```
Disurict Geologist, Nelson
Off Confidential: 90.12.11
ASSESSMENT REPORT 19809 MINING DIVISION: Fort Steele
```



```
WORK
DONE: Geological,Geochemical
    GEOL 2725.0 ha
    Map(s) - 2; Scale(s) - 1:10 000,1:200
    ROCK 110 sample(s);CU,PB,ZN,AU,AG,AS
    Map(s) - 1; scale(s) - 1:10 000
SILT 115 sample(s);CU,PB,ZN,AU,AG,AS
    Map(s) - 1; Scale(s) - 1:10 000
SOIL 751 sample(s) ;CU,PB,ZN,AU,AG,AS
        Map(s) - 24; Scale(s) - 1:2500
RELATED
REPORTS : 18575
MINFILE: 082GSW035
```


GEOLOGY AND GEOCHEMISTRY REPORT on the FORS PROPERTY

PUMA and COUGAR CLAIMS

Fort Steele Mining Division
N.T.S. 82 G/5W

Latitude: $49^{\circ}{ }^{\circ} 1^{\prime} \mathrm{N} \quad$ Longitude: $\mathbf{1 1 5}^{\circ}{ }^{\circ} 5^{\prime} \mathrm{W}$
Owners: L.D. Morgan, J.E. Morgan, R.T. Banting, C.R. Kennedy
Operator: Placer Dome Inc.

TABLE OF CONTENTS

PAGE
1.0 INTRODUCTION 1
2.0 SUMMARY 1
3.0 RECOMMENDATIONS 2
4.0 PROPERTY DEFINITION 2
4.1 Location and Access 2
4.2 Physiography 2
4.3 Claim Status 5
4.4 Exploration History 5
4.5 Summary of Work 6
5.0 ECONOMICASSESSMENT 6
6.0 REGIONALGEOLOGY 7
7.0 PROPERTY GEOLOGY 8
7.1 Lithology 8
7.2 Structure 8
7.3 Alteration and Mineralization 8
8.0 GEOCHEMISTRY 11
8.1 Objective 11
8.2 Stream Sediments 11
8.2.1 Sample Collection, Preparation and Analysis 11
8.2.2 Results 12
8.2.3 Discussion and Interpretation 12
8.3 Soils 13
8.3.1 Orientation Survey 13
8.3.2 Sample Collection, Preparation and Analysis 14
8.3.3 Results 14
8.3.4 Discussion and Interpretation 15
8.4 Rock 15
8.4.1 Sample Collection, Preparation and Analysis 15
8.4.2 Results 16
8.4.3 Discussion and Interpretation 16
9.0 STATEMENT OF EXPENDITURES 17
10.0 CONCLUSIONS 18
11.0 REFERENCES 19

LIST OF FIGURES

PAGE
Figure 1: Location of the Fors Property, 1:250,000 3
Figure $2 \quad$ Claim Map, 1:50,000 4
Figure 3: Geology of the Fors Property, 1:10,000 In Pocket
Figure 4: Rock Sample Location Map, 1:10,000 In Pocket
Figure 5: Main Showing Geology and Sample Locations, 1:200 In Pocket
Figure 6 Soil and Stream Geochemistry Sample Location Map, 1:10,000 In Pocket
Figure 7a: Main Showing Grid: Zinc in Soil In Pocket 7b: Main Showing Grid: Lead in Soil
Figure 8a: Main Showing Grid: Copper in Soil In Pocket
8b: Main Showing Grid: Arsenic in Soil
Figure 9a: Main Showing Grid: Silver in Soil In Pocket
9b: Main Showing Grid: Gold in Soil
Figure 10a: Boulder Soil Grid: Zinc in Soil In Pocket
10b: Boulder Soil Grid: Lead in Soil
Figure 1la: Boulder Soil Grid: Copper in Soil In Pocket
1lb: Boulder Soil Grid: Arsenic in Soil
Figure 12a: Boulder Soil Grid: Silver in Soil In Pocket
12b: Boulder Soil Grid: Gold in Soil
Figure 13a: Little Lamb Creek Grid: Zinc in Soil In Pocket
13b: Little Lamb Creek Grid: Copper in Soil
Figure 14a: Little Lamb Creek Grid: Arsenic in Soil In Pocket
14b: Little Lamb Creek Grid: Lead in Soil
Figure 15a: Little Lamb Creek Grid: Silver in Soil In Pocket
15b: Little Lamb Creek Grid: Gold in Soil
Figure 16a: Gold Hill Creek Grid: Zinc in Soil In Pocket
16b: Gold Hill Creek Grid: Lead in Soil
Figure 17a: Gold Hill Creek Grid: Copper in Soil In Pocket
17b: Gold Hill Creek Grid: Arsenic in Soil
Figure 18a: Gold Hill Creek Grid: Silver in Soil In Pocket
18b: Gold Hill Creek Grid: Gold in Soil

LIST OF TABLES

Table 1: Claim Status 5

APPENDICES

Appendix 1: Statement of Qualifications
Appendix 2 Stream Sediment Sample Analytical Results
Appendix 3: Soil Sample Analytical Results
Appendix 4: Rock Sample Analytical Results
Appendix 5: Analytical Extraction and Detection Techniques

1.0 INTRODUCTION

Placer Dome Inc. conducted geological and geochemical surveys on the Fors property from May to July, 1989. The Fors property comprises the Puma, Puma 1 to 3 and Cougar 1 to 3 mineral claims.

The Fors Property is in the Moyie Range of the Purcell Mountains about 17 kilometres southwest of Cranbrook, British Columbia in the Fort Steele Mining Division. Exploration work in 1989 was of an early stage designed to investigate the potential for Sullivan-style sedimentary exhalative $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ mineralization in sedimentary rocks of the Proterozoic Middle Aldridge Formation.

This report addresses the results from the geologic mapping, prospecting and geochemical sampling on the Fors Property and is submitted in fulfillment of provincial assessment requirements.

2.0 SUMMARY

The property is underlain by the oldest rocks exposed in the Purcell anticlinorium which is within the Proterozoic Purcell Supergroup. The units are dominantly siliciclastic sedimentary rocks of the Lower and Middle Aldridge Formations. In the the southeast the right-lateral, reverse Moyie fault juxtaposes Aldridge rocks with a conformable package of younger Creston Formation siltstones and argillites. Creston strata conformably overlie carbonates and clastics of the Kitchener Formation that in turn conformably overlie Lower Aldridge argillite, siltstone and quartzite. The Moyie Intrusives are gabbro sills that intrude the lower, and Lower part of the Middle Aldridge Formations. Regional metamorphism is upper greenschist facies.

Geologic mapping and prospecting confirmed two previously identified styles of mineralization. Base metal sulphide mineralization (pyrite, sphalerite, galena, chalcopyrite) is hosted by Middle Aldridge siliciclastic rocks at the Main Showing. Minor sulphide mineralization (pyrite, sphalerite, chalcopyrite) occurs in quartz veins hosted by the Moyie sills. Mapping could not trace the favourable horizon or structure that hosts the main showing mineralization. Similarily, the source of several mineralized arenite cobbles and boulders is still unknown. Detailed mapping and sampling of the main showing was conducted to establish the extent and nature of alteration and mineralization.

Stream sediment sampling was carried out on all drainages that traverse the claims. Only low base metal concentrations were returned by silt sampling though several bulk sediment samples have enriched values in gold, ranging from 50 to 765 ppb.

A soil orientation geochemical survey and limited soil geochemical surveys on four grids were carried out to trace outcropping and float mineralization. Geochemically enriched concentrations of $\mathrm{Pb}, \mathbf{Z n}$ and $\mathbf{A s}$ are present in samples from the Main Showing Grid. Geochemical values for all other elements analyzed in soils from the Main Showing and the other three grids are low and reflect background concentrations.

Grab samples of main showing sulphide mineralization, a large float boulder, and a few smaller float samples of mineralized arenite have the highest concentrations of Pb, Zn and $\mathrm{Ag} ; \mathbf{0 . 4 1}$ to $4.2 \%, 0.36$ to 7.1% and $\mathbf{4 . 2}$ to $\mathbf{1 3 0} \mathrm{ppm}$, respectively.

The 1989 exploration programme delineated no new geological or geochemical targets that could support additional work at this time. Surface mineralization at the Main Showing is not economic.

Total expenditures that may be applied to assessment on the Fors Property in 1989 are $\$ 109,288.71$.

3.0 RECOMMENDATIONS

It is recommended that no new work be undertaken on the Fors property and the option agreement be terminated.

4.0 PROPERTY DEFINITION

4.1 Location and Access

The Fors Property is centred at $49^{\circ} 21^{\prime} \mathrm{N}$ latitude and $115^{\circ} 55^{\prime} \mathrm{W}$ longitude, 17 kilometres southwest of Cranbrook, British Columbia in the Fort Steele Mining Division (Figure 1).Access is by paved Highway 3/95 to Green Bay on Moyie Lake, west to Monroe Lake and along a well-maintained, gravel logging road to the property. Several older logging tracks afford four-wheel drive access within the property boundary.

The Canadian Pacific Railway line is approximately 3 kilometres to the northeast and a B.C. Hydro right-of-way parallels Highway $\mathbf{3 / 9 5}$ approximately 4 kilometres east of the claims.

42 Physiography

The property is west of the Rocky Mountain Trench in the Moyie Range of the Purcell Mountains. The claims he west of Moyie Lake and encorporate Little Lamb Creek and Gold Hill Creek, the main drainages on the property. The two creeks flow southeast to Lamb Creek, which in turn flows southeast to Moyie Lake.

The climate is transitional between maritime and continental exhibiting low to moderate mean monthly precipitation totals of $\mathbf{3 0}$ millimetres. Mean seasonal monthly high temperatures are comparable to Cranbrook at $26^{\circ} \mathrm{C}$ in July and $-5^{\circ} \mathrm{C}$ in January.

The entire property is below timberline and has a maximum relief of approximately 850 metres. The claims lie between 1067 metres elevation (A.S.L.) in the southeast and $\mathbf{1 , 9 2 0}$ metres in the north (Figure 2).

The slopes are well timbered with spruce, larch, lodgepole pine, whit pine, alpine fir and sparse to very thick underbrush. Parts of the property have been clear-cut logged. Partial reforestation took place during the 1989 exploration season. At lower elevations the slopes are mantled by Quaternary and Recent sand and gravel resulting in poor outcrop exposure. The best exposure is afforded at higher elevations and along road cuts.

Glacial striae were mapped at several locations and trend northnortheast. The direction of ice advance was probably to the northeast down the valley of Lamb Creek.

43 Claim Status

The Fors Property consists of seven contiguous mineral claims comprising 119 units jointly owned by Messrs. L. Morgan, C. Kennedy and R.T. Banting of Cranbrook, British Columbia and Mr. J. Morgan of Victoria, British Columbia. Table 1 summarizes the claim status of the property.

Table 1:Claim Status

Claim Name	No. Units	Record No.	Anniv. Date
Puma	$\mathbf{1 6}$	$\mathbf{2 8 7 6}$	April 27, 1993
Puma 1	$\mathbf{1 2}$	$\mathbf{2 8 7 7}$	April 27,1993
Puma 2	$\mathbf{2 0}$	$\mathbf{3 0 4 4}$	April 27,1993
Puma 3	$\mathbf{1 5}$	$\mathbf{3 0 4 6}$	April 27, 1993
Cougar 1	$\mathbf{2 0}$	$\mathbf{3 0 6 5}$	April 27, 1993
Cougar 2	$\mathbf{1 6}$	$\mathbf{3 0 5 8}$	April 27, 1993
Cougar 3	$\mathbf{2 0}$	$\mathbf{3 0 5 9}$	April 27, 1993

4.4 Exploration History

The Fors Property and immediately surrounding area has been prospected at various times, particularly following the discovery of $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ mineralization in 1893 at St. Eugene on Moyie Lake. Several small pits, trenches and adits probably date to this period. During 1966H. Fors of Kimberley discovered float boulders containing significant $\mathrm{Pb}-\mathrm{Zn}$ mineralization.

