LOG NO:	0128	RD.
ACTION:		
FILE NO:		

Geological, Prospecting, and Geochemical Report on the Gold Unuk Property GOLD UNUK 1 to 4 Claims Skeena Mining Division N.T.S. 104-B/7E Latitude 56°25' North Longitude 130°43′ West British Columbia

November 6, 1989

on behalf of Canadian Cariboo Resources Ltd. Vancouver, B.C.

N

6 (C) 0 0 0 **(1)** U

FILMED

by

C. H. Aussant, B.Sc., P.Geol., F.GAC - and -D. G. DuPré, B.Sc., P.Geol., F.GAC

KEEWATIN ENGINEERING INC. #800, 900 West Hastings Street Vancouver, B.C. V6C 1E5

ABSTRACT

The Gold Unuk property consists of four contiguous modified-grid claims totalling 56 units located approximately 80 km northwest of Stewart, British Columbia. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property.

The property lies within the Intermontaine Tectono-Stratigraphic Belt and occurs near the contact between the Stikine Terrane and the unmetamorphosed sediments of the Bowser Basin. The western two-thirds of the property is underlain by quartz diorite of the Coast Plutonic Complex. The remaining property area is underlain by the Upper Jurassic to Lower Triassic Unuk River Formation which has been intruded by the King Creek Dyke Swarm. Pleistocene basalt flows underlie the lower reaches of Canyon Creek valley in the southern part of the property.

The area has an exploration history dating back to the turn of the century when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Exploration Ltd. which was brought into production in mid-1988. The adjacent SNIP property is slated for production in 1990.

At this time, the Eskay Creek prospect, located 32 km northeast of the Gold Unuk property and currently being explored by Calpine and Consolidated Stikine, is the most significant showing in the area. The prospect comprises at least eight mineralized zones occurring over a strike length of 1800 m within a sequence of felsic volcanics. The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks.

In 1988, an airborne electromagnetic and magnetic survey was conducted over the property. Several northerly and easterly trending conductors were delineated. The magnetic data indicated a more complex geological setting than the regional mapping shows.

A review of all available information indicates that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. in 1959-1962.

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling with the objective of evaluating the property's potential for hosting economic precious metals deposits and for the purpose of fulfilling the assessment requirements.

Reconnaissance prospecting was completed over the northeast corner of the property, investigating a reported gossanous alteration zone. Extensive iron staining was noted throughout this area, but no mineralization was found.

A limited amount of reconnaissance prospecting was completed over the southwest portion of the property. Gneissic quartzite and schist containing numerous quartz stringers and veinlets were located near the southern claim boundary. A grab sample yielded an elevated gold value of 346 ppb.

The occurrence of sediments in this area indicates that the western part of the property is not entirely underlain by diorite of the Coast Plutonic Complex, and consequently enhances the attractiveness of this area for hosting as yet undiscovered economic mineralization.

TABLE OF CONTENTS

INTRODUCTION	1
PREVIOUS EXPLORATION	5
REGIONAL GEOLOGY	7
PROPERTY GEOLOGY	10
ECONOMIC GEOLOGY	14
1989 EXPLORATION PROGRAM	18
ROCK GEOCHEMICAL SAMPLING	19
HEAVY MINERAL SAMPLING	20
SUMMARY AND RECOMMENDATIONS	22
CERTIFICATE - C. H. Aussant	24
CERTIFICATE - D. G. DuPré	25
BIBLIOGRAPHY	26
APPENDIX: Summary of Personnel Rock Sample Descriptions Certificates of Analysis Analytical Techniques	
TABLES 1 - Table of Formations	
FIGURES1 - Location Map.2 - Claim Map3 - Regional Geology - Bowser Basin4 - Regional Geology - Unuk Map Area5 - Property Geology.	

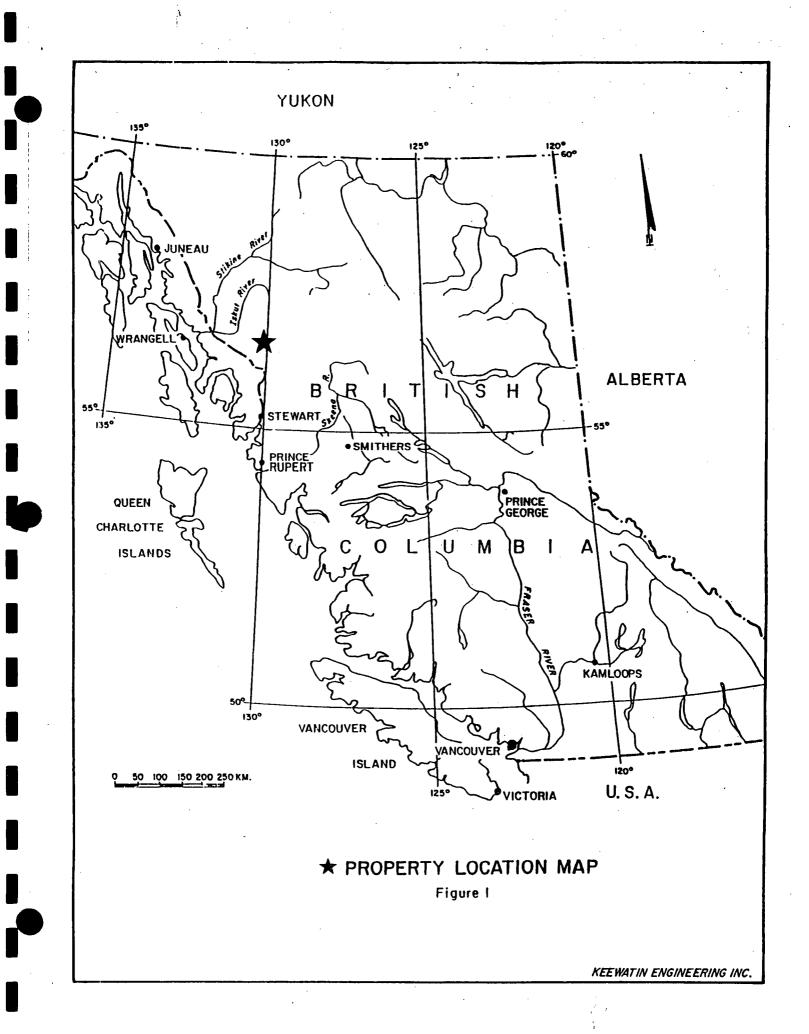
MAPS 1 - Geology and 1989 Exploration, Sample Locations and Results

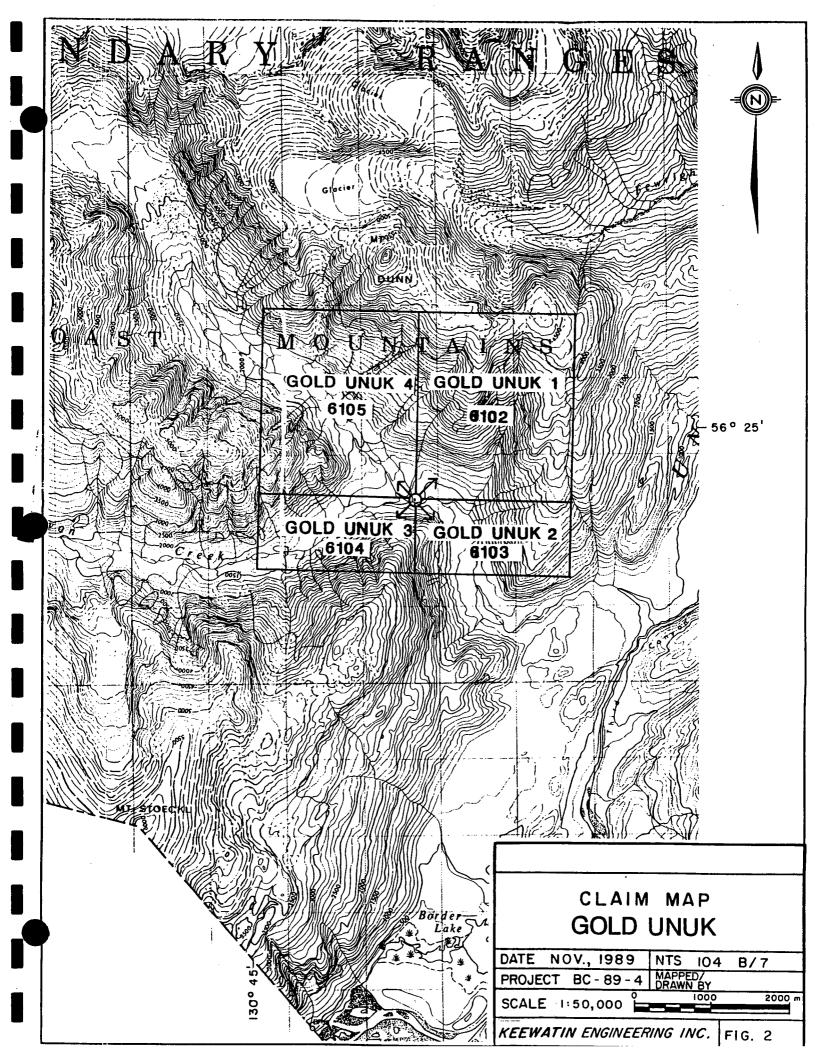
.

INTRODUCTION

Canadian Cariboo Resources Ltd. of Vancouver, commissioned Keewatin Engineering Inc. to conduct a field exploration program to be completed on the Gold Unuk property located in the Unuk River area of northern British Columbia. Exploration was directed by Keewatin Engineering Inc. with geological support and field supervision provided by Taiga Consultants Ltd. as a sub-contractor to augment the Keewatin crew.

The objective of this program was to evaluate the property's potential for hosting economic precious metals deposits, and for the purpose of fulfilling the assessment requirements. Exploration consisted of prospecting, geological mapping, and geochemical sampling. Geochemistry included lithogeochemical and heavy mineral sampling.


Location and Access


The Gold Unuk property is located in northwestern British Columbia, approximately 80 km northwest of Stewart (Figure 1). The claims are situated within N.T.S. map-sheet 104-B/7E and centered about 56°25' North latitude and 130°43' West longitude. Access to the property is by fixed-wing aircraft from Terrace, Stewart, or Smithers to various airstrips in the area and then via helicopter to the property. The claims can also be directly accessed by helicopter from Stewart.

At some future date, road access to the area from the Stewart-Cassiar Highway could be obtained via the Upper Unuk River and Tiegen Creek valleys.

Property Status and Ownership

The Gold Unuk property (Figure 2) consists of four modified-grid claims totalling 56 units, located within the Skeena Mining Division. Relevant claims data are tabulated below:

<u>Claim Name</u>	Record <u>Number</u>	No.of <u>Units</u>	Date of <u>Record</u>	Expiry Date
GOLD UNUK GOLD UNUK GOLD UNUK	2 6103 3 6104	20 8 8	Apr.28/87 Apr.28/87 Apr.28/87	1990 1990 1990
GOLD UNUK	4 6105	20	Apr.28/87	1990

These claims are apparently the subject of an agreement between the claim holder (Chris Pepperdine) and Ross Resources Ltd., which has recently optioned the property to Canadian Cariboo Resources Ltd.

