yielded elevated to anomalous values for Au, Ag, As, or Sb.

Sample PZL-13, which yielded a weakly elevated silver value, was collected from a creek draining the southern portion of the PARADIGM 2 claim. A chert clast conglomerate containing elevated arsenic values was located in the general drainage area of this sample site. This sample may be defining precious metals mineralization which has not as yet been located. Additional exploration is required in the drainage areas of each of these sample sites to determine the significance of these elevated silver or arsenic values.

Page 23

HEAVY MINERAL SAMPLING

A heavy mineral stream sediment sampling survey was conducted on the property, by Mr. M. Waskett-Myers of Keewatin Engineering Inc. This company has done a considerable amount of work in the Unuk River area, and in the process, has assembled a fairly substantial data base. These data were used to assess the values obtained on the property. Heavy mineral sampling is a good first-pass tool and should be considered as a micro-prospecting approach to evaluating an area.

Heavy mineral samples were collected in parts of a creek where there is a sudden transition from high to low energy; if present, moss mat was used. Samples were sieved to -20 mesh, and a 3-5 kg sample of sieved material was collected. The samples were sent to Bondar-Clegg and Company in Vancouver for multi-element analyses: Au by fire assay-AA and the remaining 29 elements by I.C.P. The heavy mineral separation consists of floating off the light (<3.3) minerals using methylene-iodine followed by magnetic separation. A sample weight of 0.5 g is taken for the I.C.P. and the remainder used for fire assay.

Three heavy mineral samples were collected from creeks on the MIKHAIL 2 claim. Samples PWH-9 and PWH-10, from creeks located in the north part of the claim, yielded elevated silver, arsenic, and base metals values. Sample PWH-10 also yielded an anomalous gold value of 2238 ppb. These creeks originate beyond the claim boundary; hence, these elevated values may be due to mineralization located on the adjacent property. Nevertheless, the portions of these drainages within the property area should be prospected, and stream silt samples should be collected at regular intervals. The remaining 8 heavy mineral samples were collected from creeks draining the PARADIGM 2 claim. Sample PWH-4, from a creek draining the south-central part of the claim, yielded an elevated gold value of 540 ppb. Several of the other samples, from creeks draining the south half of claim, yielded elevated Cu, Zn, Ag, or As values. Several stream silt and/or lithogeochemical samples from the same areas also yielded elevated Ag or As values. This indicates that the area has some potential and that a follow-up program could reveal further indications of mineralization.

SUMMARY AND RECOMMENDATIONS

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling, with the objective of evaluating the property's potential for hosting economic precious metals deposits.

The MIKHAIL 2 mineral claim is located in an area of low relief and is extensively covered by a thin blanket of Quaternary alluvium which, combined with the scarcity of drainage courses cutting across the claim, limits the amount of rock exposure. Reconnaissance prospecting, combined with lithogeochemical and stream silt sampling, was completed over selected parts of the MIKHAIL 2 claim, but did not yield any precious or base metals values. However, only a small portion of the claim was examined during this exploration program.

The Harrymel Creek copper showing is reportedly located adjacent to Harrymel Creek in the south-central part of the claim. Prospecting in this area did not locate any mineralization.

Three heavy mineral samples were collected from creeks draining the MIKHAIL 2 claim as part of the 1989 exploration program. Two samples from creeks in the northern part of the claim yielded elevated silver, arsenic, and base metals values, with one sample also yielding an anomalous gold value. These creeks originate beyond the claim boundary; consequently, these elevated values may be due to mineralization located on adjacent properties. Nevertheless, the lower portions of the drainages occurring within the claim area should be prospected. and stream silt samples should be collected at regular intervals.

Additional exploration work is required to fully evaluate the mineral potential of this claim area. Reconnaissance prospecting along with the collection of stream silt samples at regular intervals should be completed along all the drainage courses cutting across the claim. Reconnaissance prospecting and lithogeochemical sampling (if warranted) should be conducted

.

over those portions of the claim not examined during the current exploration program.

The PARADIGM 2 claim is underlain by andesitic volcanics, primarily fragmental tuffs of the Lower Jurassic Betty Creek Formation. Narrow 2-3 m wide black argillite/chert beds were found within this volcanic assemblage. A number of isoclinal folds were observed adjacent to the Unuk-Harrymel fault zone. Abrupt changes in the general strike of these argillite/chert beds in the northern part of the claim indicate that additional structural complications occur in this area. A chert clast conglomerate was located in the southeastern corner of the claim.

Numerous frequently deeply incised drainage courses cut across the PARADIGM 2 claim. Reconnaissance prospecting and geochemical sampling were completed along these drainage courses, and in the upland areas where rock exposures were most abundant. Stream silt samples were collected at regular intervals along all of the drainages investigated.

Lithogeochemical sampling in the northern part of the claim, in an area of structural complications, yielded elevated to anomalous Au, Ag, or As values for a number of samples. Three stream silt samples from creeks draining this area also yielded elevated Ag and/or As values.

In August 1989, a reconnaissance stream silt sampling program delineated weakly elevated As and Ag values in the north-central part of the claim. A number of lithogeochemical samples of andesitic fragmental tuff within the drainage area from which these silt samples were collected yielded elevated to anomalous Au, Ag, and/or As values.

In the south-central part of the claim, two grab samples of an andesitic fragmental tuff yielded elevated to anomalous arsenic values, and in the southeast corner of the claim, two grab samples of a chert clast conglomerate yielded elevated arsenic values.

A heavy mineral stream sediment sampling survey was completed over the PARADIGM 2 claim as part of the 1989 exploration program. One sample from a creek draining the south-central part of the claim yielded an elevated gold value of 540 ppb. Several of the remaining samples, from creeks draining the southern half of the claim, yielded elevated Cu, Zn, Ag, or As values.

The 1989 exploration program on the PARADIGM 2 claim located a number of areas which require additional exploration. The areas from which lithogeochemical sampling yielded elevated Au, Ag, or As values should be re-investigated; the drainage areas of the stream silt sample sites which yielded elevated values should receive additional prospecting. Reconnaissance prospecting should be completed over the southern portion of the claim since heavy mineral samples collected from creeks draining this area yielded elevated Cu, Zn, Ag, or As values. Particular attention should be given to the northern portion of the claim in the area of structural complications, and in the southeastern corner of the claim in the area underlain by the chert clast conglomerate, when taken in the context of the Eskay Creek deposit.

Page 27

CERTIFICATE - C. H. Aussant

I, Claude Henry Aussant, of 31 Templebow Way N.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 400, 534 17th Avenue S.W., Calgary, Alberta.
- 2. I am a graduate of the University of Calgary, B.Sc.Geology (1976), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 4. I am the author of the report entitled "Geological, Prospecting, and Geochemical Report on the Paradigm Property, PARADIGM 2 and MIKHAIL 2 Claims, Skeena Mining Division, British Columbia", dated November 6, 1989. I personally worked on the property during the program described herein.
- 5. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of Loki Gold Corporation and Rocky Mountain Energy Corp., in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 6th day of November, A.D. 1989.

PERMIT TO PRACTICE TAIGA CONSULTANTALITD.
Signature
PERMIT MUMBOR: P 2399
The Association of Professional Engineers, Geologists and Geophysicists of Alberta

Respectfully submitted,

C. H. Aussant, B.Sc., P.Geol., F.GAC

Page 29

CERTIFICATE

I, DAVID GEORGE DuPRE, of 56 Parkgrove Crescent in the Municipality of Delta in the Province of British Columbia, do hereby certify that:

- 1) I am a graduate of the University of Calgary, B.Sc. Geology (1969), and have practised my profession continuously since graduation.
- 2) I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 3) I am a consulting geologist with the firm of Keewatin Engineering Inc. with offices at Suite 800 900 West Hastings Street, Vancouver, British Columbia.
- 4) I am the co-author of the report entitled "Geological, Prospecting, and Geochemical Report on the **Paradigm Property**, PARADIGM 2 and MIKHAIL 2 Claims, Skeena Mining Division, British Columbia", dated November 6, 1989. I personally supervised the work on the property and visited the site on two occasions between September 6 and October 15, 1989.
- 5) I do not own or expect to receive any interest (direct, indirect or contingent) in the property described herein nor in the securities of Loki Gold Corporation and Rocky Mountain Energy Corp., in respect of services rendered in the preparation of this report.

Dated at Vancouver, British Columbia this 6th day of November, A.D. 1989.

David G FGAC ELLOW

Respectfully submitted,

-

.

-

.

-

,

.

ſ

۰.

BIBLIOGRAPHY

- Alldrick, D.J.; Drown, T.J.; Grove, E.W.; Kruchkowski, E.R.; Nichols, R.F. (1989): Iskut-Sulphurets Gold; <u>in</u> The Northern Miner Magazine, January 1989
- Britton, J.M.; Webster, I.C.L.; Alldrick, D.J. (1989): Unuk Map Area (104B/7E,8W,9W,10E); <u>in</u> B.C.Energy Mines & Petr.Res., Geological Field Work 1988, Paper 1989-1, pp.241-250

Consolidated Stikine Silver Ltd.: - 1989 Annual Report

DuPré, D.G. (Sep.6,1989): Geological Report on the Paradigm Property, Skeena Mining Division; <u>for</u> Loki Gold Corporation and Rocky Mountain Energy Corp.; private company report

Geological Survey of Canada: - Open File 1645 (1988): National Geochemical Reconnaissance; Iskut River

- Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, British Columbia; B.C.Energy Mines & Petr.Res., Bulletin 58
- ----- (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C.Energy Mines & Petr.Res., Bulletin 63
- Korenic, J.A. (1982): Assessment Report of Geological, Geochemical, and Geophysical Work Performed on the Cole Claim in 1981, Skeena Mining Division; B.C.Energy Mines & Petr.Res., Assess.Rpt.10474

Northern Miner: - Nov.7, 1989

- Pegg, R.S. (1988): Geological Compilation of the Iskut, Sulphurets, and Stewart Gold camps; <u>for</u> BP Resources Canada Limited, private company report
- Shensha Consultants Limited (Oct.1989): Report on Mineral Potential Evaluation of the Iliad (South) Claim Block; <u>for</u> Ross Resources Ltd., private company report

Woods, D.V.; Hermary, R.G. (July 18, 1988): Geophysical Report on an Airborne Magnetic and VLF-EM Survey on the PARADIGM 1 and 2 Claims, Skeena Mining Division; <u>for</u> Dino M. Cremonese, private report

F 1

•

-

.