The property was worked intermittently by Cominco Ltd. in 1966,1967, 1976, 1978, 1982 and 1983. Limited soil geochemical, geophysical and geological surveys and diamond drilling were carried out in the area of the Main Showing.As of 1967 Cominco workers had documented "significantvalues in Pb and Zn^{n} in float boulders. Their exploration programmes were directed toward locating the source of this material.

Records of much of the Cominco work were not available to Placer Dome but some of Cominco's conclusions are known: 1) an EM survey showed no significant conductors; 2) soil geochemistry outlined Pb and Zn anomalies in the vicinity of the main showing; and 3) vein mineralization found during geological mapping was not considered economically important due to "poor
grade and lack of continuity" (Richardson and Gifford, 1967?). According to Webber (1978), in a summary of exploration in the area, 7 diamond drill holes totalling 944 metres encountered no economic mineralization. Apparently, Cominco did not analyze for gold during their exploration programmes on the Fors Property.

4.5 Summary of Work

From May 16 to July 15, 1989240 person-days were spent conducting geological mapping, prospecting and geochemical sampling on the Fors Property. The field crew consisted of a project geologist, geologist and two field assistants. Operations were based at Green Bay on Moyie Lake and at Cranbrook, British Columbia.

The property was mapped and prospected at 1:10,000 scale. Detailed mapping of the Main Showing at 1:100 scale was completed over an area 150 by 25 metres. Figure 3 illustrates the geology at 1:10,000 and Figure 4 is the rock sample location map. Figure 5 is the Main Showing geology and sample location map reduced to 1:200 scale.

A total of $\mathbf{5 8}$ silt, $\mathbf{5 7}$ bulk stream sediment, $\mathbf{7 5 1}$ soil and 110 rock samples were taken during the course of geochemical surveys. Most samples were analyzed at the Placer Dome Inc. laboratory in Vancouver. A total of 57 organic soil samples were submitted to Activation Laboratories Ltd. of Brantford, Ontario for neutron activation analyses. All samples were analyzed for copper, lead, zinc, silver, gold and arsenic. Some samples of mineralized arenite from the main showing and several float boulders were also analyzed for antimony.

Figure 6 shows stream sediment sample sites and the location of the soil survey grids. Figures $\mathbf{7}$ to $\mathbf{1 8}$ are individual element plots of copper, lead, zinc, silver, gold and arsenic in soil for each grid.

5.0 ECONOMIC ASSESSMENT

There are three deposit types of potential economic interest in the region: 1) stratiform $\mathrm{Pb}-\mathrm{Zn}-\mathrm{Ag}$ sedimentary exhalative mineralization associated with the Lower-Middle Aldridge contact; 2) base metal-silver vein deposits cross-cutting Aldridge units; and 3) mineralized (base metal-Au) quartz veins in the gabbroic Moyie intrusives.

The most important economic deposit in the region is the Sullivan orebody near Kimberley, British Columbia. The deposit is a large, gently dipping iron-leadzinc sulphide body lying conformably in Proterozoic clastic sedimentary rocks of the Aldridge Formation at the Lower to Middle Aldridge transition time horizon. The orebody is a stratiform lens with subordinate bands covering an area of 1.6 by 2.0 kilometres composed almost entirely of pyrrhotite, sphalerite, galena and lesser pyrite. It is estimated to have orginally contained 160,000,000 tonnes of $\mathbf{2 8 \%}$ iron, 6% lead, 6% zinc and $67 \mathrm{~g} / \mathrm{t}$ silver (Hamilton et al., 1982). Cominco Ltd. has recently halted production at the Sullivan Mine citing declining metal prices and increasing production costs.

Several base metal-silver vein deposits in the area have been historically exploited. The most prominent example is the St . Eugene mine that lies about $\mathbf{2 , 0 0 0}$ metres above the base of the Middle Aldridge on the east shore of Moyie Lake. The deposit is a ladder vein striking west-northwest and dipping steeply south. The ore is argentiferous galena and sphalerite with some tetrahedrite and chalcopyrite in a gangue of dominantly quartz. When reserves were exhausted in 1916, Production had totalled $\mathbf{9 3 1}, \mathbf{4 3 1}$ tonnes grading $\mathbf{1 2 \%}$ lead, $\mathbf{1 \%}$ zinc and $\mathbf{2 0 0} \mathrm{g} / \mathrm{t}$ silver (Hoy et al., 1985). The vein system can be traced for 3,500 metres along strike and $\mathbf{1 , 4 0 0}$ metres down dip.

In the past gold has also been an exploration target in the region. The target of greatest interest was gold in quartz-sulphide veins associated with shears in the metagabbro Moyie intrusives. At least two adits were driven on quartz veins hosting sulphide mineralization on the Fors Property. There is no known record of production from these workings.

6.0 REGIONAL GEOLOGY

The following synopsis of the re ional geology of the Purcell Supergroup is based on that of Hamilton et al. (19827 and Hoy (1982). Rocks underlying the Fors property are in the Purcell anticlinorium of the Purcell Supergroup, laterally equivalent to the Belt Supergroup in the United States. The Purcell Supergroupin southeast British Columbia constitutes a thick prism of dominantly clastic sedimentary rocks deposited in a large epicratonic basin at the western margin of the North American craton during Middle Proterozoic time.

The maximum thickness of sedimentary rocks of the Purcell Supergroup exceeds $\mathbf{1 0 , 0 0 0}$ metres. Earliest known sedimentationresulted in upward-fining sequences of quartz arenite, quartz-wacke and mudstone that comprise the basal Fort Steele Formation. The Fort Steele Formation is at least $\mathbf{2 0 0}$ metres thick.

Fine-grained clastic beds at the top of the Fort Steele Formation grade into rust weathering, fine-grained quartz-wacke and mudstone of the Aldridge Formation. The Aldridge Formation is at least $\mathbf{5 , 0 0 0}$ metres thick in the Purcell Mountains and grades upward over $\mathbf{3 0 0}$ metres through a sequence of carbonaceous mudstone and fine-grained quartz-wacke to the 1,800 metre thick Creston Formation. Creston strata are composed of grey, green and maroon quartz-wacke and mudstone with minor white arenite.

Conformably overlying the Creston Formation are 1,200 metres of green and grey dolomitic mudstone, buff-weathering dolomite and minor quartz arenite of the Kithchener Formation. The Kitchener is in turn overlain by $\mathbf{2 0 0}$ to $\mathbf{4 0 0}$ metres of green, slightly calcareous mudstone of the Siyeh Formation. The Siyeh is conformably and locally unconformably overlain by 0 to 500 metres of basaltic to andesitic flows of the Purcell Lava, which are taken to mark the close of lower Purcell sedimentation (Hamilton et al., 1982).

Resting with apparent conformity on the lower Purcell rocks are about 1,200 metres of grey to dark grey, calcareous and dolomitic mudstone and minor quartzwacke of the Dutch Creek Formation. In the western Purcell Mountains, the Dutch Creek Formation is overlain by about 1,000 metres of grey, green and maroon mudstone and calcareous mudstone of the Mount Nelson Formation. The close of Purcell sedimentation is marked by folding during the East Kootenay Orogeny (825 to $\mathbf{9 0 0} \mathrm{Ma}$; Hoy, 1982) and disruption of the basin by large-scale vertical faults.

Middle Proterozoic igneous activity in the Purcell sedimentary basin is dominated by intrusion of gabbroic sills of two ages. The oldest are the Moyie sills ($1,430 \mathrm{Ma}$; Hamilton et al., 1982) which are most common in the Aldridge Formation. Gabbroic sills can total 2,000 metres of thickness in an Aldridge section and are most abundant in the Lower Aldridge. The youngest event of gabbro intrusion is thought to be comagmatic with the Purcell lavas (1,075 Ma) (Hamilton et al., 1982).

Lower Purcell sedimentary rocks have everywhere undergone metamorphism to at least greenschist facies. Minor areas of amphibolite facies metamorphism are restricted to the cores of large magnitude fold structures.

Purcell rocks are folded about north-trending axes to form the Purcell anticlinorium. Folds comprising the large structure are open and gentle with northplunging axes. Major faults (e.g. Moyie and St. Mary's faults), with a history of complex movement, disrupt the Purcell rocks and separate large areas further disrupted by block faulting. Both the Moyie and St. Mary's faults repeat lower Purcell strata on their northwest upthrown sides. There is evidence for repeated movement along the major faults beginning as early as the time of Purcell sedimentation (Hoy, 1982).

7.0 PROPERTY GEOLOGY

71 Lithology

Much of the 1:10,000 geological mapping of the Fors Property (Figure 4) in 1989 relied heavily on $1: 50,000$ scale regional mapping by provincial government geologists (Hoy et al., 1980). An attempt was made, wherever possible, to place the property-scale mapping within the context of the regional government map.

The Fors Property is underlain dominantly by clastic rocks of the Purcell Supergroup of Helikìan and Hadrynian age. Units of the Lower and Middle Aldridge and Kitchener Formations, as well as at least three Moyie sills or sill-like bodies can be mapped on the property.

The oldest rocks in the map area are rust-weathering siltstone, quartz arenite and quartzite of the Lower Aldridge that outcrop in the southwest, and to a lesser extent in the east, in the hangingwall of the Moyie fault.

Grey-weathering, graded, quartz (quartz-feldspar) arenite and quartzwacke beds are representative of the Middle Aldridge on the property. These rocks are in inferred fault and conformable contact with Lower Aldrige rocks in the east and west, respectively. The boundary between the Lower and Middle Aldridge is gradational and Hoy et al. (1980) place it at the surface above which grey-weathering quartz-wacke beds predominate over siltite. This boundary was not observed on the property.

Grey-weathering, graded, quartz-wacke beds interpreted to be turbidite deposits occur throughout the Middle Aldridge. In general, the Middle Aldridge quartz-wacke beds become thinner, less pure, and less volumetric up-section (H_{oy} et al., 1980).

Three large (ranging from 50 to 100 metres apparent thickness) sill-like bodies of metagabbro that intrude Lower Aldridge beds outcrop irregularly in the west and are juxtaposed with Middle Aldridge quartzite arenite and quartzite to the east by the inferred Little Lamb Creek fault.

In the southeast, the Moyie fault places highly deformed Lower and Middle Aldridge rocks against less deformed, buff-weathering dolomitic siltstone and green siltstone of the Kitchener Formation.

72 Structure

The structural grain of the rocks underlying the Fors Property is northeast, paralleling the pronounced trend throughout the Purcell Mountains. Two major structural elements in the region, the Moyie anticline and the Moyie fault, have altered this structural domain.

The Moyie anticline is the dominant structure south of the Moyie fault. It is a northeast-plunging, upright, anticlinal fold. North of the fault, Lower and Middle Aldridge rocks are folded into moderately tight to dominantly open, north to northeast-trending folds. On a regional scale the folds are outlined by gabbroic sills whereas on the property scale moderate to intense deformation is indicated by bedding attitudes rotated through more than 90° in the eastern part of the property. Bedding intersections, with what are assumed to be axial planar cleavages, indicate local parasitic structural domains with fold amplitudes of up to 100 metres plunging 10° to 20° to the north and northwest.

