ASSESSMENT REPORT

TCHENTLO LAKE PROPERTY

Soil Geochemical Program undertaken on Lake Claims 1, 4, 5, 6, 9, 11, 12, 14, 15

	LOG NO:	0321	RD.
	ACTION		
Omineca Mining Division			
NTS 93N/2Ē, 2W Latitude 55°10' Longitude 124°47'	FILE NO:		

Claim Owner and Operator Westmin Mines Limited

S90-152

FILMED

 SUB-R5CORDER
 Byron Resources Inc.

 RFCEIVED
 MAR 1 5 1990

 MAR 1 5 1990
 Report by

 M.R. #
 \$

 VANCOUVER, B.C.
 Report by

 Project Geologist
 Westmin Mines Limited

U M ZC A d 🛃 🔛 **2** < Z **U** E **- 2** O S 0 0 上田 0 0 30 5 <

Discrict Geold	ogist, Prince George	Off Confidential: 90.12.13
ASSESSMENT REP	PORT 19810 MINING DIVISION: Omi	neca
PROPERTY: LOCATION:	Tchentlo Lake LAT 55 10 00 LONG 124 47 00 UTM 10 6114574 386398 NTS 093N02E 093N02W	
CLAIM(S):	Lake 1-18	
OPERATOR(S):	Byron Res.	
AUTHOR(S):	Lane, R.W.	
REPORT YEAR: COMMODITIES	1990, 57 Pages	
SEARCHED FOR:	Gold,Copper	
KEYWORDS:	Triassic, Jurassic, Takla Group, Hogem B Granodiorites, Magnetite	atholith,Granites
WORK	-	
DONE: Geod	chemical	
ROCH	<pre>14 sample(s) ;AU,AG,CU,ZN</pre>	
SOII	51 sample(s) ;AU,AG,CU,ZN	
	Map(s) - 10; Scale(s) - 1:2500, 1:20 0	00

TABLE OF CONTENTS

I.	SUMMARY 1	1
II.	INTRODUCTION A. Location, Access, Topography B. Claims E. Exploration Target	1 2 3
111.	GEOLOGY AND MINERALIZATION 4 A. Regional Geological Setting 4 B. Alkaline Intrusion Related Gold-Copper Deposits 5 C. Mt. Milligan - Exploration Guides 6 D. Property Setting 7	4 4 5 7
IV.	AIRBORNE GEOPHYSICS	7
V.	GEOCHEMISTRY 8 A. Soil Geochemistry (late 1960's - early 1970's) 8 B. Soil Geochemistry (1989) 8 1. Introduction 8 2. Grid TL-1 9 3. Grid TL-3 9 4. Grid TL-5 17 5. Grid TL-6 12 6. Grid TL-7 13 7. Grid TL-8 14 8. Grid TL-9 16 9. Grid TL-10 16	333399123456
VI.	CONCLUSIONS AND RECOMMENDATIONS 17 A. Grid TL-9 17 B. Grid TL-7 17 C. Grids TL-3, TL-5 TL-10 17 D. Grids TL-1, TL-6, TL-8 17 E. Soil Geochemistry (late 1960's - early 1970's) 17 F. Airborne Geophysics (1989) 17	7777777
VII.	EXPENDITURES	8
VIII.	STATEMENT OF QUALIFICATIONS 19	9
IX.	REFERENCES 20	C
Х.	APPENDIX 22 A. Analytical Procedures and Values 22	2 2
XL	ATTACHMENTS	3

<u>Page</u>

LIST OF FIGURES

- Figure 1: Location Map, Kwanika/Valleau, Wudleau, and Tchentlo Lake Properties, scale 1:7,500,000
- Figure 2: Location Map, Kwanika/Valleau, Wudleau and Tchentlo Lake properties, scale 1:250,000
- Figure 3: Claim map, Tchentlo Lake Property, scale 1:50,000
- Figure 4: Upper Triassic and Lower Jurassic Volcanic Rocks, Significant Copper Deposits, and Associated Alkalic Plutons in the Canadian Cordillera, scale 1:10,000,000
- Figure 5: Regional Geological Setting of Tchentlo Lake and Kwanika Creek Properties, scale 1:1,000,000
- Figure 6: Rock Chemistry Hogem Batholith and Mt. Milligan
- Figure 7: Compilation Map Tchentlo Lake Property, Geology, Cu Soil Geochemistry (Borondra/West Coast), Total Field Magnetics, Weight Percent Magnetite, Grids, scale 1:20,000
- Figure 8: Tchentlo Lake Property, TL-1 Grid, Au, Ag, Cu and Zn Soil Geochemistry, scale 1:2,500
- Figure 9: Tchentlo Lake Property, TL-3 Grid, Au, Ag, Cu and Zn Soil Geochemistry, scale 1;2,500
- Figure 10: Tchentlo Lake Property, TL-5 Grid, Au, Ag, Cu and Zn Soil Geochemistry, scale 1;2,500
- Figure 11: Tchentlo Lake Property, TL-6 Grid, Au, Ag, Cu and Zn Soil Geochemistry, scale 1;2,500
- Figure 12: Tchentlo Lake Property, TL-7 Grid, Au, Ag, Cu and Zn Soil Geochemistry, scale 1;2,500
- Figure 13: Tchentlo Lake Property, TL-8 Grid, Au, Ag, Cu and Zn Soil Geochemistry, scale 1;2,500
- Figure 14: Tchentlo Lake Property, TL-9 Grid, Au, Ag, Cu and Zn Soil Geochemistry, scale 1;2,500
- Figure 15: Tchentlo Lake Property, TL-9 Grid, Geology and Rock Chip Sample Locations, scale 1:2,500
- Figure 16: Tchentlo Lake Property, TL-10 Grid, Au, Ag, Cu and Zn Soil Geochemistry, scale 1:2,500

I. SUMMARY

Tchentlo Lake property is an east-west trending, 9 km by 17 km claim block located 190 km northwest of Prince George, B.C., and 40 km due west of the Mt. Milligan deposit. The property was initially staked in Dec., 1988, and expanded in 1989 and 1990. It was acquired for its potential to host Mt. Milligan style alkaline porphyry Au-Cu deposits.

Tchentlo Lake is situated at the southwestern tip of the Hogem Batholith, and overlies Takla Group volcanic rocks which are intruded by favorable coeval Hogem Batholith Basic Suite rocks (mainly monzonite and monzodiorite).

In the late 1960's and early 1970's approximately 75% of the area now overlain by the property was tested by wide spaced Cu soil geochemical sampling by Borondra/West Coast. The sampling defined large areas of \geq 100 ppm Cu values (many values \geq 500 ppm Cu) in numerous locations. Gold was not analyzed for. Subsequent rock geochemical sampling in 1988 by U. Schmidt established the presence of relatively weak Au values (up to 670 ppb Au) associated with Cu values of 2-3% in narrow shear zones near the western property boundary. In 1989 Westmin conducted an airborne geophysical survey over the property (Magnetics, HEM, VLF), which defined a number very interesting magnetics and weight percent magnetite anomalies, that possibly relate to alkaline porphyry Au-Cu mineralization. In addition, four pronounced parallel, 300 m - 800 m long HEM conductors were defined in the southwestern corner of the property, which are thought likely to be sulphide related.

Eight follow-up soil geochemical grids were established on the property in 1989 to test: (1) areas of \geq 100 ppm Cu soil geochemical response defined by Borondra/West Coast; and (2) areas of anomalous geophysical response defined by 1989 survey. Samples were analyzed for Au, Ag, Cu, Zn. The sampling defined and confirmed numerous areas of anomalous Cu values, which in some locations were found to be associated with encouraging Zn, Ag ± Au values. The most promising anomalies will be tested by backhoe trenching in 1990.

Soil geochemical sampling over the four HEM conductors thought to be sulphide related yielded an abundance of anomalous Zn, Ag values, and a few anomalous Cu, Au values. The results warrant a significant follow-up program of additional soil geochemical sampling, MaxMin geophysics, and extensive backhoe trenching.

Considerable follow-up soil geochemical sampling is warranted on the property in 1990 to evaluate numerous additional areas of Borondra/West Coast \geq 100 ppm Cu values, and a substantial number of airborne geophysical anomalies. Significantly anomalous Au, Cu ± Zn, Ag values produced by this work will be evaluated by backhoe trenching.

II. INTRODUCTION

A. Location, Access, Topography

Tchentlo Lake property is located in the Nation Lakes area, approximately 190 km northwest of Prince George, B.C., and 40 km due west of Mt. Milligan. It lies immediately south of the Tchentlo Lake/Chuchi Lake junction. Refer to figures 1 and 2.

Vehicle access is via an all-weather gravel road running north from Fort St. James for approx. 100 kms, then by logging roads running west for approximately 25 kms to the north shore of Chuchi Lake, and finally, by boat or barge for 2 kms to the property boundary. A system of jeep roads, now over-grown, were established on the property in the 1960's. Alternatively, access is via float plane from Vanderhoof (150 kms) or Ft. St. James (90 kms) to a small lake (Alexander Lake) in the centre of the property, or by helicopter stationed at the Rainbow Lodge on Takla Lake (65 kms).

Topography is usually gently rolling but in places is moderatley steep. Elevations range from 3000' (914m) to 5000' (1524m). The property is densely tree covered (spruce and aspen), and outcrop is usually poor but occasionally fair to moderate at higher elevations. Glacial till covers most of the property. It varies from nil to a few tens of meters thick, and is estimated to average 5-10 m thick. Low areas are commonly swampy.

B. Claims

Tchentlo Lake property is comprised of 22 contiguous four-post claim blocks (Lake-1 to Lake-22) totalling 341 units, which are wholly owned by Westmin Mines Ltd.

<u>Claim Name</u>	Record Number	<u>Units</u>	Expiry Date
Lake-1	10034	15	Dec. 16, 1991
Lake-2	10035	8	Dec. 15, 1991
Lake-3	10036	20	Dec. 16, 1991
Lake-4	10037	20	Dec. 15, 1991
Lake-5	10233	12	Feb. 21, 1992
Lake-6	10234	10	Feb. 20, 1992
Lake-7	10235	20	Feb. 21, 1992
Lake-8	10237	12	Feb. 20, 1992
Lake-9	10144	12	Mar. 4, 1992
Lake-10	10145	20	Mar. 4, 1992
Lake-11	10146	20	Mar. 4, 1992
Lake-12	10147	20	Mar. 3, 1992
Lake-13	10338	18	Apr. 26, 1992
Lake-14	10813	20	July 16, 1992
Lake-15	10814	16	July 16, 1992
Lake-16	10936	20	Aug. 3, 1992
Lake-17	10937	20	Aug. 4, 1992
Lake-18	10938	10	Aug. 9, 1992
Lake-19	11478	12	March 4, 1991
Lake-20	11479	2	March 4, 1991
Lake-21	11480	16	March 4, 1991
Lake-22	11481	<u>_18</u>	March 4, 1991
Total		341	·

- 2 -

C. Option Agreement

Byron Resources Inc., a Vancouver, B.C. registered company listed on the Vancouver Stock Exchange, acquired an option from Westmin Mines Limited, on July 14, 1989, to earn a 45% interest in the Tchentlo Lake and Kwanika Creek properties. Byron is to make the following cumulative expenditures by Dec. 31, 1993:

Date	Amount	Cumulative Amount		
Dec. 31, 1989	\$150,000	\$150,000		
Dec. 31, 1990	250,000	400,000		
Dec. 31, 1991	250,000	650,000		
Dec. 31, 1992	250,000	900.000		
Dec. 31, 1993	300,000	1,200,000		

In addition, on the closing date of the agreement Byron issued Westmin 200,000 common shares without par value.

D. History

- 1961 Government regional airborne magnetics survey (flight lines spaced 0.5 miles apart).
- 1966-1972 West Coast Mining and Exploration (Jemmet and Veerman, 1966; Mouritsen, 1967; Veerman, 1968); and Borondra Exploration Corporation Ltd. (Goudie and Hallof, 1970; McFall and Sawyer, 1971). Assessment reports indicate extensive exploration for porphyry Cu deposits in an area covering 75% of the present Tchentlo Lake property. Work undertaken consisted of geological mapping geochemical surveys (Cu soil and stream sediment), and geophysical surveys (VLF-EM, magnetics, and a limited amount of I.P.)
- 1983 Regional Stream Sediment and Water Geochemical Survey, Joint Canada/British Columbia Program.

E. Exploration Target

Primary exploration target is large tonnage low grade alkaline porphyry Au-Cu deposits similar to the Mt. Milligan deposit.

Secondary exploration target is moderate tonnage high grade Au-Cu-Zn sulphide deposits replacing fracture zones adjacent to or cross-cutting Au-Cu porphyry mineralization.

III. GEOLOGY AND MINERALIZATION

A. Regional Geological Setting

The Nation Lakes area Tchentlo Lake property is situated within the central portion of the Quesnel Trough of the Intermontane Belt (Refer to Figures 4 and 5). The Quesnel Trough is a 30 to 60 km wide by 1300+ km long depositional basin. It contains an assemblage of alkalic and calc-alkalic volcanic and sedimentary rocks of Upper Triassic to Jurassic age (Rossland, Nicola, Takla and Stuhini Groups), which extend northwestward from the southern B.C. border (49th parallel) to the Stikine River in northern B.C. The boundaries of the Quesnel Trough are regional faults in some areas. For example, in the Nation Lakes area (Mt. Milligan, Chuchi Lake, Tchentlo Lake, Kwanika Creek, Valleau Creek, etc.) the Trough consists of a grabben, bounded on the west by the Pinchi fault zone and bounded on the east by the Manson fault zone.

In the Nation Lakes area the Quesnel Trough contains Takla Group rocks, which are predominantly marine and alkaline. They are largely composed of pyroxene-rich flows and volcaniclastics, with interbedded volcanic derived greywacke, siltstone and minor limestone and conglomerate. There is an increase in the sedimentary component upwards, and subaerial accumulations may be present (Ney, Hollister; 1976). The assemblage is intruded by comagmatic, coeval, frequently zoned alkalic to calc-alkalic batholiths, stocks, plugs and dykes. The chemical composition of the intrusions are similar to the volcanic rocks they intrude. The intrusions commonly consist of diorite, but range in composition (syenite, monzonite, monzodiorite, diorite, pyroxenite). They occur along linear trends that appear to reflect major faulting and/or failed mid-oceanic subduction zones (V. Preto, H. Meade). Most of the alkaline plutons are characterized by magnetic anomalies associated with significant disseminated magnetite.

Hogem Batholith

The 20 km wide by 120 km long northwest trending Hogem Batholith is the dominant intrusive event in the Nation Lakes area. It is a complex, multi-stage intrusion that is dominantly alkalic but includes calc-alkaline phases. Compositions of the phases range from rare pyroxenite to more common diorite, monzonite and syenite, and include granodiorite, quartz monzonite and granite (refer to Figure 5).

Garnett (1978) recognized three distinct groups of phases to the Batholith on the basis of intrusive petrology, contact relationships and K/Ar geochronology of biotites and hornblendes. Garnett's (1978) grouping has been modified below using data from Meade (1977; and personal communication 1989).

1. Phase I (212 to 176 Ma) can be divided into an alkaline basic suite comprised of four mappable units including diorite, monzodiorite, monzonite and quartz monzonite, and a calc-alkaline suite mainly comprised of a distinctive unit known as the Hogem granodiorite.

- 2. Phase II (182 to 162 Ma) comprises alkaline syenites and occurs in geographically separate areas at Duckling Creek and Chuchi Lake. Phase II syenites clearly intrude Phase 1 units, but are petrogenetically related to Phase I alkaline intrusions.
- 3. Phase III (126 to 108 Ma) comprises calc-alkaline leucocratic granite, quartz syenite and alaskite that cut all other intrusive rocks.

Geochemical and petrological studies by Garnett (1978) and Meade (1977) strongly suggest that the Takla volcanic rocks are extrusive equivalents of the Phase 1 Basic Suite, with the intrusive rocks representing more deeply eroded centres of volcanic activity. Apparently, extrusive equivalents of Phases II and III do not exist.

<u>Chemically, alkalic rocks of the Hogem Batholith are similar to intrusive and volcanic rocks at Mt. Milligan (refer to Figure 6).</u>

Recent exploration suggests that significant gold values are associated with alkaline dioritic and monzonitic intrusions into Takla Group volcanic rocks in conjunction with weak to moderate chalcopyrite and/or pyrite. These intrusions are part of Garnett's (1978) Phase I Basic Suite of the Hogem Batholith. Garnett (1978) noted that there is a relationship between the various intrusive phases and their associated mineral occurrences.

- 1. Phase I alkaline dioritic to monzonitic rocks have Cu mineralization with associated pyrite and magnetite (Mt. Milligan);
- 2. Phase II syenitic rocks have associated Cu mineralization (Lorraine, Col);
- 3. Phase III granitic rocks have associated Cu-Mo mineralization (Jean Marie occurrence).

Significant gold/copper prospects associated with the intrusions in the central portion of the Quesnel belt are shown on Figure 4. Most prospects are in the early stages of exploration but include the Lorraine deposit, with indicated reserves of 10 million tonnes grading 0.67% copper and 0.22 g/t gold (Wilkinson et al., 1976), and Mt. Milligan, with indicated reserves of 200 million tons, grading 0.68 g/t gold and 0.3% copper.

The Col property was originally evaluated from 1970 to 1972 as a porphyry copper (2 million tons of 0.6% copper). Current work by Kookaburra Gold Corp. has resulted in drill core containing 2.24 g/t gold over 3.6 m, with selected samples as high as 17.4 g/t gold.

B. Alkaline Intrusion Related Gold-Copper Deposits

Alkaline intrusions with associated Au and Cu-Au mineralization generally display potassic (potassium silicate) and propylitic (epidote-chlorite ± calcite ± pyrite) alteration assemblages. The intrusions are high level, highly fractured and/or brecciated, and are commonly enclosed by stockwork fractured volcanic rocks.

