LOG NO:	0328	AÐ.
ACTION:		
ļ	والموارية والمركبة المركبة والمركبة والمركبة والمركبة والمركبة والمركبة والمركبة والمركبة والمركبة والمركبة	152 p
FILE NO:		· · · · · · · · · · · · · · · · · · ·

11 - 15 **1**

REPORT OF WORK SECOND RELIEF PROJECT ERIE, B.C.

82F/6W

49°20'N, 117°24'W

FOR

HAWKEYE DEVELOPMENTS LTD. 550-1040 W. Georgia Street, Vancouver, B. C. V6E 4H1

By: ERIK A. OSTENSOE GEOLOGIST FEBRUARY 15, 1990

GEOLOGICAL BRANCH ASSESSMENT REPORT

SUB-RECORDER
MAR 2 2 1940
M.R. # \$ STATEMENT OF FIELD COSTS - SECOND RELIEF PROJECT - 1989
To accompany Statement of Work re Buck Group of mineral claims, Nelson M.D., B. C.
Prepared for: Hawkeye Developments Ltd. 550-1040 West Georgia St., Vancouver, B. C., V6H 4H1
By: Erik Ostensoe from company records.
Mobilization/demobilization\$ 8091.00
Geophysical surveys26453.00
Geological surveys, includes project supervision and labour138407.00
Excavator trenching, road improvements, drill site preparation 11615.00
Petrological studies 556.75
Diamond drilling and reverse circulation drilling174226.51
TOTAL\$359349.26

NOTE: \$17,705.00 of the above-detailed expenditures relates to grid preparation costs and was applied to claims by a Statement of Work dated November 3, 1989.

Zick A. Ostansoe

...

~

March 22, 1990.

CERTIFICATION

I, Erik A. Ostensoe, of Vancouver, B. C. certify that:

1. I am a consulting geologist with office and residence in Vancouver, British Columbia

2. I am a graduate of the University of British Columbia, Vancouver, B. C. (B.Sc. degree in Honours Geology, 1960), and I have studied geology at Queen's University, Kingston, Ontario

3. I have practiced my profession for thirty years, working for major and junior mining companies and as a consultant

4. I am a Fellow of the Geological Association of Canada (membership no. 4128), a Member of the Association of Exploration Geochemists, and a Member of the Canadian Institute of Mining and Metallurgy

4. I personally supervised all of the work described in the Report of Work, Second Relief Project, Erie, B. C., dated February 15, 1990 and I personally prepared the text and illustrations that accompany that report.

5. Cost information submitted with a Statement of Work filed with Titles Branch, Mineral Resources Division, Ministry of Energy, Mines and Petroleum Resources in support of an application of work credit was derived from documents supplied to the writer by Hawkeye Developments Ltd.

Signed at Vancouver, B. C. on the twenty-second day of March, 1990

A. Ostens

Erik A. Ostensoe, FGAC, geologist.

CONTENTS

		page
I.	Program	1 /
II.	Acknowledgements	3 /
III.	Location and Claims	3 /
IV.	History	3 /
v.	Regional Geology	7 /
VI.	Geology of the Second Relief Area	8 /
VII.	Geophysics	11 /
	(a) Magnetometer Survey	11 /
	(b) VLF-EM Survey	12 /
	(c) Hammer Seismic Survey	12 /
VIII	• Sampling	16 /
	(a) Inez Vein	16 /
	(b) High Elevation Prospect, West of Erie Creek	18 /
	(c) Rand Vein	24 /
	(d) Mineral Zones Located at Upper Slopes, East of Erie Creek	24 /
	(e) No. 5 Vein	27 /
	(f) Ida D Vein	27 /
	(g) No. 2 Vein	28 /
	(h) Erie Creek "Zone"	30 /
IX.	Comments and Observations	37 /
x.	Recommendations	38 (

-i-

Contents (continued)

page

TABLES

Table	1.	Claims	and Expiry Dates	6	/
		(as of	February 13, 1990)	,	

APPENDICES

Appendix	I. Petrographic Reports, JF Harris, PhD.	40 /
Appendix	II.	53 /
(a)	Assay Certificates - Rock Chip Samples and Diamond Drill Core Samples	54 /
(b)	Geochemical Certificates - Drill Core Specimens	55 /
(c)	Soil Samples - Geochemical Reports	56 🗸
(đ)	Reverse Circulation Drill Hole Samples Holes R.C89-1 to R.C89-12.	57 /
Appendix	III. Drill Core Log Summaries D.D.H. 89-1 to 89-14.	58 🗸

ì.

ILLUSTRATIONS

		page
Figure 1.	Location Map	4 /
Figure 2.	Claim Map	5 /
Figure 3.	Geology	in pocket /
Figure 4.	Diagrammatic Section	10 /
Figure 5.	Magnetics - West Grid	in pocket /
Figure 6.	Magnetics - East Grid	in pocket /
Figure 7.	VLF-EM - West Grid	in pocket /
Figure 8.	VLF-EM - East Grid	in pocket /
Figure 9.	Hammer Seismic Survey - Line 540 SW	13 🦯
Figure 10.	Hammer Seismic Survey - Line 780 SW	14 /
Figure 11.	Hammer Seismic Survey - Line 900 SW	15 /
Figure 12.	Inez Vein - North End	17 /
Figure 13.	Inez Vein - Assay Plan	in pocket /
Figure 14.	Inez Vein - Site "A"	19 /
Figure 15.	Inez Vein - Site "B"	20 /
Figure 16.	Inez Vein - Site "C-1"	21 /
Figure 17.	Inez Vein - Site "C-2"	22 /
Figure 18.	Inez Vein - Site "D"	23 /
Figure 19.	Soil Sampling	25 (
Figure 20.	Rand Trench	26 /
Figure 21.	Ida D Vein	29 /
Figure 22.	Assay Plan - No. 2 Vein 1989 Chip Sampling	in pocket /

-iii-

Illustrations (continued)

		page
Figure 23.	Reverse Circulation Drill Hole Section A-A'	31 🦯
Figure 24.	Reverse Circulation Drill Hole Section B-B'	32 /
Figure 25.	Reverse Circulation Drill Hole Section C-C'	33 /
Figure 26.	Reverse Circulation Drill Hole Section D-D'	34 🦯
Figure 27.	Reverse Circulation Drill Hole Section E-E'	35 /
Figure 28.	Reverse Circulation Drill Hole Section - Erie Creek	36 (

-iv-

I. PROGRAM

A two-phased program of work at the Second Relief Mine property, Erie, B. C. at anticipated cost of \$547,000 was recommended by Richard Kucera, PhD, F.G.A.C., in a report to the Directors of Hawkeye Developments Ltd. dated March 6, 1989. Dr. Kucera judged the exploration potential of the Second Relief property to be excellent.