.

,

•

.

,

.

,

•

.

-

.

r

APPENDIX

Summary of Personnel Rock Sample Descriptions Certificates of Analysis Analytical Techniques

SUMMARY OF PERSONNEL

<u>Name / Address</u>	<u>Position</u>	<u>Dates</u>		<u>Man Days</u>
C. H. Aussant Calgary, Alberta	Project Geologist	Sep.9-Oct.16		8.75
B. C. Beattie Calgary, Alberta	Assistant Geologist	Sep.9-Oct.16		8.25
M. Waskett-Myers Vancouver, B,C.	Geochemist	Sep.9-Oct.16		7.50
B. McIntyre Vancouver, B.C.	Senior Prospector	Sep.9-Oct.16		5.00
S. Hardlotte LaRonge, Sask.	Senior Prospector	Sep.9-Oct.16		7.00
Don McLeod LaRonge, Sask.	Senior Prospector	Sep.9-Oct.16		7.00
Dennis McLeod Stanley Mission, Sask.	Junior Prospector	Sep.9-Oct.16		7.00
Irvine Roberts Stanley Mission, Sask.	Junior Prospector	Sep.9-Oct.16		7.00
C. Oevermann	Cook	Sep.9-Oct.16		7.50
Smithers, b.C.			TOTAL	65.00

×.

ROCK SAMPLE DESCRIPTIONS

PARADIGM 2 Claim

<u>Au ppb</u>

- PCR-001 <5 grab o/c; fragmental chert bed 3' wide, pale grey, pyrite as 3% disseminations and stringers; in black argillite; strike 90°/variable
- PCR-002 33 grab o/c; fragmental tuff, pale grey, rusty weathering, up to 10 cm diameter (volcanic breccia)
- PCR-003 604 grab o/c; andesite tuff, black, containing massive pyrite blebs and stringers (10%), directly overlying a narrow black argillite bed
- PVR-001 <5 grab float; large boulders of limonite-stained siliceous carbonaceous tuff with up to 5% disseminated pyrite
- PVR-002 6 grab float; tuff, brecciated, pyrite as inclusions and stringers
- PVR-003 24 grab o/c; andesite tuff, dark grey, limonite stained, with pyrite as disseminations and occ stringers
- PZR-001 <5 grab o/c; fragmental tuff, pale grey, pyrite as 1% disseminations and as stringers, rusty weathered, narrow cherty bands, calcareous, cherty fragments, pyrite enriched area 0.5m²
- PZR-002 <5 grab float; argillite, black, subangular boulder 0.4m²; Py as stringers, blebs, up to 3% disseminations and small crystals, occ calcite stringers, minor chalcopyrite
- PZR-003 81 grab float; intermediate fragmental tuff, pale grey, calcite infilling, 5% diss pyrite, cherty fragments, angular boulders 0.2 x 0.4 m
- PZR-004 <5 grab o/c; intermediate fragmental tuff, pale grey, calcite infilling, pyrite as 5% fine disseminations and stringers lining edges of 5 cm calcite pods
- PZR-005 <5 grab o/c; intermediate tuff, pale grey, calcareous, chert fragments, 3% very fine disseminations of pyrite
- PZR-006 17 grab o/c (same zone as PZR-005); intermediate tuff, pale to medium grey, calcareous, chert fragments, <1% diss Py
- PZR-007 <5 grab o/c; tuff, pale grey, <1% diss Py, quartz stringers
Paradigm Property

•

•

....

⊾.

<u>بر</u>

.

.

~

•

•

,

c

,

.

.

.

•

.

٠

•

-

.

,

•

,

.

۲. د

,

`,

•

	<u>Au ppb</u>	
PZR-008	271	grab o/c; fragmental tuff, grey, 5% pyrite as disseminations and crystals
PZR-009	62	grab o/c; fragmental tuff, pale grey, coarser grained, 2-7% pyrite blebs up to 2 mm diameter, quartz stringers
PZR-010	21	grab o/c; fragmental tuff, black, fragments up to 5 mm diameter, 5% pyrite as disseminations and blebs
PZR-017	18	grab o/c; andesite tuff, dark grey, trace pyrite
PZR-018	6	grab o/c; tuff, pale grey and black, 5% pyrite as dissemin- ations and crystals
PZR-019	52	grab o/c; conglomerate, clasts of chert and argillite, 5% disseminated pyrite in the matrix
PZR-020	50	grab o/c; conglomerate, clasts of chert and argillite, 5% disseminated pyrite in the matrix
PZR-021	<5	grab o/c; andesite tuff, grey, 3% fine diss pyrite
POR-001	<5	grab float; fragmental tuff, pale grey, 1% Py crystals
POR-002	19	grab float; fragmental tuff, pale grey, cherty, 5-7% disseminated pyrite
POR-004	<5	grab float; andesite, mottled light and dark grey, quartz stringers, disseminated pyrite
POR-009	11	grab float; fragmental tuff, pale grey, chert fragments, 1% pyrite
POR-010	<5	grab float; fragmental tuff, pale grey, chert fragments, weakly calcareous, 1-3% sulphides
POR-013	421	grab float; fragmental tuff, pale grey, chert fragments up to 2 cm, sulphides spotty up to 3%
PER-002	182	grab o/c; fragmental tuff, pale grey, chert fragments, 3% diss pyrite, minor calcite
PER-003	8	grab o/c; fragmental tuff, quartz flooding and stringers, minor calcite; pyrite as disseminations, stringers, occ blebs; limonite stained
PER-004	<5	grab o/c; tuff, grey, silicified, cherty; pyrite as minor disseminations and as crystals, quartz stringers

Keewatin Engineering Inc.

Paradigm Property

-

ь

.

.

.

•

•

-

L

.

Ŀ.

,

.

.

.

	<u>Au ppb</u>	
PER-005	50	grab o/c; fragmental tuff, pale grey, angular fragments up to 1 cm diameter, pyrite as 5% disseminations and numerous crystals
PER-006	<5	grab float; fragmental tuff, pale grey, angular chert fragments, 3-5% disseminated pyrite
PER-007	<5	grab float; fragmental tuff, pale grey, <1% disseminated pyrite, calcite stringers
PER-008	<5	grab o/c (same loc as PER-007); fragmental tuff, pale grey, angular chert fragments, rusty weathering, <1% diss pyrite
PER-009	114	grab float; fragmental tuff, pale grey, pyrite lining fracture planes
PER-010	<5	grab o/c; fragmental tuff, pale grey, cherty; up to 1% fine disseminated pyrite
PER-011	23	grab o/c; tuff, pale grey, cherty; 1% diss pyrite
PER-012	<5	grab o/c; tuff, grey, brecciated, cherty; angular chert fragments, pyrite crystals and stringers in matrix
PPR-001	13	grab o/c; fragmental tuff, pale to medium grey, calcareous; <1% disseminated pyrite
PPR-002	18	grab o/c; fragmental tuff, black; minor pyrite, strike 165°, ~2 m wide
PPR-003	76	grab o/c; fragmental tuff, light grey, <1% diss pyrite
PPR-004	678	grab o/c; fragmental tuff, pale to medium grey, albitized, <1% disseminated pyrite
PPR-005	8	grab o/c; andesite tuff, pale greenish grey, <1% pyrite
PPR-006	6	grab o/c; fragmental tuff, light grey, white angular alkali feldspar inclusions up to 0.5 cm diameter, minor quartz, 1-2% pyrite as disseminations, crystals, blebs
PPR-007	8	grab o/c; andesite tuff, grey, fine-grained, up to 2% diss pyrite, quartz stringers, minor feldspars
PPR-008	<5	grab o/c; andesite tuff, grey, fine-grained, fragmental, chert fragments up to 3 mm diameter, up to 2% diss pyrite
PPR-009	<5	grab o/c; fragmental tuff, pale grey, cherty, occ pyrite blebs, 1% pale green mineral in blebs

Keewatin Engineering Inc.

Paradigm Property

.

.

.

•

.

.

~

-

,

.

.

.

•

•

.

~

e.

-

.

.

•

·

.

•

•

•

	<u>Au ppb</u>	
PPR-010	12	grab o/c; tuff, dark grey, fine-grained, up to 10% diss pyrite, minor calcite stringers, limonite and hematite staining, zone 2 m wide, strike 008°
PPR-011	85	grab float; tuff, mottled grey-green, <1% pyrite
PPR-012	66	grab o/c; fragmental tuff, pale grey, angular chert fragments, 1-3% disseminated pyrite
PPR-013	10	grab o/c; fragmental tuff, pale to medium grey, angular chert fragments, 3-5% diss pyrite, strike 053°, dip steeply NW
PPR-014	33	grab o/c; tuff, pale grey, <1% disseminated pyrite
PYR-001	39	grab o/c; sheared argillite(?) in a tight isoclinal fold, includes rounded dacitic fragments to 60 cm (upright between an andesite flow on the west, and a clastic welded tuff/ felsic agglomerate on the east)
PYR-002	28	grab o/c; sheared argillite(?), fine-grained pyrite 1%, narrow zone of most intense shearing 0.5 m wide, adjacent country rock <1% pyrite, carbonate veinlets in more competent rocks
PYR-003	18	grab o/c; chloritic rhyodacite, medium green to grey, 3% fine diss pyrite, minor calcite veinlets
PYR-004	32	grab o/c; altered argillite, 5% fine diss pyrite and layers
		<u>MIKHAIL 2 Claim</u>
PYR-005	18	grab o/c; sheared argillite, 5% pyrite as disseminations and crystals, carbonaceous, minor calcite stringers, weakly foliated, strike ~060°, dip 60°N
KCR-042	<5	grab o/c; grey chert, with randomly oriented black argillite inclusions, contact area andesite tuff/chert/argillite; 1-3% diss pyrite; pyrite concentrated at the chert/argillite contact
KYR-28	<5	grab o/c; black silty sandstone, highly fractured, 5-10% diss pyrite; calcite fracture filling

Keewatin Engineering Inc.

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

.

....

ł

Geochemical Lab Report

.....

