	SUB-RECORDER
	FEB 28 1990
	M.R. # \$
Ì	VANCOUVER, B.C.

LOG NO:	0305	RÐ.	
ACTION:			ł
FILE NO:			

N.T.S.: 104 A/4 W Latitude: 56' 10'N Longitude: 130' 02'W 1**29° 5**6'

U AL

ZC

< ₽

N N N

► 2

GEOL Asse

S S]

COLUMN STREET

GEOLOGICAL, GEOCHEMICAL, AND

GEOPHYSICAL REPORT ON THE

STRIKE 1, 2, AND 3 CLAIM GROUP

Skeena Mining Division British Columbia

For

WHITE CHANNEL RESOURCES INCORPORATED #718 - 744 West Hastings Street Vancouver, B.C. V6C 1A5

By

Fayz F. Yacoub, B.Sc., F.G.A.C.

and

Andris Kikauka, B.Sc. (Hons.)

OCTOBER 30, 1989

ITEMIZED COST STATEMENT

STRIKE 1,2, and 3 Claims

September and October, 1989

Mob/Demob (includes transportation, freight, and wages)		\$ 1,600.00
Field Crew:		
White Channel Resources Inc. Personnel: Project Geologist (A. Kikauka) @ \$350/day x 10 days Geotechnician (I. Rose) @ \$150/day x 10 days <u>Ashworth Explorations Ltd. Personnel:</u> Geologist (F. Yacoub) @ \$350/day x 4 days Geotechnician (R. Paeseler) @ \$200/day x 4 days Geotechnician (T. Kovacs) @ \$200/days x 4 days Geotechnician (A. Molnar) @ \$150/day x 4 days	\$ 3,500.00 1,500.00 1,400.00 800.00 800.00 600.00	8,600.00
Field Costs:		
Helicopter (VIH - Stewart, B.C.) @ \$650/hr x 2.7 hours Geophysical equipment (EDA Omni Mag VLF) @ \$150/day x 4 days Room and Board @ \$45/day/man x 36 man days Communications @ \$25/day x 10 days 1 4x4 truck @ \$70/day x 10 days Supplies	$1.755.00 \\ 600.00 \\ 1,620.00 \\ 250.00 \\ 700.00 \\ 50.00$	4,975.00
Lab Analysis:		
102 Rock chip samples (Cu, Pb, Zn, Ag, Au assay) @ \$34.40 sample 236 soil and 10 silt (30 element ICP, gold by FA/AA) @ \$16.75\sample	3,406.80 4,120.50	7,527.30
Report:		
Report writing Drafting and plotting Word processing, copying, and binding	1,000.00 750.00 150.00	2,100.00
TOTAL		\$ 24,802.30

SUMMARY

The Strike Claim Group consists of three contiguous mineral claims comprising 48 units. The property is situated in the Skeena Mining Division approximately 20 kilometres north of Stewart, B.C.

The claims lie within the "Golden Crescent" of the Stewart Complex. This area is receiving an increase of attention with world class gold-silver deposits which currently represents the most active exploration area in the Western Cordillera.

The property is underlain by Middle Jurassic argillaceous siltstone, greywackes, volcanic breccia and lithic tuff. This sequence is cut locally by a series of dykes and high level stocks forming part of the Portland Canal dyke swarm.

Twelve quartz-sulphide veins, concentrated along the axial plane of a north plunging anticline, which have been exposed over a strike length of 700 metres, have an average width of 1 metre. A rock chip sample across 40 cm. on one vein, returned an assay of 22.42 g/t Au, 447.3 g/t Ag, 1.5% Pb, .96% Zn. The average assay values are in the range of: 1-2 g/t Au, 30-60 g/t Ag, and 6% combined Pb-Zn.

The geochemical talus fines survey outlined a broad, strong Pb-Zn-Ag anomaly and a moderate to strong Cu-Au anomaly. These anomalies correspond to known showings and extend into areas of overburden.

The geophysical survey located 6 VLF-EM conductors that roughly matched surface exposures of quartz sulphide veins. The five magnetic anomalies were weak and roughly corresponded to dykes.

A Phase II program of diamond drilling, UTEM geophysics, trenching, and geological mapping has been recommended. Approximate cost would be \$250,000.

Contingent on the Phase II results, a Phase III program of detailed diamond drilling and trenching is recommended.

TABLE OF CONTENTS

	ITEM	IZED COST STATEMENT	i					
	SUMMARY							
1.	INTRODUCTION							
2.	LOCA	ATION, ACCESS AND PHYSIOGRAPHY	1					
3.	PRO	PERTY STATUS	2					
4.	AREA	A HISTORY	2					
5.	PRO	PERTY HISTORY	3					
6.	GENERAL GEOLOGY							
7.	1989	FIELD PROGRAM	5					
	7.1	Scope and Purpose	5					
	7.2	Methods and Procedure	5					
8.	RESU	JLTS	6					
	8.1	Property Geology and Mineralization	6					
	8.2	Trenching	8					
	8.3	Geochemistry	9					
	8.4	Geophysics	9					
9.	CON	CLUSIONS	10					
10.	REC	OMMENDATIONS	10					
	REF	ERENCES	11					
	STA	rement of qualifications	12					
	CER'	TIFICATE	13					

LIST OF FIGURES, PLATES, MAPS, AND APPENDICES

Figure	la	Property Location Map
Figure	l :b	Claim Location Map
Figure	2:	Claim Geology Map
Figure	3:	Trench Samples - Au
Figure	4:	Trench Samples - Ag
Figure	5:	Soil Geochem - Pb
Figure	6:	Soil Geochem - Zn
Figure	7:	Soil Geochem - Ag
Figure	8:	Soil Geochem - Au
Figure	9:	Stream Sediment Sample Locations

- Map 2: Trench and Sample Locations
- Map 3: Soil and Geochemistry Pb, Zn postings
- Map 4: Soil Geochemistry Ag, Au postings
- Map 5: Geophysical Compilation
- Map 6: Geophysical VLF-EM Profiles
- Map 7: Geophysical Magnetic Contours
- Map 8: VLF-EM Contours
- Map 9: Geophysical Interpretation
- Map 10: Magnetic Profiles
- Appendix A: Geophysical Report
- Appendix B: Rock Sample Record and Assays
- Appendix C: Soil and Silt Geochemical Analysis
- Appendix D: Analytical Technique

1. INTRODUCTION

This report summarizes geological-geochemical-geophysical surveys carried out between September 7, 1989 to October 3, 1989. One of the authors, Mr. Andris Kikauka, planned and supervised all fieldwork and was project geologist on the subject claims from September 7-13, 21-23, 1989. The co-author, Mr. Fayz Yacoub, was present on the subject claims from September 26-29, 1989.

1

2. LOCATION, ACCESS, AND PHYSIOGRAPHY

The Strike 1, 2, and 3 Claim Group is located approximately 20 kilometres north of Stewart, B.C. The property lies within the Skeena Mining Division on NTS mapsheet 104 A/4 W. (Figure 1).

Elevations on the claim group range from 1175 to 1675 metres. Slopes are generally moderate at the southern portion of the Claim Group and steep to moderate in the north. The slopes are generally bare with only a thin overburden/talus cover.

The area of detailed field work is located in the southern portion of the Strike 2 Claim. This was referred to by Grove (1971) as the Silver Crown mineral occurrence.

The Silver Crown showing is exposed at 1375 - 1525 metres elevation on a moderate slope 1.5 kilometres east of the present north tip of Long Lake. There is road access to Long Lake (1000 metre elevation) with relatively easy, above treeline access to the Silver Crown. This area is one of the most accessible access routes to the alpine zone in the Stewart mining camp. It is located 12 kilometres from the new mill at the Silbak-Premier Mine via Moniter Lake and Cooper Creek.

3. PROPERTY STATUS

The Strike 1, 2 and 3 Claim Group consists of 3 continguous claims, located in the Skeena Mining Division. The claims are owned by White Channel Resources Incorporated. (Figure 1).

Claim Name	# of Units	Record #	Record Date	Expiry Date
Strike 1	18	7569	April 24, 1989	April 24, 1990
Strike 2	18	7570	April 24, 1989	April 24, 1990
Strike 3	12	7571	April 24, 1989	April 24, 1990
Total	48			

The total area, correcting for overlap, is approximately 1,050 hectacres.

4. AREA HISTORY

Exploration activity in the Stewart gold-silver district continues to be one of the most active mineral exploration areas of North America demonstrated by numerous projects being carried out by major and junior mining companies.

Westmin Resources is mining the Silbak-Premier and Big Missourri gold-silver properties. Newhawk Gold Mines is approaching production of their Brucejack Lake property. Skyline Gold Corp. is mining their Stonehouse gold deposit. Cominco-Prime are approaching production on the Snip deposit. Con. Stikine-Calpine are rapidly inferring a world class gold-silver deposit. Westmin-Tenajon are now mining the Silver Butte deposit. Other deposits are approaching feasibility, including: Echo Bay-Magna-Silver Princess Doc property, Catear Golden Wedge, Bond Gold Red Mountain.

Many of the 500 gold-silver mines, prospects and new discoveries will receive more attention in the Stewart area over the next decade.

5. **PROPERTY HISTORY**

The Silver Crown Showing was discovered in 1965. The ablation of the glacial ice in the alpine area exposed this showing approximately 25 years ago. Work performed during 1965 included trenching and sampling. Work at that time included blasting and sampling 33 trenches over a length of 200 metres along a mineralized zone extending over 450 metres. One selected sample was reported to assay 0.01 oz/ton Au, 6.0 oz/ton Ag, 0.02% Cu, 13.37% Pb, 43.9% Zn, and 0.59% Cd over a width of 1 metre (Grove, 1971).

In 1982, an assessment report was filed for Teuton Resources Ltd. This program was hampered by bad weather and heavy snow accumulation.

Trace element analysis of sulphides from the Silver Crown were compared to other Stewart mineral deposits (Grove, 1971). Pyrite from the Silver Crown had relatively high Cu-Pb-Zn values as did pyrite from the Silbak-Premier and Indian mines. Sphalerite from the Silver Crown contained relatively high Cu-Pvb values as did samples from the Silbak-Premier, Silver Tip, Indian and Dunwell mines. Galena from the Silver Crown had relatively high Cu-Zn as did samples from Silbak-Premier, Dunwell, and Indian mines. The significance of this comparison is that a polymetallic association of Pb-Zn-Cu is common to both the Silver Crown and the Silbak-Premier.

6. GENERAL GEOLOGY

The Stewart Complex includes a thick sequence of mainly late Triassic to late Middle Jurassic volcanic, sedimentary, and metamorphic rocks. These have been intruded and cut by a mainly granitic to syenitic suite of Lower Jurassic through Tertiary plutons which together form part of the Coast Plutonic Complex. Deformation, in part related to intrusive activity has produced complex fold structures along the main intrusive contacts with simple open folds and warps dominant along the east side of the Complex. Cataclasis marked by strong

north-south structures are prominent structural features that cut all the pre Lower Middle Jurassic units. (Figure 2).

Country rocks in the general Stewart area comprise mainly Hazleton Group strata which include the Lower Jurassic Unuk River Formation and the Middle Jurassic Betty Creek and Salmon River Formation and the Upper Jurassic Nass Formation (Grove, 1971, 1986). In the general Stewart area the Unuk River strata include mainly fragmental andesitic volcanics, epiclastic volcanics and minor volcanic flows. Widespread Aalenian uplift and erosion was followed by deposition of the partly marine volcaniclastic Betty Creek Formation, the mixed Salmon River Formation, and the dominantly shallow marine Nass Formation.

Intrusive activity in the Stewart area has been marked by the Lower to Middle Jurassic Texas Creek granodiorite with which the Big Missouri, Silbak Premier and many small ore deposits are associated. Younger intrusions include the extensive Hyder Quartz Monzonite and the many Tertiary stocks and dike swarms which form a large part of the Coast Clutonic Complex. Mineral deposits such as the major B.C. Molybdenum mine at Alice Arm and a host of smaller deposists are localized in or related to these 48 to 52 m.y plutons which include dykes forming part of the regionally extensive Portland Canal Dike Swarm (Grove, 1986).

Stewart District Mineral Deposits

More than 700 mineral deposits and showings have now been discovered in a large variety of rocks and structural traps in the Stewart District. The famous Silbak Premier mine which has been reactivated as an open pit operation by Westmin Resources represents a telescoped epithermal gold-silver base metal deposit localized along a complex steep fracture system in Lower Jurassic volcaniclastics overlain by shallow dipping Middle Jurassic Salmon River Formation sedimentary rocks. In this example, the shallow lying younger rock units formed a dam, trapping bonanza type gold-silver mineralization at a relatively shallow depth. Mineralization at the Silbak Premier, Big Missouri and a number of other deposits in the area have been related to early Middle Jurassic regional plutonic-volcanic event (Grove 1971, 1986). Younger high grade mineralization found localized in various members of the Portland Canal Dike Swarm particularly in the Stewart area have also been related to Cretaceous and Tertiary plutonic-volcanic events. Overall at least four major episodes of mineralization involving gold-silver, base metals, molybdenum and tungsten dating from early Lower Middle Jurassic through to the Tertiary have been recorded throughout the Stewart Complex.

7. 1989 FIELD PROGRAM

7.1 SCOPE AND PURPOSE

From September 7-13, 1989, a geologist and geotechnician carried out geological mapping, soil and talus fines sampling, and rock chip sampling of existing trenches.

From September 21-29, 1989, two geologist, three geotechnicians and a geophysicist carried out geological mapping, soil, talus fines, and stream sediment sampling, geophysics, and trenching.

The purpose of this program was:

- a) to cover the property with detailed geochemical, geological, and geophysical surveys in order to define drill targets and additional follow-up exploration work,
- b) to evaluate and extend the known showings, and
- c) to find and systematically sample sulphide mineralization on the property.