The potassic assemblage comprises secondary biotite and/or potassium feldspar and commonly magnetite. This alteration zone is generally developed marginal to, or within the intrusion, and is closely associated spatially and genetically with coprecipitated copper-gold mineralization. The propylitic alteration zone is generally extensively developed in the enclosing volcanic strata.

Gold and/or gold-copper mineralization may be deposited within the alkaline intrusion or located up to several kilometres from the intrusion. The gold zone may overlap the copper zone, or it may lie outside the area of copper mineralization but within an overall zone of pyritic rocks.

Porphyry copper deposits with significant gold content (Stikine Copper, Cariboo-Bell/Mount Polley, Afton and Ingerbelle, see Table 1), are commonly associated with alkaline stocks. Recent work has also shown that "failed" porphyry systems have the potential to form significant gold deposits, such as the QR and Kwun Lake deposits (see Figure 3).

Table 1. Original Mined Reserves - Alkaline Porphyry Deposits Original Reserves

	Tonnes (x10°)	<u>% Cu</u>	Au g/T
Afton	28.1	1.0	0.51
Ingerbelle	166.9	0.53	0.15 (recov.)
Copper Mtn.	31.5	1.08	0.19 (recov.)
Cariboo Bell	54.0	0.45	0.50
Stikine Copper	113.4	1.06	0.48
Lorraine	9.1	0.68	0.58
Mt. Milligan	200.0	0.30	0.68

Gold-enriched alkalic porphyry systems in the Canadian Cordillera show many similarities to porphyry copper-gold deposits of the southwest Pacific, such as Ok Tedi, Papua New Guinea.

Exploration potential for Au-Cu porphyry and Au-Cu replacement-type deposits is considered to be good in the Quesnel Trough of British Columbia. Relatively little gold exploration has been done for this deposit type in recent years, and previous exploration in the 1960's and early 1970's for porphyry copper targets largely ignored the potential for significant gold values. As a result analyses for gold were only sporadically done.

C. Mt. Milligan - Exploration Guides

An assessment report by Heberlein et al (1984) on the Mt. Milligan property provided useful data for formulating exploration guides for this alkaline porphyry-type of Au-Cu deposit. Mineralization is associated with alkaline monzonitic to dioritic dykes and plutons which intrude basaltic andesite flows and tuffs of the Takla Group. Sulphides present include chalcopyrite, pyrite, pyrrhotite and rarely bornite. Magnetite is locally abundant (2-15%) as an alteration product, i.e., as secondary hydrothermal magnetite. Other alterations noted are biotite-rich intense K-feldspar flooding, along with development of ankeritic dolomite, sericite and epidote. Mineralization takes the form of disseminations and rare veinlets. Exploration techniques that proved useful on the property are geological mapping, geochemical soil sampling for Au, Cu and As, as well as magnetic and induced polarization (IP) surveys. Government airborne magnetic maps are useful because both the mineralization, and the intrusive diorite/monzonite associated with mineralization, contain abundant magnetite.

D. Property Setting

Tchentlo Lake property is situated at the southwestern tip of the Hogem Batholith, and overlies Takla Group volcanic rocks intruded by favorable coeval Hogem Batholith Basic Suite rocks. These Phase I Basic Suite rocks are mapped by J.A. Garnett (1:125,000 scale) as consisting mainly of monzonite/monzodiorite (Nation Lakes Plagioclase Porphyry) and of granodiorite/quartz monzodiorite (Hogem Granodiorite). Pyroxenite dykes were also noted by Westmin geologists in 1989. Takla Group volcanic rocks occurring along the southern edge of the property appear to mainly consist of andesite.

Rock exposure on most of the property is only fair to poor due to an extensive cover of glacial till. In places the cover is estimated to exceed 25 m. Somewhat better rock exposures occur at higher elevations in the western and southwestern portions of the property. Results of the 1989 airborne geophysical survey were utilized, in conjunction with the previous mapping, to further define the property geology at 1:20,000 scale. This geological interpretation is presented as Figure 7.

IV. AIRBORNE GEOPHYSICS

Westmin tested the Tchentlo Lake property with a detailed airborne geophysical survey (magnetics, HEM and VLF, lines 150 m apart) by Aerodat Ltd., in July, 1989.

The total magnetics suvey was flown to: (1) better define the geology of the mainly overburden covered property; and (2) define magnetics anomalies, which may be related to alkaline porphyry Au-Cu mineralization associated with satellite plutons or hydrothermal magnetite alteration. The survey defined two very large and a number of smaller areas of strongly anomalous (>59,250 nT) magnetics. A few of them were tested by follow-up soil geochemical sampling in 1989, and several very attractive anomalies remain to be tested in 1990. An outline of the \geq 59,250 nT anomalies is presented on figure 7. Detailed Total Field Magnetics maps and Calculated Vertical Magnetic Gradient maps accompany a separate report by Aerodat.

The helicopter electromagnetics (HEM) survey was flown to: (1) locate conductive Au-Cu-Zn sulphide deposits in fracture zones adjacent to or cross-cutting Au-Cu porphyry mineralization; (2) map the amount of magnetite occurring in the various rock types, which may help locate satellite intrusions, and possibly help locate areas of hydrothermal magnetite alteration; and (3) map the apparent resistivity of the property, to better define the geology and to locate areas of hydrothermal alteration. An outline of (1) areas of \geq 2 wt.% magnetite; (2) areas of \leq 100 ohm.m resistivity; and (3) HEM conductors, are presented on figure 7. Detailed Weight Percent Magnetite maps, Apparent Resistivity maps, and Electromagnetic Profile Maps accompany a separate report by Aerodat.

The VLF-EM survey was flown as part of the normal airborne geophysical package, even though VLF-EM does not function very well in areas of moderate to strong relief. The survey clearly defined prominent structural trends to the northwest, north and northeast. Detailed VLF-EM maps accompany a separate report by Aerodat.

V. GEOCHEMISTRY

A. Soil Geochemistry (late 1960's - early 1970's)

Approximately 75% of the area now overlain by the Tchentlo Lake property was tested in the late 1960's and early 1970's by a widely spaced copper soil geochemical survey by Borondra Exploration Corp. and West Coast Mining and Exploration. Sampling was generally undertaken along lines spaced 305 m (1000') apart, with samples every 30.5 m (100') along the lines. In areas of detailing, lines were spaced every 152.5 m (500').

The sampling defined large areas of \geq 100 ppm Cu values, and numerous \geq 500 ppm Cu values, especially in areas of better exposure in the western and southwestern poritons of the property (refer to figure 7).

The anomalies generally trend north or northwest. The northwest trend parallels a prominent shear direction hosting the Night Hawk zone on the Eagle 1 claim. Gold was not analyzed for. Subsequent rock geochemical sampling (Uve Schmidt-1988) established the presence of relatively weak Au values of up to 670 ppb Au associated with copper values of up to 3.4%, occurring in a grab sample of "massive iron oxides with malachite, chalcopyrite".

Most of the anomalous Cu soil geochemical values overlie areas of strong magnetics (>59,250 nT) and monzonite/monzodiorite, however some also overlie Takla Group volcanic rocks in the southwestern part of the property.

B. Soil Geochemistry (1989)

1. Introduction

Eight follow-up soil geochemical grids (TL-1, 3, 5-10) were established on the Tchentlo Lake property in 1989, to test (1) areas of \geq 100 ppm Cu soil geochemical response defined by Borondra/West Coast; and (2) areas of anomalous airborne geophysical response defined by the 1989 Westmin survey.

Soil samples were collected of the B soil horizon with grub-hoes, 15 to 30 cm below surface, at 50 m intervals along lines spaced 100 m apart. They were analyzed for Au, Ag, Cu, Zn. Analytical procedures and values are presented in Appendix X.

2. Grid TL-1

Objectives

Grid TL-1 tested (1) a weak HEM conductor; (2) an area of strongly anomalous (>59,250 nT) magnetics; and (3) a small area of >2 wt.% magnetite.

<u>Geology</u>

Grid TL-1 is totally covered by glacial till. The underlying geology is considered to consist of monzodiorite.

Soil Geochemistry

A total of 53 soil samples were collected within the 400 m by 600 m grid area.

Results:

- Au no anomalous values
- Ag 2 anomalous values, ranging up to 1.6 ppm Ag, associated with anomalous Cu values.
- Cu 3 anomalous values, ranging up to 320 ppm, scattered across the grid.
- Zn 3 anomalous values, ranging up to 500 ppm, scattered across the grid, not associated with other anomalous values.

Conclusions and Recommendations

The soil geochemical results do not appear to warrant follow-up.

3. Grid TL-3

Objectives

Grid TL-3 tested (1) a weak bedrock conductor on strike from the shear hosted Night Hawk Cu zone, located 800 m to the southwest; (2) a large area of \geq 100 ppm Cu soil geochemical values previously defined by Borondra/West Coast; (3) an area of strongly anomalous magnetics (>59,250 nT); and (4) an area of 2-10 wt.% magnetite.

Geology

TL-1 is covered by glacial till. A few outcrops occurring adjacent to the grid consist of granodiorite.

Soil Geochemistry

A total of 59 soil samples were collected within the 400 by 600 m grid area.

Results:

- Au no anomalous values
- Ag no anomalous values
- Cu 11 anomalous values, ranging up to 920 ppm Cu, which appear mainly to occur in two discontinuous northwest trending zones.
- Zn 4 anomalous values, ranging up to 310 ppm Zn, which are associated with anomalous Cu values.

Rock Geochemistry

A total of 8 rock geochemical samples were taken from the TL-3 grid area, the Night Hawk showing (on Eagle 1 claim), and the area situated between TL-3 and Night Hawk.

Sample <u>No.</u>	Au <u>oz/t</u>	Ag <u>oz/t</u>	Cu _%	Zn <u>%</u>	Comments
359275H	0.002	0.04	0.11	0.01	From road 100 m south of TL-3. Silicified and pyritic diorite float, fine disseminated bornite.
359276H	0.004	0.006	0.36	0.01	From skid road 600 m SW of TL-3 (Eagle 1 claim). Ultramafic (pyroxenite) dyke, containing pyrite and malachite in quartz-calcite veinlets.
359277H	0.021	1.06	2.44	0.01	Samples 359277H and 359278N from Lake 1 claim, 700 m S of TL-3 grid.
359278H	0.020	1.20	3.37	0.02	Pyritic and gossanous malachite bearing quartz-calcite vein 2-15 cm thick, cutting granodiorite boulder. Druzy quartz crystals. Collected from large boulder at the base of a scree slope.
359279H	0.004	0.13	0.32	0.01	From TL-3 grid. Rounded, gossanous granodiorite cobble containing pyrite and malachite, from circular (kill zone?) at 20,520E - 16,200N.
359281H <	<0.002	0.01	0.05	0.01	From TL-3 grid, massive MnO ₂ ? float, at 15,900N - 20,180E.
359282H	0.013	1.22	2.80	0.01	From skid road on Eagle 1 claim, 650 m SW of TL-3 grid. Gossanous, malachite stained granodiorite with pyrite and chalcopyrite stringers filling fractures.

359283H < 0.002 < 0.01 0.30 0.01

From skid road on Eagle 1 claim, 700 m SW of TL-3 grid. Iron and malachite stained propylitic altered granodiorite (2% K-spar, 2% magnetite) Magnetite disseminated and as stringers.

Conclusions and Recommendations

The rock geochemical sampling of selected, mineralized, often gossanous specimens returned encouraging Cu values ranging from 0.05% to 3.37% (averaged 1.21% Cu), but generally yielded dissappointing Au results, which ranged from <0.002 oz. Au/t to 0.02 oz. Au/t (averaged 0.008 oz. Au/t). The highest grade Au values of 0.013-0.021 oz. Au/t corresponded with the highest grade Cu values of 2.44-3.37%. These Au values are interesting but must be considered quite weak when compared to the corresponding high Cu values. A limited amount of backhoe trenching should be undertaken in the vicinity of the best anomalous soil and rock Cu \pm Zn values to confirm the areas apparent lack of significant Au, Ag values.

4. Grid TL-5

Objectives

Grid TL-5 tested (1) a large Cu soil geochemical anomaly previously defined by Borondra/West Coast; (2) magnetite bearing granodiorite containing weak prophylitic alteration; and (3) an area of strongly anomalous magnetics (>59,250 nT) underlying the western half of the grid.

<u>Geology</u>

Magnetite bearing granodiorite forms extensive outcrops in the west and southwestern parts of the grid. Weak, pervasive propylitic alteration has slightly altered the mafic minerals to chlorite and actinolite, and plagioclase to epidote and calcite. Massive epidote and pink K-spar is common as veins and fillings along fracture and fault zones. Narrow mafic dykes containing propylitic alteration are fairly common.

Topography

The grid is located on a moderate slope with open pine forest and occasional dense alder.

Soil Geochemistry

A total of 91 soil samples were collected within the 600 m by 600 m grid area.

Results:

- Au 2 anomalous values, ranging up to 65ppb Au, defined in an area of anomalous Zn values in the southwest corner of the grid.
- Ag 5 anomalous values, ranging up to 2.5 ppm Ag, usually associated with anomalous Cu and/or Zn values.
- Cu 17 anomalous values, ranging up to 1600 ppm Cu, frequently associated with anomalous Zn and/or Ag values, and discontinuously grouped in the western one-half of the grid.
- Zn 10 anomalous values, ranging up to 400 ppm Zn.

Rock Geochemistry

Four rock geochemical samples were taken in the southwest corner of the grid, in the vicinity of the two anomalous Au soil samples.

Sample <u>No.</u>	Au ppb	Ag ppm	Cu <u>ppm</u>	Zn <u>ppm</u>
359271H	<5	<0.2	158	50
359272H	<5	<0.2	160	72
359273H	90	<0.2	340	44
359274H	<5	<0.2	45	85

Conclusions and Recommendations

The sampling yielded encouraging Cu, Zn, Ag values, which in two instances were associated with anomalous Au values. The anomalous values warrant testing by a moderate amount of backhoe trenching, particularly in the vicinity of 15,400E - 22,000N, and 15,200E - 21,950N. Rock geochemical sampling results from the southwestern corner of the grid were dissappointingly low in Cu and Au.

5. Grid TL-6

<u>Objectives</u>

Grid TL-6 tested a weak HEM conductor in the vicinity of the Hogem Batholith/Takla Group contact.

<u>Geology</u>

Grid TL-6 is covered by relatively thick glacial till. The underlying geology is thought to consist of monzodiorite.

Soil Geochemistry

A total of 80 soil samples were collected within the 400 m by 800 m grid area.

Results:

- Au no anomalous values
- Ag 1 anomalous value
- Cu 8 anomalous values, ranging up to 270 ppm Cu, some of the values possibly aligned in north trending zones.
- Zn 3 anomalous values, ranging up to 280 ppm Zn, scattered across the grid.

Conclusions and Recommendations

The anomalous Cu soil geochemical values are not associated with anomalous Au values. Follow-up work does not appear to be warranted.

6. Grid TL-7

Objectives

Grid TL-7 tested four very interesting, parallel, bedrock related HEM conductors 300 m to 800 m long, whose strength and character suggest either sulphides or graphite. The conductors occur within a 1.0 km by 1.0 km resistivity low anomaly (<100 ohm.m).

<u>Geology</u>

The grid area is covered by thin to moderate glacial till; the underlying geology is considered from float to consist of Takla Group volcanic rocks.

Topography

The grid is situated on a moderate slope which is thickly wooded.

Soil Geochemistry

A total of 155 soil samples were collected within the 600 m by 1100 m grid area.

Results:

Au - 4 anomalous values, ranging up to 80 ppb, scattered across the grid.

- Ag 34 anomalous values, ranging up to 5.0 ppm Ag, scattered across the grid, often but not always associated with anomalous Cu and/or Zn values.
- Cu 6 anomalous values, ranging up to 390 ppm Cu. Anomalous Cu values are generally associated with anomalous Zn values.

Zn - 42 anomalous Zn values, ranging up to 1700 ppm Zn, 9 values exceed 500 ppm Zn. The anomalous Zn, Ag ± Cu, Au values occur in a few broadly defined northwest trending zones, which parallel the trend of the airborne HEM conductors, and of VLF conductors defined by four reconnaissancestyle survey lines.

Conclusions and Recommendations

The soil geochemical and airborne geophysical results warrant:

- (1) additional soil sampling to detail and close off anomalous areas;
- (2) Max-Min ground geophysical surveying of the expanded grid to accurately locate the airborne (HEM) conductors; and
- (3) extensive backhoe trenching of the most promising coincident soil geochemical and Max-Min anomalies.

7. Grid TL-8

Objectives

Grid TL-8 was intended to test a weak HEM conductor, however it appears to have been incorrectly located in the field. The grid partially tested a small area of >2 wt.% magnetite.

<u>Geology</u>

Grid TL-8 is covered by glacial till. The underlying geology is assumed to consist of granite and/or granodiorite from cobbles in the "C" soil horizon.

Soil Geochemistry

A total of 47 soil samples were collected within the 400 m by 800 m grid area.

Results:

Au - 1 anomalous value of 30 ppb Au.

- Ag no anomalous values.
- Cu no anomalous values
- Zn 1 anomalous value of 200 ppm.

Conclusions and Recommendations

The soil geochemical response does not warrant follow-up.

8. Grid TL-9

Objectives

To test an area bordered by relatively small areas of strongly anomalous magnetics (>59,250 nT) and \geq 2 wt.% magnetite.

<u>Geology</u>

The grid is partially covered by glacial till. The best exposures (rated fair) occur along a 10 m - 15 m high topographic feature associated with an ultramafic dyke. Geology mainly consists of diorite containing moderate magnetite. An ultramafic (pyroxenite) dyke trending E-W, locally containing up to 25% magnetite, intrudes and alters the diorite (magnetite, hematite, calcite stringers).

