LOG NO: 05	-29	RĎ.
ACTION:		
FILE NO:		

LOG NO:	11-15	RD.
ACTION:	Date N	eccuied
back	from a	mendment
	<i>v</i>	
FILE NO:		

VALLEY, RAINBOW & WONDER CLAIMS GEOLOGY/ GEOCHEMICAL 1989

WELLS, B.C.

NTS: 93 H/4 CARIBOO MINING DIVISION

GEOLOGICAL BRANCH ASSESSMENT REPORT

Latitude: 53°07' Longitude: 121°32'

Operator: T.L.Donnon P.O.Box 43 Skookumchuck, B.C. VOB 2E0

Owner: M.V.Heinzelman P.O.Box 4161 Quesnsl, B.C. V2J 3J2

October,1989

)

LIST OF CONTENTS

		Page No.
	SUMMARY	i
1	INTRODUCTION	· 1
	1.1 General	1
	1.2 Location, Access and Physiography	1
	1.3 Claim Status	2
	1.4 History	2
2	GEOCHEMICAL	4
	2.1 General	4
3	GEOLOGY	5
	3.1 Regional Geology	5
	3.2 Local Geology	5
	3.2.1 Lithology	5
	3.2.2 Structure	6
	3.2.3 Mineralization and Alteration	7
4	INTERPRETATION - CONCLUSIONS + RECOMENDATIONS REFERENCES	7 4,76 8
5	STATEMENT OF QUALIFICATIONS	9

.

Cost Statement А Analytical Results LIST OF FIGURES

. الاستا

	Location
Location Map	la
Claim Map	2 a
Geology & Sample Location	pocket
	Claim Map

SUMMARY

÷.,

The Valley I-III, Rainbow 1-2 & Wonder 1-6 claims are located approximately two kilometers east of Wells in central British Columbia. Extensive work, in the late 1930's, was successful in locating gold-bearing quartz veins. However, until only recently exploration development has been restricted to physical work such as road construction.

The claims are underlain by Precambrian sericite schists and moderately dolomitized limestone. Prospecting located four areas of pyrite-quartz veining in bedrock or subcrop which are associated with gold mineralization. The 1989 work concentrated on geological mapping and intensive soil sampling of the original claims held by the owner.

Geochemical sampling totalling 237 soils, and four rocks, was completed within the first three weeks. Géological mapping revealed sparse outcrop exposure expect along roadcuts, old workings, or the Mailleue creek. The bedrock consists of predominantly sericite schists with slight variations as a result of mineral compostion. The thick dolomitic limestone beds help distinguish between the Pleasant Valley and Barkerville Formations which trend northwesterly along Valley Mountian.

Geological setting and abundant pyrite-quartz veins on the property are typical of gold-bearing epithermal vein deposits such as Cariboo Gold Quartz, Island Mountian, and Mosquito Creek. All situated in the immediate vicinity of Wells. Analyses from the samples taken this year should confirm the presence of any gold on the claims. Anomalous areas may have to be further explored by trenching or diamond drilling.

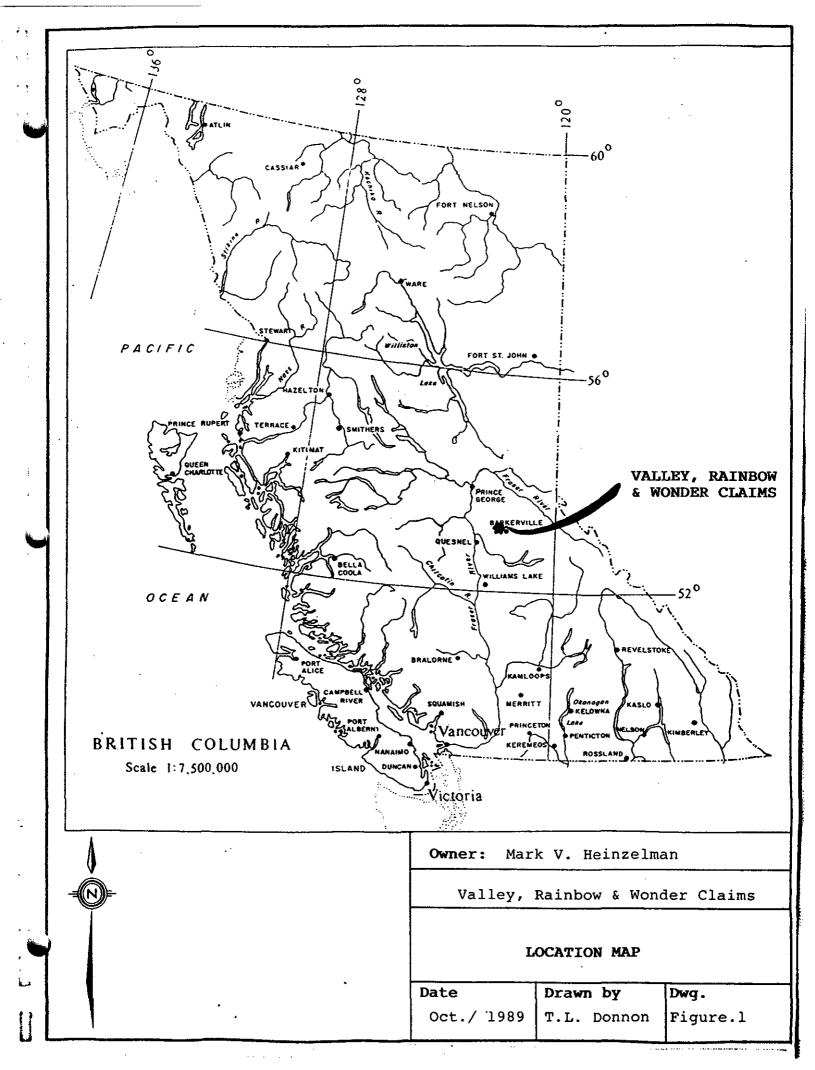
- i -

1 INTRODUCTION

1.1 General

From September 18th to October 19th, 1989, a program of geological mapping and geochemical sampling was completed almost exclusive on the Wonder 1-6 & Rainbow 1-2 claims. Soil samples were collected at specific grid intervals established on the property to allow optimum coverage. The rock samples were collected from sulphide-rich quartz veins, which appear to be scattered across the claims.

This report will describe the work completed and discuss the potential for further development based on the results that maybe obtained from the analyses of the samples.


1.2 Location, Access and Physiography

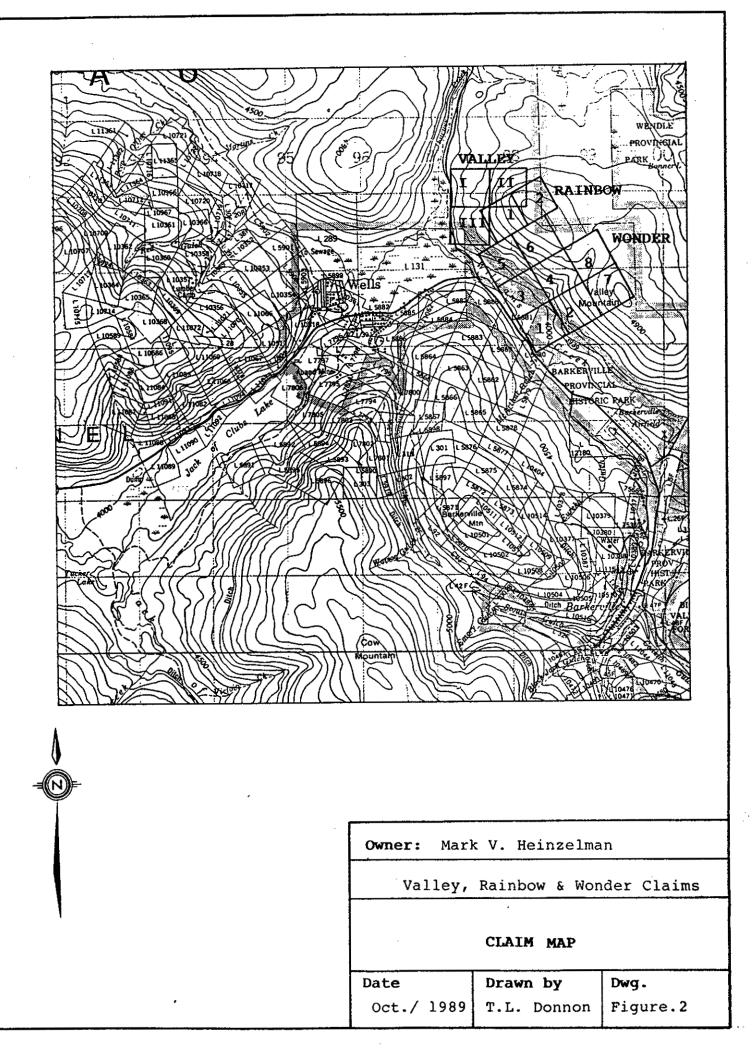
The claims are situated in central British Columbia, two kilometers east of Wells, on map sheet NTS 93H/4 (Figure. 1).

