TRENCHING, GEOLOGICAL & GEOCHEMICAL SURVEY REPORT

COL CLAIM GROUP RD. 205 LOG NO: **Omineca Mining Division** ACTION: FILE NO: Latitude: 55° 15' Longitude: 124^o 45^r VZ NTS: 93 N/2,7 SUB-RECORDER FILMED RECEIVED FEB 2 8 1990 Бy M.R. # \$ VANCOUVER, B.C. John Nebocat -January 12, 1990 N) Z C

C A L E N T

GEOLOG Assess

Owner: Colin J. Campbell

Operator: Kookaburra Gold Corporation

TABLE OF CONTENTS

INTRODUCTION	1
TRENCHING PROGRAM Regional Geology Trench Geology (Map 1) Structure Mineralization and Geochemistry	5 5 6 7
A ZONE - SOUTH GRID (Figure 12)	18
SOUTHEAST GRID IP Survey Geology Geochemistry Interpretation Copper (Map 4) Gold (Map 5) Arsenic (Map 6) Field Procedures	20 20 21 21 21 21 22 22 23
CONCLUSIONS	24
RECOMMENDATIONS	25
REFERENCES	26
STATEMENT OF COSTS	27
STATEMENT OF QUALIFICATIONS	28
Appendices	
APPENDIX I: Rock Sample Results APPENDIX II: Soil Sample Results APPENDIX III: Analytical Procedures	29 40 47

Page Number

List of Illustrations

Figure 1.	INDEX MAP, COL CLAIM GROUP	2
Figure 2.	COL GROUP, CLAIM & GRID LOCATIONS	4
Figure 3.	COL PROJECT, ASSAY PLAN: L 100W	8
Figure 4.	COL PROJECT, TRENCH 1	9
Figure 5.	COL PROJECT, TRENCH 2	10
Figure 6.	COL PROJECT, TRENCH 3	11
Figure 7.	COL PROJECT, TRENCH 4	12
Figure 8.	COL PROJECT, TRENCH 6	14
Figure 9.	COL PROJECT, TRENCH 7	15
Figure 10.	COL PROJECT, TRENCH 8	16
Figure 11.	COL PROJECT, TRENCH 9	17
Figure 12.	COL PROJECT, A ZONE, SOUTH GRID	19

Tables

Table 1.	CLAIM STATUS

Maps

. .

Map 1.	COL PROJECT, TRENCH PLAN	(in pocket)
Map 2.	COL PROJECT, GEOLOGY	(in pocket)
Map 3.	COL PROJECT, GEOCHEM: Cu	(in pocket)
Map 4.	COL PROJECT, GEOCHEM: Au, As	(in pocket)
Map 5.	COL PROJECT, SAMPLE LOCATIONS	(in pocket)

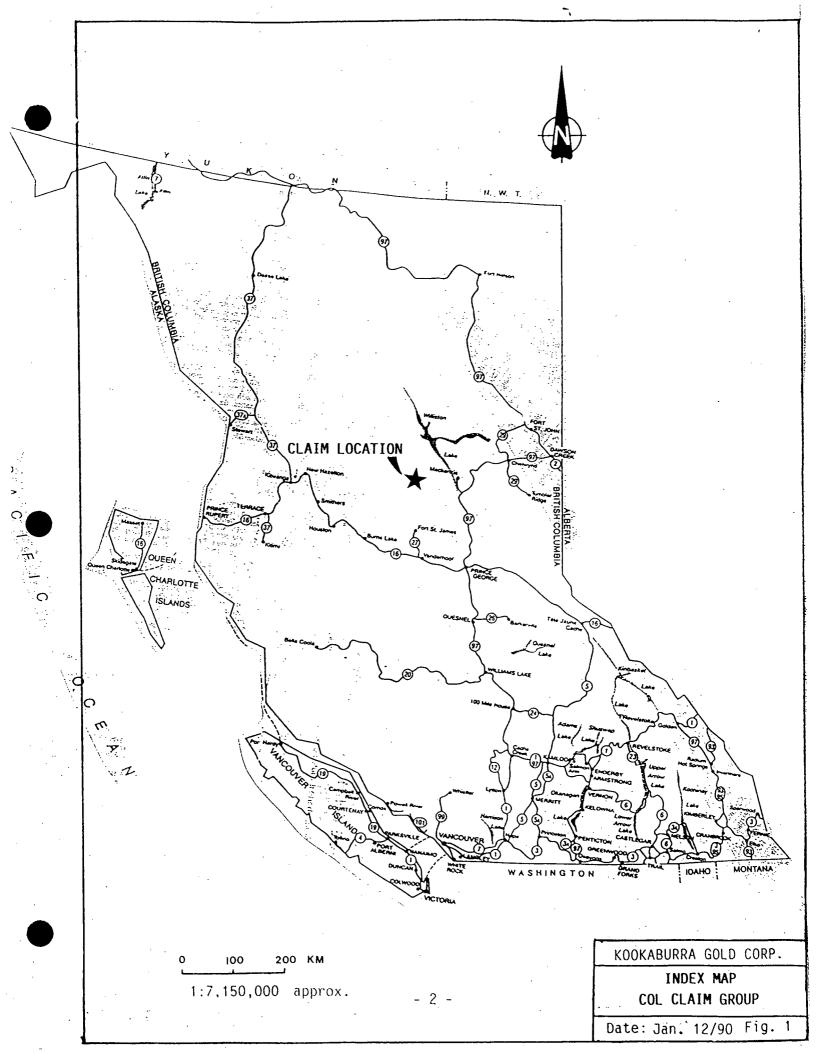
3

INTRODUCTION

The Col claim group is situated approximately 108 km north of the town of Fort St. James, B.C. The claims sit along the southern flank of the Swannell Range, about 5 km north of the west end of Chuchi Lake and are centered at the intersection of NTS map sheets 93 N/2 & 93 N/7 (55° 15' x 124° 45').

Access is via the "Omineca", or "North", road 100 km north from Fort St. James, then, 30 km west along the "Germansen-Indata" Forest Service road. A newly constructed 6.5 km long 4 x 4 road links the forestry road with an old "tote" road built by the previous operator, which leads to the property from the west end of Chuchi Lake.

The claims are on an east-west trending ridge and for the most part are on the southerly facing slope. Relief is in the order of 600 m, ranging from 950 m to 1550 m ASL. The area of the previous and present work is not too steep but cliffs with talus slopes occur along the NE margin of the claims.


Copper showings were discovered by Colin Campbell in 1969 following a stream sediment survey. Mr. Campbell has held the ground since that time. Falconbridge Nickel Mines Ltd. optioned the claims in 1970 and performed work on them until 1972. This work included soil geochemistry, ground magnetic, V.L.F. and I.P. surveys and 7741 feet of diamond drilling in 32 holes comprised of x-ray, AQ and BQ core sizes. Falconbridge explored the property as a porphyry Cu-Mo deposit. Broad geochemical anomalies in Cu were obtained, but Mo and Ag anomalies were weak and scattered. The generally weak IP anomalies can be attributed partly to the high bornite/chalcopyrite content relative to low amounts of pyrite. The "A Zone" was drilled in detail, and a reserve of 2,000,000 tons of 0.6% Cu was indicated. Following disappointing drill results from IP anomalies tested SE from the "A Zone", Falconbridge returned the property to the vendor in 1972.

In 1984, Campbell sampled a number of 10 foot segments of core for gold. The results indicated the presence of gold with analyses up to 2.17 ppm (0.063 oz/s.ton) over ten feet. A correlation with anomalous Au and greater than 0.5% Cu was suggested.

David M. Jenkins, of Ainsworth-Jenkins Holdings Inc., examined the property on October 23, 1987. His sampling of core, and outcrop from a trench excavated by Campbell, confirmed the presence of gold. A 12 foot width from the trench averaged 2.2 ppm Au and 3.16% Cu, including a 2.5 foot sample assaying 5.2 ppm Au and 4.60% Cu. Values up to 1.4 ppm Au and 1.68% Cu over 8 feet were obtained from drill core.

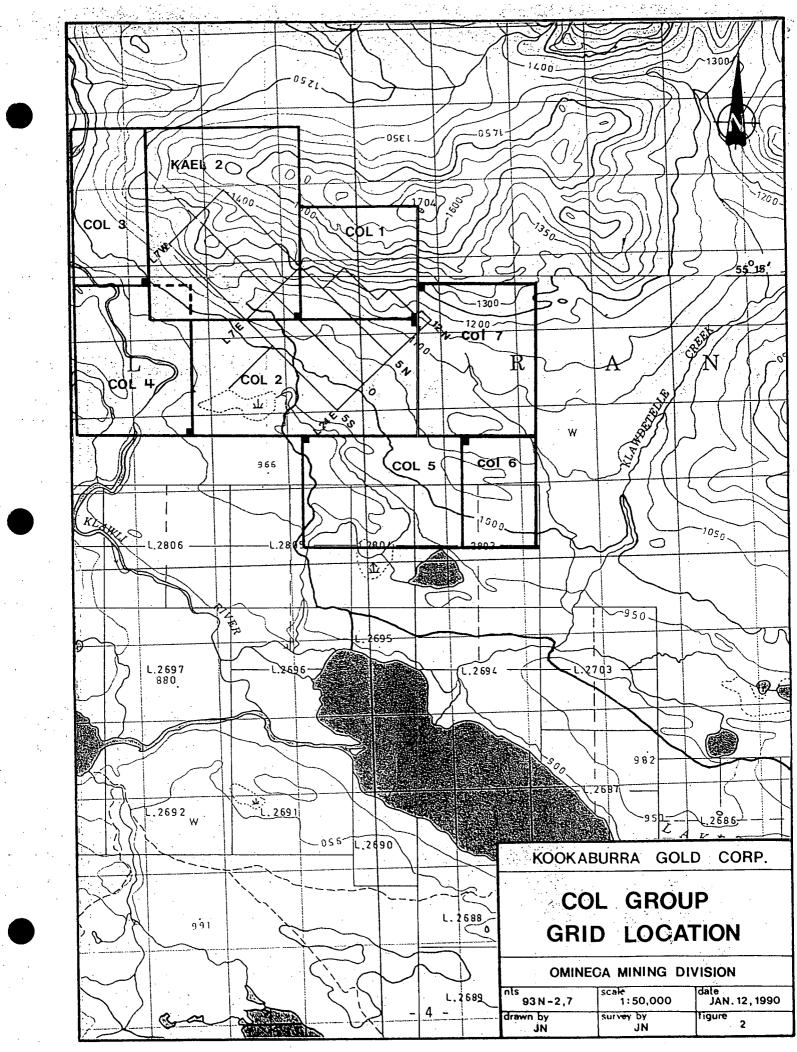
Kookaburra Gold Corporation entered into an option agreement with Colin Campbell on March 14, 1988 agreeing to perform work on the COL #1, COL #2 and KAEL #2 mineral claims. Kookaburra staked additional claims in 1988 and 1989.

The work described in this report was performed on the Kael #2, Col #1, Col #2 and Col #7 claims between June 21, 1989 and October 12, 1989.

Between June 21, 1989 and June 23, 1989 a D7 caterpillar re-established road acess to the property and constructed 1.9 km of access roads and sites for an excavator to dig trenches. From June 24 to June 28, 1989 a Drott 40 excavator dug approximately 490 lineal meters of trench in 9 trenches; the trenches are 1 m wide and range in depth from $\frac{1}{2}$ m to over 2 m. The trenches were sampled and mapped between June 25 and July 3, 1989. One hundred and sixteen rock samples were collected from the trenches and surrounding areas; they were analyzed for Cu, Au and As.

On July 2 and 3, 1989, lines 500E to 800E were extended from 500S to 1000S using a hip chain and compass. Seventy-eight soil samples were collected and analyzed for Au and 6 element ICP.

Between July 17 and July 30, 1989, and from September 19 to 22, 1989, 27.2 km of line were cut to IP standards southeast of and contiguous with the grid established by Kookaburra in 1988. 22.4 km of pole-dipole IP survey was run on this grid between July 31 and August 10, 1989 and from September 24 to 26, 1989. On August 28 and between October 5 and October 8, 1989, 217 soil samples were collected on select lines of the grid to test portions of the IP anomalies obtained in the above-mentioned survey. The samples were analyzed for Au and for 31 elements by ICP.


The grid was geologically mapped and prospected between October 5 and October 11, 1989.

A table showing the claim status of the Col Group is shown below.

Table 1. Claim Status

Name	Units	Record No.	Record Date	Expiry Date
Kael #2	20	6531	Sept. 28/84	Sept. 28/93
Col #1	9	8651	Aug. 5/87	Aug. 5/93
Col #2	18	8652	Aug. 5/87	Aug. 5/93
Col #3	8	9487	June 21/88	June 21/90
Col #4	12	9571	July 20/88	July 20/90
Col #5	12	9824	Oct. 3/88	Sept. 17/90
Col #6	6	10879	July 14/89	July 14/90
Col #7	12	10696	Oct. 9/89	Oct. 9/90

- 3 -

TRENCHING PROGRAM

The purpose of the trenching program was to test gold, gold-copper and arsenic anomalies obtained in soil samples collected by Kookaburra in 1988. Since the samples were not analyzed until after the field season (October, 1988), the anomalies were not examined on the ground prior to mobilization with a caterpillar in June of 1989. About 1.9 km of road and excavator sites were constructed, and a Drott 40 excavator was used to excavate the anomalous sites. The trenches are about 1 m wide and range in depth from $\frac{1}{2}$ m to in excess of 2 m depending on rock competence and overburden thickness.

Trenches were mapped and sampled at a scale of 1:250 (see Figures 3-11) and a geology map of the trench area was prepared at 1:1000 scale (see Map 1). The rock assays from this area are tabulated in Appendix I.

Regional Geology

The regional geology is best described by Garnett, 1978, in the B.C. Department of Mines Bulletin 70 titled "Geology and Mineral Occurrences of the Southern Hogem Batholith". The Col property is on the eastern contact of the batholith with the Takla Group Volcanics, with the majority of the property underlain by the intrusive complex.

Garnett describes the Hogem Batholith as being composed of at least three phases of varying chemical composition. Phase I granodiorite and Phase III granite are characterized as calcalkaline while Phase II syenite and Phase I basic suite are predominantly alkaline. Copper mineralization is associated with syenitic intrusions of the Hogem Batholith in a number of areas. Structure of the area is vague, in a large part due to the extensive drift cover of the lower areas. The predominant structural direction is northwest as shown by strong trends of the aeromagnetic maps. It is probable that the anomalous east-west trend of Chuchi Lake represents a crosscutting structural trend.

The superficial geology is complex. Alpine glaciation occurred in the higher ground and is expressed by the presence of cirques. The area to the south was covered by continental glaciation. The area in between was the location of a large post-glacial lake whose shorelines are now indicated by several obvious terraces. The Col property occurs on the margin of these terrains with the soil sampling grid being largely in the alpine terrain the southwest corner shows evidence of terraces.

Trench Geology (Map 1)

The area in which the trenching was done is underlain exclusively by alkaline intrusive rocks, in order of decreasing abundance: medium grained biotite/hornblende monzonite; fine to medium grained syenite and syeno-monzonite; and a fine grained, magnetic and holocrystalline syenite with aplite and pegmatite phases.

The "monzonite" is quite dark giving it a dioritic appearance, but petrographic work done by **Falconbridge** indicates an abundance of interstitial potassic feldspar. The rock is quite crystalline and the biotite, and rock as a whole, appears relatively unaltered. Hornblende alters to chlorite and tremolite and most certainly much of the biotite is of secondary origin. Syenite (unit 2) is a generally fine grained facies which grades from a crystalline, mafic-bearing phase to a fleshy-pink, mafic-absent phase where it has been intensely altered by potash metasomatism. Locally the rock resembles a flow-banded rhyolite due to alteration envelopes of potash feldspar, magnetic, quartz and tremolite-chlorite emanating from parallel, uni-directional fractures. It is not clear if any of this phase is a "true" magmatic syenite or just a metasomatic alteration of the monzonite; but a transition, exemplified by a decrease in mafics, is evident in outcrops seen in line 100W.

A fresh looking, holocrystalline syenite with less than 5% mafics intrudes the monzonite as irregular masses and as tabular structures. Pegmatitic and fleshy coloured aplite dykes occur with it and are probably genetically related. Some finely disseminated magnetite is seen in this unit locally, but magnetics are a poor mapping tool in that all three units demonstrate varying magnetic strengths. The most diagnostic feature of this syenite is its cross-cutting features in the monzonite, whereas the Unit 2 syenite has gradational characteristics as well as being strongly altered by potassic feldspar.

Structure

At least four major structural trends are noted both in mapping and in air photo and landsat imagery. Most of these have been documented by Falconbridge, but a new one has been identified in the trenching program.

The dominant structural grain trends 145° AZ/vertical; this trend is represented by a strong unidirectional fracture set in all three lithologies, but primarily seen in the Unit 2 syenite. A lineament parallel to this trend is seen as a creek/gulley between L 050W and L 400E, and this is believed to be a fault.

Another set trends between 120° AZ. and 125° AZ. with dips ranging from steeply NE to steeply SW. This fault/fracture set is seen cross-cutting the 145° /vert. set at L 100W, 430S. A fault parallel to this trend is seen separating the two syenite units in Trench 1 (Figure 4) and separating the Unit 3 syenite from Unit 1 monzonite in Trench 6 (Figure 8). A dominant fracture set does not accompany this fault direction, but major lineaments parallel to this trend are observed in airphotos.

A major fault direction that was previously not recognized trends between 035° AZ. and 045° AZ. with steep dips to the SE and NW. This fault set appears quite young and ranges from 1 m to several m in width. It is exposed in Trench 1 where it brecciates Unit 3 syenite over several meters and is also seen in Trenches 6, 8 and 9. The only outcropping of this fault trend is seen along L 0E and in Trench 2 (Figure 5) where it is exposed over a 1 m width and trends $045^{\circ}/80^{\circ}$ SE. Here it separates the altered and mineralized Unit 2 syenite from massive, unaltered monzonite. Shallow, overburden-filled depressions occur in various sites and are believed to be underlain by these NE-trending faults.

Another set that appears on air photos but seldom appears in outcrop is along a north-south direction. It appears as a creek/lineament just west of the "A Zone" outcrop between L 500E and L 600E. It intersects the 125° fault linear at L 400E, 315S but cannot be traced beyond it. Airphotos suggest that it reappears several hundred meters to the north. A fracture set trending 010° /vert. is seen in the "A Zone" outcrop.