Soil Geochemistry

A total of 43 soil geochemical samples were taken within the 400 m by 400 m grid area.

Results:

- Au 4 anomalous values, ranging up to 90 ppb, were defined in the northeast corner of the grid, where it overlies the western edge of a strongly anomalous magnetic anomaly (>59,250 nT).
- Ag 1 anomalous value of 1.0 ppm Ag, defined in the vicinity of the anomalous Au values.
- Cu 1 anomalous value of 390 ppm Cu, defined in the vicinity of the anomalous Au values.
- Zn no anomalous values.

Rock Geochemistry

Two rock geochemical samples were taken in the north-central portion of the grid.

Sampie <u>No.</u>	Au <u>oz/t</u>	Ag <u>oz/t</u>	Cu <u>%</u>	Zn <u>%</u>	Comments
359269H	<5	<0.2	96	69	Altered granite (?) containing magnetite and hematite veinlets and clots, white calcite stringers.
359270H	<5	<0.2	49	226	Massive magnetic ultramafic dyke.

Conclusions and Recommendations

Anomalous Au \pm Cu, Ag values defined over the western edge of a >59,250 nT airborne magnetics anomaly suggest the possibility of a satellite intrusion

mineralized with Au and Cu. Considerable additional soil sampling is warranted to test several >59,250 nT airborne magnetics anomalies and areas of ≥ 2 wt.% magnetite occurring in the vicinity.

9. Grid TL-10

Objectives

Grid TL-10 tested:

- a large area of ≥100 ppm Cu soil geochemical values defined by Borondra/ West Coast;
- (2) a large area of strongly anomalous magnetics (>59,250 nT);
- (3) a large area of 2-10 wt.% magnetite; and
- (4) an area of lower resistivity near the centre of the grid.

<u>Geology</u>

Magnetic granodiorite forms extensive outcrops in the northern third of the grid, the rest of the grid is covered by glacial till.

Soil Geochemistry

A total of 223 soil geochemical samples were collected within the 800 m by 1300 m grid area.

Results:

- Au 3 anomalous values, ranging up to 35 ppb Au, only one of which is associated with anomalous Cu.
- Ag no anomalous values
- Cu 42 anomalous values, ranging up to 4600 ppm Cu. Seven values exceed 500 ppm Cu. The anomalous Cu values occur in a discontinuous 500 m by 750 m area in the centre of the grid, and are associted with a few anomalous Zn and Au values.
- Zn 5 anomalous values, ranging up to 470 ppm Zn.

Conclusions and Recommendations

The importance of the large area of anomalous Cu values appears significantly downgraded by the lack of significant amounts of anomalous Au soil geochemical values. A moderate amount of backhoe tenching of areas of anomalous Cu should be undertaken to confirm the lack of significant gold values.

VI. CONCLUSIONS AND RECOMMENDATIONS

A. Grid TL-9

Anomalous Au \pm Cu, Ag values defined over the western tip of a strong airborne magnetics anomaly (>59,250 nT) may indicate a favorable satellite intrusion mineralized with Au and Cu. The general area warrants considerable additional reconnaissance type soil sampling to test several strong airborne magnetics anomalies and/or areas of \geq 2 wt.% magnetite.

B. Grid TL-7

Soil geochemical sampling undertaken over 4 HEM conductors defined by the 1989 airborne geophysical survey returned an abundance of anomalous Zn, Ag values and a modest amount of anomalous Cu, Au values, in discontinuous zones approximately paralleling the HEM conductors. The geochemical and geophysical results warrant additional soil sampling, Max-Min geophysics to pin-point the airborne conductors, and extensive backhoe trenching of the best soil geochemical/Max-Min anomalies.

C. Grids TL-3, TL-5 TL-10

Soil geochemical sampling returned significant amounts of encouraging anomalous Cu \pm Zn values, but only a few anomalous Au, Ag values. A moderate amount of backhoe trenching of the best anomalous Cu \pm Zn values should be undertaken to confirm the apparent lack of significant Au-Ag values.

D. Grids TL-1, TL-6, TL-8

Soil geochemical sampling for Au, Ag, Cu, Zn did not return sufficient encouraging results to warrant follow-up work.

E. Soil Geochemistry (late 1960's - early 1970's)

Considerable additional Au, Ag, Cu, Zn soil geochemical testing of Borondra/West Coast \geq 100 ppm Cu values is warranted, especially over Takla Group volcanic rocks in the south-central part of the property, and over anomalies in the east-central part of the property, that are coincident with airborne geophysical anomalies. Significant Au, Cu \pm Ag, Zn anomalies defined by this follow-up work should be tested by backhoe trenching.

F. Airborne Geophysics (1989)

Considerable additional Au, Ag, Cu, Zn soil geochemical testing of moderate sized, moderate to strong airborne magnetics anomalies is warranted, especially those situated adjacent to large magnetics anomalies. They may reflect Au-Cu mineralized satellite intrusions, similar to those hosting the Mt. Milligan Au-Cu alkaline porphyry deposits.

Areas of anomalous wt. % magnetite that do not closely coincide with areas of strongly anomalous magnetics response also warrant significant amounts of Au, Ag, Cu, Zn soil geochemical testing. They may reflect areas of hydrothermal magnetite alteration, which at Mt. Milligan hosts Au-Cu mineralization. Significant Au, Cu \pm Ag, Zn anomalies defined by this follow-up work should be tested by backhoe trenching.

VII. EXPENDITURES

Geochemical analysis (soils)		\$10,500
Salaries Geologists: 50 man days @ \$200/day Technicians: 40 man days @ \$110/day	= \$10,000 = <u>4,400</u>	14,400
Charter - Fixed Wing		1,800
Charter - Helicopter		8,700
Vehicle Rental		1,500
Camp Costs, Supplies		2,100
Expeditor		500
Drafting		2,000
Shipping - samples, camp equipment Radio Telephone - Rental and Calls Office Overhead - 10%		300 500 <u>4,200</u>
Total		\$ <u>46,500</u>

S90-152

VIII. STATEMENT OF QUALIFICATIONS

I, Ron W. Lane, of 7673 Sutton Place, North Delta, B.C., graduated in 1971 from the University of Alberta, Edmonton, Alberta, with a Bachelor of Science - majoring in Geology.

Since graduation, I have worked on a continuous basis as an exploration geologist in British Columbia, Yukon Territory, Northwest Territories, Alberta, Southern Africa and Italy.

w land,

Ron W. Lane Project Geologist Westmin Mines Limited

IX. REFERENCES

Armstrong, J.E. 1949. Fort St. James map-area, Cassiar and Coast districts, British Columbia, Geological Survey of Canada, Memoir 252.

Berthault, B. 1972. Assessment Report 3853 on the PU Claims, NTS 93N/2.

Campbell, C. 1986. Assessment Report 15423 on the Kael 2 Claim, NTS 93N/2,7.

C.E.C. Engineering Ltd., 1989. Summary Report, Goldbrick and Goldfinger Claims, Omineca Mining Division, B.C., NTS 93N/1,2,7,8. Unpublished company report.

Fountain, D.K. 1972. Assessment Report 3857 on the SAN and NIK claims, NTS 93N/6,11.

Garnett, J.A. 1978. Geology and Mineral Occurrences of the Southern Hogem Batholith. British Columbia Ministry of Mines and Petroleum Resources Bulletin 70.

Goudie, M.A. and Hallof, P.G. 1970. Assessment Report 3338 on the Nation Copper Property, 93N/2.

Guelpa, J.P. 1974. Assessment Report 5145 on the PU Claims, NTS 93N/2.

- Harper, G. 1972. Progress report for 1971 on the Chuchi Lake Option P.N. 161, Omineca Mining Division. Unpublished company report for Falconbridge Nickel Mines Ltd.
- Heberlein, D. and Rebagliati, C.M. 1984. Assessment Report 13325 on the PHIL 13,14 claim group, NTS 93N/7.

Howell, W.A. and Dirom, G.A. 1972. Assessment Report 3856 on the SAN and NIK claims, NTS 93N/6,11.

Heberlein, D.; Rebagliati, C.M.; and Hoffman, S.J. 1984. Assessment Report 12912 on the Phil A,B and 1 claim groups, NTS 93N/2,7.

Humphreys, N. 1984. Assessment Report 13,507 on the Kwan 1 claim, NTS 93N/11.

Jemmet, J. and Veerman, H. 1966. Assessment report 851 on the Nation Copper Property, NTS 93N/2.

- Lane, R. 1989. Technical Property Report, Tchentlo Lake (TL) Property Nation Lakes Project, NTS 93N/2E, 2W. Unpublished Westmin Mines Report for Byron Resources Inc.
- Lane, R. 1989. Technical Property Report Kwanika Creek (KC) Property Nation Lakes Project, NTS 93N/6E,11E. Unpublished Westmin Mines Report for Byron Resources Inc.

- Lhotka, P. and Lane, R. 1989. Nation Lakes Project WL, TL, KL, KC Properties, NTS 93N/1,2,6,7,8,11. Unpublished company report for Westmin Resources Ltd.
- Mark, D.G. 1980. Assessment Report 7887 on the BAG 1-4 mineral claims, NTS 93N/1,2.
- McFall, C.C. and Sawyer, J.B.P. 1971. Assessment report 3337 on the Nation Copper Property, NTS 93N/2.
- Meade, H.D. 1977. Petrology and Metal Occurrences of the Takla Group and Hogem and Germansen Batholiths, north central British Columbia, unpublished Ph.D. Thesis, University of Western Ontario.
- Meyers, R.E.; Rebagliati, C.M.; and Gravel, J.L. 1985. Assessment Report 14381 on the PHIL 13,14 claim group, NTS 93N/1,2,7,8.

Mouritsen, G.A. 1967. Assessment report 1056 on the Nation Copper Property, 93N/2.

Musial, J. 1988. The Mother Lode Belt, Northern Miner Magazine, September 1988, pages 21-24.

Northern Miner 1988. December 5 article by N. Tintor on the Mt. Milligan property.

- Podolsky, G. 1989. Report on Combined Helicopter-Borne Magnetic, Electromagnetic and VLF-EM Survey, Tchentlo Lake and Kwanika Creek Blocks, Nation Lakes Region, British Columbia. Unpublished report for Westmin Resources Limited by Aerodat Limited, August 24, 1989.
- Schmidt, U. 1989. Summary Report on the Eagle Property, Omineca Mining Division, NTS 93N/2W, unpublished company report.

Taylor, D.P. 1972. Assessment report 4244 on the DP, D and MT claims, NTS 93N/1,2.

Taylor, D.P. 1971. Assessment report 3851 and 3852 on the DP, D and MT claims, NTS 93N/1,2.

Veerman, H. 1968. Assessment report 1599 on the Vector claims, NTS 93N/2.

X. APPENDIX

A. Analytical Procedures and Values

212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7.J-2C1 PHONE (604) 984-0221

To: WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4

Comments: ATTN: RON LANE

A8924500

and the second second

ANALYTICAL PROCEDURES

	CHEMEX CODE	NUMBER Samples				DES	CRI	PTION			метног)	DETEC L IN	CT I ON 41 T		UPPER LIMIT	
2.	981 385 301 316	8 8 8 8	Au Ag Cu Zn	0z/T 0z/T %: 1 %: 1	: RU: : Aqu HClO4 HClO4	SH, 1/ 1a reg I–HNO I–HNO	2 a ;ia 93 (93 (digestic digestic ligestic ligestic	on on on	F# A# A#	A-AAS AS AS		 0.00 0.0 0.0 0.0	2 1 1 1	2 O 1 1	.000 20.0 00.0 00.0	

WESTMIN RESOURCES LIMITED PROJECT : NATION LAKES

P.O.# : 7458

Samples submitted to our lab in Vancouver. BC This report was printed on 31-AUG-89.

CERTIFICATE A8924500

CHEMEX NUMBER CODE SAMPLES DESCRIPTION

258	8	RUSH	Assay:	Crush.split.	ring

Analytical Chemists * Geochemists * 35aver3

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7.1-2C1

PHONE (604) 984-0221

To: WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4

Comments: ATTN: RON LANE

.....

CERTIFICATE A8924533

ANALYTICAL PROCEDURES

P.O.# : 7458 100 200 Au ppb: Fuse 10 g sample FA-AAS 5 1	0000
Samples submitted to our fab in vancouver. bc. 2 200 Cu ppm: HNO3-aqua regia digest AAS 1 1 This report was printed on 7-SEP-89. 5 200 Zn ppm: HNO3-aqua regia digest AAS 1 1 6 200 Ag ppm: HNO3-aqua regia digest AAS 0.2 1	5000 5000 50.0
SAMPLE PREPARATION	
CHEMEX NUMBER CODE SAMPLES DESCRIPTION	
203 200 Dry. sieve -35 mesh and ring	

A8924533

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA. CANADA V7.I-2CI

PHONE (604) 984-0221

Te JESTMIN RESOURCES LIMITED

P.O. Box 49066. The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project NATION LAKES

Comments: ATTN: RON LANE

Page No 1 Tot. Pages: 4 Date : 28-AUG-89 Invoice # : I-8923547 P.O. # :7459

SAMPLE DESCRIPTION	PREP CODE	Ац ррь FA+АА	Ag ppm Aqua R	Cu ppm	Zn ppm	1					
359151 H 359152 H 359153 H 359154 H 359155 H	201 201 201 201 201	1 0 < 5 < 5 < 5 < 3 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 1 6 2 0 1 6 2 0	47 45 66 66 51			1		•	
359156 H 359157 H 359158 H 359158 H 359159 H 359160 H	201 201 201 201 201	<pre>< 5 < 5</pre>	$< \begin{array}{c} 0 & 4 \\ 0 & 3 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \end{array}$	39 19 35 12 33	88 49 72 46 47		•			•	
359161 H 359162 H 359163 H 359164 H 359165 H	201 201 201 201 201 201	<pre>< 5 < 5 </pre>	$< \begin{array}{c} 0 & . & 3 \\ 0 & . & 2 \\ 0 & . & 2 \\ < & 0 & . & 2 \\ 0 & . & 2 \end{array}$	2 0 2 5 4 1 3 2 1 7	94 65 61 45 44						
359166 H 359167 H 359168 H 359169 H 359170 H	201 201 201 201 201 201 201	<pre>< 5 50 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 8 1 9 2 0 1 9 1 8	5 0 5 4 4 9 5 4 4 3						
359171 H 359172 H 359173 H 359173 H 359174 H 359175 H	201 201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 6 1 6 1 8 1 9 2 5	4 5 5 4 8 8 5 9 5 1					-	
359176 H 359177 H 359178 H 359178 H 359179 H 359180 H	201 201 201 201 201 201 201	< 5 < 5 < 5 < 5	<pre>< 0 . 2 < 0 . 2</pre>	19 19 14 15 30	57 55 47 39 47						
359181 H 359182 H 359183 H 359183 H 359184 H 359185 H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>< 5 < 5 < 30 < 5 < 5 </pre>	0 · 2 0 · 2 0 · 2 0 · 2 0 · 2 0 · 2	2 2 2 3 2 1 1 5 2 1	6 2 5 0 5 6 4 1 4 0						
359186 H 359187 H 359188 H 359189 H 359190 H	201 201 201 201 201 201 201	< < < < < < < < < < < < < < < < < < <	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 3 0 3 8 2 6 2 7	47 56 60 81 46						
L	L				J	H	CEB	TIEICATION	sant	Bichle	2

Chemex Ltd. Labs

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVF . NORTH VANCOUVFR. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

T. VESTMIN RESOURCES LIMITED

P.O. Box 49066. The Bentall Centre VANCOUVER . B.C. V7X 1C4 Project : NATION LAKES

Comments. ATTN: RON LANE

Page No 2 Tot. Pages: 4 Date : 28-AUG-89 Invoice # : I-8923547 P.O. # :7459

CERTIFICATE OF ANALYSIS A8923547

CERTIFICATION :

SAMPLE DESCRIPTION	PREP CODE	Ац ррь Ад FA+AA Ас	g ppm (qua R j	Cu ppm	Zn ppm					
359191 H 359192 H 359193 H 359193 H 359194 H 359195 H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 5 < 5 < 5 < 5 < 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5 2 1 2 0 2 4 4 4	+ 0 + 6 6 2 5 5 1 2 0					
359196 H 359197 H 359198 H 359198 H 359199 H 359200 H	201 201 201 201 201 201	< 5 10 < 5 < 5 < 5 < 5	$< \begin{array}{c} 0 & 4 \\ 0 & 2 \\ 0 & 4 \\ 0 & 2 \\ < 0 & 2 \\ < 0 & 2 \end{array}$	4 8 1 7 1 4 2 5 2 0	2 0 0 5 1 6 1 6 0 6 0					
359201 H 359203 H 359204 H 359205 H 359206 H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>< 5 < 5 < 5 < 5 < 5 </pre>	$\begin{array}{cccc} < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \\ & 0 & 3 \\ < & 0 & 2 \end{array}$	1 9 1 5 1 7 2 0 2 1	4 6 4 2 4 7 4 5 5 2					
359207 H 359208 H 359209 H 359210 H 359211 H	201 201 201 201 201	< 5 < 5 < 5 < 5 < 5 < 5	$\begin{array}{cccccc} < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \end{array}$	1 6 3 1 2 1 1 2 1 3	47 92 58 48 41			ı		
359212 H 359213 H 359214 H 359216 H 359217 H	201 201 201 201 201 201	< 5 < 5 < 5 < 5 < 5	$\begin{array}{cccc} < & 0 & . & 2 \\ & 0 & . & 4 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \end{array}$	2 0 4 6 1 9 1 3 1 7	60 95 41 46 44					
359218 H 359219 H 359220 H 359221 H 359222 H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>< 5 < 35 </pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 8 2 6 1 9 3 1 1 8	4 3 6 0 1 9 7 1 6 6					
359223 H 359224 H 359225 H 359226 H 359227 H	201 201 201 201 201 201 201	<pre>< 5 << 5 << 5 << 5 << 5 </pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 3 1 7 1 9 2 2 1 6	58 52 56 70 42			• • • •		
359228 H 359229 H 359230 H 359231 H 359232 H	201 201 201 201 201 201 201	<pre>< 5 << 5 << 5 << 5 << 5 << 5 </pre>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 8 1 7 2 0 1 8 2 1	40 47 50 45 55					
L			L		I	· · • • · · · · · · · · · · · · · · · ·	<u>.</u>	tart	Buchle	

T VESIMIN RESOURCES LIMITED

Chemex Labs Ltd.