1

<u> </u>	-7								10				
	REPORT: V89-00	5781.0						PR	QJECT: PA	RADIGN		PAGE 1A	
	SAMPLE NUMBER	ELEMENT UNITS	Au PP8	Ag PPM	As PPH	Ba PPN	Be PPfi	81 PPN	Cd PPN	Ce PPM	Co PPII	Cr PFM	Cu PPM
<u></u>	T1 89PC-LU01	Paradym	<5	0.3	20	351	<0.5	(2		23	18		28
ί.	11 892C-L002	ŀ	<5	0.2	31	204	<0.5	<2	4	20	25	26	19
	T1 89PC-1 0D3		<5	0.3	20	236	<0.5	<2	<1	25	22	29	26
	11 89 <u>90-1004</u>		18	1.3	204	154	<0.5	2	4	36	19	6	30
<u> </u>	T1 89PC-L005		<5	0.3	84	192	<0.5	<2	3	21	24	17	43
	71 89PC-E006		18	0.5	- 63	174	<0.5	<2	2	22	19	33	43
	T1 89PC-L007		7	0.5	56	191	<0.5	<2	2	24	23	25	35
•	T1 89PE-LOD1		<5	<0.2	30	90	<0.5	<2	<1	17	24	60	52
. .	T1 89PD-L003		<s< td=""><td><0.2</td><td><5</td><td>78</td><td><0.5</td><td><2</td><td><1</td><td>8</td><td>15</td><td>44</td><td>34</td></s<>	<0.2	<5	78	<0.5	<2	<1	8	15	44	34
	T1 89P0-L005		<5	0.3	52	188	<0.5	<2	<1	27	17	27	31
<u> </u>	T1 89P0-L006		<5	0.2	47	186	<0.5	<2	<1	24	20	32	31
-	T1 89P0-LCC7		7	0.3	52	149	<0.5	<2	1	25	20	23	35
L .	11 89PO - 1698		1	0.3	27	138	<0.5	<2	<1	16	15	13	4 🕅
	11 89P0-L011		6	0.4	19	121	<0.5	<2	1	21	11	8	40
· · · · · · · · · · · · · · · · · · ·	T1 89P0-LD12		<5	0.4	37	130	<0.5	<2	<1	22	11	8	37
-/ •• ·	11 89P0-L014		<5	0.4	47	152	<0.5	<2	1	22	12	7	42
	T1 89P0-L015		36	0.5	29	133	<0.5	<2	2	19	11	5	37
	11 8990-L016		8	0.5	42	133	<0.5	<2	<1	20	11	5	40
•	V1 89PO-1017		8	0.4	31	163	<0.5	<2	2	21	14	8	44
	11 89PP + 001		9	0.2	47	126	<d.5< td=""><td><2</td><td><1</td><td>50</td><td>40</td><td>76</td><td>63</td></d.5<>	<2	<1	50	40	76	63
! <u> </u>			,	6.7	17	1/7	<u></u>				10)5
6	11 8000 1002 11 8000 1003		6	0.4	4) 57	147	<0.5 20.5	()	1	23	20	27	
	11 8901-1004		<5 <5	0.2	27	199	ረበ ና	0	1	26	21	30	38
	11 87PP - 1305		8	<0.2	23	180	<0.5	<2		18	15	20	37
•	T1 89FP-LONG		<\$	0.2	32	172	<0.5	<2	<1	22	21	41	43
<u></u>			/5	<u></u>	~5	174		/2	•	12		20	14
1	T1 89PU-LAD1		<5 (5	ко.2 П 2	<5	115	<0.5 <0.5	()	4		19	42	44
•	11 82PU-1002		 د ۲	0.2	19	147	<0.5	<2	<1	28	27	42	55
-	T1 89PV 1007		Ś	6.7	65	145	<0.5	2	2	32	22	26	51
	T1 89PV-L004		7	0.7	66	148	<0.5	<2	3	28	23	20	62
						445							
	11 89PV-LUUS 14 00DV -LUUS		13	1.1	68 190	145	<u.5< td=""><td><2</td><td>ن د</td><td>3∠ 24</td><td>24</td><td>20</td><td>۶<i>۲</i> ۲۱</td></u.5<>	<2	ن د	3∠ 24	24	20	۶ <i>۲</i> ۲۱
	<u>11 8900 -1000</u> 11 8900 -1007		20 7	2.4 70.2	107	101	(0.5	(2	.) 24	10	47	22	47
** - · *	1 0711V-1.007		, ,	ςυ.z Π.t	6	119	<0.0	<2 20	<1 21	10	1) 1/	47	41
~	1 071 V-LUUO 11 071 V-LUUO		<.) /5	U.4 ሰን	42	114	νυ.υ ΖΩ 5	12	3	23	10	40	4J 67
	11 0760-1007		~~~~	•••		104		14	,		10	24	
	T1 89PV-L010		9	0.9	57	144	<0.5	<2	3	38	11	7	26
	<u>11 8999 LU11</u>		<5	U.3	614	323	<0.5	<2	<1	9	8	<1	21
	T1 82PZ LCC1	٨	8	0.7	61	124	<0.5	<2	<1	27	25	38	55
	T1 89P7-L002	1 •	10	0.5	52	172	<0.5	<2	1	36	28	47	57
· ·	T1 89PZ 1003 /	aringm	10	0.5	15	166	<u.5< td=""><td><2</td><td>2</td><td>31</td><td>22</td><td>411</td><td></td></u.5<>	<2	2	31	22	411	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

6 J.

P

(604) 985-0681 Teley 04-352667

Geochemical Lab Report

<u> </u>	REPORT: V89-0/	5781.0						PF	NTE PRINT ROJECT: P	ED: 4-063 ARADIGM	-89	2005 1B	
<u></u>	SAMPLE	SAMPLE ELEMENT Ga NUMBER UNITS PPM				·							
۰ 	NUMBER		PPN	PPN		по РРН		PPM	Pb PPM	R5 PPN	Sb PPM	Sc PPH	Sn ₽₽∦
	T1 89PC-1001		14	16	12	3	12	24	5	<20			
κ.	11 89PC-LON2		13	15	18	3	13	29	<2	<20	s.	7	<20
÷	T1 89PC-L003		12	20	19	3	11	31	4	<20	<5	7	<20
	1 89PC-L004		1	18	6	3	4	24	14	<20	<5	3	<20
<u> </u>	11 B9PC-LUR5		8	9	13	7	4	44	12	<20	<5	5	<20
1	T1 89PC-L006		6	13	19		3	53	6	<20	<5	5	 <21]
i.	11 89PC-L007		7	11	11	6	4	57	9	<20	5	5	<20
-	11 89PE-1.001		10	8	20	Э	5	55	4	<20	<5	9	<20
•	11 89PG LUG3		10	5	17	2	4	49	2	<20	<5	5	<28
<u> </u>			10	14	20	3	8	36	4	<20	<5	4	<20
	T1 89P0-1006		10	13	22	3	8	43	<2	<20	<5	 6	<20
	[1 89P0 1007		7	13	16	6	5	45	5	<20	<5	S	<20
	11 89PO- UOS		6	7	10	4	3	24	9	<20	<5	4	<20
	1 89P0-1011		6	10	11	5	3	27	12	<20	<s< td=""><td>S</td><td><20</td></s<>	S	<20
-	11 89P0-L012	<u>-</u>	6	10	11	5	3	25	12	<20	. <5	5	<20
•	11 89P0-11114		4	11	11	6	2	28	12	<20		5	<20
	T1 89PC 1015		4	9	10	5	2	22	14	<20	<5	4	<20
	T1 89P0-LD16		4	10	10	5	2	23	13	<20	<5	5	<25
۵.	T1 89P0-1017		5	10	12	5	3	30	14	<20	<5	5	<20
	T1 89PP-L001		8	19	28	4	5	49	<2	<20	<5	10	<20
	11 89PP L002		7	13	27	5	5	43	3	32		5	
	11 89 00 (1803)		9	14	28	5	5	43	3	<20	<5	5	<28
	11 82PP LAAK		10	16	27	4	6	47	5	43	<5	ç	<2N
	T1 8929-1005		1	11	25	4	3	30	8	<20	<5	- 4	<20
x .	T1 89PP-1006		10	13	28	5	7	55	5	69	<5	5	<20
<u></u>	51 87PP-L007		8	8	29	5	5	51	(2	<2N			
	11 89PV-LOC1		8	8	17	2	3	46	<2	<20	۰. ۲.	6	<20
	11 89PV-1002		7	16	2C	6	3	49	4	<20	<5	1	<20
<u>-</u>	T1 899V-1.003		6	17	16	6	4	47	10	34	<5	6	<20
·	T1 89FV-1.004		6	16	14	8	3	61	14	51	<5	5	<20
	「1 89₽V-L005		6	17	14	9	3	53	17	<u></u>			
	11 89PV-1.006		8	18	12	, 9	6	56	25	70 25	<5	د ۱	<20 2 2 0
	11 89PV-LUN7		10	8	17	2	5	49	2	(28	ري ۲۶	ч 5	<20
	11 89FV-L008		11	13	18	4	8	41	9	<20	رج ح	ر ۲	<20 <20
Г	F1 89PV-L009		10	16	12	4	7	39	15	44	<5	3	<20
L	T1 895V-LA10		7	20	8	 ۶		24	1/	720			
~	T1 89PV-101:		<2	6	š	48	4	24 8	10 (2	48	<5	2	570 750
	11 8907 (1001		8	12	19	3	4	37	<u>ς</u>	<20	<5 75	, ,	220
L	11 89PZ-1002		9	18	20	3	4	58	7	<20	<5 <5	י א	∖∠u č20
	T1 89P7 4 003		8	14	14	4	4	62	10	53	<5	6	<217
											-		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667 **.**...