Road access is available right to the claims. The paved road ends at the junction, just two kilometers east of the town of Wells, where the well gravelled Downery Creek road begins. Travelling north, approximately 200 metres, is a four-wheel drive access road previously constructed by the owner. This road weaves steeply up the northwest side of Valley Mountain to the entrance of an adit tunnelled back in the late 1930's.

Topography is generally steep and slopes towards the west to southwest. Elevations vary from 4,000 fasl, on the southwest side of the claims, to 5,000 fasl on the northeastside. Vegetation is dominantly lodgepole pine with marshy areas down along the creek valleys.

- 1 -

1.3 Claim Status


The property originally consisted of eight contiguous 2post claims. Surrounding area was found to be available for mineral staking, and another five 2-post mineral claims were located (Figure.2). All of the claims are situated within the Cariboo Mining Division as described below:

<u>Claim</u>	Record Nos.	Recorded	Expiry
Wonder l	15522 M	Sept.21/1937	1990
Wonder 2	17362 H	July 24/1945	1990
Wonder 3	17365 H	July 24/1945	1990
Wonder 4	17363 н	July 24/1945	1990
Wonder 5	17364 н	July 24/1945	1990
Wonder 6	15524 M	Sept.21/1937	1990
Rainbow 1	16749 G	June 10/1941	1990
Rainbow 1	16750 G	June 10/1941	1990
New Claim			
Valley I	10043	Sept.18/1989	1990
Valley II	10044	Sept.18/1989	1990
Valley III	10045	Sept.18/1989	1990
Wonder 7	10136	Oct.11/1989	1990
Wonder 8	10137	Oct.11/1989	1990

1.4 History

Several mineral exploration ventures have been and are currently being conducted in the area. The Wells-Barkerville area has been populated by prospectors since the Cariboo Gold rush began in the 1850's. Although this district is dominantly know for the millions of dollars worth of placer gold extracted from the surrounding sediments. Gold-bearing quartz veins and gold-bearing pyritic replacements in limestone have been mined successfully since the early 1930's. The gold-bearing veins can vary in thickness from millimeters to two metres, but rarely exceed 100 metres in

- 2 -

j.

length. The gold is found to be associated with the pyrite, which in some veins located on the Rainbow 1 & 2 claims is massive and abundant. Although the best known veins have been associated with the upper lithology of the Richfield Formation, other deposits with anomalous gold values throughout the Cariboo Series exist.

In 1937, the originally owner of the property tunnelled out a drift and crosscut which followed gold-bearing veins for a distance of 120 feet. The width of these pyriticquartz veins varied from 50 to 150 centimeters. Rock samples were analysed by Coast Eldridge Engineers & Chemists Ltd. of Vancouver. The best results were obtained from those samples collected from the quartz veins, with or without visible sulphides present. Several old hand trenches, typically exposing bedrock, can still be found scattered around the claims. Along the Mailleue creek are the remains of equipment used to take out the placer gold. However, since then very little geological work has been performed on the property.

Surrounding mineral claims to the north have completed intensives geological, geochemical and geophysical studies. Diamond drilling was conducted to follow up I.P. anomalies along fault zones near Eight Mile lake. However, poor results from core sample analyses have halted any further development of the predominantly northeasterly trending structures. Towards the south and west are old but successful gold producing mines like the Island Mountain and Cariboo Gold Quartz Mines. Today, the Mosquito Creek Gold Mine, situated just west of the town of Wells, is the most productively active mine in the area.

- 3 -

2 GEOCHEMICAL

2.1 General

Beginning from the established baseline between the initial and final posts of the 2-post claims Rainbow 1-2 & Wonder 1-6. A total of 237 soil samples were collected at either 50 or 100 metre intervals along a grid system striking 060° (ie. perpendicular) from the baseline. These soil lines were set apart by a distance of 75 metres, and sampling was staggered by 50 metres from adjacent lines to allow for optimum coverage. Generally, the soil samples consisted of yellowish to orangeish brown coloured, "B" horizon silt with small rock fragments of schist and occasionally quartz. Several "C" horizon samples were also collected, but these were typically restricted to areas where soil overburden was thin near the mountain ridge top. Soil coverage on the property is fairly thin and bedrock is usually no more than 30-50 centimeters below ground surface.

Of the four rock samples, only the one collected down along the Downery Creek road was from actual outcrop exposure. The other three were grab samples of mineralized quartz vein. Two collected from the dump located at the entrance of the old adit. One from boulder size fragments of vein rock lying near a hole where part of the tunnel had collapsed in from above. All four samples consist of moderately limonitic, well fractured, milky white quartz with 5-25 % fine to coarsely crystalline pyrite. No other sulphide or visible gold appears to exist on examination of hand samples.

All geological information and geochemical sampling was completed by geologist Tyrone Donnon. Sample locations are shown on the accompanying map (Figure.3).

- 4 -

3 GEOLOGY

3.1 Regional Geology

The Wonder, Valley, & Rainbow claims are located on the upper half of the Cariboo Series of metamorphosed Precambrian sediments (BG.T. map 336A, 1938). This northeastern limb, of a larger broad northwesterly plunging anticline, separates the series into distinctive formations. The claims are centred over the contact between the younger Pleasant Valley Formation to the northeast, and the older Barkerville Formation to the Southwest. The Cariboo series has at least three different periods of quartz fracture filling, most of which strike east, northeast, and northwest. The best known gold-bearing quartz veins in the area are found to be steeply dipping, strike northeast, and intersect the lithology at right angles.

3.2 Local Geology

Outcrop exposure is basically restricted to showings along roadcuts, the Mailleue creek and previously dug trenches. However, near the northwesterly trending ridge top, the bedrock is never very far from the surface. Therefore, the lithology was noted based on the rock fragments found during soil sampling.

3.2.1 Lithology

Geological interpretation and outcrop distribution are illustrated in figure three. Two dominant lithologies exist on the property; including slight variations as a result of metamorphism and/or mineralogy. On the southwest side of the contact, between the Pleasant Valley Formation and Barkerville Formation, are interbedded limestones and sercite schists. The schists can vary in colour from a greenish, grey chlorite-sericite schist to a bluish, grey graphitic-sericite schist. Regardless of mineral composition, all schist outcrop exposures on the property have three things in common; (1) strongly foliated along bedding (cleaving easily into thin flat sheets), (2) brilliant sheen along cleavage planes, (3) lack of characteristic wavy foliation typically associated with schists.

The white and grey banded limestone beds conform with the surrounding schists. Two predominant beds are well exposed along the Downery Creek road. One bed was calculated to be approximately 15 metres wide, the other could only be estimated at 50 metres because of obscurities. The rock appears to be moderately dolomitized and has the sugary texture on fresh surfaces.

On the northeast side of the contact lies the light tan to grey coloured, sericite schists of the Pleasant Valley Formation. Very similair in appearance to the other schists mentioned above, but mineralogical a sericite schist.

3.2.2 Structure

. .

The stratigraphy lies on the northeastern limb of a broader northwesterly plunging anticline centered near Barkerville. Dip measurements from across the property show an increase in bedding steepness from 30° at the most southwesterly located outcrop, to 80° near the entrance of the adit. Strike attitudes also seem to change gradually from 100° along the Downery Creek roadside rock exposures, to 135° on the Mailleue Creek outcrops. Three independent sets of quartz veins (fracture filling) exist on the property. The most common set trending along foliation and between the contacts separating the limestone and schist lithologies. The gold-bearing veins found within the adit are also believed to trend with or close to the bedding planes.

- 6 -

3.2.3 Mineralization and Alteration

Economically viable gold values, from rock samples collected within the adit, are associated with the milky white pyrite-quartz veins. Most of the quartz veining found scattered across the property is typically barren of any visible mineralization. However, two pyritic quartz veins were located in outcrop along the Downery Creek road, while several quartz boulders with disseminated pyrite were found throughout the Mailleue creek. The pyrite occurs as fine to coarsely crystalline disseminations and/or blebs. Some rock fragments, collected from near the adit, appear as coarsely-grained massive concentrations.

The surroundind host rock, in the immediate area of quartz veining, shows no apparent alteration or mineralization.

- 7 -

INTERPRETATION OF RESULTS

The gold and silver concentrations in soils across much of the property were measured at 237 sites, spaced 50 meters apart on lines striking 60° and separated by 75 meters. This exploration exercise covers an area of 1.75Km² along the moderately steep slope of Williams Creek Valley.

The overburden along the slopes of this valley consists of a thin blanket of glacial sediments normally less that 1 meter thick at higher elevations. The lower portions of the valley contains greater unknown thicknesses of recent (<12,000 years before present) colluvium and alluvial ? sediments.