212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V77-2C1 PHONE (604) 984-0221 P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page Nc 13 Tot. Pab-s:4 Date :28-AUG-89 Invoice #:I-8923547 P.O. # :7459

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Ag ppm Aqua R	Cu ppm	Zn ppm			
359233 H 359234 H 359235 H 359236 H 359237 H	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 10</pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 8 2 4 2 4 2 1 2 1 2 4	49 72 68 59 65			
359238 H 359239 H 359240 H 359241 H 359242 H	201 201 201 201 201 201	<pre></pre>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 8 2 3 1 6 2 1 2 3	6 8 4 3 4 6 4 7 4 7	1		
359243 H 359244 H 359245 H 359246 H 359246 H 359247 H	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	$\begin{array}{ccccc} < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \end{array}$	2 6 1 9 1 9 1 9 2 4	6 2 5 0 4 7 4 0 4 4			
359248 H 359249 H 359250 H 359251 H 359252 H	201 201 201 201 201 201	<pre>< 5 < 5 </pre>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 1 2 4 2 6 2 4 2 3	6 2 5 6 5 7 5 4 4 9		•	
359253 H 359254 H 359255 H 359256 H 359257 H	201 201 201 201 201 201 201	<pre>< 5 < 5 </pre>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1 6 1 7 7 4 2 5 2 2	4 2 4 3 1 9 0 4 5 5 8			· · · · · · · · · · · · · · · · · · ·
359258 H 359259 H 359260 H 359261 H 359262 H	201 201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2 1 38 2 6 3 1 2 0	4 4 6 4 5 7 8 4 6 0			
359263 H 359264 H 359265 H 359266 H 359266 H 359267 H	201 201 201 201 201 201 201	<pre>< 5 < 5 < 5 15 < 5</pre>	$< \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 3 \\ 0 \cdot 2 \\ 0 \cdot 2 \\ 0 \cdot 4 \end{array}$	2 0 4 5 2 4 1 7 6 0	46 78 45 41 46			
359301 H 359302 H 359303 H 359304 H 359305 H	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 < 5 << 5 </pre>	$ \begin{array}{rcrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 2 3 0 3 3 3 2 3 3	58 42 42 46 48			

Analytical Chemists * GeocLemists * Registered Assayers 212 BROOKSBANK AVF., NORTH VANCOUVER BRITISH COLUMBIA, CANADA V7.J-2C1 PHONE (604) 984-0221 T VESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES

Comments: ATTN: RON LANE

Page Nc 4 Tot. Pages: 4 Date : 28-AUG-89 Invoice #: 1-8923547 P.O. # : 7459

SAMPLE DESCRIPTION	PREP CODE	Au ррЪ FA † A∆	Ag ppm Aqua R	Cu ppm	Zn ppm				: 	
359306 H 359307 H 359308 H 359309 H 359310 H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	< 5 15 < 5 < 5 < 5 < 5	$< \begin{array}{c} 0 & . \\ 0 & . \\ 0 & . \\ 0 & . \\ 0 & . \\ 0 & . \\ 0 & . \\ 3 \end{array}$	6 1 1 3 4 4 5 3 4 9	109 58 115 164 46		1			
359311 H 359312 H 359313 H 359314 H 359315 H	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 7 < 5 < 7 < 5 < 7 < 5 </pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 2 5 5 2 9 3 4 3 9	42 69 59 94 115					
359316 H 359317 H 359318 H 359319 H 359320 H	201 201 201 201 201	<pre></pre>	$\begin{array}{c} 0 & 2 \\ 0 & 2 \\ < 0 & 2 \\ < 0 & 2 \\ < 0 & 2 \\ < 0 & 2 \\ < 0 & 2 \end{array}$	46 44 69 49 39	85 160 120 160 97					
359321 H 359322 H 359323 H 359324 H 359325 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	$\begin{array}{cccc} < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \end{array}$	36 33 36 52 31	45 51 130 43 125	· · ·		•		
359326 H 359327 H 359328 H 359329 H 359330 H	201 201 201 201 201 201 201	<pre>< 5 < 5 </pre>	$\begin{array}{cccc} < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \\ < & 0 & 2 \end{array}$	3 0 5 7 6 4 4 8 2 9	146 65 50 47 47					
359331 H 359332 H 359333 H 359333 H 359334 H 359335 H	201 201 201 201 201 201	2 5 1 5 < 5 < 5 < 5 < 5	$\begin{array}{c} < & 0 \\ < & 0 \\ < & 0 \\ < & 0 \\ < & 0 \\ < & 0 \\ < & 0 \\ < & 0 \\ \end{array}$	3 2 4 5 2 9 2 7 2 4	70 77 105 61 47					
359336 H 359337 H 359338 H 359338 H 359339 H 359340 H	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 90 < 5 </pre>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74 38 68 61 390	50 54 80 86 100					
359341 H 359342 H 359343 H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 0 7 0 < 5	$\begin{pmatrix} < & 0 \\ < & 0 \\ < & 0 \\ 1 \\ \end{pmatrix}$	2 5 4 0 1 4 3	34 92 54					
L	-		<u></u>	. <u> </u>	- <u> </u>	 CER	TIFICATION :	sant	Bichl	عم

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page N. :1 Tot. Pages:1 Date : 4-SEP-89 Invoice # :1-8924117 P.O. # :NONE

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R			
359271 H 359272 H 359273 H 359274 H 443455 H	212 212 212 212 212 212 212	 < 5 < 5 90 < 5 < 5	158 160 340 45 76	50 72 44 85 45	<pre>< 0 . 2 < 0 . 2</pre>			
443456 H 443457 H 443458 H	212 212 212 212	 < 5 < 5 < 5	7 1 2 0 1 4 6	38 53 48	< 0.2 < 0.2 < 0.2 < 0.2			

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 **1 VESTMIN RESOURCES LIMITED**

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page N: 11 Tot. Pages: 5 Date : 4-SEP-89 Invoice #:1-8924118 P.O. # :NONE

.

CERTIFICATE OF ANALYSIS A8924118

SAMPLE DESCRIPTION	PREP CODE	Аи ррь FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R			
359344 H 359345 H 359346 H 359346 H 359347 H 359348 H	201 201 201 201 201 201	<pre>< 5 < 5 60 < 5 < 5 < 5</pre>	35 91 90 54 63	1 2 7 2 7 0 1 5 0 2 2 0 1 2 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
359349 H 359350 H 359351 H 359352 H 359353 H	201 201 201 201 201 201	65 < 5 < 5 < 5 < 5 < 5	79 72 90 220 104	200 157 170 220 140	< 0 · 2 0 · 3 0 · 4 0 · 5 0 · 2			
359354 H 359355 H 359356 H 359356 H 359357 H 359358 H	201 201 201 201 201 201	< 5 < 5 < 5 < 5 < 5 < 5	34 168 90 56 54	67 210 150 146 182	< 0 . 2 0 . 3 0 . 2 0 . 3 0 . 3 0 . 3			
359359 H 359360 H 359362 H 359363 H 359363 H 359364 H	201 201 201 201 201 201	<pre>< 5 < 5 </pre>	85 52 132 53 900	1 8 0 1 8 0 4 0 0 1 0 5 2 1 0	0.6 0.4 1.4 0.3 0.6		Ĩ	
359365 H 359366 H 359367 H 359368 H 359368 H 359369 H	201 201 201 201 201 201	<pre>< 5 < 5 </pre>	97 75 188 96 55	2 6 0 1 4 4 8 7 1 2 0 1 5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
359370 H 359371 H 359372 H 359373 H 359373 H 359374 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	24 200 56 32 67	8 3 1 8 7 1 3 5 1 4 8 2 4 8	< 0.2 1.2 0.4 0.3 0.4			
359375 H 359376 H 359377 H 359378 H 359378 H 359379 H	201 201 201 201 201 201	<pre>< 5 < 5 </pre>	450 53 310 180 100	2 4 0 1 1 8 2 0 0 1 3 7 1 3 9	1 · 6 0 · 5 1 · 9 0 · 4 0 · 2			
359380 H 359381 H 359382 H 359383 H 359384 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	1600 96 93 430 75	2 3 0 1 0 0 1 3 0 2 1 0 1 1 9	0 · 2 0 · 3 0 · 3 1 · 7 0 · 3			

CERTIFICATION : Hart Buchles

Analytical Chemists • Geochemists • Registered Assayers 212 BROOKSBANK AVE .. NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page N. :2 Tot. Pages:5 Date : 4-SEP-89 Invoice #:I-8924118 P.O. # :NONE

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R					
359385 H 359386 H 359387 H 359388 H 359388 H 359389 H	201 201 201 201 201 201 201	< 5 < 5 < 5 < 5 < 5	56 36 39 45 95	1 4 0 1 5 0 1 1 5 1 6 6 1 2 2	0.4 0.2 0.6 0.3 0.8					
359390 H 359392 H 359393 H 359394 H 359395 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	400 24 65 48 64	2 3 0 4 6 1 5 4 1 3 2 6 3	<pre></pre>					
359396 H 359397 H 359398 H 359398 H 359399 H 359400 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	2 3 0 1 3 0 1 3 5 3 0 4 2	1 8 7 3 6 0 2 0 0 1 4 4 2 0 0	< 0.2 0.3 0.4 0.2 0.2					
359401 H 359402 H 359403 H 359404 H 359405 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	80 180 34 93 68	1 3 0 1 5 3 1 2 4 1 0 5 1 4 4	0.2 0.4 < 0.2 0.2 0.3			-		
359406 H 359407 H 359408 H 359409 H 359410 H	201 201 201 201 201 201 201	<pre>< 5 < 5</pre>	2 3 3 4 2 6 1 5 3 5 6	54 90 67 205 98	$ \begin{array}{c} 0.3\\ 0.3\\ < 0.2\\ 0.3\\ 0.4 \end{array} $					
359411 H 359412 H 359413 H 359414 H 359414 H 359415 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	58 360 54 63 20	1 4 5 1 5 0 1 1 3 1 2 0 5 0	0.7 1.1 0.4 0.2 0.3					
359416 H 359418 H 359419 H 359420 H 359421 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	8 7 1 1 8 2 0 3 6 1 6 0	1 1 5 1 90 8 4 1 2 6 1 5 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
359422 H 359423 H 359424 H 359425 H 359426 H	201 201 201 201 201 201		50 50 50 50 50 50 50 50 50 50 50 50 50 5	1 1 0 1 6 4 1 3 2 1 0 7 1 1 9	 					
L	- 9		- 1		•	I <u>na sentenne prove kona</u> ,	CERTIFICATION :	tat	Bichl	عر

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 1. WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4

Project : NATION LAKES Comments: ATTN: RON LANE Page N. 3 Tot. Pages: 5 Date : 4-SEP-89 Invoice #: 1-8924118 P.O. # :NONE

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R					
359427 H 359428 H 359429 H 359430 H 359431 H	201 201 201 201 201 201	<pre>< 5 5 5 < 5</pre>	44 75 115 86 29	1 0 8 1 1 8 2 9 0 1 0 4 7 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
359432 H 359433 H 359434 H 443301 H 443302 H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	1 3 8 1 7 5 3 7 1 6 7 6 5	153 300 94 305 109	0.3 0.6 0.9 1.4 0.3					
443303 H 443304 H 443305 H 443306 H 443306 H 443307 H	201 201 201 201 201 201	<pre>< 5 10 < 5 < 5 < 5 </pre>	56 54 32 44 49	109 110 79 155 110	0.3 0.7 0.5 0.6 0.5					
443308 H 443309 H 443310 H 443311 H 443312 H	201 201 201 201 201 201		2 1 3 6 2 4 5 6 1 1 0	57 159 58 360 620	0.3 0.7 0.2 1.2 1.1			1		
443313 H 443314 H 443315 H 443316 H 443316 H 443317 H	201 201 201 201 201		3 2 2 0 2 3 4 2 4 2	170 73 70 87 86	0.2 0.5 0.6 0.7 0.5					
443318 H 443319 H 443320 H 443321 H 443322 H	201 201 201 201 201 201 201	~~~~	5 6 5 3 6 4 1 0 6 3 1	1 1 0 1 3 0 3 0 0 1 7 0 0 1 0 0	0.5 0.2 2.1 0.8 0.3					
443323 H 443324 H 443325 H 443326 H 443327 H	201 201 201 201 201	~~~~	2 7 4 8 5 4 1 5 3 0 0 5 3 9	70 156 109 590 100	0 . 2 0 . 3 1 . 0 5 . 0 0 . 8					
443328 H 443329 H 443330 H 443331 H 443332 H	201 201 201 201 201	< < < < <	5 4 1 5 2 5 5 4 0 5 3 8 5 3 3	1 3 0 9 5 1 0 6 1 0 5 9 0	0 . 8 0 . 6 0 . 6 0 . 3 0 . 6				•	
L.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- I		<u> </u>		, <u></u> , <u>-</u>	<u>I</u>	 	Jai	ABuch	ler

Analytical Chemists • Geochemists • Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7.J-2C1 PHONE (604) 984-0221 **WESTMIN RESOURCES LIMITED**

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page N. :4 Tot. Pages: 5 Date : 4-SEP-89 Invoice # :I-8924118 P.O. # :NONE

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R			
443333 H 443334 H 443335 H 443336 H 443337 H	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	50 134 62 41 41	1 1 0 2 9 5 1 3 0 1 3 7 9 2	0.4 2.1 0.3 0.3 0.3			
443338 H 443339 H 443340 H 443341 H 443342 H	201 201 201 201 201	<pre>< 5 < 5</pre>	90 69 77 44 30	1 3 2 1 4 6 1 5 0 1 0 7 8 5	0.6 0.3 0.3 1.6 0.4			
443343 H 443344 H 443345 H 443346 H 443347 H	201 201 201 201 201	<pre>< 5 < 5 < 10 < 5 < 5 </pre>	78 52 56 70 39	159 145 130 260 105	0.8 0.8 1.4 0.4 0.2			
443348 H 443349 H 443350 H 443351 H 443352 H	201 201 201 201 201		49 180 94 188 210	190 790 600 460 380	0.4 0.8 0.6 1.0 1.2		,	
443353 H 443354 H 443355 H 443356 H 443356 H 443357 H	201 201 201 201 201 201		85 47 73 51 50	1 4 2 1 1 6 1 3 0 1 7 0 1 1 0	0.4 1.1 1.0 0.9 1.1			
443358 H 443359 H 443360 H 443361 H 443362 H	201 201 201 201 201 201 201		55 39 47 56 55	205 119 127 200 165	0.6 0.6 0.6 0.9 0.8			
443363 H 443364 H 443365 H 443366 H 443367 H	201		46 38 52 57 60	1 50 97 1 7 4 1 40 1 60	0.8 0.3 0.7 1.3 1.2			
443368 H 443369 H 443370 H 443371 H 443372 H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		95 65 42 41 70	2 2 0 1 7 0 1 4 3 1 2 5 1 6 5	0.5 0.6 0.5 0.7			

tart Bichler

nemex. lahs Ltd.

Analytical Chemists . Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

1. WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE

Page N. 5 Tot. Pages: 5 Date : 4-SEP-89 Invoice # : I-8924118 P.O. # :NONE

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
443373 H 443374 H 443375 H 443376 H 443377 H	201 201 201 201 201 201	<pre>< 5 10 < 5 < 5 < 5 < 5 </pre>	64 46 45 35 29	210 158 118 90 117	0.5 1.1 1.0 0.9 0.9						
443378 H 443379 H 443380 H 443381 H 443382 H	201 201 201 201 201 201	<pre>< 5 15 5 < 5 < 5 < 5</pre>	104 61 80 63 46	380 190 196 174 240	1 . 4 0 . 8 1 . 2 0 . 5 0 . 5						
443383 H 443384 H 443385 H 443386 H 443387 H	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	54 77 63 36 51	250 410 140 98 110	0.6 0.5 0.6 0.6 0.8						
443388 H 443389 H 443390 H 443391 H 443392 H	201 201 201 201 201 201	<pre>< 5 10 < 5 < 5 < 5 < 5</pre>	48 90 150 74 72	168 140 270 140 350	0.9 0.7 1.6 0.7 0.5				, ,		
443393 H 443394 H 443395 H 443396 H 443398 H	201 201 201 201 201 201	<pre>< 5 < 5</pre>	1 3 1 6 4 3 0 7 0 4 5	270 210 75 160 130	1.0 2.8 0.6 1.2 0.8						
443399 H 443400 H 443451 H 443452 H 443453 H	201 201 201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 < 20</pre>	47 35 98 34 43	100 400 740 140 170	0.8 0.5 1.5 0.3 0.4						
443454 H 453001 H 453002 H 453003 H 453004 H	201 201 201 201 201 201	80 < 5 < 5 < 5 < 5 < 5	48 88 115 72 200	62 190 109 105 190	0.4 0.3 0.4 0.3 0.5						
453005 H 453006 H 453007 H 453008 H	201 201 201 201	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	45 74 74 95	129 98 82 96	0.4 0.4 0.3 0.2						
	•		. .	<u></u>	I	L	CER	LIFICATION :	tat	Bichl	Q _

hemex Labs C td.