7.2 METHODS AND PROCEDURES

Utilizing compass and hipchain, a flagged grid was laid over the southern portion of the Strike 2 claim. The grid covered an area $1.0 \ge 0.5$ kilometres, with a line spacing of 100 metres. A total of 7.0 line kilometres were surveyed.

Geological mapping was carried out at a scale of 1:2,500.

A Swedish plugger was used to drill trench holes and 70% forcite was used to blast the trenching sites. A total of 102 rock chip samples, averaging 2.5 kilograms, were collected on the property and assayed for Cu, Pb, Zn, Ag, Au by Ecotech Lab, Stewart, B.C.

Using a grub hoe, soil samples were collected from talus fines. Sample depths averaged 25 cm. and a total of 236 soil and 10 stream sediment samples were collected and analyzed for gold and multi-element ICP by Acme Analytical Lab, Vancouver, B.C.

A VLF-EM and magnetometer geophysical survey was carried out over the grid area. Readings were taken at 12.5 metre spacing along a total of 7.0 kilometres grid line. Survey specifications and interpretation are included in Section 8.4 and Appendix A.

8. RESULTS

8.1 PROPERTY GEOLOGY AND MINERALIZATION (Map 1)

Geological mapping of the Strike 1, 2, and 3 Claims indicated Middle Jurassic, Betty creek Formation, banded, argillaceous siltstone, greywacke, chert pebble conglomerate, and minor limestone are overlain by Middle Jurassic, Salmon River Formation volcanic breccia, lithic tuff, and minor greywacke. (Figure 2). These Middle Jurassic formations overly Hazleton volcanic epiclastics which locally form the crest of the Bear River Ridge (along the Strike 3 claim). This entire sequence of sediments and volcanics is intruded by a dyke and high level stock complex. The older dyke swarm is mafic to intermediate in composition, some hornblende phenocrysts were noted, and the average width of dykes is 8.0 These dykes were correlated to the Portland Canal Dyke Swarm that metres. extends from Summit Lake to the headwaters of Bitter Creek. High level stocks forming feldspar porphyry have intruded the above sequence, and green-grey

felsic dykes, average width of 6.0 metres, cut all the above. A relatively abundant amount of quartz-sulphide mineralization is spatially related to the felsic dykes. This zone is called the Silver Crown Showing, located in the southern portion of the Strike 2 Claim. -33

Detailed mapping of the Silver Crown reveals quartz and minor carbonate breccia are emplaced along shear zones and fractures in the folded, layered Betty Creek Formation sediments. Sulphide minerals in the quartz veins include medium to coarse-grained pyrite, galena, and honey coloured sphalerite and fine-grained chalcopyrite and tetrahedrite. Gangue minerals include granular white to pinkish quartz, calcite, and barite. 1-10 cm. angular clasts of slightly graphitic argillaceous siltstone form up to 50% of the vein material, but averages 10%. Sulphides form up to 50% of the vein materials, but average 5%. The total strike length of exposed quartz veins on surface is approximately 700 metres. The average width of the veins are 1.0 metre.

The veins are concentrated along the axial plane of a north plunging anticline. The Betty creek sediments are locally folded along this north trend with a shallow plunge angle. The dyke swarm generally trends northwest cutting the strike of the sediments and overlying volcanics. The preponderance of dykes (Plate 1) in various attitudes in the axial plane area of the folded sediments is an indication that this zone had ground conditions necessary for a physically favourable structural trap. Further evidence for this is the abundance of quartzsulphide veins spatially related to the felsic dykes, which often grade into quartz-sulphide stringers, and 1-2 metre wide contact veins. This is also evident in the Salmon River volcanic breccia where the felsic dykes follow a linear trend (northwest), and are mineralized near their contacts. Veins that cut the argillaceous siltstone strike north (parallel to the strike of the sediments), and generally veins that are associated with the felsic dykes trend northwest (parallel to the strike of the dykes). This observation is verified by the geophysical compilation. The weak magnetic highs correspond to dykes and the EM conductor axes trend north and northwest corresponding to guartz-sulphide veins.

Crystalline quartz lined cavities in the veins suggesting a late stage fracture filling event, probably related to the felsic dykes, which caused remobilization of the quartz-sulphide veins. The fold axis of the north plunging anticline represents a favourable zone for mineral deposits at depth. A comparison of trace element geochemistry in various sulphides from different mineral deposits showed that the Silver Crown had a high Cu-Pb-Zn polymetallic association which compares favourably with the Premier Silbak. The Ag/Au ratios at the Premier Silbak varied from 112:1 near surface to 6:1 at depth (Grove, 1971). It is possible that conditions similar to the Premier Silbak exist at depth on the Silver Crown, and late stage fracture filling has remobilized silver rich minerals to the present surface exposure.

8.2 TRENCHING (Map 2)

The 1989 trenching program blasted an area of 20 square metres to a depth of 1 metre. This resulted in 69 rock chip samples. 33 rock chip samples were taken from existing trenches. (Figures 3 and 4).

Assays (Appendix A) show very high lead values in most of the quartz veins Medium to coarse grained galena is the most abundant sulphide in the sampled. quartz veins that are directly adjacent to the felsic dykes, which form approximately 80% of the exposed veins. These veins have medium grained sphalerite and average silver values are in the 30 to 60 gm/tonne range and average gold values are in the 1 to 2 gm/tonne range. The precious metal values are generally higher with an increase in base metals, however, in veins sampled in the argillaceous siltstone-greywacke host, the mineralogy is Approximately 20% of the samples came from the significantly different. sedimentary host rock where pyrite is the most abundant sulphide. In areas of galena-sphalerite enrichment within these veins, values up to 22.42 gm/tonne Au and 447.3 gm/tonne Ag were recorded accompanied by relatively low Pb-Zn. This suggests the sediment hosted quartz veins may be a different age, probably older than the felsic dyke related quartz veins.

8.3 GEOCHEMISTRY

At elevations above 1300 metres there is virtually no soil, however talus fines from overburden is abundant. Thus, the geochemical analysis certificates (Appendix C) can be considered C horizon or weathered parent material. (Figures 5-8).

Values for Pb-Zn-Ag are relatively high, especially in areas that corresponded to quartz-sulphide veins. Moderate to high Cu-Au values generally corresponded to the same zones. As-Sb-Bi values are low to moderate. This suggests that there is a polymetallic Cu-Pb-Zn-Ag-Au overall assemblage with a dominant Pb-Zn-Ag chemistry.

Sediment sampled from 10 streams at the west edge of the Strike 1 and 2 claims showed a significant increase in precious metals and Pb values in the area of the Silver Crown Showing. Cu and Zn values were moderate across the entire area. As, Sb and Bi values were low.

8.4 **GEOPHYSICS**

A detailed geophysical interpretation of the Silver Crown Showing is summarized in Appendix A and Maps 5-10. The geophysical survey located 6 VLF-EM conductors that roughly matched surface quartz-sulphide veins. Five magnetic anomalies were weak and roughly corresponded to dykes.

Several VLF-EM conductors were covered by overburden. This includes conductor C2 which is considered to be primary exploration target based on the strength of the VLF-EM anomaly.

9. CONCLUSION

The authors believe that the Strike 1, 2, and 3 Claim Group has potential for hosting an economic Cu-Pb-Zn-Ag-Au deposit for the following reasons:

- 1. Rock sampling from trenches returned potential economic precious metal and base metal values over significant widths and strike length.
- 2. Geological mapping has shown several cross-cutting episodes of mineralization indicating potential for a large system of mineralization at depth.
- 3. Soil sampling and VLF-EM geophysics indicate that there are additional target areas that are covered by overburden.
- 4. Mining infrastructure is relatively close and accessible to the showings.

For these reasons further exploration work is warranted.

10. RECOMMENDATIONS

PHASE II

- a) Diamond drilling in a fence pattern is recommended to test depth extensions of surface trenching. Total diamond drilling to amount to 1525 metres (5,000 feet).
- b) Trenching of geophysical and geochemical anomalies. At least two of the geophysical conductor axes were covered by overburden (including the one which gave the most favourable response). Several Au soil anomalies, should be followed up since there was no trenching done in the adjacent area.
- c) UTEM or Pulse EM horizontal loop geophysics over a larger area than the present grid (increasing present area of coverage 100%).
- d) Detailed geological mapping in the area of the drill program and regional mapping and prospecting of the unmapped areas of the claim.

REFERENCES

- Grove, E.W. (1971), Geology and Mineral Deposits of the Stewart Area, BCDM Bulletin No. 58.
- Grove E.W. (1986), Geology and Mineral Deposits of the Unuk River-Salmon-River-Anyox Area, Minister of Energy Mines and Petroleum Resources Bulletin No. 63.
- Cremonese, D.M. (1984), Assessment Report on the Elk and Moose Claims, # 11800, for Teuton Res. Corp.
- Lynberg, E. (1983), Geological Report on the Lois Claim, #12394, for Nor-Con Expl. Ltd.

STATEMENT OF QUALIFICATIONS

I, Andris, Kikauka, of Box 370, Brackendale B.C., VON 1H0, do hereby declare that:

- I graduated from Brock University, Faculty of Geological Sciences, St. Catharines, Ontario, 1979, receiving Honours B.Sc., First Class.
- From 1976 79, have been performing geological field work for Uranium targets on the Canadian Shield.
- From 1979 to 1989, have been performing geological field work, for precious metal, base metal targets on the western cordillera in B.C. and the Yukon Territory.
- Maintain a professional affiliation with the G.A.C. and M.E.G.
- Personally participated in the field work of this report, reviewed and assessed the data.
- I am a principle of White Channel Resources Inc., and this assessment report is written to fulfill government regulations as specified by the current Mineral Act.

Sincerely:

ىلىغ بۇرىرى

Andria Kikanka

Andris Kikauka, B.Sc.(Hons.) Geologist

CERTIFICATE

I, FAYZ F. Yacoub, of 13031 - 64th Avenue, Surrey, British Columbia, V3W 1X8, do hereby declare:

- 1. That I am a graduate in geology and chemistry from Assuit University, Egypt (B.Sc 1967), and Mining Exploration Geology of the International Institute for Aerial Survey and Earth Sciences (I.T.C.), Holland (Diploma 1978).
- 2. I am a fellow in good standing with the Geological Association of Canada.
- 3. I have actively pursued my career as a geologist for the past sixteen years.
- 4. The information, opinions, and recommendations in this report are based on fieldwork carried out by muyself, and on published and unpublished literature. I was present on the subject property on September 27, 1989 to October 3, 1989.
- 5. I have no interest, direct or indirect, in the subject claims or the securities of White Channel Resources Inc.
- 6. I consent to the use of this report in a Prospectus of Statement of Materials Facts for the purpose of private or public financing.

ASHWORTH EXPLORATIONS LIMITED

+ Haloup

Fayz F. Yacoub, B.Sc., F.G.A.C.

Dated at Vancouver, November 1, 1989

، بالمرد بي المرد ال

APPENDIX A A1

1.0 INTRODUCTION

A geophysical program consisting of electromagnetic (VLF-EM) and magnetic surveys was carried over two showings on the Rich 1 - 4, Lode 1 - 4, and Strike 1 - 3 claims located near Stewart, B.C. in the Skeena Mining Division, B.C. The survey was carried out in October, 1989.

2.0 OBJECTIVES

- to establish a correlation between magnetic minerals and mineralized trends,
- to test the effectiveness of VLF-EM in following possible mineralized trends and to establish new unrecognized conductive trends,
- to establish geophysical areas of interest for future exploration.

3.0 SURVEY SPECIFICATIONS

Survey Parameters

- survey line separation variable 50 m. to 100 m.
- survey station spacing 12.5 m.
- VLF-EM and magnetic survey total 7.6 km.

Equipment Parameters

- VLF-EM and Magnetic Surveys
- Scintrex Omni Plus combined VLF-EM and magnetometer
- Dip Angle (in-phase) and Quadrature (out-of-phase) measured in percent at each station
- VLF-EM Field Strength measured at each station
- transmitting stations used NPM (23.4 kHz) Lualualei, Hi. - NLK (24.8 kHz) - Seattle, Wa.
- earth's total magnetic field measured in gammas (nT)
- magnetic variations controlled by automatic magnetic base station recording every 30 seconds
- instrument accuracy +/~ 0.1 nT.

Equipment Specifications - see Appendix I

4.0 DATA

Calculations

Total Field Magnetic Survey Total field magnetic readings were individually corrected for variations in the earth's magnetic field using magnetic base station values. The formula used for magnetic corrections was:

CTFR = TFR + (DBL - BSR)

where: CTFR = Corrected Total Field Reading TFR = Total Field Reading DBL = Datum Base Level = 58400 gammas BSR = Base Station Reading

Presentation

Silver Crown Survey Area

- Lualualei VLF-EM in-phase, out-of-phase and field strength readings are presented in profile form on Figure # G-1 at a scale of 1:2500
- Lualualei in-phase readings were Fraser filtered and are presented in contour form on Figure # G-2 at a scale of 1:2500
- Magnetic data were profiled and are presented on Figure # G-3 at a scale of 1:2500
- Magnetic data were contoured and are presented on Figure # G-4 at a scale of 1:2500
- The geophysical interpretation is presented on Figure # G-5 at a scale of 1:2500

5.0 INTERPRETATION

5.1 Silver Crown Showing

Discussion of Results

Total field magnetic data over the Silver Crown showing were noise free and no cultural sources were observed. Magnetic readings range from 57250 nT. to 57850 nT. within a stable background of approximately 57470 nT. The magnetic datum value for the total field magnetic profile map, Figure # G-3, was determined by statistical analysis to be 57470 nT. This datum value, which graphically shows if a magnetic reading is above or below the mean value for the grid, was also the threshold between dashed and solid contours on the total field magnetic contour map, Figure # G-4.

The magnetic environment was quiet over much of the Silver Crown showing. To obtain as much detail as possible the magnetic data have been processed at a 10 nT. contour interval. A number of magnetic lineaments were observed in present survey results. These lineaments were labeled "L1" to "L5" on Figure # G-4.