Erik Ostensoe, F.G.A.C., geologist, was hired to provide field management and geological services to the Second Relief project under the direction of the President, J.H. Whipple, and the Vice-President of Exploration and Development, J.F. Bristow, P Eng. Further project review and advice was provided by directors J.H. Montgomery and D. Milburn.

The first stage of work proposed by Dr. Kucera included the establishment of additional grid, detailed geological mapping, trenching, rock sampling, 1000m diamond drilling and a VLF-EM survey. The No.5 level was to be rehabilitated for a distance of at least 200m. The estimated cost of first stage work was \$324,000.

The second stage of work, contingent upon encouraging results from the first stage, included additional rehabilitation of No. 5 level and initiation of underground diamond drilling at estimated cost of \$250,000.

Following the acquisition by Hawkeye Developments Ltd. of an option to explore and exploit nineteen mineral claims held or leased by Homestead Resources Ltd., Dr. Kucera, in an addendum dated April 2, 1989, noted that this program of exploration remained essentially the same as originally proposed and no additional funding was recommended.

Work commenced May 26, 1989 and was continuous until October 27, 1989. Project financial services and personnel were provided by Rooi Enterprises Ltd., Richmond, B.C. Crew members and the periods of their employment are listed below:

Ron Biebrich, line cutter and sampler	June 1 -	October 27
James F. Bristow, P. Eng., Project Supervisor	May 28 -	October 23
John Campbell, field worker and blaster	May 28 -	October 27
Carol Crowe, cook	Oct 2 -	October 27
Shellie Jut, line cutter	June 4 -	August 8
Barry Needham, line cutter	June 4 -	August 8
Erik Ostensoe, field manager, geologist	May 26 -	October 27
Dirk Wendland, labourer	May 31 -	July 10

A camp comprised of two travel trailers and two camper - equipped pick up trucks was established at Slide Creek near the former mine plant site. Groceries and other supplies were obtained from nearby communities.

The following contractors were employed in the 1989 field program:

White Contracting Ltd. of Castlegar - Hitachi excavator Model UHC 07- road rehabilitation and trenching

Montgomery Consultants Ltd. of Vancouver - three person geophysical crew - magnetometer, VHF-EM, and hammer seismic surveys

West-Gate Diamond Drilling Limited of Salmo - Longyear Model 38 diamond drilling outfit - completed 3105 feet (946 m.) of NQ-size drilling

Midnight Sun Drilling Co. Ltd. of Whitehorse, Y.T. - reverse circulation drilling and sampling equipment - completed 5105 feet (1556 m.) of drilling.

Hawkeye's crews collected 389 rock samples and 87 soil samples. 126 drill core and 982 reverse circulation cuttings samples were also obtained. --- diamond drill core specimens were analysed by geochemical methods for gold, silver, copper, lead, zinc, bismuth, arsenic, and antimony contents. All analyses were performed by Kamloops Research and Assay Laboratory Ltd., Kamloops, B.C.

McElhaney Geosurveys Ltd. of Vancouver, B. C. prepared from available air photographs a 1:5000 scale topographic base map of the Second Relief Project area.

-2-

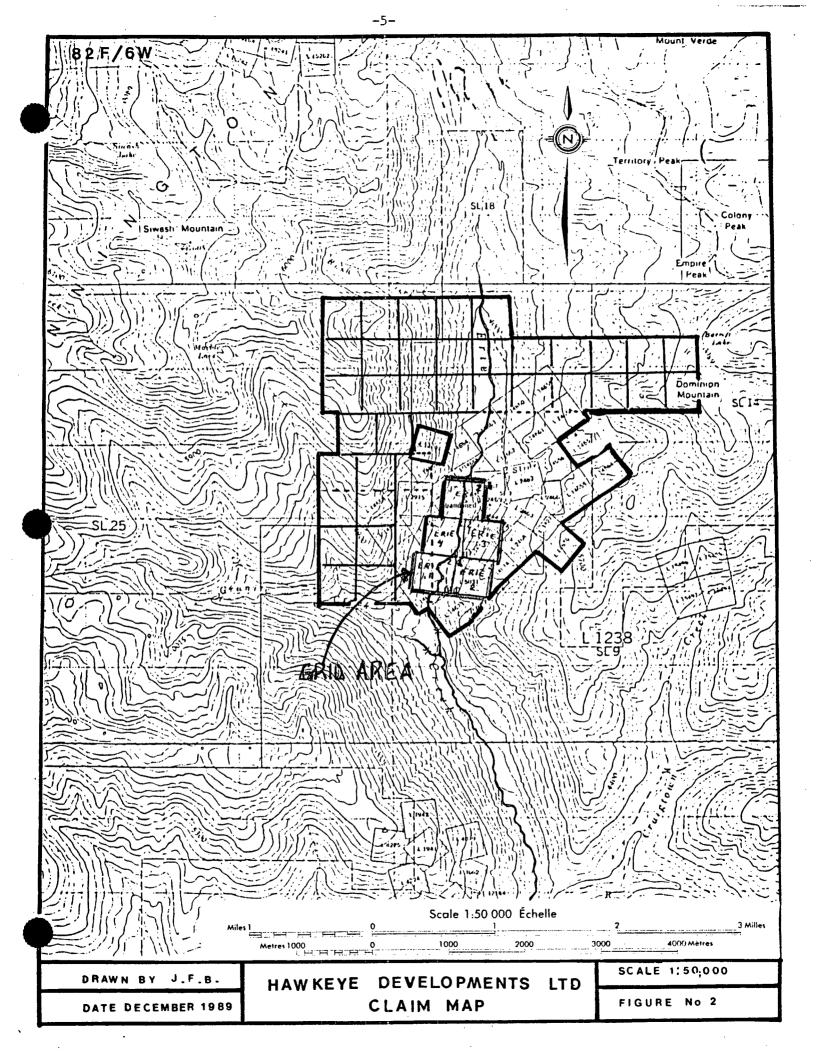
II. ACKNOWLEDGEMENTS

In addition to the above mentioned employees and contractors the writer wishes to express appreciation to Mssrs. Luke Felde, Alton Dahlstrom and Ron Tjader for information and other assistance provided.