- 6 -

Mineralization and Geochemistry

The purpose of the trenches was to expose mineralization in areas where anomalous gold, gold-copper and gold-arsenic anomalies were obtained in the 1988 soil survey. Since the samples were not analyzed until after the field season, the anomalies were not investigated prior to mobilization of the caterpillar in June, 1989.

Gold anomalies of 495 ppb and 370 ppb were obtained on L 100W at 425S and 450S, respectively. This is an area of cliffy outcrops and could only be chip sampled at surface (see Figure 3). Widespread, but low grade malachite mineralization is seen throughout the 145° /vert. fracture sets in the intensely altered syenite. Some quartz veins carrying chalcopyrite and ?chalcocite? occupy some of the fractures along with magnetite, chlorite, tremolite and traces of molybdenite. At the base of the cliff (450S) a shear zone filled with quartz, chlorite, tremolite, malachite and chalcocite over a 15 cm width assayed 2700 ppm Cu and 574 ppb Au. Aplite dykes appear to post-date the mineralization in this outcrop area, but they always seem to be nearby.

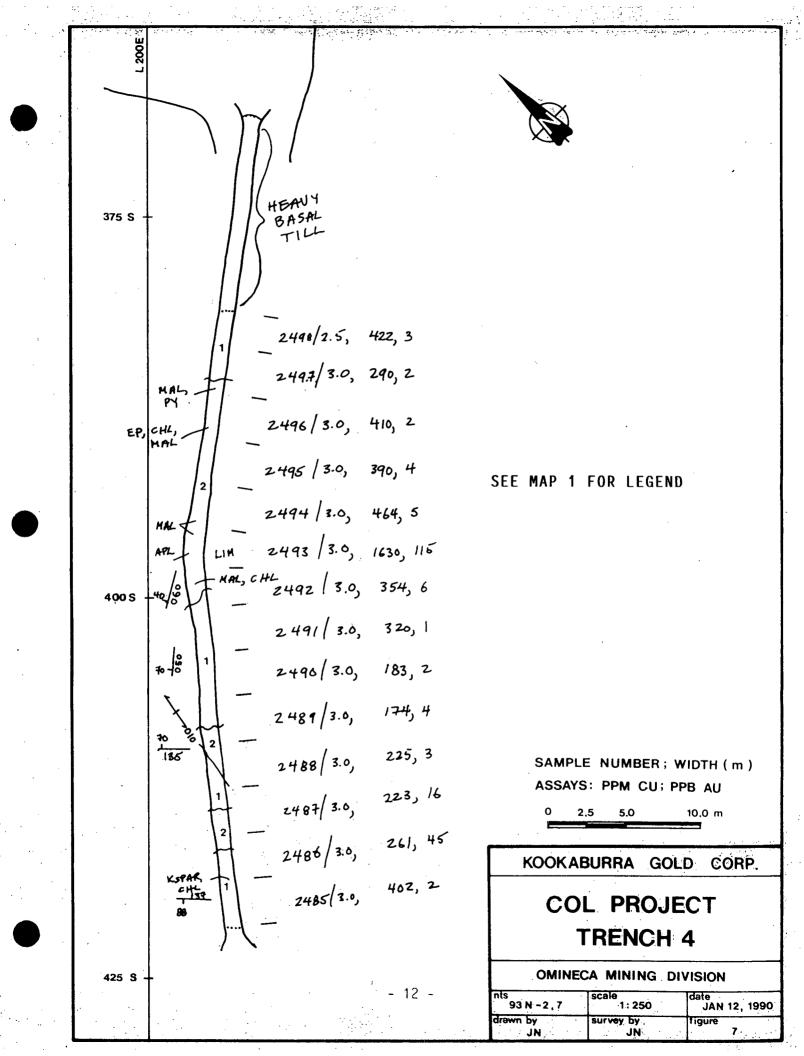
The soil geochem values obtained in 1988 seem to reflect bedrock (C horizon) values as indicated in the rock samples collected on that line (1900 ppm Cu and 280 ppb Au, maximum).

Trench 2 was located over a 200 ppb Au anomaly on L 00E, 350S. Chalcopyrite, bornite and malachite were observed on fractures trending $035^{\circ}/20SE$ and $140^{\circ}/86SW$. The mineralization and alteration seen in outcrop here is similar to that seen on L 100W, and the gold and copper values reached similar thresholds.

Unit 3 syenite is exposed in Trench 1 (Figure 4) and has been extensively brecciated due to faulting. Bornite, chalcopyrite, malachite and pyrite occurs with it, and the thresholds are slightly higher than in the previous two locations (up to 3900 ppm Cu and 400 ppb Au).

Trench 3 was located to test a 75 ppb and a 50 ppb Au anomaly on L 100E, 400S and L 100E, 425S, respectively. Only minor malachite and one narrow (5 cm) massive chalcopyrite/pyrite stringer was seen in the otherwise barren monzonite. A grab sample of the chalcopyrite (#2425) assayed 0.106 opt Au and 15% Cu. Maximum values for Cu and Au were 1530 ppm and 71 ppb, respectively, for Trench 3.

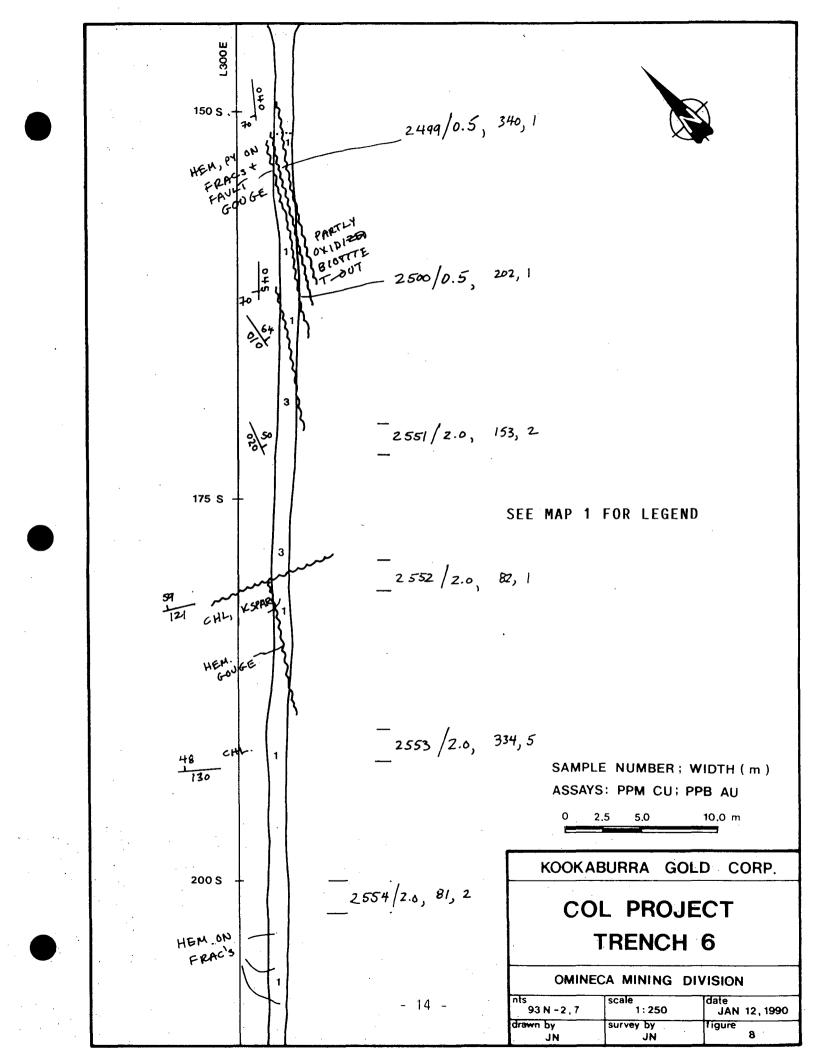
Just a few meters west and southwest of the trench outcrop numerous aplite and pegmatite dykes and irregular masses of the Unit 3 syenite. Chalcopyrite and malachite occur as fracture fillings as well as matrix filling along with chlorite, tremolite, pyrite and bornite in brecciated syenite and aplite. Grab samples of this material ran up to 1.55% Cu and 0.036 opt Au in sample number 2426.


A gold in soil anomaly of 70 ppb on L 200E, 375S was tested with Trench 4. Intermixed monzonite and syenite with little mineralization was observed. The analyses were generally low, but one 3.0 m width containing malachite and aplitic material ran 1630 ppm Cu and 115 ppb Au. The north end of the trench, where the anomalous soil sample originates, is underlain by up to 3 m of glacial overburden; the bottom is a very hard basal till admixed with syenite and monzonite clasts. This overburden thickness indicates that the gold in soil anomaly is transported down-ice, presumably from a near source to the WSW.

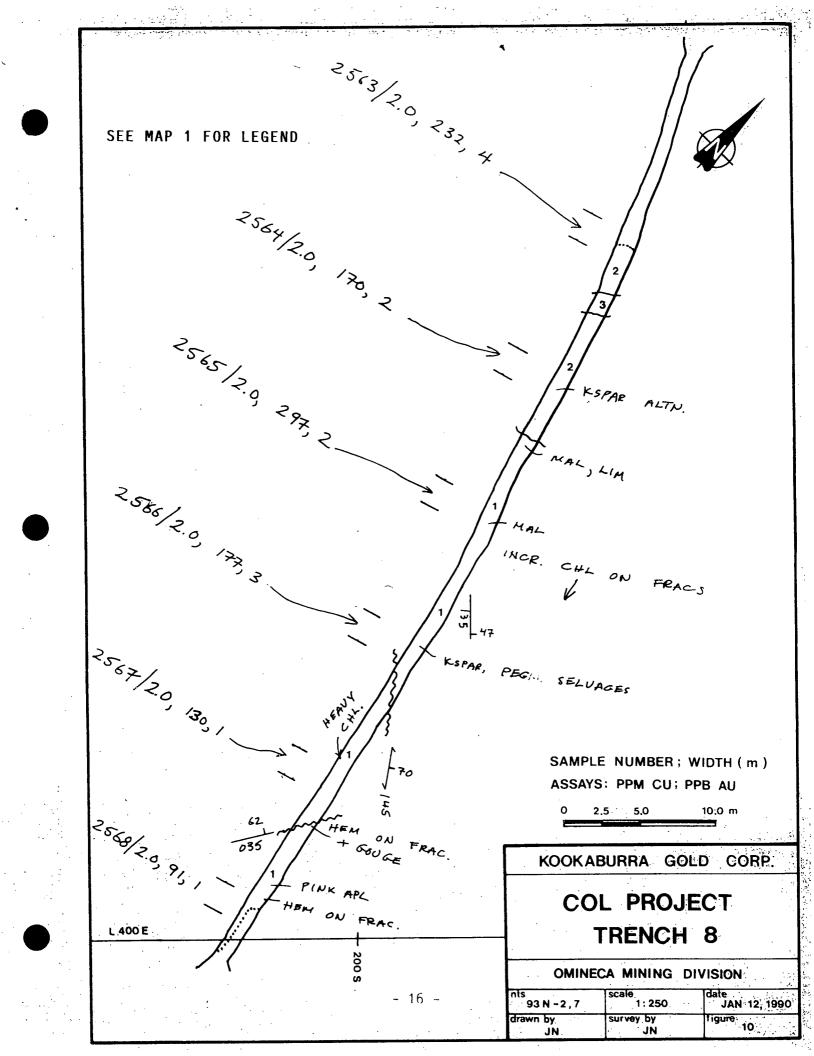
2468/3.0, 318, 110 400 S 2467/3.0, 283, 50 2 2466 / 3.0, 920, 249 2465/ 3.0, 374, 280 SEE MAP 1 FOR LEGEND 2464 / 3.0, 690, 207 2463 3.0, 880, 121 2 2462 / 3.0, 223, 4 24 61/ 3.0, 340, 69 2460/3.0, 830, 119 2459 3.0, 291, 21 425 S 2458 3.0, 495, 63 2457/3.0, 480, 76 2456/30, 720, 57 2455 / 3.0, 1900, 181 SAMPLE NUMBER; WIDTH (m) ASSAYS: PPM CU; PPB AU 2454 / 3.0, 1200, 120 10.0 m 5.0 2453 / 3.0, 890, 42 KOOKABURRA GOLD CORP. COL PROJECT Z452 / 3.0, 485, 43 ASSAY PLAN: L100W 2451 / 3.0, 510, 26 450 S OMINECA MINING DIVISION scale date 8 -93 N - 2,7 1:250 JAN 12, 1990 drawn by survey by igure JN JN

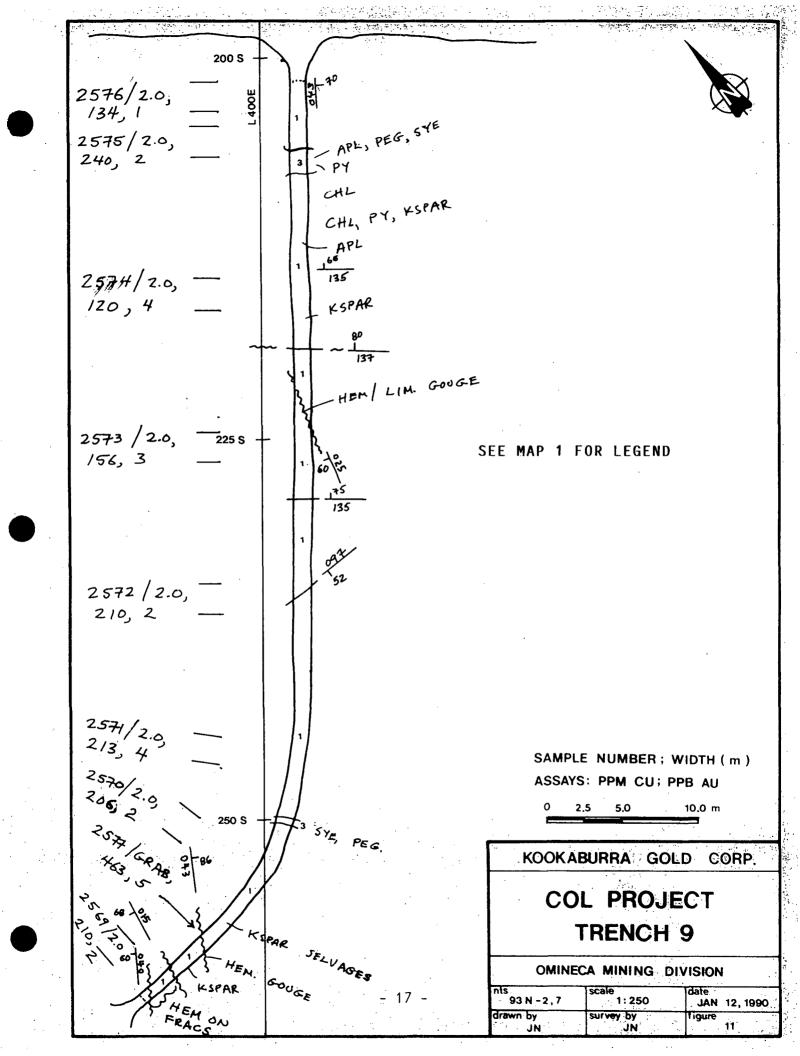
8 193 20 CPY, BO, HL 2436/3.4, 743, 40 KSPAR 23 2435/3.0, 257, 21 2434/3.0, 220, 3 350 S 2433/3.0, 502, 75 37.81 2432/3.0, 421, 15 2431/3.0, 402, 42 2430/3.0, 506, 10 85-0 2429/3.0, 463, 75 86 2428/3.0, 680, 90 130 2424 3.0, 830, 157 2423/3.0, 332, 127 2 375 S 2422/3.0, 321, 248 SEE MAP 1 FOR LEGEND 2421/3.0,710,287 SAMPLE NUMBER; WIDTH (m) MAL, LIM ASSAYS: PPM CU; PPB AU .2420/3.0, 314, 33 2.5 5.0 10,0 m 2419/3.0, 760, 62 KOOKABURRA GOLD CORP. 2418/3.0, 1100, 119 COL PROJECT **TRENCH 2** OMINECA MINING DIVISION nts 93 N - 2 , 7 10 date 1:250 JAN 12 1990 drawn by survey by igure JN JŇ

375 S 2450/3.0, 304, 3 2449/3.0,663,40 2448/3.0,283, 3 YSPAR AUTN. 2447/3.0, 172, 2 je je 20-05 2446 / 3.0, 1530, 16 CPH PY 2445/2.0, 283, 3 105 p4, KSPAR 3-13 2444 /3.0, 177, 6 87 LIMT LIM ¥SPAR 2443/3.0., 245, 4 g7 MAL 400 S · 2442/3.0, 680, 43 2441/3.0, 700, 40 85 KSPAR, 150 CHL 2440/3.0, 670, 18 59 - 6 MAL 2439/3.0, 442, 17 ×100 2438/3.0, 540, 71 (72 KSPHRI CHUS EP 2437/3.0, 546,42 LIM SAMPLE NUMBER; WIDTH (m) ASSAYS: PPM CU; PPB AU 2,5 0 5.0 10.0 m SEE MAP 1 FOR LEGEND KOOKABURRA GOLD CORP. 425 S COL PROJECT **TRENCH 3** OMINECA MINING DIVISION 100 E scale 1 : 250 nts 93 N - 2, 7 - 11 date JAN 12, 1990 _ drawn by survey by igure 6 JN JN



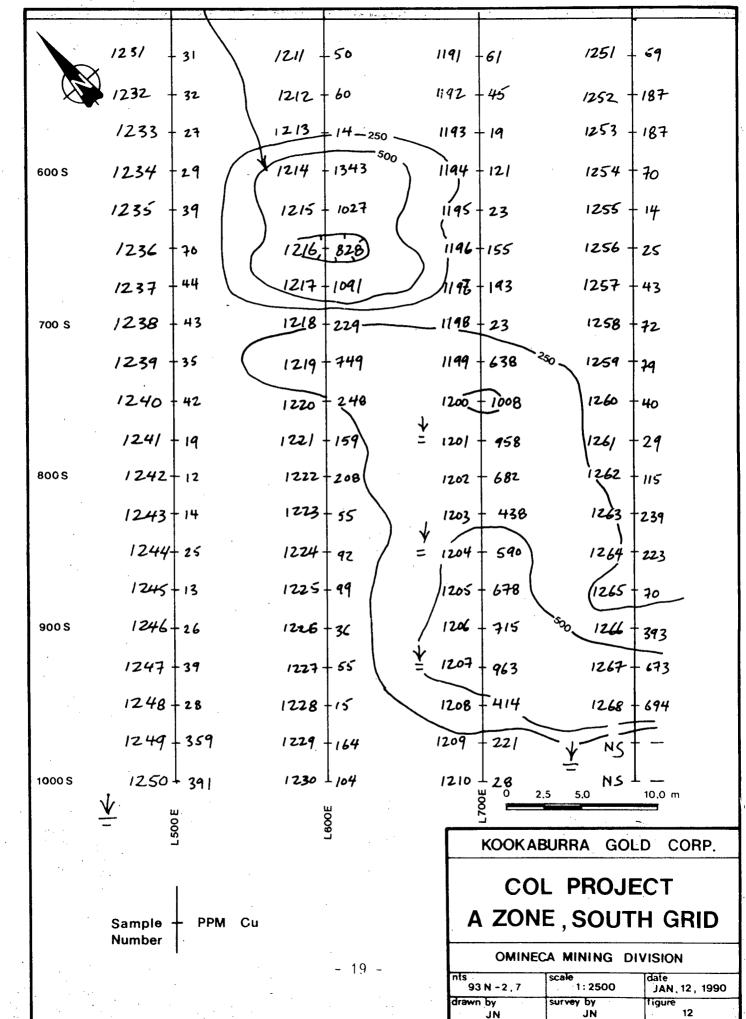
Trench 5 was excavated to test a 120 ppb Au anomaly. No bedrock was reached, and it appears that the anomaly is mechanically transported in talus and colluvium from a source near L 00E, 255-75S.


