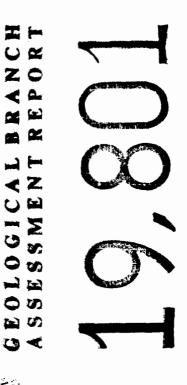
Off Confidential: 90.12.19 District Geologist, Smithers ASSESSMENT REPORT 19801 MINING DIVISION: Liard **PROPERTY:** Axe LOCATION: LAT 57 41 00 LONG 130 10 00 UTM 09 6393842 430430 104G09E 104G09W NTS Axe 25, Axe 36-37, Axe 47-48, Axe 53-54, Axe 61-64, Axe 69-72, Axe 77-80 CLAIM(S): Ascot Res. OPERATOR(S): Mehner, D.T. AUTHOR(S): 1990, 72 Pages **REPORT YEAR:** COMMODITIES SEARCHED FOR: Copper, Gold, Lead, Zinc Triassic, Basalts, Siltstones, Greywackes, Conglomerates, Andesites **KEYWORDS:** Pyrite, Chalcopyrite, Barite, Magnetite, Hematite WORK Geological, Geochemical DONE: GEOL 200.0 ha Map(s) - 2; Scale(s) - 1:1250,1:20 000 87 sample(s) ;CU,PB,ZN,AG,AU ROCK Map(s) - 1; Scale(s) - 1:20000226 sample(s) ;CU,PB,ZN,AG,AU SILT Map(s) - 6; $Scale(s) - 1:20\ 000$ 13 sample(s) ;CU,PB,ZN,AG,AU SOIL 104G 045,104G 071,104G 087 MINFILE:

LOG NO:	0321	RD.
ACTION:		
FILE NO:		

ASSESSMENT REPORT

ON GEOLOGICAL MAPPING, PROSPECTING AND


STREAM SILT SAMPLING OF THE

AXE AND TAT MINERAL CLAIMS

LIARD MINING DIVISION, B.C.

NTS 104G/9E, 9W Latitutde 57° 41'N Longitude 130° 10'W

FILMED

For:

ASCOT RESOURCES LTD. Vancouver, B.C.

By:

David T. Mehner, M.Sc., FGAC KEEWATIN ENGINEERING INC. #800 - 900 West Hastings Street Vancouver, B.C. V6E 1E5

January 15, 1990

TABLE OF CONTENTS

Page No.

SUMMARY	1
INTRODUCTION	1
Location and Access	2 2 2 3
GEOLOGY	5
Regional Geology Property Geology	5 6
GEOCHEMISTRY	8
Stream Silt Sampling Soil Sampling Rock Geochemistry	9 13 14
CONCLUSIONS	15
REFERENCES	17

-

LIST OF APPENDICES

APPENDIX A	Expenditures
APPENDIX B	Silt Geochem Results
APPENDIX C	Soil Geochem Results
APPENDIX D	Rock Geochem Results
APPENDIX E	Rock Sample Descriptions
APPENDIX E APPENDIX F	Qualifications

LIST OF FIGURES

After <u>Page</u>

Figure 1.	Axe Property Location Map	2
	Regional Location Map	2
Figure 3.	Axe Property Claim Map	2
Figure 4.		5
Figure 5.		5

LIST OF MAPS

Located in pockets

Plate 1.	Geology - 1:20,000	Η
Plate 2.	Wolf Showing - 1:1,250	Ħ
Plate 3.	Stream Silt Geochemistry, ppm Cu	Η
Plate 4.	Stream Silt Geochemistry, ppm PD	"
Plate 5.	Stream Silt Geochemistry, ppm Zn	Ħ
Plate 6.	Stream Silt Geochemistry, ppm Ag	Ħ
Plate 7.	Stream Silt Geochemistry, ppb Au	Ħ
Plate 8.	Histograms of Sill Geochem Data	Ħ
Plate 9.	Rock and Soil Geochemistry	H

SUMMARY

The Axe claims are located on the Klastline Plateau in the Stikine region of northern B.C. They were acquired in 1989 as a porphyry Cu-Au target. Subsequent exploration of the property included a stream silt geochemistry survey, prospecting, mapping and rock geochemical sampling. This work has traced the intrusive complex related to Cu-Aumineralization on the adjoining GJ property at least 8.5 km to the northeast. Strongly anomalous Cu-Ag and Au values were obtained from silt and rock samples where this complex crosses the Axe claims. This area offers excellent potential for hosting porphyry Cu-Au mineralization. Two other targets identified by anomalous Pb-Zn-Ag values in silt and rock samples may reflect younger mineralization related to rhyolite plugs.

Results obtained in 1989 are highly encouraging. Follow-up prospecting and contour soil sampling is required to identify targets for trenching and drilling.

INTRODUCTION

The Axe claims are located in the Stikine area of northwestern British Columbia. They were originally staked to cover favourable Cu-Au porphyry style mineralization and the potential for associated gold rich peripheral veins on the Klastline Plateau. Numbering over 1,270 units the claims were divided into two separate groups in 1989 with one group of claims being operated by Ascot Resources Ltd. and the other group by Dryden Resource Corporation. Exploration work was contracted to Keewatin Engineering Inc. of Vancouver, B.C. who carried out a large systematic stream silt geochemistry program along with prospecting, rock sampling and minor soil sampling over both parcels of land simultaneously. The work was carried out from a camp established on the Klastline Plateau. Camp servicing and daily moves to various parts of the property were provided by a Hughes 500 helicopter which was permanently stationed in camp.

This report covers the work carried out for Ascot Resources Ltd. over the Axe 25, 36, 37, 47, 48, 53, 54, 61, 62, 63, 64, 69, 70, 71, 72, 77, 78, 79 and 80 claims and the TAT 1 to 4 claims.

During the course of this property work, 226 stream silts, 13 soils and 87 rock samples were collected. All samples were analyzed for Cu-Pb-Zn-Ag and Au. A select number of rock samples were also analyzed for Hg. In addition to the geochemical sampling, the claims were prospected and portions mapped at 1:20,000. The Wolf showing was mapped at 1:1,250.

Field work was carried out by Mike Brown (sampler), Colin Adams (sampler), Jim Roberts (prospector), Bob Charles (prospector), Adam Travis (geologist), Marty Bobyn (geologist) and David Mehner (project geologist).

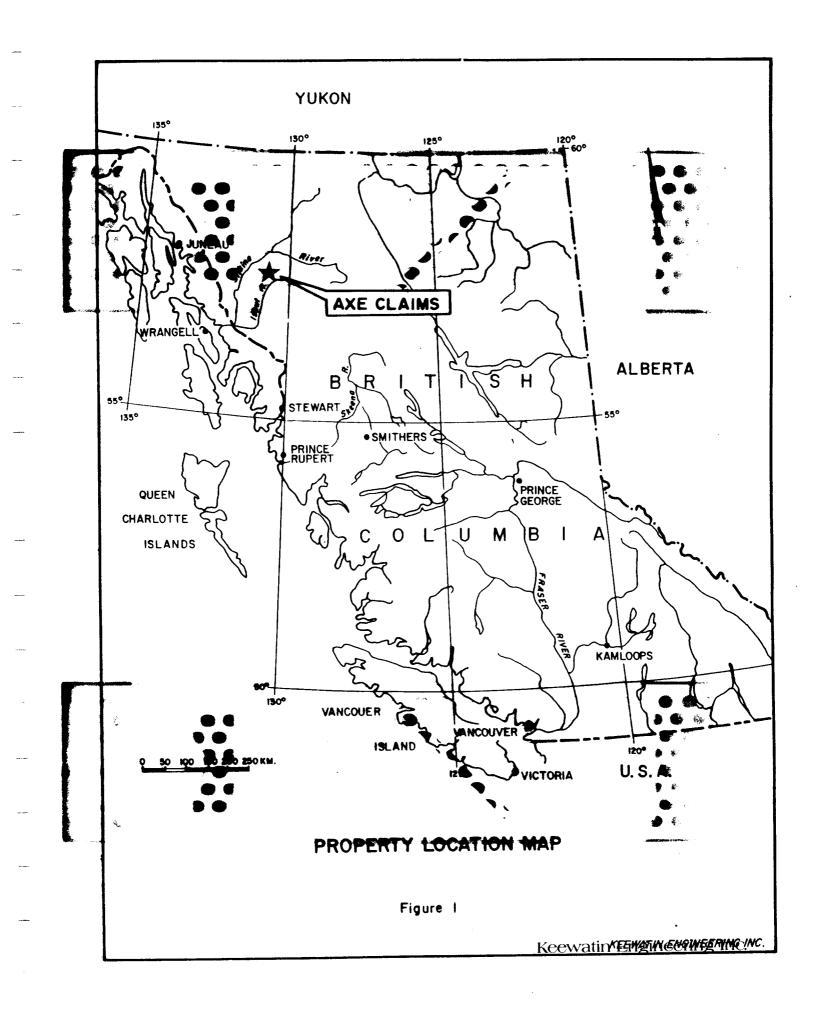
Location and Access

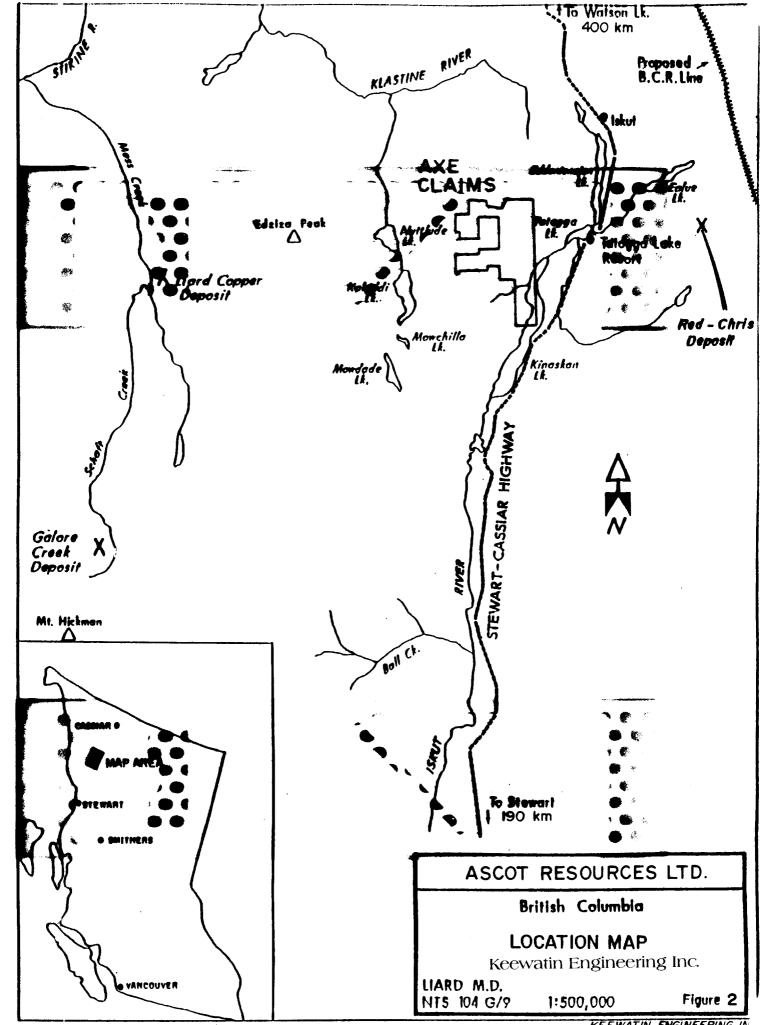
The Axe claims are located in the Stikine region of northwestern British Columbia approximately 180 km north of Stewart, B.C. (Figure 1). The claims are centred 4 km west of the northwest end of Kinaskan Lake and 28 km southwest of Iskut Village at about 57°41' North latitude and 130° 10' West longitude on NTS map sheet 104G/9E and 9W (Figure 2).

Access is via helicopter from Iskut Village or Tatogga Lake Lodge which is located 29 km south of Iskut and 28 km northeast of the property. Both locations are on the Stewart - Cassiar Highway. The proposed B.C. Rail extension to Dease Lake is about 32 km east of Kinaskan Lake.

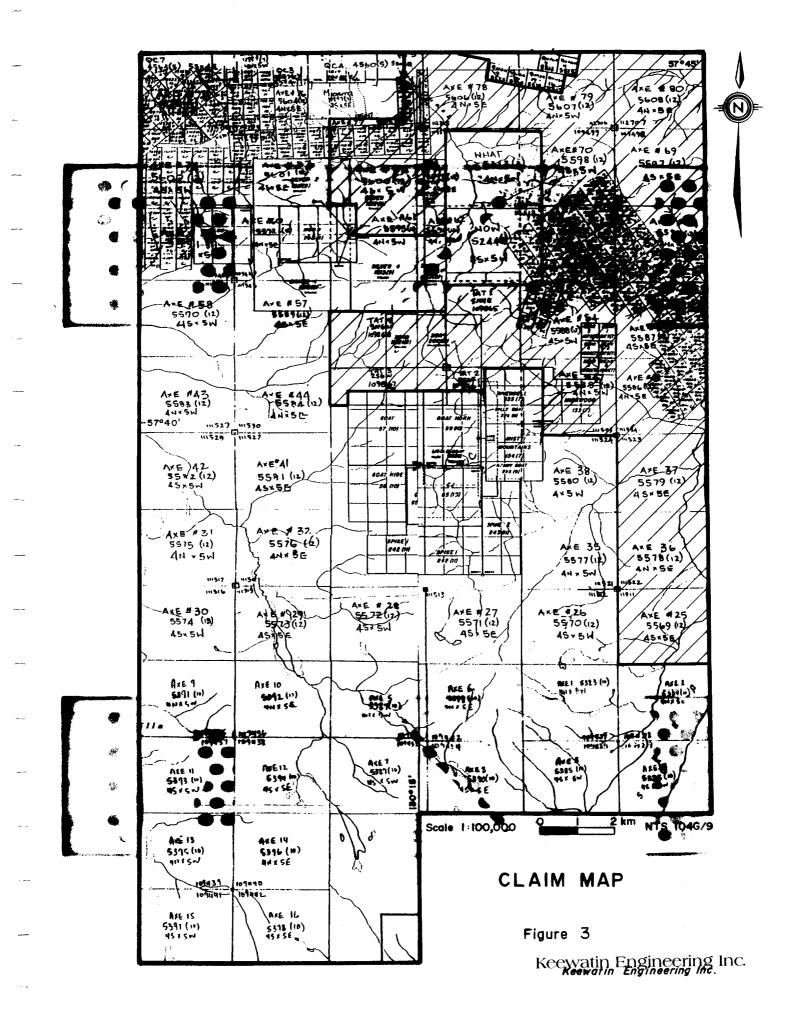
<u>Topography</u>

The Axe and Tat claims are situated on top and along the eastern edge of the Klastline Plateau. Topography is characterized by gently rolling hills atop the Plateau and steep slopes along the eastern edge and in the deeply incised creek valleys.


Elevations vary from 2,600 feet (792 metres) above sea level on the eastern side of the property along Kinaskan Lake to 6,900 feet (2,103 metres) above sea level at the northwest corner of the property (Plate 1).


Vegetation varies from poplar, alder, spruce and fir at lower elevations to predominantly coniferous trees along the steeper slopes at higher elevations. Sub-alpine scrub meanders through the property at about the 4,300 foot level with the tree line at about 4,500 feet above sea level. Alpine grasses and flowers are common on the Plateau.

Precipitation is moderate, averaging 100 cm per year. Thick accumulations of snow are common during winter. It is seldom possible to begin surface geological work before July and difficult to continue past September.


Property and Ownership

The Axe and Tat claims are located in the Liard Mining Division (Figure 3) and consist of the following:

KEEWATIN ENGINEERING IN

Record No.	<u>Units</u>	Date Recorded
5569	20	Dec. 19, 1988
5578	20	Dec. 19, 1988
5579	20	Dec. 19, 1988
5585	20	Dec. 19, 1988
5586	20	Dec. 19, 1988
5587	20	Dec. 19, 1988
5588	20	Dec. 19, 1988
5593	20	Dec. 19, 1988
5594	20	Dec 19 1988

	0000		2000 17, 1700	
Axe 48	5586	20	Dec. 19, 1988	Dec. 19, 1990
Axe 53	5587	20	Dec. 19, 1988	Dec. 19, 1991
Axe 54	5588	20	Dec. 19, 1988	Dec. 19, 1991
Axe 61	5593	20	Dec. 19, 1988	Dec. 19, 1990
Axe 62	5594	20	Dec. 19, 1988	Dec. 19, 1990
Axe 63	5595	20	Dec. 19, 1988	Dec. 19, 1991
Axe 64	5596	20	Dec. 19, 1988	Dec. 19, 1991
Axe 69	5597	20	Dec. 19, 1988	Dec. 19, 1991
Axe 70	5598	20	Dec. 19, 1988	Dec. 19, 1990
Axe 71	5599	20	Dec. 19, 1988	Dec. 19, 1990
Axe 72	5600	20	Dec. 19, 1988	Dec. 19, 1990
Axe 77	5605	20	Dec. 19, 1988	Dec. 19, 1990
Axe 78	5606	20	Dec. 19, 1988	Dec. 19, 1990
Axe 79	5607	20	Dec. 19, 1988	Dec. 19, 1990
Axe 80	5608	20	Dec. 19, 1988	Dec. 19, 1990
Tat 1	6216	20	Aug. 10, 1989+	Aug. 10, 1991
Tat 2	6217	8	Aug. 14, 1989	Aug. 14, 1992
Tat 3	6218	12	Aug. 14, 1989	Aug. 14, 1991
Tat 4	6219	18	Aug. 14, 1989	Aug. 14, 1992

* Due date after filing expenditures in this report.

+ Date staked.

<u>Claim</u>

Axe 25

Axe 36

Axe 37

Axe 47

The claims are owned 100% by Ascot Resources Ltd. with offices at 800 - 900 West Hastings Street, Vancouver, B.C. V6C 1E5

Previous Work

The Telegraph Creek Map Sheet (104G) encompasses a large area that is well known for its porphyry copper potential, particularly the alkalic, gold rich varieties. Most of the showings or deposits in the region were discovered in the middle to late 1950's when considerable grass-roots exploration for porphyry style copper deposits was taking place. This early work was followed by a period of more detailed exploration including considerable drilling throughout the 1960's and most of the 1970's, that resulted in the identification of a number of significant porphyry copper deposits and showings.

These include Shaft Creek (60 km southwest of the Axe claims) where reserves are estimated at 330 M tons grading 0.40% Cu, 0.036% Mo and 0.009 oz/ton Au (Fox et al., 1976) and Galore Creek (96 km southwest of the Axe claims) where reserves are estimated at 125 M tons grading 1.06% Cu

Keewatin Engineering Inc.