The 3 Zones containing anomalous gold values, described below, probably derived from mineralized sections of local bedrock. The erosion and subsequent dispersion of gold from mineralized bedrock along this slope would expect to form either both or one of the following patterns; 1) a down-slope pattern due to syngenetic (Clastic) colluvium and or alluvial dispersion or due to hydromorphic dispersion of mobile gold found in groundwater solutions. 2) a down-valley dispersion (northwesterly) which parallels the late Wisennsin Ice Flow direction and resultant direction of transported subglacial sediments. Apetrographic analyses of anomalous samples could delineate whether the gold was transported be a clastic or hydromorphic mode.

The regional threshold value of gold in soils is 2 ppb although the local threshold value at each of the following anomalous zones is closer to 10 ppb. Each zone consists of an area enclosed by the following samples and corresponding values; Zone 1) Samples 132, 141, and 142 with values of 15, 280, and 10 ppb.Au. Zone 2) Samples 73, 74 with values of 39 and 15ppb. Au. Zone 3) Sample 38 with a value of 56 ppb. Au. Silver values do not seem to form similar relationships with zones of anomalous gold values.

CONCLUSIONS AND RECOMMENDATIONS

The Geochemical Soil Survey performed on the property has identified 3 Zones of anomalous gold values. The dispersion of gold values within the soils have been discussed in the previous section. Teh dispersion of gold from eroded mineralized bedrock will trend either or both down-slope and down-valley. To grasp a better understanding of these dispersion patterns in each zone, futher sampling and trenching is redommended for the next stage of exploration. Additional samples should be collected at 10 meter increments along each line within each of the 3 zones. Additional lines spaced 25 meters apart should also be sampled with similar increments in each zone. Approximately a total of 70 samples should be sufficient.

A trenching program could be initiated after this second stage of Geochemical analyses. The positioning of each trench is important as far as regarding the dispersion of gold which was discussed earlier. Another recomendation is to reopen the 1937 adit and retrace the possible extensons of the auriferous vein.

Since each anomalous zone is separated by a relatively large distance, it appears that the gold mineralization in the area is independent of each zone. In other words gold values have derived from independant veins or pod-like structures of massive sulfides which are common in some rocks of the Downey Creek Succession. Since there are no corresponding anomalouw arsenic and base metal values in each anomalous gold zone it is improbable the the gold values derived from related massive sulfides.

REFERENCES

8 -

Hanson, G.; 1933-34:	Bureau of Geology and Topography Map 336A- <u>Willow river sheet (E)</u> Cariboo District, B.C.
Heinzelman, M.V. :	Material and documents pertaining to the history and development of the Wonder 1-6 & Rainbow 1-2 claims.

4

. .

**

5.0

. .

. .

1 I am a geologist, using mailing address; P.O.Box 43 Skookumchuck, B.C. VOB 2E0

. L. Donnom

- 2 I am a graduate of the University of British Columbia, with a B.Sc. (Geological Sciences) in 1987.
- 3 I have praticed my profession with Riocanex, Lac Minerals, Hudson Bay Exploration and Development, Mingold Resourses, and Noranda Exploration during and since graduation.
- 4 I personally supervised the exploration program conducted on the Valley, Rainbow & Wonder claims from September 18th to October 19th, 1989.

VALLEY, RAINBOW & WONDER CLAIMS: 1989 COST STATEMENT GEOLOGY/ GEOCHEMICAL

Salary: From September 18th- October 19th, 1989; 32 days \$ 2,189.00 Travel: \$ 1,986.00 Truck Rental, Gas & Miscellaneous Food/ Accommodation: \$ 1,250.00 Equipment/ Supplies: 325.00 Ś Drafting/ Copying: \$ 250.00 \$ 6,000.00 #2 Man/ Sept.18&19, Nov.14&15; 4 Days @\$80.00 per day 320.00 \$ Gas & Miscellaneous 125.00 \$ Total Costs 6.445. ACME Analytical Laboratories LTD. - Geochemical Amalysis \$ 2,081.20 Total Costs \$ 8,526.20

ACME AWALY CAL LABORATORIES LTD.

- -

٠.

ية . بر

PHONE (604) 253-3158 FAX (6 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P7 SOIL P8 ROCK AU* ANALYSIS BY ACID LEACH/AA FROM 10 GM SAMPLE.

SAMPLE#	Mo PP M	Cu PPN	Pb PPM	Zn PPM	Ag PPN	Ni PPM	Co PP M	Mn PPM	Fe X	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PP M	Sb PPM	Bi PPM	V PPM	Ca X	P X	La PPM	Cr PPM	Mg X	Ba PPN	Ti X		l X	Na X	K X	•• -	Au* PPB
001 002 003 004 005	1 1 1 1 1	12 15 19 32 62	15 13 8 8 15	61 64 65 76 96	.1 .3 .1 .1 .4	19 29	7 9 10 16 24	148 335 569	3.69 4.41 3.99 4.22 6.58	7 6 18 17 26	5 5 5 5 5	ND ND ND ND	2 3 5 4 1	9 10 5 10 29	1 1 1 1	2 3 2 2 2 2	6 2 2 5 2	43 51 14 13 39	.03	.062	21 20 41 33 16	34 41 10 9 59	.38 .47 .07 .11 .44	85 96 56 82 61	.06 .07 .01 .01 .01	2 1.3 3 1.5 4 .6 3 .5 4 1.6	6.0.	01 01 01	.03 .02 .03 .04 .03	22211	4 1 8 2 4
006 007 008 009 010	1 1 1 1	45 11 20 36 51	6 14 16 22 33	95 40 59 68 80	.3 .5 .7 .8 .4		15 6 7 12 11	88 253 1641	5.89 3.25 3.64 4.32 5.84	13 8 11 12 17	5 5 5 5 5	ND ND ND ND	4 2 1 1	8 4 10 19 11	11111	2 2 3 2 2	2 2 2 2 2 2 2	37 24 39 34 33	.21	.124 .116 .129	31 33 37 34 34	21 19 21 20 25	.42 .22 .19 .28 .31	81 46 55 64	.01 .01 .01 .01 .02	2 1.5 4 1.0 3 .9 2 1.1 4 1.4	2. 8. 0.	01 01 .01	.03 .03 .04 .03 .03	1 3 2 1 1	2 1 3 1 1
011 012 013 014 015	1 1 1 1	19 50 34 21 111	17 28 21 8 20	79 135 100 91 118	.2 .2 .3 .3 1,1	21	15 21 20 12 25		6.72 5.77 4.63 4.71 4.99	14 15 11 10 13	5 5 5 9	nd Nd Nd Nd	6 5 3 2 1	12 5 19 17 99	1 1 1 1 1 1	3 2 2 2 3	22222	49 18 23 29 23	.06 .37 .24	.090 .061 .046	24 32 26 28 15	38 25 24 19 28	.37 .45 .40 .19 .37	149 90 181 188 132	.05 .01 .01 .01 .02	8 1.7 2 1.6 2 1.2 2 1.0 4 1.7	5. 8.	01 01 01	.03 .02 .03 .04 .05	1	4 11 3 1 1
016 017 018 019 020	1 1 1 1	56 91 38 30 20	29 37 26 15 26	121 127 83 80 94	.2 .7 .3 .5			1237 281 183	7.11 6.25 6.46 3.86 6.83	19 14 10 10 12	5 5 5 5 5	nd Nd Nd Nd Nd	7 8 3 3 4	37 43 9 11 7	11111	2 5 2 2 2 2	2222	40 26 27 24 61	.52 .08 .12	.097 .078 .076	30 47 31 37 28	41 34 27 23 41	.55 .61 .48 .59 .45	67 106 39 47 89	.01 .01 .01 .01 .07	2 2.7 2 2.4 2 1.6 2 1.7 3 1.8	5.	.01 .01 .01	.04 .07 .03 .04 .02	111111111111111111111111111111111111111	1 2 1 1
021 022 023 024 025	1 1 1 1	19 39 46 25 13	11 23 21 7 8	56 128 118 62 47	.1 .3 .9 .1 .1	14 46 46 21 12		1545 608 153	4.03 5.68 6.05 3.29 2.83	5 14 17 14 7	5 5 5 5 5	nd Nd Nd Nd Nd	6 2 1 2 2	6 21 26 9 7	11111	2 2 2 2 2 2 2	4 2 2 2 5	26 30 31 34 29	.41	-086 -040	30 24 21 35 41	14 33 32 18 17	.17 .46 .40 .09 .14	72 129 192 99 56	.01 .02 .02 .02 .02	2 1.1 2 2.2 2 1.7 3 .8 2 .8	26. 78. 33.	.01 .01 .01	.03 .04 .04 .02 .03	1 1 1 1	2 1 1 12 4
026 027 028 029 030	1 1 1 1	48 64 55 50 19	13 32 28 34 227	101 91 75 107 70	1.1 .3 .1 .1 .2	20 35 42 48 29	13 19 15 21 14	654	5.50 5.31 4.86 5.61 7.91	15 14 13 14 12	5 5 5 5 5	nd Nd Nd Nd Nd	3 1 4 6 8	9 39 13 21 8	11111	3 2 2 2 2	222222	53 35 35 27 46	.42 .10 .25	.129 .115 .090 .069 .043	31 31 42 38 26	24 26 31 37 43	.50 .36 .36 .70 .44	78 79 52 61 156	.01 .01 .01 .01	2 2.0 2 1.8 5 1.7 2 2.6 6 2.4	37 . 11 . 22 .	.01 .01 .01	.04 .05 .06 .05 .03	111111111111111111111111111111111111111	3 1 1 2 2
031 032 033 034 035	1 1 1 1	42 24 28 74 16	24 15 19 11 7	115 92 84 63 55	.1 .2 .1 .1		20 9 13 11 8	331 192 499 365 180	7.11 4.23 6.15 4.79 3.40	12 10 13 8 15	5 5 5 5 5	ND ND ND ND	42435	15 22 10 6 7		2 2 2 2 2	42422	26 39 31 31 44	.44 .14 .06	.062	24 33 34 35 43	28 24 22 22 27	.47 .20 .20 .21 .21	115 206 147 62 51	.01 .02 .02 .02 .02	2 1.9 2 1.7 2 .9 2 1.0 2 1.0	11. 25. 27.	.01 .01 .01	.03 .04 .05 .03 .03	1 1 1 1	1 1 3 10 1
036 STD C/AU-S	1 18	68 58	20 41	116 132	.6 6.7	41 67	17 31	969 958	4.93 4.10	10 41		ND 7	3 38	64 48	1 18	3 15	2 23	33 58		.146 .094	28 39	35 56	.62 .89	66 172	.02 60.	2 2.0 33 2.0			.05 .14	1 13	1 53