The Moyie fault is an east-northeast-trending, north-dipping, right lateral, reverse fault. The fault outcrops in the southern portion of the property as a wide (60 metres in roadcut) zone of intense shearing in Lower? Aldrige quartz-wackes of the hangingwall. In the shear, these rocks are intermixed with Kitchener siltstones from the footwall.

Smaller-scale shears (e.g. Main Showing) mapped on the property appear to mimic the Moyie fault with east-northeast orientations and shallow to moderate northwest dips. The prominent structure at the Main Showing strikes approximately $035^{\circ}-045^{\circ}$ and dips about 40° northwest. The shear can be mapped over a strike length of 15 metres crosscutting quartzite and quartzwacke beds at shallow to moderate angles. It approaches 2.5 metres projected true width. No markers are present to afford a measurement of offset along this and similar structures.

Transverse shears in gabbro sills trend north-northwest and dip steeply to the west. These structures are often associated with hydrothermal alteration and quartz veining.

73 Alteration and Mineralization

Two previously identified styles of mineralization were mapped in outcrop on the Fors Property. Base metal sulphide mineralization at the main showing occurs within Middle aldridofe quartzite, quartz-feldspar arenite and minor argillaceous intercalations. /Ouartz veins in metagabbro sills host less significant base metal sulphide mineralization.

Three alteration facies are present at the main showing (Figure 5): sulphide mineralization, argillization/sericitization and locally, silicification. The intensity of alteration and mineralization increases toward the main shear indicating strong structural control. Alteration boundaries do not conform to bedding planes; discordant, irregular alteration fronts are observed in the limited exposure of the main showing (Figure 5).

Argillic and sericitic alteration of the clastic rocks is common and consists of weak to complete replacement of feldspar in the matrix by white mica and clay minerals. Clay alteration is more pronounced in the argillaceous horizons. Sericite development is readily observed in the arenaceous rocks as a bleaching and attendant reduction in hardness. Relict textures are rarely retained.

Suiphide mineralization and silicification occur together and are generally restricted to the major zone of shearing or within a few metres of it. However, minor deposition of sulphides has occurred throughout the main showing map area and is characterized by a few per cent pyrite with subordinate pyrrhotite as fine disseminations ($c a .0 .5 \mathrm{~mm}$) in the matrix of arenaceous rocks.

The modal volume and number of sulphide phases increase toward the shear. Within 30 metres, pyrite locally totals 10% of the rock with an attendant increase in silicification. In the shear, the rock has been completely replaced by a mixture of quartz and sulphides. Sulphides occur as bedding parallel disseminations (1.0 millimetre or less) and replacement patches fto 1.1 centimetre) where aggregates of pyrite, pyrrhotite, sphalerite, galena and chalcopyrite, in decreasing order of abundance, may compose 20% of the rock.

Two lenses of semi-massive sulphides (30 to 40% sulphide phases) occur in the shear zone. The lenses are about 0.4 metre wide and 1.0 metre long paralleling the trend of the shear.

Elsewhere on the property, quartz vein sulphide mineralization is hosted by gabbroic sills and to a lesser extent in Aldridge units. Similar mineralization has been documented in Aldridge rocks to the north and northwest. Veins in the more competent intrusives are larger and sustainable over greater strike lengths (Hoy et al., 1985).

At least three quartz veins on the property have been worked in the past. The vein material is typically medium to coarse-grained and highly fractured with much iron and manganese staining. Often vuggy in habit, subhedral to euhedral quartz encloses clots of chlorite, iron oxides, and occasionally sulphides. In some instances, aggregates of sulphides, dominantly pyrite and sphalerite with minor chalcopyrite, measure up to 1.0 centimetre and total 5% of vein material. More often, highly pitted, weathered vein material exhibits a great deal of secondary iron and manganese oxides and occasionally copper carbonate.

8.0 GEOCHEMISTRY

8.1 Objectives

The stream sediment, soil and rock geochemistry programme had several objectives. Sampling of stream sediment was conducted to appraise the property with respect to undiscovered anomalous areas as well as determine the efficacy of drainage sediment surveys in delineating known metal anomalies. A soil geochemical orientation survey was conducted to determine the necessary information upon which to base operational procedures. Four grid areas were soil sampled to better delineate areas of known mineralization in outcrop and float. It was hoped that rock analyses would identify the types of
lithology/horizon, structures and/or alteration associated with high metal values.

82 Stream Sediments

82.1 Sample Collection, Preparation and Analysis

$\boldsymbol{A} \boldsymbol{n}$ in-house technique termed "bulk stream sediment sampling" was developed by Placer Dome exploration personnel. It is specifically designed for use in detailed and semi-detailed stream sediment geochemical surveys where metals and metal-bearing minerals that give long mechanical dispersion trains are exploration targets. This exploration technique was employed on the Fors Property. Bulk stream sediment samples were collected every 200 to 300 metres along water courses (Figure 6) from natural drop-out sites for heavy minerals in the stream channels. Examples of these sites included plunge pools, riffles and the upstream side of channel bars. Stream sediments from the selected sites were wet sieved through a 20 mesh stainless steel screen and caught in an aluminum basin. A steel shovel was used to dig the sediment. Approximately two to three kilograms of sieved sample were collected and transferred to a plastic bag to complete a sample.

Conventional silt samples were collected at each sample station to identify any hydromorphically dispersed metal anomalies. The samples weighing from 200 to 300 grams were taken from quiescent parts of the stream channel. An effort was made to collect material of the same fineness and organic content at each site. A steel trowel was used to transfer the sample to a kraft paper bag. The samples were air-dried in the bags and then shipped for analysis.

Descriptions of the sample sites for both bulk sediment and silt samples were recorded and are on file in the Placer Dome Vancouver office. Stream channels draining the Fors Property are first to fourth order streams (Figure 6). Abrading channels predominate in the drainages. Near-bank sites, channel and point bars were the most favourable locations for bulk sediment sample collection. Discharge conditions ranged from low to normal during sampling.

All stream bulk sediment and silt samples were analyzed at Placer Dome's laboratory in Vancouver. The bulk sediment samples were ovendried and sieved to produce a -150 mesh fraction. This fraction was geochemically analyzed for $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$ and As . Each bulk sediment sample was analyzed three times for gold in an attempt to address the erratic gold distribution in natural materials, i.e. the "nuggeteffect". Silt samples were oven-dried and sieved to produce a - 80 mesh fraction that was also analyzed for $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{Zn}$ and As . The extraction and analytical procedures used in the laboratory are summarized in Appendix 5.

8.2.2 Results

A list of the analytical results for the fifty-seven bulk stream sediment and silt samples is given in Appendix 2. The small number of samples precludes a statistical treatment of these data sets. Consequently only a visual inspection of the results was carried out.

Gold concentrations of less than $\mathbf{1 5}$ to 20 ppb in the bulk sediment samples are considered to be threshold and background values. Gold from 20 to 50 ppb is weakly anomalous; from 50 to 100 ppb is moderately anomalous; while values greater than 100 ppb are highly anomalous.

The triplicate gold analyses for each stream sediment bulk sample demonstrates the erratic distribution of gold in natural materials and the necessity for multiple determinations. Highly anomalous concentrations of gold were obtained in a single split from each of six bulk samples and range from 125 to 765 ppb . All five moderately anomalous values reported are from samples taken in the Little Lamb Creek drainage. Weakly anomalous values are reported for twenty-two samples.

The bulk sediments with the best gold results were collected from the lower reaches of Little Lamb Creek and just below its confluence with Lamb Creek. Two samples, 04774 and $\mathbf{0 4 7 8 6}$, from the upper reaches of Little Lamb Creek also returned highly anomalous concentrations of gold in at least one split.

Geochemical results for all other elements analyzed in the sample set are low and reflect background concentrations. Similarly, results returned from analyses of all silt samples are low and reflect background concentrations. Though one sample, FSS-53, returned a weakly anomalous value of 112 ppm for zinc.

8.2.3 Discussion and Interpretation

The 1989 stream sediment sampling programme delineated no base metal anomalies in either silt or bulk sediment samples. The moderate to highly anomalous gold values returned by several bulk sediment samples are the only results of interest.

The majority of the highly anomolous gold values are from sample sites on the lower reaches of Little Lamb Creek and below its confluence with Lamb Creek. Examination of their distribution reveals no clear pattern suggestive of upstream cut-offs for anomalous samples. These results probably do not indicate the presence of multiple "gold-only"input sources in the surface drainage. They more likely reflect inconsistencies in the quality of the sample sites or the naturally erratic gold distribution in the sample material. Consequently, it is suspected that a single source is responsible for these anomalies. There are no assemblages of associated elements that may help to indicate the nature of the parent source.

83 Soils

83.1 Sample Collection, Preparation and Analysis

A total of 554 soil samples were taken over four small grid areas (Figure 6). Closely spaced samples were collected over the Main Showing to establish the extent of the known mineralization. The three other soil rids were laid out to cover areas where sulphide-bearing float had been found. The grids were oriented in such a way as to take into account direction of glacial advance, fluvioglacial runoff and local slope direction.

The Main Showing Grid consists of 8 lines of 400 metres spaced 40 metres apart. Sample stations are every $\mathbf{2 0}$ metres for a total of $\mathbf{1 6 0}$ sites. The Boulder Grid is 5 contour traverses of $\mathbf{1 2}$ stations spaced every 40 metres. The traverses are approximately $\mathbf{1 0 0}$ metres apart. A total of 60 sites were sampled. Little Lamb Creek Grid is located in the northeast comer of the property and consists of $\mathbf{1 0}$ lines spaced 100 apart. Each line is 1,000 metres long with sample spacings of 40 metres for a total of $\mathbf{2 5 0}$ samples. The smaller Gold Hill Creek Grid is located in the southwest comer of the property. A total of 84 samples were taken, one every 40 metres along 7 lines 500 metres in length. The line spacing is $\mathbf{1 0 0}$ metres.

A steel mattock, plastic spoon and kraft paper bag were used to obtain and package the samples. ' B ' horizon soil was collected from most sites. Sample depths ranged from $\mathbf{1 0 . 0}$ to 50.0 centimetres and average $\mathbf{1 5 . 0}$ to $\mathbf{2 0 . 0}$ centimetres. Notes on the nature of the soil material taken and on site conditions were recorded in the field and used in the interpretation of geochemical data. The notes are on file at the Placer Dome office in Vancouver.

The soil samples were forwarded to the Placer Dome laboratory in Vancouver where they were oven dried and sieved to produce a - 80 mesh fraction. A sub-sample was weighed for geochemical analysis. Each sample was analyzed for $\mathrm{Au}, \mathrm{Ag}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Pb}$ and As . The digestion and detection techniques used for each element are given in Appendix 5.

832 OrientationSurvey

An orientation survey was completed to determine the character of geochemical dispersion in soils related to mineralization on the Fors Property. The objectives of the survey included: 1)define background and anomalous geochemical responses; 2) define optimum survey procedures; and 3) identify factors that influence dispersion and are thus criteria for the interpretation of survey results.

The survey consisted of 197 samples taken at 53 stations spaced 20 metres apart along a chained line 1,060 metres in length. The survey line traversed the Main Showing mineralization and was continued well beyond the mineralization to adequately define background conditions.

Soils on the Fors Property are generally well drained and moderately well developed. Typical soil profiles encountered included the $A, B_{1}, B 2$, and B_{3} / C horizons. Results from the orientation survey indicate analyses of Pb and to lesser degrees Zn and As in B horizon material best trace mineralization in bedrock. The B horizon, the zone of mineral accumulation, is transitional to the underlying soil parent material. In typical soil profiles on the Fors Property, the B horizon is of variable thickness and grey-brown to orange-brown in colour.