Due Date*

Dec. 19, 1990

Dec. 19, 1990

Dec. 19, 1990

Dec. 19, 1990

No. of

and 0.013 oz/ton Au (Allen et al., 1976). Along the same northeast-southwest trend but only 23 km northeast of the Axe claims is the Red Chris deposit. Published reserves stand at 45.2 M tons grading 0.56% Cu and 0.010 oz/ton Au (Panteleyev, 1977).

The GJ, Cu-Au porphyry deposit is located on the Klastline Plateau, immediately west of the Axe claims. Although insufficient drilling has taken place to put firm numbers on grade or tonnage, there are strong indications that the deposit contains at least 30 million tons grading 0.30% Cu equivalent or better with mineralization open in all directions. This deposit was initially worked by Conwest Exploration in 1964. Since then, Amoco, Norcen Energy and Canorex Minerals have all worked on the property. The ground which is now owned by International Curator Resources Ltd. of Vancouver has been idle since 1981.

Immediately west of the GJ deposit is Falconbridge Ltd.'s Groat Creek porphyry copper prospect. Work on this property was carried out between 1976 and 1977.

On the Axe claims discussed in this report, there are three known mineral occurrences (Minfile reports 104/G). All are copper showings and they include the Avon, Goat or Wolf, and the Art. The Sun copper showing is located on the Tat claims (Plate 1).

The Goat or Wolf showing was discovered in the early 1960's by Southwest Potash Corp. while exploring for porphyry Cu-Mo mineralization. The chalcopyrite-pyrite mineralization was of little interest to the discoverers who were seeking molybdenum as well. The showings were subsequently staked by Nuspar Resources Ltd. Work to date has consisted of mapping, prospecting, rock sampling and limited trenching.

Minimal information is available on the Art showing but B.C. Minfile reports suggest the showing was discovered in the 1960's and subsequently drill tested by Nuspar Resources Ltd. with two short holes in 1969. Drill samples are reported to average 0.475% Cu over the two holes (unknown length) which are 15.2 metres apart. This showing is about 1.9 km northwest of the Goat/Wolf showing.

The Avon showing is situated 5.5 km southeast of the Goat/Wolf showing near the western shore of Kinaskan lake. No work is known to have taken place over the showing.

The Sun showing is a small chalcocite-malachite occurrence which was mapped and sampled by Great Plains Development Co. in 1976. Grab samples yielded values of 15.65% Cu and 35.66 grams per tonne (1.04 opt) silver.

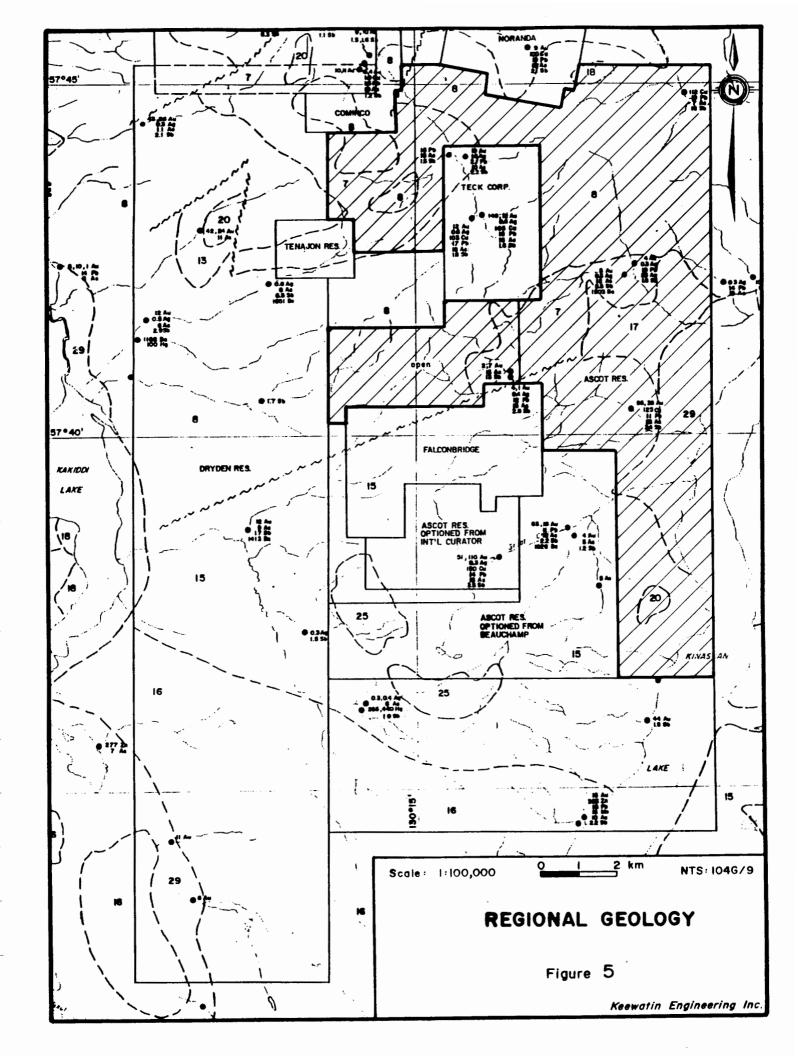
4

In 1988, the Klastline Plateau and surrounding area was covered by a regional stream silt sampling program (National Geochemical Reconnaissance, 1988). In 1989, exploration activity in the area included further work on the Galore Creek deposit and diamond drilling on the Spectrum Copper showing located 19 km due west of the Goat/Wolf showing.

The Axe claims were staked by Kevin Whelan in 1988 and sold to Ascot Resources Ltd. in 1989. The Tat claims were staked by Ascot Resources Ltd. in 1989.

GEOLOGY


Regional Geology


The Axe property is located on the southwest portion of the Klastline Plateau within the Intermontane-Tectono-Stratigraphic Belt of the Canadian Cordillera (Figure 4). The claims lie within the northeast half of the Stikine Arch near the contact with the unmetamorphosed sediments of the Bowser Basin.

The northern half of the Klastline Plateau has been mapped (Figure 5) as Upper Triassic augite-andesite flows, pyroclastics and derived volcaniclastics ranging from conglomerates down to siltstones (Souther, 1971). Minor limestone and chert occur within the stratigraphy. Related coeval intrusives cut all rock types. A regional fault trending northeasterly passes through the centre of Kakiddi Lake and intersects the Iskut Valley fault zone at the north end of Kinaskan Lake. To the south of the fault, Souther (1971) mapped the rocks as a downthrown sequence of Middle Jurassic basalt pillow lavas, fragmentals and proximal volcaniclastic rocks intruded by coeval plutons. Subsequent K-Ar and Rb-Sr age dating (Schmitt, 1977) has yielded intrusive ages of 185 to 195 million years for the intrusive rocks south of the fault, suggesting the volcanic rocks are similar in age to the Upper Triassic stratigraphy north of the fault.

South of the volcanic units are chert pebble conglomerate, grit, greywacke and siltstone of the Middle and Upper Jurassic Bowser Group.

Intruding Upper Triassic volcanics are massive and flow banded rhyolite, orbicular rhyolite and massive felsite of Upper Cretaceous to Lower Tertiary age. Capping the southern portion of the Plateau are Upper Tertiary basalt and olivine basalt flows, often exhibiting excellent columnar jointing.

LEGEND	LOWER JURASSIC
	Conglomerate, polymictic conglomerate; granite-boulder conglomerate, grit,
	13 groywacke, siltstone; basaltic and andesitic volcanic rocks, peperites,
QUATERNARY	pillow-breccia and derived volcaniclastic rocks
PLEISTOCENE AND RECENT	
29 Fluviatile gravel; sand, silt; glacial outwash, till, alpine moraine and colluvium	TRIASSIC AND JURASSIC
	POST-UPPER TRIASSIC PRE-LOWER JURASSIC
28 Hot-spring deposit, tuía, aragonite	12 Syenite, orthoclase porphyry, monzonite, pyroxenite
Oliving bench, veloted supported and longe tenhan venages then	
27 Olivine basalt, related pyroclastic rocks and loose tephra; younger than some of 29	HICKMAN BATHOLITH
	U 10 11 10. Hornblende granodiorite, minor hornblende-quartz diorite 11. Hornblend
	[] quartz diorite, hornblende-pyroxene diorite, amphibolite and pyroxene-bearin
TERTIARY AND QUATERNARY	U 10 11 10. Hornblende granodiorite, minor normblende-quartz diorite 11. normblende quartz diorite, hornblende-pyroxene diorite, amphibolite and pyroxene-bearin amphibolite
UPPER TERTIARY AND PLEISTOCENE	
Rhyolite and dacite flows, lava domes, pyroclastic rocks and related sub-	
26 volcanic intrusions; minor basalt	TRIASSIC
Volgand Influsions, miller baset	UPPER TRIASSIC
Basalt, olivine basalt, dacite, related pyroclastic rocks and subvolcanic	9 Undifferentiated volcanic and sedimentary rocks (units 5 to 8 inclusive)
25 intrusions; minor rhyolite; in part younger than some 26	9 Undifferentiated volcanic and sedimentary rocks (units 5 to 8 inclusive)
Interesting inter inter inter inter the source of the second seco	Augite-andesite flows, pyroclastic rocks, derived volcaniclastic rocks and
	Augite-andesite flows, pyroclastic rocks, derived voicaniciastic rocks and elated subvolcanic intrusions; minor greywacke, siltstone and polymictic
CRETACEOUS AND TERTIARY	related subvolcanic intrusions; minor greywacke, suistone and polymicue
UPPER CRETACEOUS AND LOWER TERTIARY	conglomerato
	Olly do a shirt to shirt of the sum of the terms with the should be also need
SLOKO GROUP	Siltstone, thin-bedded siliceous siltstone, ribbon chert, calcareous and
24 Light green, purple and white rhyolite, trachyte and dacite flows, pyroclastic	dolomictic siltstone, greywacke, volcanic conglomerate, and minor limestone
rocks and derived sediments	
	Limestone, fetid argillaceous limestone, calcareous shale and reefold
22 23 22. Biotite leucogranite, subvolcanic stocks, dykes and sills 23. Purphyritic biotite andesite, lava domes, flows and (?) sills	limestonc; may be in part younger than some 7 and 8
22/23 23. Porphyritic biotite andesite, lava domes, flows and (?) sills	
	5 Greywacke, siltstone, shale; minor conglomerate, tuff and volcanic sandstone
SUSTUT GROUP Cheri-pebble conglomerate, granite-boulder conglomerate, quartzose	
21 sandstone, arkose, siltstone, carbonaceous shale and minor coal	MIDDLE TRIASSIC
Sandstone, arabse, anteone, carbonaceous anato and minor coar	
Felsito, quartz-feldspar porphyry, pyritiferous felsite, orbicular rhyolite; in	4 Shale, concretionary black shale; minor calcareous shale and siltstone
20 part equivalent to 22	
	PERMIAN
19 Medium-to coarse-grained, pink biotite-hornblende quartz monzonite	MIDDLE AND UPPER PERMIAN
	Limestone, thick-bedded mainly bioclastic limestone; minor siltstone, chert
	and tuff
JURASSIC AND/OR CRETACEOUS	o
POST-UPPER TRIASSIC PRE-TERTIARY	5
18 Horablende diorite	D PERMIAN AND OLDER
18 Horablende diorite	Phyllite, argillaceous quartzite, quartz-sericite schist, chlorite schist,
	PERMIAN AND OLDER Phyllite, argillaceous quartzite, quartz-scricite schist, chlorito schist, greenstone, minor chert, schistoso tuff and limestone
17 Granodiorite, quartz diorite; minor diorite, leucogranite and migmatite	
	MISSISSIPPIAN
JURASSIC	Limestone, crinoidal limestone, ferruginous limestone; maroon tuff, chert
MIDDLE (?) AND UPPER JURASSIC	and phyllite
BOWSER GROUP	
Chert-pebble conglomerate, grit, greywacke, subgreywacke, siltstone and	Amphibolite, amphibolite gneiss; age unknown probably pre-Upper Jurassic
16 shale; may include some 13	B Amphibolite, amphibolite gliesses, age unknown probably pre-opper surassic
susre; may include source 19	Ultramafic rocks; peridotite, dunite, serpentinite; age unknown, probably
	A pro-Lower Jurassic
MIDDLE JURASSIC	
Basalt, pillow lava, tuff-breccia, derived volcaniclastic rocks and related	
MEDLE JURASSIC Basalt, pillow lava, tuff-breccia, derived volcaniclastic rocks and related subvolcanic intrusions	
Basalt, pillow lava, tuff-breccia, derived volcaniclastic rocks and related subvolcanic intrusions	
Basalt, pillow lava, tuff-breccia, derived volcaniclastic rocks and related	From G.S.C. Paper 71-44 by J.G. Souther.

Property Geology

Work on the Axe claims included limited prospecting and geological mapping in conjunction with the stream silt geochemistry program carried out on the Klastline Plateau. As a result the prospecting and mapping is largely restricted to outcrop exposures in creeks and gullies (Plate 1 @ 1:20,000). The Wolf/Goat showing was mapped and sampled at 1:1,250 (Plate 2).

Lithology

This work indicates that the southern part of the Axe claims are underlain by a thick sequence of augite porphyry basalt flows and lesser well bedded siltstones, greywackes and polymictic conglomerate. Andesite tuffs, tuff breccias and agglomerates comprise a very small part of the stratigraphy. In the central portion of the property (almost totally on the GJ and Spike claims), a folded sequence of chert, cherty siltstone and quartzite underlies the area. The northern part of the property is underlain by sequences of andesite tuffs, tuff breccias and agglomerates interbedded with thick sequences of siltstone, greywackes and minor argillite and fossiliferous limestone. Very limited chert and cherty siltstone occur in this northern stratigraphic package.

A northeast-southwest trending eliptical shaped stock which is at least 10 km long x 2 km wide, intrudes into the central portion rocks and separates the southern package of flow and sedimentary dominated rocks from the pyroclastic-epiclastic sequence to the north. The stock is a multiphase intrusive which varies from predominantly equigranular hornblende diorite to biotite diorite, quartz biotite \pm hornblende diorite, monzodiorite and granodiorite. It contains finer grained (such as latite) and porphyritic phases.

Age dating by Schmitt (1977) assigns an Upper Triassic age to the intrusive suggesting it is coeval with the surrounding volcanic stratigraphy.

Unconformably overlying the Upper Triassic assemblage, as shown by outcrops that lie off this portion of the Axe claims to the south are shale, siltstone, greywacke and chert pebble conglomerate of the Middle and Upper Jurassic Bowser Group.

In the southeastern part of the property and on the northwest end of the Tenajon property massive, flow banded and orbicular rhyolite plugs of Upper Cretaceous age intrude the Upper Triassic stratigraphy. These rocks are white in colour and have associated colour anomalies due to oxidation of sulphides. Unconformably capping all lithologies but not outcropping on the Axe or Tat claims described in this report are Upper Tertiary and Pleistocene basalt and olivine basalt flows. These rocks often exhibit excellent columnar jointing.

Alteration is largely confined to zones of fracturing and veining within intrusive rocks or in adjacent volcanic/sedimentary rocks. It varies from dominantly fracture controlled propyllitic alteration consisting of chlorite, quartz, epidote and/or calcite fracture filling or veining to a more pervasive argillic alteration phase where feldspars are replaced by clay and the mafic minerals are largely leached out. Potassic alteration (epidote with K-feldspar and/or biotite and/or quartz veining) has been noted in the intrusive rocks particularly south and west of the Wolf showing.

Structure

South of the eliptical stock, stratigraphy defines a broad fold open to the north. Limited bedding measurements taken predominantly from the chert and cherty siltstone sequence show a wide variation in strike and dip although most of these measurements have a southerly dip. This implies that the stratigraphy south of the stock has been folded into a broad, south plunging anticline (assuming stratigraphy has not been overturned).

North of the stock, stratigraphy strikes approximately east-west with northerly dips predominating the few bedding measurements taken.

Souther (1971) indicates that a northeast-southwest striking fault separates the northern stratigraphy from the southern stratigraphy. The position of his proposed fault lies along the northern contact of the eliptical stock.

Mineralization

The most common style of mineralization on the Axe claims consists of fracture and vein controlled pyrite, generally in amounts less than 3% with lesser but common chalcopyrite. Sulphide mineralization is usually associated with iron colour anomalies and locally more fracturing. Chalcopyrite usually occurs with either quartz fracture filling or chlorite-epidote-K-spar veining.

Spatially the mineralization is associated with the eliptical stock or contemporaneous dykes and sills. Sulphides occur in both the intrusive or adjacent country rocks although copper mineralization decreases substantially away from the intrusive. Insufficient mapping has been carried out to confirm whether certain intrusive phases represent more favourable hosts for the copper mineralization.

In addition to pyrite and chalcopyrite, the porphyry style mineralization found on the Axe claims has associated barite, magnetite and hematite. Significant gold and silver values are also commonly associated with chalcopyrite mineralization.

A second style of mineralization consisting of drusy and chalcedonic quartz veins cutting black siltstones has been identified east of the Tenajon property. Vein sulphides consist of <3%pyrite along with traces of sphalerite and tetrahedrite. The veining, which seems to be confined to one episode appears epithermal in character and is likely related to a nearby Upper Cretaceous rhyolite plug.

GEOCHEMISTRY

During August to October, 1989, 689 stream silt samples were taken from the Axe, Tat, Spike and GJ claims (1370 units) which make up the GJ property. This study which covered the Klastline Plateau in some detail encompassed at least 360 sq km.

To compliment the stream silt survey, rock and soil samples were taken from selected parts of the property. The results discussed in this report are for samples taken as part of this larger study but which occur on the Axe claims covering the central and eastern half of the Plateau.

Soil, rock and all but eleven silt samples were sent to Terramin Research Labs Ltd. in Calgary, Alberta and fire assayed for gold and silver and geochemically analyzed for Cu, Pb and Zn. A selected number of rock samples were also analyzed for Hg. The remaining 11 silt samples were sent to Eco-Tech Labs in Kamloops, B.C. for gold assay and 30 element ICP analysis.

Analytical procedures used include:

A) <u>Terramin Research Labs</u>

Sample Preparation:

Silt and Soil - dry sieve through 80 mesh nylon screen (maximum particle size 200 microns)

Rock - crushed to approximately 1/8" in a jaw crusher, riffled to obtain a representative sample and pulverized to 150 mesh (100 micron particle size).

<u>Analysis</u>:

1) Gold and Silver values are determined by fusing approximately one assay ton of prepared sample with a litharge flux charge to obtain a lead button. The button is cupelled down to a precious metal prill which is then dissolved in aqua regia. The resulting solution is analyzed by atomic absorption spectrophotometry to determine Au and Ag amounts.

2) Copper, lead and zinc are determined by digesting a portion of prepared sample in hot nitric/perchloric acid mixture or hot aqua regia (nitric/hydrochloric acids). Element amounts are determined by atomic absorption spectrophotometry.

3) Mercury is determined by digesting the sample at low temperature in a sulphuric/permangate acid mix. Mercury is determined by the cold vapour/AA method.

B) <u>Eco-Tech Labs</u>

Sample Preparation:

Rock - dry and crush to 140 mesh; take representative sample of minus 140 fraction.