Physiography and Climate

The Gold Unuk property is situated within the Coast Range Physiographic Division and is characterized by northern rain forests and sub-alpine plateaux. Valleys are steep sided and U- to V-shaped. Elevations (see Figure 2) range from 230 m in the valley of Canyon Creek to 1465 m.

A transitional treeline, characterized by dense sub-alpine scrub occurs at approximately the 915 m elevation. Terrain above treeline is typified by intermontane alpine flora. Permanent glacial ice is found intermittently above the 1065 to 1370 m elevations. Conifers up to 30 m tall are common below treeline, especially in stream valleys. Water for camp and drilling purposes is generally in good supply from the numerous creeks draining the claim area.

Precipitation is heavy, exceeding 200 cm per annum, with short mild summers but very wet spring and fall periods. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.

PREVIOUS EXPLORATION

The area drained by the upper reaches of the Stikine, Iskut, Unuk, Craig, and Bell-Irving Rivers has been explored for gold since the late 1800's when prospectors passed through the region on their way to the interior. In the 1970's, the porphyry copper boom again brought prospectors and companies into the area. The current gold exploration rush began in 1980 with the option of the Sulphurets property by Esso Minerals Canada and the acquisition of the Johnny Mountain claims by Skyline Explorations Ltd. The Johnny Mountain deposit was brought into production in mid-1988, and the adjacent SNIP property is slated for production in 1990.

The mineralization at Eskay Creek was discovered in 1932, and active prospecting has continued sporadically since then. Two adits are the result of limited mining activity on this prospect. In 1988, Calpine Resources Incorporated discovered high-grade gold and silver mineralization on the '21 Zone' (Northern Miner - November 7, 1988). A number of excellent diamond drill intersections have been obtained to date, including drill hole CA-88-06 which encountered 96 feet of 0.752 oz/ton gold and 1.13 oz/ton silver. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological ore reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver has been calculated for the '21 Zone' (Consolidated Stikine Silver Ltd. - 1989 Annual Report).

The Unuk River area was covered by regional geological mapping in 1988 as part of the Iskut-Sulphurets project carried out by B.C. Ministry of Energy, Mines and Petroleum Resources (Britton, et al., 1989). The whole of N.T.S. 104-B is currently being mapped by R. G. Anderson of the Geological Survey of Canada (Anderson, 1989).

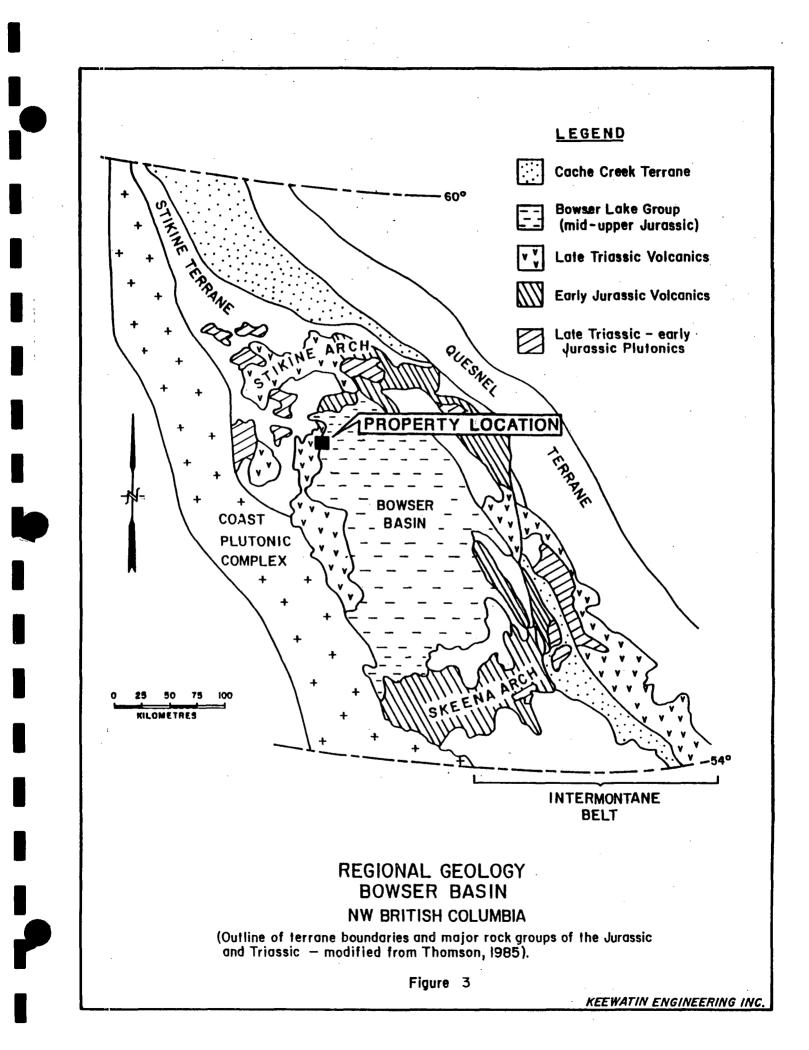
The results of a regional stream sediment sampling program conducted over this area were released in July 1988 (National Geochemical Reconnaissance, 1988). Britton (et al.) report that almost every known precious metal prospect in the Unuk River area is associated with high stream sediment gold values. Known gold deposits are also associated with high but variable values for such

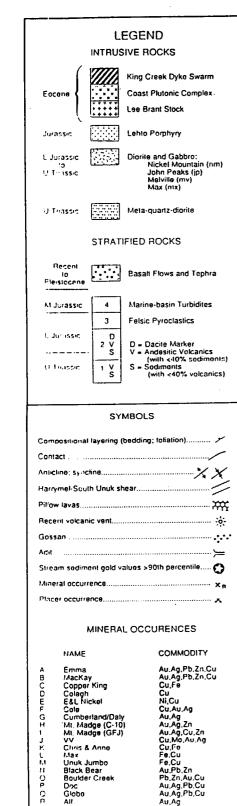
pathfinder elements as silver, arsenic, antimony, and barium. Ten samples were collected from creeks draining the property, but did not yield any elevated values for the elements.

An airborne geophysical survey was completed over the property in 1988. The magnetic data indicates a more complex geological setting than the regional mapping shows. Several northerly and easterly conductive lineations were mapped by the survey. One strong VLF-EM conductive zone in the centre of the property occurs adjacent to inferred faults and corresponds with a magnetic high, and is located in the vicinity of the Black Bear mineral showing.

A review of the material in the B.C. Ministry of Energy, Mines and Petroleum Resources assessment report archives indicates no other work has been filed for the specific area now covered by the Gold Unuk property. However, these files do show that the entire Unuk River area was subjected to reconnaissance geological mapping and prospecting by Newmont Mines Ltd. during the period 1959 to 1962.

The Canyon Creek prospect (Minfile #098) probably occurs adjacent to the southeast corner of the property. It consists of two showings known as the Black Bear and the Daily Boy.

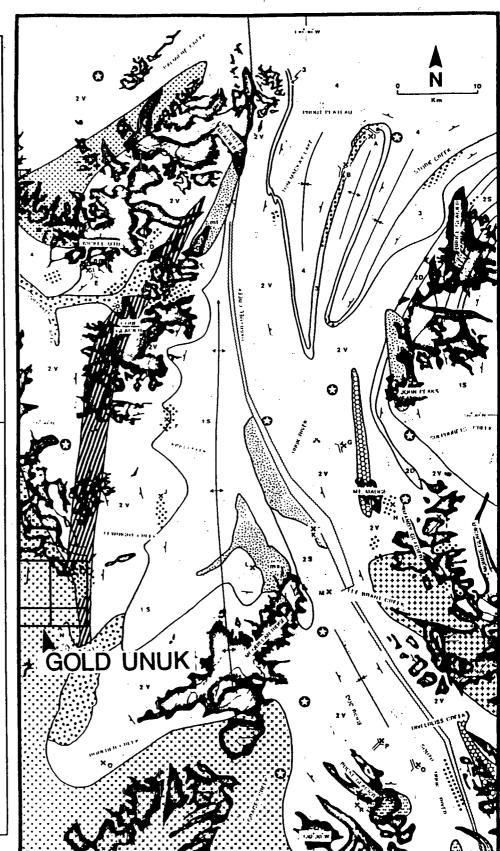

The assessment records (Korenic, 1982) indicate that Duval Corp. undertook a regional heavy mineral survey in the Unuk River area in 1981.


REGIONAL GEOLOGY

The property lies within the Intermontane Tectono-Stratigraphic Belt, one of five parallel northwest-southeast trending belts which comprise the Canadian Cordillera (Figure 3). The Gold Unuk property occurs near the contact between the Stikine Terrane, which makes up most of the western part of the Intermontane Belt, and the unmetamorphosed sediments of the Bowser Basin.

The Unuk River area (Figure 4) is underlain by a thick succession of Upper Triassic to Lower Jurassic volcano-sedimentary arc complex lithologies capped by Middle Jurassic marine basin lithologies. This package has been intruded by a variety of plutons representing at least four intrusive episodes spanning late Triassic to Tertiary time. These include synvolcanic plugs, small stocks, dyke swarms, isolated dykes and sills, as well as batholiths belonging to the Coast Plutonic Complex.

The stratigraphic sequence has been folded, faulted, and weakly metamorphosed during Cretaceous time, but some Triassic strata are polydeformed and may record an earlier deformational event. Remnants of Pleistocene to Recent basaltic flows and tephra are preserved locally.



NOTE: Not to scale

0 P

Cu Ph

Ag.Pb.Cu AU, Ag

Geology and mineral deposits, Unuk map area. Modified after Britton et. al. (1989)

PROPERTY GEOLOGY

PROPERTY GEOLOGY

Regional geological mapping by Britton et al.(1989) shows that the property is underlain predominantly by the Coast Plutonic Complex on the west, and on the east by the Lower Jurassic Unuk River Formation (Figure 5). The Unuk River Formation, which consists of andesitic volcanics with lesser sediments, has been intruded by the Tertiary King Creek Dyke Swarm. Pleistocene basalt flows underlie the lower reaches of the Canyon Creek valley in the southern part of the property.

Upper Triassic to Lower Jurassic <u>Unuk River Formation</u> (Unit 2)

Britton et al.(1989) described this sequence as green and grey intermediate to mafic volcaniclastics and flows with locally thick interbeds of finegrained immature sediments. The volcanics are reported to be dominantly massive to poorly bedded plagioclase (± hornblende) porphyritic andesite. The sediments are predominantly grey, brown, and green thinly bedded tuffaceous siltstone and fine-grained wacke. These Norian to Sinemurian age rocks of the Unuk River Formation constitute the lowermost unit of the Hazelton Group. The basal contact with Triassic strata appears to lie near the top of a thick sequence of clastic sedimentary rocks. Neither an angular unconformity nor a widespread conglomerate marks the lower contact. Government regional geological mapping and mapping completed during the 1989 property exploration program indicate this unit may underlie the eastern portion of the property area, a large portion of which has been intruded by the King Creek Dyke Swarm.