-

Geochemical Lab Report

~								TE FRINTE	D: 4-0CI-8	i9		
	REPORT: V82-U	REPORT: V87-06/81.0						PF	OJECT: PA	PAGE	1C	
		SAMPLE FLEMENT Sr Ta										
	SAMPLE	FLEMENT	Sr	Ta	Te	V	M	Y	Zn	Zr		
•	NUMBER	UNITS	PPH	PPM	PPM	PPN	PPM	PPN	PPN	PPN		
	· · · · · · · · · · · · · · · · · · ·											
•	11 89PC-1001		8N	<10	<10	51	<10	14	137	11		
	T1 89PC -1.002		87	<10	<10	78	<10	14	100	25		
	11 89PC-L003		48	<10	<18	64	<10	18	122	11		
-	11 89PC-LD04		25	<10	<10	25	<10	9	95	1		
	T1 89PC-L005		32	<10	<10	33	<10	11	188	2		
<u> </u>							.10	**		<u> </u>		
	11 89PC -: ND6		34	<10	<10	46	<10	11	191	2		
	11 89PC - 1 007		41	<10	<10	35	<10	10	180	2		
	[1 89PF-L 0C1		22	<11	<10 <10	12	(10	10	98	3		
	11 89PB-C003		36	<10 <10	<10	62	<10 <10	9	94	, 1		
~ ~	11 89P0-LARS		59	<10 <10	<10 <10	14	210	16	114	י ק		
			,,	10		40	NID	14			<u> </u>	
- . .	T1_8920 J 004		4.4	<u>ر</u> 11	<10	54	Z1 0	12	1 29	7		
-	11 8900-L007		44	<10 <10	<10 ∠111	7.5	210	1.0	195	, 7		
	11 8990-1008		70 28	210	210	4J 79	210	1U 9	47.5	، د		
<u>s.</u>			22	(10	<10	40	<10 <10	0	144	L +		
	11 5000-1011 11 0000 1012		()	< 10 24 B	(10	10	< LU (10	7	163	۱ ۱		
	11.07910-1017		<u></u> 20	<16	< <u>1</u> 0	15	<10	7	1/4	<u>i</u>		
	51 80D0 J 017		21	 1[]	210	40	<u></u>	4.4	170	2	· · · · · · · · · · · · · · · · · · ·	
•	74 SODD 1014		2E 11	× 1 D	250	17	<10 <10	11	177	۰ ۲		
	1 071 611111 14 0000 17157		7.9 17	210	<10 <10	10	<10 <10	10	137	4		
	11 07MUH0JJ6 11 00D0 1017		27	<10 <10	N I U 21 D	1/	<10 <10	10	101	1		
•	1 07FU-10[7		51	<10	<10 <10	21	<1U	12	1/3	2		
	1] 07FF-1UU.			<10	<1U —	1114	(10		77	<i>L</i>		······
-	T1 9000_1802		ζζ	/10	210	54	210	4 []	179			
	11 QAFF-LUU2 11 QAFF-LUU2		24	×10 Z10	210	10	210	11	101	+		
	11 0767 TEDUJ 14 2000 EBB4		• L • Z	N10 Z4 D	×10 210	22 50	×10 710	11	101	4 つ		
			04	10	×10 (4.0	52	<10 24 B	14	174			
	11 870 Pr.005		4-(j 11-7	<10 (10	<1U	51	<10	5	176	1		
K 2	H 9468-FR00		<i>i</i> I	<1U	<10	57	<10	12	161	6		
	TH 99000 (007		/1	Z+0	24.0	/0		7	100	· · · · · · · · · · · · · · · · · · ·		
	11 07FF (UU) 11 00fH4 (001		01 79	×10	<10 <10	47 70	×10 710	11	120			
L .	1 07FV-1001		20	24 D	×10 Z10	() C/	×10 210	10	133	0		
	14 07FV-LUD7 14 0000 1005		22	×10 240	N10 240		<10 <10	10	1.37	4		
•	TT 09DU LOD/		אג סיד	<10	<10	40	<10 240	13	217	2		
	11 071'9-1004			<u></u>	×10		<10	15	.)14	1		
<u> </u>	T1 20001_1005		<u> </u>	 Z1/I	Z1 []		Z1Ū	17	245	1		
-	1 07EV"LUUUU 11 00EVLLUUUU		40	<10 Z10	×10 210	26 11	230	14	224	1		
	11 0779-LUND 14 0000 LOG7		20	×10 210	×10 Z10	20 75	×40 240	1J 10	114 JJJ	4		
b	11 075V-LUU7)U 90	×10 ×10	NLU 240	13	×10	10	111	ь э		
	11 0787V-LUDG T4 0000 1000		20 74	<1U 210	N10 210	04 7 1	51U 24 D	0 40	71	.) E		
ſ	11 87819-1007		74	10	< <u>1</u> 0	41	<1U	14	T07	5		
1		<u> </u>	٥٨	Z10	Z10			•	212	 1		<u> </u>
	() 070°∀=)ULU /: 80001-1044		47	\U 210	<10 ∠10	21	<1U 210	0 E	129	2		
—	1 076VELUIL 14 0007 1004		27	×10 Z10	210	NL 70	×10 ×10	10	110	J D		
	1. 0717 19071 74 0007 1000		67	\2U ∠⊀D	N1U 240	6U ()	<10 240	14	110	í. D		
han	Fr eord + 000		40) c⊭	<10 240	<10 240	63	<1U (10	15	177	<u>^</u>		
	1 87FZ-1803		00	<u></u>	(11)	51	<18 	11	175	<u> </u>		

÷. Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C.

٣

1

V7P 2R5 (604) 935-0681 Telex 04-352667 .

Geochemical Lab Report

.

- - -		J			PROJECT: PARADIGM PAGE 20							
		1.0				PF	ROJECT: PA	RADIGM		PAGE 2A		
											·	
	SATPLE NUMBER	ELERENI AU	Ag	As .	Ba	Be	Bi	Cd	Ce	, Co	Cr	Cu
	NURH K	UNITS FFB	PPM	PPM	PPM	PPM	PPM	PPM	PPH	PPM	PPM	PPH
-	T1 8907-1016 Po	radiym is			0.05							
	82 89PC-RRR1		0.6	67	225	<u.5< td=""><td><2</td><td>8</td><td>27</td><td>23</td><td>15</td><td>83</td></u.5<>	<2	8	27	23	15	83
x .	97 990C_9007	د. در	0.2	12	<u>ر</u> کې	<0.5	<2	(1	48	<1	171	27
	82 89DC_DAR	C C	2 <u>2.9</u>	()	92	<0.5	(2	(1	30	<1	152	21
	NZ 07FC-NUUS 87 89DE-DAA2	<u>004</u> 192	1./ 44 E	22000	24	<0.5	<2	<1	<5	<1	36	38
~		102	11.0	517	47	<0.5	<2	<1	<5	2	196	53
	82 89PE-R003		<u> </u>		. O	/0 F	<u></u> /2		 			
	R2 89PE R004	<5	20.2	4L 7	40	<0.5 2.02	(2	<1 /1	(5) 2/	1	274	28
	R2 89PE-R005	50	чо, z П 2	128	ر، در	\U.J /0 E	< <u><</u>	<1 	26	4	26	22
	R2 89P1-8005		4 A	626	ניי חיד	VD, D 201 C	12	< L 21	21	21	35	45
•	82 89PE-RD07	(5	4.0 را 2	18	70 55	<u>v</u> 0,5 20,5	<z 20</z 	4	34	<1	ŏЦ 47	17
			.0,2		11	\U.J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~		32		5t
•	R2 89PE-R008	<5	Ū.2	21	122	<u></u> (115	(2	15	/5			
-	R2 89PF-R009	114	<0.2	161	62	(0.5	(2	21	13	4	20 400	16 47
	R2 89PF R010	<5	<8.2	17	165	20.5	12	×1 21	72	×1 7	107	ib T
•	82 89PE-RB11	23	<12	43	107	20.5	/2	×1 24	10	τι Γ	10	21
	82 89PE - KN12	(5	8.8	253	40	20.5	12	21	17		UC 7 1	1.1. 01
<u></u>					+7		· · · ·	<u></u>				17
1	R2 89P0-R001	<5	0.2	22	89	<u>د ۱</u> ۲	(7	<1	<u> </u>	- 2		2/
-	R2 89P0 R002	19	ĺ.8	170	33	(0.5	0	<1	25	2		24
- ~	R2 89P0-R004	<5	<0.2	5	18	<0.5	(7	<1	25	20	241	407
	R2 89P0-R009	11	0.7	59	97	<0.5	0	21	12	21	41	100
•	R2 89P0-R010	<5	4.2	234	74	<ก.ร	(2	<1 (1	72	1	104 50	47
		······································	-									
ſ	R2 89P0 R013	421	22.3	664	68	<0.5	<2	2	22	3	166	38
κ.	K2 89PP-R001	13	0.2	10	113	<0.5	1	< <u>1</u>	16	15	29	4.4
	R2 892P-RC02	18	0.2	35	57	<0.5	<2	त	18	15	46	5
F	82 8999 - RUA3	76	20.9	554	105	<0.5	<2	<1	8	19	44	41
N .	R2 87PP-R004	678	10.0	478	98	<0.5	<2	<1	23	< <u>1</u>	53	16
	R2 89PP-R005	8	<0.2	14	218	<0.5	<2	<1	19	14	8	12
	82 89PP-R006	6	<月.2	53	88	<0.5	<2	<1	<5	S4	8 56	64
N -	R2 89PP-R007	8	<0.2	18	179	<0.5	<2	<1	14	21	26	26
	82 89PP-R008	<5	0.2	41	84	<0.5	<2	<1	24	4	46	13
_	R2 89PP-8009	<5	<0.2	45	240	<0.5	<2	<1	24	30	58	64
<u> </u>			· ·				··					
	R2 89PP-R010	12	0.3	193	51	<0.5	<2	<1	<5	7	39	18
<u></u>	82 89PP-R011	85	2.9	177	61	<0.5	<2	<1	23	16	9	31
•	K2 89PP-R012	- 66	8.7	967	26	<0.5	<2	<1	16	12	60	32
	R2 89PP-R013	10	0.6	1236	35	<0.5	<2	<1	30	16	21	31
	R7 89PP-R014	33	4.2	219	66	<0.5	<2	<1	16	6	30	14
+-												
han at	R7 897V-R001	<5	Π.3	232	42	<0.5	<2	<t td="" <=""><td>27</td><td>1</td><td>15</td><td>17</td></t>	27	1	15	17
_	37 399 9-800 7	6	5.7	184	57	<0.5	<2	<1	21	<1	80	13
!	R7 37PV-R003	24	16.5	334	33	<0.5	<2	3	19	8	108	54
L .	87 89P7 -R001	T, S.	<0.2	33	82	<0.5	<2	<1	25	11	16	19
	80 39P7-R002 Mare	rdigm (5	0.3	36	42	<0.5	<2	<1	10	11	43	84
•												

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5

.