A series of low threshold Au anomalies (20, 25, 45 ppb) lie along L 300E from 175S to 225S; arsenic in soil anomalies of 38 ppm and 52 ppm occur at L 300E, 125S and L 300E, 275S, respectively. The rock in Trenches 6 and 7 revealed no Cu mineralization, and the assays for Au were very low (8 ppb maximum). The As values were elevated near the intersection of the two trenches where traces of disseminated pyrite were noted. Values of 32, 73, 150 and 175 ppm As were obtained. A narrow fault zone occurs at the north end of Trench 6 (Figure 8) and is filled with a red hematitic gouge. Oxidized biotite is seen in the wallrock monzonite. This fault, which trends $040^{\circ}/70^{\circ}$ NW, separates the monzonite from the Unit 3 syenite. Chlorite alterations is more prevalent in Trenches 6 and 7 along with minor potassic alteration and disseminated pyrite.


Trenches 8 and 9 tested the source of anomalous As values of 124 ppm, 83 ppm and 131 ppm along L 400E, 150S, 175S and 200S, respectively, and a gold in soil anomaly of 180 ppb at L 400E, 200S. Again, Cu and Au values were quite low (463 ppm Cu and 5 ppb Au maximum). The As values were also quite low suggesting that these anomalies are transported from a source to the SW, perhaps near Trenches 6 and 7. Monzonite is the dominant rock type again in Trenches 8 and 9; chlorite is common on fractures. Hematite is common as gouge and fracture coatings along a trend from $025^{\circ}/60^{\circ}$ NW to $043^{\circ}/86^{\circ}$ SE. The two highest As in soil anomalies occur on L 400E, 275S and L 400E, 300S, just downslope from the south end of Trench 9, but select samples of hematitic material yielded only up to 27 ppm As while the soils ran 178 ppm As and 203 ppm As. The anomalies remain unexplained.

An excavator site was located on L 500E to test a 90 ppb Au in soil anomaly; however, the amount of glacial-fluvial material present suggested that this was a transported anomaly, so it was not trenched.

300E M ξ 524, 350, (#1) Ś 00 2560/2.0, 49, 147, 2558/2.0, 132, 200 S. N, O, 2 562 / 2.0, 2555/2.0, 2559/2.0 2561 5 NW/SE FRACS-CHLI INCR. CHL 62 J 115 CHL ۴٦ 035 01/2 CHL TU017 60 IN/HEN 2556/20, 142, 1 2557/2.0, 216, 2 225 S SEE MAP 1 EOR LEGEND SAMPLE NUMBER; WIDTH (m) ASSAYS: PPM CU; PPB AU 2.5 5.0 10,0 m. 0 KOOKABURRA GOLD CORP. COL PROJECT **TRENCH 7** OMINECA MINING DIVISION date JAN 12, 1990 nts 93 N - 2 , 7 15 scale 1:250 drawn by survey by igure 9 JN JN


A ZONE - SOUTH GRID (Figure 12)

A follow-up survey of a few copper in soil anomalies obtained by **Falconbridge** in 1970, topographically below the "A Zoné", where roughly 2 million tons of 0.6% Cu are drill indicated, was done in late June, 1989. Four lines were extended from 500 S to 1000 S to cover the anomalies. Seventy-eight soil samples were collected and analyzed for Au and 31 element ICP.

Kookaburra's survey confirmed the previous Cu anomalies obtaining results as high as 1343 ppm. A broad north-south anomaly (greater than 250 ppm), 150 m wide by 500 m long, is underlain by slow draining, swampy ground; many of the samples contained high organic content (A horizon) and required the -40 mesh fraction to be sampled. No outcrop was observed here.

This area was believed by Falconbridge to be caused by leakage from the "A Zone" which outcrops just 200 m north of the anomaly. The north-south fault/creek described earlier cuts the "A Zone" and debouches into this anomalous area, and it may have served as the transporting mechanism. The IP survey performed by Falconbridge in 1971 yielded only a weak metal factor anomaly in this vicinity, based primarily on low resistivity values.

The exact cause of the anomaly is not yet understood; if a source underneath it is postulated, then a retest by modern IP should be carried out, although the previous survey yielded only low frequency effect responses.

SOUTHEAST GRID

From the work done by Kookaburra in 1988, based on airphoto analysis and reinterpretation of drillcore, it was felt that the mineralization explored by Falconbridge, on the "A Zone" and further to the west, is satellitic and that the main target area lies to the southeast. Some of the late drilling by Falconbridge intersected intensely kaolinized and locally brecciated rock veined with ankerite, siderite and minor secondary biotite 500 m to 1000 m southeast of the A Zone. This is interpreted to be a late-stage, barren breccia pipe and that better grade and larger size mineralization would be peripheral to this feature; lineaments observed on aerial photographs indicate a conjugate radial-explosive/concentric-collapse phenomenon centered about this altered zone. (See Nebocat & Rotherham, 1988)

As a result of the above observations and interpretation, it was decided to extend the existing grid southeast, into a previously untested and largely overburden covered area to test this hypothesis using IP and soil geochemistry, where possible. A total of 27.2 km of line was cut to IP standards of which 22.4 km was tested with IP using a pole-dipole configuration.

IP Survey

The results of the 1989 IP survey are discussed in an accompanying report by John Lloyd. The author of this report will not attempt to interpret the raw data, but reference to the IP results will be made in the following discussion of geology and geochemistry.

Geology

The Southeast Grid, Lines 700E to 2400 E, was geologically mapped at a scale of 1:2500, and the results are shown on **Map 2**. Not all lines were mapped south of tie-line 500 N, hence, gaps in geographical features are present, though no outcrops are envisaged in this largely overburden covered part of the grid. Also, the absence of certain claim I.D. posts is a result of not having encountered them during mapping and in no way suggests that they are not present.

Outcrop was observed only east and north from the 500 N tie-line. Topography strikes roughly east-west and becomes steeper north of the common claim line between Col #1 and Col #2, approximately. Variations of syenite and later apophyses of syenite and aplitic dykes are the dominant lithologies (Unit 4). Compositionally they range from medium grained hornblende \pm biotite monzonite, syenite, porphyritic syenite, fine grained biotite syenite and aplitic syenitic dykes with local pegmatitic phases. Epidote, plus chlorite, and tremolite in quartz stringers, are found locally.

A pyritic hornblende diorite outcrops between L 1700E and L 2000E near the east end of the grid. About 0.5% to 1% disseminated and fracture filled pyrite is seen in subcrop; the rock, where pyritic, is somewhat recessive weathering, and the soil admixed with these occurrences is slightly orange-brown in colour. Near the contact with the Unit 4 syenite the diorite is biotitic rather than hornblende bearing. The biotitie is quite foliated and suggestive of a contact/gradational effect caused by the syenite. Dykes of the syenite, to several centimeters in width, cut the diorite locally. On L 1900E, 915N occurs one small outcrop of a dark green amphibolite. Subhedral crystals of ?actinolite?, to 10 cm in length, occur as intergrowths with mm size crystals of the same. It appears to be monomineralic, and minor limonite coats some of the crystals. This appears to be an isolated pegmatite rather than a skarn as it seems to be surrounded by intrusive rocks.

An old, moss-covered talus fan comprised exclusively of andesitic volcanic debris is found on the grid extending to about 225N between L 1400E and L 1500E. The fan projects northward to its source and is quite juvenile from about L 1100E, 550N.

Moderate to intense propylitic alteration is abundant in the volcanics (Unit 1) and no less than 50% of the talus material contains some epidote. Epidote is the most abundant alteration mineral, followed by albite (saussarite), quartz and magnetite; the latter two minerals occur as cores to epidote/albite envelopes. A fleshy coloured mineral coats fractures throughout; it is nonreactive to acid and locally forms radiating crystal masses. It is probably a zeolite mineral-perhaps laumontite.

Chalcopyrite, limonite, malachite, bornite and lesser neotocite, azurite and chalcocite are seen as vein/fracture fillings locally. Again, as in the syenites, pyrite is scarce. Select samples taken from chalcopyrite/bornite/chalcocite vein material assayed as high as 3.34% Cu, 0.106 opt Au and 1.6 opt (56.6 ppm) Ag.

Only one outcrop of the Takla Volcanics (Unit 1) outcrops on the grid, at L 1100E, 900N. Minor epidote, albite, limonite and potassic alteration was noted, but no economic mineralization was seen.

Geochemistry

217 soil and silt samples and 3 rock samples were collected on the grid. All samples were analyzed for 31 elements by ICP and for Au.

The purpose of the soil survey was to test portions of the grid underlain by IP anomalies. The northern tie-line, 500N, was sampled from L 2400E to L 1000E in late August because it transected a broad east-west trending IP anomaly. The extended lines (L 1100E to L 2100E) were sampled in October, 1989 partly to test IP anomalies and partly because the terrain is steeper and overburden is not as thick. Lines 1300E and 1400E tested an IP anomaly straddling these lines just north of the baseline. Not all of the grid was sampled because the overburden was believed to be too thick; however, a fairly good response, particularly in Cu, was obtained.

Interpretation

Of the 32 elements tested, the only ones that seemed to have any significant presence and/or correlation were Cu, Au and As.

Copper (Map 4)

Elevated levels in Cu (greater than 200 ppm) are found throughout much of the grid sampled thus far. The amount of overburden in the more subdued terrain was at first believed to be quite thick, but the response of Cu in soils was relatively good. Anomalous values ranging from 250 ppm (thresholds determined by inspection) to 740 ppm are common; one 3855 ppm Cu value stands out above the rest of the population.

A significant feature is observed on L 2100E where a 400 m long zone yielded values from 172 ppm to 731 ppm Cu. The anomaly occurs just over 200 m ESE of the margin of a broad IP anomaly of similar dimensions found on L 1900E (see IP report by John Lloyd). This "displaced" anomaly is most likely caused by west-to-east glacial transport rather than down-slope dispersion because the topography is not steep here and it also strikes E-W. A similar feature is found on L 1300E between 175N and 500N. The underlying IP anomaly here yielded only weak to moderate chargeability values, yet copper in soil values range from 210 ppm to 535 ppm. Again, a larger and stronger IP chargeability anomaly occurs on lines 900E and 1000E from 100N to 400N, and this could be the source of the Cu anomalies. Soil samples collected over this IP anomaly in 1988 yielded only spotty or narrow linear Cu anomalies.

The IP anomaly on L 1300E and L 1400E, extending from the baseline to about 200N, yielded no significant Cu values, suggesting a masking by overburden derived from a non-mineralized source to the west.

Sandy, cobble-filled soil is found on L 1300E and L 1400E staddling the baseline. This area is underlain by glacial-lacustrine terraces which mask the "alpine" glacial deposits underlying it and found to the north and east. Copper values drop off drastically in this material: 19 ppm - 33 ppm.

Gold (Map 5)

Anomalous Au (15 ppb) occurs throughout the grid but not necessarily coincident with the anomalous Cu samples. Values are generally lower than those obtained from the 1988 grid to the NW; this may be a function of thicker overburden on the southeast grid inhibiting migration of Au in particulate form. The highest value obtained was 60 ppb, and it is coincident with the 3855 ppm Cu anomaly; a 40 ppb Au value occurs at the next station south of this site.

Arsenic (Map 6)

Anomalous As values (30 ppb) do not seem to correspond as well with Cu as they do with Au. Although the values are generally lower than those obtained on the 1988 soil grid, there are considerably more of them.

One interesting set occurs along the 500N tie-line between L 2250E and L 2400E: seven consecutive samples run from 20 ppm As to 93 ppm As. Two silt samples, taken at the tie-line and 500 meters upstream, ran 41 ppm and 62 ppm, respectively. The IP survey shows a strong E-W discontinuity just south from here, and a major fault may underly this area.

Elsewhere, the As anomalies are mostly scattered single station sites, some occur with anomalous Au, anomalous Cu and some by themselves. For the most part they occur within or near the IP anomalies.

Field Procedures

Soil samples collected on the A Zone-South and Southeast grids were taken from depths ranging from 10 cm to 70 cm. The B-horizon was sampled wherever possible, but the A-horizon had to be sampled in those areas where poor drainage in gentle topography dictated (note in Appendix II, the 40 mesh samples generally indicate A-horizon). The A-horizon is generally black to grey and contains abundant water-saturated humus. Fine, black loam and clay-rich silt material is admixed with the organic mulch.

The transition to B-horizon is marked by an increase in sand-size material and the presence of weathered biotite in areas presumably underlain by syenite; the soil is generally a medium to dark grey colour.

C-horizon is found on the steeper slopes on and near outcrops in the northern parts of the southeast grid.

Rusty brown sand-, gravel- and cobble-bearing, glacial-lacustrine deposits mask the more mature soil developed on the grids. This material was observed just north of the baseline on L 1300E and L 1400E, and extending further south.

The soil and silt samples were placed in kraft paper envelopes using a stainless steel trowel. The soil was exposed using either a mattock or shovel. Rock samples were chipped from outcrops or talus debris with a hammer and/or moil and placed in plastic bags.

All the soil, silt and rock samples were sent to Min-En Labs, North Vancouver, B.C. for preparation and analysis, as described in Appendix III.

CONCLUSIONS

Mapping the trenches and surrounding area has revealed a fairly complex system of faults. At least 4 different sets are present trending c. $125^{\circ}AZ$, c. $145^{\circ}AZ$, $040^{\circ}-045^{\circ}AZ$, and north-south to c. $010^{\circ}AZ$; the latter two are post-mineral.

Sampling and mapping in the trenches has revealed widespread by generally low grade Cu and Au mineralization, but narrow, higher grade material exists. The mineralization is generally confined to a unidirectional fracture set in the syenite and monzonite trending roughly NW-SE.

The IP survey done on the Southeast Grid has revealed a new zone of chargeability anomalies within an area roughly 800 m by 1700 m. The low amplitude responses may be due to the lack of a pyritic aureole in this low sulphide system.

Soil sampling performed on the Southeast Grid has revealed significant Cu, Au and As values largely within the area of the IP anomalies. The Cu anomalies appear to be somewhat displaced from the IP anomalies which suggests some glacial transport from west to east.

Mapping and prospecting on and north of the grid has revealed moderate to intense propylitic alteration in the Takla Volcanics in contact with the syenite, monzonite and diorite of the Hogem Batholith.

RECOMMENDATIONS

- 1. The portions of the Southeast Grid not soil sampled and geologically mapped should be completed.
- 2. The IP anomalies obtained in 1989 should be drill tested with no less than 600 m of NQ core. Five, or more, short (100 m 150 m) angle holes should be sited between L 900E and L 1900E to intercept the highest chargeability anomalies first.
- 3. Pending the results of the first drill program, fill-in drilling is recommended for the remaining IP anomalies.
- 4. Backhoe trenching is not recommended. Although good copper in soil anomalies were obtained, it is felt that overburden overlying the IP anomalies is probably at least a few metres thick.

REFERENCES

Band, R.B., 1971, Geochemical Report on the Chuchi Group -- Col Claims: Assessment Report #2933, Ministry of Energy, Mines & Petroleum Resources.

Campbell, C., 1988, Summary Report of Col Copper-Gold Property: unpublished report.

1986, Lithogeochemical Survey of the Kael #2 Mineral Claim: Assessment Report #15,423, Ministry of Energy, Mines & Petroleum Resources.

Elliott, I.L., 1971, Geochemical Report on the Chuchi Claims: Assessment Report #2932, Ministry of Energy, Mines & Petroleum Resources.

Garnett, J.A., 1978, Geology and Mineral Occurrences of the Southern Hogem Batholith: Bulletin 70, Ministry of Mines and Petroleum Resources.

Harper, G., 1972, Quarterly Report (#3-72) Describing Work Undertaken on the Optioned Col Claims Between the 1st May and the 31st July, 1972 and Also Being a Final Report on Work Completed, Falconbridge Nickel Mines Ltd., unpublished report.

_____1972, Annual Report of Progress During 1971 on the Col Claims, Chuchi Lake Option, Falconbridge Nickel Mines Ltd., unpublished report.

Harper, G., and Brown, D.H., 1971, Reort on Induced Polarization and Resistivity Survey on the Chuchi Mineral Claims: Assessment Report #3384, Ministry of Energy, Mines & Petroleum Resources.

1971, Report on Magnetometer Survey on Lake Group Mineral Claims: Assessment Report #3383, Ministry of Energy, Mines & Petroleum Resources.

Jenkins, D.M., 1988, Geochemical Program Supplement to the Geological Report on the Col Claim Group (1988): unpublished engineering report.

_____1988, Geological Report on the Col Claim Group: unpublished engineering report.

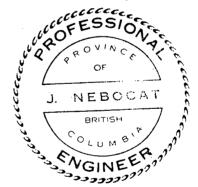
Nebocat, J. & Rotherham, D.C., 1988, Geochemical, Geological & Physical Work Report, Col Claim Group: Assessment Report #18123.