Pleistocene to Recent <u>Basalt Flows and Tephra</u> (Unit 6a)

Britton et al.(1989) mapped these flows along the valleys of the Unuk River and Canyon Creek. The are reported to commonly display columnar jointing.

Eocene and possibly Jurassic <u>Coast Plutonic Complex</u> (Unit 12)

Britton et al.(1989) described the intrusions as ranging in composition from biotite granite to biotite-hornblende quartz diorite. Numerous discrete stocks are probably present. The country rock contacts are reported to be sharp, discordant, and thermally metamorphosed. The age of these intrusives is Eocene, but the complex may include remnants of Jurassic granitoids.

Tertiary <u>King Creek Dyke Swarm</u> (Unit 13b)

The limits of this unit, as shown on Figure 5, roughly indicate where the dykes exceed 50% of the exposed bedrock. This north-trending belt of dykes

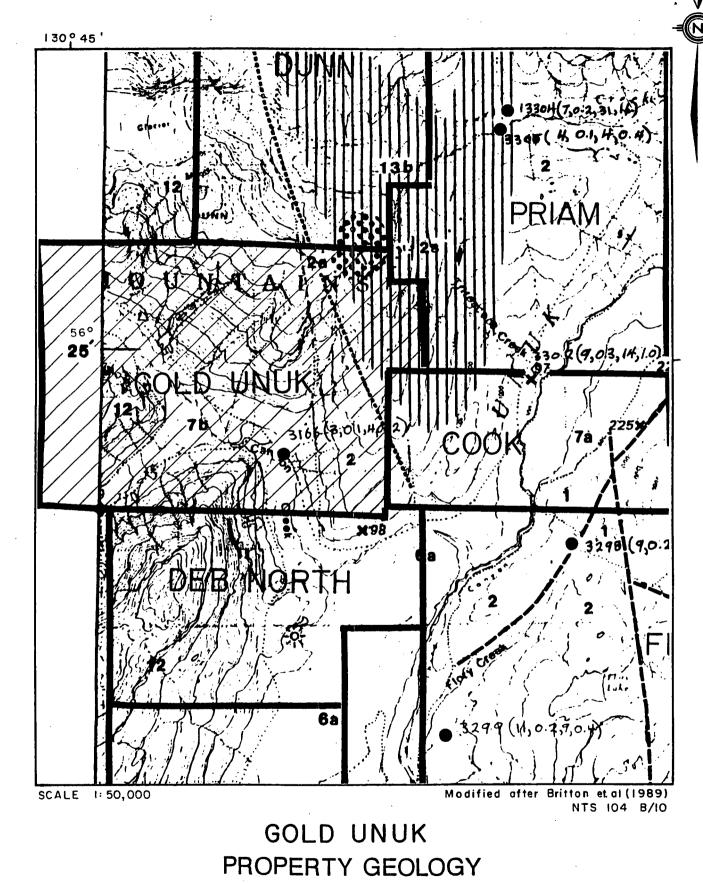


Figure 5

LEGENU

INTRUSIVE ROCKS	VOLCANIC AND SEDIMENTARY ROCKS
TERTIARY	(figures) pies assurigençates andere in templical valides inspectrums.)
13 POSATECTONO OMES	1
	CUATERMARY
130 - Lanturnyniyn, andreitin, elisääne filiansur net eluunaf 138 - Alny Creek Dyda Suome filiälajat pagalyry elestik, andreitin, elisäänn, gysetti piputa	NECENT
130 Mandatan manggantan dina grainted langa-manganda	17 UKCONBOUDATED SEDMENTS.
12 CONST PLUTONIC COMPLEX	
ter monogened Tär äktik penko	79 – Allandum, gészlekezet dispesele, kendeléke diskele, meretese 79 – Allandust undurlake ky Plaketesene te Resent banat
130 - Alemateriala alutta quarta atterite	PLEISTOCENE TO RECENT
120 – Lon Gruns Staals: 17 Addisor propilyy, kamalanda Ahilla Qositi menusular	AND IT FLOWE AND TENNIN
JURABBIC	
11 MCR3L MCLWYMY GABBIC: surgeneeds allow symmetry gasters	iga — Capit group to Salada, basant Anno and taplority salars pillane taran An - Anno 1 maint
The TO ASSTACL CASE BITTUSCASE Products to planets interest percessy synapsion equivalence 10	
10 defended and	THASSIC TO JURASSIC
188 - Laño Paupays, Kitalapar pingkadasa hamidanda paupiyy gestadada in ayanas	HAZELTON GROUP
100 – Barb Lako Cylur: Ano- to snakum grained homakonde allerte 101 – Andreito Cluste Compter meloneenski, Ano- to mediam-grainest allekte with abundeer	MIDOLE JURASSIC (TCARCIAN TO BAJOCIAN)
zenetike af duet groen mete-endretik; (secolity Princip)	SUSTONE SECUENCE (Salama Aber Franzisch: Galt gry, und bedded allation with other conditions and complements.
UNUX AVER CICATE SUITE madues in annual paint, mails in intermediate space	ter Clast potate complements and agains
La	57 – Phyliniadally (septisial allocano and shake (huthdin)
50 Ales binter famigiande danter geste statte	gar — Takaly baddad waaka 2a — Androide palawi kuup and palawi kwaalaa wila askuu adhalawi kaleebade
90 Michillo Annabhada-Alaite dharta in guarte dhailen 94 - Can Aldge bladhe annagatarte	LOWER JURASSIC (TOARCIAN)
TRIASSIC	ALSC YOLCHIC STOLENCE Place Office Assessed by Unit westward, Internation & Artist
BUCKE GLACHER STOCK: Spin grup, ganizate to followi, medium-grained homobionis-binite quarty status	4 protectionity reading, inclusions deals, and, crystal and from hole, report link, Leadury pyrotection (5 or 15%) and protections, Advance Counterparticulations dealers.
<u>الــــــــــــــــــــــــــــــــــــ</u>	ay Vyanyahy pantang akhali kullu at Alayanin kinin kull
	fr films and while, and under some fields valuation in and the second and exteriors
	LOWER JURASSIC (PLIENSBACHIAN TO TOARCIAN)
	PHROCLASTIC SPECIASTIC SECURICE class, Canadian Chamadani, Halomanana, prov. prov., Interly 3 propio of managem, managing to provided pyrotection and another try rests; phase long
	3a — Course and gray, manake its pourly backed and sola 3d — Cours, groon and pupple dealts and, hpdf hall, ayound and fitth half, manake to well backed:
	Andriquer physics 27 — Willip wordlanding, divisis halls and pression with quests stategory -
METAMORPHIC ROCKS	5. Analysis sugal tell will yet a sin a since 5. Analysis plane inves and plane investige with minor planese sugara
A - F	2 Bant, staty instated allestana, state and applie funktiller
A Matapolitic duck grop, apripanasaana quanti-Milapan-anticilo phyliko 8 Palais mutanaisanine: Apit pronu puarte-adulte-adulte-anticilo phyliko; (seaty was	UPPER TRIASSIC TO LOWER JURASSIC (NORIAN TO SINEMURIAN)
eininenen kaali C. Male ta antomaskan musikakisisi dark prom, pingkatana aktorin piylan	2 MOLENTE SECUEDICE Almais filters formationin Grans and gray, internetions on male volumentation on and and an an and an and an and an an an and an and an and an and an and an an and an and an and an and an an and an an and an an and an an an and an an an an and an
0 / tamatanin ang mananan mykaning mykaning many kafu	20 — Gray and press, phylicities ± hambinels payshydde andrets; maester to pysoly bedded 20 — Gray and graen, hambinels +2 pyrnaws) hildigar payshydde andredig taylff und anti taf
E Hampionis-pispiszise generiz egenetie migmetie F Szengy alsowni rezis with the (hut-harymet kut zene	26 — Geny and prees, kombinato (2 pyrowne) feldiper pagaynile anosete wellt and set wit 29 — Geny, keyne and prees, tibly beddick, billeseus alletane and bes graned washe
	🕱 🛛 🖉 Saud, stately instantos allastana phalaillais anglesa
	 Cash prog, enable-reported complements with princip acading Carp, windsty booked Anomalie (completely responding datage South Linck value)
	THASSIC
	STUHINI GROUP
	UPPER TRIASSIC (CARMAN TO NORIAN)
	LOWER VOLCANOSEDIMENTARY SECUDICE: Brown, blash and proy, mixed antimentary rectar international with medium to data press, make to intermination voltages and voltages and solitages
	21 Gray in blank, thirty bounded allocated allocates, shale, arguing (surpland)

SYMBOLS

GOSSANOUS ALTERATION ZONES

in ‡ m no ± chuy; Jocaily N wź m

.

	: :
Jaalagiasi baundary (talined, sppraabinata, astyried)	
hedding, tops known fishernik, belined, verdezi, gradenedj	_+ <u>~ ~</u>
ledding, tape unknown flarisantal, budined, verbeilj	- <u>+</u> * - "
ladding, eatimeted dip (gentin, medentin, steep)	
in antyrophile laps in pillow vehanize.	·
Compositional loyising in matamaphasad reality Solisitas (malined, verden),	
Nami Brat	
Poglanal antisting syncles	
Indiana syntam (nazzat, Overland)	
Vinar faild ands with M. Z or B symmatry; with plungs	معر مر مر
fault (delined, ansumed; () = deambasant (dds)	
Towar lavk (defined, essumed; took as upper plain)	
le photo discommut	
"and heading	- 0
	- 0
less with more than 40%. Forthery dyland	- 11110
indi af majar phylitic gane	
felande vent (eleanved, anterned)	- * *
Testagie station	
Hallandi gasahamlad rocarinalaansa aamalo ata	Sample No. (Ag ppm, As ppm, Sb ppm, Au ppb)
Personnum-organ lassocia apo ato; 14 o havalanda; aga an millions al years bolaro gracent	
Marriel essentration, MRATLE number	X83 ·

AGE	GROUPS	FORMATIONS	MEMBERS	LITHOLOGIES
Bathonian	Bowser Lake	Ashman	Main Sequence Basal Conglomerate	Turbidites, wackes, intraformational conglomerates Chert pebble conglomerates
Bajocian to Toarcian	Spatsizi(?)	Salmon River	Pyjama Beds Basal Limestone	Thin bedded, alternating siltstones and mudstones Gritty, fossiliferous limestone
Toarcian		Mount Dilworth	Upper Lapilli Tuff Middle Welded Tuff Lower Dust Tuff	Dacitic lapilli tuff with flow- bandedd clasts Dacitic welded ash flow and lappilli tuff Dacitic dust tuff
Pliensbachian	Hazelton	Betty Creek	Sedimentary Members Volcanic Members	Hematitic volcaniclastic sediments, and turbidites Andesitic to dacitic tuffs and flows
Sinemurian to Hettangian(?)		Unuk River	Premier Porphyry Upper Andesite Upper Siltstone Middle Andesite Lower Siltstone Lower Andesite	Two feldspar + hornblende porphyritic tuffs Massive tuffs with local volcaniclastic sediments Turbidites, minor limestones Massive tuffs and minor volcaniclastic sediments Turbidites Massive to bedded ash tuffs
Norian to Carnian	Stuhini		Volcanic Members Sedimentary Members	Pyroxene porphyry flows and tuffs Turbidites, limestones, conglomerates

TABLE 1. Table of Formations Unuk River Area

ranges compositionally from rhyodacite to andesite, and texturally from aphanitic to holocrystalline. Britton et al.(1989) classified individual dykes as feldspar porphyry dacites, andesite, diabases, and hornblende to quartz diorites. They are reported to be up to 10 m wide and are anastomose, crosscutting one another at oblique angles. Most of the dykes are described as white weathering, medium grey andesite to dacite with fine to coarse feldspar phenocrysts in an aphanitic groundmass.