-

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

	9EDADI + 1189_04	.7\$1 ถ							HE PRINTE	.0: 4~0€1 ₽∧₽ТСЯ	-89	DACE 10	
								P	NUJEUT: PR			PHUE 20	·
	SAMPLE NUMBER	ELEMENT UNT TS	Ga PP H	La PPM	Li PPM	No PPN	Nb PPM	N і РРЛ	Pb PPM	Rb PPN	, Sb PPil	Sc PPH	Sn PPN
	11 89PZ-L016		9	18	15	8	4	45	15	<20	্ত	5	<20
	R2 89PC-R001		<2	25	<1	5	<1	2	15	<20	<5	<1	<20
L	R7 89PC-R002		<2	16	<1	3	<1	3	114	<20	<5	<1	<20
-	R2 89PC-RD03		<2	<1	<1	6	<1	1	9	<20	120	<1	<20
	R2 89PE-R002		3	1	<1	6	1	6	30	<20	27	<1	<20
•	R2 89PE-R003		10	<1	1	7	5	9	S	<20	<5	<1	<20
•	R2 89PE-RND4		5	12	3	3	17	< i	<2	25	<5	2	<20
	82 89PF-R005		9	7	14	7	6	55	2	<20	<s< td=""><td>8</td><td><20</td></s<>	8	<20
•	82 89PE-R006		</td <td>18</td> <td><1</td> <td>33</td> <td><1</td> <td>3</td> <td>17</td> <td><20</td> <td>22</td> <td><1</td> <td><20</td>	18	<1	33	<1	3	17	<20	22	<1	<20
ſ	82 89PE-8007		11	2	9	2	6	57	6	<20	ও	3	<20
	 R2 8991 -8668		(2	2		5	<1	3	18	<20		4	<u>/2Л</u>
	R2 89PF 8009		9	5	1	4	7	2	9	<20	8	2	<20
	R2 89P1 R010		1	<1	6	6	2	4	13	<20	Ś		<21
1 L	R2 89PE-R011		13	10	9	3	5	3	15	<20	5	5	<20
	R2 89PE-R012		<2	15	<1	23	<1	2	20	<20	15	- - -	<20
			~	3					4.0				(20
L	N7 07FU-KUUI D1 99FIA D1112		×7 70) G	K1 24	<u>/</u>	<1 24	2	10	520	< S 20	۲ <i>۲</i>	<20 700
	02 89D0_0002		15	,	\1 0	7	7	נ חיי	24	21	 <5 	~1	<20
F	R2 8900-R014		2	21		×1		20	11	22	 <5 	د. 1 ⁄	120
x .	82 89P0-R011		3	15	<1	17	2	3	21	23	8	<1	<20
	42 9000 0042			<u>а п</u>				r	20	(10			
7	NZ 0710-NUL)		52	111	<u><u>s</u>t</u>	3	40	2	.57	<20 200	5U /r		⊔<br ∠)0
S	07 0711-AUU) 07 0900 0100		11	0	11	נ נ	13	21	4 C	20	۲ <u>۵</u> ۲۶	/ 0	52U 200
	07 0711 30.07 07 0900_0000		. 1	6	14	L I		31 35	ר חכ	20 20		0	× 200
	82 89PP-8084			11	21 Z1	1	1) (1	23	2.U 19	<20 <20	5 7	7	×20 220
·			;					<i>L</i>		~~~~		· · · ·	<u> </u>
. -	R2 87PP-ROOS		18	9	19	1	8	1	<2	<20	<5	4	(2 1)
	R2 899° R006		59	<1	38	<1	37	<u>503</u>	6	<20	16	19	22
•	R2 89PP-R(107		13	6	18	3	13	11	<2	<20	<5	9	<20
	R2 8909-R008		5	12	4	3	2	15	10	<20	<5 	2	<28
	82 89PP - RUU9		12	12	15	1	11	70	4	<2u	3	17	<20
•	R2 89PP-R010		(2	<1	<1	2	<1	5	13	<20	15	2	<u>\</u> 20
r	R2 89PP-RG11		3	12	<1	2	2	25	24	<28	6	2	<20
	R2 89PP-8012		6	7	7	16	3	22	15	<20	21	3	<20
L	R2 89PP-R013		5	13	4	3	3	23	4	<20	55	3	<20
·r	R2 89PP-R014		<2	8	<1	4	<1	13	14	<20	15	1	<20
	R2 899V-RIID1		3	13	<1	10	2	1	21	<20	10	<1	<20
	R2 89PV R082		9	10	18	2	4	1	22	<20	<5	1	<20
<u>_</u>	R2 899V-RND3		<2	3	<1	31	1	37	47	<20	81	<1	<20
	R2 899Z-R001		12	12	7	1	5	2	15	<20	<5	2	<20
•••••	R2 89P7 R002		8	4	8	10	4	49	9	34	<5		<20

Bondar-Clegg & Company Ltd. 130 Pemberion Ave.

North Vancouver, B.C. V7P 2R5

ſ i.

.....

(604) 985-0681 Telex 04-352667

Geochemical Lab Report

۲ ا				A DIVISIO	N OF INCHC?	APE INSPECT	ION & TESTI:	NG SERVICES	TE DOTNIE	D•4_0CT_8	Q
.	REPORT: V89-DA	5781.D						PR	OJECT: PA	RADIGH	PAGE 2C
 -	SAMPLE NUMBER	ELEMENT UNITS	Sr PPM	Ta PPM	Te PPM	V PPN	N PPH	Y PPN	Zn PPN	Zr PPN	
	T1 89PZ-L016		49	<10	<10	67	<10	19	436	1	
1	R2 89PC-R001		6	<10	<10	1	<10	3	16	3	
•	R2 89PC-R002		15	<10	<10	<1	<10	2	26	2	
	R2 89PC-RD03		3	<10	<10	<1	<10	<1	7	4	
<u> </u>	K2 89PE-8002		46	<10	<10	1	<10	2	103	4	
	R2 89PE-R003		55	<10	<10	4 -	<10	2	31	2	
•	R2 89PE-R004		<u>577</u>	<10	<10	2	<10	12	22	2	
	R2 899F-RD65		118	<10	<10	35	<10	11	36	2	
	R2 89PE-R006		24	<1U	<10	<1	<10	5	159	3	
: 	K7 89Ft-RUU7			<11	<10	20	<10		3U		
	R2 89PE-R008		10	<10	<10	13	<10	3	23	Э	
	R7 89PE-RU09		228	<10	<10	1	<10	8	138	4	
•	R2 89PF-RU10		24	<10	<10	7	<10	3	38	2	
	R7 89PE-R011		55	<10	<10	22	<10	12	66	2	
- - -	R2 89PE-R012		4	<1U	<10	<1	<10	2	19	t	
٦ -	R2 89P0-R001		31	<10	<10	13	<10	4	2	i	
• •	R2 89FIC-R002		6	<10	<10	1	<10	2	19	4	
	R2 89P 0- R004		54	<10	<10	171	<10	5	87	9	
•	R2 89P0-R009		26	<10	<10	1	<10	4	18	4	
<u></u>	R2 89P0 801D	·	49	<10	<10	4	<10	6	241	3	
	R2 82PC-W013		13	<10	<10	<1	<10	4	201	3	
	82 89PP-8001		114	<10	<10	35	<10	9	80	4	
-	R2 89PP-RU42		16	<10	<10	46	<10	13	110	3	
	82 89PP-8003		117	<18	<10	48	<10	9	69	1	
• •••••	82 89MH-8004	.	3	<10	<10	1	<10	2	23	2	
~	82 8 9PP-RB05		76	<10	<10	77	<10	12	92	2	
v -	R2 89PP 8006		484	<10	15	103	<10	7	69	2	
	82 89PP-R007		413	<10	<10	71	<10	11	83	2	
-	82 89PP-R008		16	<10	<10	12	<10	7	37	3	
<u> </u>	R? 89PP-R009		245	<10	<10	73	<10	14		1	<u> </u>
_	R2 892P-8010	·····	23	<10	<10	11	<10	3	116	2	
1	R2 890P-R011		22	<10	<10	9	<10	8	64	2	
b	k2 89PP-R012		29	<10	<10	21	<10	5	101	2	
-	K2 89PP-R013		33	<10	<10	14	<10	12	102	3	
	R2 89PF-R014		3	<10	<10	8	<10	<1	10	2	
<u></u>		· · · · · · · · · · · · · · · · · · ·	22	<10	<10	1	<10	2	25	}	
	R2 8999 - R002		59	<10	<10	2	<10	4	72	4	
	R2 820V-RDC3		34	<10	<10	8	<10	8	493	2	
•	R2 89P7-R001		32	<10	<19	22	<10	9	62		
	R2 89PZ-RNB2		19	<10	<10	40	<10	88	145	1	
_											

Bondar-Clegg & Company Ltd.
 130 Pernberton Ave.
 North Vancouver, B.C.
 V7P 2R5
 (604) 985-0681 Telex 04-352667

[

Geochemical Lab Report

-	REPORT: V89-0	16781.0					D4 PR	I <mark>TE PRINTE</mark> ROJECT: PA	D:- <u>4-001</u> Iradigh	PAGE 34			
	SAMPLE Number	ELEMENT UNITS	Au PP8	Ag PPM	As PPM	8a PPM	Be PPM	Bi PPM	Cd PPN	Ce PPM	Co PPM	Cr PPM	Cu PPM
	R2 89P7-R103 R2 89P7-R103 R2 89P7-R104 R2 89P7-R105 R2 89P7-R106	Puradigm Y	81 <5 <5 17	7.9 <0.2 0.4 1.5	172 45 104 104	62 93 87 46	<0.5 <0.5 <0.5 <0.5 <0.5	<2 <2 <2 4	43 <1 <1 <1	9 12 35 22	8 49 11 14	90 45 57 38	52 27 25 28
	R2 89P2-R007 R2 89P2-R008 R2 89P2-R009 R2 89P2-R010 R2 89P2-R017 R2 89P2-R018		<pre></pre>	0.2 0.3 0.4 0.4 <0.2 1.1	199 <u>843</u> 175 <5 41	164 82 70 105 122 49	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	2 (2 (2 (2 (2 (2 (2	<1 3 <1 <1 <1	17 6 6 <5 22	9 13 10 5 12	55 60 36 26 20	33 74 42 31 61
- <u>+</u>	R2 89PZ-R019 R2 89PZ-R020 R2 89PZ-R021	f Perodiya	52 50 <5	2.0 1.4 0.2	<u>987.</u> <u>686</u> 55	27 33 51	<0.5 <0.5 <0.5	<2 <2 <2	<1 <1 <1	6 8 15	7 11 37	67 50 154	38 51 96
						<u> </u>							
										<u></u>	•		