The soils have developed on a variety of farent materials including weathered bedrock, glacial till and colluvium. In areas of greater relief, bedrock is the principal substrate, while transported overburden dominates in valleys and on shallower slopes. Glacial till is recognized by poorly sorted sub-rounded to rounded clasts of varied lithology. In contrast, soil developed in situ and from down-slope mass-wasting of bedrock is recognızed by a degree of lithological uniformity, grain size composition and by the angularity of the clasts.

833 Results

A list of the analytical results for the soil samples is given in Appendix 3. Plots for $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{As}, \mathrm{Ag}$ and Au in soils for the four grids are presented in Figures 7 to 18.

Only soils from the main showing area returned significant metal concentrations. Results from the Boulder Grid, Little Lamb Creek Grid and the Goldhill Creek Grid are of background to weakly anomalous concentrations for all elements analyzed and will not be discussed further.

Limited statistical analyses were performed on the data. Lead (Figure 7 a), zinc (Figure 7 b) and arsenic (Figure 8b) data from the Main Showing Grid provide the only useful statistical populations. A single coherent anomaly for each of the three elements can be identified.

The lead, zinc and arsenic anomalies are approximately coincident. The anomalies are roughly centred on the Main Showing, trend northeastsouthwest and are oriented at an oblique angle to the slope. They vary little in length along their trend; the lead anomaly is about 350 metres long and the zinc and arsenic anomalies are both approximately 300
metres in length. The anomalies are approximately 100 metres across at their widest points representing from three to four adjacent sites of anomalous to highly anomalous values. Metal concentrationsrange from 200 to $\mathbf{9 6 0} \mathrm{ppm} \mathbf{Z n}, \mathbf{1 0 0}$ to $\mathbf{6 6 0} \mathrm{ppm} \mathrm{Pb}$ and $\mathbf{5 0}$ to $\mathbf{1 6 0} \mathrm{ppm}$ As. In each case, the anomalies are open to the northeast and, to a lesser extent, the southwest. At the northern end of the grid, the zinc anomaly extends downslope approximately $\mathbf{1 5 0}$ metres and is open to the east.

A second, weaker, zinc anomaly located in the southeast part of the grid is open to the east as well. This anomaly is small, roughly 50 by 100 metres, and dominated by two isolated, highly anomalous samples ($\mathbf{5 2 0}$ and $\mathbf{5 8 0} \mathrm{ppm}$). At its widest, the anomaly consists of eight adjacent anomalous sites.

In addition to the anomalies described above, there are a few isolated one to two-sample occurrences of anomalous to highly anomalous values in lead, zinc and arsenic.

83.4 Discussion and Interpretation

The zinc, lead and arsenic anomalies of the Main Showing Grid are adjacent to and slightly downslope from Main Showing sulphide mineralization (Figures 7a, 7b, 8b). The pattern of the soil anomalies parallels the northeast strike of the mineralized shear and appears to trace unexposed mineralization along strike. The downslope extension of the anomalies is likely attributable to mechanical dispersion of mineralized material. Hydromorphic processes probably account for the greater dispersion of zinc downslope in the surface environment.

The smaller zinc anomaly and the few spot anomalies are likely attributable to the presence of isolated mineralized float. These anomalies are not considered important exploration targets.

8.4 Rocks

8.4.1 Sample Collection, Preparation and Analysis

All rock samples submitted for analysis during the 1989 exploration programme were grab or composite samples of representative lithology, alteration or mineralization. The rock samples were sent to the Placer Dome Inc. laboratory in Vancouver for analysis. The samples were crushed and fulverized; a sub-sample was weighed, digested and analyzed geochemically for $\mathrm{Pb}, \mathrm{Zn}, \mathrm{Cu}, \mathrm{As}, \mathrm{Ag}$ and Au . Several samples of mineralization from the main showing were also analyzed for Sb . Extraction and detection techniques used by the laboratory are summarized in Appendix 5.

8.42 Results

The geochemical results for the rock samples are listed in Appendix 4. A statistical analysis of the data was not carried out. Figure 4 shows the locations of the rock samples on a property scale while Figure 5 shows rock sample locations at the main showing. The element analyses are not plotted on the maps.

A total of $\mathbf{1 1 0}$ rock samples were submitted for analyses. Eleven samples returned anomalous to highly anomalous base metal concentrations. Seven grab samples of mineralization at the Main Showing returned values enriched in silver, lead, zinc, arsenic and antimony. The ranges of values for these samples are as follows: $\mathbf{1 5}$ to $\mathbf{1 3 0} \mathrm{ppm} \mathrm{Ag} ; \mathbf{0 . 4 1}$ to $\mathbf{4 . 2 \%} \mathrm{Pb} ; \mathbf{2 1 0 0} \mathrm{ppm}$ to $\mathbf{7 . 1 \%} \mathrm{Zn} ; \mathbf{4 6 0} \mathrm{ppm}$ to $\mathbf{0 . 9 0 \%} \mathrm{As}$; and $\mathbf{2 4 0} \mathrm{ppm}$ to $\mathbf{1 . 4 5 \%} \mathrm{Sb}$. Similarly enriched values were returned by two samples of a large float boulder ($\mathbf{5 3 0 9 5}$ and 53096; Boulder Grid) west of the Main Showing. A small float boulder of mineralized quartz arenite near the eastern boundary of the property (76022) returned values of 1.5 pprn Ag , 240 pprn Pb and $\mathbf{0 . 4 0 \%} \mathrm{Zn}$. A grab sample (53056) of quartz vein sulphide mineralizationjust off the property to the east returned $\mathbf{0 . 5 8 \%} \mathrm{Pb}$ and $\mathbf{4 . 2}$ ppm Ag.

A number of float boulders of quartz-wacke and quartz arenite found on the property contain minor sulphide mineralization, usually as fine-grained iron sulphides. These samples are only weakly enriched in base metals.

Several samples of quartz veining in gabbro and quartz vein float with minor disseminated pyrite and chalcopyrite have elevated concentrations of copper that range up to 960 ppm . These samples (53062, $53063,53064,53068$ and 53071) are from the vicinity of old exploratory trenches in the southern part of the property.

8.43 Discussion and Interpretation

The best results returned are from the sulphide mineralization at the Main Showing and from quartz-wacke and quartz arenite float boulders that contain similar sulphide mineralization. The surface mineralization at the Main Showing is limited and traceable to the zone of shearing that crosscuts bedding at a shallow angle.

A bedrock source was not traced for the samples of weakly mineralized float that are similar in lithology to the Aldridge units exposed on the property. Many of these samples are moderately to wellrounded, indicating possible transport fron outside the claims.

Other minor base metal values are from the irregular sulphide mineralization associated with quartz veins in metagabbro dykes.

9.0 STATEMENT OF EXPENDITURES

The following field expenditures were incurred by Placer Dome Inc. to conduct geochemical and geological surveys on the Fors Property during the period of May 16to July 15,1989 .

Personnel Costs

G. Shevchenko (Senior Geologist)
 May 16-18/89; 2 days $x \$ 375$

750.00
M.B. Gareau (Senior Geologist/Geochemist)
June 22
89;
1 day $\times \$ 375$
P.J. Maheux (Project Geologist)

May 16-July $15 / 89 ; 61$ days $x \$ 334 \quad 20,374.00$
B. Madu (Geologist)

May 16 -July $15 / 89 ; 61$ days $x \$ 244 \quad 14,884.00$
B. Veilleux (Field Assistant)

May 16-July 15/89;61 days $\mathbf{x} \$ 192 \quad 11,712.00$
B. Leong (Field Assistant)

May 16-July 15/89; 61 days $\mathbf{x} \$ 167$
10,187.00
Analytical Costs ($\mathrm{CuPb}, \mathrm{Zn}, \mathrm{Au}, \mathrm{Ag}, \mathrm{As})(\mathrm{Sb})$
Soils $698 \times \$ 17.75$
12,389.50
$53 \times \$ 12.50$
662.50

Rocks $110 \mathrm{x} \$ 20.25$
2,227.50
Stream $57 \mathbf{x} \$ 21.75 \quad 1,239.75$
Silt $58 \mathbf{x} \$ 17.75$
1,029.50

camp operations

Accommodation at Green Bay - 54 days 3,541.32
Accommodation at Cranbrook - 7 days $\quad 880.00$
Meals $\mathbf{- 6 1}$ days \mathbf{x} persons $\mathbf{x} \$ 24 /$ person/day $\quad 5,856.00$

Vehicle Expense

Rental-3/4 ton 4×4 P/U @ $\$ 45 /$ day $\times 61$,745.00
3/4 ton 4 x 4 wagon @ $\$ 57 /$ day $\times 61,477.00$
$\begin{array}{lr}\text { Repairs } & 258.44 \\ \text { Fuel } & 2,453.97\end{array}$
Peport Preparation
P. Maheux 15 days $x \$ 334 \quad 5,010.00$
M.Gareau 3 days $\mathbf{x} \$ 360 \quad 1,080.00$

Typist 2 days $\mathbf{x} \$ 105$
210.00

Drafting 5 days
1,156.00
Miscellaneous
Telephone and Teletype 408.52
Freight $\quad 271.00$
Supply Purchase $\quad 5,810.71$
Map Production
200.00

Report Production 100.00

10.0 CONCLUSION

The 1989 exploration programme on the Fors Property failed to find evidence of previously unknown base metal mineralization. Surface mineralization at the Main Showing appears to be structurally controlled and is not economic.

Respectfully submitted by,

P.J.Maheux

11.0 REFERENCES

Hamilton, J.M., Bishop, D.T., Morris, H.C. and Owens, O.E., 1982, Geology of the Sullivan Orebody, Kimberley, B.C., Canada: in Hutchinson, R.W., Spence, C.D. and Franklin, J.M., eds., Precambrian Sulphide Deposits, H.S. Robinson Memorial Volume, Geological Association of Canada, Special Paper 25, p. 597665.

Hoy, T., 1982, The Purcell Supergroup in Southeastern British Columbia: Sedimentation, Tectonics and Stratiform Lead-Zinc Deposits: in Hutchinson, R.W., Spence, C.D. and Franklin, J.M., eds., Precambrian Sulphide Deposits, H.S. Robinson Memorial Volume, Geological Association of Canada, Special Paper 25, p. 127-147.

Hoy, T., Berg, N., Fyles, J.T., Delaney, G.D., McMurdo, D. and Ransom, P.W., 1985, Stratabound Base Metal Deposits in Southeastern British Columbia: in Tempelman-Kluit, D., ed., Field Guides to Geology and Mineral Deposits in the Southern Canadian Cordillera, Geological Society of America Cordilleran Section Meeting, Vancouver, B.C., May, 1985, p. 11-1 to 11-32.

Hoy, T., Diakow, L and Chicorelli, P., 1980, Geology of the Moyie Lake Area: British Columbia Ministry of Energy, Mines and Petroleum Resources, Preliminary Map No. 49.

Richardson, J. and Gifford, B., 1967?, Assessment Report on the Fors Property: Cominco Ltd., unpublished company report, 5 p.

Webber, G.L., 1978, Geological Report, Vine Property, N.T.S. 82G/5: Cominco Ltd., Kootenay Exploration, unpublished company report, $\mathbf{1 4} \mathrm{p}$.