<u>Structure</u>

Actual fault surfaces or zones are rarely seen in the Unuk River area, but they are probably quite common and may have developed concurrently with regional folding. These are assumed to be normal faults and are described as megascopic structures with relatively little offset.

A 12 km long, north-northwest trending airphoto lineament is reported by Britton et al.(1989). This lineament passes diagonally across the eastern portion of the GOLD UNUK 1 claim. The significance of this lineament is unknown.

ECONOMIC GEOLOGY

Britton et al.(1989) list 55 mineral occurrences in the Unuk map-sheet. These showings are predominantly gold/silver occurrences and are hosted by a number of various lithologies. Most can be classified into one of four categories: stratabound, vein, skarn, and disseminations. Grove (1986) has determined that the age of the mineralizing events is variable and, notably, can be post-Triassic.

Stratabound mineralization consists almost exclusively of pyritic zones and lenses contained within a particular stratum or a restricted set of strata. The best example is the Eskay Creek prospect, currently being explored by Calpine Resources Incorporated and Consolidated Stikine Silver Ltd. Intrusive-

contact (skarn) deposits show a close spatial and temporal relationship with igneous intrusions. Three deposits in this category are the E & L nickel/copper deposit (Minfile #006), the Max copper/iron skarn (Minfile #013), and the Chris-Anne copper/iron skarn (Minfile #125). Britton et al.(1989) stated:

Mineralization at the E & L occurs within two medium- to coarsegrained, olivine-pyroxene gabbro bodies. These roughly triangular plugs are each approximately 1300 square metres in area and are probably connected. They intruded a sequence of argillites, tuffaceous siltstones, and grey dacitic ash tuffs that strike northwest with moderate to steep southwesterly dips. Mineralization consists of pyrrhotite, pentlandite, and chalcopyrite, with lesser amounts of pyrite and magnetite. In the northwestern gabbro, mineralization extends up to the contact with the sediments, whereas in the southeastern gabbro, mineralization is confined to the pluton. Diamond drilling has delineated pipelike pods and disseminations of sulphides to a depth of 120 metres. Drill-indicated reserves are 2.8 million tonnes of 0.7% Ni and 0.6% Cu (Sharp, 1965).

The Max prospect lies on the northwest side of McQuillan Ridge, between the Unuk and South Unuk Rivers, at elevations between 455 and 1500 metres. Massive magnetite with lesser pyrrhotite and chalcopyrite occur in skarn-altered sedimentary rocks adjacent to a diorite stock. Garnet, epidote, actinolite, and diopside characterize the skarn assemblage. Drilling has indicated a reserve of 11 million tonnes at 45% iron (Canadian Mines Handbook 1973-1974, page 432).

The Chris-Anne prospect lies approximately 3 kilometres east of the Max. Skarn mineralization is reported in limestone beds which are up to 10 metres thick and that are interbedded with volcaniclastics. Magnetite and pyrrhotite-rich layers, from 0.5 to 7 metres thick, with minor chalcopyrite, extend over a distance of 1 km. There are minor intrusive bodies reported on the property. Grades range from 0.1% to 0.4% copper (Allan and MacQuarrie, 1981).

The gold potential of these skarn deposits does not appear to have been tested. Based on recent skarn studies (Ettlinger and Ray, 1988), this area has many features that are associated with goldenriched skarns elsewhere in the province: sequences of calcareous and tuffaceous host rocks; structural deformation; intrusion by dioritic I-type granitoids; and contact metamorphism and recrystallization. Some auriferous skarns are enriched in cobalt, an element that may be a useful pathfinder.

High-grade precious metal quartz veins are the target of exploration programs at Mount Madge (Minfile #240 and #233) by Bighorn Development Corporation, and at the Doc prospect (Minfile #014) by Echo Bay Mines Limited. Britton et al.(1989) reported:

The Mount Madge prospects are located south of Sulphurets Creek near its confluence with Unuk River, on the east and west sides of Mandy Glacier. Two different targets are being evaluated (Kruchkowski and Sinden, 1988). On the west, the C-10 prospect (Minfile #240) is a stockwork of thin quartz veinlets, locally with thicker quartz lenses, in intensely altered, fine-grained tuffaceous andesite or dacite. Quartz veinlets locally form up to 30% of the rock. The alteration assemblage consists of quartz and sericite with up to 10% pyrite. Chalcopyrite and traces of sphalerite are also present. The rocks are strongly foliated to schistose and are very similar to the broad alteration zones seen at Brucejack Plateau 12 kilometres to the northeast (Britton and Alldrick, 1988). Soil samples locally return analyses in excess of 1 ppm gold.

Two kilometres to the east, Ken Konkin discovered a massive pyrite-siderite float boulder with visible gold. Prospecting uphill led to the discovery of the GFJ veins (Minfile #233), apparently flat-lying, zoned siderite-guartz-sulphide veins that returned assays up to 121 grams per tonne gold (Kruchkowski and Sinden, 1988). The veins are poorly exposed. Float blocks seen this year display symmetrical zoning from margin to core across vein widths of 10 to 15 centimetres. Vein margins are 1 to 2 centimetres of thin white quartz layers separated by hairline accumulations of very finegrained tin-white sulphide, probably arsenopyrite. The core is a very coarse-grained intergrowth of siderite, milky guartz, and cubes and clusters of pyrite, with lesser amounts of sphalerite and chalcopyrite as crystals and irregular masses. Rare tetrahedrite and visible gold have been observed (K.Konkin, personal communication, 1988). The veins cut variably foliated andesitic ash tuffs with thin interbeds of foliated to schistose siltstones.

The Doc prospect (Minfile #014) is located at treeline on a ridge overlooking the South Unuk River, opposite the mouth of Divelbliss Creek. The prospect consists of several west-northwest trending quartz veins up to 2 metres wide that have surface strike lengths of up to 275 metres (Gewargis, 1986). The main veins (Q17, Q22) are massive white quartz with sparse sulphide mineralization (5% to 10%) consisting of galena, pyrite, chalcopyrite, and sphalerite, with associated specular hematite and magnetite. Precious metal values are mostly confined to the sheared edges of veins and immediately adjacent wallrock. Shear zones with very little quartz may also return good values. Seraphim (1948) observed that gold was associated with either specular hematite or with galena and pyrite, but not with chalcopyrite and pyrite assemblages. The veins are a true fissure type, crosscutting folded and metamorphosed andesitic tuffs and thin-bedded sediments, including marble, that have been intruded by irregular dioritic dykes or sills and small monzodioritic plugs. The veins are different from any others seen in the Sulphurets or Unuk map areas. They have very restricted wallrock alteration aureoles, no apparent zoning, and appear to be limited to a few large fluid pathways. In this, they display characteristics of mesothermal veins. Structural control of the vein sets has not been determined but may be due to fractures related to folds in the host rocks. Total Keewatin Engineering Inc. mineral inventory of the Q17 and other veins is given as 426,000 tonnes with 9.26 grams per tonne gold and 44.91 grams per tonne silver (*Northern Miner*, November 7, 1988).

Porphyry-type disseminated pyrite, chalcopyrite, and molybdenite mineralization occurs immediately north and south of King Creek, west of Harrymel Creek. Two properties have been worked: the VV to the south and the Cole to the north.

The VV property (Minfile #079) is the site of a heavily weathered monzonitic intrusive body in fault contact, on the east and west, with layered andesitic lapilli tuffs and tuff breccias with minor siltstone and calcareous sandstone interbeds. The stock is 250 metres wide, at least 6 kilometres long, strikes northerly, and dips steeply to the west, parallel to the country rocks. Chalcopyrite occurs in quartz stockworks and as fine disseminations within the monzonite. Molybdenite, sphalerite, malachite, and azurite have also been reported (Winter and McInnis, 1975; Mawer et al.,1977). Representative assays give 0.34% copper, 0.003% molybdenum, 2.1 grams per tonne silver, and 0.8 gram per tonne gold. Maximum gold and silver values obtained were 8.65 grams per tonne gold and 19.54 grams per tonne silver (Mawer et al.,1977).

The Cole prospect (Minfile #209) is situated approximately 4 kilometres north of the VV claims; it appears to be on strike with the same fault system and has similar intrusive and country rocks. Mineralization consists of up to 10% pyrite as disseminations and fracture fillings. Minor chalcopyrite and malachite have been reported but the bedrock source of the gold/silver soil anomalies has not been located (Korenic, 1982; Gareau, 1983). Reported assays range up to 0.43% copper, 7.12 grams per tonne gold, and 13.03 grams per tonne silver. Gold and copper values show a positive correlation on both properties.

At this time, the Eskay Creek prospect, located 32 km northeast of the Gold Unuk property, is the most significant showing in the area. This prospect comprises at least eight mineralized zones occurring over a strike length of 1800 m within a sequence of felsic volcanics (Mount Dilworth Formation). This property is currently being explored by Calpine and Consolidated Stikine Silver. Preliminary drilling on the '21 Zone' intersected 96 feet assaying 0.752 oz/ton gold and 1.13 oz/ton silver including 52.5 feet grading 1.330 oz/ton gold and 1.99 oz/ton silver (Northern Miner, November 7, 1988).

The drilling results obtained to date indicate that the `21 Zone' extends over 335 m and is open along strike and at depth. Based on the results of 70 drill holes completed to June 1, 1989, a preliminary geological reserve of 2.8 million tons grading 0.23 oz/ton gold and 3.3 oz/ton silver was calculated for the `21 Zone' (Consolidated Stikine Silver, 1989 Annual Report). These deposits have been variously described as silicified shear zones (Harris, 1985) or as

volcanogenic deposits (Donnelly, 1976). The mineralization is associated with disseminated sulphides in felsic volcanic breccias and graphitic argillites in contact with overlying intermediate volcanic rocks.

A review of all the available information (Minfile, assessment reports, geological maps, reports, etc.) indicates that no mineralized occurrences are known within the area currently covered by the Gold Unuk property.

The Canyon Creek prospect (Minfile #098) probably occurs adjacent to the southeast corner of the property. The prospect consists of two showings, the Black Bear and the Daily Boy. The Daily Boy is portrayed as several veins containing pyrite, pyrrhotite, and minor sphalerite and galena, hosted by silicified and hornsfelsed sediments. These sediments are described as altered slates, argillites, and quartzites (Unuk River Formation) which are characterized by a high percentage of disseminated pyrite. The sediments are reported to be cut by a complex of lamprophyre dykes. The Black Bear is portrayed as a 60 cm wide quartz vein which contains auriferous pyrite and pyrrhotite, and is hosted by sediments at the margin of a diorite porphyry dyke.