Magnetic lineament "L1" is the only magnetic low feature observed over the Silver Crown showing. "L1" trends northwest and exhibits weak lows3 approximately 50 nT. to 300 nT. below background. "L1" displays variable wavelengths ranging from 25 m. to 75 m.

VLF-EM response over the Silver Crown showing was noise free and no cultural sources were observed. Although the direction to the transmitter was not optimum for conductor coupling, NPM, Lualualei VLF-EM data were chosen as the primary interpretation frequency because they constituted the only complete data set over the survey area.

Within the survey area, VLF-EM data display a response to major topographic features. The topographic signature characteristically exhibits long wavelength, large amplitude in-phase and quadrature responses as well as a broad field strength anomaly.

Three VLF-EM conductors were interpreted on the Silver Crown showing and were labeled "C1" to "C5" on Figures "G-1" and "G-2". Many conductors seen here tend to display short strike lengths, also numerous single line anomalies were observed in the area. Conductor "C1" trends northwest with a strike length of 100 m. and displays moderate response.

Conductor "C2" is a relatively long feature trending north and exhibiting short wavelengths with moderate in-phase and field strength response. Quadrature response for "C2" is unusually strong.

Conductor "C3" trends north-northwest displaying moderate response and relatively long wavelengths.

Conductor "C4" is a short feature trending in the same direction as "C2" and exhibiting weak response.

"C5" is a relatively long conductor also trending in the same direction as "C2" and exhibiting variable, weak to strong response.

Conclusions

The quiet magnetic environment over the Silver Crown showing indicates that there is little variation of magnetic susceptibilities in the survey area. The lack of variation in magnetic susceptibilities suggests that the Silver Crown showing is underlain by a homogeneous rock type or by rock types with similar magnetic suscepibilities. The quiet magnetic background allowed the delineation of weak magnetic features "L1" to "L5". From line 300N to line 450N on the western edge of the survey area, a high feature is observed but due to lack of continuation over this feature it is impossible to define the high as a lineament or a different magnetic unit.

....4

Magnetic lineament "L1" is interpreted to represent a fault and the lower magnetic field strength attributed to oxidization within the fault zone.

Magnetic high features observed over the survey area are believed to represent narrow, weakly magnetic dykes. Supporting this interpretation, the monopolar response displayed by all high features suggests that the magnetic sources have good depth extent and are not near surface occurrences of magnetite. "L2" and "L3" appear to be part of a single feature that was intersected and offset by "L1" which, would support the interpretation of "L1" as a fault.

VLF-EM results over the Silver Crown survey area show several conductors however there appears to be no correlation between magnetic features and VLF-EM conductivity. Conductor "C1" exhibits VLF-EM response indicative of a conductive structural feature, however the short strike length of this feature suggests that if "C1" is a structural feature, then it must be terminated north of line 700N by a cross-cutting structure. A change in magnetic profile character between line 700N and 800N suggests that a cross-cutting fault may be present, but a larger survey on lines perpendicular to the present orientation would be required to define this inferred feature.

Conductor "C2" is the strongest conductor discovered in the survey area. The strong quadrature response suggests that "C2" represents a highly conductive body, possibly massive sulphides or a very conductive structural feature. A stronger in-phase response is expected with such a strong quadrature response, however the conductive body may be so narrow that a smaller station spacing would be required to measure the in-phase response. "C2" stops abruptly at line 300N and may be terminated by lineament "L1".

"C3" is a moderate conductor exhibiting VLF-EM response similar to "C1" and also trending approximately in the same direction as "C1". "C3" is believed to be related to "C1" and is also thought to represent a structural feature such as a fault.

Conductor "C4" trends in the same direction as "C2" but exhibits weaker VLF-EM response and longer wavelengths than "C2". "C4" is interpreted to represent a minor structural feature such as a fracture or a narrow shear zone.

Conductor "C5" is thought to be related to "C2" and "C4" since these conductors all trend in the same direction. "C5" is interpreted to be a structural feature with the stronger anomalies within "C5" representing fault dilation, possibly containing sulphide mineralization.

6.0 RECOMMENDATIONS

The VLF-EM and magnetic interpretation has delineated magnetic and conductive trends on the Silver Crown and Moonlight Glacier survey areas that warrant follow-up exploration. Surface geological investigations are recommended to determine the importance of the following targets discussed in order of priority.

Conductor "C2" on the Silver Crown survey area is considered to be a primary exploration target based on the strength of the VLF-EM anomalies. Detailed investigation is recommended for the following targets along "C2":

- 120W, Line 3505 - 130W, Line 4005 - 90W, Line 3005

A larger VLF-EM and magnetic survey is recommended to determine the extent of the conductors discussed above and to delineate magnetic features dicovered in the present survey.

A horizontal loop electromagnetic survey is recommended to more accurately define the location of strong VLF-EM conductors if fault controlled mineralization is suspected. If disseminated mineralization is believed to be present, an induced polarization/resistivity survey is recommended to determine chargeable and resistive zones. A deep electromagnetic survey, such as UTEM, is recommended to determine the depth extent of conductive bodies discovered in the present survey.

CERTIFICATE

I, Thomas Raymond Matich, Geophysicist of Surrey, British Columbia, Canada, hereby certify that:

- 1. I received a B.Sc. degree in Geophysics from the University of British Columbia in 1982.
- 2. I currently reside at 13914 116 Ave, in the Municpality of Surrey, in the Province of British Columbia.
- 3. I have been practising my profession since graduation.
- 4. I hold no direct or indirect interest in, nor expect to receive any benefits from, the mineral property or properties described in this report.
- 5. This report may be used for the development of the property, provided that no portion will be used out of context in such a manner as to convey meanings different from that set out in the whole.
- 6. Consent is hereby given to the company for which this report was prepared to reproduce the report or any part of it for the purposes of development of the property, or facts relating to the raising of funds by way of a prospectus and/or statement of material facts.

Date: Oct 19, 1989

Surrey, British Columbia

Signed:

Thomas Raymond Matich B.Sc.

A6

Appendix B B7 WHITE CHANNEL RESOURCES INC.

Sept. 12, 1989 Page <u>1</u> of <u>6</u>

۰.

Silver Crown (Strike Claims)

Sample Record

Sample Number	Showing Name	Survey Location	Width (Metres)	Description	Au g/t	Ag g/t	Cu %	РЬ %	Zn %
47001	Baseline Vein	5+07S 1+27W	.75 m	30% qtz 2% ga. sp. vein swell in arg. slt.	.51	13.7	.01	.97	2.45
47002	11 .	BL 4+60S	1.20 m	40% qtz vuggy 2% ga tr. cp py	1.00	.1	.02	.26	.02
47003	11	BL 4+46S	1.15 m	40% qtz vuggy 2% ga tr. cp py	.01	25.4	.06	3.68	.02
47004	11	4+62S 0+65E	.65 m	25% qtz 15% py felsic dyke contact	.49	22.3	.30	.09	.03
47005	11	4+40S 0+62E	.65 m	30% qtz 5% sp. ga. cp felsic dyke contact	.03	10.1	.03	.16	21.60
47006	11	β+60S 0+30E	1.20 m	20% qtz 15% py 3% cp sp felsic dyke contact	1.11	33.2	.13	1.87	.57
47007	11	ų n	1.80 m	30% qtz 3% ankerite tr. sp hanging wall bx	.63	12.1	.08	2.89	.57
47008	11	3+52S 0+38E	1.10 m	25% qtz 10% sp 1% ga tr. cp 5% py	1.04	29.5	.12	7.20	4.24
47009	11	11 11	1.10 m	11 11 11 11 11 11 11 11	3.55	63.5 >	.05	11.40	5.22
47010	11	3+47S 0+43E	1.55 m	25% qtz 10% ga 2% sp tr. cp	1.72	57.8	.01	16.50	.09
47011	11	3+42S 0+46E	.82 m	25% qtz 5% py 1% sp ga	.46	23.7	.02	2.45	.42
47012	11	3+40S 0+50E	1.20 m	11 11 11 11 11 11	.03	2.5	.01	.11	.04
47013	11	3+25S 0+55E	.40 m	25% qtz 10% ga 3% py tr. cp	.28	123.5	.01	12.90	.18
47014	11	3+06S 0+68E	.80 m	25% py 20% qtz 4% sp ga (stringer zone hanging wall)	.03	13.0	.01	3.67	.16
47015	11	3+10S 0+50E	.30 m	" " " tr: sp ga	.03	2.0	.03	.17	.09
47016	11	2+70S 0+65E	.50 m	30% qtz 3% ga 1% sp pod stringers	.03	58.7	.02	12.20	14.60
47017		2+74S 0+62E	.30 m		.95	41.3	.09	10.40	2.30
47015 47016 47017		3+10S 0+50E 2+70S 0+65E 2+74S 0+62E	.30 m .50 m .30 m	" " " tr: sp ga 30% qtz 3% ga 1% sp pod stringers " " " " " " " "	.03 .03 .95	2.0 58.7 41.3	.03 .02 .09		.17

Sept. 12, 1989 Page <u>2</u> of <u>6</u>

••

Silver Crown (Strike Claims)

B8

WHITE CHANNEL RESOURCES INC.

••• •

Sample Record

Sample Number	Showing Name	Survey Location	Width (Metres)	Description	Au g/t	Ag g/t	Cu %	Pb %	Zn %
47018	Knob Vn	3+75S 2+12E	1.75 m	25% qtz 3% ga 2% py tr cp stringers	.37	1.2	.01	.24	.12
47019	*1	3+71S 2+13E	1.60 m		.03	2.4	.01	.60	1.95
47020	11	3+63S 2+15E	1.00 m	11 11 11 11 11 11 11 11	.05	7.9	.02	.39	4.08
47021	11	3+63S 2+15E	1.20 m	25% qtz 3-5% ga 2% py tr. cp "Knob Vein"	.16	27.3	.05	4.95	2.52
47022	11	3+58S 2+17E	1.00 m	11 11 11 11 11 11 11 11 11	.15	27.9	.01	4.83	1.73
47023	11	3+58S 2+17E	1.00 m		.38	120.5	.01	11.20	.49
47024	11	3+55S 2+20E	1.70 m		.43	10.8	.01	2.58	.01
47025	11	3+53S 2+22E	1.60 m	11 11 11 11 11 11 11 11 11	.34	4.6	.01	.50	.20
47026	11	3+38S 2+20E	1.70 m		.15	25.4	.01	.59	.13
47027	11	3+86S 1+70E	1.80 m.	11 11 11 11 11 11 11 11 11	.37	26.8	.01	4.06	3.45
47028	Baseline	Vn 7+25S 1+12W	.50 m	40% qtz. 3% py. sp cp ga	.30	42.3	.26	3.60	.01
47029	11	7+58S 1+24W	1.30 m		.13	28.9	.29	1.68	.02
47030	11	7+74S 1+30W	1.60 m	11 11 11 11 11 11	.03	8.7	.15	.16	.01
47031	71	7+90S 0+51W	.35 m	11 11 11 11 11 11	.03	23.7	.16	1.98	.67
47032	,,	8+00S 0+45W	.45 m	11 11 11 11 11	.60	389.5	.01	4.16	.01
47033	11	9+10S 0+50W	.60 m	11 11 11 11 11 11	.24	53.5	.15	9.10	.01
47059	11	5,210,0,114	80 -	207 0 t = 87 p = 17 c = c = i = c = c	22	17.5	. 04	.04	.01
47050		5+213 0+11W	.00 m	50% QC2 0% py 1% 5p. ga 111 arg			• • • •		

Silver Crown (Strike Claims)

WHITE CHANNEL RESOURCES INC.

Sample Record

Sample Number	Showing Name	Survey Location	Width (Metres)	Description	Au g/t	Ag g/t	Cu %	Pb %	Zn %
47059	Baselin	e 5+20S 0+13W	.75 m	30% qtz 8% py 1% sp ga in arg	.27	9.6	.04	.24	1.53
47060	ff .	5+20S 0+11W	.75 m	11 11 11 11 11 11 11 11	.12	3.6	.01	.07	.02
61	77	5+13S 0+03W	.75 m	30% qtz 3% py 1% sp ga in arg	.07	1.7	.01	.04	.01
62	11	5+12S 0+05W	.70 m	11 11 11 11 11 11 11 11	3.02	29.8	.01	6.63	.36
63	11	4+80S 0+01W	1.10 m	35%qtz 3% ga 3% py 1% sp tr.cp.	.83	17.2	.01	3.28	.08
64	11	4+78S 0+00W	.70 m	11 11 11 11 11	.20	39.6	.08	3.57	.56
65	"	4+73S 0+00W	.90 m	11 11 11 11 11	.50	94.3	.06	16.70	1.10
66	11	4+72S 0+01W	1.00 m	25% qtz 3% ga 1% sp 1% cp in f. dyke	.14	31.5	.13	4.20	.01
67	11	4+72S 0+02W	1.00 m	11 II II II	.28	97.6	.36	4.85	.02
68	11		.80 m	n n n n n	.16	15.1	.22	1.13	.77
69	11	4+58S 0+00W	.90 m	11 11 11 11	.13	52.8	.18	10,40	.09
70	11	4+49S 0+00W	.70 m	19 19 19 11 11	.31	64.3	.25	7.93	.06
71	11	4+08S 0+00W	.30 m	35% qtz 10% ga 3% sp in felsic dyke	.63	262.8	.04	13.30	.01
72	\$1	3+55S 0+36E	.90 m	30% qtz 8% ga 3% sp tr. cp in f. dyke	.60	68.6	.02	16.50	.02
73	11	3+55S 0+35E	1.00 m	11 11 11 11 11	1.07	43.8	.01	11.40	.18
74	11	3+50S 0+38E	1.00 m	12 13 13 13 13	1.84	79.5	.05	14.60	.26
75	11	3+50S 0+37E	1.10 m	17 11 11 11 11 11 11	2.78	80.8	.03	4.13	1.13
76	"	3+48S 0+38E	1.10 m	n n n u u	1.42	213.5	.01	12.70	.03
77	**	3+45S 0+41E	1.10	11 11 11 11 11	.40	27.3	.01	4.68	.04

B9

Sept. 12, 1989 Page <u>4</u> of <u>6</u>

WHITE CHANNEL RESOURCES INC.