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemical Lab Report

								D4	IE PRINTE	D: 4-0C	-89		
REPORT: V89-06781.0								PR	OJECT: PA	RADIGM		PAGE 38	
	SAMPLE NUMBER	ELEMENT UNITS	Ga PPM	La PPM	Li PPN	No PPri	Nb PPM	N; PPH	РЬ РРИ	Rb PPH	Sb PPfi	Se PPti	Se PPN
		·····											
	R7 89PZ-RUU3		8	4	<1	17	4	1/	423	<20	19	2	<20
•	NZ 67472-88804		6	د د ،	10	2	20	19	1	65	1	1	<20
	KZ 67P7-KIIUS		13	17	13	6	6	19	8	<20	<5	5	<21]
	KZ 87FZ-KUU6		13	10	1	3	1	Z4	20	<20	6	4	<20
•	R7 07P2-R007		4	10	4		2	9	15	<2U	13	Z	<20
	R2 89PZ-R008		3	8	<1	<1	1	14	53	<20	8	2	<29
	R2 89PZ-R009		2	<1	3	2	4	11	17	<20	27	3	<28
	R2 89PZ-R010		5	2	3	2	2	13	19	<20	33	4	<20
	82 89P7-R017		8	1	10	3	2	2	10	<20	<5	3	<20
5	82 89PZ-RU18		7	9	9	5	3	19	12	<20	6	4	<20
<u> </u>	<u></u>												
	82 87P7-R012		9	1	15	6	2	19	43	<20	68	4	<20
1 m	R2 89PZ R020		11	3	18	4	8	21	36	<20	51	4	<20
1 5	R2 89PZ R021		30	5	43	3	13	57	<2	<20	<5	17	<20
<u> </u>													
•													
<i></i>													
L .													
•													
b -													
	· · · · ·	<u> </u>								•	,		
													
^													
									· · ····				
													. <u> </u>
~													
L .													
~													
·													
L													
~													
b . 7													

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

1

Geochemical Lab Report

4

	REFORT: V89-06781.0						PROJECT: PARADIGM PAGE 3C							
	KEPUKI: 909-0	6/01.U						P	RUJECI: PR	IKAU 160		PAGE	30	
! 	SAMPLE NUMBER	ELEMENT UNITS	Sr PPM	Ta PPM	Te PPM	Ų ₽₽ й	N Ppn	y PPN	Zn ያዮሽ	Zr PPM				
	R2 89P7-R003		81	<10	<10	6	26	4	3391	1		••		
	82 89PZ-R004		193	<10	<10	21	<10	9	58	2				
-	R2 89P7-R005		50	<10	<10	41	<10	12	89	2				
• -	82 89P7-R006		101	<10	<10	16	<10	8	82	2				
	R2 89PZ-R007		74	<10	<10	8	<10	1	31	2				
	R2 89F7-R0D8		 9	<10	<10	6	<10	3	83	4				
	R2 89F'7-R009		20	<10	<10	19	<10	3	279	1				
•	K2 89P7-R010		17	<10	<10	18	<10	4	40	2				
	82 89PZ-R017		8	<10	<10	28	<10	5	41	2				
	R2 89977-RD18		9	<10	<10	28	<10	7	107	· 2				
	R2 89PZ-RD19		11	<10	<10	74	<10	4	88	2				
r-	R2 89P7-R020		12	<10	<10	79	<10	5	193	2				
	R2 89PZ 8021		151	<10	<10	232	<10	11	88	2				
•														
			· · · · · · · · · · · · · · · ·			· · · ·								
ī. —		<u> </u>			, , <u>, , , , , , , , , , , , , , , , , </u>									
F														
ς.														
						••••								
,														
.														
							*			•				
<u></u>														
b														
_														
· 														
<u> </u>			<u></u>					<u> </u>	<u> </u>					
~														
ς.														
ſ					•	. <u> </u>								. <u> </u>
- •														
Г														
s No c														

Landra e jegg x Company Edd Evelt (idention Acc Courte Vancouver, BJ V 7P 2RS Courty 985-0681 Telex 04-352667

-

Geochemicat Lab Report *

-

ł

-		2576 D		4 846 ISIO 	NOLLAH	APE ESSPEC	HONA HAAR	NG SERVICE: DÅ	TF PRINTE	D: 27-0CT Uk	- 89	PAGE 1A	
r	SAMPLE	FLEMENT	Âu PPR	Ag PPN	As PPB	Ba PPN	Be PPN	Bi PPh	Cd 64/1	Ce (/F/M	Co PPN	C <i>T</i> 1998	Cu PPN
	T1 89KC-L 041	Paradya S	6		70	217	<ii.5< th=""><th>5</th><th></th><th>37 34</th><th>21</th><th>4? 18</th><th>31 45</th></ii.5<>	5		37 34	21	4? 18	31 45
	1] 87KU-1. U43	A 1 L	15	U.2		237	(11)	J		5,			
с. г -													
•													
											- ··-		
F													
					·····						-		
••••• • • •													
~			. <u> </u>			<u></u> ,		·	· · · ·				
<u> </u>													
.													
				·····	- · · ·								
Ĺ													
									.				

 minidar Clegg & Company Ltd. Two PriniBerton Ave.
 Looth Vanconver, B.C.

3

.

Geochenneat Lab Report

.	REPORT: V89-N7	576.0						DA PR	I <u>te printe</u> Oject: Un	<u>D: 27-001</u> IUK	-89	PAGE 1B	
	Sampl E Number	FLENENT UNITS	Ga PPN	La PPN	L.i PPN	No PPN	Nb PP#	Ni PPM	Pb PPh	Rb PPN	Sb PPM	Sc PPN	Sr PPI
	T1 89KC-L B 41 T1 89KC-L D 43	· · · · · · · · · · · · · · · · · · ·	20 20	11 14	22 19	3 4	12 11	43 43	12 15	<20 <20	11 10	4	<2(<2)
~													
L.													
6 . 1													
•													
1													
- -													
. .													
- -													
. .		· · · ·											
											·		
•													
C C													
-													
•													
.													
· · · ·				<u> </u>									
. .													
.											-		
-													

 Bondar-Clegg & Company Ltd. (60) Peridection Ave.
 South Vanconver, B.C.
 V-P 2R5

é

s,

۲ ر

. .

۲ د

L

.

. . .

P

. .

r C

Geochemical_a Lab Report

- - -

,

RFPORT: V89	-07576.0						PK	DJECT: UN	iuk	PAGE
SAMPLE NUMBER	EI EMFNT Units	Sr PPN	Ta FFN	Te PPH	V PPM	H FIPM	y PPN	Zn PPH	Zr PPM	
11 89KC-L D	41	28	<10	<10	72	<10	10	168	4	
11 89KC-L D	43	49	<10	<10	43	<10	14	146	4	

 Boundar Clegg & Chinpenty Ltd. 1997 Perification Ave 2 anth Vancouver, B.C. V 42 2185

r

Geochemical Lab Report

-

[R1+10RT: V89-	17573.0			SOLENCHO?	ALT 192476. J	RENT TESHS		<u>ale primi</u> Rojici: Un	10 <u>: 29:00</u> .1 10k	89	PAGE 1A	
	SANFI F NUMBER	ELENENI UNETS	Au PPR	Ag PPn	As PPtt	lla FPN	8+ F*rt	Ri PPN	Cd PPB	C:r [ว่าก	Со Р/П	С. 1997	С) 199
r •													
•													
~ ·													
k	R7 89KC-R 114	PARADICI	∧ \$ <5	<11.2	<u>(</u>	93	41,5	3		15	16	16	7
• ~~													
•													
• •													
L													
e -													
i C													
* **													
r													
e :- :				•									
•					<u> </u>		<u></u>						
* *				, 	·								
•													
<i>~</i> ·													
<u>k</u>													
<u>,</u>													
•													
r													
•													
<u> </u>		· · · · · · · · · · · · · · · · · · ·					<u> </u>						•••••
•													
													
! ►													
	<u> </u>						·						

Ĺ. thought'st legg & Company Eld. 150 Panhenon Ave. Isouth Vancouver, B.C. V 7F 2R5 (604) 985-0681 Telex 04-352667

Γ

÷

Geochemical Lab Report

•				A DIVISION	OF INCHCA	are inspecti	ON& TESTIN	IG SERVICES	<u>te erinte</u>	<u>D: 27-001</u>	- 89		
	REPORT: 189-07	573.0						PR	OJECT: M	IUK	· <u> </u>	PAGE 18	
[SAMPLE NUMBER	ELENENT UNITS	Ga PFn	La Pirn	1 i PPn	00 P24	Nb PPN	Ni PPN	Pb PPN	R5 14111	бь РРл	56. FPM	Su PPh
•													
•													
	. <u></u>				s				;	······			
	R2 89KC-R 842		21	1	21	2	10	6	</td <td><20</td> <td><u>ر</u>ا،</td> <td>8</td> <td><20</td>	<20	<u>ر</u> ا،	8	<20
.													
, -													
:													
Ĺ											-		
<i>r</i> -						. <u></u> ,			.		<u>.</u>		
•													
ľ î													
÷.		<u> </u>									···		
e** - '													
•													
e													
<u>k</u>													
													
L													
Γ													
<u> </u>													-
<u>_</u>													
L.													
								,					

. .