1989 EXPLORATION PROGRAM

The 1989 property exploration program, completed between September 9 and October 16, consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemistry (lithogeochemical and heavy mineral sampling). Areas of known mineralization and gossans noted within the area were investigated and sampled.

A total of 11 rock and 8 heavy mineral samples were forwarded to Bondar-Clegg & Company in Vancouver for multi-element analyses; Au by fire assay-AA

and the remaining 29 elements by I.C.P. (results are presented in the Appendix, along with rock sample descriptions).

The accompanying map depicts the property geology (modified after Britton et al.,1989), with 1989 prospecting traverses, sample locations, and Au/Ag/As/Sb analytical results. Descriptions of the exploration completed and the results follow.

ROCK GEOCHEMICAL SAMPLING

Reconnaissance prospecting and geochemical sampling were completed over selected parts of the property. This work was concentrated in areas of reported mineralization and gossans noted within the property.

Britton et al.(1989) mapped a gossanous alteration zone (pyrite \pm quartz \pm sericite \pm carbonate \pm clay) in the northeast corner of the property. Prospecting completed in this area during the current exploration program found the area to be underlain by andesite tuff and minor narrow conglomerate and argillite beds, intruded by the King Creek Dyke Swarm (felsic porphyry, lamprophyre, felsic, and diorite dykes). Throughout most of the area, the King Creek Dyke Swarm makes up more than 50% of the underlying rocks. Extensive iron staining was noted throughout this area associated with weak sulphide mineralization (mainly pyrite, minor pyrrhotite). There was no mineralization located.

Reconnaissance prospecting was completed along Canyon Creek, in the southcentral portion of the GOLD UNUK 3 claim in conjunction with the heavy mineral sampling program. The area is underlain primarily by quartz diorite of the Coast Plutonic Complex. Gneissic quartzite and schist containing numerous quartz stringers and veinlets were located near the southern claim boundary. A grab sample from gossaned schist, with minor disseminated molybdenite and light grey quartz stringers, yielded an elevated gold value of 364 ppb.

Additional reconnaissance prospecting combined with geological mapping is required over this area to determine the underlying geology and to investigate the possibility of locating significant precious metals values.

Britton et al.(1989) reported the Black Bear and Daily Boy showings (Minfile #098) as occurring adjacent to the southeast corner of the property. These showings consist of mineralized quartz veins, occurring either along the selvage of a diorite porphyry dyke or within silicified and hornsfelsed sediments with disseminated pyrite, and on weathering are covered by a crust of deep brown limonite.

An aerial reconnaissance of the southeast corner of the property located numerous limonite-stained outcrops; however, budget constraints did not allow for the area to be investigated. Future exploration programs should examine the mineral potential of this area.

HEAVY MINERAL SAMPLING

A heavy mineral stream sediment sampling survey was conducted on the property as part of the current exploration program. Heavy mineral samples were collected in parts of a creek where there is a sudden transition from high to low energy, if present, moss mat was used. Samples were sieved to -20 mesh and a 3 to 5 kg sample of sieved material was collected.

The samples were forwarded to Bondar-Clegg and Company in Vancouver for multi-element analyses: Au by fire assay-AA and the remaining 29 elements by I.C.P. The heavy mineral separation consists of floating off the light (<3.3) minerals using methylene-iodine followed by magnetic separation. A sample weight of 0.5 grams is taken for the I.C.P. and the remainder used for fire assay.

The heavy mineral sampling survey was conducted by Mr. M. Waskett-Myers of Keewatin Engineering Inc. which company has done a considerable amount of work in the Unuk River area, and in the process, has assembled a fairly substantial data base. These data were used to assess the values obtained on the property. Heavy mineral sampling is a good first-pass tool and should be considered as a micro-prospecting approach to evaluating an area.

A total of eight heavy mineral samples were collected from creeks draining the property area, and reflect background values in all the elements.

SUMMARY AND RECOMMENDATIONS

The 1989 exploration program consisted of helicopter-supported reconnaissance prospecting, geological mapping, and geochemical sampling, with the objective of evaluating the property's potential for hosting economic precious metals deposits and for the purpose of fulfilling the assessment requirements.

Britton et al.(1989) mapped a gossanous alteration zone in the northeast corner of the property. Extensive iron staining was noted throughout this area, associated with weak sulphide (mainly pyrite) mineralization. There was no mineralization located.

A limited amount of reconnaissance prospecting was completed over the southwest portion of the property. Gneissic quartzite and schist containing numerous quartz stringers and veinlets were located near the southern claim boundary. A grab sample yielded an elevated gold value of 364 ppb.

The occurrence of sediments in this area indicates that the western portion of the property is not entirely underlain by diorites of the Coast Plutonic Complex, and consequently enhances the attractiveness of this area for hosting as yet undiscovered economic mineralization.

A review of all available information for the area indicates that the Canyon Creek prospect (Minfile #098) probably occurs adjacent to the southeast property boundary. It consists of two showings of mineralized quartz veins occurring either along the selvage of a diorite porphyry dyke or within silicified and hornsfelsed sediments with disseminated pyrite, and on weathering are covered by a crust of deep brown limonite. An aerial reconnaissance of this area located numerous limonite-stained outcrops; however, budget constraints did not allow for the area to be investigated. Future exploration programs should examine the mineral potential of this area.

A heavy mineral stream sediment sampling survey was completed over the property. The sample results reflect background values in all the elements.

Considering the limited amount of exploration completed on the claims, additional work is required to fully evaluate the property's mineral potential. This work should consist of extensive reconnaissance prospecting, combined with geological mapping, lithogeochemical sampling, and stream silt sampling. Stream silt samples should be collected at regular intervals along all creeks draining the property. A structural airphoto study should be completed to help direct exploration into areas of potential shearing.

CERTIFICATE - C. H. Aussant

I, Claude Henry Aussant, of 31 Templebow Way N.E. in the City of Calgary in the Province of Alberta, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Taiga Consultants Ltd. with offices at Suite 400, 534 17th Avenue S.W., Calgary, Alberta.
- 2. I am a graduate of the University of Calgary, B.Sc.Geology (1976), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 4. I am co-author of the report entitled "Geological, Prospecting, and Geochemical Report on the Gold Unuk Property, GOLD UNUK 1 to 4 Claims, Skeena Mining Division, British Columbia", dated November 6, 1989. I personally worked on the property during the program described herein.
- 5. I do not own or expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of Canadian Cariboo Resources Ltd., in respect of services rendered in the preparation of this report.

DATED at Calgary, Alberta, this 6th day of November, A.D. 1989.

Clauch must

C. H. Aussant, B.Sc., P.Geol., F.GAC

PERMIT TO PRACTICE TAIGA CONSULTANTS LTD.
Signature
Date N. 6, 1989
PERMIT NUMBER: P 2399
The Association of Professional Engineers, Geologists and Geophysicists of Alberta

Respectfully submitted,

CERTIFICATE - D. G. DuPré

I, David G. DuPré, of 56 Parkgrove Crescent in the Municipality of Delta in the Province of British Columbia, do hereby certify that:

- 1. I am a Consulting Geologist with the firm of Keewatin Engineering Inc. with offices at Suite 800, 900 West Hastings Street, Vancouver, B.C.
- 2. I am a graduate of the University of Calgary, B.Sc. Geology (1969), and I have practised my profession continuously since graduation.
- 3. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta; and I am a Fellow of the Geological Association of Canada.
- 4. I am co-author of the report entitled "Geological, Prospecting, and Geochemical Report on the Gold Unuk Property, GOLD UNUK 1 to 4 Claims, Skeena Mining Division, British Columbia", dated November 6, 1989.
- 5. I do not expect to receive any interest (direct, indirect, or contingent) in the property described herein nor in the securities of Canadian Cariboo Resources Ltd., in respect of services rendered in the preparation of this report.

DATED at Vancouver, British Columbia, this 6th day of November, A.D. 1989.

BIBLIOGRAPHY

- Alldrick, D.J.; Drown, T.J.; Grove, E.W.; Kruchkowski, E.R.; Nichols, R.F. (1989): Iskut-Sulphurets Gold; <u>in</u> The *Northern Miner* Magazine, January 1989
- Anderson, R.G. (1989): A Stratigraphic, Plutonic and Structural Framework for the Iskut River Map Area (NTS 104B), Northwestern British Columbia; <u>in</u> Geol.Surv.Cda., Current Research, Part E; Paper 89-1E
- Britton, J.M.; Webster, I.C.L.; Alldrick, D.J. (1989): Unuk Map Area (104B/7E, 8W,9W,10E); <u>in</u> B.C.Energy Mines & Petr.Res., Geological Field Work 1988, Paper 1989-1, pp.241-250

Consolidated Stikine Silver Ltd.: - 1989 Annual Report

- Cremonese, D.M. (July 18, 1988): Geophysical Report on an Airborne Magnetic and VLF-EM Survey, Gold Unuk 1 to 4 Claims; B.C. Energy Mines & Petr. Res., Assess.Rpt.17630
- Equity Preservation Corp. (1988): Stewart-Sulphurets-Iskut Map Handbook
- Geological Survey of Canada:
- Open File 1645 (1988): National Geochemical Reconnaissance; Iskut River
- Grove, E.W. (1971): Geology and Mineral Deposits of the Stewart Area, British Columbia; B.C.Energy Mines & Petr.Res., Bulletin 58
- ----- (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; B.C.Energy Mines & Petr.Res., Bulletin 63
- Korenic, J.A. (1982): Assessment Report of Geological, Geochemical, and Geophysical Work Performed on the Cole Claim in 1981, Skeena Mining Division; B.C.Energy Mines & Petr.Res., Assess.Rpt.10474

Northern Miner: - Nov.7, 1989

- Pegg, R.S. (1988): Geological Compilation of the Iskut, Sulphurets, and Stewart Gold camps; <u>for</u> BP Resources Canada Limited, private company report
- ----- (May 19, 1989): Summary Report on the Gold Unuk Property, Skeena Mining Division; <u>for</u> Ross Resources Ltd., private company report

* *

*

APPENDIX

Summary of Personnel Rock Sample Descriptions Certificates of Analysis Analytical Techniques

.