B 10

Sample Record

Sample	Showing	Survey	Width	Description	Au	Ag	Cu	Pb	Zn
Number	Name	Location	(Metres)		g/t	g/t	8	~	%
47078	Baseline	3+40S 0+44E	1.20 m	30% qtz 8% ga 3% sp tr. cp inf. dyke	.19	4.7	.01	.26	.03
47079	"	2+82S 0+60E	.50 m	25% qtz 6% ga 5% sp in arg slt.	.36	57.8	.02	9.61	9.23
47080	Knob vei	h 1+39E 4+03S	.30 m	30% qtz 5% ga 1% sp in felsic dyke	1.23	28.5	.14	4.59	1.25
81	11	4+04S 1+39E	.40 m	11 11 13 11	2.65	103.8	.01	7.26	12.40
82	••	4+07S 1+40E	.60 m	11 11 11 13	.59	21.2	.06	4.29	2.56
83	"	4+14S 1+42E	.40 m	11 11 11 11	.40	19.5	.03	3.82	.62
84	**	4+17S 1+43E	.40 m	" " " " in arg. slt.	.31	15.2	,08	2.16	9.34
85	"	4+275 1+43E	1.00 m	11 17 11 17 17	.50	12.8	.06	1.09	.06
86		4+24S 1+42E	.50 m	11 11 11 11	.46	9.9	.08	.82	.19
87	,,	3+58S 1+75E	1.35 m	25% qtz 2% ga tr. sp in arg slt.	.12	3.0	.01	.20	.17
88		3+60S 1+75E	.80 m	11 11 11 11	.08	1.8	.01	.11	.02
89	11	3+60S 1+68E	.40 m	11 11 11 11	.35	324.3	.01	13.70	.03
90	11	3+48S 1+20E	.50 m	11 11 11 11	.22	4.4	.01	.96	3.59
91	n	3+51S 1+20E	.50 m	11 11 11 11	.05	0.6	.01	.15	.13
47101	Baseline	Vn 7+26S 1+25V	.90 m	30% qtz 3% ga tr. sp in felsic dyke	.10	33.3	.21	.08	.02
102		" 7+27S 1+26W	.90 m	11 11 11 11 11	.13	18.4	.12	.05	.01
103	,,	" 7+28S 1+25W	.85 m	11 11 11 11 11	.20	22.4	.18	.04	.02

(Strike Claims)

Sept. 12, 1989 Page <u>5</u> of <u>6</u>

•

B // WHITE CHANNEL RESOURCES INC.

••

Sample Record

Sample Number	Showing Name	Survey Location	Width (Metres)	Description	Au g/t	Ag g/t	Си %	Pb %	Zn %
47104	Baseline	7+43S 1+30W	.75 m	30% qtz 3% ga tr. sp in felsic dyke	.07	33.0	.33	1.64	.02
105	11 .	7+45S 1+30W	.85 m	11 11 11 11 11	.11	13.6	.15	.32	.03
106	11	7+46S 1+30W	.75 m	11 II II II II	.70	33.8	.15	3.18	.11
47092	11	0+25S 1+80E	1.00 m	30% qtz 3% ga 1% sp in arg. slt.	4.04	78.5	1.12	12.20	9.30
93	••	4+06S 0+05W	.65 m	11 11 11 11	.61	61.8	.29	6.96	.02
94		5+92S 0+62W	.60 m	11 11 11 11	.28	86.3	.07	11.80	1.35
95	*1	5+95S 0+63W	.70 m		1.50	203.6	.04	1.27	.08
96		6+00S 0+63W	.40 m	11 11 11 11	22.42	447.3	.01	1.50	.96
97		6+01S 0+63W	.40 m		.30	12.0	.01	2.03	5.36
98	,,	6+07S 0+64W	.35 m	11 11 11 11	.83	223.8	.04	13.50	10.06
99	,,	6+08S 0+64W	.45 m	11 11 11 11	1.10	84.4	.03	8.90	10.25
100	H	6+12S 0+64W	1.20 m	n n n n	.63	58.3	.62	6.28	.11
47107	Baseline	Vn 7+47S 1+30W	.80 m	30% qtz 3% ga tr. sp in fel. dyke	.13	16.9	.16	.61	.02
108	11	7+75S 0+48W	.60 m		.24	17.7	.02	.33	.09
109	n	7+76S 0+48W	.50 m	11 11 11 11 11 11	.49	6.7	.07	.37	.44
110		7+74S 0+27W	.70 m	11 11 11 11 11 11	.16	127.7	1.59	1.71	.55

B12 WHITE CHANNEL RESOURCES INC.

Sept. 12, 1989 Page <u>6</u> of <u>6</u>

•

Sample Record

• •

Sample Number	Showing Name	Survey Location	Width (Metres)		Desc	ription		Au g/t	Ag g/t	Cu %	РЪ %	Zn %
47111	Baseline	7+75S 0+27W	.60 m	30% qtz	3% ga t	r. sp in	n fel dyke	 .47	33.8	.09	4.93	.26
112		7+76S 0+27W	.60 m	11	11	11	**	.80	75.6	.50	28.5	1.43
113	"	7+77S 0+27W	.65 m	11	**	11	**	.28	93.3	.59	3.86	.53
114	11	7+78S 0+27W	.60 m	11	11	+1	**	.16	72.5	.18	11.20	.68
115		7+92S 0+42W	.60 m	11	n	**	**	.35	28.7	.04	1.03	.10
116		7+93S 0+42W	.65 m	17	**	**	**	1.14	83.5	.11	3.43	.08
117	11	7+94S 0+42W	.55 m	,,	11	**	11	.89	37.9	.04	.65	.12
118	11	7+96S 0+34W	.50 m	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	**	11	11	3.54	156.0	.03	15.90	.66
119	**	7+97S 0+34W	.60 m	11		11	11	.32	19.8	.02	.41	.03
120	11	7+93S 0+39W	.55 m	11	*1	**	11	5.35	174.8	.02	4.53	.16
121	17	7+94S 0+39W	.70 m	11	**	11	19	.90	57.9	.04	1.11	.08
122	11	7+95S 0+39W	.70 m	11	**	97	11	.81	98.3	.25	1.04	.03
123	11	7+96S 0+39W	.60 m	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11	11	11	1.14	58.7	.04	3.79	.06
124	11	7+97S 0+39W	.60 m	11	11	11	11	.63	54.5	.05	2.09	.04
125	11	7+98S 0+39W	,80 m		11	11	11	.61	65.3	.02	6.77	.06
126		7+99S 0+39W	.60 m		ŤŤ	**	11	.34	293.0	.03	24.40	.36
127	11	8+005 0+39W	.55 m		11	11	tt	.36	98.6	.02	10.80	.02

ACHE ANALYTICAL LABORATORIES LTD.

c13

)

1

:

1

APPENDIX C GEOCHEMICAL ANALYSIS CERTIFICATE

ICF - .SOO GRAK SAMPLE IS DIGESTED WITH JNL J-1-2 ECL-HWOJ-H20 AT 95 DEG. C TOE ONE HOUR AND IS DILOTED TO 10 KL WITH WATER. TEIS LEACE IS PARTIAL FOR NW FE SE CA P LA CE NG BA TI & W AND LIMITED FOR WA E AND AL. AU DETECTION LIMIT ET ICF IS J PPM. - SAMPLE TTPE: P1-P7 SOIL P8 SILT AU' AMALTSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

White Channel Resources Inc. PROJECT SILVER CROWN File # 89-3779 Page 1

5 λ Η?	121	NO PPN	CU PPK	PD PPK	20 PPM	λς PPK	N1 PPH	CC PPK	ND PPK	Te 3	AS PPK	U PPM	XU PPH	76 PPN	ST PPN	CC PPK	SD PPM	BÍ PPM	V PPH	5 C 2	7 1	La PPM	CT PPN	Kg 1	Ba PPK	71 - 1	E PPM	۲ ۲	X a X	1	¥ PPX	λ0' 775
10+0 10+0 10+0 10+0 10+0	GS 2+50N GS 2+25W GS 2+00V GS 1+75W GS 1+30V	: : : : : : : : : : : : : : : : : : : :	58 54 54 51 74	127 120 132 122 57	354 267 270 277 195	1.E 1.9 2.0 1.6 .9	36 35 34 25 35	17 16 16 16 24	947 873 807 922 14 DE	4.44 4.26 4.39 4.16 5.23	27 24 25 22 28	5 5 5 5 3	ND ND ND ND	3 3 2 1	17 8 10 14 23	3 2 1 2 1	2 2 2 2	2 2 2 2 2 2	32 30 31 30 51	.22 .11 .13 .20 .25	.078 .072 .075 .081 .103	19 17 15 19 19	15 14 15 15 14	.75 .77 .7E .75 .97	150 100 95 92 179	.02 .01 .62 .02 .07	11 6 3 12	1.86 1.70 1.71 1.54 2.06	.01 .01 .01 .01 .01	.13 .11 .11 .0E .10	1	13 13 5 5
10+0 10+0 10+0 10+0 10+0	05 1+25W 05 1+00W 05 0+75W 05 0+50W 05 0-25W	3334	55 55 62	122 123 95 115 121	259 255 231 471 260	1.5 1.7 2.1 3.6 2.9	27 33 34 64 36	15 17 12 27 25	717 837 471 1411 1047	4.28 4.45 4.94 5.41 4.60	21 18 26 26	5 5 5	ND ND ND ND	3 3 3 3 3	10 11 5 11	1 1 2 2	2 2 3 3 2	2 2 2 2 2 2	30 31 29 28 25	.13 .17 .05 .15 .16	. 084 . 096 . 067 . 076 . 075	19 15 16 15 12	12 14 16 13 12	.71 .76 .81 .65 .73	81 85 52 55 57	.02 .02 .01 .01 .03	: 1: 	1.61 1.74 1.52 1.47 1.42	.01 .01 .01 .01 .01	.11 .11 .08 .05 .06		
10+0 10+0 10+0 10+0 10+0	05 0-231 05 0-308 05 0-751 05 1-908 05 1-231	· • • • • •	55 54 55 55 55	204 146 133 175 176	441 230 384 191 422		35 27 22 17 30	17 15 13 15 14	1076 1090 1155 1140 1531	4.35 4.26 4.35 4.42 4.44	21 21 25 26 30	5	ND ND ND ND ND	2 3 4 3 2	17 14 20 17 25	1 3 1 5	2 2 2 2 2	2 2 2 2 2	2E 29 33 22 31	.26 .26 .36 .31 .31	.084 .099 .099 .104 .055	16 15 16 20 16	12 9 10 é E	.75 .79 .83 .75 .75	164 129 171 129 100	.02 .03 .03 .03 .03	11 16 11 11	1.55 1.57 1.73 1.58 1.38	.01 .01 .01 .01 .01 .01	.11 .10 .11 .10 .10	•	14
1:-5: 16+0: 10+0: 10+0: 10+0:	15 1+50E 05 1+75E 05 1+25E 05 1+23E 05 2+50E		54 55 41 36 41	137 114 103 126 78	450 430 256 507 252	4.1 1.1 3.0 1.3	35 34 21 25	14 11 12 13	1093 1095 1026 1025 1002	5.08 4.15 1.91 4.30 4.10	10 20 20 27 15	5 5 5 5	ND ND ND ND	2 2 3	25 20 13 15 14	5 3 5 2	2 2 3	2	30 31 29 39 39	.38 .34 .15 .12 .31	. 104 . 036 . 087 . 084 . 090	15 14 14 15	é 5 6 7	. 10 . EC . 76 . ES . 34	75 51 71 81 81		•••••••••••••••••••••••••••••••••••••••	1.24 1.42 1.36 1.45 1.52				
11+00 11+00 11+00 11+00 11+00	95 2+50V 15 2+25¥ 95 2+00V 95 2+75¥ 15 2+30V		61 55 42 55 71	590 237 14e 174 224	534 341 216 337 345	2.6 2.1 1.6 1.2 2.9	27 34 27 40 42	16 17 13 19 21	1058 1013 770 965 1110	4.30 4.51 2.96 4.50 4.67	27 27 13 27 24	5 5 5 5 5	ND ND ND RD ND	2 1 2 3 3	15 19 17 16 22	5 5 3 2 5	2 2 2 2 2	2 2 2 2	25 30 25 34 30	.25 .30 .27 .22 .27	.085 .078 .086 .081 .086	17 14 15 17 26	13 13 12 16 15	.71 .79 .70 .84 .75	130 72 80 120 154	. 61 . 03 . 64 . 53 . 62		1.55 1.37 1.33 1.75 1.73	.01 .01 .01 .01 .01	.11 .01 .00 .12 .11	•	
L)+C0 L)+O0 L)+OC L)+CC L)+CC	S 1+25W S 1+00W S 0-75W S 0+30W S 0+25W		E1 74 72 64 191	204 165 170 180 270	451 270 417 424 370	5.8 2.7 2.5 2.5 3.5	45 43 44 50 125	21 22 20 21 45	1287 1140 990 2062 1536	5.31 4.73 4.46 4.62 5.57	(9 31 23 23 31	5 5 5 5 5	KD ND ND ND ND	4 3 2 3 2	19 12 17 23 24	5 3 4 4	2 2 2 2 2	2 2 2 2 2	28 25 25 28 26	.31 .18 .25 .29 .24	. 093 . 088 . 085 . 090 . 084	18 16 17 20 20	12 13 12 13 13	.76 .76 .73 .73 .73	120 E2 69 121 77	.01 .02 .01 .01 .02	16 	1.35 1.35 1.35 1.59 1.62	.01 .01 .01 .01 .01	.05 .0E .0E .0E .07		11 37 20 14 51
11+00 11+00 11+00 11+00 11+00	5 0+255 5 0+501 5 0+755 5 1+005 5 1+255	: : ;	52 64 57 64 67	325 320 572 385 225	392 394 728 357 542	1.5 5.5 4.1 4.4 1.1	33 26 46 24 39	24 9 27 13 15	985 433 1286 628 1486	3.16 5.40 4.57 5.17 4.84	26 16 35 23 26	5 5 5 5 5	ND ND ND ND	1 2 3 2 3	12 3 11 6 17	2 1 8 1 6	2 3 2 2 2	2 2 2 2 2	27 24 24 27 25	.17 .03 .19 .06 .29	.091 .074 .082 .078 .095	16 14 14 14 18	12 14 10 13 9	.67 .68 .62 .63 .78	61 53 116 105 181	.01 		1.45 1.45 1.43 1.38 1.66	.02 .01 .01 .01 .01	.01 .05 .10 .05 .11	1	24 11 11 11 11 11
11+00 11+00	5 1+50E /AU-5	5	45 62	134 35	356 132	2.C €.€	22 67	14 20	1325 961	4.37 4.01	20 41	5 21	XD 7	2 38	20 45	4	2 15	2 22	32 58	.40 .45	. 106	19 32	56 56	. 80 . 88	173 173-	.63 1.57	: 25	1.72 1.97	.01 .05	.13 .14	1 13	; 15