7. lij				v																										مدي	
· ·										MARI	K HI	EIN	2el	MAN	C	FIL	E #	89	-50	24								•	C	age	2
SAMPLE#	Mo PPM	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe X		. U PP h	Au PPM	Th PPM	Sr PPM		Sb PPM	Bî PPM	V PPM	Ca X	P X	La PPM	Cr PPM	Mg X	8a PPM	Ti X	B PPN	Al %	Na %	К %		Au* PPB
037 038 039 040 041 042 043 044 045 046	111111111111111111111111111111111111111	18 21 17 18 20 27 19 31 32 20	25 11 16 10 14 19 5 15 24 16	68 63 84 93 95 59 101 88 62	.4 .1 .1 .1 .1 .1 .1 .4 .3	17 15 26 23 28 22 17 32 20	12 10 15 13	131 296 255 218 382 418 169 174 780	4.89 2.94 6.41 4.32 4.92 5.27 3.97 6.11 5.83	11 6 10 7 9 8 8 8 8 12	555555555	ND ND ND ND ND ND ND	8 1 2 1 6 10 3	4 18 8 12 20 16 4 5 9	1 1 1 1 1 1 1	2 2 2 2 2	22222222222	23 29 65 54 63 37 31 26 60	.18 .15 .16 .38 .29 .07 .04 .08	.075 .054 .062 .039 .051 .051 .044 .047 .078	34 36 22 24 22 28 34 37 36	28 20 48 36 41 25 17 30 25	.52 .18 .54 .32 .41 .23 .15 .49 .39	37 78 196 151 193 168 52 55 56	.01 .01 .08 .04 .05 .02 .03 .01	2222 2222 2223	1.70 .83 2.11 1.67 1.72 1.34 .74 2.02 1.61		.04 .03 .03 .04 .03 .03 .03 .04 .04		1 56 3 1 2 2 1 2 1
047 048 049 050 051	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 7 16 30 19	22 13 15 13 16	75 54 69 89 84	.1 .3 .1 .2 .2	15 18 11 23 35 27	8 10 5 11 14 12	151 404 165 530 305 288	3.95 5.20 2.70 4.50 5.16 4.36	9 9 8 7 10 6	5 5 5 5 5 5	ND ND ND ND ND	7 5 6 3 1 6	11 7 6 7 33 10	1111	2 2 2 2 2 2 2	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	34 30 27 48 52 41	.05 .06 .11 .53 .16		46 35 40 28 25 29	21 28 17 34 46 33	.25 .32 .28 .42 .44 .39	60 82 63 84 185 158	.01 .01 .04 .04 .03	2 2 2 2 2	1.26 1.65 1.20 1.54 2.19 1.43	.01 .01 .01 .01 .01 .01	.03 .06 .04 .04 .05 .06	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 3 4
052 053 054 055 056 057	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	32 14 18 18 6 18	16 12 20 15 7 22	103 128 79 63 20	.5 .1 .2 .4 .1 .4	35 32 24 19 5	16 16 10 8 2	263 468 153 295 81	6.78 5.76 5.35 4.17 .82	13 7 12 12 4	5 5 5 5 5	ND ND ND ND ND	9 8 13 3 8	8 9 3 7 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	2 2 2 2 2 2	42 26 36 29 12	.03 .11 .03	.083 .072 .086 .029	31 25 53 41 58	41 25 26 24 10	.47 .31 .30 .24 .07	118 123 38 44 25	.02 .01 .01 .01	2 2 7 2	2.10 1.64 1.75 1.35 .88	.01 .01 .01 .01 .01	.05 .06 .03 .04 .02		1 8 3 2 1
058 059 060 061	1 1 1	13 15 14 17	13 17 14 13	77 97 72 95 77	,2 ,3 ,1 ,2	21 18 24 26 26	10	517 245	5.00 3.88 3.89 4.22 4.86	11 8 10 13 10	55555	ND ND ND ND ND	3 5 7 4 7	5 7 8 12 7	1	2	5 2 2 2 2	30 42 45 40 42	.12 .11 .21 .11		37 24 26 24 31	27 32 35 33 38	.38 .34 .33 .34 .46	70 125 138 181 126	.01 .04 .04 .03 .03	4 5 2 2	1.39 1.73 1.91 1.88 1.82	.01 .01 .01 .01 .01	.05 .03 .02 .02 .04		1 3 1 2 1
062 063 064 065 066	1 1 1 1	19 27 33 27 18	13 14 23 19 16	95 93 110 103 83	.1 .3 .5 .1 .5	28 37 45 28 24	16	207 234 407	4.87 5.39 6.01 6.39 4.54	9 12 11 15 12	5 5 5 5 6	nd Nd Nd Nd Nd	7 9 5 4 8	10 7 16 9 10	- 20	2 3 2 2 3	3 4 3 2 2	43 46 21 28 37	.26 .11	.038	31 31 38 29 33	40 42 24 23 27	.49 .58 .36 .23 .28	131 135 130 61 80	.04 .05 .01 .02 .01	32	1.69 1.71 1.69 1.22 1.54	.01 .01 .01 .01 .01	.04 .04 .05 .04 .04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 7 3 1
067 068 069 070 071	1 1 1 1	9 9 24 19 9	13 13 22 16 17	47 39 92 42 65	1 .1 .1 .1 .2	8 7 29 10 15	4 12	150 406 127	2.58 2.42 5.67 2.52 3.35	4 5 16 11 5	5 5 5 5 5 5	ND ND ND ND ND	8 7 4 1 5	8 5 7 9 7		22222	3 4 2 2	27 30 30 32 44	.09 .12 .10	.058 .053 .128 .078 .048	62 43 35 42 24	10 14 35 16 25	.12 .11 .38 .13 .28	48 52 64 59 108	.01 .01 .01 .01	2 2 2	.84 1.24 1.84 .90 1.62	.01 .01 .01 .01 .01	.05 .03 .06 .04 .03	11112	1 1 1
072 STD C/AU-S	1 18	11 59	18 41	71 132	.1 6.7	18 67		206 956	3.45 4.06	3 41	5 16	ND 8	5 38	16 49	1 18	2 15	2 23	42 59	.23 .49	.048 .092	23 39	31 56	.26 .89	113 176	.03 .06		1.89 1.97	.01 .06	.02 .14	1 12	3 52