* * * * * * * * * * *

* * * * * * * *

*

SUMMARY OF PERSONNEL

<u>Name / Address</u>	<u>Position</u>	<u>Dates</u>		<u>Man Days</u>
C. H. Aussant Calgary, Alberta	Project Geologist	Sep.9-Oct.16		1.50
B. C. Beattie Calgary, Alberta	Assistant Geologist	Sep.9-Oct.16		1.50
M. Waskett-Myers Vancouver, B,C.	Geochemist	Sep.9-Oct.16		2.50
B. McIntyre Vancouver, B.C.	Senior Prospector	Sep.9-Oct.16		2.50
C. Oevermann	Cook	Sep.9-Oct.16		1.00
Smithers, B.C.			TOTAL	9.00

b

P

ROCK SAMPLE DESCRIPTIONS

	<u>Au ppb</u>	RUCK SAMPLE DESCRIPTIONS
DCR-018	8	grab o/c; contact area between massive granodiorite and andesite tuff; 50 m section within the granodiorite, rusty weathered with disseminated pyrite, contains siliceous bands with 5% diss pyrite and minor galena
DCR-019	8	grab o/c; andesite tuff, rusty weathered at contact with granodiorite, 5% diss pyrite, weak gneissic foliation
DVR-027	7	grab o/c; granodiorite, gneissic foliation, up to 5% diss pyrite and magnetite
DVR-029	<5	grab o/c; quartz veining and flooding in andesite tuff, disseminations and clots of pyrite, hematite stained
DVR-030	24	grab o/c; rhyolite porphyry
DVR-031	<5	grab o/c; 15 cm wide quartz vein with disseminated pyrite and pyrrhotite
DVR-032	<5	grab o/c; quartz-flooded rhyolite tuff, pyrite clots and crystals in the tuff and quartz
DVR-033	70	grab o/c; quartz veining and 2 x 10 m stockwork development with pyrite disseminations/crystals/clots up to 2%, minor magnetite stringers; in rhyolite tuff
KYR-017	9	grab o/c; gneissic well laminated quartzite, 2-10% diss Py (quartz-biotite gneiss with numerous quartz stringers parallel to foliation)
KYR-018	364	grab o/c; extensively gossaned schist, minor disseminated Mo, with light grey quartz stringers
KYR-019	16	float; quartz-feldspar vein, minor diss pyrite and magnetite, angular boulder

nondar Clegg & Company Etil. 130 Pemberton Ave. - 167 Children (M. Re. 27 Jonth Vancouver, B.C. 77 P 2R5 (04) 985- 6681 Telex 04-352667

Geochemical Lab Report

(004) 985-0681 Telex 04-352667			NDAR-C							
REPORT: V89-06967.0	A DIVISIO	N OF INCHC	APEANSPECT	IONA TESHN	DA	TE_PRINTE OJECT: UN	D:26=0CT - IVK	·89 .	PAGE 1A	-
SAMPLE ELEMENT Au Number units PPB	Ag PPN	As PPN	Ba PPN	Be PPN	Bi PPN	Cd PPN	Ce PPN	Со РРИ	Cr PPN	Cu PPN
R2 KY-R017 Cold Unit 9 R2 KY-R018 354 R2 KY-R019 Cold Unit 16	<0.2 1.3 <0.2	6 10 8	272 103	<n.5 <n.5 <n.5< td=""><td>4 6 3</td><td><1 <1 <1</td><td><5 <5 5</td><td>10 3 21</td><td>80 169 162</td><td>49 171 109</td></n.5<></n.5 </n.5 	4 6 3	<1 <1 <1	<5 <5 5	10 3 21	80 169 162	49 171 109
						· .	· .			
					×					
				:						
					<u>.</u>					• • • •
							· · · · · · · · · · · · · · · · · · ·	ante •		
									:	
								-	•	

.

Bondar-Clegg & Company 14d. 130 Pemberton Ave. orth Vancouver, B.C. 7P 2R5

(h)

5-0681 Telex 04-352667

Geochemicat Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

NUMBER UNITS PPN PN PN PN PN <th>REPORT: V89-</th> <th>·06967.0</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>OJECT: UN</th> <th></th> <th>=89</th> <th>PAGE 1B</th> <th>· · · · · · · ·</th>	REPORT: V89-	·06967.0							OJECT: UN		=89	PAGE 1B	· · · · · · · ·
R2 KY-R019 9 <1 6 112 6 9 13 52 9 5 <20 R2 KY-R029 10 2 4 2 6 41 26 31 9 1 <20											Sb PPN		Sn PPN
R2 KY-R019 9 ¢1 6 112 6 9 13 52 9 5 ¢20 R2 KY-R019 10 2 4 2 6 41 26 31 9 1 ¢20													
	R2 KY-R018	<u> </u>	9	<1	6	112	6	9	13	52	9	5	<20 <20 <20
										. *			
							κ		·				
							·		. ·				
		•											
													• • • • • • • • • • • • • • • • • • •
	-									•			
•	_	<u></u>		L					•	· · ·			

Bondar-Clegg & Company Ltd.
130 Pemberton Ave.
Pronth Vancouver, B.C.
V7P 2R5
(GL4) 985-0681 Telex 04-352667

Geochenneat - : Lab Report

A DIVISION OF INCHCAPE INSPECTION & ITSTING SERVICES

REPORT: V89	-06967.0							TE PRINTE Roject: Un	89 .	PAGE	10	
SAMPLE	EI FNFNT	Sr	Ta	Te	Ų	¥	Y	Zn	Zr		,	
NUMBER	UNITS	PPN	PPN									

R2 KY-R017	25	<10	<10	102	<10	6	48	<1	
R2 KY-R018	13	<10	<10	39	14	3	33	<1	
R2 KY-R019	35	<10	<1N	17	<10	1	22	<1	

•

.

,

Bondlo-Clegg & Company Ltd. 130 Peraberton Ave. North Vancouver, B.C. V /P 2R5 2011 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES.

REPORT: V89	-06887.0			·				IE-PRINTE	D:-13+0CT INN-HOMER		PAGE 1A	
SAMPLE NUMBER	ELEMENT UNITS	Au PPD	Ag PPN	Ан PPH	Ba PPN	Ba PPN	Bi PPN	Cd PPN	Ce PPN	Co PPN	Cr PPM	Cu PPN
12 89DC-R01	8 Gold Unuk gecad Unuk	8	0.2 1.1	24 38	20 58	<0.5 <0.5	? <2	<1 <1	16 10	5 20	64 100	40 74

12 8904 R127 Cold UNUK	7	2.6	30	43	<0.5	</th <th><1</th> <th>11</th> <th> 11</th> <th> 83</th> <th>307</th>	<1	11	11	83	307
R2 89DV-R029 Gold Unit	<5	1.0	13	200	<0.5	</th <th><1</th> <th>10</th> <th>2</th> <th>128</th> <th>96</th>	<1	10	2	128	96
	24	0.5	<5	64	<0.5	<2	<1	<5	14	63	67
R2 89DV-R131	<5	0.2	<5	12	<0.5	</td <td><1</td> <td><5</td> <td>3</td> <td>233</td> <td>15</td>	<1	<5	3	233	15
R2 89DV-R132	<5	<0.2	11	248	<0.5	<2	<1	1(I	4	91	18
R2 89DV-R133 Cold Vauk	(加	/1.6	8	58	<0.5	<2	<1	6	4	207	246

,

Bondar Clegg & Company Etd. B) Pemberton Ave. North Vancouver, B.C. V7P 2R5 10014) 985-0681 Telex 04-352667

Ceocheimear Lab Report

A DIVISION OF INCHUAPE INSPECTION & TESTING SERVICES.

 REPORT: V89-D	5887.D							IE PRINTE	0:-13-061 NN-HOMFR	-89	PAGE 1B	
SAMPLE NUMBER	ELEMENT UNITS	Ga PPH	La PPN	Li PPM	No PPN	Nb PPM	NI PPN	Pb PPN	Rb PPN	Sb PPN	Sc PPN	Sn PPN
R2 89DC-R018 R2 89DC+R019		4 10	7 3	777	29 4	<1 3	3 12	<2 <2	<20 43	1 7	1 22	<20 <20

R2 89DV-18127	6	2	4	98	. 2	10	14	<20	1	3	<20
R2 890V-R029	5	4	2	3	, t	3	, 8	<20	6	1	<20
R2 89DV-RN3N	12	<1	17	6	2	12	<2	7(i	<5	10	<20
R2 890V-R031	4	<1	1	2	<1	5	<2	<20	<5	<1	<20
R2 89DV-R032	8	4	7	<1	1	3	<2	41	<5 [']	6	<20
R2 89DV-R033	3	3	4	2	<1	4	<2	<20	(S	2	<20

,

,

Bondar-Clegg & Company Ltd. 150 Pemberton Ave. North Vancouver, B.C. V7P 2R5 (604) 985-0681 Telex 04-352667

Geochemicai Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

 REPORT: V89-04	5887.D							ITE-PRINTE	D:-13-06T-89 NN-HOMER	PAGF	<u>1C</u>
SAMPLE NUMBER	ELEMENT UNITS	Sr PPN	Ta PPti	Te PPN	V PPN	N PPN	Y PPH	Zn PPN	Zr PPN		
R2 89DC 1118 R2 89DC 1119		8 10	<10 <10	<10 <10	10 156	<10 <10	2 9	15 43	3 <1		

· R	2 89DV 12 27	7	<11	<10	34 -	<10	9	29	1	
R	2 89DV-RU29	. 8	<10	<11	10	<10	<1	27	1	
	2 89DV-RA30	3	<10	<10	103	<10	<u> </u>	106	<1	. .
R	2 89DV-R031	5	<10	<10	4	<10	<1	10	<1	· · · · ·
	2 89DV-R8132	10	<10	<10	38	<10	4	41	<1	•
4	2 89DV-R 033	7	<10	<10 ····	13	<10	2	17	<1	

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 4604) 985-0681 Telex 04-352667

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-D6781.D (COMPLETE)

REFERENCE INFO:

CLIENT: KEEWATIN ENGINEERING INC. PROJECT: PARADIGM

1 .