~													·* .		•	•			·	• • •		,				÷.,					•	11000
			4	c 14		Whi	te	Char	nnel	Res	ourc	es	Inc.	. PR	OJEC	CT S	ILVE	RC	ROW	'N F	ILE	= 8	19-3	779			``					Page 2
SAMFLED	NC PPK	CV PPM	FE TPPE	20 PPH	ÂÇ PPK	N1 PPK	C C P P M	XC 79K	Fé t	λs РРК	U PPK	AU PPK	71 PPK	ST PPM	Cd PPM	SD Pfk	B1 PPK	: PPM	Ca k	, F 1	le PPR	CT PPK	X; }	11 199	:: }	1 284	;; {	Ne Z	i. 3	۱ ۶۰۶);;† 278	
13+005 1+75E 11+005 1+00E 11+005 2+35E 11+005 2+50E 12+005 2+50V	E E 7 4	54 81 44 50 63	128 217 106 156 239	30E 451 384 445 562	2.2 2.2 1.9 1.9 2.9	26 34 18 24 30	16 17 13 12 16	1175 1225 1260 1585 1240	4.13 4.39 4.35 4.25 4.65	15 20 16 24 27	5 5 5 5 5	NE Kd Nd Nd Kd	2 2 2 2 3	20 21 50 23 22	3 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2	34 25 37 37 27	. 46 . 36 1.00 . 45 . 33	.106 .107 .114 .112 .095	15 20 20 18 21	5 7 7 8 13	.75 .76 .81 .77 .71	128 117 234 125 151	. 63 . 63 . 63 . 65 . 62	£ 	1.5E 1.EC 1.7E 1.37 1.E2	.01 .01 .01 .01 .01	.05 .16 .14 .01 .14		13 17 12 21 32	
12+005 2+25¥ 11+005 2+00¥ 12+005 1+35¥ 12+005 1+56¥ 12+005 1+25¥	5 4 5 7 5	53 48 52 45 64	205 207 244 341 337	(33 375 (25 533 373	2.1 2.1 2.4 2.1 3.4	23 23 21 15 25	13 12 13 12 12 12	1046 1034 1157 1025 1171	4.23 3.95 4.30 3.9E 4.67	22 17 21 13 30	5 5 5 5	ND KC ND KD	2 2 3 3 2	18 17 17 19 12	6 5 6 5	2 2 2 2 2	2 2 4 2	27 26 27 27 27 26	.25 .27 .26 .15 .21	.086 .084 .075 .097 .090	15 15 15 21 14	13 11 13 11 13	.11 .68 .71 .64 .73	77 67 80 156 63	.02 .03 .03 .02 .02	4 2 5 6 2	1.34 1.25 1.37 1.55 1.36	.01 .03 .01 .01 .01	.06 .05 .06 .13 .06		540 85 57 32 32	
12+005 1+00V 12+005 0+75V 12+005 0+50V 12+005 0+25V 12+005 0+25V 12+005 0+25V	7 6 3 2 2	75 64 72 65 50	121E 261 27E 26E 17E	674 695 398 602 444	3.5 2.T 2.E 3.5 2.9	31 62 41 30 47	17 22 19 18 26	1497 1556 947 1104 1337	1.99 1.90 1.97 1.46 1.70	47 27 17 14 14	5 5 5 6 5	ND KD ND ND	2 2 2 2 3	14 22 17 33 11	5 10 2 6 4	2 2 6 2 2	2 2 2 2 2 2	34 33 32 26 28	.22 .29 .15 .38 .20	.081 .083 .080 .096 .092	17 17 18 21 20	16 15 16 10 12	.85 .81 .81 .68 .70	127 115 104 153 120	.03 .03 .03 .02 .01	2 7 10 1	1.72 3.63 1.63 1.57 1.75	.01 .01 .01 .01 .01	.11 .01 .10 .11 .05	1	26 35 26 51 24	
L2+005 0+50E L2+005 0+75E L2+005 1+00E L2+005 1+25E L2+005 1+50E	3 5 6 6	79 45 152 125 62	323 355 115 815 392	497 554 875 1455 667	3.2 3.6 4.8 4.6 3.9	43 22 37 49 23	26 13 23 25 13	1310 1112 1670 1820 1027	4.56 3.75 5.44 5.57 4.70	16 12 25 36 26	5 5 5 6	ND ND ND ND	3 4 2 2 3	11 12 16 27 20	3 6 11 16 8	5 2 2 4 2	2 2 2 2 2 2	26 23 22 24 24	.22 .30 .25 .30 .30	.100 .103 .101 .102 .095	20 13 17 15 12	10 5 9 11 5	.61 .33 .54 .60	83 11E 157 125 133	.01 .01 .01 .01 .01	21	1.60 1.13 1.35 1.55 1.22	.01 .01 .01 .01 .01	. 05 . 57 . 11 . 11 . 11		21 47 35 37 46	
12+035 2+008 12+005 2+258 12+005 2+368 13+005 2+509 13+005 2+259	7 2 2 2 2	93 41 50 67 59	213 75 104 286 347	761 351 372 241 256	2.6 1.9 2.3 2.1 3.1	44 21 26 21 24	2E 14 14 13 15	1435 1310 1356 798 927	4.24 4.37 4.57 4.52 5.79	15 22 22 17 25	5 3 7 5 5	ND ND ND ND NC	3 3 2 2	18 36 22 8 7	10 3 4 1 1	2 5 5 2 2	2 2 2 2 4	21 29 33 29 29	.34 .69 .47 .11 .10	.097 .108 .119 .074 .076	17 21 18 15 11	8 E 15 15	.73 1.10 .61 .77 .75	163 249 125 64 48	.02 .03 .03 .01 .02		1.67 2.11 1.51 1.51 1.44	.01 .02 .01 .01 .01	.04 .15 .01 .01 .01		10 11 15 15 15	
13+005 2+00W 13+005 1+75W 13+005 1+56W 13+005 1+25W 13+005 1+25W	7 6 5 6	105 ES 115 76 114	254 202 394 202 624	302 342 312 236 667	2.9 2.4 3.4 3.1 3.6	31 25 29 16 33	23 22 10 16	1034 2111 1415 E12 322	5.86 2.53 5.55 4.57 4.97	32 30 (3 31 39	5 5 5 5	ND ND ND ND ND	1 2 3 2 2	3 9 2 6 7 3	2 2 2 1 6	2 2 3 3	2 2 2 2 2 2	27 36 25 25 25 27	.13 .12 .10 .06 .21	.077 .093 .089 .076 .076	11 21 16 16 11	15 15 13 14 16	. 19 . 11 . 55 . 55 . 55	52 163 80 65 68	.01 .02 .01 .02 .02 .02	16 2 13 2	1.41 1.71 1.30 1.15 1.45	.01 .01 .01 .01 .01	. 21 . 05 . 02 . 08 . 08 . 10	•	44 41 53 34 34	
13+005 0+75W 13+005 0+50W 13+005 (+25W 13+005 0+25H 13+005 0+50E	14 25 5 7	67 203 E1 126 146	279 1444 353 766 703	627 1002 361 761 1354	2.5 6.9 2.6 5.6 1.2	35 31 17 43 118	15 18 15 36 52	1668 1571 1029 1682 2557	5.40 5.55 4.46 4.87 5.62	37 55 20 21 21	5556	ND D ND ND D ND	2 3 4 3 2	15 20 13 11 13	13 2 5 19	2 6 2 2 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28 24 22 21 24	.20 .29 .25 .21 .23	.084 .096 .096 .096 .086	15 14 15 15	12 5 5 5 12	. 73 . 61 . 60 . 54 . 57	111 105 101 74 125	. 02 . 01 . 52 . 31 . 01	1E 2 3 2	1.54 1.24 1.27 1.47 1.75	.01 .01 .01 .01 .01	101 101 101 101 101			
13-005 64751 571 0/20-5	1 18	() {)	136 38	111 111	2.8 5.7	11 5E	15 21	1036 942	4.02 3.95	15 39	5 21	KG 7	4 37	27 17	3 1 E	2 15	2 15	27 57	.11 .44	. 09E . 08E	26 31	5 56	. 55 . 88	220 175	.01 .07	: 33	1.62 1.62	.11. .01	.13 .13	: 11	30 45	

•

3

)

)

 $\hat{\mathbf{y}}$

1

ì

1

)

1

,

.

)

÷ ...'

. .

a state of the second

CIS White Channel Resources Inc. PROJECT SILVER CROWN FILE # 89-3779

1

ì

.

:

)

١

;

)

)

÷

÷

1

38.KF114	80 898	CU PPH	P) PPN	: 1: F?K	λς PPX	Nı PPM	CC PPK	ND PPK	₹£ ₹	AS PPK	U Pfk	AU PPN	7b PFK	ST PPN	Cđ PPM	SD PPM	E: PPK	7 714	24 1	F ł	Le PPN	C: PfM	Kg V	EE PPK	₹1 ₹	E PPR	14 1	N S S	L (¥ Pr	101 273
13-005 1+005 13+005 1-505 13-005 1+355 13-005 2+008 13+005 2-355	2 5 10 25 5	58 117 173 258 97	174 502 583 1725 209	474 866 757 1524 712	2.2 3.0 6.4 10.6 2.3	35 42 41 83 39	20 25 37 86 25	1376 3251 2118 4935 1734	3.93 4.43 6.11 7.62 4.45	14 13 26 35 23	5 5 5 5 5	ND ND ND ND ND	3 3 2 3	15 11 10 10	E 14 5 16 20	2 3 6 2	3222	23 24 25 25	.23 .28 .16 .11 .33	.100 .124 .125 .124 .125	24 18 15 11 20	5 7 5 10 12	.65 .5E .49 .46 .75	124 80 81 81 166	.01 .01 .01 .01 .01 .03	16 5	1.42 1.4E 1.82 4.64 1.67	.01 .01 .07 .11 .11	.01 .01 .01 .01		11 11 12 12 13 13
13+005 2+508 13+505 2+508 13+505 1+238 13+505 1+238 13+505 1+738	7 E 5 5	65 67 92 180 65	134 146 206 220 231	344 302 270 225 246	1.5 1.6 1.7 2.1 3.0	20 35 32 26 24	11 17 19 15 12	982 1409 1347 1032 672	4.21 4.83 4.71 4.98 4.90	27 23 25 25 25 23	5 5 5 5	ND ND ND ND ND	3 1 1 1 2	18 10 10 5 6	4 3 2 1 1	2 E 3 2	2 2 4 2	28 29 30 28 21 27	.34 .15 .13 .07 .08	.038 .081 .071 .082 .076	21 13 14 12 11	10 17 17 16 16	.11 .7E .15 .72 .78	113 75 36 48 51	.02 .02 .02 .01 .01	5 5 4	1,43 1,54 1,54 1,45 1,45	.01 .01 .01 .01 .01 .01	.00 .08 .07 .07 .08		2 14 24 27 15
13+505 1+50¥ 13+505 1+25¥ 13+505 (+75¥ 13+505 0+50¥ 13+505 0+25¥	٤ ٤ ٤ ٤ ٤ ٤	88 122 94 171 81	260 392 409 804 505	301 298 384 386 59(3:1 2.7 3.2 5.2 3.9	25 24 24 60 27	15 20 15 21 15	1156 1130 773 1916 1206	5.27 5.12 4.76 6.21 4.42	2 B 29 3 6 3 6 2 4	5 5 5 5	ND ND ND ND ND	2 2 2 1 1	6 9 19 16	1 3 13 14	6 6 6 3	2 2 3 2 2	23 26 25 28 15	.07 .05 .14 .26 .25	.084 .079 .074 .081 .081	13 13 11 11 10	14 15 16 17 9	.67 .69 .71 .84 .56	5E 105 75 5E 70	.0) .01 .02 .82 .01	4 3 4 3 4	1.34 1.42 1.30 1.50 1.07	.01 .03 .01 .01 .01	.07 .05 .05 .05 .05	1	81 46 362 51 51 51
13+515 0+158 13+515 0+508 13+505 0+58 13+505 1+008 13+505 1+058	11 3 3 2	42E 64 52 67 56	5145 376 242 476 155	1112 550 618 503 385	13.7 3.2 3.3 2.9 2.E	38 16 20 21 21	27 15 13 17 17	2425 1190 947 1323 1503	6.01 4.31 3.91 4.39 3.76	22 17 14 19 17	5 5 5 5	KD ND ND ND ND	3 4 3 3 4	12 22 16 23 16	10 E E 11 5	5 3 3 2 2	2 2 4 2 2	23 25 18 21 24	. 22 . 43 . 30 . 38 . 37	.096 .113 .026 .104 .107	11 25 14 21 24	10 10 7 5 E	.56 .64 .50 .50 .50	64 204 51 255 145	. 01 . 02 . 01 . 02 . 01		1,50 1,52 1,66 1,45 1,32	.01 .51 .91 .01 .01	.07 .11 .05 .10 .05	: : : : : : : : : : : : : : : : : : : :	21 21 24 16
13-505 1-501 13-505 1-758 13-505 1-008 13-505 1-258 13-505 2-358 13-505 2-358	3 10 5 11	74 178 95 144 58	214 510 560 437 185	581 742 1684 472 485	3.9 4.8 4.0 2.5 2.2	26 34 78 27 27	23 27 31 26 16	1909 2020 2660 1467 1648	3.93 4.33 4.56 4.79 4.48	15 24 23 23	5 5 5 5 5 5	ND ND ND ND ND	5 3 5 3 3	15 12 14 11 24	8 16 24 5 6	2 3 2 3 3	2 2 2 2 2 2	23 22 25 22 37	.38 .32 .37 .25 .43	.113 .119 .137 .114 .109	24 20 23 14 21	E 	.54 .52 .61 .55 .7E	175 135 191 60 185	.02 .01 .01 .01 .01 .03	: 1 1: 7	1.41 1.25 1.47 1.33 1.60	.01 .01 .01 .01 .01	.08 .09 .09 .09		19 32 14 12 3
14-002 2+50¥ 14-003 2+00¥ 14+005 1+00¥ 14+005 1+75¥ 14-005 1+50¥		73 35 58 136 93	161 135 190 1118 215	935 249 195 534 976	1,2 1,7 3,2 4,6 2,3	42 37 27 58 35	20 24 15 29 24	1538 1130 722 1554 1571	5.12 5.03 4.34 7.10 5.05	24 27 24 46 30	5 5 5 5	ND ND ND ND ND	3 1 2 2 2	11 7 9 19 11	3 1 1 6 6	1 2 5 6 3	3 2 2 2 2 2	35 25 27 27 27	.15 .10 .16 .26 .19	.088 .074 .075 .096 .093	18 12 11 13 15	22 15 17 16 13	.84 .75 .76 .76 .76	163 42 53 82 82	.03 .01 .04 .02 .02	3 2 11 4 12	1.95 1.45 1.22 1.50 1.31	.01 .01 .01 .01 .01	.07 .04 .04 .05 .05	1	17 11 47 11 41
14-005 8-05¥ 14-005 8-00¥ 14-005 8-73¥ 14-005 8-50¥ 14-005 8-80¥	10 7 8 7	108 91 135 135 105	(77 272 494 671 365	365 254 357 576 395	1.3 3.2 3.7 4.8 3.5	30 23 36 43 16	25 18 26 24 7	1941 806 1127 1514 366	3.49 5.41 3.75 5.00 4.53	31 27 38 12 25	5555	ND Kə ND Kd ND	2 2 3 1	9 5 5 15 7	2 1 1 9 3	6 7 7 1 3	2 2 4 2	26 26 15 20	.11 .56 .11 .21 .06	.090 .075 .082 .010 .067	15 11 5 11 9	11 16 13 11 12	.56 .70 .67 .56 .55	11 45 70 127 66	.02 .02 .01 .01 .01		1.40 1.25 1.35 1.21 .55	.01 .01 .01 .01 .01	.55 .55 .57 .10 .04	:::::::::::::::::::::::::::::::::::::::	23 65 23 57 104
14-005 (+255 572 C/XB+5	ç 19	91 El	624 39	1740. 132	E.2 E.6	40 67	15 31	1327 1001	1.61 1.02	11 36	5 22	ND 7	2 38	30 48	26 18	6 18	2 21	15 58	.41 .49	.076 .089	8 35	E 5 E	.47 .65	76 175	.01 .07	25 25	.66 1.97	. 81 . 86	.45 .14	: 13	51 51