and a second concernent

· ,																														
. •										MAR	КН	EIN	ZEL	MAN	(I	7ILI	E #	89.	-50	24								C	age	3
SAMPLE#	Mo PPM	Cu PPM	РЬ РРМ	Zn PPM	Ag PPM	Ni PPM	Co PPN	Mn PPM		As PPN	U PPM	Au PPM	Th PPM	Sr PPM	Cd	Sb PPM	Bi PPM	V PPM	Ca %	P X	La PPM	Cr PPM	Mg X	Ba PPM	Ti X	B A PPM S	Na (7			Au* PPB
073 074 075 076 077	1 1 1 1	13 23 23 24 27	17 23 29 17 17	98 106 107 103 97	.1 .2 .2 .1 .1	19 44 30 34 37	8 17 13 14 14	1248 430 231	3.72 4.58 6.01 6.35 5.41	3 9 9 9 10	-	ND ND ND ND	5 3 4 6 13	10 37 14 12 11	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	53 36 35 48 23	.53 .28 .18	.054 .050 .061 .057 .055	26 28 29 27 49	33 48 33 45 24	.34 .60 .45 .49 .36	188 181 120 181 109	.04 .03 .01 .03 .01	2 1.7 10 2.1 2 1.8 4 2.1 2 1.3	.01 .01 .01	.06 .05 .05	1	39 15 2 1 1
078 079 080 081 082	1 1 1 1	23 22 14 18 22	18 18 14 34 20	104 113 58 60 93	.2 .1 .1 .1 .1 .1	28 39 20 40 33	13 16 8 14 14		5.70 5.92 4.04 4.54 5.27	13 9 13 14 10	5 5 5 5	ND ND ND ND	8 9 6 14 6	11 6 5 16 12	11111	2 2 2 2 2 2	2 2 2 2 2 2	34 39 33 25 64	.06 .07 .19	.050 .091 .089 .037 .129	34 28	28 36 21 29 43	.38 .55 .28 .40 .50	106 78 81 112 135	.01 .02 .03 .02 .06	5 1.6 2 1.9 2 1.3 5 1.9 2 2.0	7 .01) .01 3 .01	.05 .03 .04	1 1 1 1	10 1 3 1 1
083 084 085 086 087	1 1 1 1	23 11 32 17 34	23 16 24 16 27	95 112 100 69 139	23341	37 22 42 23 43	14 10 17 10 20	175 274 177	6.35 4.39 5.60 4.54 5.70	14 5 13 10 11	5 5 5 5 5	nd Nd Nd Nd	7 6 6 10 6	10 10 15 9 19	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	54 58 53 42 51	.20 .22 .14	.206 .063 .036 .040 .069	27 27 30 38 34	45 42 52 24 44	.54 .39 .66 .25 .53	112 176 177 93 217	.06 .06 .02 .01 .02	4 1.7 2 1.8 4 2.4 4 1.4 7 2.2	5 .01 5 .01 5 .01	.05 .06 .04	1 5 1 1	1 2 3 1 1
088 089 090 091 092	1 1 1 1	34 21 21 26 19	17 13 17 39 25	82 140 95 71 79	42452	31 33 46 57 37	16 18 13 20 15	362 398	3.95 7.39 4.42 6.35 4.99	6 3 10 13 12	5 5 5 5 5	nd Nd Nd Nd	4 8 4 10 7	23 6 10 20 16	11111	2 2 4 2	2 3 2 2 2	39 50 56 37 61	.06 .21 .27	.057 .104 .108 .095 .060	37 38 26 28 25	28 31 58 50 49	.34 .45 .73 .49 .51	186 69 131 103 118	.01 .03 .07 .03 .05	2 1.7 3 1.5 4 1.9 7 3.0 2 2.3	5 .01 5 .01 2 .01	.05 .06 .04	11111	1 2 3 3 1
093 094 095 096 097	1 1 1 1	27 20 39 13 89	21 18 29 18 26	87 138 143 83 119	.1 .7 .7 .2 1.2	51 42 55 21 76	17 14 21 11 25	251 630 190	4.70 5.31 5.88 4.46 6.01	13 13 17 6 17	5 5 5 5 5	nd Nd Nd Nd Nd	6 6 3 6 2	34 14 31 20 46	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	45 66 57 54 43	.29 .55 .35	.113 .127 .086 .048 .125	30 26 27 29 25	58 61 59 33 41	.75 .68 .68 .35 .53	176 199 180 135 314	.07 .06 .04 .02 .02	2 1.8 6 2.3 9 2.5 2 2.1 5 2.5	5 .01 1 .01 5 .01	.06 .09 .04	1 1 1 1 1	1 3 1 1 1
098 099 100 101 102	1 1 1 1	45 35 33 10 25	15 23 23 26 21	164 120 91 65 116	.3 .5 .3 .3 .6	30 61 74 29 47	19 17 19 13 17	272 329 232	8.07 5.71 5.62 5.42 6.11	19 14 15 8 12	5 5 5 5 5	nd Nd Nd Nd	6 8 6 6 6	10 13 20 16 14	11111	2 4 2 2 3	2 5 4 2 5	60 46 53 57 70	.24 .36 .19	.092 .138 .105 .030 .063	28 24 24 21 24	25 63 71 42 68	.33 .70 .77 .55 .70	122 111 161 113 230	.01 .07 .06 .04 .08	4 1.9 5 2.7 6 2.6 3 2.5 2 2.6	I .01 I .01 I .01	.04 .04 .04	1 1 1 1 1 1	1 1 1 4
103 104 105 106 107	1 2 1 1	38 18 66 18 24	20 20 29 19 19	82 94 146 127 117	.5 .4 1.1 .6 .3	62 33 55 25 33	18 12 21 13 13		5.11 4.91 5.14 6.39 4.71	17 9 20 13 12	5 5 8 5 5	nd Nd Nd Nd	8 7 4 8 6	13 10 32 10 11	1 1 1 1	3 4 3 2 3	2 2 3 7	51 51 50 42 32	.23 .47 .13	.077 .071 .086 .064 .052	26 23 32 33 40	57 47 47 32 29	.74 .47 .56 .39 .40	137 141 274 125 96	.09 .06 .02 .01 .02	8 2.0 6 1.9 6 2.2 5 2.0 8 1.2	.01 .01 .01	.03 .10 .05	1 1 1 1	1 1 1 1
108 STD C/AU-S	1 18	31 59	26 40	125 132	.8 6.9	40 68	20 30		6.52 4.10	17 41	9 22	ND 8	9 38	20 49	1 19	4 15	4 23	60 59		.058 .094		51 56	.46 .89	150 173	.03 .06	2 2.5 36 1.9			1 12	3 47