Illustrations used in this report were prepared by J. F. Bristow, Nancy Smith and the writer.


III. LOCATION AND CLAIMS

The Second Relief mine is located in a mountain valley 18 km north of Erie, a small community on Highway 6 west of Salmo, B.C. (Figures 1 and 2). Nelson, B.C. is 21 air kms north, and Castlegar is 19 air kms due west of the property. Geographical location is 49 degrees 20 minutes N, 117 degrees 24 minutes W. NTS map sheet is 82 F/6W. Erie Creek flows southwesterly through the middle part of the property and its tributary, Slide Creek, passes through the northeast end of the claims.


The Second Relief project is comprised of crown granted, reverted crown granted, modified grid system and two-post claims. The company has negotiated option agreements with several owners and has acquired additional ground by staking. Claims status as determined by a record search at the Gold Commissioner's Offices in Vancouver on February 13, 1990 is summarized in Table 1 of this report. Assessment work has been applied to certain claims and further credits will be requested with the near term objective being to place all claims in good standing until their 1999 anniversary dates.

IV. HISTORY

The history of the Second Relief mine is summarized in the Kucera report. Recorded production is stated to be 228,200 tons from which was recovered 100,235 ounces gold, 27,856 ounces silver, 98,021 lbs copper, 51,260 lbs lead and 713 lbs zinc (Kucera, from B.C.D.M. Minfile). Most of the ore came from the Second Relief vein, small amounts were obtained from the Ida D, Inez and Rand veins. Production occurred only intermittantly in the period 1900 through 1932 but 170,000 tons were produced from 1933 to 1941 when operations were guided by Relief-Arlington

--4-

TABLE I. CLAIMS

Claim Name	Title	No.	Expiry D	ate
Gus Fr.	1151		August	8, 1992
Dale	1834		July	22, 1992
Winnie	1833		July	22, 1992
Pitt	1832		July	22, 1992
Lee	1831		July	22, 1992
Rhodes Fr.	1315		October	26, 1992
Dolly	1314		October	26, 1992
Amos	1316		October	26, 1992
Peggy Fr.	1149		August	8, 1992
Risk Fr.	1148		August	8, 1992
Starshine	1147		August	8, 1992
Eva Fr.	1152		August	8, 1992
Lucy	1150	•	August	8, 1992
DeeJay	3452		August	9, 1992
Rush #1	3552		October	26, 1992
Rush #2	3553		October	26, 1991
Li'l Geez	592		April	14, 1992
Grand Union	590		April	14, 1993
Digit	1181		August	27, 1992
Andy Fr.	2989		March	25, 1997
Argenteuil Madelon Fr.	4339		March	24, 1997
Waffer	4597		March	9, 1998
Apex Fr.	4340 2975		March	26, 1997
Hawkeye	2975		March	23, 1997 19, 1999
Martha Washingt			November November	•
Kvist Fr.	2811		November	
Polly Fr.	2810		November	-
Chief Fr.	2812		November	-
Mike	2832		November	•
Ozzie	5855		August	10, 1990
Eye	5856		August	10, 1990
Jim Fr.	5991		October	20, 1990
Erie 1 to 3 inc	1. 3207	to		
	3209	incl.	May	24, 1997
Erie 4	3210		May	24, 1996
Erie 5	3211		May	24, 1996
Ida D	L2462			anted Claim
Second Relief	L2463			anted Claim
Big Bump	L2464			anted Claim
Relief Fr.	L2469			anted Claim
Laura	L14668			anted Claim
Inez Fr.	L14669			anted Claim
Rand Fr.	L14666			anted Claim
Cliff	L 2915		Crown Gr	anted Claim

Mines Ltd., a Premier Gold Mining Company affiliate. Minor unrecorded salvage-type production occurred after World War II.

Hawkeye Developments Ltd. commenced land assembly in mid-1988, followed in September and October, 1988 by rehabilitation of roads, recovery of the portal of the main haulage level (No. 5 level) and excavation and sampling of No. 2 vein. Data from that work plus information from Ministry of Mines Reports and other sources were used by Kucera in preparation of his report.

The geology of the general area of the Second Relief project was reported on by, among others, Cockfield (G.S.C. Memoir 191, 1936), Little (G.S.C. Memoir 308, 1960) and Hoy and Andrew (BCDM Paper 1989-1).

Hawkeye Developments Ltd. conducted exploration work on the entire Second Relief property in the period May 26 through October 27, 1989. Company employees cleared, flagged, measured and picketed approximately 48 km of lines in two separate grids the East and West grids. The East grid baseline with orientation 056 degrees crosses the east slope of the Erie Creek valley. Cross lines with orientation 146 degrees are spaced at 60 m. intervals and extend from the valley bottom to the ridge top, with stations at 30 metre spacings. West of Erie Creek the West grid base line is oriented at 045 degrees, has stations at 25 m. intervals and cross lines oriented at 135 degrees with stations at 25 m. intervals. The grid was used by the geologist and the geophysicists to maintain their field positions and was vital to referencing the location of the trenches, sample sites, old workings, and old legal survey points.