Page 3

 $\{1,\dots,n\}$

CI6 White Channel Resources Inc. PROJECT SILVER CROWN FILE = 89-3779

i

)

ħ

1

ł

)

2

)

;

SAMPLER	RC FPR	Cu PPM	P1 PPM	lt PPK	λg PPH	N1 PPK	C: PPN	N: PPM	Fe	X S PPK	U PPK	AU PPM	Th PPK	S C P P K	Cđ PPK	SD PPK	EI PPM	V PPM	Ce 1	P X	LE PPM	Ct FPM	RÇ A	E E FPM	11 1	E PPK	21 }	81 }	r 1	¥ PEM	421 228	
14+005 0+505 14+005 0+758 14+005 1+005 14+005 1+258 14+005 1+508	4 6 2 4	(5 57 72 116 76	345 405 716 454 415	47E 629 1055 546 474	3.6 3.5 3.3 3.3 3.4	12 16 27 15 11	14 14 17 19 12	1286 1495 1428 967 1073	4.20 3.96 4.63 3.48 3.85	7 12 14 1 13		ND KD ND ND ND	2 3 3 1 4	17 23 23 15 19	6 8 14 6 6	2 2 2 2 2 2 2	2 2 2 2 2	21 21 26 19 23	.30 .41 .37 .32 .35	.58E .115 .113 .103 .056	15 22 17 17 15	E 7 E E	.51 .51 .50 .51 .51	136 161 142 65 121	.02 .02 .01 .03 .03	3 1 1 1 2	1.12 1.14 1.16 1.16 1.16 1.20	101 121 101 101 101	.05 .01 .06 .05 .05			
L4+6CS 1+358 14+6CS 2+808 14+6CS 2+808 14+6CS 2+388 14+6CS 2+388 L4+6CS 2+388	1 1 5 2	45 35 41 52 36	520 130 144 194 63	595 285 330 724 190	2.8 3.3 3.5 3.2 1.6	11 8 14 53 10	15 12 13 26 9	1397 1137 1446 13735 1036	4.00 3.60 3.86 6.65 3.27	13 13 15 66 11	5 5 5 5	NI ND ND ND ND	4 4 4 4	43 29 21 39 19	7 3 4 4 1	2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	23 25 25 25 25 24	1.00 .90 .42 .60 .60	.099 .104 .122 .123 .126	22 23 26 30 21	E 7 8 11 5	.62 .63 .54 .62 .52	190 180 144 365 117	. 62 . 02 . 01 . 01 . 01	11 11 2 2 2	1.35 1.35 1.22 1.65 1.20	.01 .01 .01 .01	.10 .01 .01 .01 .01	1 1 1 1)) 1(1) 1) 1)	
L4+305 2+30V L4+505 2+25V L4+305 2+20V L4+505 3+75V L4+505 3+30V		6E 72 99 101 6C	13E 187 176 196 115	305 369 387 415 180	1.8 1.8 2.2 1.9 1.7	30 3E 53 58 25	16 25 31 28 15	110E 312C 1854 1773 789	4.5E 5.18 E.03 5.48 5.31	24 26 35 31 23	5 5 5 5	ND KD ND KD ND	2 2 3 2	13 9 10 9 4	3 1 3 1	2 2 2 3 2	2 2 2 4	2E 27 24 26 26	.19 .15 .15 .13 .03	.076 .098 .078 .079 .079 .079	16 17 15 22 14	12 14 13 14 16	.74 .68 .71 .75 .80	7E 13 7E 10(37		17 11 12 12	1.45 1.57 1.54 1.70 1.53	.01 .01 .01 .01 .01	.01 .05 .05 .07 .06	1	11 11 12 13	
L4+505 1+05W L4+505 1+00W L4+505 0+75W L4+505 0+50W L4+505 0+25W	4 5 7 21	55 154 205 122 254	254 196 255 258 1078	351 457 351 265 475	2.6 3.0 6.0 3.3 5.2	31 50 45 25 65	23 24 39 12 53	1149 1513 1545 512 3569	5.15 5.35 6.73 5.40 7.00	28 24 36 24 65	5 5 5 5 5	ND ND ND ND	3 2 3 1 3	12 19 11 7 12	3 4 2 1 4	2 2 6 5 6	2 2 2 2 2	25 25 26 25 37	.18 .26 .13 .07 .14	.077 .082 .085 .075 .103	14 16 13 11 14	17 17 14 17 15	.82 .37 .84 .44 .41 .41	11E 104 25 22 130	. 02 . 04 . 01 . 02 . 03		1.55 1.47 1.45 1.22 2.13	. 51 . 01 . 01 . 01 . 02	.08 .08 .08 .07 .09			
14-505 0+751 14+505 1+608 14+505 1+608 14+505 1+568 15+005 2+509		101 65 80 56 33	568 503 530 565 148	1001 635 1115 1151 331	4.4 5.3 4.5 4.5 1.9	19 23 22 18 23	14 25 13 12 17	1307 1341 1699 1212 1025	4.15 4.24 4.28 4.07 4.63	16 11 15 16 23		ND ND ND RC ND	3 1 1 3	23 17 26 28 9	13 9 18 1(3	2 2 6 4	4 2 2 2 2	20 21 22 24 28	.37 .31 .46 .49 .11	.095 .051 .122 .117 .072	16 16 27 17 18	E F 7 9 13	.4E .57 .50 .57 .71	125 112 347 164 162	.02 .02 .02 .02 .02	£ 2 9 4 6	1.08 1.27 1.10 1.18 1.45	.01 .01 .01 .01	. 47 . 48 . 48 . 48 . 49	:		
15+005 2+03W 13+005 0+00W 15+005 0+73W 15+005 0+50W 15+005 0+50W 15+005 1+23W	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	73 104 84 86 70	215 131 146 405 251	355 338 407 517 344	1.5 1.3 1.4 6.9 2.6	41 46 57 56 27	23 31 27 25 23	1420 2691 1431 2470 1261	5.30 6.81 5.45 5.63 5.85	27 21 34 52 35	5 5 5 5 5	ND ND ND ND KD	2 3 3 3 3	11 16 12 24 7	3 6 3 10 2	4 2 4 5 2	i 2 1 3 3	30 32 26 26 26	.11 .25 .18 .29 .09	.085 .089 .089 .113 .086	20 14 15 16 17	15 13 15 12 12	.75 .70 .12 .67 .70	121 83 94 55	.01 .04 .01 .02 .01	3 2 10 2 1	1.76 1.73 1.56 1.36 1.53	.01 .01 .01 .01 .01	.03 .04 .01 .05): 11 16 15 5	
15+005 1-00¥ 15+005 0-75¥ 15+005 0+56¥ 15+005 0+25¥ 15+005 0+25¥	1 	61 151 110 147 255	120 384 397 334 682	214 401 607 405 495	2.4 2.3 2.7 4.1 7.5	32 52 30 25 13	12 25 22 22 22 E	591 1157 1442 1186 429	5.5E 5.35 5.12 5.2E E.7E	25 35 25 27 37		NC ND ND ND ND	3 2 3 3	5 10 15 13 7	1 3 7 3	4 2 4 5	2 2 2 2 3	25 25 28 28 20	.03 .15 .23 .20 .05	.070 .074 .075 .062 .116	12 11 17 12 5	17 14 14 17 10	.77 .74 .77 .73 .32	ED BE 143 152 34	.01 .01 .01 .03 .01		1.50 1.50 1.43 57	. 01 . 11 . 21 . 21 . 21 . 01	. 93 . 33 . 31 . 35 . 35		1 17 1	
15+008 6+838 871 C-80-8)) 18	180 63	121 35	597 132	5.1 £.€	16 67	9 30	337 930	4.5E 4.01	24 35	5 20	50 7	3 31	14 47	5 18	7 15	1 22	15 57	.15 .43	.066 .067	£ 31	7 53	.)) .11	HE 135	.01 .07	3 32	.52 1.57	.:: .66	.44 .14	: 1:	:; ::	

Paçe 4

- ~

-

-

C17 White Channel Resources Inc. PROJECT SILVER CROWN FILE # 89-3779

I.

)

Ì

)

2

)

1

÷

1

ł

}

89-3779		

. .