STATEMENT OF COSTS

Labour

Labour	
John Nebocat: June 21-30, July 1-4, 13-15; Aug. 27-29; Oct. 4-12; Nov. 8, 9, 17, 23, 1989; Jan. 4-6, 10-12, 1990. 39 days @ \$177.27/day	\$ 6,913.53
Bruce Anderson: June 21-30; July 1-4, 1989. 14 days @ \$120.00/day	1,680.00
Eldon Buck: June 25-30; July 1, 1989. 7 days @ \$90.00/day	630.00
Analyses	
84 rocks for Cu, Au geochem; 29 rocks for Cu, Au, As geochem; 3 rocks for Au & 31 element ICP geochem; 4 rocks for Au assay; 217 soils for Au & 31 element ICP geochem; 78 soils for Au & 6 element ICP geochem.	
costs: rock geochem prep-\$3.00 (1 assay ton); Au geochem\$9.00; Cu geochem\$2.50; As geochem \$3.95; Au assay\$8.50; Soil geochem prep\$1.00; Au wet analysis\$4.75; 31 element ICP\$7.00; misc. fax and freight charges\$203.05.	5,727.55
Line-Cutting	
27.2 kilometers: July 17-30; Sept. 19-22, 1989	16,438.00
Geophysics	
22.4 kilometers of induced polarization survey: July 31, Aug. 1–10, Sept. 24–26, 1989 Report Preparation: Dec. 4, 5, 6, 1989	20,846.22 2,753.75
Physical Work	
D7 caterpillar: 21.5 hours @ \$80/hour	1,720.00
June 21-23, 1989 Drott 40 excavator: 52 hours @ \$90/hour + 820 1 diesel @ \$0.38/liter. June 24-28, 1989	4,992.00
Lowbed transport: 23 hours @ \$75.50/hour (avg) June 21, 24, 29, 1989	1,731.75
Camp Supplies	1,392.94
Food & Accommodations	
\$25.00/man-day x 50 man-days	1,250.00
4 x 4 Charges	
29 days @ \$50/day	1,450.00
Fuel, Oil & Service	827.73
TOTAL:	\$ 68,353.47

STATEMENT OF QUALIFICATIONS


I, John Nebocat, residing at 13 - 230 West 14th Street, North Vancouver, British Columbia, declare that:

- 1. I am a geologist and Regional Manager in the employ of Kookaburra Gold Corporation, with an office at 203 - 698 Seymour Street, Vancouver, British Columbia.
- 2. I obtained a technical diploma at the British Columbia Institute of Technology in 1974 and subsequently graduated with a B.Sc. in Geological Engineering from the Montana College of Mineral Science & Technology, Butte, Montana, in 1984.
- 3. I am a registered Professional Engineer with the Association of Professional Engineers of British Columbia.
- 4. I have been employed in mineral exploration and earth science studies with industry and government since 1973.

- 28 -

5. I carried out and supervised parts of the work described within this report.

John Nebocat, P.Eng. Regional Manager, Kookaburra Gold Corp.

APPENDIX I

Rock Sample Results

LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAVERS - ANALYSTS - GEOCHEVISTS VANCOUVER OFFICE: 705 WEST, 15TH STREET, NORTH VANCOUVER, B.C. CANADA: V7M 117 TELEPHONE (604) 980-5814 OR (604) 988-TELEX, VIA U.S.A. 7601067 • FAX (604) 980-1

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Assay Certificate

9V-1356-RA1

Company: KOOKABURRA GOLD Project: COL Attn: JOHN NEBOCAT Date: OCT=22-8 Copy I. KOOKABURRA GOLD, VANCOUVER, B.C.

He hereby certify the following Assay of 1 ROCK samples submitted OCT-16-89 by JOHN NEBOCAT.

Sample AU AU Number OZ/TON

2631

- 30 -Certified by Raimab

MEN-EN LABORATORIES

	Ò	an an a' the state of the state							erfi startigen			ile Charles and the					n de contempo			<u></u>				in state					-
COMP: KOOK/ PROJ: COL ATTN: JOHN	-								705 \	WEST 1	5TH ST 604)98	ABS 1., NOR 30-5814	TH VA	NCOUVE 604) 98	ER, B. 38-452	C. V71 4	M 1T2			,					ROCK	GEOC	DA" Hem :	TE: 0 * (
SAMPLE NUMBER 2630 2631 2632	AG PPM 4.0 56.6 30.1	AL PPM P 17060 12960 18330	AS B PM PPM 7 1 8 1 8 1 8 1	BA PPM 68 18 28	BE PPM 1.1 .8 1.0	BI PPM 1 1 1	CA PPM 22400 17120 10260	CD PPM .1 .1 .1	CO PPM 66 14 42	CU PPM 5027 33451 16585	27060 26570 40190	E K <u>4 PPM</u> 0 460 0 280 0 830	LI <u>PPM</u> 4 3 13	MG PPM 4580 2770 13450	MN PPM 435 319 527	MO PPM 4 6	NA PPM 170 230 350	NI P PPM PPM 7 1160 5 1290 15 1630	PB PPM 14 62 49	SB PPM 1 30 9	SR PPM 1 140 143 67	1	U 2PM 1 1 5: 1 60 1 98	V PPM 3.9 6.0 8.8	ZN PPM F 42 33 69	GA PM P 1 2	2	1 11	R A M PP 2 1 8 280 9 14
																							•						
														I.							-								
I (A)																,							•						
1																						,							
																							-						
																					1								
																						,							
									<u>.</u>								<u>_</u>												

			ISTS IN MINERAL			705 WEST NORTH VAN TELEPHON TELEX: VIA TIMMINS 33 EAST IRC P.O. BOX 86 TIMMINS, O	ANCOUVER OFFICE: 55 WEST 15TH STREET DRTH VANCOUVER, B.C. CANADA V7N ELEPHONE (604) 980-58 14 OR (604) 9 ELEX: VIA U.S.A. 760 1067 • FAX (604) 9 IMMINS OFFICE: 2 EAST IROQUOIS ROAD D. DOX 267 MMINS, ONTARIO CANADA P4N 7G7 ELEPHONE: (705) 264-9996					
•	Geo	chemical	Analy	sis C	erti	ficat	<u>e</u>	98-	-0630-RG			
	Proje	ny: KOOKABURRA ct: COL J.NEBOCAT	A GOLD			Copy 1. KOOK	IBURRA GOLD,		JUL-10 ER, B.C.			
	He he submi	reby certify tted JUL-04-8	the follow 9 by J.NEB(ing Geocl DC A T.	nemical	Analysi	s of 1	ROCK	samples			
	Sample Number		CU PPM	AUX PPB	• • • • • • • • • • • • • • • • • • •	. . .		· · ·				
	2578	n na mangangangan kanggan sa sang mangangan kang mangangan kang mangangan kang mangangan kang mangangan kang ma	24000	152		2 22-22 2222222222222222222222222222222	******		and a description of the second s			
	en e		· .						,			
					• • • • • • • • • • • • • • • • • • •							
		· . · ·										
		· · · · · · · · · · · · · · · · · · ·										
			•									
					·····							
· .												
. · · · ·				· · · · · · · · · · · · · · · · · · ·								
				· · · · · · · · · · · · · · · · · · ·								
	* 1	ASSAY TON	,									
	⊥ .	NOT I UN		-	32 -	\mathcal{A}		/				
				Certif	ied by_	Cin	Ana	h				
						MIN	-EN LAI	BORATO	DRIES			

1

1

ſ

•

ł 1 1

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS - ASSAYERS - ANALYSTS - GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1 TELEPHONE (604) 980-5814 OR (604) 988 TELEX: VIA U.S.A. 7601067 FAX (604) 980

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

		Cert	ificate		9V-0623-RA
	Company: KOOKABUR Project: COL Attn: J.NEBOCAT	ra Gold		Copy 1, KOOKABURRA GO	Date: JUL-15- D, VANCOUVER, B.C.
	He hereby certify submitted JUN-30-			of 2 RDCK samples	
	Sample Number	AU G/TONNE	AŬ Oz/TON		
	2425 2426	3.52 1.24			
× •	an a sha ka na ann a				···;
n ann a Nà A			••••••••••••••••••••••••••••••••••••••		
	· · · · · · · · · · · · · · ·				
					,
	· · · · · · · · · · · · · · · · · · ·				
			- 33		
			- 55	R	/
			Certifi	ed by Our	narb
			الم العربي الم		ABORATORIES
				11.LIN-E.N.L.	ndrenh i Guited

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

VANCOUVER OFFICE: 705 WEST 15TH STREET

NORTH VANCOUVER, B.C. CANADA V7M TELEPHONE (604) 980-5814 OR (604) 98 TELEX: VIA U.S.A. 7601067 • FAX (604) 98

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Geochemical Analysis Certificate 9V-0623-RG1

Company: KOOKABURRA	GOLD
Project: COL	
Attn: J.NEBOCAT	

Date: JUL-15-Copy 1. KOOKABURRA, VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 30 ROCKS sample submitted JUN-30-89 by J.NEBOCAT.

Sample	CU */	AU-FIRE	AS	
Number	PPM	PPB	PPM	
2425	150000	3000	. 7	
2426	15500	1120	2	
2427	400	95	1	
2428	680	90	1	
2429	463	75	6	a di seconda
2430	506	10	11	
2431	402	42	1	•
2432	421	15	1	
2433	502	75	3	
2434	220	3	1	
2435	257	21	1	
2436	743	40	2	
2437	546	42	1	
2438	540	71	1	
2439	442	17	1	
2440	670	18	1	
2441	700	40	4	
2442	680	43	3	
2443	245	4	1	
2444	177	5	1	
2445	283	3	12	
2446	1530	16	4	
2447	172	2	1	
2448	283	1	1	
2449	663	40	4	
2450	304	3	3	
2481	1285	400	15	
2482	900	15	35	
2483	584	50	34	
2484	1000	65	31	

*1 assay ton.

- 34 -Certified by

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

VANCOUVER OFFICE: VANCOVER B.C. CANADA V7M 1 TELEPHONE (604) 980-5814 OR (604) 986 TELEX: VIA U.S.A. 7601067 • FAX (604) 980 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD

P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Geochemical Analysis Certificate 9V-0623-RG2

Company: KOOKABURRA GOLD Project: COL Attn: J.NEBOCAT

Date: JUL-15-(Copy 1. KOOKABURRA, VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 30 ROCK samples submitted JUN-30-89 by J.NEBOCAT.

Sample	ΓΙΙ * Δ	U-FIRE	AS	
Number	PPM	PPB	PPM	
2485	402		3	алара жала жанара жала калан калан жанар жанар жанар жанар жанар жанар жанар жанар калар жанар жанар жанар жанар Жанар жанар жанар жанар жанар калан калар жанар
2486	261	45	2	
2487	223	16	3	
2488	225	3	5	a ser a ser a ser a
2489	174	4	64	
2490	183	2	2	
2491	320	1	2	
2492	354	6	3	
2493	1630	115	5	
2494	464	5	2	
2495	390	4	2 3	
2496	410	2	3	
2497	29 0	2	3	
2498	422	3	3	
2499	340	1	14	
2500	202	1	37	
2551	153	2	4	
2552	82	1	5	
2553	334	5	7	
2554	81	2	6	
2555	114	3	25	
2556	142	1	175	
2557	216	2	150	
2558	132	8	4	
2559	147	5	3	
2560	49	6	73	
2561	524	4	12	
2562	350	3	32	
2563	232	4	26	
2564	170	2	7	

*1 assay ton

- 35 -Certified by

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1 TELEPHONE (604) 980-5814 OR (604) 986 TELEX: VIA U.S.A. 7601067 • FAX (604) 980 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Geochemical Analysis Certificate 9V-0623-RG3

Company: KOOKABURRA GOLD Project: COL Attn: J.NEBOCAT Date: JUL-15-8 Copy 1. KDOKABURRA, VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 13 ROCK samples submitted JUN-30-89 by J.NEBOCAT.

Sample Number	CU *A PPM	U-FIRE PPB	AS PPM	
2565	297	2	5	
2566	177	3	3	
2567	130	. 1	3	
2568	91	1	3	
2569	210	2	27	
i an			5	
2570	206	2	5	~
2571	213	4	2	
2572	210	2	1	
2573	156	3	2	, , , , , , , , , , , , , , , , , , ,
2574	120	4	2	
2575	240	2	2	
2576	134	1	3	
2577	463	5	15	

*1 assay ton.

- 36 -Certified by

.

1

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1 TELEPHONE (604) 980-5814 OR (604) 986 TELEX: VIA U.S.A. 7601067 • FAX (604) 980 TIMMINS OFFICE: 33 EAST IROQUOIS ROAD

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

	Assay	<u>Certi</u>	ficate				97-0	573-R
Project:	KOOKABURI COL J.NEBOCAT				Copy 1.	KOOKABURRA GOLD,	Date: • VANCOUVER,	JUL-04 B.C.
He hereby submitted	<i>y certify</i> d JUN-29-	89 by J.NI	owing Assay	y of 1	ROCK			
Sample Number		AU G/TONNE	AU					
2417		4.25	. 124			PALITAR BANG (1999) Alter taken and an and a second second second second second second second second second sec		
		<u></u>						<u>_</u>
		۲. 		an anna mar, agus tang mang agus an	de ana gast terr ann gart free ,			
								-
				•	** *** *** *** *** ***		*** *** *** *** ***	
		20 100 100 100 100 100 100 100 100 100 1		an, 1968 ales any Co this king at	لحد عدد درور حدد زدور زرب طحه	متع منه ماه وي الله منه الله منه وي الله منه وي	سند ایت بلی پری سر بی سے سے	مرود ماند. مود مرود مرد و
	دو ماده چند عند وند بود ورو اینو ورو هوی هوی هوی و	nada mada kalika mija kana darik dalah kalik kalik kalik mena yang d		میں خود الجز سے دادہ میں الجز کا ہوت	1011 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	معد سب وجد دنور پری مرد کند خدو بدن کری مرد		
			-	37 -		$Q \sim$	/	
			Certif	ied by	14	Su pri	nb	
						MIN-EN LA	BORATOR	IES

MNER at • ENVIRONMENTS LABORATORIES

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS · ASSAYERS · ANALYSTS · GEOCHEMISTS

1.179

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, BC. CANADA V7M 1 TELEPHONE (604) 980-5814 OR (604) 988 TELEX: VIA U.S.A. 7601067 • FAX (604) 980

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7 TELEPHONE: (705) 264-9996

Geochemical Analysis Certificate	9V-0573-RG1
Company: KOOKABURRA GOLD	Date: JUL-04-8
Project: COL	ほう あんせんめい シストレントウ アリシス アドシア・

	1. S.	205.24	121		an the c	
Com	nanv	2 X 6	NKY I	RRR	GC	ી. ઉ
					22	
Pro	ject	: C D			A. 1.	3
A				×л т . 🕺	1999 (A. 1997)	음이가 말하는
Att	n ;	ີ ປຸ.	NEBOC	កា		4 6

Date: JUL-04-8 Copy 1. KOOKABURRA GOLD, VANCOUVER, B.C.

He hereby certify the following Geochemical Analysis of 30 ROCK samples submitted JUN-29-89 by J.NEBOCAT.

Sample Number	CÚ PPM	AU-FIRE PPB			
2415	2700	574			
2416	610	87			
2417 2418	9700 1100	2850 119		k · · · ,	
	760		an a tana a ta	ی از میک این میلومون عمون و و افزا ایرو ایند ایند. ا	د. میں میں ایک ایک ایک ایک اور
2419		62			
2420	314			و د ومود المعالي الم	
2421	710	287			4
2422	321	248			
2423 2424	<u>332</u> 830	127 157		· · · ·	en e
(V0				
2451			· · · · · ·		
2452	485	43			
2453	890	42			
2454	1200	120			. • • •
2455	1900	181	ده جوی بوقه کنید اندر و واله فشاه سند. و داره قصر عدی است سود وجود است اخت ایرده دست سند سال انتیا و	. «الله جنه جنها الله بالله عنور الله الله الله الله الله والع وين الله.	
2456	720	57			44
2457	480	76			
2458	495	63			- -
2459		21		. .	
2460	830 	119			
. 2461	340	69			a start a start and s
2462	223	4			
2463	880	121			5° 14
2464	690	207			۔ حدد - غ
2465	374	2 8 0		s contraction and contraction of the second	<u></u>
2466	.920	249			
2467	283	50			2. mar. p. 1. 4. 684
2468	318	110			
2469	1300	. 81			د. 29 د میں یہ میں یہ د
2470	396	5 9	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		。 「「」」(文文公正要集
a a su a	and a set of the set of	and design and a same some over both which are a same and the same some and the same some and the same some and the same some a same some a same some some some some some some some so		است بند. هم بند بند وین سر وی بند بید وی وی وی بند می وی	

- 38 -

Certified by

VANCOUVER OFFICE: 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T. TELEPHONE (604) 980-5814 OR (604) 988-TELEX: VIA U.S.A. 7601067 • FAX (604) 980-

TIMMINS OFFICE: 33 EAST IROQUOIS ROAD P.O. BOX 867 TIMMINS, ONTARIO CANADA P4N 7G7

TELEPHONE: (705) 264-9996

9V-0573-RG2 Analysis Certificate <u>Geochemical</u> Date: JUL-04-8

Copy 1. KOOKABURRA GOLD, VANCOUVER, B.C.