V. REGIONAL GEOLOGY

The Second Relief project area lies within the Bonnington Range of the Selkirk Mountains. Dominant rock types belong to the mainly volcanic Rossland Formation. Rock types are

i) the thinly-bedded fine-grained Sinemurian beds, recently re-defined and re-named the Archibald Formation (Hoy and Andrew, op cit)

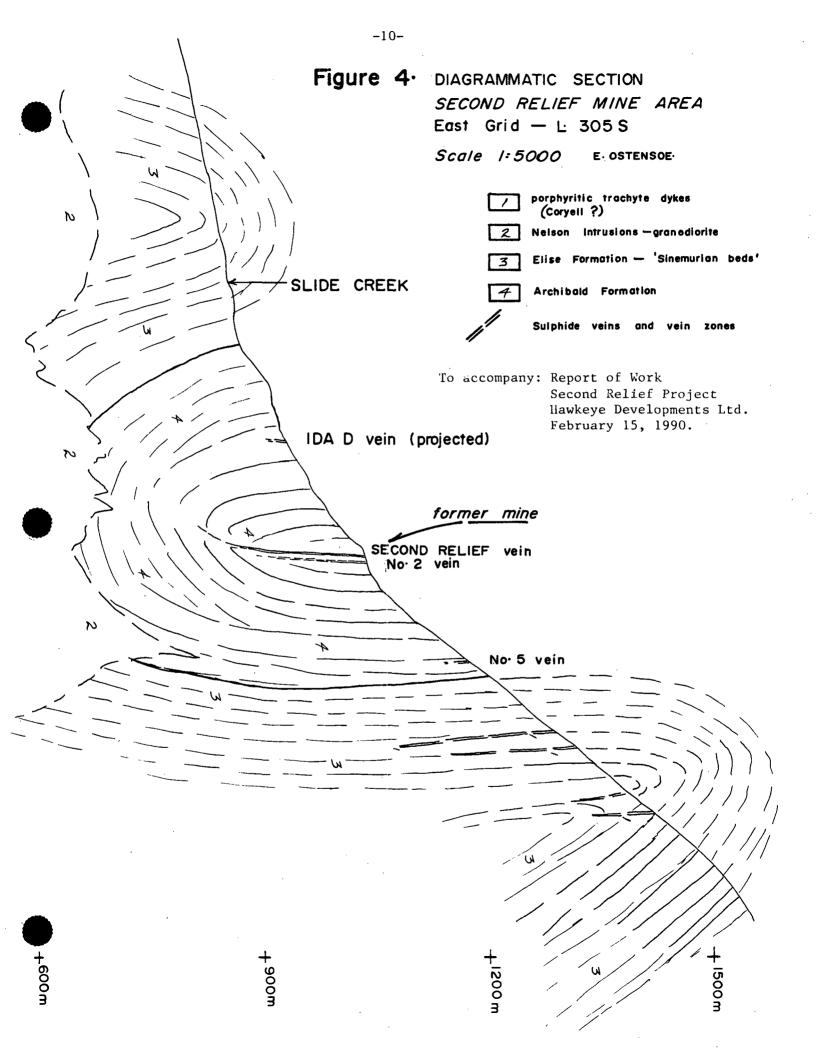
ii) massive to brecciated flows, lapilli tuffs and other intermediate (shoshonitic) pyroclastic volcanic rocks currently assigned to the Elise Formation (Hoy and Andrew, op cit) iii) crystalline rocks of the middle Jurassic age Nelson Intrusions. Minor syenitic intrusive bodies probably belong to Middle Eocene age Coryell intrusions.

On a regional scale northerly-trending folds record intense compressional deformation (Hoy and Andrews, op cit) possibly of pre-Nelson batholith age. The so-called Red Mountain fault passes through the valley of Erie Creek.

The Second Relief area mineral deposits have been described as gold-bearing skarn deposits but their morphology is akin to classic gold-enriched shear zone deposits. Vein quartz is notably scarce and pyrite and pyrrhotite are the dominant sulphide minerals.

VI. GEOLOGY OF THE SECOND RELIEF AREA

Bedrock exposures are abundant in most parts of the Second Relief property. Exceptions are in the lower slopes near the north end of the old mine workings and along the valley of Erie Creek where depth of alluvium is known to exceed 5 metres. Granitic terrain has smoothly contoured outcrops. Bedded sedimentary rocks tend to be recessive except east of the former mine where Coryell-type porphyritic dykes support low but steep bluffs. Exposures of fragmental volcanic units vary in character apparently in response to alteration/dioritization.


Detailed outcrop mapping of much of the property grid was undertaken by Erik Ostensoe in order to determine if the vein deposits occur in response to particular geological features (Figure 3). The possibilities that broad areas of low grade gold mineralization could be present and both accessible to mining and amenable to processing, though not suggested by Kucera, was actively considered during mapping and sampling. The southeasternmost portion of the grid was not mapped in detail.

Seven rock specimens were reported on by J. F. Harris, Ph.D., petrologist, for Vancouver Petrographics Ltd. He provided individual petrographic descriptions but stated, in part, in a summary section, that "The rocks of this suite are of debatable origin". Dr. Harris' complete report forms Appendix I of this report. Figure 3 illustrates the geological features of the Second Relief property. The valley of Erie Creek north and northeast of the confluence of Granite Creek is occupied by a broad ruptured synclinal structure that is closed to the north and apparently Crystalline rocks of the broadens and opens to the south. Slide Creek and at high Nelson Intrusions are present north of elevations west of Erie Creek. Similar rocks occur south of the property and the mine area can thus be characterized as a pendant. Reverse circulation drilling (d.h. R.C. 89-9) indicated that the strong Red Mountain fault that Hoy and Andrews (op. cit) projected south into the Second Relief area does indeed occupy the valley of Erie Creek. Reverse displacement is inferred in an area a few kms north but no sensible evidence of movement was recognized in Erie Creek.

Rocks of the Lower Jurassic age "Sinemurian Beds" (now the Archibald Formation) are exposed in the bed of Slide Creek and at high elevations on both sides of Erie Creek valley (Figure 4). They are typically fissile, thinly bedded and argillaceous. Pyrite occurs everywhere in the formation in small amounts and its weathering results in distinctive bright orange-reddish coloured outcroppings. Several of the stronger concentrations of pyrite were excavated many years ago. Work included open cuts as well as shallow shafts and short adits. Re-sampling and further drilling/blasting work during 1989 confirmed that anomalous gold contents are frequently present in pyritic zones.

Rocks assigned to the Archibald Formation gradationally pass upwards into augite and feldspar porphyries and crystal and lapilli tuffs of the Elise Formation of the Rossland Group. The individual members of the formation are only vaguely defined except where interbands of argillic or finely tuffaceous material emphasize the bedding. Colours are shades of grey, green, and bluish-green. Clasts vary from dust-size particles to several centimetres in diameter. White angular feldspar and shiny black euhedral pryroxene crystals are abundantly present. All of the known valuable mineral zones are hosted by Elise Formation rocks.