EAMFLER	NC PPK	CC 2PH	FE FFE	1: PPH	λς PPN	¥1 PPK	CC PPM	NL PPH	Te 3	λs PPK	U PPM	LU PPK	TÈ PPR	ST PPM	C Ĵ PPM	SE PPM	BÍ PPK	V PPK	33 1	F N	La PPR	Ст 99Н	NÇ X	58 PPK	11 , 1	E PPM	ki 1	Na 1	i i	¥ FPK	λτ' F73
16+015 2+00V 15+005 1+15V 16+005 1+50V 16+005 1+05V 16+005 1+00V	7 11 9 15 9	51 72 58 58 63	324 365 333 521 251	498 568 598 540 602	2.6 2.2 3.2 2.1 2.6	15 33 25 22 28	16 19 17 16 16	1553 2804 1625 1902 1553	3.94 4.73 4.41 4.74 4.56	18 35 27 39 18	5 5 12 5 3	ND ND ND ND ND	3 3 4 2 2	10 11 12 9 11	E 10 7 E	3 5 5 6 8	2 2 2 2 2 2	21 26 25 27 22	.21 .15 .20 .14 .19	.089 .102 .096 .090 .089	18 23 16 16 14	8 9 5 6 7	.46 .62 .55 .54	60 114 136 77 83	.01 .01 .01 .01 .01	16 4 15	1.14 1.44 1.31 1.25 1.25	.01 .01 .01 .01 .01	.0; .17 .19 .65 .17	1 1 2 1	22 18 17 52 31
16+005 0+75W 18+005 0+50W 16+005 0+25W 16+005 1+001 16+005 1+358	17 13 14 E 3	152 54 76 87 82	725 152 417 515 326	1335 585 990 1044 1047	5.3 3.6 4.6 3.4 1.9	75 25 40 15 14	38 13 17 22 17	3405 1256 2180 1464 2727	6.24 4.43 5.17 5.18 4.19	32 2E 30 27 15	5 5 9 5 5	ND ND ND ND	2 1 2 3 2	14 19 24 22 55	24 12 12 15	6 5 7 3 2	4 2 2 2	22 15 23 32 28	.24 .25 .36 .30 2.59	.104 .097 .110 .116 .099	13 13 14 23 15	5 5 10 10 10	.54 .51 .62 .50	107 El 203 146 236	. 01 . 01 . 01 . 03 . 02	16 2 4 7 15	1.15 	.01 .01 .01 .01 .01	.44 .44 .11 .05	:	11 24 60 61 30
16-035 1+508 17+005 2+004 17+005 1+734 17+005 1+504 17+005 1+504	4 14 13 11 E	155 102 81 92 97	260 200 265 382 175	1534 711 485 522 341	1.8 1.4 2.8 1.5 1.6	32 44 16 21 17	24 21 15 16 12	17858 2984 1778 1790 1162	5.95 5.95 4.88 4.91 4.26	28 70 52 51 55	\$ 5 5 5 5	ND ND ND ND	3 2 2 4 3	38 17 11 13 14	14 10 6 7 3	2 5 4 6 2	2 2 2 2 2 2	41 27 27 26 28	. £3 . 20 . 15 . 23 . 23	.172 .095 .083 .061 .077	33 26 20 23 19	22 9 8 8	.36 .67 .64 .62 .64	383 154 110 135 102	.02 .01 .02 .02 .04	8 2 2 14 4	2.53 1.83 1.32 1.28 1.28	.01 .01 .01 .01 .01	. 03 . 08 . 06 . 05 . 05	1 1 1 1	31 200 45 49 10
17+005 1+00¥ 17+005 0+73¥ 17+005 0+30¥ 17+005 0+23¥ 17+005 0+23¥	6 15 1 2	95 71 87 74 125	241 272 165 256 153	512 551 455 471 762	1.6 1.6 1.2 1.5	15 25 10 13 16	13 17 14 15 22	1771 2066 1001 1324 2062	4.76 5.56 4.87 5.25 5.93	44 36 2 16 17	5 11 5 5 5	ND Kđ Kl Kd Kd	4 4 5 3	20 16 17 11 18	7 7 4 5 8	3 7 2 3 2	2 2 3 3 2	25 23 27 26 34	.30 .19 .23 .23 .23	.085 .092 .073 .085 .099	24 26 23 22 34	\$ 7 10 12 12	.61 .1E .72 .64 .74	147 154 105 75 145	.04 .02 .03 .02	11 12 11 11 11	1.41 1.71 1.91 1.62 1.29	.01 .01 .01 .01 .01	.05 .01 .07 .01 .01		13 14 15 54
17+005 0+304 17+005 0+351 17+005 1+005 17+005 1+258 17+005 1+568		65 96 152 105 58	347 155 1532 662 267	484 497 2618 978 834	1.E 2.1 15.5 3.E 1.7	1) 10 47 37 21	15 16 46 61 48	1367 1435 7629 2357 1912	5.03 5.01 7.37 5.97 4.63	11 13 51 39 38	5 5 5 5 5	ND ND ND ND	51233	11 10 21 21 21 26	4 2 24 11 5	2 1 1 1	1 3 2 2 2	20 24 32 35 31	.16 .15 .33 .32 .71	.044 .050 .147 .105 .077	42 34 48 27 26	8 15 15 13	.74 .74 .55 .79 .72	52 87 247 161 115	.01 .02 .02 .07 .05		1.56 1.91 1.51 1.35 1.80	.01 .01 .02 .02			38 290 910 36 32
18+505 2+66W 18+605 3+75W 18+605 3+56W 18+605 3+25W 18+605 3+25W 18+605 3+26W	: + 5 E :	\$5 51 53 111 65	139 145 362 265 181	362 300 291 431 243	1.1 8 1.6 1.3 1.3	13 21 17 36 6	21 15 21 37 23	2475 1638 1947 2359 645	4.43 4.16 4.68 5.13 4.02	24 22 25 40 13	5 5 5 5	ND ND ND ND ND	; ; ; ;	13 5 8 10 10	4 2 2 3	2 2 4 5 2	2 2 2 2 2 2	27 20 23 32 25	.29 .19 .17 .15 .23	.110 .117 .112 .134 .095	25 25 19 24 19	9 18 12 16 5	.48 .45 .56 .61 .53	124 53 51 112 23	.02 .01 .02 .03 .02	3 2 15 4 2	1.51 1.34 1.42 2.62 1.29	.01 .01 .01 .01	. 24 . 24 . 24 . 24 . 24		44 12 20 14 226
18+005 0-75¥ 18+005 0+56¥ 18+005 0+15¥ 18+005 0+75¥ 18+005 1+005	2 3 1 1(2	E1 51 50 135 E3	235 213 175 346 320	29€ 279 236 588 432	1.4 1.2 1.0 1.5 1.3	4 13 19 6	15 12 12 21 17	1052 693 646 6947 1249	4.09 3.97 4.05 5.01 4.73	10 4 9 36 10	5 5 11 5	ND ND ND ND	4 3 2 3 2	16 12 18 21 13		3 2 2 5 2	2 2 2 4 2	27 27 32 41 25	.31 .24 .28 .22 .19	.095 .085 .073 .098 .057	25 21 22 46 25	6 5 13 14 7	.57 .55 .77 1.07 .7E	128 201 85 261 134	.03 .03 .06 .04 .03	3 14 2 2	1.32 1.25 1.72 1.84 1.54	.01 .01 .02 .12 .01	211 215 241 251		11 12 27 51 23
18+005 1+255 570 C/AR+5	5 1 E	17E 51	\$12 - {2	£96 134	2.6 7.1	13 66	18 31	2103 967	5.56 3.98	14 43	5 21	67 1	3 38	19 4E	5 18	6 15	2 21	30 58	.38 .4E	.061 .090	27 38	11 5£	.90 .88	205 177	.04 .07	6 31	2.11 1.98	. 01 . 04	.C .14	1 13	3E 52

Page 5

197 - T.S.

C18 White Channel Resources Inc. PROJECT SILVER CROWN FILE : 89-3779

V.

ì

)

)

)

J

÷

3

1

1

110+055 1+50E

110+205 1+75E

110-015 2-008

E1 0-0(S

51 (+365

510 CJA0-S

1 45 134 235 1.6

1 51 161 280 2.7

2 54 117 112 3.1 10 17 1405 4.70 10

E 51 241 254 2.7 25 11 523 4.44 16

8 13 1725 4.68 10

12 15 1257 4.49 16

5 KD

5 80

5 ND

4 19

3 21

2 5

1 46 115 225 1.5 38 11 466 5.16 26 5 MD 1 6 1 2 2 33 .05 .076 13 25 .56 68 .02 3 1.66 .01 .15

18 53 KI 132 6.7 66 31 954 4.10 42 23 8 36 48 18 15 21 56 .46 .093 36 57 .85 175 .07 36 1.50 .06 .14 1I 510

SAMPLE:	Ko FPX	CU P?K	PÈ PPH	20 298	Ад РРН	K: PPN	CC PPK	ND PPK	?e 1	A S PPK	1 PPK	AU PPH	7E PPH	ST Mgg	Cđ PPM	SD PFM	B1 PPM	V PPM	Se X	; }	Le PPK	C: PPK	KÇ N	B B FPM	:: 1	E FPR	х1 1	N a i	L t	¥ He	X01 F7E
L3+005 1+303 L3+005 1+352 L3+005 2+005 L5+005 2+004 L5+005 1+734	3 20 1 :	239 1015 131 60 52	2747 13436 2981 253 251	1055 6450 742 295 271	8.4 84.6 8.9 1.1 1.0	17 15 12 E E	15 15 14 15 11	2362 1965 1356 1184 777	7.37 6.94 5.14 4.17 3.82	22 36 10 9 7	• • • • •	ND ND ND ND ND	3 4 2 1	20 20 24 18 14	5 64 7 3 3	5 12 1 2 2	2 2 2 2 2	43 43 41 32 29	.21 .17 .42 .32 .31	.583 .555 .591 .116 .110	25 17 32 23 21	15 21 15 14 14	.94 .75 .84 .72 .55	201 36 157 202 118	.05 .07 .05 .02 .03	4 2 14	2.41 2.62 2.77 1.57 1.35	.03 .04 .03 .01 .01	.11 .11 .11 .12 .0E		245 510 54 16 14
15+005 1+50V 15+005 1+25V 15+005 1+00W 15+005 0+75V 15+005 0+50V	1 1 2 3	87 57 55 94 155	535 307 294 601 1456	404 318 323 436 520	1.4 1.3 1.4 2.1 2.3	9 10 6 10 7	13 12 11 15 18	907 929 1050 1155 1452	4.18 4.07 3.84 4.60 4.78	7 10 6 11 12	5 5 5 5	ND ND ND ND ND	3 2 2 1	15 14 16 16 17	3 3 3 2 9	2 2 2 2 2 2	2 2 2 2 2	30 21 25 33 26	.29 .29 .35 .27 .31	.112 .103 .125 .104 .125	23 23 23 27 22	11 13 9 14 8	.10 .71 .63 .72 .56	162 164 202 140 174	.03 .04 .02 .03 .03	3 15 9 E 11	1.60 1.37 1.33 1.60 1.30	. 01 . 01 . 01 . 01 . 01 . 01	.11 .10 .10 .11		13 71 35 250 85
15+005 0+75V 15+005 0+252 15+005 0+501 13+005 0+501 15+005 1+001	2	74 81 62 49 54	291 350 254 134 201	360 498 285 271 300	1.9 2.9 2.4 1.4 2.4	4 3 6 8 3 0	13 14 13 12 13	1849 1670 1630 1000 1377	<pre>4.68 4.72 4.23 4.11 4.23</pre>	5 13 11 7 12	5555	HD ND ND ND ND	2 1 2 2 2	19 14 14 15 22	4 4 3 3	2 2 2 2 2 2	2 2 2 2 3	28 26 25 35 41	.36 .24 .24 .30 .38	.133 .114 .052 .092 .057	25 25 24 23 28	8 5 10 10 10 12	.11 .12 .61 .12 .14	283 260 212 142 249	.02 .01 .04 .05 .06	11 11 3 7 12	1.56 1.55 1.55 1.59 1.90	.01 .02 .02 .02 .02	.10 .12 .08 .08 .10	1	56 33 30 220 57
L3+005 1+25E L5+005 1+502 L5+005 1+75E L5+005 2+00E L10+005 2+00¥		61 58 45 51 122	1540 254 315 169 525	275 317 307 274 507	3.2 4.5 3.0 2.5 1.8	11 13 10 12 4	14 16 14 13	1163 1076 3328 673 1422	<pre>4.25 4.13 5.34 3.03 4.33</pre>	13 22 15 E	5 5 5	ND ND ND ND ND		20 25 25 23 22	1 3 1 6	2 2 4 2 2	2 3 3 2 2	43 41 40 42 33	.31 .36 .31 .36 .27	.08E .090 .010 .011 .013	25 29 27 24 15	13 15 14 15 16	.7: .75 .81 .83	144 215 425 154 153	07 03 30 30 30	8 11 4 1	1.86 1.81 1.87 1.65	.01 .04 .03 .04 .01	.10 .11 .29 .38		65 51 61 71 161
116+035 1+73¥ 110+005 1+73¥ 110+005 1+23¥ 110+005 1+60¥ 110+005 6+35¥	4	76 191 63 71 157	296 945 156 135 142	375 787 242 198 240	1.5 2.9 .7 .5 1.5	4 5 5 7 8	17 12 14 14 17	119E 1366 1896 2072 4721	4.23 4.45 4.09 4.43 6.27	5 7 7 10 E	5	ND ND ND ND ND	3 3 3 1	22 32 25 15 26	4 10 2 2 3	2 2 2 2 2 2	2 2 2 2 2	33 34 31 34 34	.37 .41 .31 .19 .26	.122 .121 .116 .269 .126	19 20 22 20 26	12 12 11 11 12	1.07 1.00 1.00 .£1 .71	164 248 271 173 362	.02 .04 .03 .01 .03	1 11 2 4 2	1.71 1.34 1.70 1.45 1.47	.01 .02 .01 .01 .01		:	21 38 20 15 34
110+015 0+500 110+005 0+255 110+005 0+505 110+005 0+755 110+005 0+755		56 138 25 45 40	E7 237 71 E8 54	186 455 190 150 160	1.0 2.2 .7 .E 1.0	5 9 19 14 12	12 17 14 12 13	3593 4156 894 939 1110	5.31 5.98 4.34 4.10 3.48	11 11 6 12 7		ND ND ND ND	1 1 3 2	28 20 15 17 22	3 6 1 1 1	3 2 2 2	2 2 3 2 2	25 35 47 45 40	. 35 . 10 . 23 . 23 . 32	.144 .117 .075 .052 .056	36 25 25 24 31	11 16 33 20 15	.37 .70 1.12 .92 .71	328 517 152 163	. 32 . 62 . 65 . 36 . 36	11 11 3	1.97 1.80 2.24 2.07 1.07	.01 .02 .02 .02	01. 08 09 09 09		17 57 5 11 23
116-003 14351	2	łE	144	223	1.6	11	15	1829	2.12	5	ţ	ND	1	19	2	î	2	0	. 30	.102	39	14	.70	170	. 0 5	4	2.64	.04	.::	:	13

5 KD 3 14 1 2 3 46 .25 .029 27 12 .92 126 .05

1 2 2 55 .31 .055 34 16 .30 213 .05

3 2 2 61 .23 .092 26 14 .87 175 .07

1 2 2 28 .14 .001 12 18 .71 122 .01

1.

1 14 1 13

54

32

1 12

1 1.42 .01 .01

E 2.31 .55 .11

4 1.55 .04 .11

4 1.42 .21 .33

. .

•••••

Page 6

C19 White Channel Resources Inc. PROJECT SILVER CROWN FILE = 89-3775

1 5

.

)

)

)

ະ,

3

)

,

.