SUBNITTED BY: TERRAMIN RES. LAB DATE PRINTED: 4-OCT-89

1 0 Gold - Fire Assay 93 5 PPB FIRE-ASCAY Fire Assay AA 3 As Arsenic 93 0.2 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 4 Ba Barius 93 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 5 Be Beryllius 93 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 6 Hit Bisnuth 93 2 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 7 Cd Cadmiun 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 8 Ce Cariun 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 9 Co Cobatt 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 10 Cr Chroniun 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 11 Cu Copper 73 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 12 Ga Gallius 73 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma <t< th=""><th></th><th>ORDFR</th><th></th><th>ELEMENT</th><th>NUMBER OF Analyses</th><th>LOWER DETECTION LIMIT</th><th>EXTRACTION</th><th>METHOD</th></t<>		ORDFR		ELEMENT	NUMBER OF Analyses	LOWER DETECTION LIMIT	EXTRACTION	METHOD
2AgSilver93D.2 PPHHN03-HCL HDT FXTRInd. Coupled Plasma3AsArsenic93S PPHHN03-HCL HDT FXTRInd. Coupled Plasma4BaBarium931 PPHHN03-HCL HDT FXTRInd. Coupled Plasma5BeBeryllium930.5 PPHHN03-HCL HDT FXTRInd. Coupled Plasma6HIBismuth931 PPHHN03-HCL HDT FXTRInd. Coupled Plasma7CdCadmium931 PPHHN03-HCL HDT FXTRInd. Coupled Plasma7CdCadmium931 PPHHN03-HCL HDT FXTRInd. Coupled Plasma9CoCobalt731 PPHHN03-HCL HDT FXTRInd. Coupled Plasma10CrChronium731 PPHHN03-HCL HDT FXTRInd. Coupled Plasma11CuCopper731 PPHHN03-HCL HDT FXTRInd. Coupled Plasma12GaGallium731 PPHHN03-HCL HDT FXTRInd. Coupled Plasma13LaLanthanum731 PPHHN03-HCL HDT FXTRInd. Coupled Plasma14LiLithium731 PPHHN03-HCL HDT FXTRInd. Coupled Plasma16NbNiobium731 PPHHN03-HCL HDT FXTRInd. Coupled Plasma16NbNiobium731 PPHHN03-HCL HDT FXTRInd. Coupled Plasma17NiNickel732 PPHHN03-HCL HDT FXTRInd. Coupled Plasma16Nb		1	A ii	Gold - Fire Assay	93	5 PPB	FIRE-ASSAY	Fire Assay AA
4 Ba Barium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 5 Be Beryllium 93 0.5 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 7 Cd Cadmium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 7 Cd Cadmium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 8 Ce Cerium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 10 Cr Chromium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 11 Cu Coopled Plasma 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 12 Ga Gallium 73 2 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 13 La Lanthanum 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 14 Li Lithium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 15 Mo Noloburum 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma		2	Ag	•	93			•
4 Ba Barium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 5 Be Beryllium 93 0.5 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 7 Cd Cadmium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 7 Cd Cadmium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 8 Ce Cerium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 10 Cr Chromium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 11 Cu Coopled Plasma 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 12 Ga Gallium 73 2 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 13 La Lanthanum 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 14 Li Lithium 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma 15 Mo Noloburum 93 1 PPN HN03-HCL H0T EXTR Ind. Coupled Plasma								
S Be Beryllium 93 0.S PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 7 Cd Cadmium 93 2 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 7 Cd Cadmium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 8 Ce Cerium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 9 Co Cobalt 73 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 10 Cr Chronium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 11 Cu Copper 73 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 12 Ga Gallium 73 2 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 13 La Lanthanum 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 14 Li Lithium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 15 Mo Molybdenum 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
6 Bi smuth 93 2 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 7 Cd Cadmium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 8 Ce Cerium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 9 Co Cobalt 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 10 Cr Chronium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 11 Cu Copper 23 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 12 Ga Gallium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 13 La Lanthanum 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 14 Li Lithium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 15 Ho Nidblum 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 16 N Nidblum 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 17								
7CdCadmium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma8CeCerium935PPHHN03-HCL HOT EXTRInd. Coupled Plasma10CrChomium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma11CuCopper931PPHHN03-HCL HOT EXTRInd. Coupled Plasma12GaGallium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma13LaLanthanum931PPHHN03-HCL HOT EXTRInd. Coupled Plasma14LiLithium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma15HoHolybdenum931PPHHN03-HCL HOT EXTRInd. Coupled Plasma16NbNiobium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel931PPHHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium932PPHHN03-HCL HOT EXTRInd. Coupled Plasma16NbNibdium932PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma21Sc<				•				•
8 Ce Cerium 93 5 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 9 Co Cobalt 23 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 10 Cr Chromium 93 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 11 Cu Copper 23 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 12 Ga Ga Ilium 23 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 13 La Lanthanum 93 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 14 Li Lithium 93 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 15 ho Molybdenum 93 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 16 Nb Nickel 93 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 17 Ni Nickel 93 1 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma 18 Pb Lead 93 2 PPH HN03-HCL H0T EXTR Ind. Coupled Plasma	_							
9CoCobalt231 PPHHN03-HCL HOT EXTRInd. Coupled Plasma10CrChromium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma11CuCopper231 PPHHN03-HCL HOT EXTRInd. Coupled Plasma12GaGallium232 PPHHN03-HCL HOT EXTRInd. Coupled Plasma13LaLanthanum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma14LiLithium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma15MoMolybdenum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma16NbNiobium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma19RbRubidium2320 PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma2320 PPHHN03-HCL HOT EXTRInd. Coupled Plasma2224TaTantaum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium9	_	7	Cd	Cadmium	93	<u> </u>	HN03-HCL HOT EXTR	Ind. Coupled Plasma
9CoCobalt231 PPHHN03-HCL HOT EXTRInd. Coupled Plasma10CrChromium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma11CuCopper231 PPHHN03-HCL HOT EXTRInd. Coupled Plasma12GaGallium232 PPHHN03-HCL HOT EXTRInd. Coupled Plasma13LaLanthanum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma14LiLithium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma15MoMolybdenum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma16NbNiobium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma19RbRubidium2320 PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma2320 PPHHN03-HCL HOT EXTRInd. Coupled Plasma2224TaTantaum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium9		8	Ce	Cerium	23	5 PPH	HN03-HCL HOT EXTR	Ind. Coupled Plasma
10CrChromium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma11CuCopper931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma12GaGallium932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma13LaLanthanum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma14LiLithium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma15HoHolybdenum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma16NbNiobium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma20SbAntimony935 PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma25<								•
11CuCopper731 PPHHN03-HCL HOT EXTRInd. Coupled Plasma12GaGallium732 PPHHN03-HCL HOT EXTRInd. Coupled Plasma13LaLanthanum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma14LiLithium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma15NoMolybdenum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma16NbNiobium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma16NbNiobium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma20PbAntimony933 S PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma22SrStrontium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma24TaIantalum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma26				Chromium	93			
12 Ga Gallium ?3 2 PPM HN03-HCL HOT FXTR Ind. Coupled Plasma 13 La Lanthanum ?3 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 14 Li Lithium ?3 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 15 Mo Molybdenum ?3 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 16 Nb Niobium ?3 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 16 Nb Niobium ?3 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 17 Ni Nickel ?3 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 18 Pb Lead ?3 2 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 20 Sb Antiwony ?3 2 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 21 Sc Scandium ?3 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma 22 Sn Tin ?3 20 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma				Copper				
14LiLithium931 PPN MolybdenumHN03-HCL HOT EXTR HN03-HCL HOT EXTR HN03-HCL HOT EXTR Ind. Coupled Plasma15MoMolybdenum931 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTR 	-							
14LiLithium931 PPN MolybdenumHN03-HCL HOT EXTR HN03-HCL HOT EXTR HN03-HCL HOT EXTR Ind. Coupled Plasma15MoMolybdenum931 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTR HN03-HCL HOT EXTRInd. Coupled Plasma16NbNiobium931 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel932 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTRInd. Coupled Plasma20PpHN03-HCL HOT EXTR HOT EXTRInd. Coupled PlasmaInd. Coupled Plasma21ScScandium931 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310 PPN PPNHN03-HCL HOT EXTR HN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310 PPN PPNHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium931 PPN PPNHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931 PPN PPNHN03-HCL HOT EXTRInd. Coupled Plasma27UTungsten93<								
15NoMolybdenum931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma16NbNiobium731 PPHHN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma20SbAntimony735 PPHHN03-HCL HOT EXTRInd. Coupled Plasma20SbAntimony735 PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin9320 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma27UTungsten9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma		13	La	Lanthanum	93	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
16NbNiobium731 PPHHN03-HCL HOT EXTRInd. Coupled Plasma17NiNickel931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932 PPHHN03-HCL HOT EXTRInd. Coupled Plasma19RbRubidium9320 PPHHN03-HCL HOT EXTRInd. Coupled Plasma20SbAntiwony935 PPHIN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalun9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma27VVanadium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma27VVanadium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma		14	Li	Lithium	93	1 PPM -	HN03-HCL HOT EXTR	Ind. Coupled Plasma
17NiNickel931PPMHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932PPMHN03-HCL HOT EXTRInd. Coupled Plasma19RbRubidium9320PPMHN03-HCL HOT EXTRInd. Coupled Plasma20SbAntiwony935FPMHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931FPMHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin931PPMHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma27UTungsten9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma27VVanadium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931PPMHN03-HCL HOT EXTRInd. Coupled Plasma		15	No	Nolybdenum	93	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
17NiNickel931PPMHN03-HCL HOT EXTRInd. Coupled Plasma18PbLead932PPMHN03-HCL HOT EXTRInd. Coupled Plasma19RbRubidium9320PPMHN03-HCL HOT EXTRInd. Coupled Plasma20SbAntiwony935FPMHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931FPMHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin931PPMHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma27UTungsten9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma27VVanadium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931PPMHN03-HCL HOT EXTRInd. Coupled Plasma		.16	Nb	Niobium	93	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma
19RbRubidium9320PPMHN03-HCL HOT EXTRInd. Coupled Plasma20SbAntimony935SPMHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin9320PPMHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma27WTungsten9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931PPMHN03-HCL HOT EXTRInd. Coupled Plasma		17	Ni	Nickel	93	1 PPM	HN03-HCL HOT EXTR	
19RbRubidium9320PPMHN03-HCL HOT EXTRInd. Coupled Plasma20SbAntimony935SPMHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin9320PPMHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma27WTungsten9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931PPMHN03-HCL HOT EXTRInd. Coupled Plasma	-				0.2	2.004		
20SbAntiwony935 PPHHN03-HCL HOT EXTRInd. Coupled Plasma21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin9320 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma27HTungsten9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma27YYttrium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma								•
21ScScandium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma22SnTin9320 PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma27HTungsten9310 PPHHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931 PPHHN03-HCL HOT EXTRInd. Coupled Plasma								
22SnTin9320PPHHN03-HCL HOT EXTRInd. Coupled Plasma23SrStrontium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310PPHHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310PPHHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium9310PPHHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium9310PPHHN03-HCL HOT EXTRInd. Coupled Plasma27HTungsten9310PPHHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931PPHHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931PPHHN03-HCL HOT EXTRInd. Coupled Plasma				•				
23SrStrontium931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma24TaTantalum9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma27HTungsten9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma								•
24TaTantalum9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma27UTungsten9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma27UTungsten9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma		22	<u>Sn</u>	Tin	93	20 PPN	IIN03-HCL HOT EXTR	Ind. Coupled Plasma
24TaTantalum9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma25TeTellurium9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma27UTungsten9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma27UTungsten9310 PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma29ZnZinc931 PPMHN03-HCL HOT EXTRInd. Coupled Plasma		23	Sr		93	1 PPM	HN03-HCL HOT FXTR	Ind. Coupled Plasma
25TeTellurium9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma26VVanadium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma27HTungsten9310PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YYttrium931PPMHN03-HCL HOT EXTRInd. Coupled Plasma28YZnZinc931PPMHN03-HCL HOT EXTRInd. Coupled Plasma								•
26VVanadium931 PPMHN03-HCL HOI EXTRInd. Coupled Plasma27HTungsten9310 PPMHN03-HCL HOI EXTRInd. Coupled Plasma28YYttrium931 PPMHN03-HCL HOI EXTRInd. Coupled Plasma28YYttrium931 PPMHN03-HCL HOI EXTRInd. Coupled Plasma29ZnZinc931 PPMHN03-HCL HOI EXTRInd. Coupled Plasma	-	•						
27 W Tungsten 93 10 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 28 Y Yttrium 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma 29 Zn Zinc 93 1 PPH HN03-HCL HOT EXTR Ind. Coupled Plasma	_						· · · · · ·	-
28 Y Yttrium 93 1 FPM HN03-HCL HOT EXTR Ind. Coupled Plasma 29 Zn Zinc. 93 1 FPM HN03-HCL HOT EXTR Ind. Coupled Plasma	1							•
29 Zn Zinc 93 1 PPM HN03-HCL HOT EXTR Ind. Coupled Plasma						······································		
	_	28	Y	Yttrium	93	1 PPM	HN03 HCL HOT EXTR	Ind. Coupled Plasma
30 Zr Zirconium 93 1 PPN HN03-HCL HOT EXTR Ind. Coupled Plasma		29	Zn	Zinc	93	1 PP#	HN03-HCI HOT EXTR	Ind. Coupled Plasma
		30	Zr	Zirconium	93	1 PPM	HN03-HCL HOT EXTR	Ind. Coupled Plasma