Figure 4 is a speculative diagrammatic cross section of Erie Creek valley at about East Grid Line 305S. The Red Mountain fault should lie near the left (west) edge of the diagram.

VII. GEOPHYSICS

A three person field crew supplied by Montgomery Consultants Ltd. completed proton magnetometer and VLF-EM (EM-16) surveys on the entire Erie Creek grid. Hammer seismic surveys of three lines with total length 1000 metres attempted to profile the bedrock configuration of the Erie Creek valley.

Data obtained from Montgomery Consultants Ltd. are included as Figures 5 through 11 of this report.

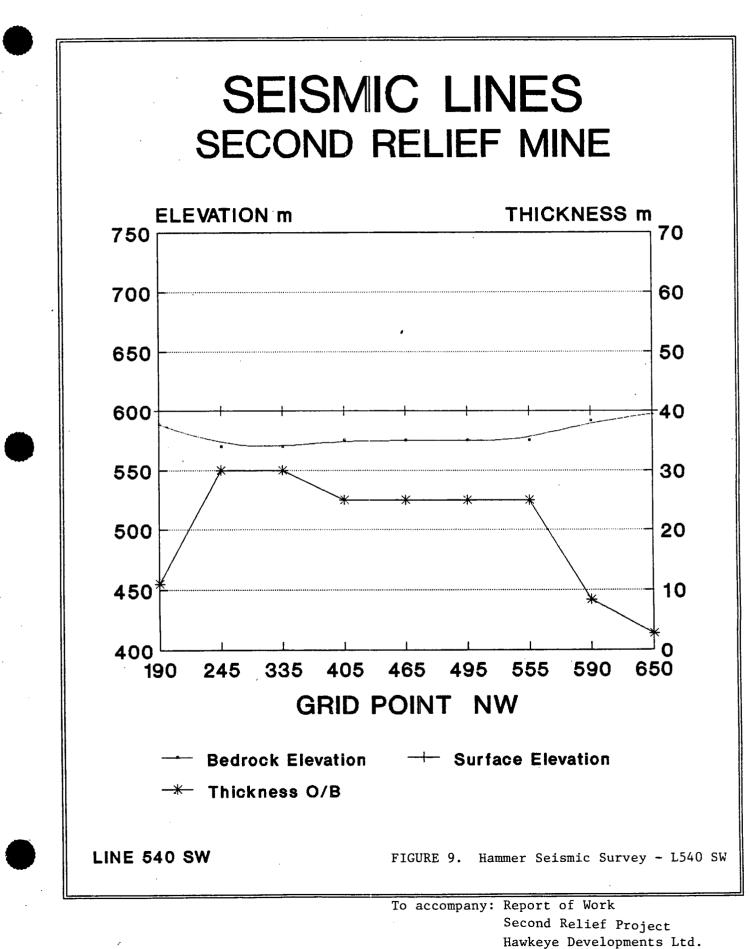
(a) Magnetometer Survey

An E G and G model G-856AX portable proton precession magnetometer system was employed in surveying the Second Relief grid. A similar recording base station unit was located near the road north of Slide Creek to facilitate correction of data for diurnal and other variations. Such variations were observed to be of small amplitude.

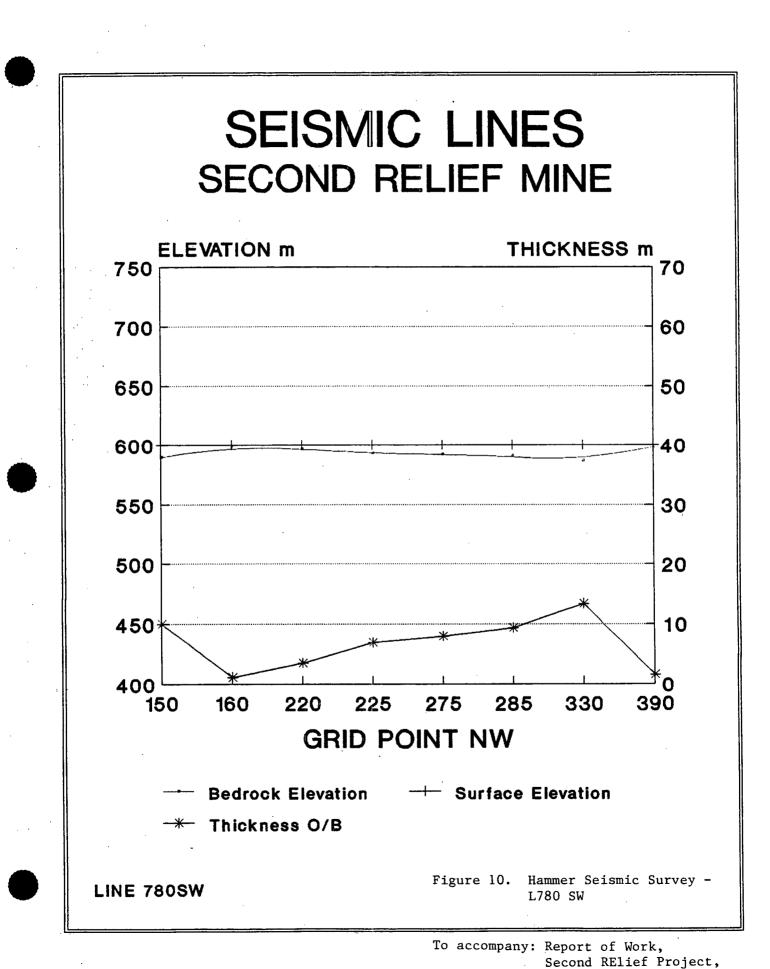
(i) West grid - the survey recorded magnetic responses between 55,000 gammas and 59,000 gammas. Fragmental volcanic rocks of the Elise Formation have a disorganized magnetic response and the method failed to identify either the Rand or the Inez vein. Granitic rocks of Nelson Intrusions at the north end of the grid have relatively "quiet" magnetic characteristics. The contact with the siliceous argillite (Archibald) formation coincides with an increase in the amplitude of variation of the magnetic response. The latter effect increases toward the southwest end of the grid.