Analysis:

Fire assay with AA finish for gold; hot aqua regia digestion for ICP determination for 30 element suite.

Stream Silt Sampling

Systematic stream silt sampling yielded 150 samples from the Axe and 76 samples from the Tat claims. The results are listed in Appendix B and plotted on Plates 3 to 7.

In order to evaluate results of the stream sediment sampling and identify anomalous drainages for follow-up work a statistical analysis of the 689 samples taken from the entire Klastline Plateau area was carried out (Plate 8). This yielded the following:

Copper:	115 ppm \geq 85% of samples
	140 ppm \geq 90% of samples
	240 ppm \geq 95% of samples
Lead:	20 ppm \geq 85% of samples
	30 ppm \geq 90% of samples
	45 ppm \geq 95% of samples
Zinc:	225 ppm \geq 85% of samples
	275 ppm \geq 90% of samples
	380 ppm \geq 95% of samples
Silver:	0.50 ppm \geq 85% of samples
	0.75 ppm \geq 90% of samples
	0.95 ppm \geq 95% of samples
Gold:	20 ppb \geq 85% of samples
	60 ppb \geq 90% of samples
	120 ppb \geq 95% of samples

By comparing results for samples taken on the Axe and Tat claims discussed in this report with those for the entire study it is evident stream silt sampling has yielded many anomalous samples and identified numerous, highly anomalous stream drainages. A summary of the results is as follows:

Copper: Range 14 to 1050 ppm; 22 samples are above the 90 percentile of 140 ppm (Plate 3). Sixteen of these samples are from four drainages at the southeast edge of the property. The streams are underlain by hornblende and/or biotite diorite, quartz diorite and monzodiorite phases of a composite northeast trending stock. The GJ prospect, located to the southwest is also associated with this intrusive complex. Disseminated and fracture controlled pyrite and chalcopyrite are common. Follow-up is warranted.

> Three anomalous samples (AD-06, AM-16, AD-47) occur in the northeast portion of the property. These isolated highs are not duplicated by downstream samples. Minimal prospecting/mapping in the area indicate some underlying intrusives.

Two anomalous samples are located east of the Tenajon property. Sample AK-90 is an isolated high that was not repeated by downstream sampling. AM-09 is an isolated high at the edge of the Teck property. Both these sample sites are underlain by siltstone and greywacke. Some follow-up is warranted.

Sample AB-60 is an isolated high between the Falconbridge and the Teck properties. Other samples in the area are below the 85 percentile of 115 ppm. Further sampling is required.

Lead: Range 1 to 124 ppm; 11 samples are above the 90 percentile of 30 ppm (Plate 4). Four samples (AD-01, AD-03, AD-06, AD-10) are from drainages underlain by volcanic derived sediments at the northeast corner of the property. Samples AD-01 (74 ppm) and AD-06 (124 ppm) come from the same creek. Sample AD-03 (45 ppm) is the only sample from a creek 1 km to the west. Two samples collected from drainages in between have values of 27 and 30 ppm, both above the 85 percentile. This anomalous area warrants further follow-up.

> Two samples (AJ-11, AC-10) come from drainages at the southeast corner of the property where highly anomalous copper values were also obtained. Downstream sampling failed to yield anomalous samples.

> Sample AM-24 comes from a west flowing creek draining the ridge west of the Wolf showing. No other samples were collected from this drainage. The remaining samples (AK-85, AK-86, AK-87, AA-50) were collected from drainages underlain by black siltstones and conglomerates cut by quartz-calcite veins east of the Tenajon property.

Follow-up sampling in this area is warranted.

Zinc: Range 47 to 730 ppm; 10 samples yielded values greater than the 90 percentile of 275 ppm (Plate 5). Five of these samples (AD-01, AD-03, AD-04, AD-06, AD-10) come from the northeast corner of the property where anomalous Pb values were obtained. A sixth sample (AD-30) comes from a south flowing drainage across the ridge from the above five samples. Two high values (AK-90, AM-09) come from drainages east of the Tenajon property. Sample AK-

90 has a number of anomalous values downstream of it, while AM-09 had no other samples taken below it. Further sampling is warranted in this region.

Two anomalous samples (AC-10, AM-24) come from the southeast corner of the property where diorite is the underlying lithology. Both samples are relatively isolated anomalies.

Sample AB-56 is an isolated sample at the southwest corner of the property. Further sampling here failed to yield additional anomalous values.

Silver: Range 0.03 to 1.59 ppm; 18 samples yielded values greater than the 90 percentile of 0.75 ppm (Plate 6). Four of the samples (AD-03, AD-04, AD-06, AD-10) come from drainages at the northeast corner of the property where anomalous Pb and Zn values also occur. A further six samples come from east of the Tenajon property where the underlying lithology is predominantly fine grained sediments. All of the anomalous samples here come from a shallow dipping northeast facing slope. The remaining samples come from drainages at the southeast corner of the property. Three of these samples (AM-05, AA-41, AC-15) come from drainages underlain by intrusives. Sampling downstream failed to yield additional anomalous samples. The other five samples (AD-58, AD-56, AJ-62, AM-24, AB-06) are isolated highs from drainages underlain by pyroclastic and volcaniclastic rocks.

Gold: Range 2 to 454 ppb; 14 samples yielded values greater than the 90 percentile of 60 ppb (Plate 7). Nine samples (AC-10, AC-11, AC-18, AC-03, AJ-12, AB-11, AA-41, AK-61, AK-72) come from the southeast corner of the property which is underlain by intrusive rocks and where drainages are also strongly anomalous in copper. An additional 16 samples in this same area yielded gold values greater than the 85 percentile of 20 ppb. Samples AM-24 and AM-12 yielded anomalous values immediately north and west of the intrusive plug.

An isolated anomaly (AM-07) west of Quash Creek did not yield elevated values in samples downstream from it. Sample AC-06, west of the Teck property is anomalous near the mouth of a tributary creek. Further sampling is warranted. Sample AM-02 is situated at the extreme southeast corner of the

property. It is downstream of Upper Cretaceous to Lower Tertiary rhyolite. Downstream samples are not anomalous.

Stream silt sampling has identified three anomalous areas that warrant follow-up silt sampling, contour soil sampling and mapping-prospecting.

<u>Area 1</u>: encompasses the drainages east of the Falconbridge property and includes the Wolf/Goat showing and the ridge trending northeast-southwest from the showing. This region stands out as significantly anomalous in gold and copper. In addition, it contains a few scattered anomalous silver values. The area is underlain by hornblende and/or biotite diorite and quartz diorite to monzodiorite. This area is considered an excellent porphyry copper-gold target. In addition it has significant potential for hosting auriferous sulphide rich veins.

<u>Area 2</u>: covers the northeast portion of the property. These drainages cover a lead-zincsilver anomaly. Limited prospecting indicates the area is underlain by fine clastics some of which are calcareous. Intrusive rocks have been mapped immediately south of this target. This area has potential for vein and/or skarn type mineralization.

<u>Area 3</u>: includes the drainages between the Tenajon and Teck properties. The target contains anomalous values in Cu-Pb-Zn-Ag and Au although it is primarily a lead-zinc-silver anomaly. Underlying lithology is largely siltstone with quartz-calcite veining common.

Soil Sampling

During the course of field work, 13 soil samples all taken from the B soil horizon with the aid of a mattock were collected. The results are listed in Appendix C and values are plotted on Plate 9.

Sample AA-02 was a grab of highly oxidized material from a ≤ 15 cm wide shear at the Wolf/Goat showing. This sample which yielded 1080 ppm Cu, 460 ppb Pb, 150 ppm Zn, 180.0 ppm Ag and 63,200 ppb Au does not reflect widespread underlying mineralization, although it confirms elevated values occur in small shears and fractures within the underlying intrusive rocks near the Goat showing.

The remaining 12 soil samples were collected from a contour line at approximately 3900 feet above sea level, 1800 metres northeast of the Goat showing. The samples were taken at 100 metre intervals. Anomalous Cu and Au values were obtained with copper values ranging from 28 to 830 ppm and gold values from 6 to 84 ppb. Underlying lithology consists of intrusive rocks.

Further sampling is warranted in this area.

Rock Geochemistry

During the course of prospecting and mapping, 51 rock samples were collected from the Axe claims and 36 from the Tat claims. The results are listed in Appendix D and values are plotted on Plate 2 (Wolf showing) and Plate 9. Rock sample descriptions are given in Appendix E. Aside from follow-up sampling on the Wolf showing, all samples are chip grabs of either outcrop or float material. In almost every case, mineralization was visible in the sample taken. A summary of results follows:

- Copper: Range 3 to 94,000 ppm; values in excess of 120 ppm are common over the Axe claims indicating both a high background and widespread occurrences of copper mineralization on the property.
- Lead: Range 1 to 8000 ppm; values in excess of 50 ppm are quite scattered although most occur away from the northeast trending diorite plug which hosts the Wolf showing.
- Zinc: Range 3 to 118,000 ppm; values in excess of 150 ppm are scattered throughout the property.
- Silver: Range 0.02 to 230.0 ppm; silver values in rocks from the property are relatively high with values in excess of 2 ppm scattered throughout.
- Gold: Range 2 to 19,220 ppb; as with silver, gold values in rocks are relatively high. Values of 100 ppb or greater are common from intrusive rocks around the Wolf showing, from a few samples collected below the Teck property and from rocks collected east and southeast of the Tenajon ground.
- Mercury: Range 10 to 1715 ppb. 14 samples were analyzed.

14

Rock sampling, although limited in coverage has revealed element associations that likely reflect different styles and ages of mineralization. This is important in evaluating mineral potential on the property.

<u>Area 1</u>: which encompasses the Wolf/Goat showing and the underlying northeast-southwest trending ridge is strongly anomalous in Cu-Ag-Au and contains scattered Pb-Zn anomalies. Similar element associations occur west of this area through to the southeast corner of the Tenajon property. These element associations are consistent with those found in a porphyry Cu-Au system.

<u>Area 2</u>: which covers the northeast portion of the property includes two subgroups. One having Cu-Pb-Zn-Ag and the other having Cu-Ag. Gold is noteably absent suggesting this area may lack potential for porphyry Cu-Au mineralization.

<u>Area 3</u>: encompasses the region between the Teck and Tenajon property. Again, there are two subgroups. One having Cu-Pb-Zn-Ag without Au and the other containing elevated Au without Cu. Mineralization in this area may be related to an Upper Cretaceous rhyolite unit which outcrops on the Tenajon property.

CONCLUSIONS

Stream silt geochem sampling has yielded numerous anomalous Cu-Pb-Zn-Ag and Au values throughout the property. In a general sense, three distinct anomalous areas have been identified which warrant follow-up prospecting, silt and contour soil sampling. The largest target is underlain by intrusive rocks and appears to be an easterly continuation of the porphyry Cu-Au system which occurs on the GJ property. The other two targets are primarily Pb-Zn-Ag anomalies. These targets reflect a different style of mineralization, possibly related to Upper Cretaceous to Lower Tertiary rhyolite plugs.

Rock geochem sampling yielded significant values for Cu-Pb-Zn-Ag and Au. The results support the belief there are at least two different types and possible ages of mineralization on the property with one being an Upper Triassic porphyry Cu-Au system. Prospecting and mapping have traced the chalcopyrite-pyrite bearing diorite to monzodiorite intrusive underlying the GJ property in a northeast direction for at least 8.5 km from Groat Creek.

The potential for a Cu-Au porphyry deposit on the property is considered excellent.

Further prospecting and contour soil sampling is required to identify targets for follow-up trenching and diamond drilling.

Respectfully submitted,

David T. Mehner, M.Sc., FGAC

REFERENCES

- Allen, D.G., Panteleyev, A. and Armstrong, A.T. 1976. Galore Creek. In Porphyry Deposits of the Canadian Cordillera, Special Vol. 15, Canadian Institute of Mining and Metallurgy, pp. 402-414.
- British Columbia Ministry of Energy, Mines and Petroleum Resources, Minfile Reports 104G/045, 104G/071, 104G/087.
- Forsythe, J.R., Peatfield, G.R., Gasteiger, W.A. and Donnelly, D.A. 1977. Report on Geochemical and Geophysical Surveys, Diamond Drilling and Supporting Work on the Groat Creek Claims, Liard Mining Division. B.C. Dept. of Mines and Petroleum Resources, Assessment Report 6541.
- Fox, P.E., Grove, E.W., Seraphim, R.H. and Sutherland Brown, A. 1976. Shaft Creek. In Porphyry Deposits of the Canadian Cordillera, Special Vol. 15, Canadian Institute of Mining and Metallurgy, pp. 402-414.
- McInnes, M.D. 1981. Drilling Report on the GJ and Spike 1 and 2 Claims. B.C. Department of Mines and Petroleum Resources, Assessment Report 9773.
- National Geochemical Reconnaissance, 1:250,000 Map Series, 1988. Geological Survey of Canada, Open File.
- Nichols, R.F. 1989. Geological Report on the GJ Property, Liard Mining Division. Unpublished Company Report for Ascot Resources Ltd.
- Panteleyev, A. 1977. Red-Chris Deposit (104H/12W) in Geology in British Columbia, 1976. British Columbia Department of Mines and Petroleum Resources, Victoria, pp. 125-127.
- Schmitt, H.R. 1977. A Triassic-Jurassic Granodiorite Monzodiorite Pluton South-East of Telegraph Creek, B.C. Unpublished B.Sc. Thesis, University of British Columbia, Vancouver, 91 pp.
- Souther, J.G. 1971. Telegraph Creek Map-area, British Columbia. Geological Survey of Canada, Paper 71-44.

APPENDIX A

رو هي.

......

Statement of Expenditures

Keewatin Engineering Inc.

-

STATEMENT OF EXPENDITURES

For work on the Axe 25, 36, 37, 47, 48, 53, 54, 61-64, 69-72, 77-80 (380 units) and the Tat 1-4 claims (58 units).

Note: Ascot Resources Ltd. carried out reconnaissance style work on it's Axe and Tat claims on the Klastline Plateau in 1989. Exploration was carried out simultaneously on these claims as well as those of "sister companies" from a common camp on the Plateau. Approximately equal time was spent on each claim. Accordingly costs are pro-rated on the basis of units work. Expenditures and a report on 100 units were previously field by Ascot Resources Ltd. in 1989. The remaining expenditures are pro-rated over the 538 units which have not had work filed on them. This report covers work and costs incurred on 438 of these of these units. Details on salary breakdown and camp construction costs are supplied at the of Appendix.

<u>Salaries</u>

(Field work performed between August 23 and October 3, 1989; dates and names supplied at end of Appendix)

Total Salaries = \$29,100.00

Pro-rated costs applicable to this report

<u>\$29,100.00</u> x 438 units (this report) 538 units (work to be filed)

\$23,691.08

Accommodation and Food

Total Costs = \$ 92.25 field man days @ \$75.00/man day = \$ 6,918.75

Pro-rated	<u>\$ 6,918.75</u> x 438	\$ 5,632.74
	538	

Transportation

Fixed Wing (Central Mountain Airlines) = \$ 503.68

Pro-rated \$_503.68 x 438 \$ 410.06 538

Helicopter (Northern Mountain Helicopters) Total Cost for Hughes 500 @ 19.0 hours @ \$600.00/hour = \$11,400.00

Pro-rated	<u>\$11,400.00</u> x 438	<u>\$9,281.04</u>	
	538		
			\$ 9,691.10*

<u>Fuel</u>

Total Cost (helicopter and heating fuel) = \$2,375.92

Pro-rated	<u>\$ 2,375.92</u> x 438	\$ 1,934.30*
	538	

Mobilization and Demobilization

Cost of moving staff from point of hi and return (in B.C.) = \$1,695.42	re to project site				
Pro-rated	<u>\$ 1,695.42</u> x 438 538		\$ 1,380.29*		
<u>Freight</u>					
Shipping to and from Iskut Village					
Total Cost = \$1,919.23					
Pro-rated	<u>\$ 1,919.23</u> x 438 538		\$ 1,562.50*		
<u>Miscellaneous</u>					
Map reproductions and photocopies =	\$ 1,553.70				
Pro-rated	<u>\$ 1,533.70</u> x 438 538	\$1,264.91			
Expediting (Jaycox Industries, Smithe	ers, B.C.)				
Pro-rated	<u>\$ 715.38</u> x 438 538	582.41			
Communications (radio, courier, telephone)					
Pro-rated	<u>\$ 252.65</u> x 438 538	205.69			
Field Supplies					
Pro-rated	<u>\$ 1,278.33</u> x 438 538	_1,040.72	\$ 3,093.73*		
			\$ 3,093.73°		
Drafting	75.00				
72.5 man hours @ \$30.00/hour = \$2,1					
Pro-rated	<u>\$ 2,175.00</u> x 438 538	\$ 1,770.72			
Geochemistry					
226 silt samples @ \$12.40 each (\$1.00 sample prep; Cu-Pb-Zn geoche Au + Ag fire assay @ \$7.80 ea)	em @ \$3.60 ea;	\$2,802.40			
13 soil samples @ \$12.40 each (costs as for silts)		161.20			

87 rock samples @ \$14.90 each (\$3.50 sample prep; analysis as for silts)	1,296.30	
14 rock analyzed for Hg @ \$4.50 each	ı	63.00	\$ 4,322.90*
<u>Camp Construction</u>			
Total Construction costs = \$71,114.43			
Ascot Resources Ltd. portion @ 25%	= \$17,778.59		
Less amount filed in Axe Claim, South Block report	= - <u>\$ 3.065.00</u>		
-	= \$14,713.59		
Pro-rated	<u>\$14,713.59</u> x 438 538		\$11,978.72
Report Writing			
D. Mehner, office (Jan. 4, 5, 8-12, 15 6.5 days @ \$350.00/day Word Processing - 16 hours @ \$30.00/	-	\$ 2,275.00 480.00	
			<u>\$ 2,755.00</u>
		Sub-Total:	\$ 67,813.08
10% handling fee on 3rd party invoice Keewatin Engineering Inc. (3rd party			<u>\$ 2,198.48</u>
	TOTAL EXPENI	DITURES:	<u>\$ 70.011.56</u>

-

.

ASCOT RESOURCES LTD.