Company: KOOKABURRA GOLD Project: COL 3.0 Attn: J.NEBOCAT

He hereby certify the following Geochemical Analysis of 10 ROCK samples submitted JUN-29-89 by J.NEBOCAT. K SAMETS AND THE STORES

Sample Number	CU AU-FIRE PPM PPB		
2471 2472 2473 2474	1200 128 670 21 3700 220 1950 188		
2475	640 21		
2476 2477 2478	720 38 390 12 470 38 1100 210	.,	
2479 2480	1250 93		
	and and the second second		۰. ب
		- 39 - ified by	Burnand
	6 67 7 6		MIN-EN LABORATORIES

APPENDIX II

Soil Sample Results

										N.	T NI_	TIN 1			- דמי	ים ה	e DOI	om									0. OV-	1754-	
COMP: KOOKABU PROJ: COL	JRRA GOLD	ł.													- ICI VANCOUV				2			•			r	ILE NU	DATE:	1356-9 0CT-2	
KUJ: LUL TTN: JOHN NE	EBOCAT												•		(604)9	•		/11	-		•		·	TYPE .S	SOIL	GEOCH			
SAMPLE NUMBER	AG	AL PPM	AS PPM	B PPM	BA. PPM	BE PPM	BI PPM	CA PPM	CD PPM	CO PPM	CU	FE	ĸ	LI	MG	MN		NA PPM	NI P PPM PPM	PB PPM	SB. PPM	SR TH PPM PPM			PPM		SN W PPM PPM		
1397 1398 1399 1400 1401	.9 1 .3 1 .7 1 1.2 1	15050 13190 16260	1 1 10 1	1 1 1 1 1	128 148 148 157 173	1.1 .8 .8 1.5 1.0				18 15 22 25 21	327 53 49 283	32780 32560 39600 41690 39420	1690 1120 1390 2190	14 13 16 13	8500 4640 6260 7800	531 263 280 1208	6 4 5 6	130 90 100 110 150	23 1390 12 460 11 510 13 2360 20 1220	20 4 2 29 11	1 1 3 1	34 1 21 1 25 1 48 2 25 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	116.0 123.9 157.9 121.4 170.2	47 51 90	22	2 1 1 1 2 1 2 1 1 1	60 38 47 36 67	5 45 10 5 15
1402 1403 1404 1405 1406	.8 1 1.1 1 .7 1 .6 1	17780	1 11 16 7 7	1 1 1 1 1	200 132 66 45 125	1.7	8 10 6 8 8	9450 7230 5860 5700 6640	.5 .1 .1 .1 .1	20 21 16 15 22	296 123 58 90	43080 44360 31840 34680 40640	1040 2360 920 790	17 17 10 11	9710 8950 5130 5550	437 300 302 206	6 6 2	140 110 110 120 120	16 1790 16 1890 17 1690 17 1810 18 2860	22 15 6 11 6	1 1 1 1 1	25 1 32 1 26 1 25 1 50 1	1 1 1 1 1 1 1 1 1 1	161.0 136.3 111.4 120.7 140.2	- 69 53 48	1	2 1 2 1 1 1 2 1 1 1	53 57 42 46 48	555
1407 1408 1409 1410 1411	1.1 1 .7 1 .9 1 1.0 1	18800 10930 12360	11 12 25 1 1	1 1 1 1	187 99 69 120 113	.9 .7 .6 1.1 1.3	9 6 6 6	5790 5780 5770 6360 6820	.1 .3 .1 .1 .2	21 16 16 16 18	58 29 40 266 161	38730 32500 30970 36230 35900	2070 920 1150 790 1130	13 10 13 21 20	4350 4670 5120 6930	415 292 250 509	4 4 3 5	120 120 130 120 130	11 2080 11 1500 12 810 15 770 15 1190	16 13 17 11 19	1 1 1 1	30 1 25 1 23 1 37 1 32 1			48 46 58 64	2 1 2 2 2	2 1 1 1 1 1 2 1 1 1	40 50 50 46 48	
1412 1413 1414 1415 1416	.8 1 .9 1 1.1 1 1.1 1	16710	22 18 44 14 1	1 1 1 1	131 91 107 75 124	1.3 .9 1.4 1.0 1.5	5	7960 16940 9980 12640 16340	.1 .1 .3 .2	21 14 22 15 17	113 249 206 399	37650 31970 48070 31100 33550	840 960 860 1180	17 29 17 16	6470 7210 5520 5750	278 326 296 845	6 5 9 10		18 1060 14 1290 18 1230 14 910 22 1120	16 13 13 26 10	1 1 1 1 1	32 1 51 1 43 1 44 1 47 1		117.6 124.6	55 61 58 56		2 1 1 1 2 1 1 1 1 1		1
1417 1418 1419 1420 1421	.9 14 .6 1.0 1.3 1		17 19 23 25 42	1 1 1 1	56 67 44 41 53	.7 .9 .5 .2 1.0	2 4	6150 5130 23120 49920 17440	.1 .1 .2 1.3 .1	15 14 8 3 19	193 94 77 145	31050	750 610 350 1550	15 6 1 10	4330 3030 1910 8480	179 565 502 374	8 5 2 16	110 130 110 2510 200	11 600 14 690 8 790 8 820 22 2340	9 7 3 8 14	1 2 3 3	23 1 28 1 54 1 94 2 46 1	1 3	28.4 121.8	52 38 32 54	1	$ \begin{array}{c} 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ $	47 43 28 13 50	
1422 1423 1424 1425 1426	.8 1 .4 1 .9 1 .9 1	10060 14790 13620 12500 19870	1 1 8 9 18	1 1 1 1	29 61 37 85 109	.7 .9 .8 .9	6 7 7 10	4210 4830 3880 4740 4080	.1 .1 .1 .1 .2	11 16 14 17 23	74 58 50 91	26350 34580 34430 35590 44170	1020 860 1200 1390	14 12 11 16	5500 4740 4470 10400	267 267 381 505	3 4 3 7	100 100 100 110 160	6 230 10 1420 11 1060 13 1830 13 1380	4 11 9 7 23	1	21 1 24 1 16 1 21 1 30 1	1 1. 1 1	116.1 122.1 126.6 129.1 157.5	73. 119	2	$ \begin{array}{c} 2 \\ 1 \\ $	40 50 45 48 31	
1427 1428 1429 1430 1431	1.2 2 1.5 2 2.8 2 2.0 2 .8	25560 29020	20 10 34 30 1	1 1 1 1	179 90 98 99 33	1.4		4080 4470 4210 3710 37990	.2 .1 .1 .1	28 33 54 44 5	77 175 88 586		1950 5520 3330 200	28 19 20 3	12150 14140 14850 16350 1950	417 704 654 60	7 3	170 890	15 1220 13 2600 16 1370 33 1470 32 1820	33 30 30 48 4	1 1 1 1	84 1 26 1 19 1 14 1 73 2	i i		223 148 145 47	3 3 3 1	$ \begin{array}{cccc} 3 & 1 \\ 5 & 2 \\ 3 & 2 \\ 1 & 1 \\ 7 & 2 \\ $	2 81 8	1
1432 1433 1434 1435 1436	1.3 1 1.4 1 .2 1	24390 19550 18010 13240	14 3 1 14 3	1 1 1 1	100 94 84 105 42	1.1 1.4 1.1 1.1 .8	14 12 11 11 3	4450 5220 5460 6200 3830	.1 .6 .1 .1	28 29 25 24 10	150 57 73 27	57690 57840 40980 45650 28780	2630 1400 2380 1250	27 21 20 15	2610	431 351 366 198	6 5 7 6	150 150 250 120 490	8 1960 13 2340 11 1170 12 600 5 780	32 24 18 20 2	1 1 1 1	17 1 20 1 17 1 23 1 12 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	240.5 210.9 163.6 192.6 91.3	146 127 94 76	3 2 2 2	3 2 3 2 2 1 3 1 1 1	2 23 2 42 30 37 14	· 1
1437 1438 1439 1440 1441	1.0 1 1.0 1 1.5 2	12860 15830 17100 20600	1 8 9 5 1	1 1 1 1	117 36 47 53 81	1.0 1.0 1.5		8700 6760 5000 6490 12550	.1 .1 .1 .1		75 132 74 3855	48280 35340 44600 42560 38050) 790) 1190) 870) 1330	11 18 16 15	4960 6740 6060 7080	258 399 237 2869	4 5 7	840 610 110 120 370	22 1480 15 1120 17 770 16 2840 27 1180	40 15 21 20 35	1 1 1 4	23 1 20 1 16 1 23 1 22 1	1 1	141.6 142.8 185.4 151.1 121.0	52 57 54 101	2 2 2 1	3 1 2 1 2 2 2 1 2 1	60 35	1
1442 1443 1444 1445 1446	.3 1.9 1 1.4 1 1.3 1	15670 15080	20 8 52 28 1	1 1 1 1	41 18 56 53 57	1.5 1.5 1.3	11 8 5	4630 27980 14650 17880 14800	.5 .1 .1	2 31 23 19	147 588 740 668	33730 3320 50340 47790 33690) 740) 2130) 1150) 1090	1 24 17 14	4350 1700 11820 10320 8650	73 669 541 586	4 8 7 6	100 710 150 730 150	11 680 4 750 21 1500 19 1940 23 1080	19 8 42 30 19	1 1 3 1	38 1	1 1 2 1 2 2 1 2	199.9	29 72 69 60	1 3 2 2	$ \begin{array}{c} 2 & 1 \\ 1 & 1 \\ 3 & 2 \\ 2 & 1 \\ 7 & 2 \end{array} $	9 69 72 46	1 _1
1447 1448 1449 1450 1451	1.0 1 7 1 .8 1	15630 15850	35 24 13 14 7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	53 118 80 66 82	.5 .8 .9 .8	5 5 5	7890 9750 11970 7780 13090	.1	19 13 14 15 13	94 283 101 183	58230 30640 29130 34410 30660) 710) 780) 1120) 970	8 8 11 11	4820 4730 5470 5530	468 698 358 357	4 6 5 5	100 120 140 120 130	9 1250 12 1690 19 830 15 890 15 790	17 10 12 7 13	5 1 1 1 1	23 1 33 1 32 1 25 1 32 1	1 1 1 1	319.0 130.0 97.8 114.4 97.8	66 65	2	3 2 2 1 2 1 2 1 2 1 2 1 2 1	2 111 57 34 39 36 50	· 1
1452 1453 1454 1455 1456	.8 1 1.0 1 .9 1	22840 15090 17970 14540 19180	3 1 6 1	1 1 1 1	106 59 65 46 51	.8 1.0 .8	5 7 5	10450 8980 7910 7320 5160	.1 .9 .1	20 16	146 177	43770 32830 39030 32070 44870) 1250) 780	15	6790 4950	257 443 276	64 65 7	180 130 130 120 100	24 850 13 410 19 740 8 410 14 1330	26 9 21 12 10	1 1 1	29 1 23 1 22 1 20 1 14 1	1 1 1 1 1 1 1 1	141.4 110.3 133.2 120.2 149.7	62 66 52 84	2 2 1 2	2 1 2 1 2 1 2 1 2 1 2 1	50 41 54 43 19	

¶ (1)

i. S

•••

1.97.18

OMP :	KOOKABURRA	GOLD

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524

FILE NO: 9V-1356-SJ3+4 DATE: OCT-26-89

PROJ: COL ATTN- JOHN NEBOCAT

L 42 Т

PROJ: COL ATTN: JOHN NE	BOCAT		(604)980-5814 OR (604)988-4524	• TYPE SOIL GEOCHEM • (ACT:F31)
SAMPLE	AG AL AS	B BA BE BI CA CI PPM PPM PPM PPM PPM PPM		PB SB SR TH U. V ZN GA SN W CR AU PM PPM PPM PPM PPM PPM PPM PPM PPM PPB
NUMBER 1457 1458 1459 1460 1461	PPN PPM PPM .9 19910 22 .5 10210 1 .5 13770 1 .5 16850 16 .5 7400 1	PPM PPM PPM PPM PPM PPI PPI <td>1 24 438 51110 1550 23 7760 243 8 140 13 1270 1 12 53 31520 1050 7 4130 146 4 90 7 870 1 13 231 30850 840 21 4720 164 4 70 8 570 1 19 203 42170 1380 16 7390 232 5 80 17 1650</td> <td>15 1 13 1 1 167.3 67 2 3 1 31 5 10 1 19 1 1 119.8 37 1 1 1 33 5 7 1 11 1 112.3 64 1 2 1 30 10 17 1 15 1 144.9 66 2 2 1 55 5 14 1 17 1 87.3 43 1 1 38 5</td>	1 24 438 51110 1550 23 7760 243 8 140 13 1270 1 12 53 31520 1050 7 4130 146 4 90 7 870 1 13 231 30850 840 21 4720 164 4 70 8 570 1 19 203 42170 1380 16 7390 232 5 80 17 1650	15 1 13 1 1 167.3 67 2 3 1 31 5 10 1 19 1 1 119.8 37 1 1 1 33 5 7 1 11 1 112.3 64 1 2 1 30 10 17 1 15 1 144.9 66 2 2 1 55 5 14 1 17 1 87.3 43 1 1 38 5
1462 1463 1464 1465 1466	1.2 23660 55 1.5 18030 16 1.0 19280 30 .4 20140 8 .8 13420 9	1 117 1.6 11 5810	1 36 130 47870 4200 17 10650 840 8 110 15 890 1-28 134 46070 2860 19 10100 574 7 120 17 1390 1 54 175 64260 1250 19 7280 3104 5 90 19 1140	23 1 23 1 1 172.4 107 2 3 2 53 5 30 1 14 1 1 212.9 99 2 3 1 26 5 20 1 19 1 1 186.2 101 2 2 1 27 5 41 1 235.3 179 2 3 1 22 5 15 1 62 1 1 170.0 104 2 3 1 20 5
1467 1468 1469 1470 1471	1.5 18360 4 1.1 13120 13 .6 9550 20 1.7 24570 18 1.9 27230 39	1 162 1.4 13 4450 1.4 1 85 .9 8 4730 . 1 88 .7 3 37030 1.4 1 182 1.4 14 7000 1.3 1 117 1.4 15 4100 .	1 20 52 40440 1470 16 8150 250 5 120 12 1250 4 9 287 13860 980 9 4580 488 4 60 15 1080 2 42 148 62070 6750 19 16610 704 8 150 14 1200 1 36 79 70330 4110 31 14430 350 10 190 11 700	37 2 37 1 1 264.2 144 2 4 2 22 5 15 1 15 1 1 169.7 63 2 2 1 38 5 13 1 62 1 3 46.0 53 1 2 1 16 10 33 1 24 1 1 254.8 94 3 4 2 30 5 29 1 25 1 1 296.9 87 3 4 2 43 5
1472 1473 1474 1475 1476	.4 7190 1 .5 10350 12 .7 9290 14 .6 8210 3 .7 14790 9	1 87 .4 6 3260 . 1 85 .9 6 5150 . 1 50 .6 6 3710 . 1 35 .5 7 3580 . 1 54 .9 7 4900 .	7 13 44 33230 630 6 4790 180 5 110 11 2180 1 13 17 31180 870 4 3050 174 2 150 7 580 1 12 18 27100 790 5 2900 150 3 100 6 280 1 16 102 33970 1060 12 5800 224 5 140 16 770	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1477 1478 1479 1480 1481	.5 14540 1 .6 14130 2 .6 11060 1 .6 12860 13 1.0 17150 12	1 99 .9 5 15100 .4 1 99 1.3 5 11190 .4	1 19 207 35620 730 21 5370 942 6 110 19 620 2 18 286 32820 890 10 4910 982 4 70 22 530 4 16 176 29170 1280 12 6930 546 4 170 17 1170 1 22 375 39960 1770 19 7950 737 8 130 22 1450	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1482 1483 1484 1485 1485	1.1 10840 5 1.2 12470 16 1.8 16210 23 1.0 15360 22 .7 5660 19	1 102 .9 4 18160 1. 1 144 1.5 9 8990 .4 1 60 1.3 8 7450 .4 1 69 .6 3 27950 .4	6 28 731 49280 3040 14 8060 773 7 100 25 850 1 24 308 47450 1860 10 8850 712 7 110 17 1610 2 10 530 16030 950 3 3740 454 4 60 18 1120	9 1 35 1 1 83.7 78 1 2 1 30 5 13 1 35 1 1 98.0 71 1 2 1 32 5 27 2 25 1 1 153.5 85 2 3 1 45 5 20 2 18 1 166.0 65 2 2 1 54 10 13 1 37 1 2 49.0 59 1 2 1 19 5
1487 1488 1489 1490 1491	.1 4240 1 .6 7600 16 .2 7030 1 .5 4020 8 .8 8440 13	1 78 .6 3 24220 . 1 48 .5 3 16130 .	1 3 224 7630 300 2 2350 53 3 870 8 1190 2 9 333 15810 740 7 3800 381 3 1160 18 1260	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1492 1493 1494 1495 1496	.8 5590 1 .9 9070 12 .9 15920 22 .1 2080 1 .1 600 1	1 84 .7 1 31000 . 1 76 .8 3 18670 . 1 99 1.1 4 11620 . 1 68 .3 1 24540 1 43 .1 1 26230 2.	1 9 184 20840 610 7 3290 247 4 130 12 950 1 16 195 36080 1020 14 6250 419 5 190 20 910 6 1 64 2140 320 1 1650 190 6 1080 6 840 7 1 70 650 290 1 1450 24 12 1460 4 490	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1497 1498 1499 1500 1501	.9 14140 62 .6 11150 41 .1 13700 101 .6 14820 1 .4 11160 4	1 72 .6 4 6380 .	1 18 77 42710 820 11 6630 541 4 170 16 1370 1 29 607 47780 1730 15 5350 878 6 80 65 990 1 9 21 23050 340 8 2100 140 1 100 6 400 2 10 28 19760 420 6 4410 198 4 120 7 1010	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1502 1503 1504 1505 1506	.3 17780 8 .5 14680 1 .8 17700 21 .9 12920 24 .6 20080 26	1 143 1.2 6 9330 . 1 60 1.0 7 8790 . 1 134 1.3 4 7380 .	1 20 138 34540 1410 14 9220 522 6 170 22 1750 1 22 172 36020 1290 15 7850 1649 10 820 26 1190	3 1 20 1 1 95.0 40 1 1 1 33 5 6 1 24 1 1 94.4 41 1 2 1 28 5 16 1 27 1 1 127.9 62 2 2 1 52 15 21 3 24 1 1 121.7 52 2 2 1 63 10 27 1 25 1 1 97.8 67 2 2 1 50 5
1507 1508 1509 1510 1511	.8 17960 9 .9 16540 21 .9 16740 31 1.1 18720 9 .6 12970 8	1 99 1.1 5 6940 . 1 91 1.1 7 9020 . 1 114 1.4 6 8570 . 1 165 .9 3 9920 .	8 21 149 35450 1250 15 8760 470 6 1310 24 2070 1 18 160 32010 1240 16 8530 356 6 1090 24 1340 1 20 217 35230 1670 14 10750 629 8 190 30 1810 1 20 311 35580 1710 15 9750 666 8 170 26 1200 2 13 231 26610 840 10 5270 808 4 130 18 1200	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1512 1513 1514 1515 1516	.5 10810 1 .7 19050 1 .5 6030 1 .1 5980 1 .7 21270 1	1 256 .7 2 16210 . 1 374 1.4 2 11060 . 1 251 .5 1 24270 . 1 242 .5 2 12330 . 1 775 1.4 6 13180 .	1 9 313 14650 830 7 3520 838 6 1210 11 990 1 13 535 27570 1070 13 4200 367 4 120 10 800 5 4 369 6850 400 3 1670 163 2 890 5 780 4 7 123 10780 650 4 2060 368 2 420 5 590 2 25 267 40040 1740 12 9910 844 6 610 12 1730	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