(ii) East grid - a strong northerly-oriented magnetic signature is present east of Erie Creek. Magnetic "lows" on upper slopes, for example, at 3+30E on lines 120SW and 180SW, coincide with the presence of coarsely porphyritic Coryell-type augite porphyry dykes.

The Second Relief and No. 2 veins are enveloped by an attenuated weak but distinct northeasterly-trending magnetic trough that extends from L240SW to L420SW. South of L420SW the magnetic "low" is broadly diffused. No similarly obvious magnetic expression is present at the Ida D vein at approximately L120SW/75NW, but there is a coincidence of an attenuated local "low" with the site of the old mine workings. Just north of the Ida D workings the closure of the 57,000 gamma contour approximates the contact between the argillaceous and the andesitic volcanic formations. The valley of Slide Creek is paralleled by a sharply defined magnetic "low". (b) VLF-EM Survey

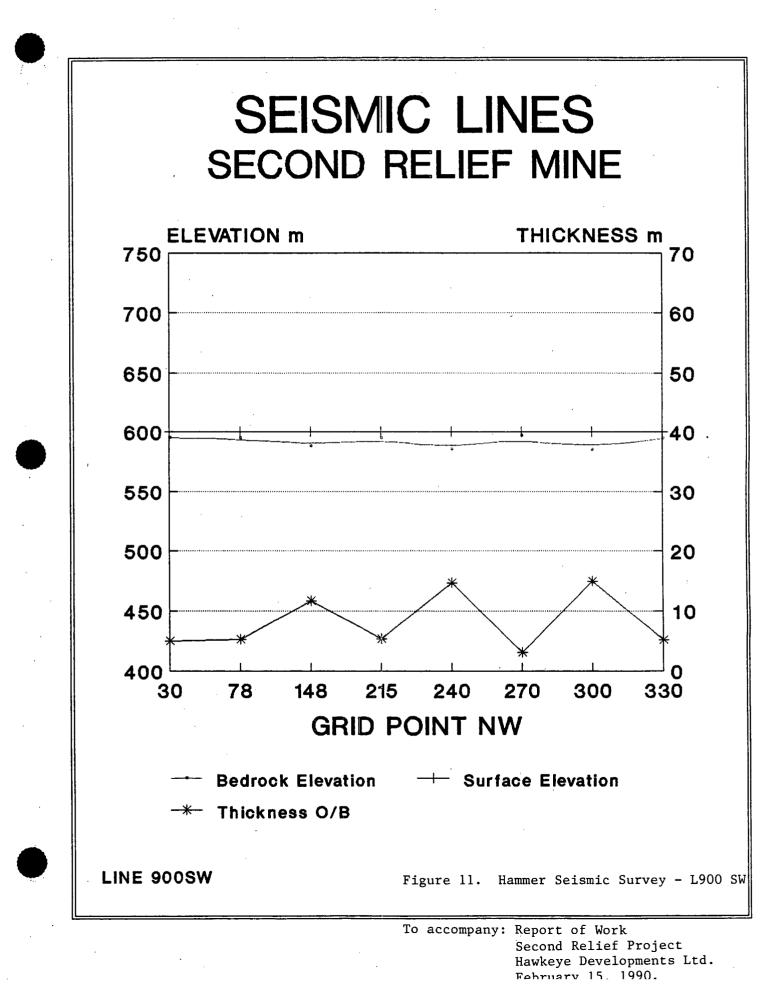

A VLF Sabre Model 27 unit was employed in surveying the entire Second Relief grid. The signal from US Navy radio communications station Annapolis, Maryland was used as the source. The VLF-EM survey data were plotted in profile. No detailed geophysical analysis has been undertaken.

(i) West grid - granite at the northwest end of the west grid has a weakly negative response (Figure 7). The contact between granite and the strongly positive response of siliceous/argillaceous sediments is sharply defined. Areas known to be underlain by fragmental andesitic volcanic rocks have weakly positive VLF-EM signals that are diminished in the southern part of the grid where the strength of dioritization/homogenization of those volcanic rocks is enhanced. Alluvium in the floor of Erie Creek valley has distinctive very low response, both weakly negative and weakly positive. No particular response was correlated with narrow nearly vertical Rand and Inez vein structures.


(ii) East grid - east of Erie Creek VLF-EM responses are distorted by geological and topographical effects that make comparisons between the opposite sides of the valley tenuous (Figure 8). In particular, thinly laminated rocks of the siliceous argillaceous Archibald Formation have a "strongly positive" EM response west of Erie Creek but a "very strongly negative" response east of the Second Relief mine. This contrasting behavior is not explained but may be due to a fortuitous coupling effect of the distant radio transmitter with the bedding. Included massive porphyritic trachytic dykes are not recognizable.

(c) Hammer Seismic Survey

A Nimbus Model ES-125 signal enhancement seismograph was used to survey three grid lines that were extended across the floor of Erie Creek valley to determine the depth to bedrock. These data, for parts of lines 540SW, 780SW and 900SW (Figures 9, 10 and 11 of this report), were required prior to planning drilling tests in the valley bottom. Hawkeye personnel used the information to determine that depths to bedrock were nominal and that it should be possible to penetrate the alluvium with standard drilling tools. One reverse circulation drill hole (RC-89-9) was subsequently drilled between lines 540SW and 780SW.


February 15, 1990.

Hawkeye Developments Ltd.

February 15, 1990

-14-

-15-

VIII. SAMPLING

Rock chip sampling was undertaken in several parts of the Second Relief property. Sampling, except in an area at high elevation west of Erie Creek, was accomplished by the following process: bedrock was exposed by use of an hydraulic backhoe (excavator), structures and rock types were determined by cursory mapping, areas thought to have metallic mineral values were chip sampled by hand-held sampling moil and hammer technique. Resulting cuttings, usually with mass of 2 to 5 kgs., were gathered into standard plastic sample bags that were then packaged for shipment Greyhound parcel express to Kamloops Assay and Research by Laboratory Ltd. in Kamloops, B. C. All samples were analysed for gold content; most, for silver, and many, for zinc, copper, and lead. Most 1989 sample locations and assays have been plotted on Assay certificates are included as appropriate assay plans. Appendix II(a) of this report.

a) Inez Vein

The Inez vein, which is located west of Erie Creek, was excavated and sampled in two areas (i) at its northeast end near grid line 200N, and (ii) "long trench" between grid lines 50 South and 400 South.