DATES WORKED AND SALARY COSTS FOR AXE AND TAT CLAIMS, 1989

Personnel (Charge-out Rate)	August	<u>September</u>	<u>October</u>	<u>November</u>	<u>December</u>	Total <u>Days</u>
David Mehner, Project Geologist (\$350.00/day)	23,25,26,28,29	12,13,16,29,30	1,3,5,12	20,21,24,25	12,13,14	17.75
Adam Travis Geologist (\$275.00/day)	23,25,26,28, 30,31	1,4,6,7,9,10 12,13,14,17,18 19,21,25	1			20.0
Marty Bobyn Geologist (\$275.00/day)	28,30,31	1,4,6,7,9,10 12,13,14,16,17 18,19,21,25	1			19.0
Tim Termuende Geologist (\$325.00/day)	2					2.0
Colin Adams Sampler (\$225.00/day)	28,29	13,14,16,17,28 29	1,3			8.0
Ann Serra Cook, 1st Aid (\$250.00/day)	28,30	1,4,6,7,9,10 12	3			9.5
Mike Brown Sampler (\$225.00/day)	30,31	4,6,7,12,13 14,18,19,25	3			10.0
Jim Roberts Sampler (\$250.00/day)	29	13,14,28,29				5.0
Bob Charles Sampler (\$275.00/day)	29	13,14,28,29				5.0
Ron Nichols Project Supervisor (\$425.00/day)		3,5,7	27	27		3.0
Grant Sinitsin Accountant (\$225.00/day)		29	29			<u>1.5</u>
				Total Days: Total Field I	Days:	102.75 92.25

KLASTLINE PLATEAU

CAMP CONSTRUCTION COSTS - 1989

<u>Salaries</u>

Includes camp construction, site clearing and preparation, laying waterline; mobilization and demobilization to area; down time for inclement weather.

Mike Waskett-Myers	10.0 days @ \$350/day	\$ 3,500.00	
Frank Ferguson	7.5 days @ \$300/day	2,250.00	
Grant Nagy	11.5 days @ \$250/day	2,875.00	
Martin Whist	5.0 days @ \$225/day	1,125.00	
Tim Termuende	9.5 days @ \$325/day	3,087.50	
Bob Charles	3.0 days @ \$275/day	825.00	
Jim Roberts	3.0 days @ \$250/day	750.00	
Colin Adams	3.0 days @ \$225/day	<u> 675.00</u>	
	• - •		\$15,087.50

HELICOPTER

Includes moving all aviation, diesel, propane, and kerosene fuel up to camp along with wood, stoves, applicances, etc.

Hughes 500 (Aug. $14 = 3.6$ hrs; $15 = 2.8$ hrs; $16 = 4.4$ 18 = 4.5 hrs; $19 = 4.7$ hrs; $20 = 0.6$ hrs; $22 = 1.8$ hrs; $23 = 2.8$ hrs)	i hrs; 1		\$18,540.00	
Fuel	30.9	hrs @ \$ 82/hour	2,533.80	\$21,073.80*
FOOD AND ACCOMMODATION (1 man, 3 days lived at home in Iskut V	49.5 illage)	days @ \$75.00/man·	-day	\$ 3,712.50
TRUCK COSTS				
3 pick-up trucks were used to move equ Tatogga Lake; kept 1 truck in town for Fuel			\$3,948.74 <u>527.23</u>	
				\$ 4,475.97*
CAMP SUPPLIES AND EQUIPMENT				
Includes wood, heaters, electrical suppli supplies, etc.	es, plu	mbing		\$19,636.38*
GENERATOR RENTAL				
Includes rental and shipping costs of gen four Jutland tents	nerator	and		<u>\$ 2,372.34*</u>
			Sub-Total:	\$66,358.49
*10% handling fee on 3rd party invoices	s of \$4	7,558.49		<u>4,755.85</u>
			TOTAL:	<u>\$71.114.34</u>

Cost distribution based on amount of work done on each project:

GJ property, Ascot Resources Ltd.	=	50%
Axe claims, Ascot Resources Ltd.	=	25%
Axe claims, Dryden Resource Corp.	=	25%

-

APPENDIX B

Silt Geochemistry Results

(samples denoted by * are not applicable to this report)

Keewatin Engineering Inc.

-

Job#: 89-274

.

Project: Ascot Properties

مربع مربع	Sample Number	Au dqq	Ag	Cu ppm	Pb ppm	Zn ppm
SILT AAL	1 * 2 * 3 * 4 * 5	4 6 48 6 4	0.24 0.15 0.28 0.11 0.09	33 35 144 25 25	10 5 5 6 6	189 135 122 168 115
	6 * 7 * 8 * 9 * 10*	4 6 72 52 96	0.07 0.12 0.32 0.23 0.23	34 36 85 74 69	5 7 7 7	102 129 131 127 112
	11* 12* 10* 14* 15	144 340 369 194 450	0.31 0.29 0.18 0.37 0.47	97 70 94 76 96	7 6 7 6 7	126 146 126 111 152
	16 * 17 * 18 19 20	92 60 50 18 28	0.17 0.22 0.42 0.17 0.30	76 70 127 52 109	6 2 6 9	
	21 22 22 22 25	12 14 18 28 24	0.14 0.19 0.29 0.36 0.38	74 163 78 400 680	5 4 5 5 1 9	94 116 125 92 210
	26 27 28 29 30	4 4 4 10 10	0.28 0.51 0.62 0.12 0.32	124 101 83 67 91	13 9 16 7 18	130 152 96 143 16 3
ABL	31 1 2 3 4	10 2 6 4 6	0.34 0.16 0.13 0.06 0.08	71 63 100 87 75	800400 900	173 109 128 156 121
	5 6 7 8 9	2 12 4 10 28	0.09 1.22 0.23 1.49 0.50	87 92 82 113 118	2 11 4 41 34	147 181 118 310 230

Project: Ascot Properties

	Sample Number	Au ppb	Ag ppm	Cu ppm	₽b mqq	Zn PPm
ABL ACL	10 11 1 ≯ 2 3	40 72 44 14 116	0.40 0.21 0.82 0.32 0.46	260 162 122 55 130	10 3 28 7 9	95 89 310 123 139
	4 5 6 7 8	4 2 454 36 32	0.17 0.15 0.38 0.45 0.28	61 68 79 93 94	11 11 7 20 10	119 133 113 180 158
ADL.	0 + 0 4 0 4	16 12 69 4 14	0.64 0.68 0.24 0.82 0.79	59 90 112 90 109	8 74 45 30	145 630 102 350 320
	5 6 7 8 9	16 6 4 6	0.72 1.01 0.12 0.23 0.19	97 220 22 94 116	27 124 10 7 9	250 730 153 111 107
ATL	10 26 27 26 25	9 9 6 96	0.99 1.06 0.14 0.13 3.00	102 70 65 62 151	71 3 4 55	470 270 99 92 620
	30 31 32 33 34	8 6 4 4	0.50 0.55 0.37 0.48 0.38	87 112 29 111 91	28 18 15 20 10	200 250 220 240 128
	35 36 37 38 39	8 4 6 10 10	0.92	84 84 95 94 8 4	6 10 9 10 8	92 158 121 146 106
	40 41 42 43 44	18 12 16	0.23 0.41 0.10 0.28 0.10	87 64	11 7 3 4	156 85 145 160 120

Project: Ascot Properties

	Sample	Au	Ag	Cu	ppm	Zn
	Number	ppb	ppm	ppm	dq	ppm
ADL	45	10	0.05	37	2	86
	46	8	0.23	74	10	100
	47	12	0.18	160	8	109
	48	10	0.25	88	10	111
	49	6	0.11	51	4	116
	50 51 52 53 54	18 10 12 16 14	0.20 0.24 0.19 0.13 0.16	77 66 74 64 84	95964	120 88 110 106 95
	55	4	0.13	79	4	96
	56	18	0.76	88	14	98
	57	6	0.14	80	30	113
	58	20	0.85	94	10	75
	59	10	0.29	90	9	119
AJL	60 * 1 2 3 4	6 4 6 4 0	0,07 0.08 0.07 0.05 0.15	28 58 96 90	국 (1) (1) 국	120 112 107 142 109
	5 6 2 9	6 6 10 20 18	0,15 0,23 0,14 0,25 0,22	75 87 77 82 82	0 ~ 5 + 5	139 105 102 139 144
AR.	10	246	0.42	192	12	107
	11	36	0.49	170	30	169
	12	74	0.19	200	3	84
	1 *	4	0.07	60	6	83
	2 *	16	0.08	40	5	124
AML	3 * 4 * 1 * 2	8 4 666 120	0.12 0.05 0.06 0.38 0.07	22 51 52 55 23	0 0 0 0 0 0 0	98 86 91 510 114
	8	52	0.08	21	9	91
	4	14	0.18	56	6	118
	5	40	0.84	780	1 2	147
	6	4	0.15	130	6	118
	7	68	0.14	88	6	132

Project: Ascot Properties

Cu Fb Ζn Sample Au Ag ppm Number ppb p p mppm ppm0.18 AML 8 Э 0.69 0.73 0.59 0.48 0.09 0.17 0.20 0.15 2.80 \mathbb{C}^{n} DAL 4 er .../ 3.70

Project: "Other Properties"

	Sample	Au	Ag	Cu	Pb	Zn
	Number	ppb	ppm	ppm	ppm	ppm
SILT						
OAL	1	сţ.	0.37	1 O 1	7	80
	2×	16	0.57	116	9	104
	3*	16	0.10	4.1	6	154
ODL	15	10	0.16	·91	. 5	125
and had have	16	8	0.18	95	5	SO
	17	14	0.19	107	6	98
	18	6	0.13	111	с і .	89
	19	12	0.11	88	6	124
	20	22	0.13	109	5	88
	21	1 ¹⁷ 3 Al.	0.14	92	5	101
		6	(), (), (), (), (), (), (), (), (), (),	116	5	83
				77	7	102
		4.	0.19			
	군라	29. 29.	0.21	77	6	100
	enne data alta sua	10	0.39	83	7	138

	Sample	Au	Ag	Cu	Рb	Zn
	Number	ppp	ppm	ppm	ppm	$\mathbf{b} \mathbf{b} \mathbf{w}$
SILT	an ak		0.17	35	7	122
ተትተት ፡	32 *		0.06	25	11	108
	33 * 34 *	6	0.23	42	9	260
	35≯	2	0.22	4.()	8	260
	36 🛪		0.31	45	10	540
		<i>4</i>	to g too at	4 100.0		
	37 *	58	0.18	25	5	101
	38 🛪	2	0.08	24	7	94
	39 🗶	2	0.09	23	7	101
	40 *	1. E	0.15	35	S	199
	4 <u>1</u>	96	1.38	1050	a series a s	74
	42 🗡	10	O.21	40	E)	157
AKL		8	0.11	37	1.2	220
	7 * 1 of 2	6	0.10	79	6	1.06
	7 # 2 of 2	<u>1</u> ()	0.08	29	ć.	123
	≅*	1. ()	O.17	B 1	7	136
	9 🛪	8	0.12		6	97
	10*		\circ . \circ S	20	1177 527	100
	11*	14	0.11	32	6	117
	12*	\odot	0.26		50) (11)	1.95
	13*	6	0.22		÷	164
	14 *	10 - 10 - 14 - 211	0.13			98
	15 *	8	0.20	31	100 100	143
	16 *	1.61	O.12	28	<u>.</u>	NI 77
	17 🛪	20	0.20	31	5	4 87 69
	18 ×	iO	0.18	32	E.C.	149
	19 ×	(Ω)	0.16	00	007 111	121
	20*	16	O.18	4.9	6	110
	21*	Ð	O.OE	entre fillitie entre herrie	5	C 1
	22*	10	0.14	51	5	106
	23*	16	0.16	40	27. 1.1	91
	24	24	0.19	19	5	108
	25	10	0.15	48	1	102
	26*	16	0.12	33	6	145
	27*	18	0.17	39	6	134
	28 🛪	18	0.14	33	라	122
	29 🛪	16	0.15	32	6	141
	30 *	6	0.34	34	55	170
	31 🗡	6	0.35	31	6	162
	32 \star	4	0.25	92	100 - 11 - 11	168
	88 *	and a straight of the second sec	0.31	14. 64. 14.	7	250

	Sample	Au	Ag	Cu	Рb	Zn
	Number	ppb	ppm	ppm	ppm	ppm
SILT						
AKL	34 🛪	10	0.30	35	6	230
	35 🛪	10	0.33	33	6	240
	36 🛪	1 2	0.35	32	6	230
	37 *	8	0.29	29	5	192
	38 *	E	0.25	28	6	195
	39 🗶	24	0.24	26	5	171
	40 *	12	0.36	35	5	220
AML	17*	20	0.17	24	5	360
	18*	88	0.24	SO	6	250
	19¥	26	0.08	30	εļ.	114
	20 *	12	0.28	34	9	181
	21*		0.12	28	0	97
	22*	20	0.12	28	Ē	107
		20	0.43	67	10	144
	24	74	1.59	79	73	410
	-172 E07 alia -117	18	0.26	143	7	110
	26 🗡	56	1.OS	171	20	270

Job***:** 89-291

Project: ASCOT

	Sample	Au	Ag	Cu	F'b	Zn
	Number	ppb	ppm	ppm	μαq	mqq
Silt			a			يعتى رجعي
AAL	43 *	ری. مند 	0.12	26	5	96
	44 *	100	0.09	30	4	101
	45 *	8	0.10	31	5	80
	46*	10	0.12	28	4	90
	47*	- <u></u> ,	0.05	29	5	90
	48*	1. <u></u>	0.07	30	5	95
	49 ⊁	۵ <u>۹</u> ۱۳	0.09	SO	5	98
	50*		0.13	46	6	270
	51*	2	0.09	41	4	157
	52 🛪	4 <u>4</u>	0.08	4 4 -44	4 <u>]</u> .	174
	53 🗶	4 1 .	0.10	41	G	124
	54 *	2	0.11	41	3	141
	55 *	2	0.10	4 ()	с 1 .	
	56 *	• D 111	0.07	69	5	106
	57 🛪		0.09		3	108
	50 *	1 O	0.11	49	833 112	136
		،»»، ماريد	0.24	6.2	<u>.</u>	100
	SO	1.4 *1	0.59	87	(3)	197
	61	10	0.82	91	11	136
	62	Ø	0.60	108	4 C)	154
	63		0 71		15	172
	G 4.	16	0.22	93	6	89
	C. 17		$O:\mathbb{R}E$	89	(0)	$1 \circ \Omega$
	36	10	0.18	83	3	87
A.F.L.	50	10	0.12	87		134
		16	\circ .i \circ	71		
	Elijenje Audoral	¢"].	O.11	49	1.	117
	53	16	0.20	70	8	176
	54	C	0.16	5 2 1.	2	119
	55	18	0.15	65	3	133
	56	ίO	O, 44	73	21	460
	57 *	26	0.16		ь.j.	134
	58 x	34	0.14	46	0	107
	59	14	0.22	97	3	95
	60	8	0.45	153	12	49
ADL	61 🛪	2	0.11	46	5	85
	62 *		0.14	47	З	8i
	63 *	12	0.12	29	6	108
	64*	20	0.08	36	8	94
	65 *	10	O.11	33	9	230

Project: ASCOT

C:1	Sample Number	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
Silt AJL	50 51 52 53 54	26 18 10 16 14	0.05 0.05 0.08 0.05 0.07	36 50 64 55 70	4 3 2 2 1	90 104 111 105 125
	55 56 57 58 * 59 *	20 16 10 12 18	0.06 0.12	58 53 60 41 41	2 1 5 4 5	108 116 122 112 126
AKL	60 61 62 41 42	22 34 16 12 14	1.10 0.28	66 58 40 111 109	3 2 7 6	112 99 102 111 92
	43 44 45 * 46 * 47 *	2 2 2 12 2	0.10 0.16 0.17 0.12 0.11	89 91 86 67 69	2 3 2 2 2	103 105 99 105 113
	48 * 49 * 50 * 51 * 52 *	2 1 18 2 2	0.10 0.10 0.07 0.06 0.06	56 53 45 50 48	N 0 0 N	116 126 106 130 126
	53 54 55 56 57	2 18 2 2 2	0.24 0.18 0.28 0.20 0.10	76 80 83 92 112	10 10 10 N	73 68 70 126 90
AML	58 27 * 28 * 29 * 30 *	14 120 66 18 18	1.08 0.95		6 71 27 18 4	82 720 270 170 87
	31 * 32 * 33 * 34 * 35 *	N N N N N N	0.08	22 20 28 14 25	3 3 1 2	123 65 64 47 80

Project: ASCOT

	Sample	Au	Ag	Сы	Fb	Zn
	Number	ppb	ppm	ppm	mqq	ppm
Silt						
AKL	59	42	0.33	127	10	192
	60	48	0.24	270	1	81
	61	74	0.43	123	8	147
	62	22	0.34	129	\Box	129
	63	58	0.41	158	12	199
	64	16	0.36	115	9	153
	65	24	0.36	113	S)	136
	66	32	0.40	111	9	142

Page 2

• •••••	Sample Number	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
Silt 89-AAL ACL	50 51 52 53 10	164 46 124 368 126	0.64 0.47 0.32 0.65 0.48	74 77 72 87 300	33 18 12 19 42	154 163 116 181 330
	11 12 13 14 15	60 54 2 4 4	0.48 0.62 0.40 0.12 0.86	330 310 166 113 101	18 25 23 12 12	178 220 270 250 270
80-AUL	16 17 18 19 20	6 6 82 12 6	0.41 0.33 0.37 0.34 0.08	57 47 48 47 30	10 8 9 6	174 143 141 142 107
	21* 22* 23* 24* 25*	8 54 46 56 56	0.18 1.09 0.98 0.74 0.69	46 127 142 104 105	부스시 및 우 시 및 아이 시	133 310 370 320 300
	26 * 27 * 28 * 25 * 30 *	198 68 130 102 20	0.89 0.80 0.75 0.51 0.42	127 133 116 90 78	34 37 27 20 16	350 360 330 260 230
	31 32 * 33 * 34 * 35 *	0 N N 4	0.22 0.19 0.17 0.21 0.20	32 47 45 49 49	10 10 10 8 8	135 470 460 480 470
	36 * 37 * 38 * 39 * 40	キ ペ セ 6 キ	0.19 0.16 0.11 0.16 0.35	44 334 35 25	11 7 8 8 10	480 390 340 360 128
	41 42 43 44 45	4 4 8 8	0.40 0.32 0.31 0.33 0.22	35 32 29 28 22	14 14 15 13	175 159 138 139 130

	Sample Number	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
Silt						
ACL	46	<i>:</i> :].	0.20	21	10	112
	47	2	0,27	SO	10	128
	48	2	0.13	22	11	96
ADL	A	4()	0.82	92	32	250
	B	26	0.52	61	21	164
AKL	67	52	0.72	700	Э	94
	68	24	0.40	880	5	110
	69	26	0.45	570	7	94
	70	1 2	0.28	136	4	94
	71	4 4 -	0.08	40	5	97
	72	142	0.26	114	<u></u>	113
	73	e sina a. atu	0.22	106	9	108
	74	12	(0, 20)	104	7	120
	75*	8	0.20	26	7	164
	76*		0.12	200	5	150
	77 🖌		O.OS	24	7	151
	78 ×	2	0.07	ang ang ata ata	G	150
	79 *	dij.	0.10	26	4	161
	80 *	6	0.32	32	·····. /	380
	81 *	4 <u>.</u>	0.38	54	12	680
	82 *	•***): .4	0.10	$\mathcal{L}_{1}^{1}\mathcal{L}_{2}^{1}$	7	230
	83*	2	0.23	el. (*)	10	480
	8d 🛪	É,	0.21	45	() 	450
	05	10	0.70	(3.2) 	37	156
	86	1 4	0.72	30	39	149
	07	26	1.24		84	250
	0.0	E,	0.33	96	12	122
	09	10	0.28	95	9	1.07
	90	ЗO	1.50	156	26	$\mathbb{C}^{\mathbb{C}}(0)$
AML.		6	0.52	95	17	220
	46	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1	0.27	7 <i>6</i> ,	14	164
	47	S	O.21	77	1.1	191
	48	4	0.23	67	11	150
TUK	1 🗶	, 	0.11	83	7	98

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 7, 1989

CERTIFICATE OF ANALYSIS ETK 89-641

KEEWATIN ENGINEERING INC. 800, 900 WEST HASTINGS STREET VANCOUVER, B.C. V6C 1E5

ATTENTION: R.F. NICHOLS

SAMPLE IDENTIFICATION: 13 STREAM SEDIMENT samples received August 22, 1989 PROJECT: GJ-FELSK RECCE SHIPMENT # 01

ET#	ŧ		iles	cription	ни (dqq)
641		1	SS	001	10
641	-	2	SS	002	5
641	-	З	SS	003	1 Ŭ
641		4	55	004	30
641	-	5	95	005	5
641		c	è è	006	10
641	~	1	55	uù7	10
641		8	99	008	10
641		9 米	SS	009	20
641	-	10	55	100	4 0
641		11	SS	101	25
641	• •	2	56	102	10
641	-	*	-53	103	5

Ula.