APPENDIX 1

STATEMENT OF QUALIFICATIONS

STATEMENTOF QUALIFICATIONS:

I, Pierre J. Maheux, of the City of Vancouver, British Columbia, do hereby certify that:

1. I am a geologist.
2. I am a graduate of Queen's University at Kingston, Ontario where I received a Bachelor of Science degree (Honours, Specialization) in geology dated October, 1983.
3. I am a graduate of The University of Alberta at Edmonton, Alberta where I received a Master of Science degree in geology dated June, 1989.
4. I am a member in good standing of the Geological Association of Canada, The Geological Society of America, The Society of Economic Geologists, The Geochemical Society, The Canadian Institute of Mining and Metallurgy and The Prospectors and Developers Association of Canada.
5. I have been engaged in the study of, and exploration for mineral deposits throughout Canada on a full or part-time basis since 1980.
6. I supervised and participated in the 1989 field programme on the Fors Property. I evaluated the results of this work and wrote this report.

Pierre J. Maheux

APPENDIX2

STREAM SEDIMENT SAMPLE ANALYTICAL RESULTS

SAMEJ	AG	AS	AU1	cu	PB	ZN
	PPM	PPM	PPB	PPM	PPM	PPM
FSS01	<0.2	<2	<5	9	11	40
FSS02	<0.2	4	10	14	14	40
FSSO3	<0.2	2	<5	13	14	42
FSSO4	<0.2	6	25	14	13	35
FSSO5	<0.2	<2	20	13	13	37
FSS06	<0.2	3	10	14	13	35
FSS 07	<0.2	<2	20	16	13	34
FSS08	<0.2	<2	5	16	12	32
FSS09	<0.2	<2	5	15	13	34
FSS10	<0.2	3	<5	16	13	35
FSS11	<0. 2	6	<5	18	12	34
FSS12	<0.2	2	<5	19	12	37
FSS13	0.3	3	<5	27	33	80
FSS 14	<0.2	4	<5	21	28	68
FSS15	<0.2	5	<5	16	19	60
FSS16	<0.2	4	<5	16	21	63
FSS17	<0.2	4	<5	18	23	70
FSS17*	<0.2	3	<5	18	23	72
FSS 18	<0.2	<2	5	10	17	45
FSS19	<0.2	2	<5	17	27	76
FSS20	<0.2	5	<5	18	25	71
FSS 21	<0.2	<2	<5	15	19	53
FSS 22	<0.2	<2	5	12	16	51
FSS23	0.4	<2	10	12	20	51
FSS24	<0.2	<2	<5	10	17	40
FSS25	<0.2	<2	5	13	21	70
FSS26	<0.2	<2	<5	6	11	34
FSS26*	<0.2	<2	<5	6	11	33
FSS 27	<0.2	<2	<5	11	21	53
FSS 28	<0.2	2	<5	9	12	40
FSS 29	<0.2	<2	<5	10	16	48
FSS30	<0.2	<2	<5	8	14	40
FSS31	<0.2	<2	<5	8	13	43
FSS 32	<0.2	<2	<5	7	13	37
FSS33	<0.2	<2	<5	7	14	42
FSS 34	<0.2	<2	<5	8	14	42
FSS 35	<0.2	<2	<5	8	14	53
FSS 36	<0.2	2	<5	7	12	42
FSS 37	<0.2	<2	<5	6	12	36
FSS 38	<0.2	3	<5	11	15	42
FSS39	<0.2	5	<5	13	16	44
FSS40	<0.2	3	<5	11	14	38
FSS 41	<0.2	<2	<5	12	13	45
FSS 42	<0.2	3	<5	15	17	58
FSS43	<0.2	5	<5	11	14	40
FSS44	<0.2	2	<5	11	14	42
FSS44*	<0.2	<2	<5	12	14	45
FSS45	<0.2	2	<5	10	12	30
FSS46	<0.2	3	<5	9	13	37
FSS47	<0.2	5	<5	10	12	33
FSS 48	<0.2	2	<5	13	60	30
FSS49	<0.2	7	<5	10	10	28
FSS50	<0.2	2	<5	10	10	27
FSS51	<0.2	4	<5	22	28	83
FSS52	<0.2	5	<5	24	30	95
FSS53	0.2	6	<5	38	37	112
FSS53*	0.2	6	<5	37	36	108
FSS54	0.3	<2	25	31	27	81
FSS55	0.2	<2	<5	24	19	54
FSS56	0.5	8	<5	57	50	92
FSS 57	0.4	<2	25	43	42	87

FSS57* $0.4 \quad 2 \quad 31 \quad 43 \quad 41 \quad 86$
$\begin{array}{lllllll}\text { FSS58B } & 0.2 & <2 & 15 & 20 & 22 & 62 \\ \text { ESS58B } & 0.3 & <2 & 10 & 20 & 22 & 60\end{array}$

SAMP	Ag	AS	AU-A	$A U-B$	AU1	cu	PB	2N
	PPM	PPM	PPB	PPB	PPB	PPM	PPM	PPM
04753	<0.2	3	25	< 5	< 5	13	17	61
04754	<0.2	<2	<	<	<5	18	20	54
04755	<0.2	4	<5	15	10	18	22	58
04756	<0.2	2	5	5	20	22	20	59
04757	<0.2	2	<5	<5	5	20	21	55
04758	<0.2	<2	<5	50	15	23	20	58
04759	<0.2	<2	20	10	15	22	20	55
04760	<0.2	2	15	<5	<5	24	16	47
04761	<0.2	<2	10	5	10	29	22	56
04761*	<0.2	<2	<5	15	NSS	29	23	60
04762	<0.2	<2	10	5	<	25	20	53
04763	<0.2	<2	5	5	5	24	19	47
04764	<0.2	<2	10	5	<5	21	17	40
04765	<0.2	3	10	5	10	20	31	72
04766	<0.2	<2	10	< 5	25	15	18	53
04767	<0.2	5	<	<5	<5	23	25	62
04768	<0.2	<2	5	<5	10	19	25	68
04769	<0.2	<2	5	NSS	<	15	20	58
04770	<0.2	3	25	<	<5	10	20	55
04772	0.2	4	35	NSS	55	18	25	70
04773	<0.2	4	50	15	<5	15	21	59
04774	<0.2	<2	<5	< 5	170	9	12	42
04775	0.3	2	<5	16	40	9	14	53
04776	<0.2	<2	15	<5	30	11	19	53
04777	0.5	<2	10	25	40	10	16	54
04778	<0.2	<2	35	<5	25	9	12	38
04779	<0.2	2	20	<5	30	8	15	40
04780	0.6	4	40	40	5	12	24	46
04781	<0.2	<2	15	NSS	<5	10	14	42
04782	<0.2	4	20	<	10	8	11	33
04783	<0.2	3	10	<5	5	6	10	28
04784	0.3	2	40	10	40	7	12	36
04785	<0.2	<2	30	< 5	<	8	12	37
04786	<0.2	2	125	5	<5	7	11	35
04787	<0.2	<2	50	<5	<5	11	16	64
04788	<0.2	<2	19	NSS	<	9	16	45
04788*	<0.2	<2	NSS	NSS	<5	9	16	41
04789	0.2	2	<5	<	<	12	18	44
04790	<0.2	<2	20	<5	<5	15	18	52
04791	<0.2	<2	45	<5	20	15	17	45
04792	<0.2	<2	60	15	<5	14	17	45
04793	<0.2	<2	35	30	<5	11	14	36
04794	0.3	<2	25	<5	100	12	15	35
04795	<0.2	<2	NSS	<5	20	10	14	34
04796	0.2	<2	30	<5	25	13	13	34
04797	<0.2	<2	30	<5	550	16	18	60
04797*	<0.2	<2	10	<5	30	16	19	55
04798	1.3	<2	50	170	80	14	16	38
04799	0.3	<2	<5	30	185	14	16	40
04800	0.2	4	<5	<5	30	13	21	54
04826	<0.2	7	15	<5	20	17	25	52
04827	<0.2	3	<5	<5	<5	15	14	40
04828	<0.2	<2	765	<5	<5	14	19	33
04829	<0.2	2	10	<5	20	19	23	73
04830	0.3	4	15	10	45	24	31	86
04831	0.4	7	<	NSS	40	27	28	81
04831*	0.5	4	13	NSS	35	27	29	81
04832	<0.2	<2	45	<5	5	20	26	61
04833	<0.2	<2	40	10	5	16	14	60
04834	2.5	<2	NSS	100	100	39	47	54
04835	1.6	<2	100	65	75	13	15	54

APPENDIX3

SOIL SAMPLE ANALYTICAL RESULTS

SAMP	SMP2	$\begin{array}{r} \mathrm{AG} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { AS } \\ \text { PPM } \end{array}$	$\begin{aligned} & \text { AU1 } \\ & \text { PPB } \end{aligned}$	$\underset{\mathrm{PPM}}{\mathrm{Cu}}$	$\begin{array}{r} \mathrm{PB} \\ \mathrm{PPM} \end{array}$	$\begin{array}{r} \text { ZN } \\ \text { PPM } \end{array}$
	PM1189	<0.2	3	30	12	12	56
FSC	A1	<0.2	2	40	22	19	105
FSC	A2	<0.2	2	30	16	20	138
FSC	A 3	<0.2	2	25	18	16	87
FSC	A4	<0.2	3	<5	23	21	112
FSC	A 5	<0.2	5	<5	15	14	83
FSC	A6	<0.2	<2	<5	16	14	140
FSC	A7	<0.2	<2	<5	8	9	37
FSC	A8	<0.2	6	<5	14	23	82
FSC	A9	<0.2	5	<5	14	16	60
FSC	A10	<0.2	3	<5	18	15	72
FSC	A 11	<0.2	3	<5	14	11	102
FSC	A12	<0.2	<2	<5	20	14	122
FSC	B1	<0.2	3	<5	14	12	62
FSC	B2	<0.2	3	<5	16	30	192
FSC	B3	<0.2	<2	<5	12	21	118
FSC	B4	<0.2	5	<5	31	36	118
FSC	B5	0.2	5	15	17	28	142
FSC	B5*	0.3	3	10	17	28	140
FSC	B6	<0.2	10	15	16	22	112
FSC	B7	<0.2	5	15	17	27	140
FSC	B8	<0.2	2	25	10	13	103
FSC	B9	<0.2	<2	25	8	11	35
FSC	B10	<0.2	<2	25	19	18	83
FSC	B11	<0.2	4	45	10	12	84
FSC	B12	<0.2	8	30	10	11	54
FSC	C1	<0.2	11	15	19	30	136
FSC	c2	<0.2	7	<5	18	36	84
FSC	c2*	<0.2	9	15	17	36	83
FSC	c3	0.3	44	<5	23	121	234
FSC	c4	<0.2	8	<5	10	23	80
FSC	c5	0.2	39	<5	15	140	193
FSC	C6	<0.2	11	<5	15	32	73
FSC	c7	<0.2	5	<5	14	15	64
FSC	C8	<0.2	3	<5	14	17	90
FSC	C9	<0.2	7	< 5	13	16	100
FSC	C10	<0.2	<2	<5	11	11	67
FSC	C11	<0.2	<2	<5	8	11	46
FSC	C11*	<0.2	<2	<5	7	10	45
FSC	c 12	0.2	<2	<5	21	14	101
FSC	D1	<0.2	<2	<5	11	13	107
FSC	D2	<0.2	6	<5	13	20	146
FSC	D3	<0.2	8	<5	16	33	140
FSC	D4	0.2	22	20	11	142	185
FSC	D 5	<0.2	<2	<5	16	15	120
FSC	D6	<0.2	<2	<5	18	18	83
FSC	D7	<0.2	2	10	17	15	92
FSC	D8	0.2	4	< 5	19	18	82
FSC	D8*	0.2	6	5	19	18	80
FSC	D9	0.2	5	10	26	21	136
FSC	D10	0.2	<2	<5	16	12	130
FSC	D11	<0.2	3	<5	18	16	110
FSC	D12	<0.2	<2	5	19	15	128
FSC	E 1	<0.2	5	<5	22	17	133
FSC	E2	<0.2	6	<5	21	12	118
FSC	E3	<0.2	3	<5	15	14	103
FSC	E4	<0.2	2	< 5	13	14	104
FSC	E5	<0.2	3	<5	17	17	117
FSC	E5*	<0.2	5	<5	17	17	118
FSC	E6	<0.2	2	<5	17	16	86
FSC	E7	<0.2	4	<5	19	15	80