Homan Clegg & Company 14d.
 For Pendecton Ave.
 Forth Subconver, B.C.
 V/Ir 2R5

(144) 985 (168) Telex (14-352667

Geochemicai Lab Report

ł

;

ſ	- -			A DIVISION	OF INCLUS	APE INSPECT	ION & TESTIN	NG SERVICES	TE VRINTE	n. 29.0∈1.84	ł
	REPORT: V89 07	57 1.0						Ph	OJECT: UN	UK	FIAGE 1C
. .	SAMPLE NUMBER	FI EMENT UNITS	Sr PPN	la PPM	Te PEN	U PPN	u PPM	Y PPN	Zo PFM	75 F110	
						·	·			•	
	K2 89KC-R 1142		54	<111	<10	134	<18	111	52	6	
-											
_											
~											
				<u> </u>							
*											
-											
									. <u>.</u>		
			·				<u> </u>				
•											
-											
									,	 .	

Fiondar-Clegg & Company 1.61.
 For Combetton Ave.
 Forde Vanconver, B.C.
 V7P 2R5
 (604) 955-0681 Telex 04-352667

۰.

Geochemica Lab Report

_				A DIVISIO	NOF INCHC?	VPE INSPECT	HONA TESTIN	IG SERVICES DA	TE PRINI	ED: 27:001	-87		
 	REPORT: V89-	07572.0						Pf	ROJECT: U	NUK		PAGE 1A	
[SANPI.E NUMBER	ELEMENT UNTTS	Au PPB	Âg PPN	As FPfi	Ba PPN	Be PPN	8i 9Ph	Cd PPM	Ce I'Pfi	Co PPN	Cr PPN	Cu PPH
<u></u>	R2 KYR 28		<5	0.2	25	70	<n,5< td=""><td>7</td><td><1</td><td>19</td><td>8</td><td>94</td><td>25</td></n,5<>	7	<1	19	8	94	25
ί.													
<i>с</i> .													
*													
-													
[
<i>~</i>								<u> </u>				• •=	
·					·		·						
,													
•													
,		<u> </u>								··			
L											•		
r													
L							-						
r -	- ·												
<u></u>													
											·····	-	
-													
•													
-	_												
									<u> </u>			-	
^													
.													
· - ·· -									<u></u>				

nondar/Clegg & Company Ltd. 150 Femberion Ave. North Vanconver, B.C. V7P 2R5 (004) 985-0681 Telex (04-352667)

L

Cicochemicat Lab Report

Ì

-				A DIVISIO	NOU ISCHO	APRENSIPECT	IONA H MD	vo SERVICES DA	TE PRINTE	D: 27-0CT-	-89		
	REPORT: V89-	N7572.0						Pf	ROJECT: UN		·	PAGE 18	
	SAMPLE NUNBER	EI FMENT UNITS	Ga PPM	La PPM	1, i PPM	No PPN	нь Рри	NT PPN	Pb PFN	кь РРИ	бь РРИ	Sc PPM	Sa PPN
 	R? KYR 28		18	5	13	3	12	42	15	<20	8	4	<20
•													
-													
L													
r -													
κ.													
* '-													
•													
* **													
۲													
		<u> </u>					·· ·	<u>.</u>					
-													
-													
•	· · · · · · · · · · · · · · · · · · ·										-		
-													
•													
•·						· · · _							
-													
6 - 1													
.													
÷	·												
b													-
.						_		<u> </u>	<u>_</u>				
.	····	<u></u>											
	· · · · · · · · · · · · · · · · · · ·												

 Boodary legg & Company Ltd. For Pemberton Ave. North Vincenver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

L

Geochemical Lab Report

Γ				A DIVISIO	NOLINCIE	APE INSPECT	IONA TESTIS	NG SERVICES DA	TE PRINIE	D:_27-0C1-0	9	_
	REPORT: V89-	n7 572.N						PR	OJECT: UN	iuk	PAGE	10
	Satipl E Number	EL FHENT UNITS	Sr PPN	Ta PPN	Te PPN	V PPH	4 PP#	ү Н99	Zn PPN	7г РРН	-	
	R2 KYR 2 8		299	<10	<10	42	<10	7	89	2		
<u>.</u>												
• •												
•												
[
F ***												
•												
												-
•												
												_ ·
											,	
• **												
b	<u></u>		-	. <u>. </u>		<u>-</u>						
•												
F -												
• . • ·												• • ••
b												
					·							· · ·· · ·
*												
··				<u>. </u>		· · · ·			r			

Bondar-Clegg & Lumpary Ltd. 130 Pemberton We North Vancouver, B C V7P 2R5 1604) 985-0681 Tores 4-352667

Geochemical.. Lab Report

- -	REPORT: V8	9-06962.0	, i _					PR	OJECT: PA	RADIGM		PAGE 1A	
	SAMPLE NUMBER	FLEMENT UNITS	Au PP8	Âg PPN	As, PPN	8a PPN	Be PPM	Bi PPN	Cd PPN	Ce PPM	Co PPN	Cr PPH	Cu PPN
	R2 PYR01	Puradiam	39	0.5	32	298	<0.5	<2	2	32	- 4	41	21
	R2 PYRD2	*	28	0.3	76	47	<0.5	<2	2	<5	10	29	25
•	R2 PYR07		18	0.2	s	111	<0.5	3	d	9	17	10	26
	R2 PYRD4	♠ _	32	0.4	78	37	<0.5	. 4	1	<s< td=""><td>10</td><td>29</td><td>28</td></s<>	10	29	28
•	R2 PYROS	produm	18	<0.2	<5	102	<0.5	4	<1	18	2	18	16

Bondar-Clegg & Company Ltd. 130 Pemberton Ave.

North Vancouver, B.C. V7P 2R5

(604) 985-0681 Telex 04-352667

.

۱.,

.

•

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES DATE PRINTED: 20-0CT-89

									ALC LINEARING				
<u> </u>	REPORT: V89-	06962.0					•	PF	INJFCT: PA	RADIGM		PAGE 18	
	SAMPLE NUNBER	ELEMENT UNITS	Ga PPN	La PPN	Li PPM	Но РРп	Nb PPN	Nî PPN	Pb PPN	Rb PPH	Sb PPti	Sc PPN	Sn PPH
!	R2 PYR01		5	18	8	5	3	10	24	<20	10	2	<20
	R2 PYRO2		7	8	7	6	5	10	27	<20	13	3	<28
<u></u>	R2 PYR03		9	11	16	4	9	12	4	<20	8	3	<20
	R2 PYR04		8	7	7	4	6	11	24	<20	10	2	<20
b. .	R2 PYR05		6	14	5	9	3	6	14	<20	6	5	<20

Bondar-Clegg & Company Ltd.

٣

.

•

è

130 Pemberton We
 North Vancouver, 310
 N7P 2R5

(604) 985-0641 (Jun + 152667)

Geochemical --Lab Report

	n4942 fl						PR	DJECT: PA	RADIGN	PAGE 10
NEFORI. 461						•				
SAMPI E	ELEMENT	Sr	Ta	Te	Ų	ų	۲	Zn	Zr	
NUMBER	UNITS	PPN	PPH	PPH	PPN	PPN	PPN	PPN	PPI	<u> </u>
R2 PYR01		34	13	<10	16	<10	5	75	2	
R2 PYR02		68	<10	<10	17	<10	7	79	2	
R2 PYR03		101	18	<10	33	<10	10	61	2	
R2 PYRD4		84	12	<10	13	<10	6	90	2	
R2 PYROS		28	<10	<10	22	<10	9	35	3	· · · · · · · · · · · · · · · · · · ·

Bondar-Clegg & Company Edd. 140 Pemberton Ave. Associal Vancouver, B.C. V/P 285 16041 985-0681 Teles 04-352667

ŝ,

÷

Geochemical Lab Report

÷.

REPORT: V89-	06960.0						DA PR	<u>TE PRINTE</u> Oject: un	<u>0: 71-0CT</u> UK	<u></u>	PAGE 2A	
SAMPLE NUMBER	ELEMENT UNITS	Au PPB	Ag Pfrk	А5 РРМ	Ba PPN	Be PPN	Bi PPM	Cd PPM	Ce PPN	Co PPn	CT PPN	Cu Pith -
T1 89PZL011 T1 89PZL012 T1 89PZL013 T1 89PZL014 T1 89PZL015	Puredigm Friday Parodigm	22 21 12 23 38	n.3 0.5 • 1.1 0.6 0.6	211 <s 35 28 39</s 	178 234 181 163 161	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5	4 4 4 4 4	3 1 6 3 3	20 22 24 21 25	211 25 26 21 21	19 27 18 19 21	3: 3: 3: 4: 5:

,

; _

 Horadai's Georg & Company Ltd. 190 Peruberton Ave.
 North Vancouver, B.C. V 7P 2R5 (004) 985-0681 Telex 04-352667

.

Geochemical Lab Report

ŧ

	(9(N N						PR	OJECT: UN	iuk	-=	PAGE 2B	
KEPOK1: 089-1	675U.U											
SAMPLE NUMBER	ELEMENT UNITS	Ga PPN	La PPN	Li PPM	ño PPN	Nb РРН	Ni PPH	PD PPN	PPN	50 PPN	PPN	PPi
							30	16	<20		4	<2
T1 89PZL011 T1 89PZL012 T1 89P7L013		15 16 16	5 1 9	26 22	8 9	11 8	37 36	11 19	<20 <20	7 11	5 5	<2 <2
T1 89PZL014 T1 89PZL015		15 16	9 10	23 25	7 8	ר ר	33 35	19 23	<20 <20	9 12	6	<2
						. <u></u>						
										<u>.</u> .		
					<u> </u>	<u></u>						
		-										·
				<u></u>								
									–			
									· _ · · · · ·			

[Bondar-Clegg & Company Bu Pemberton Ave. North Vancouver, B.C. V7P 2R5 (014) 985-0681 Telex 04-33	y 6.ml. 52667			BO	EC VDAR-C	LEGG			(Seochem Lab Rej	icai_ port
		(940 D			NOUNCHO?	APL EXSPECT	ION& HISH:	VG SERVICES DA PR	<u>TE PRINTE</u> Oject: un	<u>d: 20-001-8</u> Uk	9 Page	20
7-	KEPUKI: V07-I	676U.U	Sr.	 	Ie		. <u> </u>	Y	Zn	Zr	· · -	
• •	NUMBER	UNITS	PPI	PPN	PPN	PPN	PPN	PPN	PP/1	PPN		
				<u> </u>								
۲. ۱												
•												
.						* _						·••
<u> </u>	T1 89P7L011		53	<10	<10	53	<10	10	270	4	_	
<u>ج</u>	T1 89PZL012 T1 89PZL013		82 56	<10 <10	<10 <10	50 70	<10	11	384	3		
•	T1 89PZL014		54 55	<11 <1①	<10 <10	79 89	<10 <10	12 13	317 329	2		
- 14 - 14	~											
•	•											
•												
-												
•											`	
	·											
•	_											
- - -								. <u> </u>			 .	
	· · · · · · · · · · · · · · · · · · ·			<u> </u>								
:												
ſ												
L.									<u> </u>			•
<i>r</i>												
•											_	
	·							_		ı		