ECO-TECH LABORATORIES LTD. DOUG HOWARD B.C. Certified Assayer

FAX: VANCOUVER SC89/KEEWATIN5 Eco-Tech Laboratories Ltd. 10041 E. Trans Canada Hvy. Kaoleops, B.C. V2C 2J3 September 5, 1989 KEEWATIN ENGINEERING 800, 900 West Hastings St. Vancouver, B.C. VGC 185 ATTN: R.F. Nichols

CERTIFICATE OF ANALYSIS ETK 89-641A 13 Stream Sediment Samples, received August 22/89 Project: 6J-FELSK RECCE Shipment: LOI All values in PPM unless otherwise reported

5

	**************		*********		122222		222222		*******	2222222		2025253								======	=========	525252		22227223		********					
ETK	DESCRIPTION	Ag	A1 Z	As	B	Ba	Bi	CaI	Cel	Co	Cr	Cu	FeZ	X1	La	NgI	Hn	Ho	NaI	Wi	. P	Pb	Sb	Sn	Sr	Tit	U	V	¥	Y	Zn
********	************	======		======		******	525253	*******	=========	*=*=*=*		******	******		2225259		******	*=*===	*******	*****	*******	*******	======	*******	*****	******	*******			******	;===:=
641.1	55 001	0.3	:.68	21	3	234	6	9.78	< 1	31	20	107	6.10	0.09	36	1.05	1471	i	0.01	:5	1764	69	97	(20	39	0.06	< 10	191	< 10	16	58
641.2	5S 002	<.2	2.05	43	9	174	< 5	0.46	< 1	30	29	57	6.40	0.04	33	1.67	1169	<1	<.01	23	1340	79	82	< 2Q	18	0.09	< 10	136	< 10	9	62
641.3	5S 003	(.2	1.46	47	8	530	< 5	0.82	(1	28	14	98	6.35	0.09	36	0.87	1866	(:	<. 01	13	2063	64	102	21	40	0.04	(10	89	< 10	18	48
641.4	SS 004	1.2	1.35	34	7	247	< 5	0.98	(1	24	14	64	5.57	0.09	31	0.89	1341	<1	(.01	13	2467	58	79	< 20	49	0.05	< 10	108	(10	12	42
641.5	55 005	(.2	1.33	50	6	209	(5	1.07	<1	15	11	51	3. 66	0.07	21	0.52	611	(1)	(.01	4	1746	44	63	< 29	29	0.02	(10	56	< 10	11	27
641.6	SS 906	(.]	2.27	14	4	317	6	1.29	< 1	18	19	50	3.97	0.13	37	0.84	:067	<1	(.0)	9	1447	62	68	(20	80	0.09	< 10	65	()0	25	48
641.7	SS 007	1.2	2.27	39	6	326	10	0.78	<1	26	27	13	5.82	0.09	36	1.09	1198	< !	(.01	23	1489	72	137	< 20	49	0.07	< 10	95	< 10	16	57
641.8	SS 008	(.2	2.01	54	8	264	< 5	0.84	1	33	15	120	6.76	0.07	37	1.07	2011	()	(.01	19	1927	71	115	< 20	44	0.04	< 10	103	4L	12	52
641.9*	¥ 55 009	۲.2	1.63	41	5	288	(5	0.86	$\langle 1 \rangle$	30	17	91	6,58	0.08	37	0.96	2028	<1	<.01	19	2054	64	82	(20	44	0.05	< 10	102	< 10	12	44
641.10	SS 100	(.)	1.18	24	9	120	10	2.71	(1	21	7	66	4.57	0.07	24	0.86	1108	(1	0.01	6	1617	47	84	(20	87	0.02	< 10	83	< 10	8	62
641.11	SS 101	0.4	0.66	36	8	133	5	1.81	2	22	2	75	4.38	0.06	21	0.58	1008	18	<.01	42	1383	51	48	< 20	80	(.01	< 10	70	< 10	10	140
641.12	55 102	(.2	1.95	49	3	189	< 5	0.63	1	31	54	60	5.21	0.06	27	1.40	1081	1	(.01	65	1022	70	105	47	36	0.08	< 10	84	(10	12	110
641.13 \$	¥ SS 103	(.2	2.02	26	6	346	22	0.87	<1	25	35	44	5.33	0.07	32	1.09	1416	(1	<.01	34	1069	68	85	(20	55	0.06	< 10	92	(10	14	152

.

* NOTE: (= Less than

ECO-TECH LABORATORIES LTD. BOBE HOMARD

B.C. CERTIFIEB ASSAYER

FAI:' Vancouver

APPENDIX C

Soil Geochemistry Results

(samples denoted by * are not applicable to this report)

Keewatin Engineering Inc.

	Sample	Au	Ag	Cu	Рb	Zn
	Number	ppb	ppm	ppm	ppm	ppm
Soil		• •	•••			
89-ABS	1	54	0.60	830	8	94
	4	84	0.16	90	6	110
	7	16	0.08	50	11	124
	10	8	0.14	55	10	124
	13	ЗO	0.29	52	12	98
	16	36	0.17	28	11	88
	19	34	0.12	89	5	94
	ering ering allas allas	6	0.05	340	್	95
	25	18	0.07	40	8	113
	28	18	0.52	194	7	81
	31	1 O	0.12	124	8	111
	37	32	0.26	142	10	ΊΟŎ
AAS-	02	63,200	180.0	10 80	460	150

Project: Ascot Properties

		Sample	Au	Ag		Pb	Zn
		Number	ppb	ppm	ppm	ррм	ppm
SOIL	AKS	1 🗙	10	0.O4	27	5	104
~		2*	8	0.81	532	29	104
		3*	6	0.18	31	11	96
	AMS	1*	240	0.20	57	8	165
•		2*	72	0.68	42	19	260
		3 *	148	0.45	48	14	520
		4 X	36	0.10	28	7	420
		5*		0.06	20	7	128
		6 *	82	1.47	153	32	148

Job#: 89~281

		Sample Number	Au ppb	Ag ppm	Cu ppm	d9 mqq	Zn ppm
SOIL	AAS	1 * 2	12 63200	0.12 180.0	30 1080	5 460	126 150

TERRAMIN RESEARCH LABS Ltd.

Job#: 89-291

Project: ASCOT

	Sample Number	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
Soil						
AKS	4 🗶	2	0.03	83	3	
AMS	7*	1326	3.50	270	113	500

APPENDIX D

Rock Geochemistry Results

(samples denoted by * are not applicable to this report)

.....

Keewatin Engineering Inc.

Project: Ascot Properties

	Sample	Au	Ag	Cu	Pb	Zn	Hg ppb
man market	Number	ppp	ppm	ppm	ppm	ppm	f.' f.' L.'
ROCK AAR	1		0.08	Э	14	30	185
		·",	0.08	Э	8	41	15
	3 *	<u>.</u>	O.11	З	1	15	1 Õ
	4 🛪	16	0.70	35	13	53	450
	5	10	1.29	111	35	45	
	6	6	2.40	4500	2		
	7	6	3.00	5200	2	12	
	8	410	6.80	9100	9	21	
	9	64	2.50	43	270	27	a **** a t***
ABR			3.20	146	7	in En al sul	1715
		118	6.30	2900	2		80
	et en suit		0.30	330	3	30	10
ADE	- <u>1</u>	8)	8.60	152	136	0088	1550
	**** ***	8	17.1	94000	28	89	185
AJR			0.17	(38)	E	78	440
		G	0.63	20	18	340	20
	3	224	11.0	14900	3	27C	70
ASS	1	·*	0.14	16	9	42	280
AME	1 *	2	0.07	an ann An aite an ann	23 22	70 30	65 5
		10	0.37	60	,eil.		
	zen. Suid		1	5300	2 ⁴ 7	$\gtrsim 0$	285
		42	0.86		9	620	250
		<u>.</u>	0.04	() () ()	.7	20 ma	110
	6 *	, 14 2011 2011	0.26	20	7	34 37	150 275
	7*	 	0.08		1.22	-10 Z	atta di nadi
	8*	di.	0.23	15	<u>1</u> ()	20	195
	⊕ ₩	art.	$O_* \ge 0$		9		220503
	10⊁	sc]	0.18	13	9	32	79
	11*	- "". - 1	0.07	4.23	c.ļ.	36	145
	12	4	0.03	2600	al.	43	
	13	4	0.03	13	1	25	
	14	8	0.28	78	13	77	
	15		0.65	1590	1	7	
	16	82	0.24	82	5	360	

Project: "Other Properties"

	Sample Number	Au ppb	Ag ppm	Cu PPm	Pb ppm	Zn ppm
ROCK						
AAR	9	8	· 0.16	125	4	12
	10	10	0.22	13	с1.	
AME	17	ą.	0.27	13	2	99
FR	1 A	 ai	0.09	Э	6	15
	1 E	12	0.35	4	11	47
	2 A	6	0.17	99	10	96
	2 B	8	1.15	75	1. ⁴⁴	99
	ЗА	, 	0.13	Э	6	80
	3 B		0.28	16	29	41
OMR	1	8	230.0	5700	740	128
	- <u></u>	16	6.50	30	550	310
DA -	16	260	0.41	1410	4	8
TB-	CI	4	0 • 16	51	14	125
DJ-	02	30	0.41	44	9	76
DB	-03	18	0.36	4600	1	66

	Sample	Au				Zn
ROCK	Number	ppb	mqq	ppm	ppm	ppm
	12*	4	0.11	·**** 	26	40
••••	13 *	24	0.95	20	10	16
	14	74		18000	2	38
	15	440	22.0	56000	1	79
	16	648	8.20	13900		32
	17	36	2.80	8700	-177. 2012	35
	18	34	0.05		E	24
	19	570			3	130
	20	6	0.24	9 7	56	16 47
	21 🗡	10	0.16	/	14	6 4 /
	22*	696	0,95	5	28	<u> </u>
	23 \star	6	0.O	8	S	46
	24 *	4	0.12	5	83	76
	25*	2	0.08	2	2	360
	26 *		O.OR	ũ.	8	
	27 🛪		0,07	19	-**_3 	24
	28 X	12		20 T	2	4
	29 🛪	10		21	13	43 (<u>`</u>)
	3° ⊀	::]- 			<u>.</u>	22.03
ANC	18 🗡	8	0.04	10	.L	98
	19≭	.c1]	\bigcirc , \bigcirc \bigcirc	3	(57
	20 🗡	8	() , $(1, 1)$	68	(5,	48
	21		2 . 4 ()	10	172	20
		and	0.17 / mm	19	65	8
	2.5	80	1.30			00
			2:50	5100	·**) .t	106
	and a second	tu) -și		90].	67
			7.90	46	8000	
	27 *		0.07	100, 100		200
	28 *	18	0.07	29	7	99
	29*		0.06	1 4	3	57
	3° ≭	42	0.O3	194	2	155
	31 🛪	370		500	16	142
	82*	178		1220	20	149
	33 🛠	530	15.8	2500	4200	12800
	34*	570	36.00	3000	640	
	35*	12	0.33	30	10	21
	36 \star	12	0.05	81	5	48
	37*	8	0.35	25	9	
	38 *	1.4	0.18	10		17
	39*	1.2	0.21	30	8	
	4° *	14		64	8	26

Project: ASCOT

	Sample Number	Au ppb	Ag ppm	Cu ppm	Pb ppm	Zn ppm
83-AAR	31 32 33 34 35	2 2 19220 34 2	0.04 0.04 8.40 0.03 0.02		1 3 4 2 18	51 7 17 61 5
	36 37 38 39 40	N N N N N W	0.33 0.02 0.03 0.28 3.70	74 16 6 99 58	3 2 10 23	37 3 6 15 21
ABR ADR	5 3 *	52 310 8	0.74 0.07	10		12 70 43
AJR		6 880			114	66 490
	5 6 7 8	94 12 2900 4	0.47 146.0 0.17	121	7 10 1270 6	28 63 3200 77
AMR		etij.	15.6	5100	8	360
	42 43 44 45 * 46	2 N 4 6	0.23 15.5 12.7 0.18 0.48	90 7700 5800 70 22	후 종 종 종 전 10	08 720 530 56 46
	47 48 49 50 51	2 8 4 2	1.00 2.30 0.11 1.34 0.12	21 50 13 53 48	11 32 5 95 13	72 57 6 32 44
	52 53 54 55 56	24 24 24 24	0.08 0.21 0.31 1.83 0.89	71 86 75	Q N + 칼 +	10 36 65 11 36
	57 58 <i>*</i> 59* 60* 61*	2 2 6 8 4	0.37 0.14 0.61 0.27 0.09	25 41	3 2 9 18 2	22 39 38 17 54

Project: ASCOT

	Sample	Au	Q∆	Cu	Pb	Zn
	Number	ppb	mqq	ppm	ppm	ppm
AAR	50	28	0.43	1440	98	44
	51	6	0.24	15	11	12600
	52	1120	10.8	12900	23	128
	53	124	2.80	1640	4	32
AKR	2	8	0.14	410	З	18
AMR	3 62 63 64	154 10 12 10	31.0 2.10 0.44 0.62	660 250 122 124	28 53 9	41 3800 54 9

	Sample	AL	Ag	Cu	F'b	Zn
177 t. m	Number	ppb	ppm	ppm	ppm	bbw
Rock 89-AAR	54	28	0.12	440	1	33
C/12 mmils.	55	1350	5.80	3700	S	35
	56	26	0.20	580	1	34
	57	36	0.38	550	- 1	37
	58	128	5.60	2700	3	38
		4. ÷. ()	مراهيا والي	2.7 12127	·!	
	59	344	4.00	7900	1	52
	60	14	0.18	2000	1	39
	61	90	1.89	2500	1	58
	62	58	0.26	390		18
	63	10	0.08	49	-	4 · ") L ain
	64	82	2.30	810	1	
	65	석.	0.11	1160	1	28
	66	26	O , \ge 4	860	1	27
	67	40	0.44	1050	1	
	68	8	0.14	910	1	82
	69	296	9.40	2800	-179 41	97
	70	88	1.30	5800	1	<u>C.</u> ,
	71	46	1.11	4.00	ĺ	17. C) 19. C)
	7.2	26	0.68	1190	-177) 411	38
	73	316	0.37	16	2	1.5
	74	1340	1.84	080	4	2000
	75	18	O.19	49	21	310
	76	54	13.0	951	156	118000
ADR	5 *	450	8.00	2200	92	530
			0.31	in the strip attended	5	28
	7	406	0.36	Ð	•*** •***	39
	é	652	0.79	i 1	3	39
AMR	65 *	178	8.60	8	6	24
	· · · ·					

TERRAMIN RESEARCH LABS Ltd.

Job‡: 89-324

	Sample	Au	Ag	Cu	Pb	Zn
	Number	ppb	ppm	PPm	ppm	ppm
ABR	6	46	0.93	490	2	14
AJR	9	22	0.43	125	2	21

APPENDIX E

Rock Sample Descriptions

.....

Keewatin Engineering Inc.