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE .. NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1

PHONE (604) 984-0221

T VESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE

Page Nr 1 Tot Pa .: 4 Date : 4-SEP-89 Invoice # : I-8924119 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8924119

SAMPLE DESCRIPTION	PRE COD	P E	Аи рр ь FA + AA	Cu ppm	Zn ppm	Ag ppm Aqua R			
453009 H 453010 H 453011 H 453012 H 453013 H	201 201 201 201 201 201		< 5 < 5 < 5 < 5 < 5	30 270 30 38 27	60 280 83 130 66	$< 0.2 \\ 1.1 \\ < 0.2 \\ 0.4 \\ 0.2 $			
453014 H 453015 H 453016 H 453017 H 453018 H	201 201 201 201 201 201		<pre>< 5 < 5 </pre>	1 2 6 9 5 5 2 5 1 4 2	96 162 143 130 120	0 . 2 0 . 2 0 . 6 0 . 3 0 . 8			
453019 H 453020 H 453021 H 453022 H 453023 H	201 201 201 201 201 201		<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	8 2 4 5 1 0 0 7 2 5 0	149 144 150 91 120	0 . 2 0 . 3 0 . 7 0 . 3 0 . 3			
453024 H 453025 H 453026 H 453027 H 453028 H	201 201 201 201 201 201		<pre>< 5 < 5 </pre>	155 42 60 36 63	170 138 122 106 190	0.5 0.3 0.3 0.3 0.2			
453029 H 453030 H 453031 H 453032 H 453033 H	201 201 201 201 201 201		<pre>< 5 < 5</pre>	67 50 49 140 50	210 300 93 200 73	0.4 0.4 0.3 0.5 0.4			
453034 H 453035 H 453036 H 453037 H 453038 H	201 201 201 201 201 201		<pre>< 5 < 5 10 < 5 < 5 < 5 < 5</pre>	1 1 0 97 2 0 0 5 5 4 4	80 130 147 130 130	0.4 0.8 0.3 0.3 0.4			
453039 H 453040 H 453041 H 453042 H 453043 H	201 201 201 201 201 201		<pre>< 5 < 5 </pre>	167 46 78 45 81	1 8 0 8 3 1 2 7 9 0 1 3 6	0.3 0.3 0.3 0.5 0.6			
453044 H 453045 H 453046 H 453047 H 453048 H	201 201 201 201 201 201		<pre>< 5 < 5 </pre>	1 1 0 62 55 1 18 5 2	86 106 88 100 77	0.2 0.4 0.3 < 0.2 0.2			

CERTIFICATION : HartBuchler

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 1 VESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES

Comments: ATTN: RON LANE

Page N. 2 Tot. Pages: 4 Date : 4-SEP-89 Invoice #: 1-8924119 P.O. # :NONE

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R			
453049 H 453050 H 453051 H 453052 H 453053 H	201 201 201 201 201 201	10 15 < 5 < 5 5	100 70 75 145 165	90 115 158 120 110	 < 0 . 2 0 . 3 0 . 5 0 . 6 0 . 6 			
453054 H 453055 H 453056 H 453057 H 453058 H	201 201 201 201 201 201	5 5 15 5 5 5	96 105 77 60 27	195 120 154 133 100	0.5 0.4 0.2 0.3 0.4			
453059 H 453060 H 453061 H 453062 H 453063 H	201 201 201 201 201	5 < 5 < 5 < 5 < 5	88 80 53 70 190	1 0 3 1 3 0 1 2 0 9 4 1 2 2	0.5 0.6 0.5 0.4 0.6			
453064 H 453065 H 453066 H 453067 H 453068 H	201 201 201 201 201 201	45 5 < 5 5 < 5	79 79 95 47 70	108 158 180 120 190	0.3 0.5 0.4 0.3 0.3		ł	
453069 H 453070 H 453071 H 453072 H 453073 H	201 201 203 201 201	<pre>< 5 < 5 < 5 < 5 5 15</pre>	48 63 96 75 54	107 127 118 146 100	< 0.2 0.2 0.5 0.4 0.2			
453074 H 453075 H 453076 H 453077 H 453079 H	201 201 201 201 201 201	1 5 5 < 5 2 0 5	38 62 32 39 54	2 1 5 1 6 4 1 2 5 7 1 8 7	< 0.2 0.2 0.4 0.2 < 0.2			
453080 H 453081 H 453082 H 453083 H 453084 H	201 201 201 201 201	<pre>< 5 < 10</pre>	64 55 43 80 110	1 3 2 1 0 0 1 7 0 2 8 0 1 2 0	0.9 0.5 0.6 0.9 0.7			
453085 H 453086 H 453087 H 453088 H 453089 H	201 201 201 201 201 201	<pre>< 5 < 5 10 10 < 5 </pre>	4 2 4 7 2 6 9 3 4 0	300 124 145 128 100	0.8 0.9 0.9 0.5 < 0.2			

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

7 VESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE

Page N 3 Tot. Pass: 4 Date : 4-SEP-89 Invoice # : I-8924119 P.O. # :NONE

CERTIFICATE OF ANALYSIS A8924119

SAMPLE DESCRIPTION	PRE COD	P DE	Ац рр ь FA + AA	Cu ppm	Zn ppm	Ag ppm Aqua R				
453090 H 453091 H 453092 H 453093 H 453094 H	201 201 201 201 201 201		< 5 < 5 < 5 < 5 < 5	27 97 47 51 123	1 1 0 2 0 0 8 8 6 5 2 7 0	0.3 1.2 0.4 0.8 1.1				
453095 H 453096 H 453097 H 453098 H 453099 H	201 201 201 201 201 201		\$ < 5 < 5 < 5 < 5 8 5	1 5 4 1 0 4 2 2 4 4 4 3	870 370 88 92 96	1 . 5 0 . 5 0 . 4 0 . 2 0 . 3				
453100 H 453101 H 453102 H 453103 H 453104 H	201 201 201 201 201 201	 	15 < 5 < 5 < 5 < 5 < 5	48 83 56 - 119 105	1 4 5 2 0 6 4 2 0 7 5 0 6 1 0	0.2 0.7 0.6 1.2 1.3				
453105 H 453106 H 453107 H 453108 H 453109 H	201 201 201 201 201 201		<pre>< 5 10 < 5 15 10</pre>	63 39 175 68 120	300 110 260 210 160	0.3 0.2 1.2 0.7 1.2		4		
453110 H 453111 H 453112 H 453113 H 453113 H 453114 H	203 201 201 201 201 201		25 10 < 5 < 5 15	390 75 81 89 120	270 140 185 300 420	3.0 0.5 0.9 1.0 1.1				
453115 H 453116 H 453117 H 453118 H 453118 H 453119 H	201 201 201 201 201 201	 	<pre>< 5 10 < 5 < 5 < 5 < 5 </pre>	54 29 13 46 28	1 4 4 96 59 1 49 91	1.7 0.4 0.3 1.1 0.3				
453120 H 453121 H 453122 H 453123 H 453123 H 453124 H	201 201 201 201 201 201		10 < 5 15 < 5 5	55 82 87 120 44	109 170 166 200 150	0.2 0.6 0.2 1.7 0.6				
453125 H 453126 H 453127 H 453128 H 453128 H 453129 H	201 201 201 201 201 201		<pre>< 5 < 15</pre>	30 81 47 29 118	73 160 98 150 135	1 . 3 1 . 3 0 . 7 0 . 3			•	
L	B			↓			 	Sart	Buchle	کر

CERTIFICATION :

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE .. NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2CI PHONE (604) 984-0221

1 WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4

Page N 4 Tot. Pages: 4 Date : 4-SEP-89 Invoice # : I-8924119 P.O. # :NONE

Project : NATION LAKES Comments: ATTN: RON LANE

SAMPLE DESCRIPTION	PRE COD	EP DE	Ац рр ь FA + AA	Cu ppm	Zn ppm	Ag ppm Aqua R				
453130 H 453131 H 453132 H 453133 H	201 201 201 201		< 5 < 5 < 5 < 5	35 62 44 19	1 1 0 1 4 3 1 2 4 5 4	0.4 0.3 0.4 < 0.2				
								, 1		
								trat	Buchl	

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE . NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 T. /ESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page Nc 1 Tot. Pages: 1 Date : 31-AUG-89 Invoice #: I-8924500 P.O. # : 7458

•

SAMPLE DESCRIPTION	PREP CODE	Au oz/T RUSH	Ag oz/T	Cu %	Zn %			
359275 H 359276 H 359277 H 359278 H 359279 H	258 258 258 258 258 258	0 . 0 0 2 0 . 0 0 4 0 . 0 2 1 0 . 0 2 0 0 . 0 0 4	0.04 0.06 1.06 1.20 0.13	0.11 0.36 2.44 3.37 0.32	$\begin{array}{c} 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 1 \end{array}$			
359281 H 359282 H 359283 H	258 258 258	< 0.002 0.013 < 0.002	$ \begin{array}{c} 0 & 0 \\ 1 & 2 \\ < & 0 & 0 \\ \end{array} $	0.05 2.80 0.30	$\begin{array}{c} 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ 0 & . & 0 \\ \end{array}$			-

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7.J-2C1 PHONE (604) 984-0221 1 VESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page N 1 Tot. Pages: 5 Date : 7-SEP-89 Invoice # : I-8924533 P.O. # : 7458

SAMPLE DESCRIPTION	PREP CODE	Ацррь Си FA+AA ppm	Zn ppm	Ag ppm Aqua R					
359280 453134 453135 453136 453137	203 203 203 203 203 203	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	94 88 470 100 75	< 0.2 0.2 1.8 0.2 0.2					
453138 453140 453141 453142 453143	203 203 203 203 203	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 4 0 4 8 1 4 4 1 0 9 5 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
453144 453145 453146 453147 453148	203 203 203 203 203 203	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 74 146 74 81	$\begin{array}{c} 0 \cdot 3 \\ < 0 \cdot 2 \end{array}$					
453149 453150 453151 453152 453153	203 203 203 203 203 203 203	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 8 8 5 8 6 8 9 7 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
453154 453155 453156 453157 453157	203 203 203 203 203	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 2 4 5 1 4 5 4 5 0 4 5 5 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
453159 453160 453161 453162 453163	203 203 203 203 203 203 203	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 4 1 0 0 7 8 1 0 9 1 0 0	 0.2 0.2 0.2 0.2 0.2 0.5 					
453164 453165 453166 453167 453167	203 203 203 203 203 203	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	159 90 132 132 152 152 110 10	0.5 0.4 0.3 0.5 0.4					
453169 453170 453171 453172 453173	203 203 203 203 203 203	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 7 5 1 1 4 1 0 0 2 7 5 1 2 7 1 2 0 1 2 0	1 . 7 0 . 3 0 . 2 0 . 2 0 . 2 0 . 4					
L	<u>F</u>	*****		1 <u> </u>	·····	CERTIFICATION	trutt	sichler	

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7.I-2C1

PHONE (604) 984-0221

WESTMIN RESOURCES LIMITED

.

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE

Page Nu. 2 Tot. Pages: 5 Date : 7-SEP-89 Invoice # : I-8924533 P.O. # :7458

CERTIFICATE OF ANALYSIS A8924533

CERTIFICATION :

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R	
453174 453175 453176 453177 453178	203 203 203 203 203		58 59 105 32 96	93 97 117 108 130	$ \begin{array}{c} 0 \cdot 2 \\ 0 \cdot 2 \\ 0 \cdot 3 \\ 0 \cdot 2 \\ < 0 \cdot 2 \\ < 0 \cdot 2 \end{array} $	
453179 453180 453181 453182 453183	203 - 203 - 203 - 203 - 203 - 203 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 1 6 5 4 9 7 5 7 8	8 4 9 2 9 6 8 1 9 2	 < 0 . 2 0 . 3 	
453184 453185 453186 453187 453188	203 - 203 - 203 - 203 - 203 - 203 -	- < 5 - < 5 - < 5 - < 5 - < 5 - < 5	45 191 37 49 260	90 147 80 106 165	0.7 0.3 0.3 0.3 0.5	
453189 453190 453191 453192 453193	203 - 203 - 203 - 203 - 203 - 203 -		7 8 8 0 3 9 5 3 4 8	1 1 4 1 3 0 8 2 8 4 8 7	2 . 9 0 . 5 0 . 3 0 . 2 0 . 2	
453194 453195 453196 453197 453198	203 - 203 - 203 - 203 - 203 - 203 -		6 3 5 3 1 2 9 3 3 4 8 2	1 1 0 1 0 0 6 4 1 5 7 7 6	$ \begin{array}{c} 0.3\\ 0.4\\ <0.2\\ 0.2\\ 0.2\\ 0.4 \end{array} $	
453199 453200 453201 453202 453203	203 - 203 - 203 - 203 - 203 - 203 -	-	6 6 6 1 0 0 7 1 2 1 8 0 5 5 3	1 1 5 1 0 8 1 0 6 1 2 2 6 8	0.2 0.2 0.2 0.2 0.2 0.2 0.2	
453204 453205 453206 453207 453208	203 - 203 - 203 - 203 - 203 - 203 -		40 67 44 45 48 50	94 56 47 100 85	<pre></pre>	
453209 453210 453211 453212 453213	203 - 203 - 203 - 203 - 203 - 203 -		6 1 5 3 7 5 5 2 5 5 7 0	1 2 2 8 6 1 1 2 6 0 1 1 7	$ \begin{array}{c} 0.8\\ 0.3\\ 0.2\\ 0.3\\ < 0.2\\ < 0.2 \end{array} $	
L					<u>+</u>	tart Sichler

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

1 VESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE

Page N 13 Tot. Pages: 5 Date 7-SEP-89 . Invoice # : 1-8924533 P.O. # :7458

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R						
453214 453215 453216 453217 453218	203 203 203 203 203	<pre>< 5 5 5 << < 5 5 5 </pre>	96 180 4600 620 160	1 3 0 1 3 6 1 4 3 9 8 1 4 6	$ \begin{array}{c} 0 & 2 \\ 0 & 2 \\ 0 & 3 \\ 0 & 2 \\ 0 & 2 \\ 0 & 2 \end{array} $						
453219 453220 453221 453222 453222 453223	203 203 203 203 203 203	<pre>< 5 < 5</pre>	1 0 0 9 4 8 2 3 8 0 3 8 0	1 5 3 2 1 0 8 5 2 3 0 1 5 6	0 3 0 2 0 2 0 2 0 4						
453224 453225 453226 453227 453228	203 203 203 203 203 203	<pre>< 5 < 5</pre>	1 8 5 2 8 0 7 3 0 3 8 0 6 0	1 4 7 1 0 7 1 3 3 9 5 1 1 0	<pre>< 0.2 0.3 < 0.2 0.5 0.5 0.3</pre>						
453229 453230 453231 453232 453232 453233	203 203 203 203 203 203	<pre>< 5 < 5</pre>	95 51 37 103 60	1 8 0 1 3 8 9 7 1 2 9 8 2	<pre></pre>				• • • • • • • •		
453234 453235 453236 453237 453237	203 203 203 203 203	<pre>< 5 < 5 </pre>	6 2 2 9 1 3 2 7 2 1 6 5	1 1 0 8 5 1 2 0 1 0 0 1 0 7	<pre> 0 . 2 0 . 2 0 . 2 0 . 5 0 . 2 </pre>						
453239 453240 453241 453242 453242 453243	203 203 203 203 203	<pre>< 5 < 5</pre>	100 61 66 45 133	83 86 83 74 76	$ \begin{array}{c} 0.2\\ 0.3\\ 0.3\\ 0.3\\ <0.2\\ \end{array} $						
453244 453245 453246 453247 453247	203 203 203 203 203 203	<pre>< 5 < 5</pre>	3 1 7 7 2 6 1 2 4 6 4 0 0	110 140 69 175 80	<pre>< 0.2 0.2 0.2 < 0.2 0.3</pre>						
453249 453250 453252 453253 453253 453254	203 203 203 203 203 203	<pre>< 5 < 5</pre>	1 2 3 3 5 1 6 7 5 9 8 2	1 0 9 7 0 1 3 3 1 0 4 7 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
L	L	<u></u>	<u> </u>	<u></u>		L	CER	TIFICATION :	Jart	Sichle	<u>~</u>

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

1 VESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE

Page Nc 4 Tot. Pages: 5 : 7-SEP-89 Date Invoice # : I-8924533 P.O. # :7458

CERTIFICATE OF ANALYSIS A8924533

SAMPLE DESCRIPTION	PREP CODE	Аи ррь FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R				
453255 453256 453257 453257 453258 453259	203 203 203 203 203 203	<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	59 177 62 84 25	100 174 84 105 69	< 0.2 0.3 0.2 0.2 0.2 0.2				
453260 453261 453262 453263 453263	203 203 203 203 203 203	<pre>< 5 < 5 </pre>	100 45 238 56 89	1 2 0 1 4 5 1 2 6 1 0 6 9 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
453265 453266 453267 453267 453268 453269	203 203 203 203 203	<pre>< 5 < 5 </pre>	5 9 2 1 5 1 5 2 4 3 0	1 1 6 6 1 7 3 8 2 1 6 0	$ \begin{array}{c} 0.2\\ 0.3\\ 0.2\\ < 0.2\\ 0.4 \end{array} $				
453270 453271 453272 453273 453274	203 203 203 203 203 203 203	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	97 94 750 70 100	100 157 98 89 182	$ \begin{array}{c} < 0 . 2 \\ 0 . 2 \\ < 0 . 2 \\ < 0 . 2 \\ < 0 . 2 \\ < 0 . 2 \end{array} $		•		
453275 453276 453277 453278 453279	203 203 203 203 203 203	<pre>< 5 < 5</pre>	2 6 4 1 0 0 1 0 5 5 4 7 0	1 3 4 9 5 9 8 9 5 1 1 2	0.6 0.2 0.2 0.2 0.2 0.3				
453280 453281 453282 453283 453283	203 203 203 203 203 203 203	<pre>< 5 < 5</pre>	3 0 6 3 7 2 4 9 3 1	65 100 118 89 86	0.2 0.3 0.3 0.4 < 0.2				
453285 453286 453287 453287 453288 453289	203 203 203 203 203 203 203	<pre>< 5 < 5 < 5 < 5 15 < 5 </pre>	6 5 3 7 3 3 7 3 9 2	1 1 7 8 5 1 0 0 1 0 2 1 2 7	0.3 0.2 0.2 0.3 0.3				
453290 453291 453292 453293 453293	203 203 203 203 203 203	<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	3 5 0 1 4 0 3 7 7 3 3 7 4	93 170 110 109 117	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
L					4	 	Hart	Buch	les

CERTIFICATION : .