ż

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

L

Geochemical. Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-D6781.0 (COMPLETE)

REFERENCE INFO:

CLIENT: KEEWATIN ENGINEERING INC. PROJECT: PARADIGN SUBMITTED BY: TERRAMIN RES. LAR DATE PRINTED: 4-0CT-89

	ORDER		ELENENT	NUMBER OF ANALYSES	LOWER DETECTION LIMIT	EXTRACTION	NETHOD
<u></u>		ĉ.,	Gold Fire Assay	93	5 PPB	FIRE - ASSAY	Fire Assay AA
	2	ÂG	Silver	93	0.2 PPN	HN03-HCL HOT FXTR	Ind. Coupled Plasma
.							
<u> </u>	3	As	Arsenic	93	5 PP#	BNOB-ROL HOT EXTR	Ind. Coupled Plasma
	4	Ba	Barium	93	1 PPM	HN03-IICL HOT EXTR	Ind. Coupled Plasma
L	5	Be	Beryllium	93	0.5 PPM	HNOB-BOL HOT EXTR	Ind, Coupled Plasma
	6	Bî	Bismuth	93	2 PPM	HND? HCL HOT LIXTR	Ind. Coupled Plasma
r.	7	Ċđ	Cadmium	93	1 PPH	HN03-BOU HOT EXTR	Ind. Coupled Plasma
		<u> </u>			 Σ.ΓΩ₩	NHOS HOL NOT WYTR	Tod Coupled Plasma
	5	Le C.	Cersian Cebria	/) 		UND3-801 903 SYIR	Ind. Coupled Flaema
	7	1.0 C-	Close i um	י טיז		UNDE 101 HOT EXTR	Ind. Coupled Plasma
1. N. 1.	10	CT C	ζημομιάμα Canada		1 000	ANDS HEL HOT SYTR	Ind Counted Playma
	11	LU	Copper		1 FF14 2 DDH	1863 101 601 6819 1863 101 997 6879	Ind Counted Places
-^	12	Ga			2 FF II	. 40) ° IC - 0 - A - 1	
	13		Lanthanum	÷ ś	1 221	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	14	εi	Lithium	93	1 FPM	HNC3 HCL HOT EXTR	Ind. Coupled Plasma
r-	15	flo	fiel ybdenua	· ć,	1 PP#	HNG 3-HOL HOT EXTR	Ind. Coupled Plasma
	16	NЬ	Niobium	33	1 ዮዮጠ	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	17	Ni	Nickei	93	1 PPN	HNOB HOL BOT EXTR	Ind. Coupled Plasma
	18	FЪ	l,eao	23	2 ['FN	HNGCHCLERGEEXIN	Ind. Coupled Miasma Tel. Coupled Diseas
L	19	RЬ	Rubidium	73	20 PPB	HND G-HOL BUT EXTR	ING. LOUP:EO Flasma
-	20	СЬ	Antiwony	5,5	5 FPM	ANO PHEL POL LATE	100, VOUD:20 (1550) The A
;	21	Sc	Scandium	50	<u>1</u> FPM	HN03-HCL HO1 EXTR	ind. Loup:Hd Plasma
<u> </u>	27	ទភ	Tip		20 898	UNDE BEL HOL EXIR	Ind. Compled Plasma
		 Cr	Strontium	93	· PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
	<) 26	ير. ح[lantalum	91	10 PPM	HNC3 HCL HOT EXTR	Ind, Coupled Plasma
2. 16.	74 25	To	Tatlurium	20 23	10 000	HND3-HC1 HDT EXTR	Ind. Coupled Plasma
	ر × ۲۷		llanadiun	, , 97	1920	HND3-HOL HOT FXTR	Ind. Coupled Plasma
	/b 27	Ŷ	Vallavium Tubertas	, , १२	10 224	HN03-KC1 HOT FYTR	Ind. Coupled Plasma
-			rungsten	······			
	28	Y	Yttrium	97	1 998	HND3 HCL HOT EXTR	Ind. Coupled Plasma
-	20 79	- 7 n	7inc	73	1 PP#	HN03-HCL HOT EXTR	Ind. Coupled Plasma
1	20 20	20	Zircenium	97	1 PPM	HNOG ROL HOT EXTR	Ind. Coupled Plasma
⊾	10	61	A THE WITTER	٣			

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667 Ĺ

 $\overline{}$

ŗ

Geochemical. Lab Report

.

Γ		A DIV	ISION OF INCHCAPE INSPECTIO	N& TESTING SERVICES	
L	REPORT: V89-06781.0 (COMPLE	TE)			REFERENCE INFO:
	CLIENT: KEEWATIN ENGINFERING PROJECT: PARADIGM	INC.			SUBNITTED BY: TERRAMIN RES. LAB DATE PRINTED: 4-OCT-89
,	SANPLE TYPUS	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUMBER
~	T CIREAN SEDIMENT, STUT R ROCK OR BED ROCK	41 52	1 -8П 2 -15Л	41 52	DRY, SIEVE -80 41 CRUSH,PULVERIZE -150 52
	REPORT COPILE TO: KEEWA Tatga	FIN ENGINEE CONSULTANTS	RING INC. 5 LTD.	[NV(DICE TO: KEEWATIN ENGINEERING INC.
			· · · · · · · · · · · · · · · · · · ·		
* *					
-			<u></u>		
: *					
e-					
1 ==					

مسلم مسلم فسلم مناط مسلم ماط فسلم فالبله فسلم فاسلم والما مسلم والما مسلم

Au(300g Ag As Be Be Bi Cd Ce Co Cr Cu Ga

LOCATI(ppb) (ppm) NUMBER NUMBER 90 -10 15 742 16 -10 Lok SO 🚛 3 238 91 -0.5 -2 5 -5 51 110 268 36 -20 9 -20 49 10 74 5 10 -1 15 14 89 P VH 9 21 842 67820015 141 -10 17 10 -20 -10 75 -20 68 -10 18 10 100 -1 15 57 173 411 18 LOK 2238 277 280 157 -0.5 7 17 -Z 89 P WH10 67820016 90 14 16 120 -10 7 140 5 –20 83 24 -20 25 12 5 7 LOK 22 -0.2 86 231 -0.5 15 -1 10 57 13 9 42 123 89 K WH59 75770049

La Li

Nb

Ho

H1

PЬ Яb Sb In Ir

11

16

12

Sc Sn Sr

Te

Ta

U.

Y

٧

LOKI GOLD PROPERTY HEAVY MINERAL RESULTS

FIELD

LAB

.....

						 	, ,					 / \	
- E - J-	1 1 1	JU	J. L	<u>ن</u>	1 1		i	L I	L	· · · · · · · · · · · · · · · · · · ·	A second second	i ku luk - k	

-20 218 -10 206 -10 -5 -20 в - 34 -1 -2 62 0.2 35 105 -0.5 -10 -10 -10 PAR -20 89 P WH 1 -20 -1 15B 1.9 346 255 -0.5 -2 -10 -10 -20 PAR -20 -2 19 0.9 129 🙀 -0.5 -2 -1 -10 ~10 -20 -10 PAR -20 1D WH 3 2 271 353 -0.5 -1 -2 -10 -10 -10 PAR -20 -20 ын 4 В PAR 66 11.2 124 119 -0.5 PAR 43 2.1 246 155 -0.5 PAR 30 0.8 164 393 -0.5 -1 -16 -2 -10 **ZZ** Z24 WH 5 -20 ZD -10 -20 WH 6 **Z**3 Z2 -2 -10 P 1414 7 -20 Z6 -1 PAR 75 1.5 248 -2 467 -0.5 169 P WH B

Ni

ND

LOCATI(ppb) (ppm) Lİ

Ho.

Pb

Rb Sb Sc Sn Sr Ta Te V V

-10

Y 2n Zr

14 119

PARADIGH PROPERTY HEAVY MINERAL RESULTS

FIELD

MUMBER

LAB

NUMBER

SUMMARY OF EXPENDITURES

<u>Mikhail #2</u>

Personnel and Crew	•	\$12,695.76
Transportation - helicopter/fixed wing/fuel		6,157.48
Camp - food/accommodation		2,442.75
Assay/Report/Drafting/Secretarial		5,719,69
	TOTAL EXPENDITURES:	\$27.015.68

i.

ļ

• • •

ł

SUMMARY OF EXPENDITURES

Paradigm #2

Personnel and Crew		\$12,695.76
Transportation - helicopter/fixed wing/fuel		6,157.48
Camp - food/accommodation		2,442.75
Assay/Report/Drafting/Secretarial		5,719,69
	TOTAL EXPENDITURES:	<u>\$27,015.68</u>

LEGEND

- Regional stream silt sample site
 (Au ppb, Ag ppm, As ppm Sb ppm)
- Minfile mineral occurrence (Cu ppm, Pb ppm, Zn ppm, Au ppb, Ag ppm)
- x Rock sample outcrop (Au ppb, Ag ppm, As ppm, Sb ppm)
- A Rock sample float (Au ppb, Ag ppm, As ppm, Sb ppm)
- Stream silt sample (Au ppb, Ag ppm, As ppm, Sb ppm)
- Heavy mineral sample (Au ppb, Ag ppm, As ppm, Sb ppm)

GEOLOGICAL BRANCH ASSESSMENT REPORT
10 701 /
L J, / U PSSOCIAT
D. G. Dupor
LOKI GOLD CORPORATION
PARADIGM PROJECT
1989 EXPLORATION SAMPLE LOCATIONS & RESULTS
DATE: OCT. 1989 NTS: 104 B / 10
PROJECT: PARADIGM SCALE: 1:5000 0 50 100 150 200 250
KEEWATIN ENGINEERING INC. MAP No. (

130.33