-

ROCK SAMPLE DESCRIPTIONS

Rock No.	<u>Type</u>	<u>Description</u>	<u>Mineralization</u>	<u>Assay</u> Cu /Au ppm/ppb
ADR-01	float	wacke to siltstone	15% py in quartz vein	152/8
ADR-02	float	andesite tuff	<10% malachite; ≤ 3% chalcocite	94,000/8
ADR-03	grab	lithic greywacke	green alt. mineral; no sulphides	10/8
ADR-04	float	quartz-feldspar-vein	≤10% pyrite	12/6
ADR-05	float	iron stained	trace pyrite-chalco- pyrite	2200/450
ADR-06	grab	quartz veined argillite to siltstone	Fe-Mn oxides; trace pyrite	22/24
ADR-07	grab	ankerite-quartz vein	trace pyrite	9/406
ADR-08	grab	ankerite-quartz vein	1-2% fractured pyrite	11/652
ABR-01	float	fine diorite; pervasive sericite	15% disseminated pyrite cubes	146/2
ABR-02	grab	oxidized diorite	trace mal; <1% pyrite and chalcopyrite	2800/118
ABR-03	grab	diorite; iron stained	<1% pyrite cubes; trace fractured mal	330/2
ABR-04	float	translucent chert; weak fractured limonite	trace disseminated pyrite	9/52
ABR-05	float	brecciated andesite	trace pyrite in quartz/ calcite veins	380/310
ABR-06	float	porphyry diorite	1% disseminated pyrite in rock and quartz vein	490/46
AJR-01	float	wacke to siltstone	trace disseminated and vein pyrite	38/2
AJR-02	grab	siltstone to argillite	trace pyrite cubes and chalcopyrite	28/6
AJR-03	grab	diorite; very altered	<1% pyrite and <1% chalcopyrite veins	14,900/224
AJR-04	float	basalt?	≤1% pyrite with quartz vein	77/94

	Rock No.	Туре	Description	<u>Mineralization</u>	<u>Assay</u> Cu /Au ppm/ppb
	AJR-06	grab	latite porphyry	1% fractured pyrite	81/12
	AJR-07	float	altered andesite?	3-5% pyrite; trace ZnS + Ag sulphosalt?	156/2,900
	AJR-08	grab	diorite	3-5% diss. pyrite	121/4
	AJR-09	float	porphyry diorite	1% pyrite in rock and quartz vein; trace PbS in quartz vein	125/22
	AMR-01	grab o/c	goss. siltstone	shear zone 20 cm with (Nil)	12/2
	AMR-02	float	silic. felsic volc.	quartz-carb vnlts; tr. -1% pyrite	66/10
	AMR-03	float	hem. f.g. diorite/volc	qtz-carb pyrite 1-2% disseminated	5300/8
	AMR-04	float	volc. breccia	qtz-carb; tr-1% py	21/42
	AMR-05	grab o/c	felsic volc; frag.	cpy. py Wx goss; nil vis	3/4
	AMR-06	rep. vn o/c	altered silic seds.	7-10% Py; local massive	20/2
	AMR-07	rep. vn o/c	altered silic seds.	7-10% Py; local massive	25/2
- 14	AMR-08	rep. vn o/c	altered silic seds.	1-2% Py	15/4
	AMR-09	grab o/c	altered silic seds.	2-3% Py	24/4
	AMR-10	grab o/c	quartz breccia	3-5% Py	13/4
	AMR-11	grab o/c	quartz-carb. vein	1-2% Py	12/2
	AMR-12	grab o/c	quartz-carb. alt. tuff	2-3% Py dissem; tr. Cpy	2600/4
	AMR-13	float	qtz-carb-Kspar alt. volc	2-3% Py	13/4
	AMR-14	grab o/c	fault breccia; volc. tuff qtz vein in	1-2% Py	78/8
-	AMR-15	grab o/c	chlor tuff/volc. sed.	3-5% Copy; Tr-1% Py	1590/4
	AMR-16	grab o/c	hbl. diorite	1-2% Py; mal	82/82
	AMR-17	grab o/c	qtz vein sst.	f.g. py fract. coatings	No assay
	AMR-18	float	diorite/monzonite	tr1/2% Py	10/8

<u>Rock No.</u>	<u>Type</u>	Description	<u>Mineralization</u>	<u>Assay</u> Cu /Au ppm/ppb
AMR-19	float	qtz. diorite	1-2% Py	3/4
AMR-20	grab o/c	sheared, hem cgl.	nil	68/8
AMR-21	grab o/c	f.g. rhyolite	1-2% Py; Py coat.	15/414
AMR-22	grab o/c	silic/felsic dyke	Tr. py; tr. mal.	19/20
AMR-23	float	silic. tuff	3-4% Py; qtz veins	25/80
AMR-24	float	And. tuff breccia	1-2% Py; Tr. Cpy	5100/22
AMR-25	grab o/c	goss. siltstone	nil	90/54
AMR-26	grab o/c	barite veins in volc. seds.	1-2% Sphal. gal, spec. hem?	46/42
AMR-27	float	Ep-Kspar; alt diorite	Tr. Py.	5/8
AMR-28	grab o/c	ep-Kspar; alt diorite	Nil; hem	29/18
AMR-29	grab o/c	ep-Kspar; alt diorite	1-2% Py	14/20
AMR-30	grab o/c	Ep-Kspar; alt diorite	1-2% Py; Py fract. coat.	194/42
AMR-31	float	carb + qtz boulder	2-3% Py	500/370
AMR-32	float	carb + qtz boulder	3- <i>5%</i> Py	1220/178
AMR-33	grab o/c	qtz + carb und sst	1-2% Py; tr Cpy; tr Sphal?	2500/530
AMR-34	grab o/c	silic. slt; felsic dyke	2-3% Py; tr. CPy	3000/570
AMR-35	float	chert	1% dissem. Py	30/12
AMR-36	grab o/c	prop. alt. diorite	Tr. Py. Mn	81/12
AMR-37	grab	silicic slt? volc?	2-3% Py; mass. Py fract. coat.	25/8
AMR-38	float	silicic slt? volc?	2-3% Py	10/14
AMR-39	float	qtz-carb. breccia	Py. Tr.	36/12
AMR-40	float	chlor. hem. m. diorite	1-3% diss. Py	64/14
AMR-41	float	carbonate breccia	1/2% Сру	5100/4
AMR-42	float	carbonate + qtz breccia	Tr. Py; mal	99/2
AMR-43	grab o/c rep.	carbonate + qtz vein	mal; az; tr, Cpy	7700/2

	<u>Rock No.</u>	Type	<u>Description</u>	<u>Mineralization</u>	<u>Assay</u> Cu /Au ppm/ppb
• •	AMR-44	grab o/c rep.	silic. volc. sediment	mal; az; tr. Cpy	5800/2
	AMR-45	grab o/c	qtz-monz. dyke	tr. Py	70/4
	AMR-46	float	ser. qtz-carb. breccia	1-2% Py; tr. Cpy	22/6
	AMR-47	float	ser. qtz-carb. breccia	1-2% Py; tr. Cpy	21/2
	AMR-48	grab o/c	Py + carb. vnlt (1 cm width)	mass. Py vnlt	50/8
	AMR-49	float	carb. boulder	11 Py vnlts (1 cm width)	13/2
	AMR-50	float	volc. sed.	mass. Py vnlts (4-1 cm widths)	53/4
	AMR-51	float	argillite	Py 1/2-3%; tr. Cpy	48/2
	AMR-52	float	qtz-carb breccia	2-3% Ру	12/2
	AMR-53	grab o/c	sheared volc. sed?	tr. Py	71/6
	AMR-54	grab o/c	sheared volc. sed?	tr. Py	86/6
	AMR-55	float	silic. volc. (goss)	nil min.	75/4
	AMR-56	grab o/c	ep-chlor. diorite (f.g.)	1% Cpy; mal.	4400/6
	AMR-57	grab	greywacke	1/2-1% Py	31/2
	AMR-58	grab	qtz-carb por/chlor. volc.	1-2% Py	25/2
	AMR-59	grab	silic volc. sed.	5-7% Py	41/6
	AMR-60	grab	silic. volc. sed.	Tr. Py	28/8
	AMR-61	float	chlor; carb. breccia	1/2-1% P y	13/4
	AMR-62	grab	carb + barite vein	tr. local 1/2% Py	250/10
	AMR-63	grab	volc. sst	mass. Py "knots" (5.2 x 1 cm)	122/12
-	AMR-64	grab	quartzite	tr. Py	124/10
	AMR-65	float	diorite	2-3% diss. Py	8/178
	AAR-01	grab	cherty, layered sed.	trace pyrite	3/2
	AAR-02	grab	banded chert, rhyolite	trace pyrite	3/2
	AAR-03	grab	silicified sed. carb. py		3/2

<u>Rock No.</u>	<u>Type</u>	Description	Mineralization	<u>Assay</u> Cu /Au ppm/ppb
AAR-04	grab	qtz, ca vn	massive pyrite in places in qtz/ca vein	35/16
AAR-05	float	goss, silicified sed.	fine gr. py in sil. matrix	111/10
AAR-06	float	qtz, ca vein	ру, сру	4500/6
AAR-07	subcrop	qtz, ca vein max .90m	cpy (3-5%)	5200/6
AAR-08	float	qtz, ca vein	сру, ру	9100/410
AAR-09	talus	hornblende diorite	disseminated pyrite	43/64
AAR-10	grab	goss. sed.	bleached, pyrite	No assay
AAR-11	grab	goss. sil. sed.	py, qtz veining + brecciation	No assay
AAR-12	float	rhyolitic float	trace pyrite?	2/4
AAR-13	grab	goss. siltstone	py rich sed.	20/24
AAR-14	grab	goss. horn. diorite	shear, mal, cpy, py (15 cm)	18,000/74
AAR-15	grab	goss. horn. diorite	as above plus barite, hem (5 cm)	56,000/440
AAR-26	float	goss. horn. diorite	barite, cpy, py	13,900/648
AAR-17	float	carb. veined intrusive	cpy (2-5%)	8700/36
AAR-18	grab	qtz, ep. vein	finely diss. py (25 cm)	22/34
AAR-19	float	qtz. vein float	py (10%), mal, cpy	24,000/570
AAR-20	float	barite		9/6
AAR-21	float	goss., vuggy qtz	py 5%, aspy?	7/10
AAR-22	float	goss. sil. sed.	minor pyrite	5/696
AAR-23	float	goss, "grungy"	fragmented intrusive? abundant pyrite	8/6
AAR-24	float	sil., goss	finely diss. pyrite	5/4
AAR-25	subcrop?	goss. rotten breccia	abundant hem.	2/2
AAR-26	float	cherty, banded rhyolite		3/2
AAR-27	grab	py, carb. volcanic	minor pyrite	19/6

. 4	Rock No.	<u>Type</u>	<u>Description</u>	Mineralization	<u>Assay</u> Cu /Au ppm/ppb
	AAR-28	grab	qtz, ca, amygdaloidal basalt		35/2
	AAR-29	grab	intrusive	diss. pyrite	21/10
	AAR-30	float	carb. sil. sed.	trace py.	30/4
	AAR-31	subcrop	frg. tuff	py in carb.	14/2
· .	AAR-32	float	cal, ba vein float	minor pyrite	26/2
	AAR-33	float	qtz-ba vein	very vuggy some ca, py	890/19,220
	AAR-34	grab	biotite qtz diorite	hem, mag.	86/34
	AAR-35	float	carb vein	no sulphides	8/2
	AAR-36	float/ subcrop	ba, ca vein	ba lathes, py 5%, cpy trace	74/2
	AAR-37	subcrop	barite rich volcanoclastic	hematite abundant	16/2
	AAR-38	grab	carb. vein (14 inches)	no sulphides noted	6/2
	AAR-39	grab	silicified, brecc. slst.	minor pyrite	99/2
	AAR-40	float	goss. silic. ca. slst.	fragmented, 15% pyrite	58/6
	AAR-50	grab	goss. hornblende diorite (6 inches)	malachite staining on joint	1440/28
	AAR-51	float	goss. ca. lmst?	5% sphalerite?	15/6
	AAR-52	grab	pyrite shear in diorite	over 6", very goss. py	12,900/1120
· -	AAR-53	rep. sample	goss. horn. diorite (2.5m)	cpy, mal. Jim & Bob Cu showing	1640/124
	AAR-54	chip over 0.5 m	HW - Wolf show		440/28
	AAR-55	as above 0.2 m	shear - Wolf Show		3700/1350
	AAR-56	as above 0.5 m	FW - Wolf show		580/26
· -	AAR-57	as above 1.0 m	FW - Wolf show		550/36
	AAR-58	as above 1.3 m	shear - Wolf show		2700/128
	·				

-

<u>Rock No.</u>	<u>Type</u>	Description	<u>Mineralization</u>	<u>Assay</u> Cu /Au ppm/ppb
AAR-59	as above 1.2 m	HW - Wolf show		7900/344
AAR-60	as above 1.0 m	FW - Wolf show		2000/14
AAR-61	as above 0.35 m	shear - Wolf show		2500/90
AAR-62	as above 0.34 m	HW - Wolf show		390/58
AAR-63	as above 0.3 m	HW - Wolf show		49/10
AAR-64	as above 0.4 m	shear - Wolf show		810/82
AAR-65	grab	HW - Wolf show		1160/4
AAR-66	chip over 0.5 m	shear - Wolf show		860/26
AAR-67	as above 1.3 m	HW - Wolf show		1050/40
AAR-68	as above 0.9 m	FW - Wolf show		910/8
AAR-69	as above 0.7 m	shear - Wolf show		2800/296
AAR-70	as above 1.05 m	HW - Wolf show		5800/88
AAR-71	as above 0.75 m	shear - Wolf show		400/46

a an .

e antes

APPENDIX F

.

......

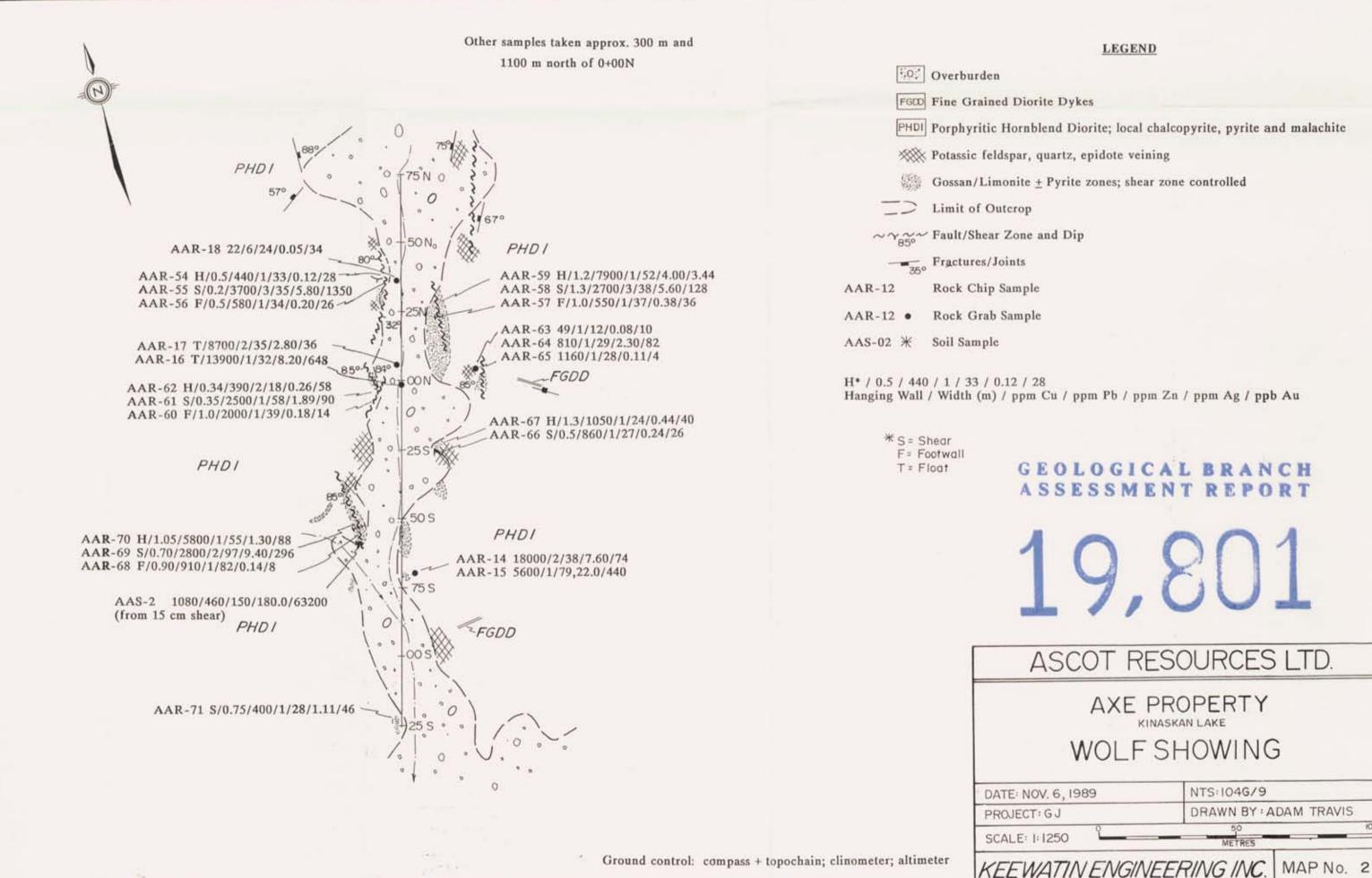
Statement of Qualifications

Keewatin Engineering Inc.

CERTIFICATE OF QUALIFICATIONS

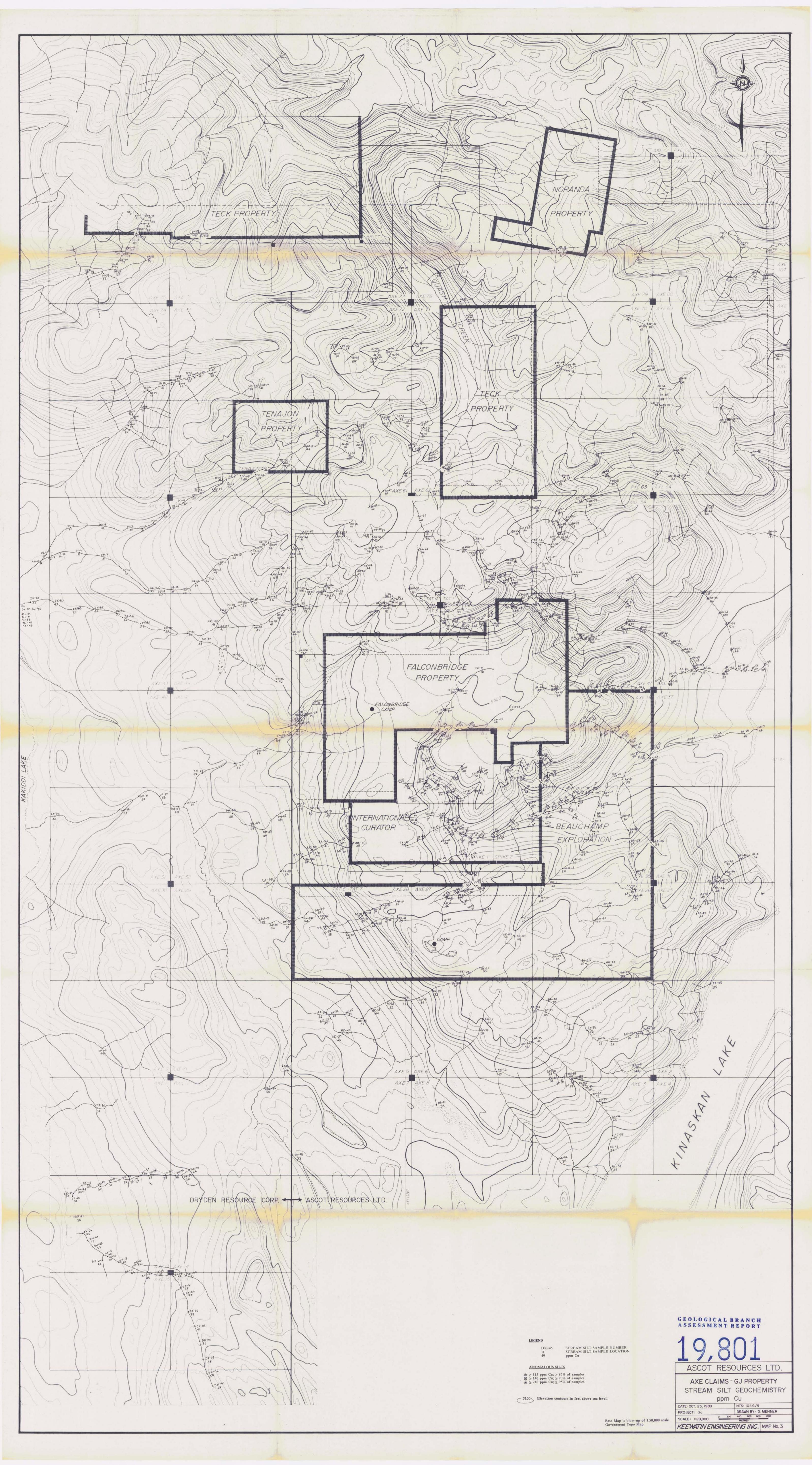
I, DAVID T. MEHNER, of #104, 2000 - 31st Street in the City of Vernon, in the Province of British Columbia, do hereby certify that:

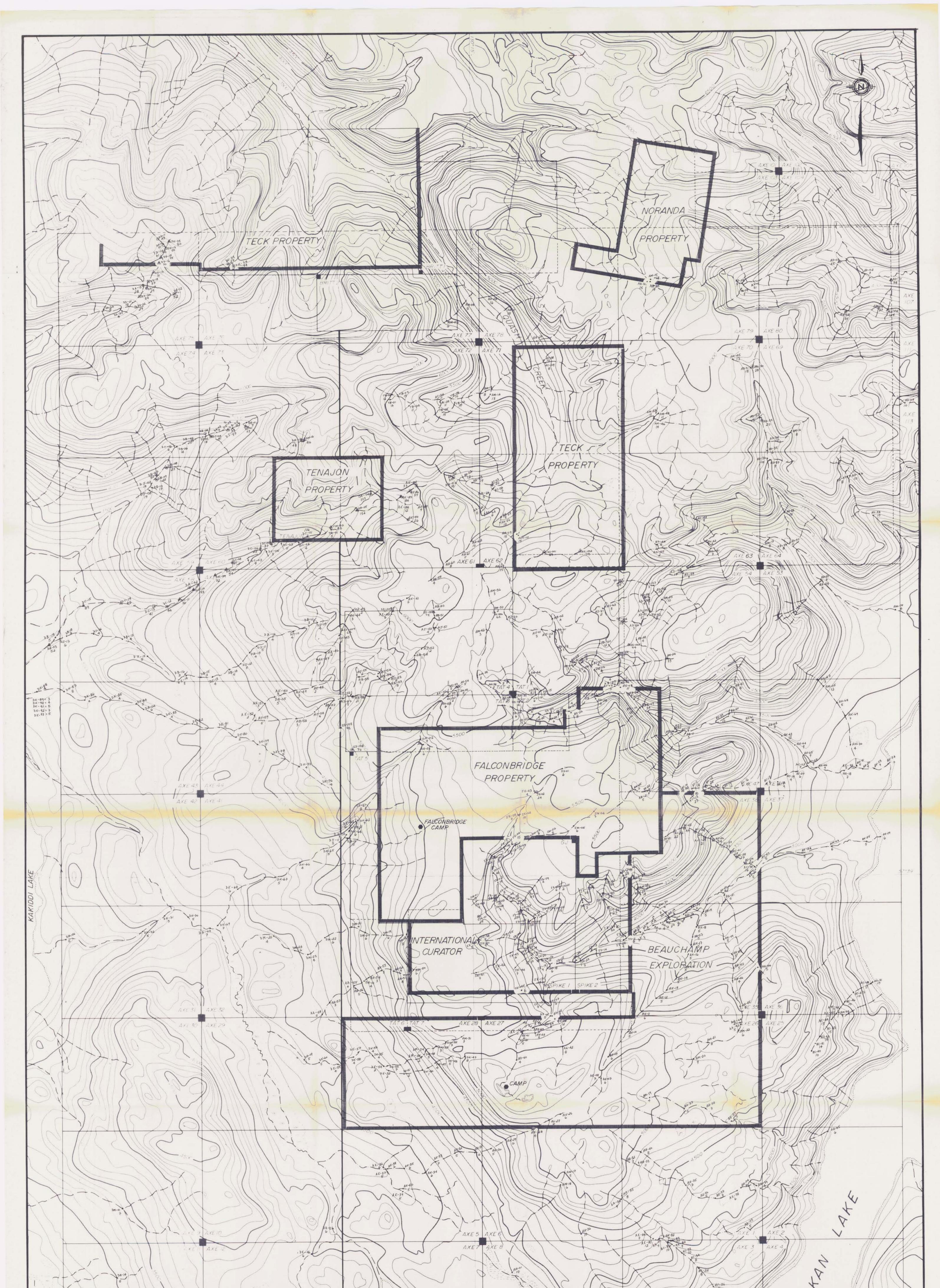
- 1. I am a Consulting Geologist with Keewatin Engineering Inc., with offices at 800 900 West Hastings Street, Vancouver, B.C. V6C 1E5.
- 2. I am a graduate of the University of Manitoba, B.Sc. Honours, 1976, M.Sc. Geology, 1982.
- 3. I have practised my profession continuously since 1979.
- 4. I am a Fellow of the Geological Association of Canada.
- 5. During the period of August October, 1989, I managed and carried out the exploration program on the Axe claims near Kinaskan Lake on behalf of Ascot Resources Ltd.
- 6. I do not own or expect to receive any interest (direct, indirect or contingent) in the properties described herein, nor in the securities of Ascot Resources Ltd. in respect of services rendered in the preparation of this report.

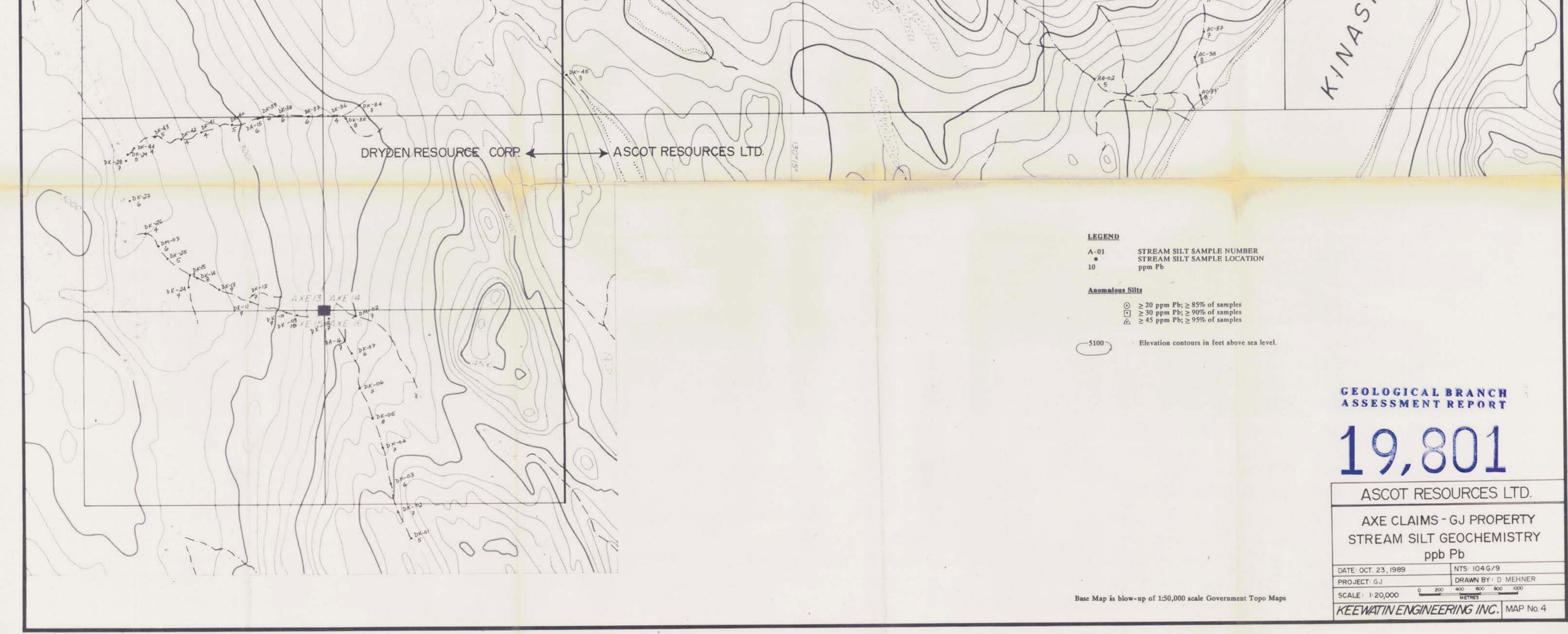

Dated at Vancouver, British Columbia, this <u>16th</u> day of <u>January</u>, A.D. 1990.

Respectfully submitted,

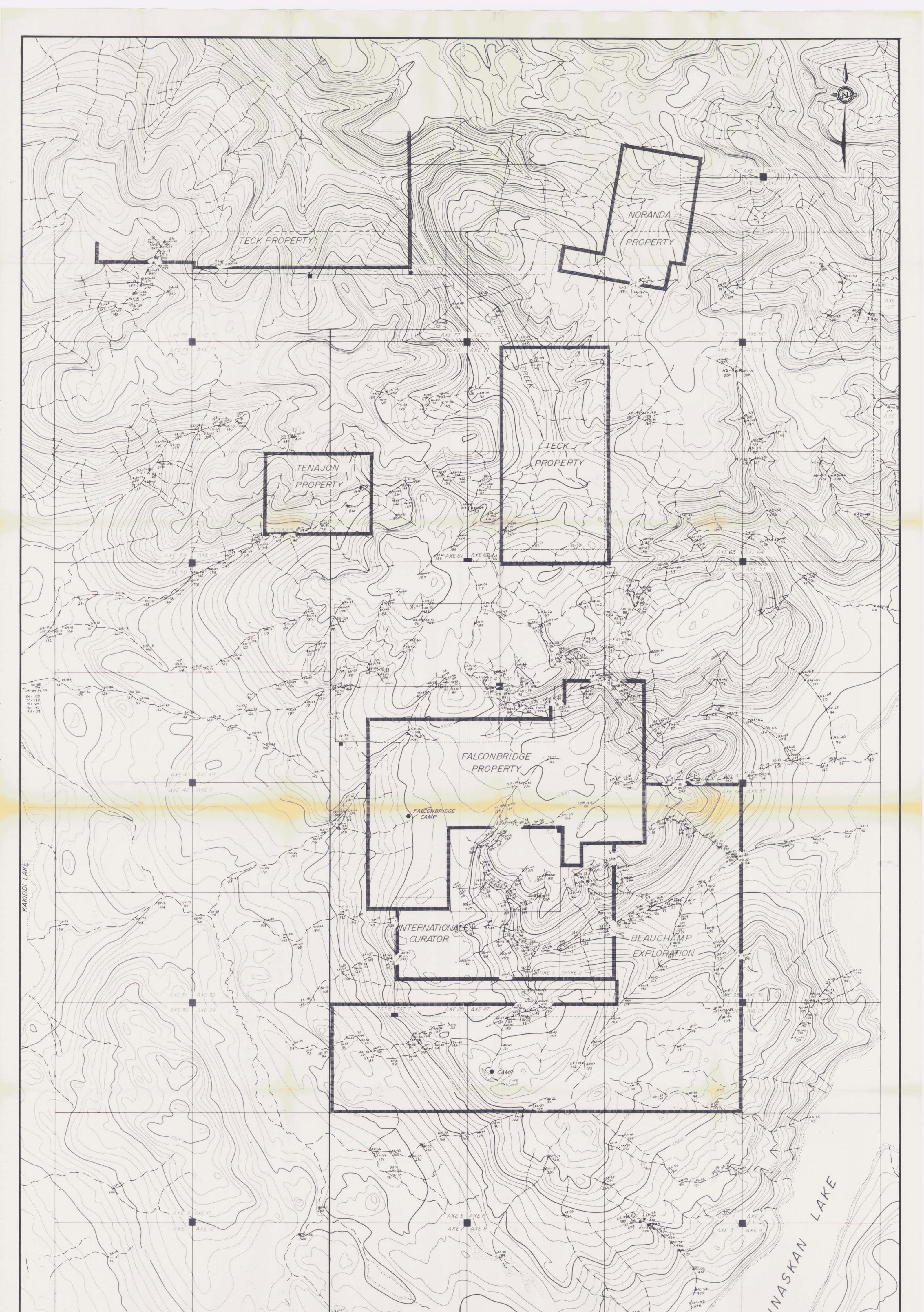
mehner

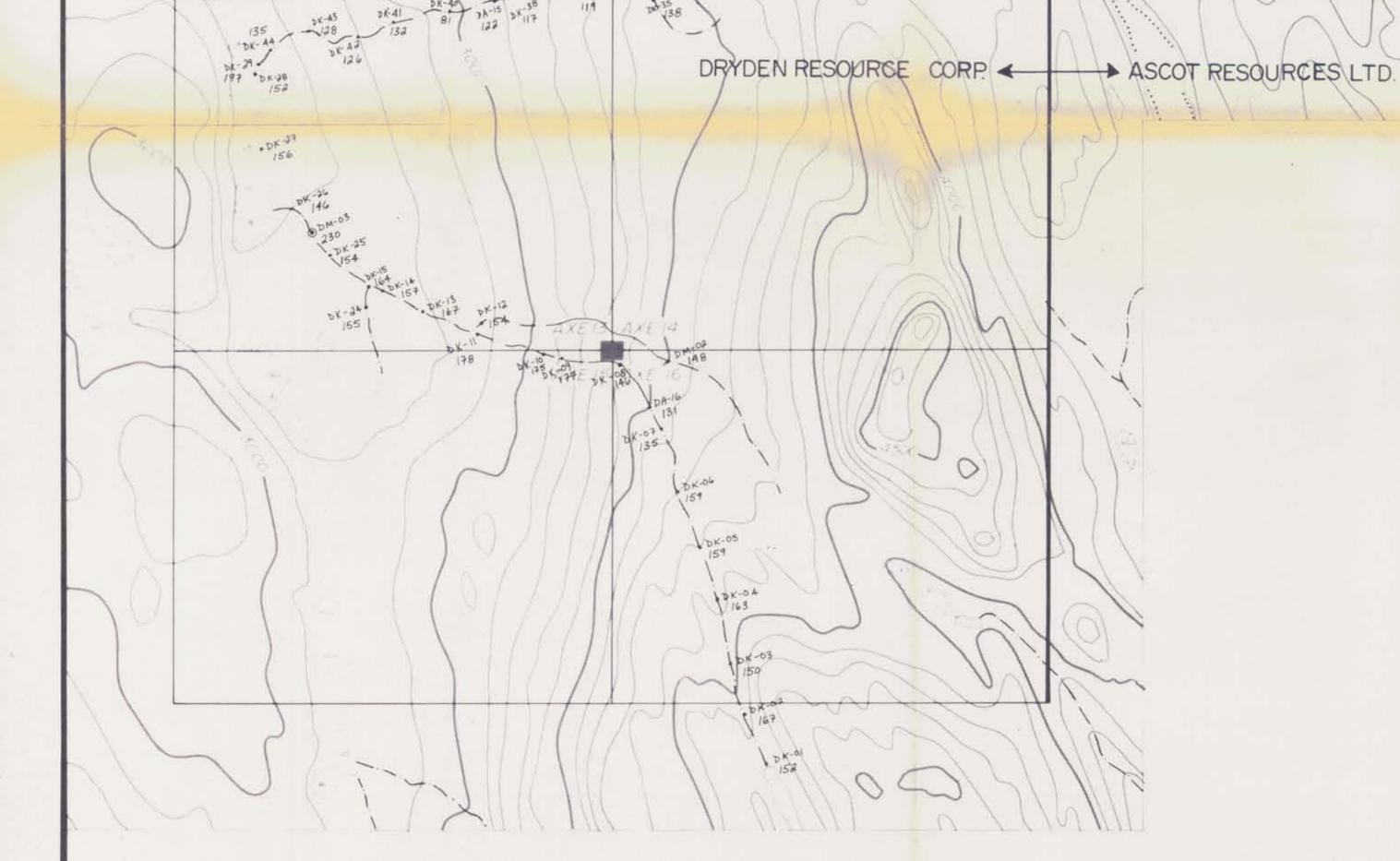

David T. Mehner, M.Sc., FGAC


Keewatin Engineering Inc.



	G		


ASCOT RESOURCES LTD.



- 3

1.1

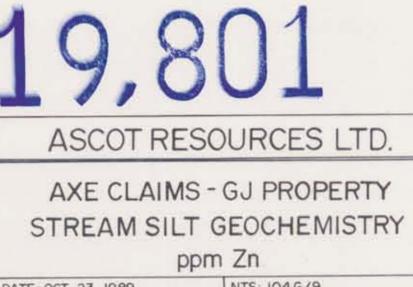
DK-3

LEGEND

2

AA-01 STREAM SILT SAMPLE NUMBER STREAM SILT SAMPLE LOCATION 189 ppm Zn

Anomalous Silts

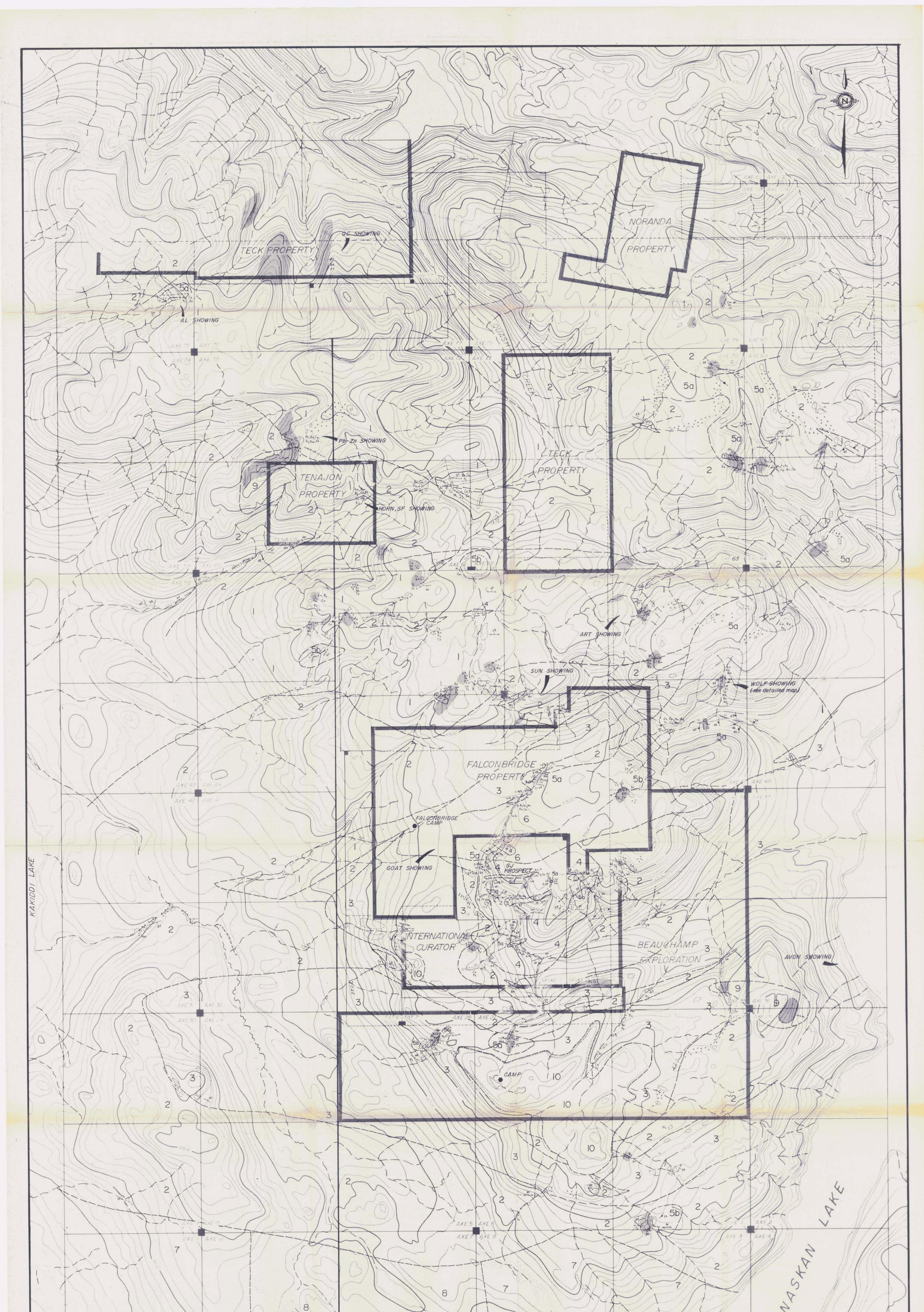

 ≥ 225 ppm Zn; ≥ 85% of samples

 ≥ 275 ppm Zn; ≥ 90% of samples

 ≥ 380 ppm Zn; ≥ 95% of samples

5100 Elevation contours in feet above sea level.

GEOLOGICAL BRANCH ASSESSMENT REPORT


 DATE: OCT. 23, 1989
 NTS: 104 G/9

 PROJECT: GJ
 DRAWN BY
 D. MEH NER

 SCALE:
 1:20,000
 200
 400
 600
 600
 600

 KEEWAT/IN ENGINEER/ING //VC.
 MAP No. 5

Base Map is blow-up of 1:50,000 scale Government Topo Maps

-> ASCOT RESOURCES LTD. -DRYDEN RESOURCE CORP.