212 BROOKSBANK AVF . NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2CI PHONE (604) 984-0221 7 **VESTMIN RESOURCES LIMITED**

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE i Page N 15 Tot. Pages: 5 Date : 7-SEP-89 Invoice #: 1-8924533 P.O. # :7458

SAMPLE DESCRIPTION	PRE COD	P E	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R			`			
453295 453296 453297 453298 453299	203 203 203 203 203 203	 	< 5 < 5 < 5 < 5 < 5	1 1 0 5 7 5 6 5 7 8 5	1 3 0 8 0 9 3 1 7 6 1 5 0	$ < 0 \cdot 2 \\ 0 \cdot 2 \\ 0 \cdot 3 \\ 0 \cdot 2 \\ < 0 \cdot 2 \\ < 0 \cdot 2 $						
453300 453301 453302 453303 453304	203 203 203 203 203 203		<pre>< 5 < 5 < 5 < 5 < 5 < 5 </pre>	1 4 4 1 1 0 4 3 4 1 7 0	1 2 3 1 5 4 8 2 1 1 0 9 1	<pre>< 0 2 < 0 2 0 2 0 3 0 2</pre>						
453305 453306 453307 453308 453309	203 203 203 203 203 203		<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	3 0 3 4 1 0 0 7 1 6 0	60 74 108 95 91	<pre>< 0 . 2 0 . 2 < 0 . 2 < 0 . 2 0 . 2 0 . 2 0 . 2 0 . 2</pre>						
453310 453311 453312 453313 453314	203 203 203 203 203 203		<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	45 91 79 94 48	8 0 1 2 8 1 2 3 1 2 2 1 1 0	<pre>< 0 . 2 < 0 . 2</pre>				e e e e e e e e e e e e e e e e e e e		
453315 453316 453317 453318 453319	203 203 203 203 203 203		<pre>< 5 < 5</pre>	1 6 4 5 4 1 6 0 4 8 7 6	1 1 4 92 1 0 4 9 3 1 2 0	<pre>< 0.2 < 0.2 0.7 < 0.2 < 0.2 < 0.2</pre>						
453320 453321 453322 453323 453323	203 203 203 203 203 203	 	< 5 < 5 < 5 < 5 < 5	49 32 610 76 65	73 147 88 108 87	$\begin{array}{c} 0 & . & 2 \\ 0 & . & 7 \\ 0 & . & 7 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \end{array}$						
453325 453326 453327 453328 453329	203 203 203 203 203 203	 	<pre>< 5 < 5</pre>	1 0 9 8 2 2 6 0 1 8 0 4 7	159 152 215 136 110	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
453330 453331 453332 453333 453333	203 203 203 203 203 203		<pre>< 5 < 5 </pre>	3 8 9 6 4 0 6 7 5 6	96 108 78 71 94	$\begin{array}{c c} 0 & 2 \\ < 0 & 2 \\ < 0 & 2 \\ < 0 & 2 \\ 0 & 3 \\ < 0 & 2 \end{array}$						
L		<u>L</u>		_ i	4	I	L	CER	TIFICATION :	tart	Bichl	er

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page N 1 Tot. Pages: 4 Date : 10-SEP-59 Invoice #: I-8924534 P.O. # : 7458

SAMPLE DESCRIPTION	PRE COD	CP DE	Au ppb FA+AA	Cu ppm	Zn ppm	Ag ppm Aqua R	
453335 453336 453337 453338 453339	203 203 203 203 203 203		< 5 < 5 < 5 < 5 < 5	400 97 80 27 50	140 143 100 69 66	$ \begin{array}{c} 0.4\\ 0.3\\ 0.3\\ < 0.2\\ < 0.2\\ < 0.2 \end{array} $	
453340 453341 453342 453343 453344	203 203 203 203 203 203		<pre>< 5 < 5 < 5 < 5 < 5 < 5 < 5 </pre>	1 1 0 4 2 0 3 5 4 8 4 5	130 136 85 98 89	$\begin{array}{c} < & 0 & . & 2 \\ & 0 & . & 3 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \end{array}$	
453345 453346 453347 453348 453349	203 203 203 203 203 203		<pre>< 5 < 5 </pre>	35 30 69 25 150	1 3 6 1 2 6 8 8 1 0 2 1 1 8	$ \begin{array}{c} 0.3\\ 0.4\\ <0.2\\ 0.2\\ <0.2\\ <0.2 \end{array} $	
453350 453351 453352 453353 453354	203 203 203 203 203 203		<pre>< 5 < 5</pre>	1 3 7 7 9 3 4 9 2 4 1	176 116 68 160 108	$ \begin{array}{c} 0 & . & 2 \\ 0 & . & 6 \\ < & 0 & . & 2 \\ 0 & . & 5 \\ < & 0 & . & 2 \end{array} $	
453355 453356 453357 453358 453359	203 203 203 203 203 203	 	<pre>< 5 < 5</pre>	57 50 39 37 13	106 105 127 82 45	$\begin{array}{c} 0 \cdot 3 \\ < 0 \cdot 2 \end{array}$	
453360 453361 453362 453363 453364	203 203 203 203 203 203		<pre>< 5 < 5 </pre>	41 69 30 50 75	77 94 81 91 108	<pre>< 0.2 0.6 < 0.2 < 0.2 < 0.2 < 0.2</pre>	
453365 453368 453369 453370 453371	203 203 203 203 203 203	 	<pre>< 5 < 5</pre>	8 5 9 7 4 5 1 0 4 3 2	1 3 6 1 1 9 1 2 9 2 2 0 1 1 0	$\begin{array}{c} 0 \cdot 5 \\ < 0 \cdot 2 \\ < 0 \cdot 2 \\ < 0 \cdot 4 \\ < 0 \cdot 2 \end{array}$	
453372 453373 453374 453375 453376	203 203 203 203 203 203		<pre>< 5 < 5 </pre>	3 5 4 8 1 5 7 2 2 1 0 8	95 118 160 67 133	$ \begin{array}{c} < 0 . 2 \\ < 0 . 2 \\ 1 . 6 \\ < 0 . 2 \\ < 0 . 2 \\ < 0 . 2 \end{array} $	
<u></u>	I	<u>_</u>	<u></u>	.1	<u> </u>	<u>1</u>	CERTIFICATION : ScattBickley

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 T WESTMIN RESOURCES LIMITED

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 pject : NATION LAKES Page Nc 2 Tot. Pages: 4 Date :10-SEP-89 Invoice #: 1-8924534 P.O. # :7458

Project : NATION LAKES Comments: ATTN: RON LANE

CERTIFICATE OF ANALYSIS A8924534

SAMPLE DESCRIPTION	PREP CODE	Ацррь Сц FA+AA ppm	Zn ppm	Ag ppm Aqua R
453379 453381 453382 453383 453384	203 203 203 203 203 203	5 50 5 542 5 25 5 25 5 85 5 37	147 100 95 92 100	$ \begin{vmatrix} < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ & 0 & . & 6 \\ < & 0 & . & 2 \end{vmatrix} $
453385 453386 453387 453388 453391	203 203 203 203 203	<pre>< 5 72 < 5 50 < 5 47 < 5 66 < 5 68</pre>	1 1 0 2 5 0 1 6 0 1 3 0 1 2 6	$ \begin{array}{c} < 0 . 2 \\ < 0 . 2 \\ < 0 . 2 \\ < 0 . 2 \\ < 0 . 2 \\ < 0 . 2 \end{array} $
453392 453393 453394 453395 453396	203 203 203 203 203	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	93 150 150 105 120	$ \begin{vmatrix} < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 2 \\ < & 0 & . & 5 \\ < & 0 & . & 2 \end{vmatrix} $
453397 453398 453400 453402 453403	203 203 203 203 203 203	<pre>< 5 32 < 5 37 < 5 70 < 5 320 < 5 320 < 5 134</pre>	85 110 106 170 180	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
453404 453405 453406 453407 453407	203 203 203 203 203 203	<pre></pre>	180 120 120 86 122	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
453410 453411 453412 453413 453414	203 203 203 203 203 203 203	<pre>< 5 150 < 5 37 < 5 40 < 5 190 < 5 71</pre>	132 170 91 500 190	$ \begin{array}{c} $
453415 453416 453417 453418 453419	203 203 203 203 203 203 203	<pre>< 5 40 < 5 65 < 5 36 < 5 30 < 5 37</pre>	1 3 8 1 7 3 1 1 0 8 7 1 4 0	$ \begin{array}{c} 0.5 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \\ < 0.2 \end{array} $
453420 453421 453422 453423 453423 453424	203 203 203 203 203	<pre>< 5 22 < 5 60 < 5 39 < 5 430 < 5 79</pre>	74 92 64 280 76	$ \begin{array}{c} $

CERTIFICATION : HartBuchler

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 **WESTMIN RESOURCES LIMITED**

P.O. Box 49066, The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page Nt 3 Tot. Pages: 4 Date : 10-SEP-89 Invoice # : I-8924534 P.O. # 7458

.

CERTIFICATE OF ANALYSIS A8924534

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

CERTIFICATION : _

Saut Sichler

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE , NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 WESTMIN RESOURCES LIMITED

P.O. Box 49066. The Bentall Centre VANCOUVER, B.C. V7X 1C4 Project : NATION LAKES Comments: ATTN: RON LANE Page N. 4 Tot. Pages: 4 Date 10-SEP-89 Invoice # 1-8924534 P.O. # 7458

.

SAMPLE DESCRIPTION	PRE COD	P DE	Au p pb FA + AA	Cu ppm	Zn ppm	Ag ppm Aqua R					
453468 453469 453470 453471 453472	203 203 203 203 203 203		< 5 < 5 < 5 < 5 < 5 < 5	1 2 6 9 3 5 0 1 1 4 5 5	98 91 72 170 110	0.6 0.7 0.5 0.7 0.4					
453473 453474 453475 453476 453477	203 203 203 203 203 203		5 < 5 < 5 < 5 < 5 < 5	108 69 116 62 84	1 2 0 1 4 8 1 0 0 8 7 9 4	0 4 0 3 0 2 0 6 0 6					
453478 453479 453480 453481 453483	203 203 203 203 203 203		<pre>< 5 < 5 < 5 < 5 10 < 5</pre>	6 0 1 6 9 2 6 8 1 3 4 4 2	8 2 1 3 0 2 8 0 1 1 0 1 4 6	0.7 0.6 0.7 0.5 0.6					
453484	203		< 5	174	1 3 0	0.5					
							CERTIF	VICATION :	rante	Sichle	A

XI. ATTACHMENTS

-

•

CICNICICANT COD		TROOMAS	SIC VOLUAN	IC ROO
SIGNIFICANT COP	PER D	EPOSITS	, AND ASSO	CIATED
ALKALIC PLUTON	IS IN T	HE CANA	DIAN CORDIL	LERA
		2010/2012 (12:00 11:00)		
		SCALE		
KILOMETRES 100		100 200	300 KILOMETRES	
KILOMETRES 100		100 200	300 KILOMETRES	

FIGURE 4

Silica/total alkalis plot, southern Hogem intrusive rocks.

FIGURE 6

GRID

① 0.50 - 0.9 1.0 - 1.9 - anomalous 3 2.0 - 9.9 ④ 10 - 19.9

TRUE

100 - 199 200 - 399 - anomalous 400 - 799 800 - 1599 1600 +

Westmin Mines Limited TCHENTLO LAKE PROPERTY TL-9 GRID Au, Ag, Cu, & Zn Soil Geochemistry Figure 150 m 100 14 SCALE 1:2500

GRID NORTH	
4	
450	
ALBRANCH	
NTREPORT	
A BEUKI	
010	
810	
810	
810 Mines Limited	
810 Mines Limited	
810 Mines Limited	
810 810 Mines Limited LAKE PROPERTY L-9 GRID	
ABIORIA BIORID LAKE PROPERTY L-9 GRID gy & Rock Chip	
BADD BADD Mines Limited LAKE PROPERTY L-9 GRID By & Rock Chip ple Locations	
ABTORI 810 810 Mines Limited LAKE PROPERTY -9 GRID y & Rock Chip ple Locations 50 100 150 Figure 15	

GEOLOGICAL BRANCH ASSESSMENT REPORT

19,810

3592794 0 004 03 Au/t 0 13 03 Ag/t 0 32 % Lu 0.01 % Zn

16200 N	430H 1 0.2 84 Cu (3)	439 H 10.4 550	- 4484 1 0.5 83		-457H X 0.3 - 359280A 5 ppb Au 5 ppb Au 5 ppb Au 5 ppb Au 70 - 202 ppm Cu 94 ppm Zn	4604 6 0.3 80	- 475H 1 0.2 1/6 Cu	2 453 4 1 0.5 174 130
	73 - 4294 5 78 91	- 4384 1 .1 33 Cu ②	99 - 447H 1, 159 87	Cu@	- 456H 1 0.4 260 95	- 445H 1.5 51 127	- 4744 1 0.3 69 148	- 483 1 0.6 42 146
16100 N	- 4284 85 81	-4374 .' .' 78 8\$	- 4464 1. 0.3 51 75	Cu ②	- 455'H I 0.4 2.20 74	-4444 0.4 58 110	- 4734 5 0.4 108 120	- 482
	- 427H 0.1 .1 107 75	-4364 ', ', '27 91	- 445 н 10.7 94 116		- 454H 1 0.7 54 145	- 463H 0.6 96 100	- 4724 1 0.4 55 110	- 481 10 0.5 134 110
16000N	426H	435H 10.2 145 107	<u>Ч44 н</u> ! ! ! 62-		4534 6.3 46 70	462H 0.3 69 90	471H 0.7 114 170 Cu Zn	<pre></pre>
	- 425H No Sample	— 434H ! , 9, 66	- 4434 1 90 84	Cu② Zn②	_ 452H 1 0.5 188 240	- 4614 0.2 64 100	- 470 <i>H</i> / 0.5 50 72 Cu	 2 4791 0.6 169 130
- 15900 N X 357281 H 20.002 03/Au/e 0.001 03/Au/e	- 424H 1 0.6 79 76	- 4334 !, 28 64	- 4424 1 23 44		- 451H	- 460H 0.4 6B 95	- 4694 1 0.7 93 91	- 478 0.7 60 82
0.003 % Cu 0.007 % Zn Cu (3) Zn (2)	-423H 10.2 430 280	- 432# 1 0.6 46 68	- 441 H 0.8 58 109		- 456H 1 0.3 52 110 Cu @	- 459 H 10 0.6 290 140	- 468# 10.6 126 98	- 477 6 84 94
15800N	453422H 1 .1 39 64	431# 1.1 20 46	446 H 1, 34 62		. 449H 1 4 8 Cu ④ 118 Zn ②	- 458H 1.0 920 310	L 467H 0.3 64 100	- 476 62 87
202	200E 20	300E 20	400E	205	000E 20	500E 2	0700E	20800E

			20	- 2964	- /	- 4214
22300 N	- 356 H	- 369 H	- 382 H	0.2	1 1 1 1 1 1 1 1 1 1 1 1 1	
	90 150	55	93	64 63	37 Cu@	160
			730		94	
	- 3 <i>5</i> 5#	— 368 H	- 381 H	- 394H	-433H	- 420H 1
Cu Ø	0.3 /48	0.2 96	0.3 96	0.2 41 Cu 2	0.6 175	0.8
Zn ②	210	120	100	132 Zn 2	300	126
22 200 N	- 3544	- 367 H	- 380H	- 393H	- 4324	- 419H
	.1	0.2	0.2	0.2	0.3	.,
	67 CU(2)	87 Zn 2	230	45 154	138 153	84
	2524	- 2664	- 379.4	- 292.4	- 42/11	- 4184
	1 0.2	1	1.2	1	10.2	0.5
	104	75 /44	100 139	24	29 74	118
				·/•	1	
22 100N	_ 3524	- 365H	- 378H	- 3914	- 430 H	- 417 н
Cu@	0.5 220 7n Ø	97 Cu2	/80		.1 86	
Zn(2)	220 2110	200	101		104	
	- 351H	- 3644	— 377н	- 3904	- 429 H	- 416H
	0.4 90 Cu(A)	0.6 Ag2	7.9 Ag 3	2.5	0.8	0.2
	170 Zn 2	210 Cu (3) Zn (2)	200 Cu (3) Zn (2)	230 Zn (2)	115 290	115
22000N	350H	3634	376H	389н	4284	415H
	0.3	0.3	0.5	0.8	1.1	0.3
	157	53 105	53 118	75 122	75 119	50
	7.110.1	2174	27.64	- 3084	4274	4144
Au	- 349 <i>H</i> 65 -1	- 362m	- 3/3n / /.6	1 0 3	1	0.2
Zn (2)	79	/32 Cu ③	450 240	45	·1 44	63
-	Zn 🥥	211(2)			108	
21900 N	- 348H	- 361H	- 374 H	- 387H	- 426H 1	- 4134
	63 120 X 359273H		0.4 67	0.6 39	0.2 31	0.4 54
	90 0.1 340	Zn(2)	248	115	119	113
	- 3474 44	- 360H	- 373H	- 386H	- 425#	- 412H
	0.5	0.4	10.3 32	0.2	0.2	1.1
Zn②	X 35927/7	180	148	36 150	107 Cu (3)	360
	158 50 3464	- 3594	- 3724	- 385H	- 4244	- 4114
Au (2)	60 0.7	0.6	0.4	1 0.4	0.5	0.7
	90 X 359721- 150 /	85 180	135	56 140	96 132	58
	160 72				11- 711	111-11
	- 345H 1	- 3584	- 37JH	- 384/4	1	1 1
	91	54 Cu 2	200	75 Cu2	165	56
ZnQ	- 10				101	18
21 700 N	L 359344H	L 357H	L 370H	- 3834	L422H 1	- 409H
	·/ 35 /27	0.3	24 Cu (3) 73 Zn (2)	430	0.2 50 Zn(2)	0.3
152	200E 153	00E 154	00E 155	00E 156	00E 157	OOE