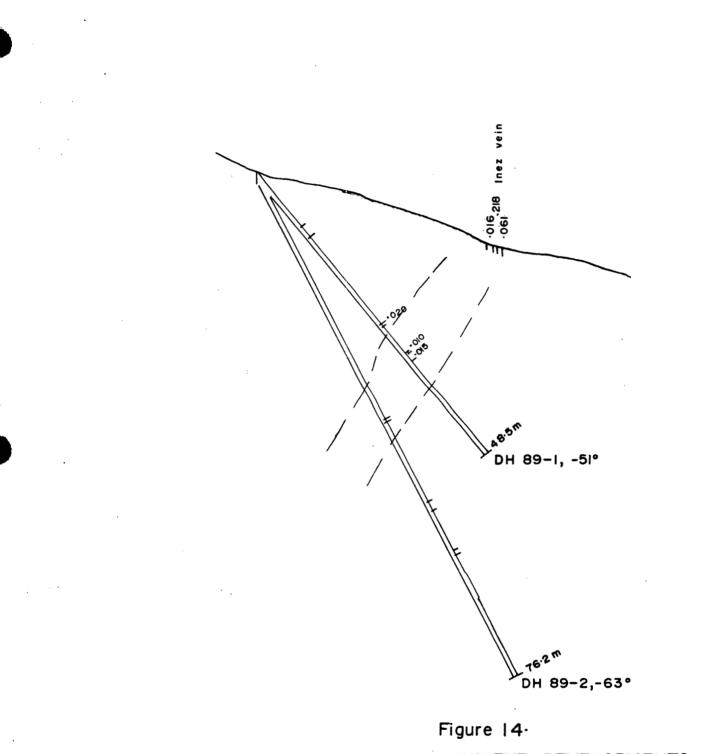
(i) Northeast trench

Rocks in the northeast trench are andesite and basaltic andesite. Mineralized structures are narrow and discontinuous with variable and inconsistent metal values (Figure 12). Old boxes of drill core and at least one former drill site, complete with casing protruding from drill hole collars, was found near the northeast end of the trench. Other evidence of mineral exploration was found in the immediate area and it is apparent that mine workings are present at shallow depth. Further exploration work in the vicinity of the northeast end trenches was deferred pending the results of work elsewhere in the area.

(ii) Long trench

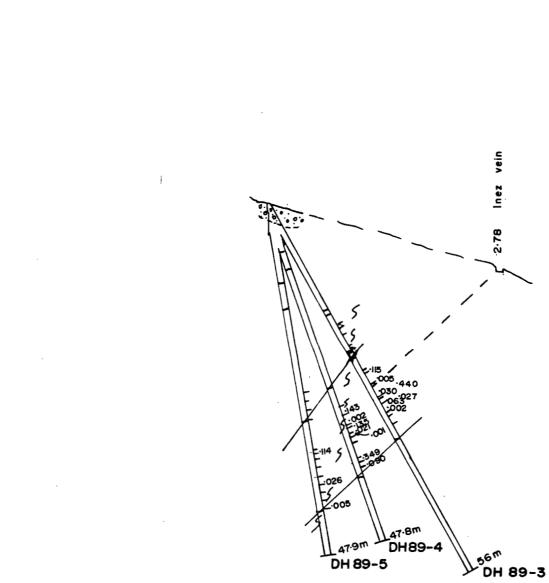
The Inez vein was excavated almost continuously from Line 50 S to Line 400 S (Figure 13). Several old bedrock pits were re-opened by this work and what may have been a shaft, located at grid point 175N/186W, was dug into but no bedrock was uncovered. The vein structure was observed to be very variable in appearance,

strength, and metal content. Seven zones of possible significance were identified in the distance that was sampled. Details are as follows:


Zone	Length	Average	Gold Content
	(metres)	width (cms)	(ounces per ton)
A	15	67	0.258
B	17	73	0.63
C-I	15.5	200	0.086
C-II	15.5	70	0.25
D	26	237	0.17
E	35.5	90	0.245
F	17	193	0.127

These zones, with the exception of Zone F, were later explored by diamond drill holes (Figures 13 to 17 inclusive). Rocks vary considerably but are largely fragmental volcanics with bands of siliceous, fine-grained, strongly hornfelsed sedimentary rocks. Dark matrixed feldspar porphyry dykes are present and are thought to be closely related to what appears to be an underlying dioritic intrusion that was revealed in drill holes. Gold content of drill hole samples varied from nil to 0.349 opt; silver content was negligible. Base metal values where determined were not significant. Details are given in drill core log summaries that are included as Appendix III of this report.