1 Put

3-4

(12)

8

0

100

1/2

2. 2

AXE 13 AXE 14

XE

XI

-5

7

AXE

8

GEOLOGY LEGEND

UPPER TERTIARY TO PLEISTOCENE

- 10 Basalt and olivine basalt flows; columnar jointing common
- UPPER CRETACEOUS TO LOWER TERTIARY
- 9 Rhyolite, massive and flow banded; orbicular rhyolite; massive felsite

MIDDLE & UPPER JURASSIC Bowser Group

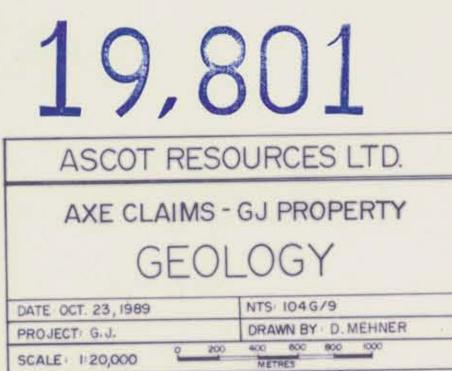
- 8 Chert pebble conglomerate
- 7 Shale, siltstone, grit and greywacke

UPPER TRIASSIC TO LOWER JURASSIC Intrusives

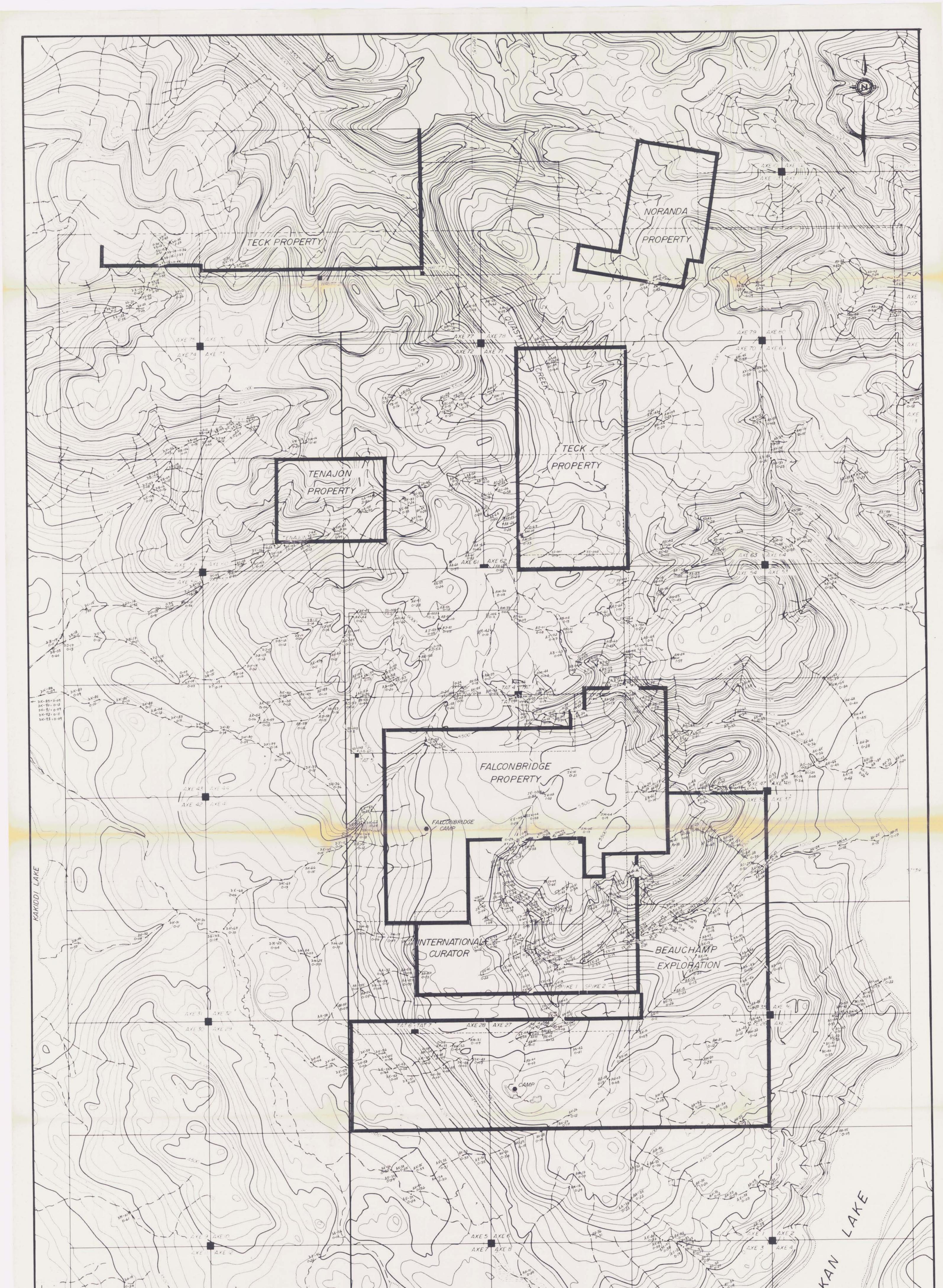
- 6 Monzodiorite to latite; equigranular to porphyritic; plag phenos
- 5b)

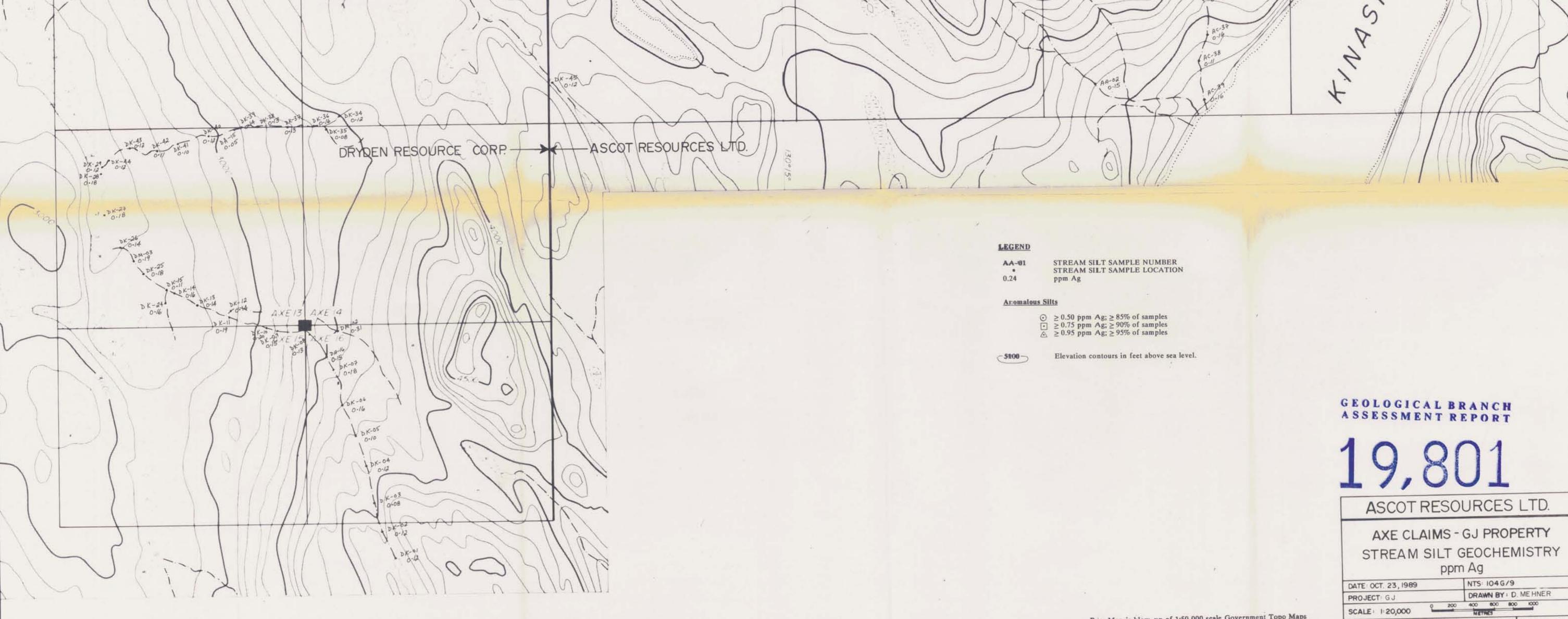
UPPER TRIASSIC

- 4 Chert, cherty siltstone, quartzite minor limestone and dolomite
- 3 Augite porphyry basalt and andesite porphyry flows: massive and pillowed; green to maroon
- 2 Siltstone, greywacke, grit polymictic conglomerate
- Tuffs, tuff breccias; volcaniclastic equivalents; minor interbedded (fossiliferous) limestone, argillite and chert

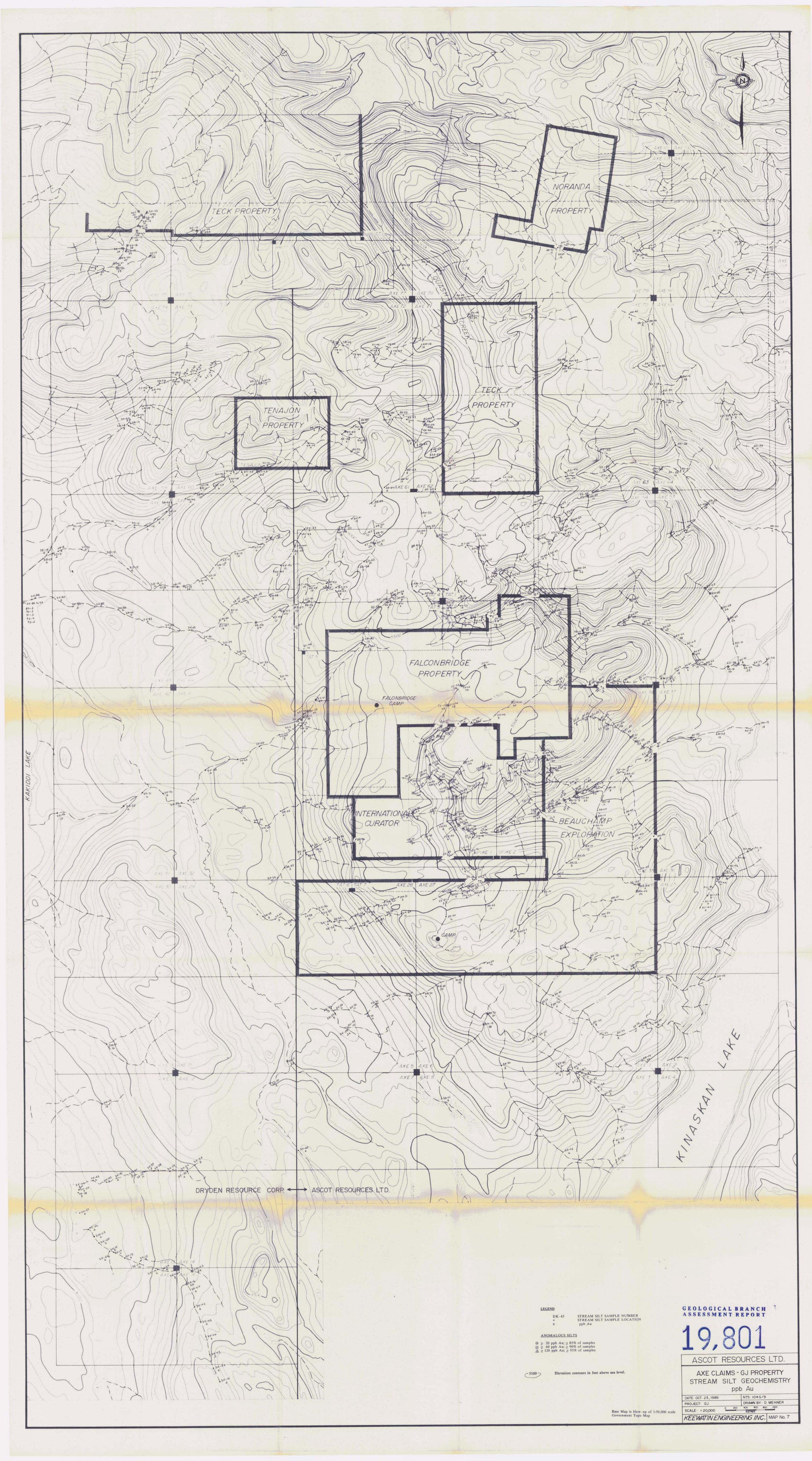

SYMBOLS Outcrop C∂ Area of ≥80% outcrop --- Geological contact (assumed) Fe colour anomaly Bedding 39 Foliation 40 Joints 38 Fractures Fault or shear orientation ~~~ Fault (assumed) -20 Lineation

1	
+	- Synform
I	


183

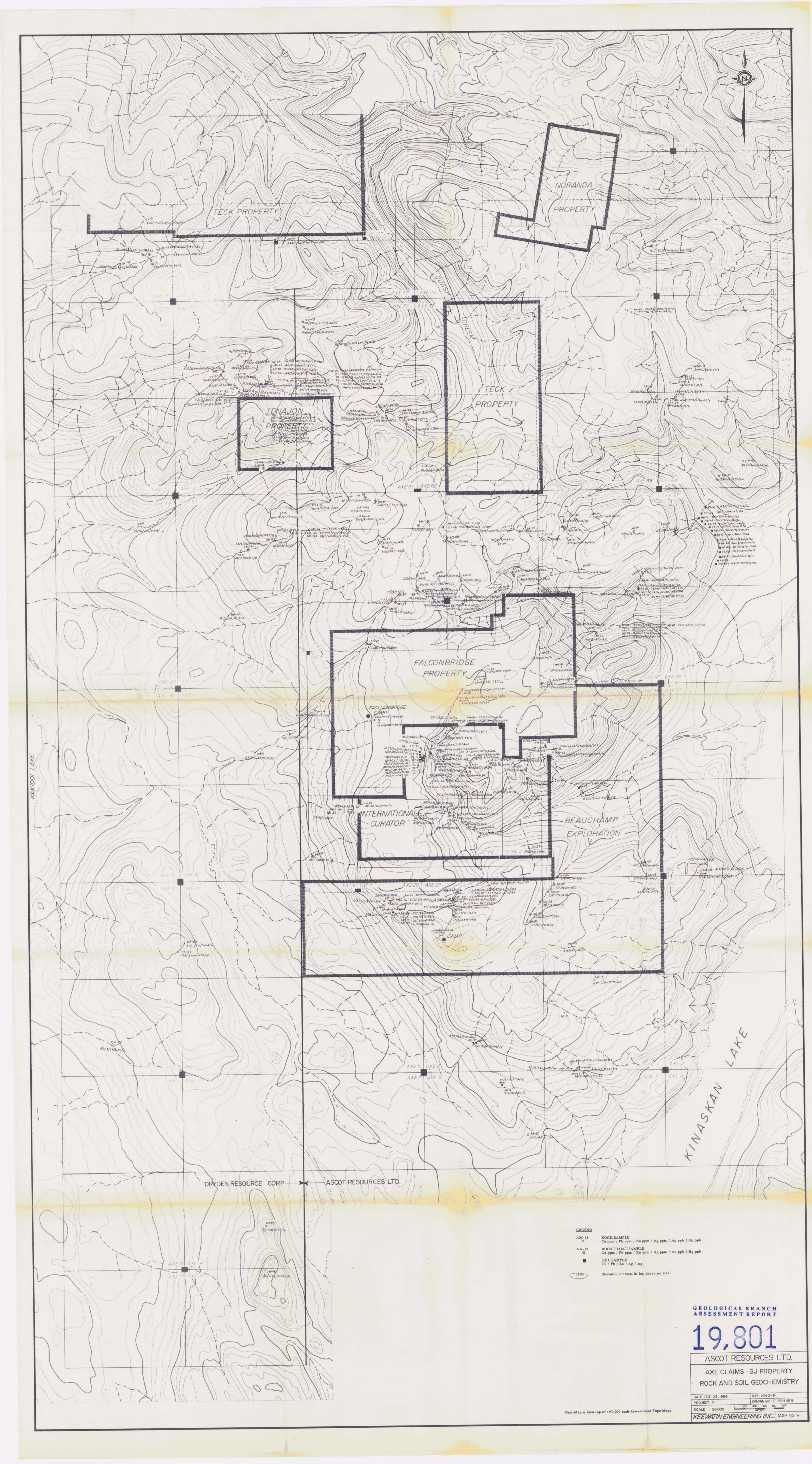

Cp -	chalcopyrite	Zn -	sphalerite
Az -	azurite	Hm-	hematite
Ma-	malachite	Ep -	epidote
Mg-	magnetite	Ci -	chlorite
Py -	pyrite	Kp -	K-feldspar
Lm-	limonite	Ca -	calcite
Mo-	molybdenite.	Ba -	barite
Pb -	galena	Qv -	quartz veins

KEEWATIN ENGINEERING INC. MAP No. 1





14


Base Map is blow-up of 1:50,000 scale Government Topo Maps

KEEWATIN ENGINEERING INC. MAP No. 6

HISTOGRAM- SILT