MARK	HEINZELMAN	FILE	#	89-5024
------	------------	------	---	---------

,

•										MARI	КН	EIN	zeli	MAN	•	FIL	3 #	89	-50	24								((`a	ge	4
SAMPLE#	Mo PPM	Cu PPM	Pb Ppn	Zn PP N		Ni PPM	Co PPM	Mn PPM		As PPM	U PPM		Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca %	P %	La PPM	Cr PPM	Mg X	Ba PPM	Tİ X	B PPM	AL %	Na X	_ к Х	W PPM	Au* PP8
109 110 111 112 113	1 1 1 1	27 15 29 31 45	19 19 25 21 21	110 56 79 102 125	.1 .3 .2 .1 .2	47 22 58 44 49	20 17	254 183 491 343 475	5.00 4.31 5.75 4.31 4.34	10 8 12 13 17	5 7 5 5 5	nd Nd Nd Nd Nd	3 6 4 7	12 13 29 34 29	1 1 1 1 1	2 3 2 2 2	5 2 2 2 5	38 42 48 45 33	.17 .38 .48	.087 .051 .130 .046 .102	23 29 29	44 33 60 45 35	.57 .36 .52 .58 .56	124 161 172 197 162	.03 .02 .04 .03 .04	2 2 3	2.07 1.86 2.70 1.86 1.42	.01 .01 .01 .01 .01	.05 .03 .04 .06 .07	1 1 1 1	3
114 115 116 117 118	? 1 1 1 1	45 30 28 25 24	23 19 16 26 23	129 109 117 144 119	.25.6.4.4		16 15 14	372 428 260	5.06 4.61 4.24 6.54 4.18	13 13 12 17 13	5 5 7 5	ND ND ND ND	7 3 4 9 2	13 14 16 8 44		2 2 2 2 2 2	2 2 2 3	42 49 49 49 39	.21 .25 .10	.082 .086 .113 .070 .079	29 27 30 35 24	52 47 43 43 46	.72 .62 .53 .45 .51	200 181 191 156 189	.04 .04 .05 .02 .02	2 3 2	2.77 2.05 1.71 2.18 2.07	.01 .01 .01 .01 .01	.06 .07 .07 .05 .05	1 1 1 2 1	2 3 4 1
119 120 121 122 123	1 1 2 1 2	27 37 42 45 34	14 16 20 22 23	98 107 136 118 106	.1 .3 .3 .4 .3	45 39 46 64 56	15 15 22	313 286 323	4.14 3.66 4.50 5.47 7.63	9 12 15 12 19	5 5 5 5 5	nd Nd Nd Nd	3 3 3 4 7	15 19 20 28 9		2 2 2 2 2 2 2	2 2 2 2 2	46 39 46 50 59	.33 .29 .40	.111 .096 .121 .117 .125	33 29	54 39 42 55 67	.69 .55 .58 .70 .66	157 133 156 217 185	.04 .05 .04 .04	2 2 3	1.91 1.31 1.65 2.49 2.97	.01 .01 .01 .01 .01	.05 .06 .07 .06 .04	11112	5 7
124 125 126 127 128	1 1 1 1	58 29 55 38 21	20 18 23 19 15	126 147 149 110 141	.6 .5 .8 .6 .7	66 62 47 33	17 22 25	737 1348	5.30 4.51 5.47 4.96 3.39	15 11 17 12 6	5 5 7 5	nd Nd Nd Nd	2 4 2 3 1	24 18 43 26 56	11111	2 2 2 2 2 2 2 2	3 2 2 2 2 2	52 52 49 43 35	.29 .61 .37	.089 .081 .097 .080 .075	31 28	59 49 51 41 39	.83 .69 .73 .55 .48	284 259 265 260 278	.04 .04 .02 .02 .02	5 3 5	2.49 2.11 2.46 2.49 1.73	.01 .01 .01 .01 .01	.09 .08 .09 .09 .06		2
129 130 131 132 133	1 1 1 1	30 14 40 11 60	19 13 19 16 19	109 85 119 90 113	.5 .2 .2 .1 .2	23	9 18 10	207 454 361	4.24 3.73 4.39 3.55 5.36	11 10 14 4 15	5 5 5 5 5	nd Nd Nd Nd	6 3 6 2 8	16 10 34 15 33		2 2 2 2 2 2 2	2 2 3 2	36 50 44 54 54	.23 .49 .31	.106 .103 .100 .086 .092	33 24 30 23 36		.58 .47 .73 .36 1.13	196 150	.03 .06 .05 .06	3 3 2	1.64 1.48 1.71 1.52 2.28	.01 .01 .01 .01 .01	.06 .04 .06 .04 .14	11111	3
134 135 136 137 138	1 1 1 1	36 56 23 31 18	21 23 11 16 16	119 117 64 126 79	.8 .6 .2 .9 .5	64 69 33 52 28	23 15 15	887 213 327	6.09 5.30 4.10 4.59 3.59	12 14 15 13 6	5 5 8 5 5	ND ND ND ND	6 2 6 2 2	22 27 10 36 20		2 2 3 2 2	2 2 5 5 2	67 51 32 39 38	.46 .13 .59	.086 .084 .048 .102 .106	40 23		.77 1.04 .32 .62 .41	298 281 92 195 141	.07 .04 .03 .03 .03	4 7 5	3.16 2.73 .96 2.08 1.64	.01 .01 .01 .01 .01	.07 .11 .06 .06 .04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1
139 140 141 142 143	2 1 1 1 1	35 27 45 43 39	18 20 43 17 15	108 98 80 116 99	.2 .3 .1 1.0 .2	53 47 45 57 69	15 18	354 1327 601	4.97 5.82 6.10 4.80 4.96	13 14 15 14 12	5 5 6 5	nd Nd Nd Nd	4 6 11 2 5	12 9 41 35 22		2 2 2 3 2	2 2 2 7	38 59 39 61 59	.20 .39 .67	.088 .072 .054 .063 .101	25	46 55 31 70 69	.65 .66 .52 .77 1.06	139 178 104 305 209	.04 .08 .03 .05 .08	5 6 4	2.07 2.08 2.06 2.38 2.33	.01 .01 .01 .01 .01	.05 .04 .04 .08 .09	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 280
144 STD C/AU-S	1 18	78 57	24 41	120 132	.8 6.7				5.23 4.05	13 41	7 22	ND 8	2 38	30 48	1 18	4 15	2 23	59 58		.081 .092		72 56	.95 .89	396 175	.03 .06		2.88 1.95	.01 .06	.12 .14	1 12	

,

a)

•

, •										MAR	K H	ein	ZEL	MAN		FIL	E #	89	-50	24									age	5
SAMPLE#	Mo PPN	Cu PP M	Pb PPM	Zn PP M	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe X		U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca X	P X	La PPM	Cr PPM	Mg X	Ba PPM	Ti X	B A PPM				Au* PPB
145 146 147 148 149	1 1 1 1	24 31 27 30 22	25 9 24 18 15	86 97 109 101 100	.2 .3 .4 .6 .1	30 45 53 45 39	13 16 15 15 13	163 522 633 554 523	5,82 4,76 6,36 4,45 4,57	7 10 18 11 11	6 6 5 5 5	nd Nd Nd Nd	15 12 2 3 3	5 5 20 31 16	1 1 1 1 1	3	2 2 2 2 2	28 15 57 60 57	.47	.048 .050 .164 .097 .124	52 38 21 29 24	18 16 72 65 55	.19 .22 .70 .74 .65	55 99 176 238 170	.01 .01 .05 .05 .05	2 1.1 2 1.1 4 2.3 2 2.4 2 2.0	2 .01 -01	.06 .08 .07		5 4 1 1
150 151 152 153 154	1 1 1 1	50 38 34 24 43	29 18 30 12 20	120 100 88 79 110	.4 .4 .4 .5	66 62 41 34 56	21 20 14 13 20	1218 276 375 223 534	5.52 4.80 6.33 5.60 5.15	18 15 15 7 11	5 6 5 7	nd Nd Nd Nd Nd	3 7 5 8 4	97 13 14 11 25	1 1 1 1	2 5 2 2 2	2 2 2 2 2	51 55 62 47 50	1.10 .31 .27 .18 .41	.067	31 28 23 30 40	62 62 52 48 59	.77 .85 .61 .62 .92	298 165 167 169 186	.04 .08 .07 .05 .04	2 2.4 3 2.3 3 1.8 3 2.2 3 2.4	2 .01 2 .01 2 .01	.06 .04 .05	1 1 1 2	2 2 1 1 1
155 156 157 158 159	1 1 1 1	16 21 56 19 58	16 19 24 21 35	81 101 135 82 85	.1 .3 .6 .1 .2	22 37 68 37 42		121 318 1082 230 395	2.67 4.19 5.17 4.00 6.15	8 9 21 9 27	5 5 5 5 5	ND ND ND ND	6 2 5 6 9	9 16 41 16 17	1 1 1 1 1	2 2 2 2 2 2 2	2 2 2 2 2 6	18 49 47 50 55	.28 .62 .26	.030 .113 .112 .041 .077	54 33 36 27 23	11 50 58 46 47	.65 .85	111 197 249 162 109	.01 .05 .06 .05 .05	2 .7 2 1.7 3 2.0 8 2.1 8 2.5	3 .01 1 .01 7 .01	.07 .09 .05	10000	2 1 1 1 12
160 161 162 163 164	1 1 1 1 1	16 27 45 82 23	28 27 30 24 18	45 84 101 100 74	.2 .5 .3 .8 .3			388 611 1045 914 160	4.77 4.87 5.20 5.65 4.38	13 15 14 10 9	5 5 5 5 5	ND ND ND ND	10 8 7 4 6	36 29 30 24 10	1 1 1 1 1	5 2 2 2 2 2	2 2 2 2 2 2	42 41 34 43 77	.61 .66 .41	.030 .078 .057 .062 .057	28 39 54 36 31	34 50 51 51 44	.31 .58 .79 .68 .40	101 139 200 284 141	.03 .05 .03 .03	3 2.2 2 2.4 4 2.0 2 2.5 2 1.6	5 .01 .01 7 .01	.04 .05 .09	2	1 1 5 1
165 166 167 168 169	1 1 1 1	22 42 31 29 27	18 28 31 37 35	97 122 92 69 87	.7 .1 .2 .2	37 61 44 49 44	14 20 17 17 15	262 712 574 603 565	5.35 5.30 5.42 5.33 5.23	9 15 15 16 14	5 5 5 5 5	nd Nd Nd Nd	8 5 12 7	9 24 27 32 91	1 1 1 1 1 1	2	2 2 2 2 2 2	37 57 56 45 29	.40 .35 .41	.051 .106 .081 .049 .102	33 31 26 43 57	38 66 50 45 31	.64 .96 .68 .64 .52	101 184 163 116 126	.02 .07 .06 .06	2 2.0 5 2.2 2 1.9 9 2.2 2 2.1	01.01 2.01 2.01	.07 .04 .03	1	3 2 2 1 1
170 171 172 173 174	1 1 1 1	16 24 17 34 25	19 18 17 14 22	113 105 101 108 91	.2 .3 .3 .1 .1	33 33	13 12 12 17 15	219 567 230 366 232	5,80 5,15 4,92 5,92 7,28	10 11 7 9 13	5 5 5 5 5	nd Nd Nd Nd	7 6 8 9 11	16 17 10 7 7	1 1 1 1	2	6 2 5 2 2	58 51 63 40 52	.28 .26 .20 .10 .08	.080 .066 .078 .048 .080	25 29 30 35 33	56 44 51 48 53	.61 .43 .57 .83 .65	134 161 160 154 110	.08 .05 .06 .03 .03	2 2.1 2 2.4 2 2.1 2 2.1 2 2.7	2 .01 7 .01 7 .01	.04 .06	1	9 1 2 3
175 176 177 178 179	1 3 1 1 1	13 12 35 42 33	19 17 24 18 48	90 78 95 105 95	.2 .3 .1 .2 .3	71	10 9 19 19 19	274 210 361 299 2923	4.79 4.34 5.28 5.51 8.44	8 6 14 9 21	5 5 5 5 5	nd Nd Nd Nd	5 6 5 8	10 8 22 14 46	1	3 2	2 2 2 2 2	46 51 67 77 52	.21 .18 .35 .29 .54	.079 .062 .068 .070 .055	23 24 27 25 37	36 39 70 92 54	.40 .45 .90 1.25 .52	139 112 201 187 231	.04 .06 .06 .09 .04	2 1.7 3 1.7 2 2.5 3 3.0 5 2.5	5 .01 3 .01 1 .01	.03 .06 .06	1	4 3 1 2
180 STD C/AU-S	1 19	26 58	30 44	59 132	.1 6.7		16 30	686 1019	6.34 4.09	13 44	5 16	ND 7	9 38	35 49	1 19	3 15	2 23	55 59	.41 .49	.051 .093		53 56	.47 .89	115 171	.05 .06	23.1 361.9				2 48