FSC	E8	<0.2	5	<5	11	17	42
FSC	E9	<0.2	15	<5	9	12	40
FSC	E10	<0.2	<2	<5	14	12	66
FSC	E11	<0.2	4	10	16	13	120
FSC	E12	<0.2	2	10	16	12	70
FSC	F1	<0.2	<2	10	12	14	50
FSC	F2	0.2	3	10	18	16	65
FSC	F2*	0.2	4	10	17	17	66
FSC	53	<0.2	<2	5	13	17	68
FSC	F4	<0.2	<2	10	12	14	48
FSC	F5	<0.2	<2	<5	10	11	43
FSC	F6	<0.2	<2	<5	10	14	51
FSC	F7	<0.2	<2	10	8	16	48
FSC	F8	<0.2	<2	<5	9	15	50
FSC	$F 9$	<0.2	<2	5	10	15	52
FSC	F10	0.2	9	<5	33	32	76
FSC	F11	<0.2	<2	15	13	16	45
FSC	F12	<0.2	<2	5	15	25	56
FSC	F13	<0.2	2	<5	14	19	58
FSC	F14	<0.2	2	<5	11	15	46
FSC	F15	<0.2	<2	<5	12	17	51
FSC	F16	<0.2	2	<5	10	13	33
FSC	F17	<0.2	<2	<5	10	19	52
FSC	F18	<0.2	3	<5	18	23	57
FSC	F19	<0.2	2	<5	12	15	48
FSC	F20	<0.2	3	<5	11	13	51
FSC	F20*	<0.2	2	<5	11	14	50
FSC	F21	<0.2	<2	<5	11	14	40
FSC	F22	<0.2	4	<5	18	19	63
FSC	F23	<0.2	<2	< 5	14	12	41
FSC	F24	<0.2	<2	<5	22	23	77
FSC	F25	<0.2	<2	<5	11	12	38
FSC	G1	<0.2	<2	105	14	16	65
FSC	G2	<0.2	3	<5	14	18	92
FSC	G3	<0.2	3	<5	17	16	75
FSC	G4	<0.2	<2	<5	22	19	58
FSC	G5	<0.2	<2	<5	10	11	36
FSC	G6	<0.2	4	<5	13	18	60
FSC	G7	<0.2	3	<5	16	19	63
FSC	G8	<0.2	<2	<5	10	17	58
FSC	G9	<0.2	<2	<5	11	16	52
FSC	G10	<0.2	4	<5	17	22	97
FSC	G11	<0.2	3	<5	17	23	52
FSC	G12	<0.2	6	30	7	11	33
FSC	G13	<0.2	<2	15	8	15	43
FSC	G13*	<0.2	2	25	7	15	43
FSC	G14	<0.2	<2	5	8	11	34
FSC	G15	<0.2	3	<5	10	12	33
FSC	G16	<0.2	3	<5	9	11	30
FSC	G17	<0.2	3	<5	8	10	33
FSC	G18	<0.2	<2	<5	12	10	37
FSC	G19	<0.2	2	<5	10	11	41
FSC	G20	<0.2	<2	<5	13	14	52
FSC	G21	<0.2	2	<5	18	18	80
FSC	G22	<0.2	<2	<5	15	14	66
FSC	G22*	<0.2	2	<5	15	15	69
FSC	G23	<0.2	2	<5	9	9	32
FSC	G24	<0.2	<2	<5	8	9	38
FSC	G25	<0.2	2	10	10	12	36
FSC	H1	<0.2	2	<5	11	14	44
FSC	H2	<0.2	<2	25	11	14	45
FSC	H3	<0.2	2	15	11	13	40
FSC	H4	<0.2	5	30		11	46
FSC	H5	<0.2	4	<5	8	11	33
FSC	H6	<0.2	3	<5	8	11	38
FSC	H6*	<0.2	<2	<5	8	12	37

FSC	H7	<0.2	<2	<5	9	12	39
FSC	H8	<0.2	<2	<5	9	12	39
FSC	H9	<0.2	<2	<5	10	12	41
FSC	H10	<0.2	<2	<5	9	13	44
FSC	H11	0.3	8	<5	31	32	82
FSC	H12	<0.2	2	<5	13	23	71
FSC	H13	<0.2	2	<5	8	16	37
FSC	H14	0.2	4	<5	9	11	32
FSC	415	<0.2	3	<5	10	13	40
FSC	H15*	<0.2	2	<5	10	13	40
FSC	H16	<0.2	<2	<5	9	10	33
FSC	H17	<0.2	<2	<5	8	11	40
FSC	H18	<0.2	3	<5	14	14	81
FSC	H19	<0.2	<2	<5	13	13	80
FSC	H20	<0.2	3	10	11	12	44
FSC	H21	<0.2	3	<5	10	12	71
FSC	H22	<0.2	<2	15	9	12	51
FSC	H23	<0.2	<2	10	12	15	63
FSC	H24	<0.2	<2	<5	13	15	59
FSC	H25	<0.2	<2	15	18	24	70
FSC	I1	<0.2	<2	<5	16	16	60
FSC	I2	<0.2	2	< 5	10	13	46
FSC	13	<0.2	3	<5	14	20	60
FSC	I4	<0.2	3	<5	17	23	72
FSC	I5	<0.2	4	<5	15	22	65
FSC	16	<0.2	2	<5	13	19	51
FSC	I7	<0.2	<2	<5	14	20	56
FSC	I8	<0.2	<2	< 5	11	20	46
FSC	18*	<0.2	<2	<5	10	18	44
FSC	I9	<0.2	<2	<5	13	24	56
FSC	I10	<0.2	<2	<5	12	22	64
FSC	111	<0.2	<2	<5	13	21	50
FSC	I12	<0.2	2	<5	16	21	43
FSC	I13	<0.2	4	<5	20	22	51
FSC	I14	<0.2	3	<5	12	15	64
FSC	I15	<0.2	<2	<5	9	14	52
FSC	I15*	<0.2	<2	<5	9	16	51
FSC	I16	<0.2	3	<5	10	14	45
FSC	117	<0.2	4	<5	16	23	78
FSC	118	<0.2	<2	<5	14	20	55
FSC	119	<0.2	<2	<5	13	12	61
FSC	I20	<0.2	<2	5	10	15	81
FSC	I21	<0.2	<2	<5	11	13	54
FSC	I22	<0.2	<2	10	13	10	51
FSC	I23	<0.2	<2	<5	12	10	42
FSC	I24	<0.2	3	< 5	11	8	36
FSC	I25	<0.2	<2	<5	14	12	48
FSC	J1	<0.2	<2	25	22	16	61
FSC	52	<0.2	<2	<5	17	18	83
FSC	J2*	<0.2	<2	<5	18	20	88
FSC	53	<0.2	2	<5	18	17	58
FSC	54	<0.2	<2	<5	13	15	70
FSC	55	<0.2	<2	<5	11	13	47
FSC	J6	<0.2	<2	< 5	11	13	45
FSC	57	<0.2	4	<	16	20	86
FSC	58	<0.2	<2	<5	11	13	43
FSC	J9	<0.2	5	<5	9	14	44
FSC	J10	<0.2	6	<5	21	32	100
FSC	J11	<0.2	<2	<5	9	14	47
FSC	J11*	<0.2	<2	<5	8	14	47
FSC	512	<0.2	3	30	11	13	43
FSC	513	<0.2	<2	<5	11	18	34
FSC	514	<0.2	3	<5	8	14	58
FSC	515	<0.2	4	< 5	11	12	44
FSC	516	<0.2	<2	<5	10	13	40
FSC	517	<0.2	<2	<5	16	17	48

FSC	J18	<0.2	<2	<5	16	18	73
FSC	J19	<0.2	<2	<5	16	15	118
FSC	J20	<0.2	<2	<5	11	14	100
FSC	J20*	<0.2	<2	<5	11	14	100
FSC	J21	<0.2	<2	<5	10	12	53
FSC	J22	<0.2	<2	<5	17	17	94
FSC	523	<0.2	<2	<	13	13	85
FSC	J24	<0.2	<2	<5	14	12	56
FSC	J25	<0.2	<2	<5	16	11	87
FSC	K1	<0.2	<2	<5	12	14	75
FSC	K2	<0.2	2	<5	19	20	120
FSC	K3	<0.2	<2	<5	14	21	80
FSC	K4	<0.2	2	<5	18	23	95
FSC	K4*	<0.2	2	<5	17	22	94
FSC	K5	<0.2	<2	10	10	15	46
FSC	K6	<0.2	3	20	18	31	100
FSC	K7	0.2	4	25	20	26	110
FSC	K8	0.3	4	10	25	30	112
FSC	K9	0.3	<2	<5	27	31	106
FSC	K11	0.2	3	<5	18	32	91
FSC	K12	<0.2	<2	<5	15	27	83
FSC	K13	0.3	<2	<5	24	33	60
FSC	K14	<0.2	<2	< 5	10	15	44
FSC	K14*	<0.2	2	<5	9	15	40
FSC	K15	0.2	3	<5	23	25	77
FSC	K16	0.2	4	<5	17	25	68
FSC	K17	<0.2	<2	<5	15	21	71
FSC	K18	<0.2	<2	10	9	14	58
FSC	K20	<0.2	<2	10	12	16	102
FSC	K21	0.2	<2	c5	11	15	70
FSC	K22	<0.2	<2	10	13	13	111
FSC	K23	<0.2	2	<5	11	17	67
FSC	K24	<0.2	<2	<5	22	13	45
FSC	K24*	<0.2	<2	< 5	22	12	41
FSC	K25	<0.2	<2	5	18	13	62
FSC	L1	<0.2	5	5	15	14	90
FSC	L2	<0.2	2	5	10	14	82
FSC	L3	0.2	<2	<5	11	14	68
FSC	L4	0.2	3	<5	19	17	95
FSC	L5	0.3	4	<5	18	22	100
FSC	L6	<0.2	3	< 5	13	24	124
FSC	L7	<0.2	<2	<5	12	25	127
FSC	L8	0.2	<2	< 5	11	16	105
FSC	L9	<0.2	2	< 5	13	14	84
FSC	L10	<0.2	<2	<5	14	15	59
FSC	L11	0.2	<2	10	23	27	108
FSC	L12	0.3	<2	<5	27	42	97
FSC	L13	0.2	<2	<5	17	25	71
FSC	L14	0.2	<2	<5	10	21	45
FSC	L15	0.2	<2	< 5	25	25	60
FSC	L16	0.2	<2	< 5	24	26	71
FSC	L17*	0.6	<2	< 5	27	27	124
FSC	L17*	0.5	<2	<5	29	29	128
FSC	L18	0.3	3	< 5	18	26	124
FSC	L19	<0.2	<2	5	10	15	66
FSC	L20	0.2	<2	<5	9	22	122
FSC	L21	0.3	<2	< 5	9	13	86
FSC	L22	0.2	<2	< 5	11	11	105
FSC	L23	0.3	2	<5	11	22	76
FSC	L24	0.2	<2	<	20	18	75
FSC	L25	0.2	3	<	12	15	56
FSC	M1	0.3	<2	<5	16	14	96
FSC	M2	<0.2	<2	<5	14	17	87
FSC	M3	<0.2	<2	<5	7	15	103
FSC	M4	0.2	<2	< 5	9	15	92
FSC	M5	<0.2	<2	<5	11	17	101