Г	- 359 4084		
	· 1 26 67	LEGEND	
L	4074	Soil Sample	CRID
	1	A Stream Sediment Semple	NORTH
	34	△ Stream Sediment Sample	
	70	X Rock Chip Sample	
T	- 4064	NORTH	
	0.3 23	076H - Sample Number	
	54	1 - Au (ppb)	4
H	- 4054	0.4 - Ag (ppm) 32 - Cu (ppm)	
	0.3 68	125 - Zn (ppm)	
	144		_
-	- 4044	Au - ppb Ag - ppm Z E	200
	0.2		
	93 105	① 10 - 24 ① 0.50 - 0.9 ZC	
	- 11034	 (2) 25 - 49 - anomalous (2) 1.0 - 1.9 - anomalous 	
_ 0	1	3 50 - 99 3 2.0 - 9.9	1
	34	 ④ 100 - 199 ④ 10 - 19.9 〇 10 - 19.9 	
	1	© 200+ · · · · · · · · · · · · · · · · · ·	
-	- 4024	A Z	
u 2	180		>
	153	Cu - ppm Zinc - ppm	
+	- 4014	0 O	0
- 24	0.2	 75 - 149 100 - 199 100 - 199 	
	/ 30	2 150 - 299 - anomalous 2 200 - 399 - anomalous	
	- 4004	(3) 300 - 599 (3) 400 - 799 (2) (7)	ENTERING STATE
	1 0.2	(4) 600 - 1199 (4) 800 - 1599 (5) ₹	
n ②	42 200	(5) 1200+ (5) 1600+	
	29411	IA/ESTAAINI	
	1	Westmin Mines Limit	ed 🛛
	30		
	177	Work By	
	- 398H	R.Millar, R. Lane	
	0.4	Date Drafted	
Zn ②	200	TCHENTLO LAKE PROPER	TY
	- 3974	F.Heptonstall TI-5 GRID	1.25
	0.3	Date Revised	
In 2	360	February 1990 Au, Ag, Cu, & Zn Soil Geochem	nistry
	396H	Revised By	
u 2	1 230	NTS Number	Figure
1580	787 DOE	93N/2E,2W 50 0 50 100 150 m	
1001		SCALE IN SECO	10
		SUALE 1:2000	

GEOLOGICAL BRANCH ASSESSMENT REPORT

Cu 2

19,	811	0		•		Đ
22200 N	- 009 H - 1 30 60	018H 1 0.8 42 120	Г 027н 1 0.3 36 Cu (2) 106	036H 10 0.3 200 147	045# 1 0.4 62 106	5 0.5 96 195
	- 009H 1 0.2 95 96	- 017H 1 0.3 51 130	- 026H 1 0.3 60 122	- 035H 1 0.8 97 130	- 044н 1 0.2 110 Си © 86	- 053H 5 0.6 165 110
22100N	- 007 <i>H</i> 0.3 14 82	- 0164 1 0.6 52 143	- 025H 1 0.3 42 138	- 0 34H 1 0.4 110 80	- 043H 1 0,6 81 136	- 052H 1 0.6 145 120
7	- 006H 1 0.4 74 98	- 015H 5 0.2 95 Cu @ 162	- 024H 1 0.5 135 170	- 033H 1 0.4 50 73	- 042H 1 0.5 45 90	- 0514 1 0.5 75 158
22000 N	005H 10,4 45 129	01414 1. 2.2 126 96	0 23H 1 0.3 5° 120 Cu ②	032H 0.5 140 206	041H 1 0.3 78 127	050H 15 0.3 76 115
Cu @	- 004H 1 0.5 200 190	- 013H 1 0.2 27 44	- 077H 1 0.3 72 91	- 031H 1 0.3 49 93	- 040H 1 0.3 46 83	- 049H 10 .1 100 90
21900 N	- 003 H I 0.3 72 105	- 0/24 1 0.4 38 130	- 021H 1 0.7 100 150	- 030H 1 0.4 50 Cu 300	- 0394 1 0.3 767 780	- 048H 5 0.2 82 77
21800 N	- 002K 1 0.4 115 109	- 811H 1 30 83	- 0204 1 0.3 45 144 Zn ②	- 029H 0.4 67 210	- 0.38# 1 0.4 44 130	- 047H ! ! ! ! ! ! ! ! ! ! ! !
21800 N	L 453001H 1 0.3 Ag@ 18 Cu@ 190 Zn@	- 010H 1 1.1 270 290	L 019H 1 0.2 82 149	- 028H 1 0.2 43 190	C 037# 0.3 55 130	L 0 Y 6H 1.3 55 88
13	600E 13	 700E 13	800E 13	900E 14	4000 E	4100E

			LEGEND
			GRID NORTH
			- Soil Sample
			△ Stream Sediment Sample
4			x Rock Chip Sample TRUE NORTH
0634	- 0724	T 453081H	
5.6	5 0.4	0.5	отен - Sample Number
40	75 146	55 /00	1 - Au (ppb) 0.4 - Ag (ppm)
0624	- 0714	- 0804	32 - Cu (ppm)
.4	14	1.9	
/	96	64 132	45°
			Au - ppb Ag - ppm
1614	H OLO	- 079 H 5	
3	0.2 43	.1 54	① 10 - 24 ① 0.50 - 0.9
.0	127	87	 25 - 49 - anomalous 2 1.0 - 1.9 - anomalous
60 4	- 0694	- 078H	(3) 50 - 99 (3) 2.0 - 9.9
. 6	.1		(4) 100 - 199 (4) 10 - 19.9 (5) 000 +
0	107		(b) 200+
594	06BH	077H	
5	0.3	0.2	Cu - ppm Zinc - ppm
3	190	71	and blow
584	- 067H	- 0764	① 75 - 149 ① 100 - 199
.4	5.3	6.4	② 150 - 299 - anomalous ② 200 - 399 - anomalous
0	120	32 125	3 300 - 599 3 400 - 799
1574	0664	- 0254	④ 600 - 1199 ④ 800 - 1599
.3	1 0.4	5	<u>(5)</u> 1200+ <u>(5)</u> 1600+
3	95	62	
			WESTMIN
0564	51	-0744	Westmin Mines Limited
7	79	38	
	Z	n (2) 215	Work By
DSSH	L 064H 45	L 0734	R. Millar, R. Lane
05	0.3 79	0.2 54	September 1989
20	108	100	Drafted By ICHENILO LAKE PROPERTY
			F. Heptonstall TL-6 GRID
			Date Revised
			Bevised By Au, Ag, Cu, & Zh Soll Geochemistry
			R.W. Lane
OE	14 300 E	14400 E	N.T.S. Number Figure
			93N/2E,2W 50 0 50 100 150m
			SCALE 1: 2500

— 10600 N — 10500 N — 10500 N	$ \begin{bmatrix} 1214\\ 1\\ 0.6\\ 82\\ 170\\ -1224\\ 15\\ 0.2\\ 87\\ 166\\ -1234\\ 1\\ 1.7\\ 120\\ 200\\ Zn(2)\\ -1244\\ 5\\ 2n(2)\\ -1244\\ -12$	108H 15 0.7 48 270 - 109H							TRUE
	0.6 44 150	1.2 120 160			urveyed	urveyed	Irveyed		SEOLOGICAL BR
Ag ② Ag ②	- 125H 1.3 30 13 13 2n (2) - 126H 1.3 81 160 - 127H 10.7 47 98	$ \begin{array}{c} -1/0 \ H \\ 25 \\ 3.0 \\ 390 \\ 270 \\ 270 \\ 75 \\ 1/9 \\ 1/9 \\ 75 \\ 1/9 \\ 1/9 \\ 75 \\ 1/9 \\ 1/2 \\ 1/9 \\ 1/2$	H H H T T C.G 43 170 Au (3)	- 4434544 80 0.4 48 62	$\begin{array}{c} G \\ H \\$	Ag @ Zn @ 330 330 52H 0 51	365H 1-7 74 Zn (2) 318 H 1-4 1-4 1-4 1-4 1-4 1-4 1-4 1-4	448391H 1 0.7 74 140	19,81 LEGEND
	/ 128# / 0.7 29 /50 72 @	$ \begin{array}{c} -734 \\ 1.0 \\ 89 \\ -72 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90$	H - 1834 C.9 80	- 453 H 20 0.4 43 10 10 120 10 120 120 120 120 1	Ag (2) 41 41 41 41 41 41 41 41 41 41	- 351 H - 3 1 1 1 Ag (2) 1.0 Cu (2) 188 3	64H – 377H -3 0.9 Ag 8 29 Cu	- 390 H 1 2 1.6 2 150	△ Stream Sedim
10200 N	Zn (2) -1294 15 0.3 Ag (2) 118 135 Zn (3) -1304 0.4 Ag (2) 35 110 -1314 1 0.3 62 143	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zn (2) = 280 H $- 08.94H$ 70 6.7 710 720 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 270 270 3894 10 0.7 90 140 3894 140 3894 148 168 3874 168 3874 168 3874 5.8 	X Rock Chip Sa 076H - Sample Num I - Au (ppb) 0.4 - Ag (ppm) 32 - Cu (ppm) I 25 - Zn (ppm) Au - ppb
10000N	- 13 2 H 5 0.4 44 124 453 13 3 H 1 0.2 19 54 Ag ②	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	124 Zn (3) 100 100 145 145 145 145 145 145 145 145	400 TRONG VLF 308H 10.8 477 100 399 H 10.8 477 100 398 H 10.8 477 100 307 H 10.8 477 100 307 H 10.8 10 0.3 21 CONDUCT 307 H 10 307 H 10 10 10 10 10 10 10 10 10 10	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	о 158 158 158 158 158 158 0.3 44 210 59А 372А 0.7 70 165	51 110 - 386H 1 0.6 36 98 385H 0.6 63 140	 (c) 10 24 (c) 25 - 49 - anomalous (d) 50 - 99 (e) 100 - 199 (f) 200 +
9900 N		- 119 H 1 0.3 28 91 1.3 105 1.3 105 105 105 105 105 105 105 105	- 089H 1 0,2 40 100 - 090H - 090H - 090H Ag (2) - 091H	-397H -396H -396H -306H 0.6 44 155 -305H -305H 0.5 32 19 -304H -305H -305H -305H -305H -305H -305H -305H -304 -305H -305	- 319H - 332H - 332H	NG VLF 345H -3 10 1.4 CONDUCTOR 1 130 Zn (2) 20 3444H -31 10 55 3444H -31 145 110 343H -31	1584 - 371H 15 0.5 41 125 Zn 564 - 349H	$ \begin{array}{c} -384H \\ 1 \\ 0.5 \\ 77 \\ 410 \\ -383H \\ 0.4 \\ 59 \\ 250 $	 75 - 149 150 - 299 - anomalous 300 - 599 600 - 1199 1200 +
9800 N		0.2 39 110	$\begin{array}{c c} Ag @ & 1.2 \\ & 97 \\ Zn @ & 200 \end{array}$	0.6 30 75 79 79 70 75	0.5 42 86 101	0.8 78 159 771 170	8 0.6 65 170 Zn	 2 40 2 40 	Work Bu
9800 N		L 107H Ag 2 1.2 Cu 2 175 Zn 2 260	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} -316H \\ / 0.7 \\ +72 \\ 87 \\ -315H \\ / 0.6 \\ 23 \\ 70 \\ 314H \\ / 0.5 \\ \end{array} $	$Ag(2) = \begin{bmatrix} -342H \\ 1 \\ 0.4 \\ 30 \\ 95 \end{bmatrix} = Ag(2) = \begin{bmatrix} -3 \\ 1 \\ 1. \\ 72 \\ 73 \\ 73 \\ 73 \\ 73 \\ 74 \\ 74 \\ 74 \\ 74$	SSH = -368H 0 3 0 1 1 1 1 1 1 1 1 1 1	- 38/H 1 0.5 63 174 - 380H 5 1.2 80 196 - 379H 15 0.8	Work By R.Millar, R.Lane Date Drafted September 1989 Drafted By F. Heptonstall December, 1990 Revised By R. Lane Work By TCHENTLO TL Au,Ag,Cu, & Z
92	200E 93	 300e 9400e	Zn (2) 275 Zn (2) 9500E 960	72 Cu (2) 767 350 Zn (2) 305 0E 9700E	20 73 9800E 9900E	77 150 10000E 10100E	2 146 10200E	61 190 10300E	N.T.S. Number 93 N /2E ,2W SCALE

		× . /				
10 300 N	× No Sampla (163 H) 50.2 41	No Semple (176 H) 	/894 / -/ 26 81	C 20 24	2154	2284 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		- 175 H	- 1884	- 201 H	- 2144	- 2274
	0 2 45 65	.1 25 51	- 1 38 60	-1 19 46	-1 19 41	.1 16 42
10200 N	- 161 H	- 174 H	- /874	- 2004	- 213H	- 2764
	0.3 20 94	0.3 19 59	0:2 30 56	.7 20 60	0.4 46 95	·1 22 70
	- 1604	- 173 H	- 1364	- 1994	- 2124	- 2254
	0-2 33 47	' 18 88	11 47	25	. 1 20 60	0.2 19 56
10100N	- 1594	- 172H	- 185#	- 1984	- 211 H	- 2244
	0.2 12 46	•) 14 54	0.2 21 40	0.4 14 64	·/ /3 41	·/ /7 52
	- 1584	- /1/ H	- 1844	- 197H	- 2104	-2234
	35 72	16 45	0.2 15 41	17 51	.1 12 48	·/ /3 58
10 000N	157 H	170 H	1834	1964	209 H	222H
	9.3 19 49	., 19 43	0.2 21 56	Zn@ 200	.1 21 52	· 1 18 66
	- 156H 1 0.4 39 88	- 169 H .! .! .! .! .! .! .! .! .! .! 	- 1924 0. L 2.3 50	- 1954 0.2 44 120	- 2084 1 .1 31 92	- 221H 65 .1 31 71
9900N	- 155H	684	- 1 \$ /H	- 194H	- 2074	- 2204
	0.3 20 51	-1 20 49	0.2 22 62	.1 24 55	-1 16 47	.1 19 19
	- 1544	- 1L7H 60	- 1 50 H	- 193H	- 20% H	- 2194
	. 1 16 66	0.2 19 54	.1 30	·/ 20 62	.1 21	26
0200 N	- 1534	1664	- /794	- 1924	20511	- 218 H
9800N	1 .1	10.2	1	· / · /	1 0.3	1.1
	20 66	78 50	75 39	46	20 45	43
	- 152 H	- 165 H	- 1784	- 19/4	- 204H	- Z/7H
	· 1 16 45	0,2 17 44	-1 14 47	·1 15 40	·/ /7 47	17 44
9700 N	359/51H	L 164H	L 177 H	L 190H	2034	2164
	22	.'I 32	-1	.1	.,	1/3
	47	45	55	46	42	46
	9600E	9700 E	9800 E	9900 E	10000E	10100 E

			GRID NORTH
[241H	Z54H	- 359267H	TRUE
.1	.,	0.4	NORTH
21 47	17 43	46	
- 2404	- 2534	- 2664	LEGEND
5	1	15 0.2	Sail Sample
16	16	17 41	- Soli Sample
40	7-		△ Stream Sediment Sample
- Z39H	- 252H /	- 2654	x Rock Chip Sample 45°
.1	.1	.1 24	
43	49	45	
- 2384	- 251H	- 264H	076H - Sample Number
0.3	.1	0.3	0.4 - Ag (ppm)
28 68	24 54	75 78	32 - Cu (ppm) 125 - Zn (ppm)
- 7774	- 2504	-2634	
10	1	0.2	52 ()
24	24 57	20	Au - ppb Ag - ppm Z O
65			
- Z36H	- 249 _H 1	- 2624	
•1	.1 24	.1 20	(2) 25 - 49 - anomalous (2) 1.0 - 1.9 - anomalous
59	56	60	
23>H	24 1 H	2614	
.1	.1	-1	
68	62	84	
- 2344	- 247 H	- 2604	Cu - ppm Zinc - ppm
, , , , , , , , , , , , , , , , , , ,	1.1	1	
72	24 44	26 57	① 75 - 149 ① 100 - 199 〇 70
23211	2464	- 2 594	② 150 - 299 - anomalous ② 200 - 399 - anomalous 😂 🥨
1	[③ 300 - 599 ③ 400 - 799 ↺ ◀
18	19	38	④ 600 - 1199 ④ 800 - 1599
49	70	64	(5) 1200 + (5) 1600 +
- 232 #	- 245H	- 258 4	
./ 2/	19	.,	WEST/MIN
55	47	44	Westmin Mines Limited
- 231H	- 244 H	- 2574	
.1	.1	.1	Work By
18 45	1 50	58	R. Millar, R. Lane
- 230 H	- 1424	- 2564	September 1989 TOLIENTLO LAKE DOODEDTY
1		1	Drafted By
20	26	25 45	E Heptonstall TL-8 GRID
50		200	Date Revised
L 229H	L 242 H	L ×>5H	Bevised By
17	23	74	R.W. Lane
7)	47	110	N.T.S. Number Figure
2005	10300 5	10400 5	93N/2E,2W 50 0 50 100 150m
12002	10300 E	104001	SCALE 1: 2500