COMP: KOOKABURRA GOLD

Т 43 1

MIN-EN LABS - ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2

FILE NO: 9V-1356-SJ5+6

DATE: OCT-26-89

1	ATTN: JOHN NEB	OCAT										(604)98	80-581	4 OR	(604)9	88-45	24			• • •		. '		• TY	PE S	OIL	GEOCH	IEM *-	(<u>A</u> (CT:F31
	SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU PPM	FE PPM	K PPM	LI	MG PPM	MN PPM	MO PPM	NA PPM	NI P PPM PPM	PB PPM	SB PPM		TH PPM F	U PPM P	V PPM.	ZN PPM J	GA PPM P	SN - PM PP	W CF	
•	1517 1518 1519 1520 1521	.6 .6 .9	19640 22220 18340 16930 10080	1 13 32 15	1 1 1 1	794 530 648 348 111	1.3 1.4 1.3 1.5 .8	5 12160 6 10670 6 16280 6 9840 4 11640	.1 .1 .1 .1	24 25 22 23 12	267 278 210 181 249	40680 44860 35500 40070 23340	1480 1250 2280 1630 820	11	9850 10750 8130 7920 4910	858 977 950 957 485	5 8 5 6 5	90 90 70 90 100	12 1780 7 1630 12 1660 13 1490 21 710	29 26 25 17 15	1 1 1 1	102 91 90 59 35	1 2 1 2 1	1 110 1 119 1 99 1 120).3	67	2 2 2 2 1	3 3 2 2 1	1. 17 1 12 1 20 1 35 1 35	7 10 2 5 5 5 5 5
	1522 1523 1524 1525 1526	.6 .3 .4	9660 11710 9180 2960 6380	25 5 3 1 7	1 1 1 1	65 93 93 87 100	.8 .7 .3 .5	5 6330 5 7470 4 10470 2 23940 3 17490	.1 .1 .1 .1 .1	16 14 11 4 8	108 156 140 160 130	36710 26810 23510 5380 14800	600 680 600 240 720	8 11 11 2	6330 5370 4700 1640	366 415 242 262 259	7 7 5 5 4	120 110 90 50 70	17 930 16 850 11 820 9 660 13 650	14 16 9 4 4	· 1 1 1 1	18 23 28 49 39	1	1 155 1 101 1 96 8 22 1 55	1.3 5.2 2.6 5.2	51 45 39 33 34	1 1 1 1	2 2 1 2	1 69 1 42 1 39 1 12 1 26	2 55 9 5 2 5 6 10
	1527 1528 1529 1530 1531	.1 .7 .9 .7	10850 3400 14210 11590 13010	18 1 19 25	1 1 1 1	99 147 136 112 102	.9 .5 .9 .9 1.0	5 9430 3 18750 5 9210 5 11360 5 11490	:1	15 14 13 13 15	148 214	30470 13870 28980 22570 25960	770	<u> </u>	5800 1940 5510 5960 6060	556	6 11 9 7 7	120 100 130 140 130	14 1170 14 730 16 620 17 1160 17 1120	13 13 13 14 10	1 2 1 1 1	28 52 31 36 38	1 1 1 1 1	1 116 1 84 2 95	5.8 5.5 5.0 5.9	46 28 49 51 53	1 1 1 2	2222	1 56 1 14 1 44 1 41 1 45	4 20 4 5 1 5 5 5
	1532 1533 1534 1535 1536	.5 .5 .8	10140 11350 12900 7300 20060	7 1 10 31 26	1 1 1 1	180 164 268 143 1484	.8 .8 1.0 .7 1.8	5 9490 2 10440 5 12490 4 8650 5 12900	.1 .1 .1	14 11 16 14 26	145 139 167 94 459	27260 23960 29280 34890 37330	780 740 1260 570 1690		5480 4150 6540 4500 10490		7 5 7 6 6	120 100 130 90 570	17 1300 7 630 9 1410 9 1590 12 1580	15 8 26 20 30	2 1 2 1	39 54 67 30 73	1 1 1 2	1 78 1 88 1 101 1 93	5.8	48 43 55 37 68	1 1 1 2	1 2 2 2	1 36 1 26 1 30 1 39 1 14	0 35 9 10 4 5
>	1537 1538 1539 1540 1541	.3 .4 .5 .5	17390 6680 7830 10360 8440	1 11 19 17 7	1	394 219 207 142 90	.8 .5 .5 .8 .6	4 12540 4 9950 3 8140 5 7930 4 8660	.1 .1 .1 .1	19 12 11 13 9	128 87 99 148 83	28320 27890 22740 22190 16160	1240 350 420 450 460	8 6 8 11 9	5970 3640 4170 5670 5090	601 326 218	4 7 8 6 3	500 90 90 110 110	6 940 9 1220 10 1050 12 1450 12 1750	14 16 5 10	1 3 1 1	94 33 30 25 24	1 1 1 1	1 49 1 55 1 92 1 75	.8 .3 .9 .3 .7	62 35 44 47 34	2 1 1 1	222222	1 12 1 22 1 26 1 35 1 41	2 5 5 5 5 10 1 5
	1542 1543 1544 1545 1546	.5 .9 .3 .3 .3	6960 12450 4960 9640 7490	25 24 19 1 16	1 1 1 1	166 87 58 66 36	1.1 1.2 .6 .4 .5	4 7670 6 9220 4 2400 4 3170 3 3340	.1 .1 .1	<u> </u>	73 179 12 19 27	54800 47750 36150 16970 24460	370 1040 320 340 290	6 13 2 5 4	3820 8150 1290 2280 3310	808 1001 133 134 171	8 7 2 3 3	80 110 60 90 70	3 1540 19 2070 3 520 6 570 7 1120	21 29 4 7 6	2 4 2 1 1	26 22 13 17 14	1 1 1 1	1 184 1 146 1 64 1 91	.7 .1 .9	44 60 25 30 28	1 2 1 1	3 3 2 1 1	1 22 2 93 1 33 1 22 1 24	3 5 2 15 4 5
	1547 1548 1549 1550 1551	.4	9080 9980 17290 15760 14240	5 10 1 1 18	1 1 1 1	60 46 448 209 119	.3 .2 .7 .5 .9	3 2860 3 2710 5 10620 3 4990 6 5060	.1 .1 .1 .1	8 7 24 12 15	32 21 48 20 116	18100 20780 35230 26850 33410	270 250 1660 1630 1460	6 5 14 14 18	3180 2600 6400 4270 6800	344 234	2 1 5 2 4	70 60 80 50 60	7 740 6 940 8 2600 6 1270 8 1780	8 5 14 6 16	1 1 1 1	13 13 64 33 14	1 1 1 2	1 76 1 93	.0 .1 .9 .6 .3	28 28 62 42 59	1 1 1 1 1	1 1 1 2	1 15 1 17 1 26 1 17 1 15	7 10 5 5 7 5 5 5
-	1552 1553 1554 1555 1556	1.0 1.0 .7 .8 .5	14870 21300 10830 17040 12810	1 10 6 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	310 962 500 497 509	1.3 .8 .5 .9 1.0	5 9640 6 13930 4 21770 5 11080 3 14400	.2 .1 .1 .1 .2	35 16 28	162	41370 46360 22810 45620 33470	2740 1740 1900 2230	15 13 8 12 9	6800 11360 6430 9260 6670	1162 957 822	5 6 2 5 5	60 90 70 90 70	10 2720 15 1670 13 1700 13 2080 9 1400	30 30 19 23 21	1 1 1 3	26 95 66 63 59	1 1 1 1	1 110 1 118 1 53 1 115 6 76	.0	92 77 114 71 65	1 1 1 1	-	1 16 1 18 1 18 1 26 1 18	3 5 3 5 5 5
															•								. •							
														· .									•					•		
															<u></u>	. <u></u> .						· ·					•		4	

COMP: KOOKABURRA GOLD

MIN-EN LABS - ICP REPORT

warded the second

FILE NO: 9V-1052-SJ1+2 ten Tennen Tennen DATE: SEP-13-89

F	ROJ: COL							7	05 WE	ST 15	5TH ST.,	NORT	H VAN		t, B.C.		172					* TYPE	SO1L	GEOC		SEP-1	
,	SAMPLE NUMBER	AG AL PPM PPM	AS PPM	B	BA PPM	BE PPM	BI CA PPM PPM	CD PPM	CO PPM	CU	FE PPM	K PPM		MG	MN PPM	MO PPM	NA PPM	NI P PPM PPM		SB S PPM PP		U ,/~	V ZN	E GA	SN N PPM PPI	CR	AU
	134040M 134140M 134240M 134340M 134340M	.1 6500 .1 3060 .8 19240 .7 14420 .1 9150	85 93 46 60 59	1 1 1 1 1	187 376 163 105 194	1.7 1.8 1.3 1.2 1.2	4 15100 6 21820 9 13720 9 13780 5 23610	.1 .1 .1 .4 .7	19 25 23 17 24	104	96410 102690 35050	270	5 1 19 15 5	3330 2530 7960 7280 4010	3920 8962 1520 471	6 9 5 3	60 40 170 160 670	1 1450 6 1710 19 1260 12 1080 14 1640	35 53 24 20 38	6 -3 8 4 1 3 1 3 3 4	4 1 [°] 3 1 1 1	1 78 1 48 1 98 2 95 1 124	9 64 3 69 7 60	1 1 1 0,1	3 3 1 2 2	1 1 1 1 1 28 1 22 1 1	5 5 10 5 5
	134540M 134640M 134740M 134840M 134840M	.2 4300 .1 3580 .1 1440 .1 3210 .2 2360	44 20 9 17 5	1 1 1 1	129 140 121 97 83	.7 .5 .2 .4 .3	3 32160 2 33510 1 31880 1 31710 1 38320	1.3 1.4 1.3 1.2 1.2	10 5 6 4 5	203 153 42 226 253	22670 16080 13150 18520 3140	450 200 340 170 340	2 1 1 1	2910 2620 2160 1960 2190	799 1578 58 288	4 1 5 1 4 1 7	730 030 220 270 790	9 1460 8 1210 7 890 7 1480 10 1040	20 17 21 12 9	1 5 1 7 1 5 1 4 1 4	6 1 0 1 1 1 5 1	6 74 6 7.	3 36 7 45 0 74 3 43	1 1 1 1 1		1 1 1 1 1 5	5 5 10 5
	135040M 135140M 135240M 135340M 135340M	.4 3930 .5 5750 .1 1420 .1 1330 .4 10920	11 6 12 8 3	1 1 1 1	113 124 108 69 98	.5 .8 .1 .2 .9	2 41880 1 38180 1 35710 1 45080 3 32100	1.3 1.5 2.3 2.3 .1	4 7 1 6	390 431 146 247 459	4940 9240 1400 1430 12270	320 320 300 380 480	1 1 1 4	2460 2560 1990 1920 2940	1349 45 130 742	5	340 790 90	16 1480 13 2090 9 470 9 740 13 1910	10 20 12 9 14	1 5 2 4 1 4 1 3	8 2 5 1 2 1 4 1	10 3 14 31 3 6 4 6 30	1 43 1 61 0 42 .6 55	1 1 1 1	1 1 1 1	1 7 1 13 1 4 1 4 1 12	5 5 10 5
	135540M 135640M 135740M 1358 1359	.5 4510 .4 9370 .1 4630 .2 9940 .2 8870	2 2 5 6 8	1 1 1 1	72 101 127 46 64	.4 .8 .6 .7 .6	1 42740 2 27830 2 38570 5 10210 7 4860	4.7 1.4 3.8 .1 .1	2 12 8 9 10	395 357 273 70 19	3240 14770 19080 22590 32310	260 230 240 510 590	1 1 8 4	1700 1440 2210 2900 2610	1368 2377 217 211	8 13 1 4 1	120 130	13 1050 11 1990 16 1780 6 570 5 1370	17 13 23 8 13	1 2 1 3 3 4 1 2 1 2	7 1 9 1 5 1 0 1	4 6 40 2 59 4 85 4 116	.9 51 .0 30 .3 37			1 5 1 17 1 1 1 13 1 19	5 10 5 5 5
- 4	1360 1361 136240M 1363 1364	.2 11410 .3 11430 .4 4360 .2 9060 .3 8400	9 4 1 2	1 5 1 1	5 <u>1</u> 98 87 65 57	.8 1.1 .3 .8 .6	6 6410 4 18900 1 37740 4 16050 6 5050	.2 1.6 4.0 .7 .1	11 12 2 9 9	66 375 226 202 14	27950 24360 2770 19490 22260	450 510 520 450 530	9 5 1 7 6	3930 3630 1860 3700 2410	1019 124 378 170	5 4 2	130 160 2340 120 120	10 830 17 1850 8 1120 11 780 4 430	9 20 16 12 10	1 1 1 4 1 5 1 2 1 2	3 1 2 1 8 1 0 1	1 96 5 66 5 3 54 1 81	.9 55 .1 65 .7 34 .3 36	1 *1 1		1 15 1 12 1 5 1 12 1 14	5 10 5 5 5
4 -	136540M 1366 1367 136840M 136940M	.6 6120 .7 8820 .7 11410 .6 3890 .1 1220	3 5 17 15 7	1 1 1 1	69 91 55 49 29	.6 .9 1.1 .6 .2	2 26210 2 35040 6 13960 1 44350 1 45820	.1 .6 .1 1.3 .9	6 8 16 2 1	266 654 373 500 321	12420 12820 34560 5130 1910	360 390 790 250 140	2 4 12 1 1	2120 3130 6540 2100 1800	1011 514 115 97	7	90 80 130 430 830	13 1120 18 2240 15 1080 12 860 5 550	9 14 23 14 14	1 2 1 4 2 2 1 7 1 7	1 2 9 1 2 1 5 1	4 29 7 27 4 117 11 9	.3 56 .0 56 .1 70 .1 69	1		1 7 1 11 1 23 1 6 1 4	10 5 5 55
	137040M 137140M 137240M 1373 1374	.6 4750 .8 3440 .3 1540 .7 14070 .3 14740	6 16 5 16 12	1 1 1 1	38 46 30 93 103	.5 .6 .2 1.1 1.0	3 33260 2 36300 2 42780 6 16020 7 12250	1.0 1.8 1.3 .1 .1	6 3 15 16	371 367 75 357 170		470 280 340 880 1030	3 1 10 14	2980 1580 1910 6230 6890	745 95 703 531	19 6 9 6	620 640 920 150 160	9 1190 9 970 6 660 21 1300 13 1430	17 17 12 22 22	3 7 2 8 2 8 1 4 1 4	2 3 8 1 5 1 1 1	1 41 39 14 1 15 1 99 1 117	.6 61 .6 41 .9 55 .6 50	1 1 2 1	1 1 1 1	1 10 1 8 1 6 1 24 1 22	5 5 5 10
	1375 1376 1377 1378 1379	.4 13140 .5 15370 .5 15330 .4 11710 .2 11740	22 15 18 20 4	1 1 1 1	105 117 160 200 96	1.1 1.3 1.1 1.1 .9	5 14020 8 13820 6 14990 5 22530 5 10050	.1 .1 .1 .1	14 15 12 12	192 222 265 313 139	23280 20490	930 940 1030 890 860	11 15 12 9 10	5780 6620 6210 4790 5600	436 572 518 206	45764	140 160 160 120 160	10 1560 15 1490 16 1480 15 1330 13 1350	17 22 19 15 15	$ \begin{array}{r} 1 & 4 \\ 1 & 4 \\ 1 & 5 \\ 1 & 7 \\ 1 & 3 \\ \end{array} $	5 1 2 1 0 1 3 1	1 145 1 133 1 121 1 98 1 82	.3 51 .1 58 .1 53 .9 43	1 2 1 1	1	1 33 1 31 1 27 1 25 1 27	25 5 10 5
	1380 1381 1382 1383 1384	.4 15370 .2 11940 .1 8560 .1 5020 2.7 24700	7 10 1 4 1	1 1 1 1	175 100 43 52 604	1.2 1.0 .6 .4 1.8	8 12490 7 9890 5 5760 3 12750 8 12720	.1 .1 .1 .1	15 15 8 5 26	183 106 59 42 312	26970 20700 14200 44090	1020 870 720 540 2580	20 11 5 3 17	5300 5690 2350 1870 9090	402 111 76 1128	8 7 4 2 4	150 160 120 100 120	15 600 14 750 9 350 6 460 11 1760	15 18 13 5 28	1 4 1 3 1 2 1 3 1 11	5 1 6 1 9 1 0 1	1 145 1 106 1 71 1 52 1 119	.8 45 .0 35 .6 27 .1 77	1 1 1 2	1 1 1 2	1 29 1 26 1 16 1 19 1 4	25 5 10 5 15
	1385 138640M 1387 1388 1389	.7 21420 .1 2640 .8 28600 .8 31310 .5 29170	13 8 1 1	1 1 1 1	382 237 608 696 1082	1.8 .4 2.1 2.2 2.0	9 10070 1 34810 10 25510 10 19480 8 18780	.1 .7 .1 .3 .1	24 24 27 25	326 267 448 484 381	42320 4000 38960 39480 41200	850 2430 1930 3000	16 1 8 9 12	8970 2300 7490 7900 8690	428 689 799 1056	5 5 2 2	130 80 90 880 90	19 1700 3 1150 2 1620 8 1750 7 2210	24 8 20 30 22	1 8 2 7 1 15 1 18 1 20	6 1 9 2 1 1 0 1	1 132 1 16 1 106 1 103 1 106	.8 68 .2 72 .9 85 .3 72	1 1 2 2 2	2 1 1 2	1 15 1 3 1 1 1 1 1 1	20 5 10 10 10
	1390 1391 1392 1393 1394	.1 22900 .6 17000 1.7 12690 .6 15930 .9 16350	1 11 12 26 24	1 1 1 1	75 93	1.6 1.3 .8 1.6 1.5	7 7690 8 5390 9 5210 11 6160 12 4930	.1 .1 .1 .1	22 18 13 22 23			1390 1490 1590		7480 7190	244 250 298 360	3 4 3 4	100 120 120 120 120 130	6 2000 18 1120 14 860 18 3420 15 3260	23 19 19 26 27	1 7 1 2 1 2 2 1 2 1	1 1 0 1 9 1 8 1	1 114 1 136 1 114 1 219 1 204	.2 99 4 102 7 55 9 76 .8 89	1 2 1 2 2	1 2 2		5555
	1395 1396	.8 13080 1.1 20560	17 25	1	99 149	1.2 1.4	11 6390 11 12320	.8	19 23	106 352	38220 41670	1840 2160	12 18	6860 10960	487 683	5 6	130 160	17 610 33 1570	23 28	2 2 2 3	51 51.	1 145	.7 54 .9 69	1 2	1 2	1 44 1 61	10 5

1. A

COMP: KOOKABURRA GOLD

PROJ: COL

- 1

- 45 -

MIN-EN LABS ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)980-5814 OR (604)988-4524 FILE NO: 9V-0630-SJ1

DATE: JUL-14-89 * TYPE SOIL GEOCHEM * (ACT:F31)