,

3

,

exmetter	NC PPM	C U PEK	71 Pek	21 PPH	λ <u>ς</u> PPN	N 1 2 P.K	CC PFH	ND 2Pk	i t 1	λs ΡΡΜ	U PPM	λυ PPN	Th Pfn	ST PPM	Cđ PPM	SE PPK	E1 PPH	V PPM	52 }	- P 1	LE PPM	C: PPK	ЖÇ Қ	EE PPK	נד 1	i Pr	2] }	N E N	i ?	¥ PPK	ku † Pře
E1 1-605	ţ	55	161	233	1.2	35	22	1000	4.56	19	5	ND	ĵ	4	3	i	2	25	.04	. 073	15	16	.76	16	.01	::	1.45	. 61	.66	:	27
EL 1+505	3	65	151	431	2.8	48	22	1279	1.15	21	5	XD	3	14	5	ż	2	25	.22	. 093	16	13	. 76	74	. 61	t :	;	61		1	10
51 2-005	3	95	250	738	3.5	50	35	1355	3.11	36	3	ХÐ	i	35	Ē	j	Ę	27	36	.096	23	11	.70	135	. 01	11	3.45	Mi	64	÷	15
11 I+315	ç	115	555	260	1.5	65	32	2130	5.57	22	ç	XC.	i	18	15	í	;	21	31	101	20	11	69	110	۸١				A.	, i	15
B1 3+563	3	6	522	76!	1.1	31	11	1265	1.52	18	Ś	ND	;	28	ł	2	2	24	.39	.100	18	11	. 6 6	174	.02	7	1.58			:	25
EL 3+505	:	15	332	789	1.8	33	15	1103	4.25	14	5	XD	- 1	12	į	ż	2	23	.52	.075	:1	11	. 67	167	.01	ł	1.53	. 5:	.10	1	25
31 (-025	7	135	306	1335	1.6	58	21	1294	4.94	24	5	ND	1	27	16	(2	20	.2E	. 065	5	14	. 64	125	.01	12	1.42	. 11	.11	:	61
E1 4-505	2	164	482	105	1.7	21	13	586	4.73	21	5	ND	2	:	2	é	?	15	.12	.062	10	10	.51	95	. 01	ş	1.25	. 01	.ii	:	(5
81 5+005	7	133	230	335	1.6	24	13	648	5.69	27	5	ND	2	7	2	£	2	24	.05	.084	10	16	. 6 E	55	.01	÷	1.25	0	. ()	:	10
EL 3+365	f	166	335	8 Q 7	2.6	111	19	2158	6.50	58	5	NC	3	17	5	£	2	30	.23	.089	16	18	. 18	:73	. 01	f	1.71	. 81	.0£	:	17
B1 6+665	15	55	372	950	1.5	33	łE	1782	1.83	32	5	ND	2	45	5	1	;	21	. 9 E	.039	11	10	.55	123	.01	11	1.24	.01	.::	:	15
51 S+505	13	54	395	1060	3.3	23	11	2624	4.55	31	5	XĐ	i	30	15	ż	2	18	.35	.094	17	ŧ	. 36	110	.01	3	1.01	.01	.11	:	74
51 7-009	3	103	414	432	1.6	13	15	1630	1.52	14	5	ХD	3	13	3	2	2	25	.21	. DE]	21	- 14	.E5	100	.03	12	2.07	.01	. 63	:	55
E1 7+505	i	10	35E	291	1.3	12	15	998	1.81	6	5	ND:	3	12	;	2	2	25	.19	.053	21	13	. 99	E	. 03	ť	2.05	. 01	.0£	:	166
51 E-009	•	444	1221	383	2.1	5	25	1284	1.16	12	5	ND	5	11	3	ĩ	2	27	.17	.071	22	1	.60	131	.03	4	2.09	.()	.::	1	:1
81 B+303	:	121	161	253	:.1	3	11	1057	3.98	5	5	ЖD	3	12	1	2	2	28	.31	.104	21	1	. 51	155	.02	11	:	.01		1	54
E1 5+005	÷	55	135	123	1.2	£	12	1154	4.15	ŧ	5	ND	2	11	1	2	2	32	.15	.061	22	7	. 6 6	125	.63	:	1.6	. 31		:	3:
EL 9+545	i	55	366	475	2.1	10	24	1585	6.50	42	5	RÛ	3	31	5	3	2	37	.40	.103	25	11	. 55	335	.01	٤	1.74	. 64	.11	:	£.
B1 194005	2	53	196	285	1.1	Ł	16	3393	5.07	12	5	NÐ	2	11	2	2	2	35	.25	.107	24	13	.16	111	.02	÷	1.71	.01	.::	:	::
E1 10+505	2	15	43	148	. 9	f	1£	1972	1.71	н	5	ND.	3	21	1	2	2	45	. 35	.103	22	ì	.17	174	.06	4	1.95	. 01	.33	1	12
STE C/A0-5	12	6[43	132	7.2	őÉ	36	\$95	3.57	13	19	7	38	47	18	15	20	57	. 15	.087	38	56	.52	175	.07	::	3.46	.01	.::(12	45

Page 7

· · ·

- -

- ···

C20 White Channel Resources Inc. PROJECT SILVER CROWN FILE # 89-3779

•

)

)

)

)

.4

;

:

.

1

SAMPLET	HC.	Cu	Pb	22	rð	N 1	C 2	K.D	Ιŧ	24	9	٨v	?k	\$1	63	Sb	Bi	7	Ci	ł	La	13	Xç	EI	::	ŧ	XI.	N 2	i.	ï	X:7
	PER	29K	<u> 278</u>	PPM	29K	72K	PPN	5 P.N	٤	PPM	PPM	¥28	PPM	PPM	PPM	PPK	? ? K	FFK	٤	ł	PPM	FPK	i	22K .	1	PPK	, 1	۱	:	Ħ	215
57+1	4	53	15	276	.5	101	53	1513	6.40	2 é	3	ND	:	26	1	2	2	51	.25	.113	14	38	1.15	50	.04	ť	2.28	.01	.64	:	:
57-1	:	36	19	243	ذ.	98	33	::27	5.6?	26	5	KD	3	25	1	2	2	42	.25	.105	14	41	1.05	120	.02	20	2.01	. 01	. 6 :	:	:
51-1	:	42	19	135	.3	65	17	E22	1.07	15	5	ND	3	21	1	2	2	35	.24	.076	12	33	1.00	52	. 03	÷	1.62	.01	. 64	:	:
51-4	1	46	10	136	ز.	īί	16	726	4.13	14	5	ND.	1	15	1	ì	:	32	.23	.677	10	44	1.16	34	. 22	٤	1.11	. 01	.01	:	:
57-5	3	15	17	150	.4	80	19	907	4.73	12	5	RD	1	26	1	2	2	11	.21	.087	10	38	1.23	£7	. 04	٤	1.57	.01	.04	;	:
57-E	-	(1	12	146	.1	83	:7	985	4.94	17	5	ND	1	11	1	2	2	10	.24	.080	5	42	1.25	35	. 03	;	1.91	. 81	.02	!	2
57-7	:	Eŀ	20	188	.1	56	25	1153	4.96	20	ţ	ND	1	19)	2	2	34	. 22	.082	13	34	1.13	50	.01	2	1.97	.01	. ; ;	1	1
51-E	3	21	52	186	4.8	Ĥ.	6	516	2.91	27	5	XD	1	10	1	2	2	14	.20	.055	12	;	.51	Ĵέ	. 01	3	.93	.01	.02	:	1
57-5	3	27	27	160	1.5	15	5	634	3.50	10	5	ND	1	15	1	?	2	32	. 33	.084	12	11	. 77	58	.04	2	1.32	. 01	. 63	:	
57-10	4	25	116	275	1.2	21	10	784	4.02	14	5	KD	1	15	3	2	2	30	.21	.085	12	15	.1:	54	.03	2	1.29	. 91	.01	÷	31.6
570 C/X0-5	17	58	H	132	7.1	67	30	1017	1.15	()	19	1	36	47	16	15	22	57	. 18	.092	37	53	. 68	173	. 07	36	1.95	.05	.14	:1	50

Page &

÷

:

..

- --

÷ ...

ಲಲ್ಲ ಗಳಲ

ACME ANALYTICAL LABORATORIES LTD.

Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone: 253-3158

Appendix D

Analytical Technique;

Gold & Silver by Fire Assay

2000 A. A. A.

and a new sec

1/2 A.T. samples is mix in dry reagent flux with 1 Ag inquart and fused for 45 - 60 mins. The resulting bead from cupellation is dissolved in aqua regia. Analysis by A.A/ICP.

- For Au > 1 oz/t, determination by gravimetric finished.

- Wet acid leached for Ag is also ran. (Procedure same as below).

Determination of Cu, Pb, Zn and Ag

In 100 ml volumetric flask, 1 g sample is digested in 50 ml 3-1-2 HCl-HNO₃-H₂O at 95°C for one hour, dilute to 100 ml with demineralized water, analyze by ICF.

ACME ANALYTICAL LABORATORIES LTD. Assaying & Trace Analysis 852 E. Hastings St., Vancouver, B.C. V6A 1R6 Telephone : 253 - 3158

- ICP .5 gram sample is digested with 3 ml 3-1-2 HCl-HN03-H20 at 95 deg.C for one hour and is diluted to 10 ml with water. This leach is Partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, P, W and limited for Na, K, Al.
- Au* 10 gram samples are ignited at 600 deg.C, digested with aqua regia at 95 deg.C for one hour, 50 ml aliquot is extracted into 10 ml MIBK, analysed by graphite furnace AA.

Soil prep - Dry 2165 at 60°C Sieve approx 3g of - 80 mesh. Rock prep - Crush to apprex -3/16' up to 10 161, "split to approx 200-300g Pulverize to - 100 mesh.

600 S

		200 W	-	100 W		0			100 E				200 E			
Line D	13 1.9 15 1.8	9 2.0	2 0.9	- 21 1.7 16 1.9	7 13.0	3 32 2 2 9	.7 14 2.4	3 2.1		7 2.4	31 4.2	2 2.1	- 3_2.1	9_3.0	31.3	Line O
						62_1	.9									
Line 100 S	2 2.1 27 2.6	18 1.6	70 2.9	57 2.7 25 3.8	14 2.5 20 2.5	5 27 1 35 5	.2 24 3.9	23 5.0	40 <u>+</u> 4. 33 <u>+</u> 4. 1	46 3.1	9 2.0	13 2.2	17 2.2	8 1.9	21 _ 1.9	Line 100 S
						60_2	.8									
Line 200 S	560 <u>↓</u> 2.1 32 <u>↓</u> 2.9	85 2.1	5 2.1	28 3.9 32 3.4	26 2.8 39 2.7	^{ຍ.} 19 3. ຜູ	24 2.9 5:	21 3.2	39 4.8 47 3.0	57 4.6	46 3.9		10 2.6	11 1.9	15_2.5	Line 200 S
						46 4.	.5									•
Line 300 S	43 3. 1 18 2. 1	44 2.9		34 3. 34 3.6	73 6.9 53 2.9	25 3.	2 5.6	35 <mark>- 4.</mark> 3	28 27 0C	,	21 3.0	41 6.4	52 10.6	3 2.3	2_1.9	Line 300 S
• •	24 1.7 14 1.6	27 _ 2.1		46 2.7	97 5. 2	⁶² 25 2. 3.9	240 23.7	32 3.2	26 3.9 21 3.3	10 2.8	19 3,9	32 4.8	14 4.0	12 2.5	9_2.2	
Line 400 S	11 1 1.7 17 1 1.2	47 _ 3. 2	43 +22 5 3	65 3. 2 28 3. 3	57 4.8 25 3.7	104 64 4. 3.5	989 8 , 2	8_3.0	33 28 3.5 28 3.5	5	14 3.6	37 2.8	10 2.3	8 3.5	2 1.6 7 3.2	Line 400 S
	71 1.8 6 1.8	8 2.2	94 1.7	15 3.0	11 3. 3 5 4. 0	¹³ 45 4. 5.2	.7		12 <u>5</u> , 3	13_4.5	22 4 .6					
Line 500 S	11 1.5 12 1.9	12 1.5	6, 19 	8 2.4	6 3.7 10 2.5	7 40 4. 4.	49 7.9	37 5.1 T	Ň							Line 500 S
					- · ·	17_2.	6									
Line 600 S		10 1 2: 2 22 1 2:0	17 3.2	31 2.8 92 3. 1	26 31 5,3	⁴⁵ 35 4.	5		61 3.4	30 1.9	31 1.8 T					Line 600 S

		74 3.3	Scale 1:2500 2 <u>5 0 25 50 75 100 12</u> 5 (metree)
Line 700 S	49 10 11 12 12 12 12 12 12 12 12 12 12 12 12	69 1.8 56 22.1 1.7 280 2.1 1.6 2.1 1.7	
		166 1.3	LEGEND
Line 800 S	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21 2.8 61 55 88 240 66 54 1.5 88 240 68 54 1.5	Line 800 S
		56_1.7	GEOLOGICAL BRANCH
Line 900 S	$\begin{array}{c} 38 \\ 38 \\ 39 \\ 260 \\ 2.1 \\ 39 \\ 13 \\ 1.4 \\ 1.4 \\ 1.1 \\ 1.4 \\ 1.1 $	30 1.2 33 7	line 900 \$
	26 2 26 26 15 14 17		
Line 1000 S) + 1.5 + 1.5 + 1.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	WHILE CHANNEL RESOURCES INC.
	•	12 _ 0.9	Gold and Silver
	100 W	 100 E	SILVER CROWN SHOWING - STRIKE 2 CLAIN NTS: 104 A/4,5 Skeena Mining Division, B.C. October, 1989 Figure # Map No. 4
			Ashworth Explorations Limited

200 200 W. 100 100 W. ш ш 0 ___Line 0 Line 0____ <u>Line 100 S</u> Line 100 S___ ____Line 200 S Line 200 S___ ____Line 300 S Line 300 S____ ___Line 400 S Line 400 S___ <u>____Line 500 S</u> Line 500 S____ Scale 1:2500 metres 440 ___Line 600 S LEGEND Line 600 S____