ウゅか N 																																			

FSC	T4	<0.2	2	< 5	15	14	25
FSC	T5	<0.2	6	< 5	31	17	50
FSC	T6	<0.2	5	<5	17	13	37
FSC	T7	<0.2	<2	<5	12	12	23
FSC	T7*	<0.2	3	<5	11	12	22
FSC	T8	0.6	2	<5	78	32	79
FSC	T9	<0.2	3	<5	15	16	35
FSC	T10	0.5	3	<5	38	32	82
FSC	T11	<0.2	<2	<5	21	12	39
FSC	T12	0.4	5	<5	50	28	120
FSC	U1	0.2	4	<5	70	16	117
FSC	u2	0.2	<2	<5	40	20	53
FSC	u3	0.2	<2	<5	38	18	43
FSC	u4	<0.2	<2	<5	10	14	23
FSC	u5	<0.2	2	<5	12	16	26
FSC	U6	<0.2	4	<5	26	21	42
FSC	u7	0.2	<2	<5	20	20	74
FSC	U8	<0.2	<2	<5	20	16	38
FSC	U9	0.5	<2	5	65	16	55
FSC	U10	0.4	<2	<5	31	14	120
FSC	U11	0.2	<2	<5	18	13	41
FSC	u12	0.2	3	<5	27	21	100
FSC	V1	<0.2	3	<5	35	14	50
FSC	v2	0.3	<2	<5	42	22	62
FSC	v3	0.2	<2	<5	30	13	55
FSC	v4	0.6	2	<5	18	21	83
FSC	v5	<0.2	<2	<5	17	13	44
FSC	V6	<0.2	2	<5	22	16	42
FSC	v7	<0.2	<2	<5	21	28	100
FSC	V8	0.2	4	<5	27	18	68
FSC	v9	<0.2	<2	<5	29	17	58
FSC	V10	0.2	2	<5	25	21	62
FSC	V10*	0.3	3	<5	25	21	62
FSC	V11	0.2	2	<5	27	17	63
FSC	v12	<0.2	2	<5	18	16	43
FSC	W1	<0.2	3	10	14	16	135
FSC	w2	0.3	2	5	14	23	108
FSC	w3	0.2	9	<5	23	21	242
FSC	w4	<0.2	10	<5	21	49	162
FSC	w5	0.3	26	<5	29	82	126
FSC	W6	0.3	44	<5	28	120	217
FSC	w7*	0.3	53	<5	46	116	148
FSC	w7*	0.4	50	<5	47	118	150
FSC	W8	<0.2	17	10	16	43	143
FSC	W9	0.2	8	<5	15	18	266
FSC	W10	<0.2	6	<5	26	23	156
FSC	W11	<0.2	5	<5	23	21	100
FSC	w12	<0.2	5	<5	30	31	143
FSC	W13	0.2	4	<5	20	35	166
FSC	W14	0.2	6	<5	24	23	94
FSC	W15	<0.2	3	< 5	14	25	160
FSC	W16	<0.2	5	<5	14	20	102
FSC	W16*	<0.2	6	<5	14	20	100
FSC	W17	<0.2	2	< 5	14	18	89
FSC	W18	<0.2	5	< 5	22	20	56
FSC	W19	<0.2	2	< 5	11	15	61
FSC	w20	<0.2	4	< 5	13	17	95
FSC	X1	<0.2	12	<5	28	30	250
FSC	x2	0.2	24	<5	18	83	235
FSC	x3	<0.2	13	< 5	28	33	116
FSC	x4	<0.2	28	<5	27	62	97
FSC	x5	<0.2	13	<5	19	22	110
FSC	x5*	<0.2	10	<5	18	22	110
FSC	X6	<0.2	<2	<5	25	26	120
FSC	X7	<0.2	5	<5	28	21	108
FSC	X8	<0.2	3	<5	27	17	103

FSC	X9	<0.2	4	< 5	19	16	72
FSC	$\times 10$	<0.2	2	< 5	20	18	98
FSC	X11	<0.2	4	<5	18	19	125
FSC	x12	0.2	6	<5	36	32	90
FSC	X13	<0.2	<2	<5	16	17	96
FSC	X14	<0.2	2	<5	19	18	85
FSC	X15	<0.2	<2	< 5	11	17	163
FSC	X16	<0.2	<2	<5	10	13	82
FSC	X17	<0.2	<2	<5	6	12	52
FSC	X18	<0.2	<2	<5	13	18	40
FSC	$\times 19$	<0.2	<2	<5	6	13	76
FSC	x 20	<0.2	<2	< 5	6	13	54
FSC	Y1	<0.2	3	<5	18	14	110
FSC	Y2	<0.2	9	<5	29	20	123
FSC	Y3	<0.2	3	<5	25	24	90
FSC	Y3*	<0.2	3	<5	24	24	85
FSC	Y4	<0.2	<2	< 5	15	20	93
FSC	Y5	<0.2	<2	<5	15	21	73
FSC	Y6	<0.2	<2	<5	17	25	75
FSC	Y7	<0.2	20	<5	30	47	138
FSC	Y8	<0.2	35	<5	27	90	148
FSC	Y9	<0.2	46	<	24	88	157
FSC	Y10	<0.2	41	<	24	87	232
FSC	Y11	0.9	160	<5	40	260	220
FSC	Y12	<0.2	42	<5	17	108	250
FSC	Y12*	<0.2	43	<5	16	105	248
FSC	Y13	0.2	38	<5	38	78	127
FSC	Y14	<0.2	40	<5	40	44	133
FSC	Y15	<0.2	17	<5	34	38	106
FSC	Y16	<0.2	11	<5	21	21	104
FSC	Y17	<0.2	15	<	36	35	150
FSC	Y18	<0.2	15	< 5	22	53	184
FSC	Y19	<0.2	19	<5	24	36	174
FSC	Y20	<0.2	7	< 5	23	30	105
FSC	21	<0.2	5	<5	28	20	124
FSC	z1*	<0.2	7	< 5	29	20	128
FSC	22	<0.2	4	<5	18	19	117
FSC	23	<0.2	3	< 5	13	17	140
FSC	24	<0.2	5	<5	19	20	87
FSC	25	<0.2	8	< 5	32	19	91
FSC	Z6	<0.2	6	<5	22	15	83
FSC	27	<0.2	3	<5	25	17	83
FSC	28	<0.2	7	5	28	18	84
FSC	29	<0.2	5	15	24	20	93
FSC	210	<0.2	7	<5	29	25	110
FSC	210*	<0.2	9	<5	31	28	118
FSC	211	<0.2	22	<5	34	50	132
FSC	212	<0.2	39	< 5	30	26	234
FSC	213	<0.2	52	15	10	230	430
FSC	214	0.3	27	10	9	325	900
FSC	215	0.6	46	5	32	320	760
FSC	216	0.4	15	<5	56	145	540
FSC	217	2.7	62	<5	40	660	430
FSC	218	0.5	31	<5	21	88	540
FSC	219	0.4	32	<	37	155	360
FSC	220	0.6	69	<5	25	230	400
FSC	220*	0.6	74	<5	26	240	410
FSC	AA1	0.2	<2	<5	26	18	135
FSC	AA2	0.3	<2	< 5	21	20	100
FSC	AA3	0.3	4	<5	30	16	138
FSC	AA4	0.2	7	< 5	25	18	100
FSC	AA5	0.2	13	<5	26	14	81
FSC	AA 6	0.2	18	<5	31	15	95
FSC	AA7	0.2	32	<5	22	13	136
FSC	AA8	0.3	28	<5	28	16	95
FSC	AA9	0.3	20	<5	24	20	110

FSC	AA10	0.2	36	<5	26	14	106
FSC	AA11	0.3	11	<5	40	28	134
FSC	AA12	1.1	97	100	69	550	740
FSC	AA13	0.4	8	5	25	66	960
FSC	AA14	0.3	13	5	32	43	510
FSC	AA15	0.6	7	< 5	47	82	295
FSC	AA16	0.4	8	10	44	78	281
FSC	AA17	0.5	14	<	37	203	367
FSC	AA18	0.6	11	< 5	56	123	325
FSC	AA18*	0.7	9	<5	52	117	320
FSC	AA 19	0.2	6	<5	44	36	328
FSC	AA 20	0.4	7	< 5	44	30	310
FSC	B81	0.2	15	<5	45	24	144
FSC	B82	0.3	19	<	41	20	178
FSC	BB3	0.3	27	<5	51	22	208
FSC	BB4	0.3	42	<5	27	21	222
FSC	BB5	0.3	21	<5	44	21	147
FSC	BB6	0.3	15	<5	43	20	143
FSC	BB7**	<0.2	6	<5	31	16	70
FSC	BB7*	0.3	3	NSS	35	15	75
FSC	BB8	<0.2	18	<5	35	14	76
FSC	889	0.3	4	<5	27	24	97
FSC	8810	<0.2	5	5	30	28	146
FSC	8811	<0.2	6	10	27	30	128
FSC	B812	<0.2	6	10	16	13	352
FSC	BB13	<0.2	2	15	15	25	250
FSC	BB14	0.2	7	< 5	23	21	100
FSC	BB15	<0.2	<2	<5	14	12	70
FSC	B816	0.3	7	< 5	20	13	245
FSC	B816*	0.2	6	5	20	14	244
FSC	BB17	<0.2	15	<5	22	21	390
FSC	BB18	<0.2	5	< 5	23	30	490
FSC	BB19	<0.2	13	<5	27	24	330
FSC	BB20	<0.2	7	< 5	22	17	314
FSC	CCl	0.2	12	< 5	42	18	205
FSC	cc2	<0.2	40	< 5	45	18	166
FSC	cc3	<0.2	8	<5	25	15	187
FSC	cc4	<0.2	31	<5	40	22	295
FSC	cc5	<0.2	11	<5	43	18	520
FSC	CC5*	<0.2	11	NSS	47	19	530
FSC	CC6	<0.2	8	<5	45	18	214
FSC	CC7	0.3	7	<5	30	18	223
FSC	CC8	0.3	12	5	47	28	125
FSC	CC9	0.2	8	10	38	21	128
FSC	CC10	<0.2	4	10	27	16	87
FSC	CC11	0.2	4	<5	23	17	79
FSC	cc12	0.2	3	<5	19	20	133
FSC	CC13	<0.2	4	<5	20	25	168
FSC	CC14	0.3	4	5	21	122	178
FSC	CC15	<0.2	4	5	25	72	222
FSC	CC16	0.2	4	<5	26	26	155
FSC	CC17	<0.2	3	<5	20	35	220
FSC	CC18	0.5	3	<5	20	77	320
FSC	CC19	0.2	4	<5	13	11	220
FSC	cc20	<0.2	4	<5	13	12	265
FSC	DD1	0.2	10	<5	26	35	560
FSC	DD2	<0.2	8	<5	28	24	370
FSC	DD3	0.2	3	<5	20	15	480
FSC	DD3*	0.2	3	NSS	20	15	480
FSC	DD4	0.2	2	<5	20	18	237
FSC	DD5	0.2	5	<5	26	21	256
FSC	DD6	0.4	<2	10	17	14	220
FSC	DD7	0.2	12	15	13	9	262
FSC	DD8	0.2	<2	5	34	26	264
FSC	DD9	0.2	<2	<5	32	17	238
FSC	DD10	0.2	3	<5	22	17	150