ATTN: J.NEBOCAT

	SAMPLE NUMBER	AG PPM	AL PPM	AS PPM	B PPM	BA PPM	BE PPM	BI C PPM PP		CO PPM	CU PPM	FE PPM	K PPM	LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI PPM	P PPM	PB PPM			TH PM PF	U M P	V Z PM PP	N GA M PPM		W . PPM F	CR AU PM PPB
•.	1191 1192 1193 1194 1195	.2 .4 .2 1.0 .6	19000 16830 7230 22090 8950	1 3 8 5 11	. 1 1 1 1	130 150 72 215 58	1.0 .8 .4 .9 .4	5 477 6 417 5 408 10 959 6 402	2.9 1.5 3.4	14 12 7 16 9	45 19 121	28770 27060 19550 32530 21610	620 720 480 1150 500	1 1 1 1	5370 3480 2090 7630 3090	584 221 130 547 156	32133	100 90 110 160 140	17 11 5 21 7	960 750 290 1460 440	16 12 12 17 11	1 1	24 25 24 34 23	22262	1 85 4 87 4 75 8 93 5 85	.0 5 .4 2 .8 6	94 63	2 3 3 4 2	43253	27 1 23 1 20 4 34 2 23 1
	1196 1197 1198 1199 1200	.5	11240 14900 10480 18410 18120	11 6 11 6 11	1 1 1	120 135 94 173 183	.5 .8 .5 1.1 1.0	6 640 7 748 7 476 6 849 3 1121	2.7 2.1 3.6	8 17 10 17 13	193 23	19560 34430 25520 31040 28820	320 660 510 930 910	1 1 1 1	3060 6760 3250 6610 6020	152 516 204 681 571	2 6 7 12 18	140 170 130 170 150	8 12 8 17 18	320 720 240 680 1180	13 25 14 21 20	1 . 1 1	28 32 29 35 36	2 3 4 3	5 70 2 122 6 105 8 93 0 80	5 2 0 4 9 3 5 5	94 14 36	25343	25444	25 3 34 1 27 1 37 2 34 1
	1201 1202 1203 1204 1205	1.1 .8 .9 .7	16480 18510 18210 20500 18560	15 18 7 9 6	1 1 1 1	159 192 173 166 186	1.0 1.1 .9 1.1 1.0	3 1061 5 947 6 857 6 831 5 1206) 3.8) 3.4) 2.6) 3.0	13 16 15 15 13	682 438 590 678	30840 28480 31010 27610	1040 970 1120 1140 1050	1 1 1 1	5770 6710 6420 6510 6210	590 675 533 414 462	17 22 23 22 14	140 140 170 140 140	19 17 21 19	1170 940 830 920 1120	17 22 20 18 19	1	34 37 35 34 38	3 3 3 4 3	8 89 1 98 6 91 8 92 5 76	7 5	56 55 45 44	34 22 4	45454	33 2 36 1 36 1 36 3 37 3 32 1
	1206 120745M 120845M 120945M 120945M	1.5 1.4 1.4	22530 32400 40660 38160 11670	12 14 11 11 8	1 1 1 1	221 359 433 433 81	1.2 1.5 1.8 1.7 .6	6 908 6 1388 7 1132 10 1253 8 763) 4.7) 5.4) 4.6	17 19 25 26 11	963 414 221	39570 52090	1270 1730 2010 1970 750	1 1 1	7260 8350 9630 10560 5810	620 696 1121 979 293	19 23 23 11 2	150 140 160 220 180	39 31	870 1100 1140 2240 1000	19 24 28 23 16	1 1	36 42 34 33 35	4 1 5 5 4	9 99 1 101 8 122 8 172 7 69	79	88 99 888			40 2 48 3 54 2 52 1 23 2
	1211 1212 1213 1214 1215	.2 .3 1.1	13290 15260 12250 19890 19650	7 2 7 17 18	1 1 1 1	82 96 82 196 173	.8 1.0 .7 1.3 1.3	8 526 6 505 5 456 5 847 5 821) 2.6) 1.9) 3.1) 3.7	19	60	50370	590 680 560 980 980	1 1 1 1	4180 4130 2250 6600 6240	245 268 180 671 620	2 2 14 16	120 120 110 140 130	4 22	720 1690 1980 1050 1120	13 16 13 21 19	1	28 27 30 32 31	3 3 3 3 3 3	4 114. 2 113. 4 116. 6 121. 6 178.	4 4 2 4 8 5 4 5 5 5	03 24 75	3 2 2 4 4	4 4 5	34 1 30 1 28 1 42 4 53 2
	1216 1217 1218 1219 1220	.4	18400 19470 10130 20000 10700	14 11 6 8 8	1 1 . 1 . 1	184 158 78 167 110	1.3 1.3 .6 1.2 .8	6 895 5 849 5 607 5 877 4 653	2.8 2.8 2.8 2.8 2.8	23 17 10 17 10	1091 229 749 248	35150 24750 32680 23160	1270 1000 500 1060 470	1 1 1 1	6920 6560 3750 5960 3540	921 700 203 707 276	17 27 16 21 15	170 150 110 140 110	22 11 22 8	1290 1120 320 950 500	25 20 13 21 14	1	34 31 27 30 25	3 · 2 3	5 219. 5 110. 3 85. 2 98. 3 83.	0 4 6 3 1 5 3 4	5 5 3 3 0 3 0 2	4 2 3 2 2	5	60 4 40 3 28 15 35 2 25 2
	1221 1222 1223 1224 122545M	.6 .7	12240 18270 13510 19030 21920	1 1 1 1	1 1 1 1	120 219 134 215 233	.6 .9 .7 1.0 1.1	4 525 4 916 6 682 6 755 6 809) 2.6) 2.2) 3.3) 3.9	12 13 14 15 17	208 55 92		520 950 760 1000 1360	1 1 1 1	4920 6780 6000 7320 7400	423 470 412 558 641	15 5 4 2	140 140 160 160 190	13 22 14 18 24	410 1000 620 510 800	13 17 16 18 17	1	21 28 30 29 28	1 2 3 3 3	1 77. 1 89. 1 103. 1 96. 1 134.	0 5 2 4 2 5	0 3 2 3 0 4	223333	444	25 2 33 5 30 2 37 8 45 4
	1226 1227 1228 122945M 123045M	.3	15680 20190 13040 47080 31240	1 1 1 1	1 1 1 1	177 222 92 544 357	.7 1.0 .6 2.1 1.3	8 693 7 878 7 515 7 1091 7 765) 3.4) 1.6) 5.8	14 15 10 28 21	55 15 164	22360	750 1180 610 2330 1540	1 1 1 1	7090 7270 4040 11960 8700	359 607 196 1333 770	2 2 1 5 4	150 160 120 160 150	16 25 10 46 31	450 740 710 1090 820	17 13 11 22 15	1	30 33 28 35 31	3 3 2 4 2	1 78 1 79 1 77 1 130 1 121	6 5 7 5 1 5 0 11 7 7	4 4 5 2 5 7	3 4 3 2 2	3.	29 1 38 2 24 1 61 2 45 2
	1231 1232 1233 1234 1235	.4	12470 8580 11610 11020 9880	1 3 1 2 1	1 1 1 1	74 65 76 86 83	.6 .6 .7 .5 .8	7 449 6 598 5 385 6 558 5 665) 2.3) 1.1) 2.4	14 13 11 11 18	32 27 29	38330 29310 29080 22130 50180	680 870 560 670 750	1 1 1 1	3550 4210 3120 4700 4580	281 363 184 320 369	2 2 1 1 1	130 140 100 140 170	9 10 10 8	1000 1140 580 820 1450	11 12 13 10 16	1 1	23 24 21 27 25	2 3 2 1 2	1 139. 1 105. 1 100. 1 74. 1 190.	0 2 4 4 7 3	8 3 4 3 1 2	2 2 3 3 4	3 3	38 1 27 1 30 2 24 1 37 1
	1236 1237 1238 1239 1240	.6	15370 11880 11260 10690 12460	1229	1 1 1 1	209 116 109 90 127	.6 .6 .9 .6 .7	6 825 7 777 5 809 6 587 6 774	2.5 2.1 1.5 2.2	15 14 15 10 12	44 43 35 42	32230 29720 37910 25870 24320	970 780 690 620 490	1 1 1	5580 6000 4920 3560 4740	502 362 510 210 370	3 2 1 2	150 190 150 140 140	11 9 10	910 1000 1450 670 790	19 15 16 11 14	1 1 1	81 82 81 27 82	2	1 103. 1 102. 1 141. 3 90. 1 91.	8 3	3 3 4 3 3	3 3 3 1	4 4 3	31 2 29 2 31 3 26 1 24 1
	1241 1242 1243 1244 1245	.4 .5 .6 .5	8660 10890 10170 12730 10090	1 3 1 1 3	1 1 1 1	68 77 80 148 90	.6 .5 .4 .4 .3	6 659 6 554 6 615 7 615 6 529) 1.1) 2.3) 2.3) .7	10 9 9 8	12 14 25 13	24720 16630 14890 16480 15380	520 700 650 920 530	1 1 1 1	4250 3950 4550 4520 3260	251 271 205 222 242	1 2 1 2 2	160 130 150 160 140	7 8 7 8 7	1020 570 740 460 410	12 9 13 9	1	29 51 52 54 51		1 92. 1 69. 1 56. 2 63. 3 61.	1 3 3 3 1 3	1 <u>3</u> 0 3	3 2 3 4 3	23	26 1 19 1 19 12 20 1 18 2
	1246 124745N 1248 124945N 125045M	.5 .5 1.3	12060 15820 12670 52090 41130	1 2 1 1 1	1 1 1 1 1	115 170 160 539 473	.4 .7 .6 2.7 2.2	7 579 6 656 6 543 7 920 5 1279	2.3	12 14 13 29 25	39 28 359		780 920 720 2150 1650	1 1 1		301 505 611 1218 1202	2 2 8 8	150 140 120 160 140	10 17 13 62 49	410 810 550 790 1320	11 17 17 21 18	1 2	51 50 28 52 59	3 2 2 5 3	1 79		53 51 48	22222	4 3 7	21 1 28 3 30 1 73 2 62 4

r - 4.

COMP: KOOKABURRA GOLD

MIN-EN LABS ICP REPORT

705 WEST 15TH ST., NORTH VANCOUVER, B.C. V7M 1T2 (604)080-5814 OR (604)088-4524

FILE NO: 9V-0630-8J2

ζ.

DATE: JUL-14-89 * TYPE SOIL GEOCHEM • (ACT:F31)

PROJ: COL ATTN. I NEROCAT

ATTN: J.NEBOCAT	т							(604)98	0-5814	OR (604)98	8-452	4					•		* 1	TYPE S	OIL	GEOCHE	EM 🍬	(ACT:
SAMPLE	AG AL PPM PPM	AS B PPM PPM	BA PPM	BE E PPM PI	SI CA PM PPM	CD PPM	CO PPM	CU FE PPM. PPM		LI PPM	MG PPM	MN PPM	MO PPM	NA PPM	NI P PPM PPM	PB PPM	SB PPM	SR PPM	TH PPM F	U PPM	V PPM	ZN PPM F	GA S PPM PF	SN W PM PPM	CR PPM P
1251 1252 1253 1254 1255	.9 15410 1.3 32970 1.3 25870 .8 18580 .5 12380	6 1 2 1 10 1 3 1 2 1	142 366 278 153 108	.6 1.5 1.0 .7 .5	7 7130 8 8940 7 7650 6 6760 5 4060	2.8 5.0 3.8 2.3 3.2	14 25 18 11 14	59 28700 187 47760 187 40170 70 24390 14 35070	1140 1770 1060 820 540	1 1 1 1 1	5010 8990 6420 4870 2740	308 1218 653 261 387	3 5 6 3 2	170 180 130 130 130	12 700 29 1100 27 700 17 760 5 2760	22 24 19 12 12	1 1 1 1	32 36 31 32 27	3	8 11 1 13 1 9 7 1	98.8 40.8 20.7 82.0 14.8	69 79 62 44 60	5 7 6 4 3	4 4 6 6 2 5 2 4 2 4	36 51 45 34 34
1256 1257 1258 1259 1260	.4 11760 .7 15130 .8 19510 1.1 31430 1.1 20280	1 1 2 1 8 1 1 1 10 1	_234	.4 .6 .8 1.1 .8	5 4530 7 6910 6 8040 8 5680 8 7930	2.1 2.8 3.3 4.1 3.2	9 12 15 23 19	25 21750 43 24670 72 29740 79 40470 40 29760	970	1 1 1 1		190 318 411 706 1010	3 4 3 5 3	130 160 170 200 180	9 380 14 580 19 660 26 510 18 430	9 16 16 19 24	1 1 1 1	27 33 37 30 36	4	9 11 11 1 13	85.4 83.2 97.4 23.2 94.7	32 43 50 84 80	6	1 3 3 4 3 4 5 5	29 36 48 37
1261 1262 1263 1264 1265	1.0 12580 1.1 21720 1.5 41900 1.4 45440 .9 14630	10 1 8 1 1 1 1 1 4 1		.5 .9 1.8 1.8 .5	9 8220 9 9070 8 12720 8 14560 8 9030	6.1 2.9	13 18 24 26 15	29 24320 115 34650 239 54530 223 54340 70 26270	2540 2400 1140	1 1	6310	1052 1174 405	8 11 8	170 180 1560 1300 190	15 970 23 700 45 890 49 1060 12 1010	20 24 25 23 19	1 1 1 1	37 38 40 41 40	4 3 3	10 1 11 1 9	30.7 25.1 89.5	111 138 43	5 6 7 8 5	4 4 2 7 4 7 4 4	66 65 30
1266 1267 1268	1.2 22640 1.3 22360 1.0 21470	2 1 7 1 6 1	226 262 226	.8 .9 1.0	8 11690 7 9160 5 10690	3.7 4.7 4.1	19 18 17	393 37070 673 35340 694 33130	1160	1 1 1	7940 7420 7390	700 684 762	13 14 21	200 170 150	24 1040 22 910 24 1110	22 22 22	1 1 1	42 35 37	3 4 3	11 1 11 13	10.6 99.9 94.5	59 58 58	6 6 6	4 5 3 5 3 4	40
																-									
								. <u>.</u> .										•							
										•															
										,															
										<u> </u>															
									·····												<u> </u>				
																	-								
																	<u></u>								

APPENDIX III

· ·

Analytical Procedures

PHON 5 (604) 980-5814 or 988-4524

MIN-EN Laboratories Ltd.

Specialisis in Mineral Environments

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M 1T2

Analytical Procedure Report for Assessment Work

31 Element ICP

Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Co, Cu, Fe, K, L1, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sr, Th, U, V, Zn, Ga, Sn, W, Cr

Samples are processed by Min-En Laboratories Ltd., at 705 West 15th Street, North Vancouver, employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by a jaw crusher and pulverized by ceramic plated pulverizer or ring mill pulverizer.

1.0 gram of the sample is digested for 4 hours with an aqua regia $HC10_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by computer operated Jarrall Ash 9000 ICAP or Jobin Yvon 70 Type II Inductively Coupled Plasma Spectrometers. Reports are formatted and printed using a dot-matrix printer.

48 -

ANALYTICAL PROCEDURE REPORT FOR ASSESSMENT WORK

PROCEDURES FOR Mo, Cu, Cd, Pb, Mn, N1, Ag, Zn, As, F

Samples are processed by Min-En Laboratories., at 705 West 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed by jaw crusher and pulerized by ceramic plated pulverizer.

1.0 gram of the samples are digested for 6 hours with HNO_3 and $HCIO_4$ mixture.

After cooling samples are diluted to standard volume. The solutions are analysed by Atomic Absorption Spectrophotometers.

Copper, lead, zinc, silver, cadmium, cobalt, nickel and manganese are analysed using the CH_2H_2 -Air Flame combination but the molybdenum determination is carried out by C_2H_2 -N₂O gas mixture directly or indirectly (depending on the sensitivity and detection limit required) on these sample solutions.

Background corrections for Pb, Ag, Cd upon request are completed.

FOR ARSENIC analysis a suitable aliquote is taken from the above 1 gram sample solution and the test is carried out by Gutzit method using Ag Cs₂N $(C_2H_5)_2$ as a reagent. The detection limit obtained is 1, ppm

FOR FLUORINE analysis is carried out on a 200 milligram sample. After fusion and suitable dilutions the fluoride ion concentration in rocks or soil samples are measured quantitatively by using fluorine specific

OFFICE AND LABORATORIES: 705 WEST FIFTEENTH STREET, NORTH VANCOUVER, B.C. CANADA V7M 1T2

- 49 -

PHONE: (604) 980-5814 (604) 988-1524 TELEX: VIA USA 760 067 FAX: (604) 980-9621

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

ONE 980-5814

Corner 15th Street and Bewicke 705 WEST 15TH STREET NORTH VANCOUVER, B.C. CANADA V7M, 1T2

GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

Geochemical samples for Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.

A suitable sample weight 5.0 or 10.0 grams are pretreated with HNO_3 and $HClO_4$ mixture.

After pretreatments the samples are digested with <u>Aqua Regia</u> solution, and after digestion the samples are taken up with 25% HCl to suitable volume.

Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.

With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 0.005 ppm (5ppb).