15300 N	Au (2) Au (2) 158 H 35 0.2 56 50 -157H 1 29 45 -156H 5 0.6 158 145 -155H 1 0.2 30 45 -155H 1 0.2 30 45 -154H 1 0.3 100 62 -153H 1 0.2 30 45 -154H 1 0.3 100 62 -153H 1 0.2 30 45 -153H 1 1 0.2 30 45 -154H 1 0.3 100 62 -153H 1 152H 1 152H 1 152H 1 1 152H 1 152H 1 1 152H 1 151H	783H 70 78 92 -182H 10 182H 10 182H 10 175 81 -181H 10 20 49 94 -180H 10 20 49 94 -180H 10 20 65 92 -179H 1 10 20 65 92 -179H 1 10 10 84 -178H 1 100 10	$ \begin{bmatrix} 208H \\ 1 \\ 0.3 \\ 5^{5} \\ 85 \\ -207H \\ 0.2 \\ 48 \\ 100 \\ -206H \\ 1 \\ 0.2 \\ 47 \\ 47 \\ -205H \\ 1 \\ 1 \\ 67 \\ 56 \\ -204H \\ 1 \\ 0.5 \\ 40 \\ 94 \\ -2034 \\ 1 \\ 0.2 \\ 53 \\ 69 \\ -2034 \\ 1 \\ 0.2 \\ 53 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 2334 \\ 1 \\ 0.2 \\ 60 \\ 82 \\ -2324 \\ 1 \\ 0.2 \\ 703 \\ 129 \\ -2374 \\ 1 \\ 0.2 \\ 703 \\ 129 \\ -2374 \\ 1 \\ 1 \\ 37 \\ 97 \\ -2304 \\ 1 \\ 1 \\ 51 \\ 78 \\ -2294 \\ 1 \\ 0.6 \\ 95 \\ 780 \\ -2284 \\ 1 \\ 0.3 \\ 60 \\ 110 \\ -2274 \\ 1 \\ 0.5 \\ 380 \\ 95 \\ -2264 \\ -2264 \\ \end{array} $	$Cu (2) = \begin{bmatrix} 2584 \\ 1 \\ 0.2 \\ 84 \\ 105 \\ -2574 \\ 1 \\ 0.2 \\ 42 \\ 84 \\ -2564 \\ 5 \\ 0.3 \\ 177 \\ 174 \\ -2554 \\ 1 \\ .1 \\ 59 \\ 100 \\ -2544 \\ 1 \\ .1 \\ 59 \\ 100 \\ -2534 \\ 1 \\ .1 \\ 822 \\ 75 \\ -2534 \\ 1 \\ .1 \\ 822 \\ 75 \\ -2534 \\ 1 \\ .1 \\ 822 \\ 75 \\ -2534 \\ 1 \\ .1 \\ 822 \\ 75 \\ -2534 \\ 1 \\ .1 \\ 822 \\ 75 \\ -2534 \\ 1 \\ .1 \\ 822 \\ 75 \\ -2534 \\ 1 \\ .1 \\ 822 \\ 75 \\ -2534 \\ 1 \\ .1 \\ .1 \\ 822 \\ 75 \\ -2534 \\ 1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1$	$ \begin{bmatrix} 283H \\ 1 \\ 0.4 \\ 49 \\ 89 \\ -282H \\ 1 \\ 0.3 \\ 72 \\ 118 \\ -281H \\ 1 \\ 0.3 \\ 63 \\ 100 \\ -280H \\ 1 \\ 0.2 \\ 80 \\ 45 \\ -279H \\ 1 \\ 0.2 \\ 80 \\ 45 \\ -279H \\ 1 \\ 0.2 \\ 80 \\ 45 \\ -279H \\ 1 \\ 0.2 \\ 84 \\ 95 \\ -278H \\ 1 \\ 0.2 \\ 84 \\ 95 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 106 \\ 98 \\ -270H \\ 5 \\ 0.2 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$ \begin{bmatrix} 308 \\ 1 \\ 0.2 \\ 71 \\ 95 \\ -3074 \\ 1 \\ 1 \\ 10 \\ 708 \\ -3064 \\ 1 \\ 0.2 \\ 39 \\ 74 \\ -3054 \\ 1 \\ 0.2 \\ 39 \\ 74 \\ 74 \\ -3054 \\ 1 \\ 0.2 \\ 70 \\ 91 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ -3024 \\ 10 \\ 10 \\ -3024 \\ 10 \\ 10 \\ -3024 \\ 10 \\ 10 \\ -3024 \\ 10 \\ 10 \\ -3024 \\ 10 \\ 10 \\ -3024 \\ 10 \\ 10 \\ 10 \\ -3024 \\ 10 \\$	$ \begin{bmatrix} 3334 \\ 1 \\ 0.3 \\ 67 \\ 71 \\ -3324 \\ 1,1 \\ 40 \\ 78 \\ -3324 \\ 1,1 \\ 40 \\ 78 \\ -33314 \\ 1 \\ .1 \\ 96 \\ 108 \\ -3304 \\ 1 \\ 0.2 \\ 38 \\ 96 \\ -3284 \\ 1 \\ 0.2 \\ 47 \\ 100 \\ -3284 \\ 1 \\ 0.2 \\ 47 \\ 100 \\ -3284 \\ 1 \\ 0.2 \\ 47 \\ 100 \\ -3284 \\ 1 \\ 0.2 \\ 47 \\ 100 \\ -3284 \\ 1 \\ 0.2 \\ 47 \\ 100 \\ -3284 \\ 1 \\ 0.2 \\ 47 \\ 100 \\ -3284 \\ 1 \\ 0.3 \\ 240 \\ 215 \\ -3264 \\ 1 \\ 1 \end{bmatrix} $	$ \begin{bmatrix} 4533550H\\ 1\\ 37\\ 82\\ -357H\\ 1\\ 79\\ 127\\ -356H\\ 1\\ 727\\ -356H\\ 1\\ 0.3\\ 57\\ 766\\ -355H\\ 1\\ 0.3\\ 57\\ 766\\ -355H\\ 1\\ 0.3\\ 57\\ 766\\ -355H\\ 1\\ 0.5\\ 92\\ 160\\ -3552H\\ 1\\ 1\\ 35\\ 160\\ -3552H\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 34\\ 68\\ -357H\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	
14900 N	- 1504 - 1504 0.2 70 85 - 1494 5,	0.3 105 117 - 1754 1 .1 59 97 - 1744	0.2 121 106 - 2004 1 0.2 100 108 - 1994 1	Cu (4) -1 730 133 -225H 1 0.3 280 107 - 224H 1	- 2504 1. .1 35' 70 - 249 H 1	0.2 100 95 - 275H 10.6 264 134 - 2744 1	,1 10 154 - 300 H 1, 144 123 - 299 H 1,	1/ 82 152 - 325++ 1 1 109 159 - 324++ 1	0.6 79 116 - 3504 1 0.2 137 176 - 3494 1 1	
—— 14800 N	- 14 1 H - 14 1 H - 1 - 14 1 H - 1 - 1 - 14 1 H - 1 - 14 1 H	0.2 58 93 - 173H / 0.4 71 /26 - 172H / 0.2	0.2 46 115 - 1984 1 0.4 82 74 - 1974 1 0.2	Cu (2) $\frac{1}{185}$ $\frac{1}{147}$ - 2234 $\frac{1}{0.4}$ Cu (3) $\frac{380}{156}$ - 2224 $\frac{1}{0.2}$	0.2 123 109 - 2484 1 0.3 400 8° - 2474 1	- 273H - 273H - 273H - 272H - 272H - 1	95 150 - 298 H 1 0.2 57 176 - 2874 1 0.3	-323H -323H -1 -323H -1 -323H -1 -322H 	Cu (2) 150 11g - 3484 1 0.2 25 102 - 3474 1 .1	GEOLOGICAL BRANCH ASSESSMENT REPORT
14700 N	110 74 - 146H 5 .1 95 146 - 145H	Cu (2) 218 120 -171 H 35 0.2 21 100 -170 H	Cu 2 334 157 - 1964 1 1 29 64 - 1954	Cu 3 380 Zn 2 230 - 221 H 1 0.2 85 85 - 220 H	Cu (2) 246 175 - 246H 1 0.2 61 69 - 245H	Cu (4) 750 98 - 2714 1 0.2 94 157 - 2704 1	0.3 56 93 - 2964 1 0.2 57 80 - 2954	Cu (4) 210 88 - 3214 1 0.7 32 147 - 3204	69 88 - 3464 1 0.4 30 126 - 3454 1	L 9, OLU LEGEND - Soil Sample
14600 N	/ 40 74 - 1444 6.3 82 100 - 1434	/ 0.3 91 114 - 169 H 5 1.7 600 275 - 168 H	0.4 53 100 - 1944 1 0.3 63 110 - 1934	Zn (2) = 2/94 2/0 - 2/94 1 0.3 153 - 2184 5	$\begin{array}{c} 0.2 \\ 72 \\ 740 \\ -2444 \\ 1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 \\ .1 $	- 269# 100 - 269# 1 0.4 430 160 - 268# 1 1	- 2944 1 0.2 374 117 - 2934 1	0.2 49 73 - 319H 1 1 76 120 - 318H 1	0.3 35 136 - 344H 5 1 45 89 - 343H 1 .1	∆ Stream Sediment Sample x Rock Chip Sample 076H - Sample Number I - Au (ppb) 0.4 - Ag (ppm) 32 - Cu (ppm)
14500N	0.2 35 56 142H 1 Cu② 295 109	6.4 47 110 167H Cu@ 290 152	0.2 48 87 192H 0.2 53 84 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	133 76 242H 1 0.3 45 74 - 241H	52 82 267 H 0.2 51 73 - 266H	73 109 292H 1 0.3 37 110 - 291H	48 93 3174 1 0.7 760 709 - 3744 1	48 98 3424 .1 35 85 - 341 H	125 - Zn (ppm) Au - ppb Ag - ppm ① 10 - 24 ① 0.50 - 0.9 ② 25 - 49 - anomalous ② 1.0 - 1.9 - anomalous
14400 N	1 0.2 75 144 - 140H 144 - 140H 149 - 139H No Sample	Cu ⁽²⁾ Cu	1 0.3 39 82 - 190H 1 0.5 80 130 - 189H 1 2.9 78 114	Cu (5) $1 \\ 0.3 \\ 4600 \\ 143 \\ - 2154 \\ 1 \\ 0.2 \\ 130 \\ 136 \\ - 2194 \\ 1 \\ 0.2 \\ 136 \\ - 2194 \\ 1 \\ 0.2 \\ 96 \\ 130 \\ 130 \\ - 130 \\ 130 \\ - 100 \\ 100 $	0.3 66 83 - 240# 1 0.3 61 54 - 239# 1 0.2 100 83	0.3 21 61 - 2454 1 0.2 59 116 - 2644 1 .1 89 91	0.7 140 170 - 290H 1 0.3 350 92 - 289H 1 0.3 92 127	- 315H - 315H - 315H - 315H - 1 - 314H - 314H - 314H - 48 110	Cu (3) - 340 H - 340 H - 340 H - 339 H - 339 H - 1 50 66	 3 50 - 99 3 2.0 - 9.9 4 100 - 199 5 200 + 5 20 + 5 20 + Cu - ppm 75 - 149 100 - 199 100 - 199 150 - 299 - anomalous 200 - 399 - anomalous
14300 N	Au ② 30 Cu ④ 720 140	- 143H 1 0.5 89 100	-188H 1 0.5 220 145	- 213 <i>H</i> / / / / / / / / / /	- 238 H 1 0.2 165 107	- 2634 1 .1 56 106	- 284 15 0.3 73 102	- 3134 1 1 94 122	- 338 H !! 27 69	③ 300 - 599 ③ 400 - 799 ④ 600 - 1199 ④ 800 - 1599 ⑤ 1200 + ⑤ 1600 +
14200 N	- 1374 6.2 43 75 - 136H	Cu ② 142.# / 0.2 /6/ /09 - 16/ H	-187H 1 0.3 49 106 -186H	- 212H 1 0.3 25 60 - 211H	- 23/H 1 0.5 72 100 - 236H	Cu (2) 1.8 238 126 	- 286 H	- 3124 1 - 1 - 79 123 - 3114 1	- 336 H	Westmin Mines Limited
141 00 N	(v. 2 48 100 - 135H 1.8 670 470 453 134H 0.2 477 98 20600E	/ / / 33 78 - 160H / / / / / / / / / / / / / / / / / / /	Cu 2 Cu 2	10.2 75 112 - 240 H 0.3 53 86 - 2094 20 0.8 61 122 20900E	- 1 132 120 - 235H 1 0.2 29 85 - 453234H 1 0.2 453234H 1 0.2 1/0 21000E	0.3 45 145 - 260H 1 1 100 120 - 2 25 69 21100E	0.2 37 85 - 2854 / 0.3 65 //7 2844 ./ 31 86 21200E	-1 91 129 -310H 1 -1 45 80 -309H - -2 -2 60 91 21300E	Cu (3) 97 143 - 335H 1 0.4 400 140 - 334H 1 - 1 54 94 21400E	R.Millar, R.Lane Date Drafted September 1989 Drafted By F. Heptonstall Date Revised February 1990 Revised By R.W. Lane N.T.S. Number 93N/2E,2W 50 0 50 50 SCALE 1: 2500

SICAL BRANCH	LAKE	ECCHEMICAL LESEND SI Geochemical Grid CECCHEMISTRY Soli geochemical response defined by Borondra orporation Ltd., in late 1990's early 1970'S. SCELLANEOUS aim Boundary aim Block CHUCHI LAKE
Internande Black Argeline, Brown Straten and Black Argeline, Brown Argenet and Black Argeline, Brown Straten and Black Argeline, Brown Argenet and Brown Argenet	Lower CRETACEOUS	$\begin{split} Product Depresentation of the product of the $

GEOLOGICAL BRANCH ASSESSMENT REPORT

19,810

	- 367 H	F 376 H	- 385H	- 394A	F 403H	-412H	F 45
13700 N	No Sample	1,	.1	.1	1	.1	.1
		108	72	52	134	40	60
		/33	110	150	180	7/	72
	2224	1				4114	- 42
	- 366 H	- 3754	- 384H	- 395 H	- 402 H		1
1	No Samp		.1	·/ An (2)	1.6	.1	0.
	The second second second	22	31	10 160 CH (3)	320 /7e	170	74
		61	100	130 020			
	ander	2-4.4	3834	392 4	4.01 11	- 410 H	- 41
13600 N	- 305 17	374 4	1	i.	No Sample	1	1
	0.5 85 Act	2 157	85	41	0	150	-1
	/36 Cu	2 140	92	93	C U (Z)	/32	140
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-					
E	- 364#	- 373H	-3824	- 391 H	4004	- 409H	- 41
	1,	1	1			.1	.1
	75	48	25	68	70	30	30
	108	118	13	120			- /
	36 3 H	372H	3814	390 4	399 H	408H	
1350 O N	1.	1	1	No Sample	No Sample	No Sample	1
	50	35	42				36
	91	95	100				110
							- "
	- 3624	- 371H	- 380 H	- 389H No Serrele	- 3984	- 4074	40
	.',	.,	de Same	1	. /	./	1.1
	30	32			37	34	173
	81	110			10	26	
13400 N	34/#	3100	- 379 4	- 388 H	- 3974	- 4064	- 4
	1	5104	PoorSemple	1	1	1	1
	0.6	0.4	1.1	.1	./	.1	0.4
	94 Zn(2) 220	147	130	85	120	13
	- 360 H	- 3694	- 378 H	- 387H	- 396 H	- 4 asH	- <i>4</i> /
	.'.		no sample	.,	1	0.4	0.
	41	459		47	26 120	120	190
122001	410 200	3684	_ 377H	L 386 H	L 395H	L 404 H	41
	- 4 53 359H	1	No Sample	i	1.	0.2	0.
	./	97		.1	24	59 70	3 5
	45	119	Z	n 2 250	105	/ 30	e 30
	1	1		1			
				1	1		
	19200E	19300E	19400E	19500E I	9600E I	9700E	198001

	LEGEND					
	- Soil Sample		GRID NORTH			
1.436.61	△ Stream Sedir	Stream Sediment Sample				
	× Rock Chip S	ample TRUE NORTH				
21H	076н - Sample Nu i - Au (ppb) 0.4 - Ag (ppm) 32 - Cu (ppm) 125 - Zn (ppm)	Imber				
	Au - ppb	Ag - ppm	45°			
	① 10 - 24	0.50 - 0.9				
	 25 - 49 - anomalous 	 2 1.0 - 1.9 - anomalous 				
1.80× 10 101	3 50 - 99	3 2.0 - 9.9				
	④ 100 - 199	④ 10 - 19.9				
	§ 200+	(5) 20+				
	Cu - ppm	Zinc - ppm				
S . S . S	 150 - 299 - anomalous 	 200 - 399 - anomalous 				
	3 300 - 599	3 400 - 799				
	④ 600 - 1199	④ 800 - 1599				
	(5) 1200 +	(5) 1600 +				
4		Vestmin Mines Lim	ited			
	Work By R.Millar, R.Lane Date Drafted September 1989 Drafted By F.Heptonstall Date Revised February 1990 Revised By R.W. Lane	CHENTLO LAKE PROPE TL-I GRID ,Ag,Cu, & Zn Soil Geoche	ERTY emistry			
	N.T.S. Number 93N/2E,2W	0 50 100 150 SCALE 1: 2500	o m Figure 8			