FSC	DD11	0.2	<2	<5	19	31	176
FSC	DD12	0.3	4	<5	19	43	185
FSC	DD12*	0.4	4	<5	18	40	180
FSC	DD13	0.2	6	<5	32	28	170
FSC	DD14	0.4	<2	<5	21	70	830
FSC	DD15	0.2	3	5	30	30	303
FSC	D16	0.2	<2	<5	20	26	235
FSC	DD17	0.3	<2	<5	17	23	294
FSC	DD18	0.4	4	<5	18	15	320
FSC	DD19	0.4	<2	<5	15	24	240
FSC	DD20	0.3	<2	<5	13	17	218

APPENDIX4

ROCK SAMPLE ANALYTICAL RESULTS

SAMP	AG PPM	AS	$\text { AU } 1$	$\underset{\text { PPM }}{\mathrm{Cu}}$	PB	SB	zN
53051	0.2	<2	<5	114	34		22
53051*	0.3	<2	<5	115	33		21
53052	<0.2	<2	<5	10	12		25
53053	<0.2	<2	<5	26	5		40
53054	<0.2	<2	<5	4	13		132
53055	<0.2	<2	<5	12	7		28
53056	4.2	50	<5	680	0.58\%		62
53057	0.4	2	<5	105	190		33
53058	<0.2	14	<5	33	12		18
53059	0.6	370	<5	65	44		8
53059*	0.5	360	<5	65	43		7
53060	<0.2	3	<5	32	19		46
53061	<0.2	2	<5	6	8		22
53062	<0.2	<2	<5	154	16		2
53063	<0.2	<2	<5	520	12		8
53064	<0.2	6	<5	314	6		58
53065	<0.2	8	<5	6	10		60
53066	<0.2	6	<5	63	9		62
53067	<0.2	<2	<5	35	15		77
53068	0.9	28	<5	960	7		51
53069	<0.2	5	<	36	5		2
53070	0.9	2	<	64	5		<2
53071	0.4	11	<	500	7		8
53071*	0.4	10	<5	500	7		8
53072	<0.2	2	<5	6	19		19
53073	<0.2	<2	5	18	23		37
53074	<0.2	<2	<5	15	42		19
53075	<0.2	3	<5	17	29		32
53076	<0.2	<2	<5	16	21		25
53077	<0.2	5	<5	20	58		40
53078	<0.2	15	10	13	20		24
53079	<0.2	3	10	6	10		15
53080	<0.2	<2	<	18	34		57
53080*	<0.2	<2	5	19	36		57
53081	<0.2	12	<	15	9		100
53082	<0.2	11	<5	50	13		
53083	<0.2	<2	<	11	18		5
53084	<0.2	17	<	100	43		5
53085	<0.2	67	<5	70	48		3
53086	<0.2	<2	10	33	33		81
53087	<0.2	<2	10	11	28		30
53088	0.3	10	<	520	61		80
53089	0.2	<2	<	32	28		90
53090	0.9	<2	<5	37	270		203
53091	8.0	42	< 5	26	1760		039\%
53092	<0.2	<2	<	19	13	8	67
53093	<0.2	<2	<	19	14	10	75
53094	<0.2	7	<5	12	28	17	54
53095	25	55	<5	104	0.44\%	123	0.98\%
53096	6.0	0.17\%	25	66	0.44\%	0.37\%	640
53096*	6.0	0.16\%	30	68	0.44\%	0.36\%	640
53126	<0.2	14	<	26	12		30
53127	<0.2	<2	< 5	36	56		136
53128	0.3	<2	< 5	41	130		227
53129	<0.2	<2	<5	40	35		15
53130	0.5	<2	<5	40	172		284
53131	<0.2	<2	< 5	41	8		34
53132	<0.2	<2	<5	46	23		36
53133	<0.2	<2	< 5	31	6		33
53134	<0.2	17	< 5	30	14		44
53135	<0.2	6	<5	25	7		15

							4
53136	<0.2	<2	<5	9	4		3
53137	<0.2	6	<5	6	6		7
53138	<0.2	<2	<5	45	13	4	
53139	<0.2	8	<5	12	7		
53140	<0.2	<2	<5	32	37		58
53141	<0.2	2	15	21	52		38
53142	<0.2	<2	<5	17	24		12
53143	1.1	2	25	620	8		39
53144	0.2	<2	<5	520	5		40
$53144 *$	0.3	2	<5	520	4		40
53145	<0.2	<2	10	17	6	<2	10
53146	<0.2	10	10	22	38	2	70
53152	<0.2	<2	<5	10	31	<2	41
53158	0.8	40	10	4	305	2	15
53159	0.7	80	75	25	205	7	2100
53160	15	0.90%	35	43	0.41%	380	0.90%
53161	31	0.55%	45	9	0.54%	360	72
53162	128	460	60	910.82%	0.37%	0.86%	
53163	130	0.36%	75	120	4.20%	240	7.10%
$53163 *$	130	0.37%	75	118	4.20%	240	7.10%
53164	23	630	20	18	0.55%	81	173
53165	19	490	70	49	1430	1.45%	0.36%
53166	0.3	3	<5	17	43	53	16
53173	0.3	5	5	18	46	86	57
66726	<0.2	<2	5	3	8		7
66727	0.5	15	<5	13	60		116
66728	<0.2	8	25	47	7		18
66729	<0.2	5	20	109	9		43
66730	<0.2	8	<5	22	13		21
66731	<0.2	5	15	23	6		50
66732	0.3	3	10	34	134		243
66733	<0.2	6	20	37	10		46
66734	<0.2	8	15	97	50		38
$66734 *$	<0.2	10	25	98	50		36
66735	<0.2	2	<5	10	16	6	77
66736	<0.2	<2	<5	18	6		37
66737	<0.2	5	<5	23	10		54
66738	<0.2	10	<5	13	5		20
66739	<0.2	8	<5	12	8		32
66740	<0.2	4	10	11	7		36
66741	<0.2	23	<5	8	5		21
66742	<0.2	80	<5	11	6		20
66743	<0.2	4	<5	38	7	87	
$66743 *$	<0.2	2	<5	38	8		66
66744	2.3	410	<5	57	2010		1060
66745	<0.2	8	<5	16	29		111
66746	120	190	15	126	0.95%	0.77%	
66747	<0.2	3	<5	386	10		26
66748	<0.2	<2	<5	37	21		84
66749	<0.2	<2	<5	44	8		12
66750	<0.2	9	<5	34	24	135	
76019	<0.2	4	60	11	71		65
76020	0.3	3	30	17	90		970
76021	<0.2	<2	10	20	36	152	
76022	1.5	<2	20	46	236	0.40%	
76023	<0.2	<2	<5	12	14		94
76024	<0.2	3	<5	3	4		57
$76024 *$	<0.2	2	15	3	4		57
76025	<0.2	5	<5	5	7		51

APPENDIX5

ANALYTICAL EXTRACTION AND DETECTION TECHNIQUES

> Analytical Extraction and Detection Techniques in Use at the Placer Dome Inc. Vancouver Geochemical Laboratory

Element	Unit	Weight (Grams)	Digestion	Detection \qquad	Instrumentation
cu	ppm	0.5	HC104/HN03 4 Hrs	2-4000	Atomic Absorption
$\mathbf{Z n}$	ppm	0.5	HC104/HN03 4 Hrs	2-3000	Atomic Absorption
Pb	ppm	0.5	HC104/HN03 4 Hrs	2-3000	A.A. Background Cor.
Ag	ppm	0.5	HC104/HN03 4 Hrs	0.2-20	A.A. Background Cor.
Au1	ppb	10.0	Aqua Regia 3 Hrs	5-4000	A.A. Solvent Extract
As	ppm	0.5	Aqua Regia 3 Hrs	2-2000	DC Plasma
Mo	ppm	0.5	HC104/HN03 4 Hrs	1-1000	Atomic Absorption

LEGEND

- $\angle 200$ PPM ZINC
- 200-499
- >500 PPM ZINC

	FIELD	FILE
POINTS:	ZN	LOCASY
POINTS:	ZN	LOCASY

100
200
300

Figure 7a

PLACER		INC.			
DRAWN MG	FORS PROPERTY MAIN SHOWING SOIL GRID ZINC IN PPM				
DATE 90:01:25					
SCALE 1:2500					
NO. PLate					

FORS PROPERTY SHOWING SOIL GRID LEAD IN PPM

LEGEND

- 〈30 PPM LEAD
- $30-59$
- 60 - 99
- 100-299
- >300 PPM LEAD

DATA PLOTTED ON THIS MAP:
OTRECTORY:
EEXPL/F ORS/GCHM/MAM INSHOW
$\begin{array}{ccc} & \text { FIELD } & \text { FILE } \\ \text { POINTS: } & \text { PB } & \text { LCACASY } \\ \text { POINTS: } & \text { PB } & \text { LOCASY }\end{array}$

100
200
300
Figure 7b

PLACER DOME INC.	
DRAWN MG	FORS PROPERTY
DATE $90: 01: 25$	MAIN SHOWING SOIL GRID
SCALE $1: 2500$	LEAD IN PPM
	PLATE

LEGEND

- <0.5 PPM SILVER
- $0.5-0.9$
- >1.0 PPM SILVER

100
200
Figure 9a

poins
points:
Figure 10b
PLACER DOME INC.

PLACER DOME INC.	
DRAWN MG	FORS PROPERTY BOULDER SOIL GRID LEAD IN PPM
DATE 90:01:25	
SCALE 1:2500	
	NO. PLATE

Figure 13b

PLACER DOME INC.	
oramn mg	FORS PROPERTY
OATE 90:01:15	le lamb creek soil
SCRLE 1:5000	COPPER IN PPM

Figure 14a

	ER DOME IN
DRAWN MG	FORS PROPERTY LITTLE LAMB CREEK SOIL GRID ARSENIC IN PPM
DATE 90:01:15	
SCALE 1:5000	
	- PLATE

LEGEND

- <30 PPM LEAD
- 30-59
- 60-99
- 100-299
(7) >300 PPM LEAD

<0. 5 PPM SILVER
- 0.5 - 0.9
- >1.0 PPM SILVER

DATA PLOTTED ON THIS MAP:
DIRECTORY: 8EXPL/FORS/GCHM/LAMBCRK
\qquad
POINTS:
POINTS:
AG
AG LOCASY
LOCASY

Figure $15 a$

PLACER DOME INC.	
ORAWN MG	FORS PROPERTY
OATE $90: 01: 15$	LITTLE LAMB CREEK SOIL GRID
SCALE $1: 5010$	

LEGEND

- $\angle 5$ PPB GOLD
- 5-19
- $20-49$
(2) $50-99$
() >100 PPB GOI.D

DATA PLOTTED ON THIS MAP:
DIRECTORY: BEXPL/FORS/GCHM/LAMBCRK
Filelo flie
$\begin{array}{lll}\text { PoINTS: AUL } & \text { LOCASY } \\ \text { POINTS: } & \text { RUI } \\ \text { ROCASY }\end{array}$
\qquad
Figure 15b

	FORS PROPERTY
GOLDHILL SOIL GRID	
SILVER IN PPM	

DATA PLOTTED ON THIS MAP:
OIRECTORY: \&EXPL/FORS/GCHM/GOLDHILL

Figure 18a

- $\angle 5$ PPB GOLD
- 5 - 19
- 20-49
(2) 50-99
(3) $>100 \mathrm{PPB}$ GOLD

DATA PLOTTED ON THIS MAP:
DIRECTORY: SEXPL/FORS/GCHM/GOLDHILL

POINTS.
POINTS:
POINTS: FIEI
AU1
AU1 RUI FILE POINTS: AUI LOCASY

Figure 18b

PLACER DOME INC

 DRAWN MG DATE 90:01:25 SCALE 1:2500