· .															<u> </u>													-		_
. •										MAR)	K H	EIN	ZEL	MAN	(FIL	E #	89	-50	24						• •		L	`age	6
SAMPLE#	Mo PPM	Cu PPM	РЬ РР Н	Zn PPM	Ag PPN	Ni PPM	Co PPM	Mn PPM	fe X		U PPM	Au PPH	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca X	P X	La PPM	Cr PPM	Mg X	Ba PPM	Tİ X	B AT PPM 5				Au* PPB
181 182 183 184 185	1 1 1 1 1	22 14 26 21 38	21 18 18 26 18	102 80 89 97 145	.1 .3 .1 .2	46 31 48 31 51	14 13 18 13 20	230 200 327 233 1027	4.91 5.76 4.83 5.77 4.39	10 6 10 12 12	5 5 5 5 5	ND ND ND ND	4 6 5 5 2	15 13 20 11 67	1 1 1 1 1	2 2 2 2 3	2 2 2 2 2 2 2	63 59 51 50 37	.37 .18	.131 .042 .029 .064 .122	26 28 26 24 24	61 50 59 43 47	.81 .52 .84 .46 .76	203 164 148 214 152	.06 .04 .03 .02 .03	5 2.09 2 2.23 3 2.59 2 2.2 4 1.6	0. 3 0. 9 5. 0	1 .0 1 .0 1 .0	5 1 7 1 7 1	4 15 3 2
186 187 188 189 190	1 1 1 1	18 28 18 16 58	20 22 28 16 16	126 95 80 64 127	.2 .2 .1 .1	41 59 47 29 72	14 20 17 12 23	527 822 239 218 721	4.28 4.74 5.25 5.47 4.69	6 13 10 6 15	5 5 5 5 5	nd Nd Nd Nd Nd	2 5 6 5 5	16 29 12 11 46	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	22222	3 2 2 2 2 2	54 57 43 50 52		.114 .044 .044 .050 .089	23 25 20 18 24	60 72 44 41 69	.76 .91 .43 .43 1.42	213 221 168 153 193	.05 .05 .04 .04 .08	2 2.0 2 2.5 6 2.9 2 2.2 5 2.0	3 .0 0 .0 7 .0	1 .0 1 .0 1 .0	51 31 23	Ī
191 192 193 194 195	1 1 1 1	27 46 26 36 40	20 22 20 23 18	94 113 94 98 108	.3 .4 .3 .2 .1	45 66 39 53 56	14 20 15 19 19	266 557 326 751 585	4.44 4.74 4.50 4.15 4.22	11 11 9 10 9	5 5 5 5 5	nd Nd Nd Nd	2 5 6 5 4	14 24 13 37 74	1111	2 2 3 2 2	2 2 2 3 2	59 42 46 40 41	.22 .80	.095 .077 .051 .103 .109	24 32 31 28 24	58 58 45 47 51	.76 .94 .64 .95 1.12	177 183 191 133 141	.07 .04 .02 .07 .07	5 1.7 4 2.1 5 2.1 2 1.5 7 1.5	2.0 7.0 5.0	1 .1 1 .0 1 .0	01 61 51	1 2 1 1 9
196 197 198 199 200	1 1 1 1	30 52 36 30 38	26 16 20 23 21	102 112 95 98 135	.4 .3 .22	54 63 51 61 47	18 22 16 19 20		4.90 4.81 4.83 5.28 5.23	10 12 13 11 10	5 5 5 5 5	nd Nd Nd Nd	6 8 7 9 3	29 40 14 15 27	1 1 1 1	2 3 2 2 2	2 2 2 2 3	48 45 42 38 43	1.01	.054 .084 .066 .060 .098	28 29 36 30 23		.85 1.13 .75 .68 .76	172 202 141 140 219	.03 .06 .04 .02 .02	2 2.2 7 2.1 6 1.7 6 2.5 6 2.2	3.0 3.0 5.0	1 .1 1 .0 1 .0	31 51 51	1 2
201 202 203 204 205	1 1 2 1 1	44 36 35 19 7	40 24 22 15 12	100 102 104 109 57	.5 .4 .5 .1	44 48 32 31 21		481 367 1164 860 234	5.24 5.16 5.89 3.66 2.55	8 11 12 8 2	5 5 8 5 5	nd Nd Nd Nd	2 3 1 3	39 16 62 17 9	11111	2 3 3 2 2	2 2 2 4 2	39 40 35 39 34	.24 .78 .29	.078 .057 .074 .081 .080	30 28 23 24 34	44 51 36 38 31	.54 .72 .44 .47 .42	225 132 236 296 128	.02 .03 .01 .02 .03	2 2.4 5 2.3 4 2.3 4 1.3 2 1.3	7.0 4.0 5.0	1 .0 1 .0 1 .0	5 1 6 1 6 1	1 3
206 207 208 209 210	1 1 1 1	40 21 43 34 17	23 16 28 29 18	104 86 92 55 72	.1 .3 .1 .3	50 34 57 39 27	19 13 20 18 10		4.95 5.22 5.06 7.59 4.24	13 14 11 12 6	5 5 5 5 5	nd Nd Nd Nd	6 5 7 11 4	26 23 37 49 24	1 1 1 1	4 2 2 3	2 3 2 2 5	44 49 39 30 37	.29 .45 .54	.078 .071 .074 .055 .033	31 23 43 52 26	49 46 43 30 36	.77 .50 .70 .40 .58	169 181 150 70 132	.03 .05 .04 .03 .02	2 2.1 3 1.8 2 1.9 3 1.9 5 1.7	8.0 0.0 2.0	1 .0 1 .0 1 .0	4 1 5 1 3 1	1
211 212 213 214 215	1 1 1 1	10 34 22 13 14	13 26 19 21 27	80 98 122 70 88	.1 .3 .2 .2	21 32 47 26 26	10 19 15 10 12	184 626 261 220 359	4.95 5.15 4.90 3.62 4.94	3 7 11 6 9	5 5 5 5 5	nd Nd Nd Nd	6 2 3 6	4 28 17 26 15	1 1 1 1	2 2 2 2 2 2	3 2 2 2 2	40 37 44 37 40		.063 .057 .090 .052 .077	31 26 28 22 22	30 38 55 33 35	.45 .45 .75 .42 .32	89 172 169 106 158	.03 .02 .03 .03 .03	6 1.6 2 1.9 5 2.1 2 1.6 3 2.3	4.0 5.0 1.0	1 .0 1 .0 1 .0	6 1 6 1 4 1	7 1 2
216 STD C/AU-S	1 18	14 58	25 42	113 132	.2 6.8	24 67	11 31		4.66 4.05	11 44	5 18	ND 7	5 38	19 48	1 18	2 16	3 23	51 59	.30 .49	.049 .093	22 39	34 56	.38 .89	181 175	-03 -06	2 1.6 35 1.9				3 48

.