Bondar-Clegg & Company Ltd. 130 Pemberton Ave. North Vancouver, B.C. V7P 2R5 1604) 985-0681 Telex 04-352667

-

_

1

Geochemical Lab Report

A DIVISION OF INCHCAPE INSPECTION & TESTING SERVICES

REPORT: V89-06781.0 (COMPLE	······		<u> </u>	L	REFERENCE INFO:					
CLIENT: KEEWATIN ENGINEERING PROJECT: PARADIGH	inc.				SUBMITTED BY: TERRAMIN RED DATE PRINTED: 4-OCT-89	S. LAB				
SAMPLE TYPES	NUMBER	SIZE FRA	CTIONS	NUMBER	SAMPLE PREPARATIONS N	UMBER				
T STREAM SEDIMENT,SILT R ROCK OR BED ROCK	41 52	1 -8N 2 -150		41 52	DRY, SIEVE -80 CRUSH,PULVERIZE -150	41 52				
REPORT COPIES IO: KEEWA TAIGA	NTIN ENGINEERING Consultants L1			INVO	ICE TO: KEEWATIN ENGINEERI	NG INC.				
					0.8					
· ·										
4		,	· ·							
· .										

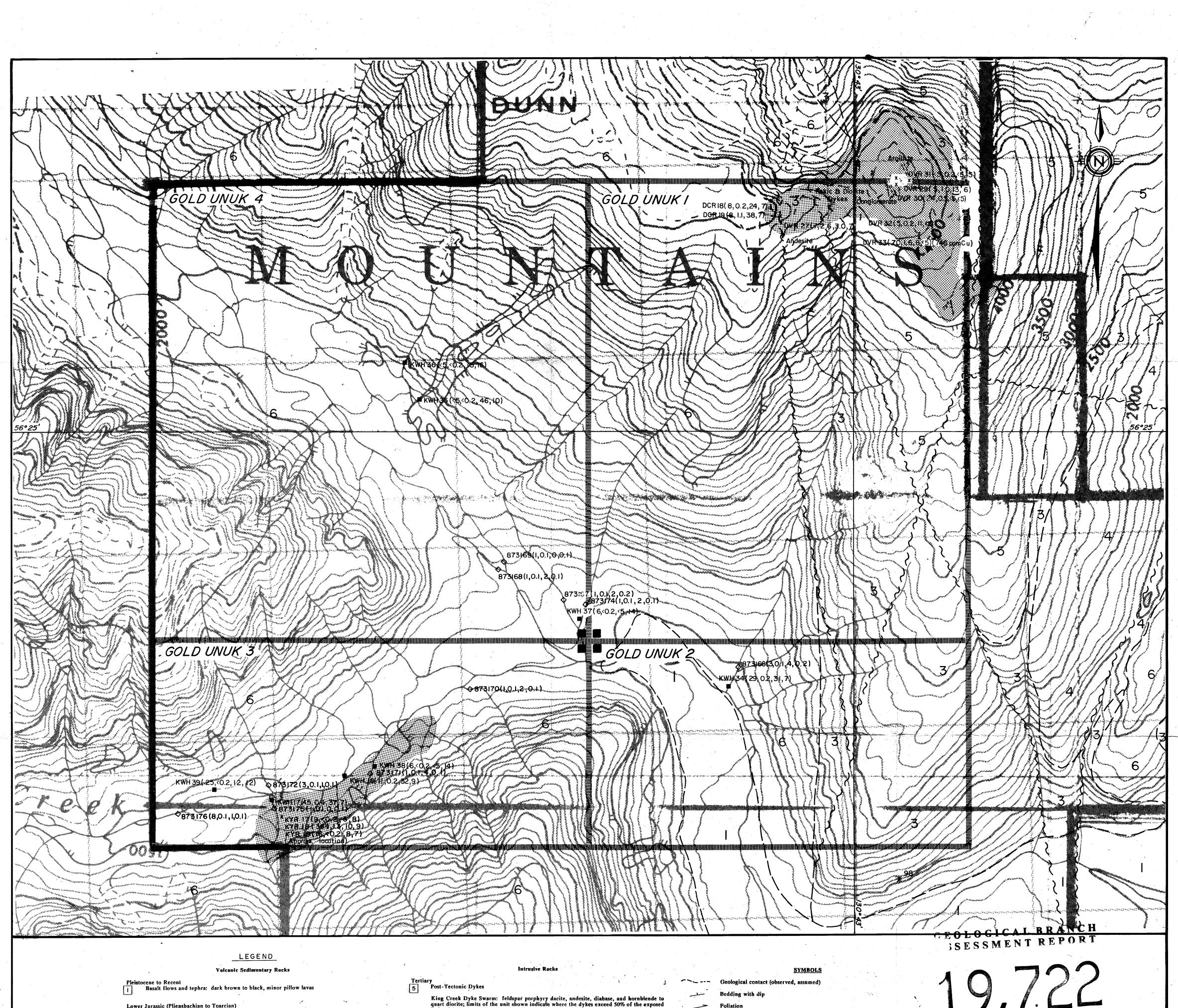
· · · ·

GOLD UNUK PROPERTY

HEAVY MINERAL RESULTS

LAB	FIELD	Au	(30g	Ag	As	8a	Be	Bí	Cd	Ce	Co	Cr	Cu	Ga	La	Li	No	Nb	Ni	РЬ	Rb	Sb	Sc	Sn	Sr	Ta	Te	۷	W	Y	Zn	Zr
NUMBER	NUMBER	LOCATI(p	pb) ((ppa)	(ppa)	(ppm)	(ppa)	(ppa)	(ppm)	(ppm)	(ppa)	(ppm)	(pps)	(ppm)	(ppm)	(ppa)	(ppm)	(ppa)	(ppa)	(ppm)	(ppa)	(ppe)	(ppm)	(ppm)	(ppm) ((aqq.						
				• • • • •								0-0 *				<u></u>		معصناصك														
75770018	89 K ¥Н34	GOL	29	0.2	31	557	-0.5	4	-1	31	29	97	97	5	16	8	12	-1	45	-2	74	7	4	-20	57	-10	-10	156	-10	8 6	73	3
75770019	89 K ¥H35	GOL	-5	-0.2	46	595	-0.5	4	-1	102	24	140	· 20	3	74	12	4	1	58	-2	88	10	3	-20	26	-10	-10	277	-10	12.	81	3
75770020	89 K WH36	GOL	-5	-0.2	-5	780	-0.5	13	-1	83	30	132	19	14	79	32	6	6	48	-2	115	16	5	-20	31	28	-10	267	-10	10	116	5
75770022	89 K WH37	GOL	6	-0.2	-5	430	-0.5	9	-1	99	21	132	16	11	81	16	4	7	41	-2	115	14	5	-20	30	20	-10	266	-10	14	83	4
75770023	89 K WH38	GOL	6	-0.2	6	213	-0.5	12	-1	72	17	1 90	26	- 10	55	7	7	4	23	-2	55	.17	6	-20	33	24	-10	379	36	14	65	5
75770024	89 K WH39	GOL	25	-0.2	12	189	-0.5	6	-1	66	22	114	23	10	45	6	6	6	22	-2	37	12	7	-20	26	24	-10	220	-10	15	66	5
69690018	89 K WH17	GOL	-5	0.4	37	444	-0.5	13	-1	56	18	98	36	6	30	14	7	5	20	-2	100	7	9	-20	58	-10	-10	207	-10	14	94	3
69690019	89 K WH18	GOL	11	0.2	32	244	-0.5	7	-1	120		158	23	8	60	9	-	9	20	-				-20	35	-10	-10		-10	26	76	3

_..



.

SUMMARY OF EXPENDITURES

Gold Unuk 1-4

Personnel and Crew		\$ 3,648.64
Transportation - helicopter/fixed wing/fuel		3,132.66
Camp - food/accommodation		659.18
Assay/Report/Drafting/Secretarial		1,153.37
	TOTAL EXPENDITURES:	<u>\$ 8.593.85</u>

- Lower Jurassic (Pliensbachian to Toarcian)
- Betty Creek Formation: pyroclastic-epiclastic sequence, heterogeneous, grey-green, massive to bedded, pyroclastics and sedimentary rocks (black, thinly bedded siltstone, shale, and 2 argillite)
- Upper Triassic to Lower Jurassic (Norian to Sinemurian) 3 Unuk River Formation: andesite sequence, green and grey, intermediate to mafic volcaniclastics and flows, with locally thick interbeds of fine-grained immature sediments, minor conglomerates, and limestone
- Upper Triassic (Carnian to Norian)
- 4 Stuhini Group: brown, black, grey; mixed sedimentary rocks (siltstone, shale, argillite, limestone, chert), with minor mafic to intermediate volcanics and volcaniclastic rocks
- King Creek Dyke Swarm: feldspar porphyry dacite, andesite, diabase, and hornblende to quart diorite; limits of the unit shown indicate where the dykes exceed 50% of the exposed bedrock
- 9 Hawilson Monzonite - fine grained monzonite
- 6 Coast Plutonic Complex: hornblende-biotite-guartz diorite to granodiorite.
- Jurassic Unuk River Diorite Suite: a) Max: biotite-hornblende diorite, quartz diorite, granodiorite b) Melvelle: hornblende-biotite diorite, quartz diorite
- Metamorphic Rocks
- 8 Metamorphic equivalents of Units 1, 2, or 3 bornblende, mylonite gneiss, mylonite Unuk-Harrymel Fault Zone, strongly sheared rock within fault zone
- Bedding with dip Foliation 1 **Regional anticline** $\sim \sim \sim$ Fault (defined, assumed) Airphoto lineament Regional stream silt sample site (Au ppb, Ag ppm, As ppm Sb ppm) Ó Minfile mineral occurrence (Cu ppm, Pb ppm, Zn ppm, Au ppb, Ag ppm) Rock sample - outcrop (Au ppb, Ag ppm, As ppm, Sb ppm) Rock sample - float (Au ppb, Ag ppm, As ppm, Sb ppm) Stream silt sample (Au ppb, Ag ppm, As ppm, Sb ppm) Heavy mineral sample (Au ppb, Ag ppm, As ppm, Sb ppm) \leq Trench

CANADIAN CARIBOO RESOURCES LTD.

GOLD UNUK PROJECT

GEOLOGY & 1989 EXPLORATION

SAMPLE LOCATIONS & RESULTS

KEEWATIN ENGINEERING INC. MAP No.

NTS: 104B/7

200 300 400 500 METRES

DATE: NOV. 1989

SCALE: 1:10,000

PROJECT: GOLD UNUK

1989 Prospecting Coverage