TELEX: 04-352828

MIN-EN Laboratories Ltd. Specialists in Mineral Environments

NE: (604) 980-5814 or 988-4524

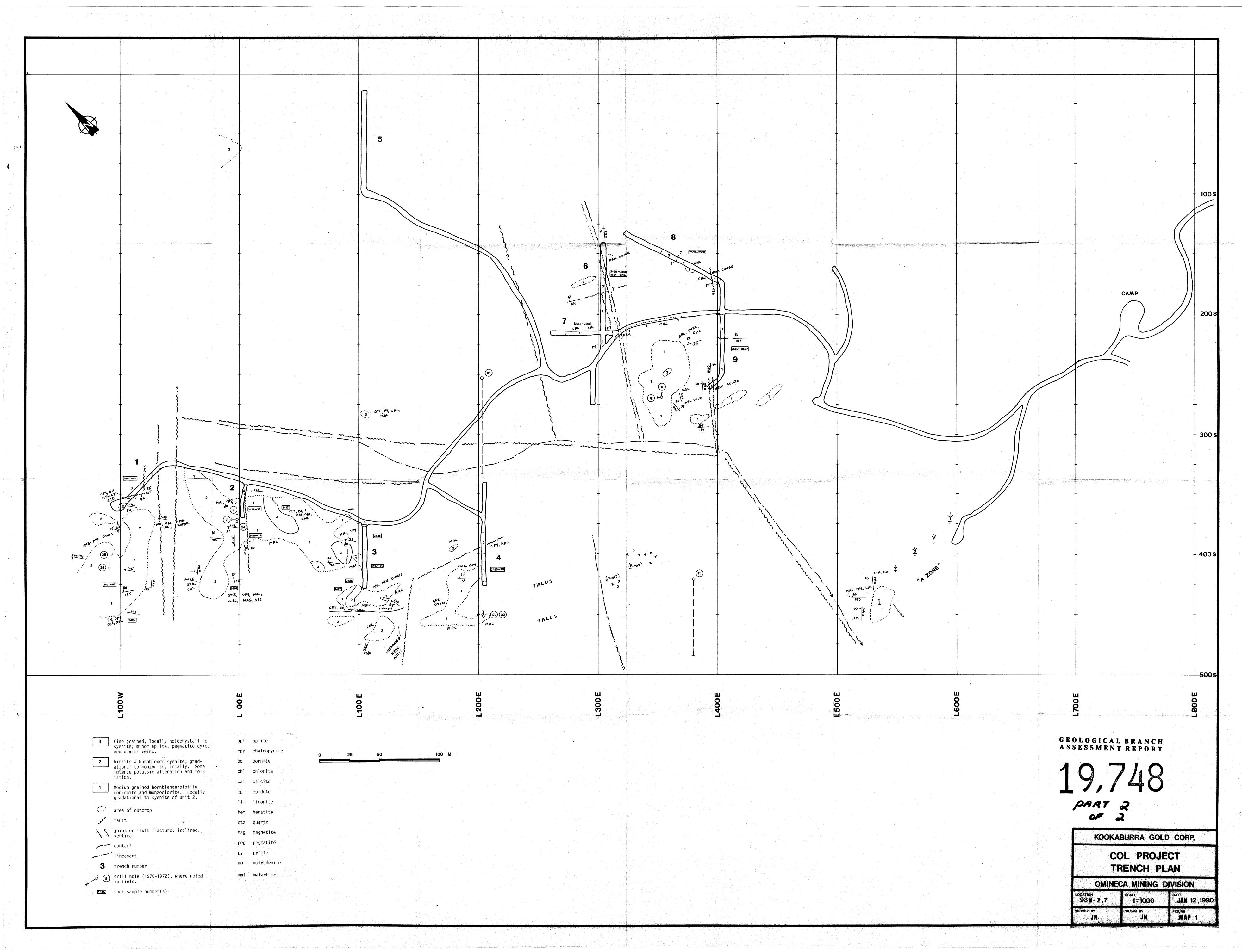
Corner 15th Street and Bewicke 705 WEST 15TH STREET

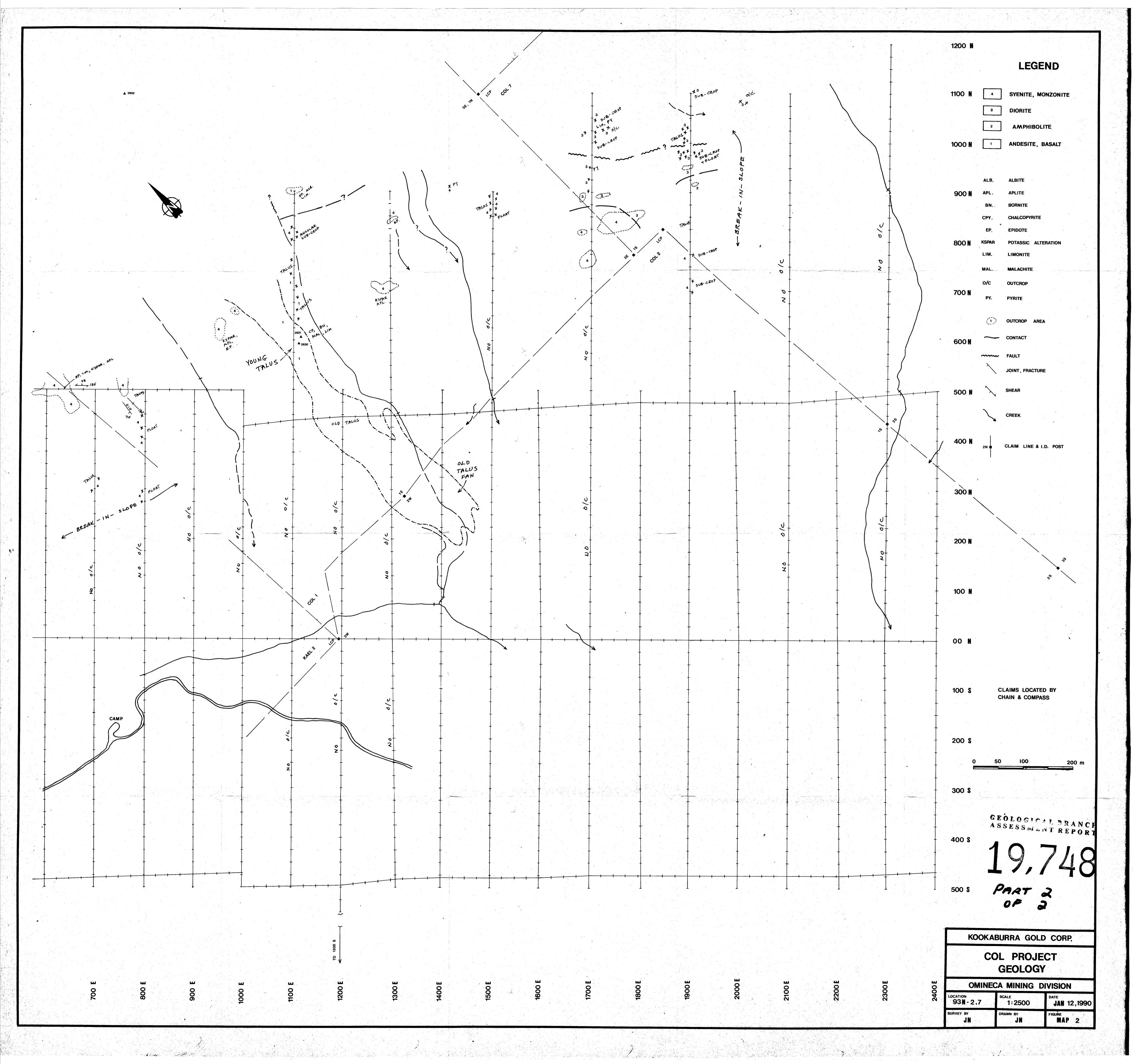
NORTH VANCOUVER, B.C. CANADA V7M 1T2

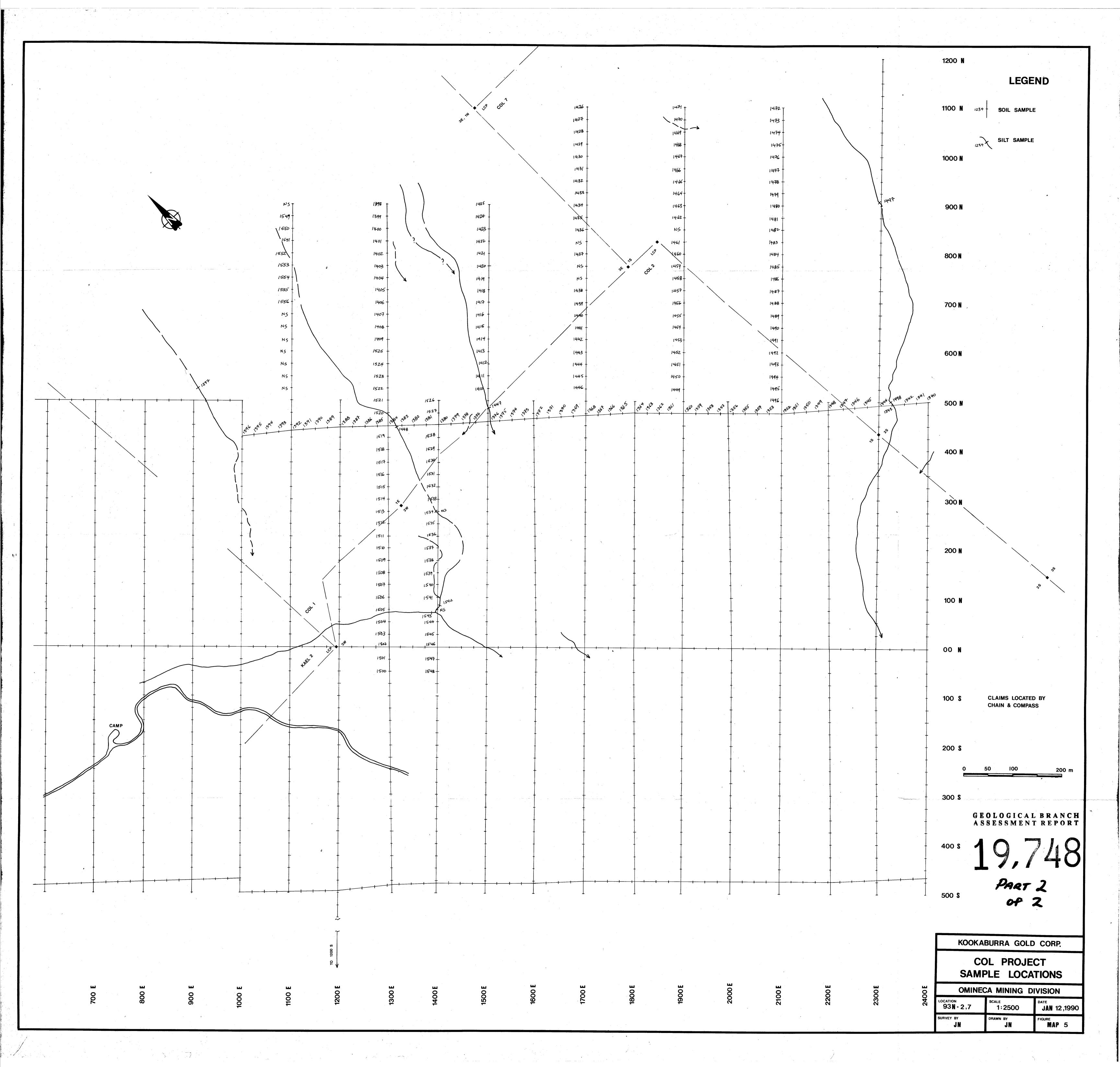
FIRE GOLD GEOCHEMICAL ANALYSIS BY MIN-EN LABORATORIES LTD.

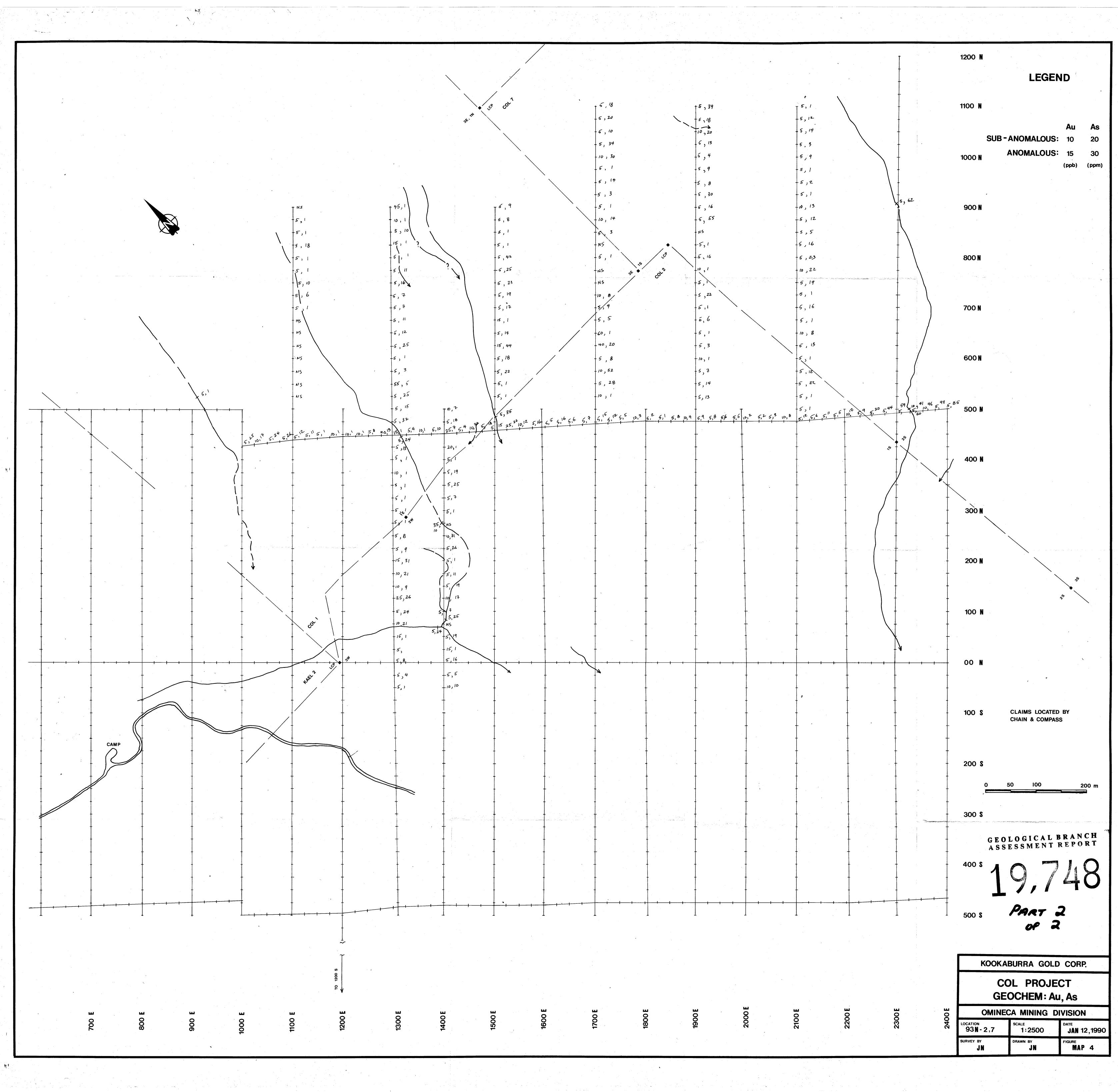
Geochemical samples for Fire Gold processed by Min-En Laboratories Ltd., at 705 W. 15th St., North Vancouver Laboratory employing the following procedures.

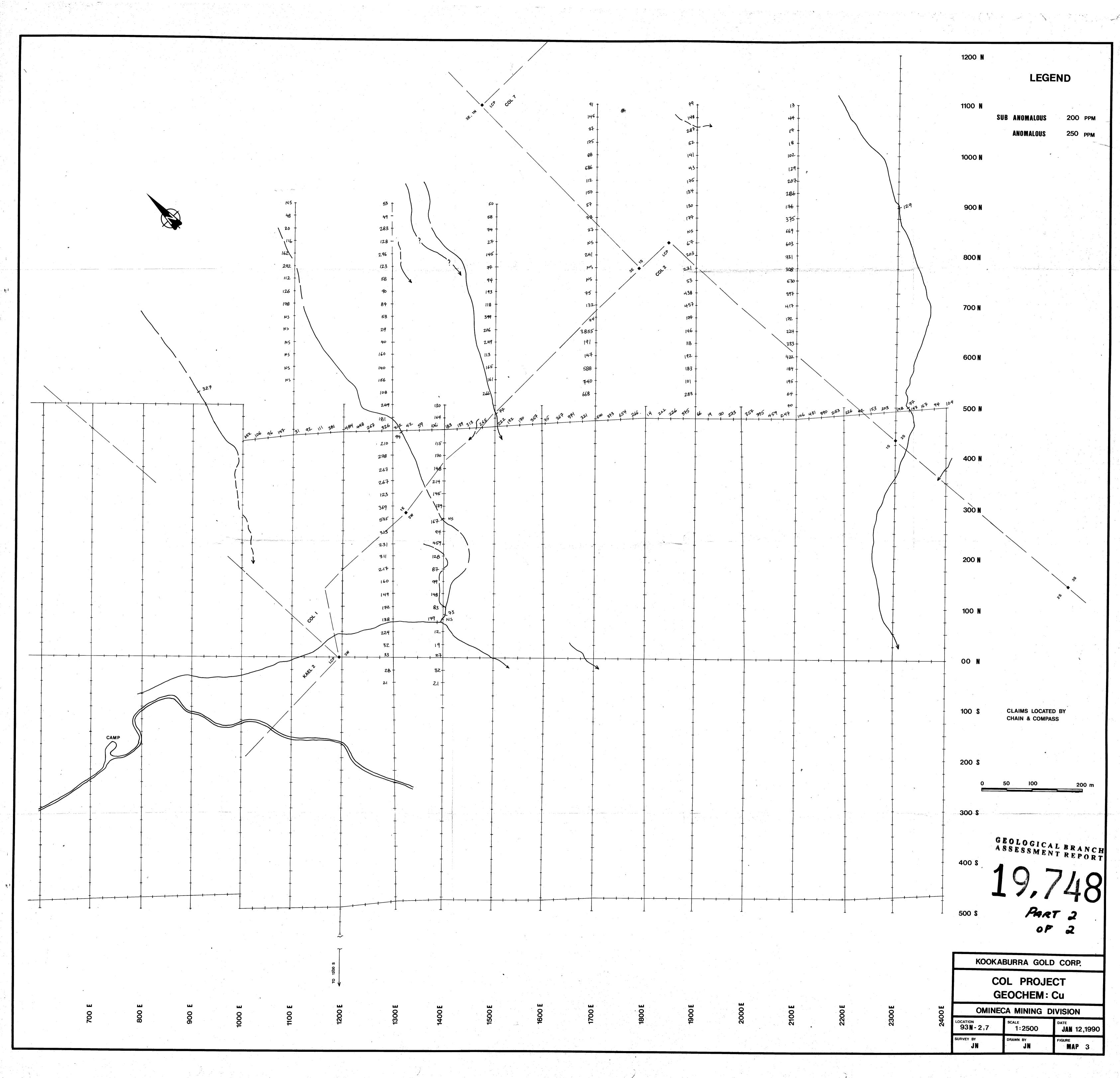
After drying the samples at 95°C soil and stream sediment samples are screened by 80 mesh sieve to obtain the minus 80 mesh fraction for analysis. The rock samples are crushed and pulverized by ceramic plated pulverizer.


A suitable sample weight 15.00 or 30.00 grams are fire assay preconcentrated.


After pretreatments the samples are digested with Aqua Regia solution, and after digestion the samples are taken up with 25% HCl to suitable volume.


Further oxidation and treatment of at least 75% of the original sample solutions are made suitable for extraction of gold with Methyl Iso-Butyl Ketone.


With a set of suitable standard solution gold is analysed by Atomic Absorption instruments. The obtained detection limit is 1 ppb.


51