• •	ſ									MAR	кн	EIN	ZEL	MAN	C	FIL	Е #	89	-50	24								((`a	ge '	7
SAMPLE#	Mo PPN	Cu PPM	Pb PPM	Zri PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe X	As PPM	U PPM	Ău PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca X	P X	La PP M	Cr PPM	Mg X	Ba PPM	Ti %	B PPM	AL X	Na %	к %		Au* PPB
217 218 219 220 221	1 1 1 1	29 19 12 21 18	27 27 15 8 13	76 51 65 98 89	.1 .1 .1 .1	31 27 31	18 16 11 13 11	574 361 237 352 287	5.66 5.40 4.30 5.39 4.23	10 8 5 2 5	5	nd Nd Nd Nd	7 11 5 7	15 22 18 7 11	1 1 1 1 1	2 2	2 2 2 2 2 2	41 31 44 37 42	.22 .23 .08		24 32 23 20 30	43 31 39 36 34	.56 .38 .46 .59 .45	142 81 117 96 137	.04 .02 .02 .02 .03	2 2	2.13	.01 .01 .01 .01 .01	.04 .03 .04 .04 .05	1 1 1 1	6 3 4 2 3
222 223 224 225 226	1 7 1 1 1	39 18 32 21 23	28 16 20 26 27	99 116 84 77 62	.6 .3 .4 .2 .5	45 33 34 41 41	20 13 15 19 17	601 533 1238 509 643	4.79 4.28 4.04 5.95 5.38	10 5 12 12 11	5	ND ND ND ND	4 2 7 8	64 40 113 34 19	11111	2	2 2 2 3 2	27 39 31 47 46	.72. 2.12 50.	.082 .069 .084 .094 .055	21 24 22 30 33	31 46 32 49 43	.54 .55 .54 .47 .50	95 146 135 134 130	.01 .04 .03 .04 .05	4 2 2		.01 .01 .01 .01 .01	.05 .04 .04 .03 .03	1 1 2 1	4 5 3 3
227 228 229 230 231	1 1 1 1	17 21 30 15 28	15 50 48 20 17	55 135 143 85 74	.2 .2 .3 .3 .3	22	11 19 18 11 13	187 779 976 250 1636	4.06 5.84 4.86 4.66 3.77	9 12 5 5 9	5 5 5	ND ND ND ND	8 7 4 7 1	9 16 70 14 64	1 1 1 1 1 1 1	2 2 2 2 2 2	2 2 2 2 2 2	- 38	.30 1.26 .17	.033 .063 .120 .038 .066	26 21 23 34 20	35 44 49 23 47	.45 .52 .56 .22 .48	125 140 175 80 189	.03 .03 .02 .02 .03	2 2 2	1.79 2.85 3.27 1.34 1.70	.01 .01 .01 .01 .01	.03 .04 .06 .04 .04	11111	5 5 3 4 4
232 233 234 235 236	1 1 2 1 1	16 14 18 22 21	19 12 15 9 10	63 52 85 85 64	33	25 23 34 42 21	11 11 13 14 12	567 272 205 305 205	5.32 4.38 5.65 5.59 4.44	10 9 7 10 5	5 5 5 5 5	ND ND ND ND	5 7 7 5 9	19 12 10 11 6	1	2 2 2 2 3	2 2 4 2 2	59 63 61 54 33	. 18 . 18 . 16	.075 .034 .059 .069 .024	21 25 25 23 37	38 36 51 48 24	.39 .36 .58 .49 .29	153 168 134 132 91	.05 .05 .08 .03 .01	2 2 2 2 2 2	2.02 1.60 2.13 1.86 1.51	.01 .01 .01 .01 .01	.04 .04 .05 .04 .04		3 4 3 5 7
237 STD C/AU-S	1 18	26 57	32 38	100 133	6.6	32 67	14 31	265 955	4.95 4.11	6 39	5 17	ND 7	9 38	38 49	1 18	2 15	2 19	37 59	.36 .49	.030 .093	33 39	32 56	.52 .89	112 175	.01 .06		2.02	.01 .06	.05 .14	1 13	4 47

.

.

-

•

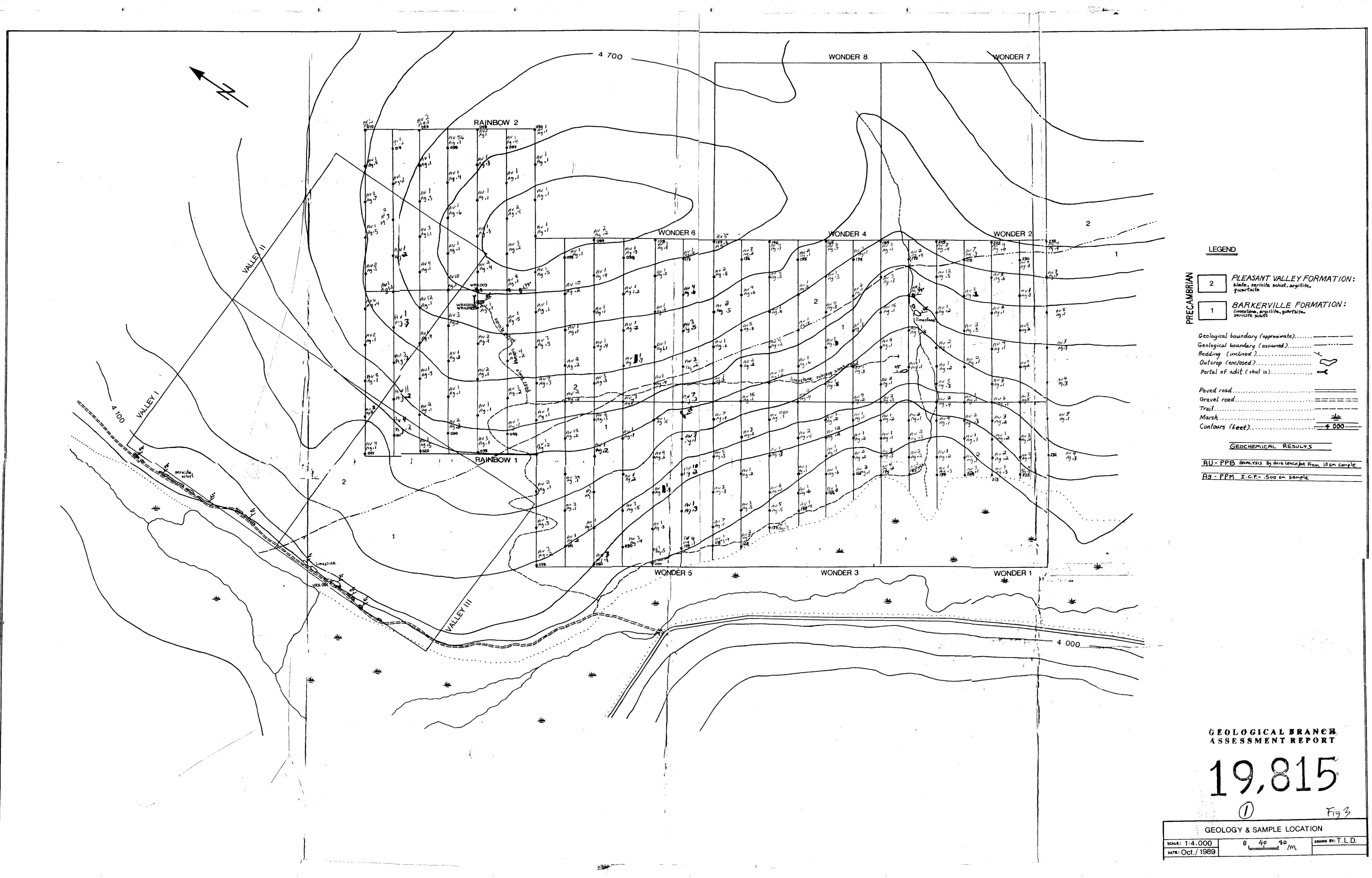
• • •										MAF	RK H	iei)	NZEI	LMAI	N	FII	je į	¥ 89	9-50	24									ſ	age	8
SAMPLE#	Mo PPN	Cu PPM	Pb PPM	Zn PPM	Ag PPM	Ni PPM	Co PPM	Mn PPM	Fe X	As PPM	U PPM	Au PPM	Th PPM	Sr PPM	Cd PPM	Sb PPM	Bi PPM	V PPM	Ca X	Р Х	La PPM	Cr PPM	Mg X	Ba PPM	Ti %	. B PPN	Al X	Na %	К %	W PPM	Au* PPB
WRK-001 WRK-002 WRK-003 VRK-001	9 3 4 1	2872 4788 533 368	13 22 5 14	93	5.5 6.5 1.3 1.0	85 18	86 14	4979 972	5.47	137 52	5	ND ND ND ND	2 1 1 3	28	1 2 1 3	2	11 2 2 4	2 2 1 2	1.42 .87 .56 14.86		2	7 8	.59 .74 .19 2.16	2 6 3 47	.01 .01 .01 .01	2 6 10 2	.22 .15 .09 .11	.02 .02 .03 .01	.01 .01 .01 .03	1	70 56 12 34

ACME ANALYTICAL LABORATORIES LTD. 852 East Hastings St., Vancouver, B.C. C.A 1R6

1R6 File: <u>89-5024</u>

/ • · · · •

Date: Dec 13 1989


MARK HEINZELMAN BOX 4161 QUESNEL, BC V2J 3J2

...

TERMS:

NET TWO WEEKS -11% % PER MONTH CHARGED ON OVERDUE ACCOUNTS.

NUMBER	A5SAY	PRICE	AMOUNT
241 241 237 4	SPECIAL PRICE — 30 ELEMENT ICP ANALYSIS @ GEOCHEM AU ANALYSIS BY ACID LEACH (10 gm) @ SOIL SAMPLE PREPARATION @ ROCK SAMPLE PREPARATION @	3.25 4.50 0.85 3.00	783.25 1084.50 201.45 12.00
	(TEL: 747-1405)		2081.20
	·		
			1