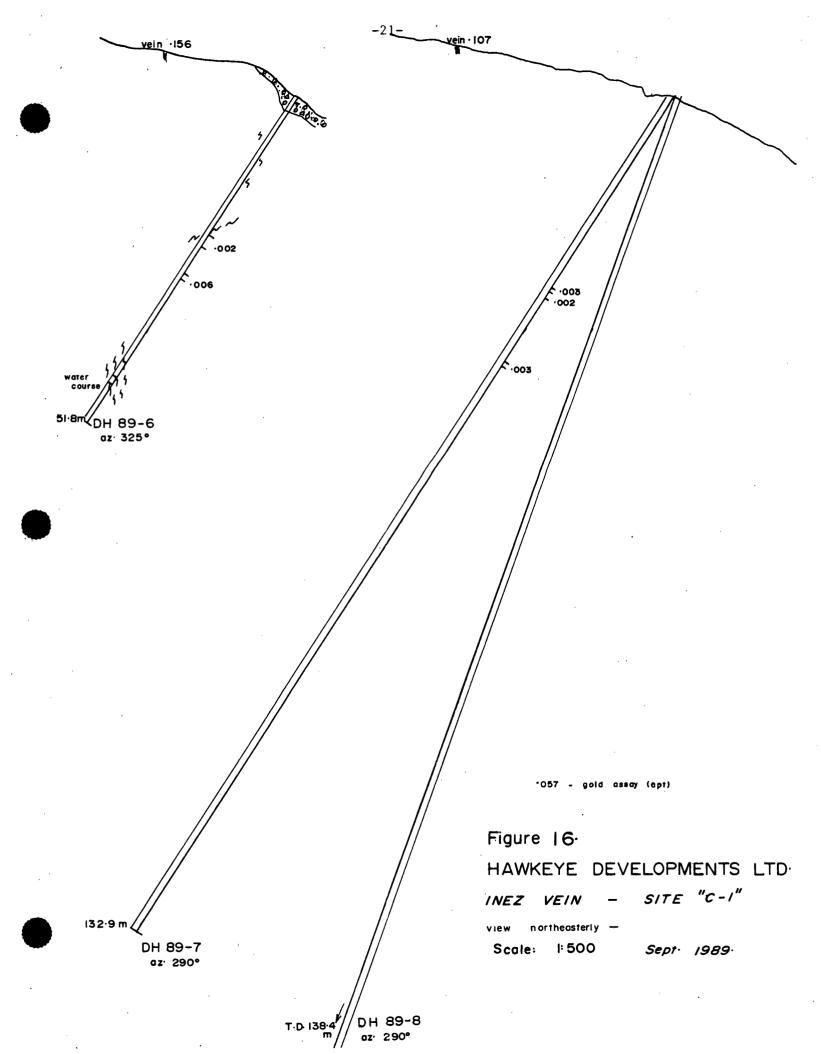
Selected core specimens were analysed by geochemical methods to determine contents of gold and silver as well as of possible pathfinder elements: copper, lead, zinc, bismuth, arsenic and antimony. Certificates of analyses are included as Appendix II(b) of this report.

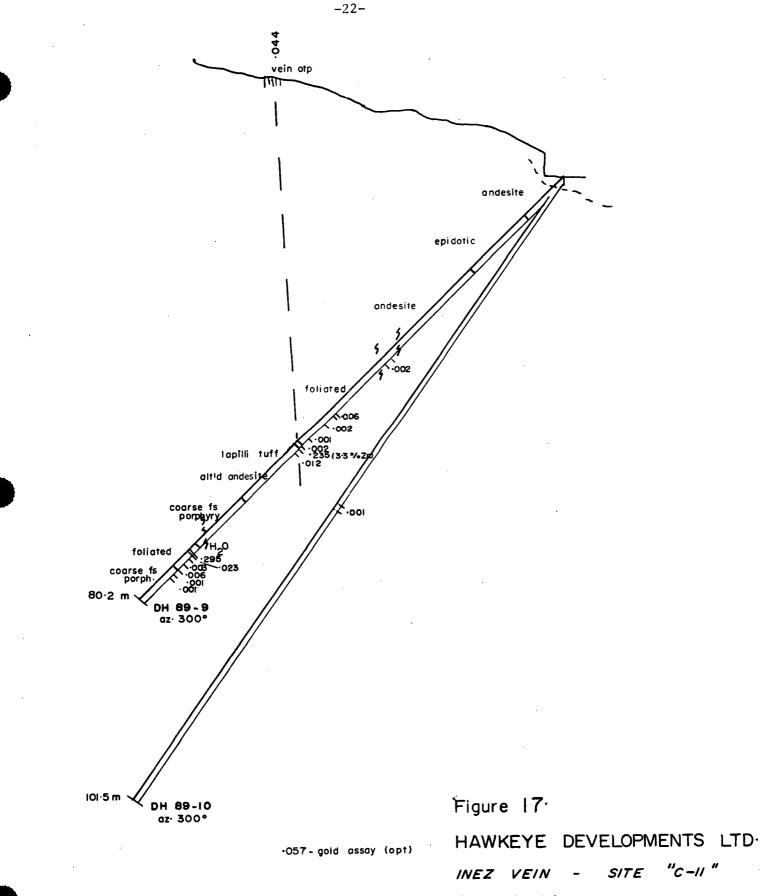

(b) High Elevation Prospect, West of Erie Creek

An area of gossaned argillite/phyllite is present at the northwest end of west grid lines 50N to 400N. Narrow seams of pyrite are ubiquitously present but most are strongly weathered. Several of the occurrences were obviously explored many years ago by trenching methods and samples taken in 1989 by the geologist during reconnaissance mapping returned low but distinctly anomalous gold assays.

·057 - gold assay (opt)

HAWKEYE DEVELOPMENTS LTD *INEZ VEIN - SITE "A"* view northeasterly - d-th oriented 135° az-Scale 1:500 Sept. 1989.




-057 - gold assay (opt)

DH 89-5

Figure 15. HAWKEYE DEVELOPMENTS LTD INEZ VEIN - SITE "B"

d.d.h. oriented 135° azno rtheasterly -----Scale: 1:500 Sept. 1989.

view northeasterly —

Scale: 1=500.

Sept · 1989·

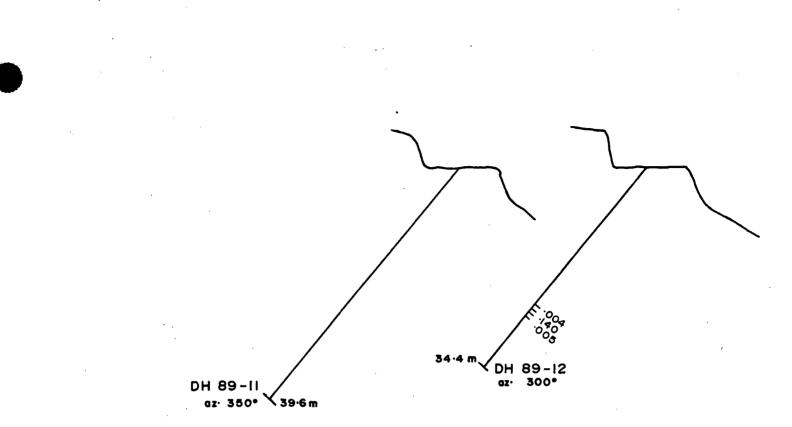


Figure 18.

-057 - gold assay (opt)

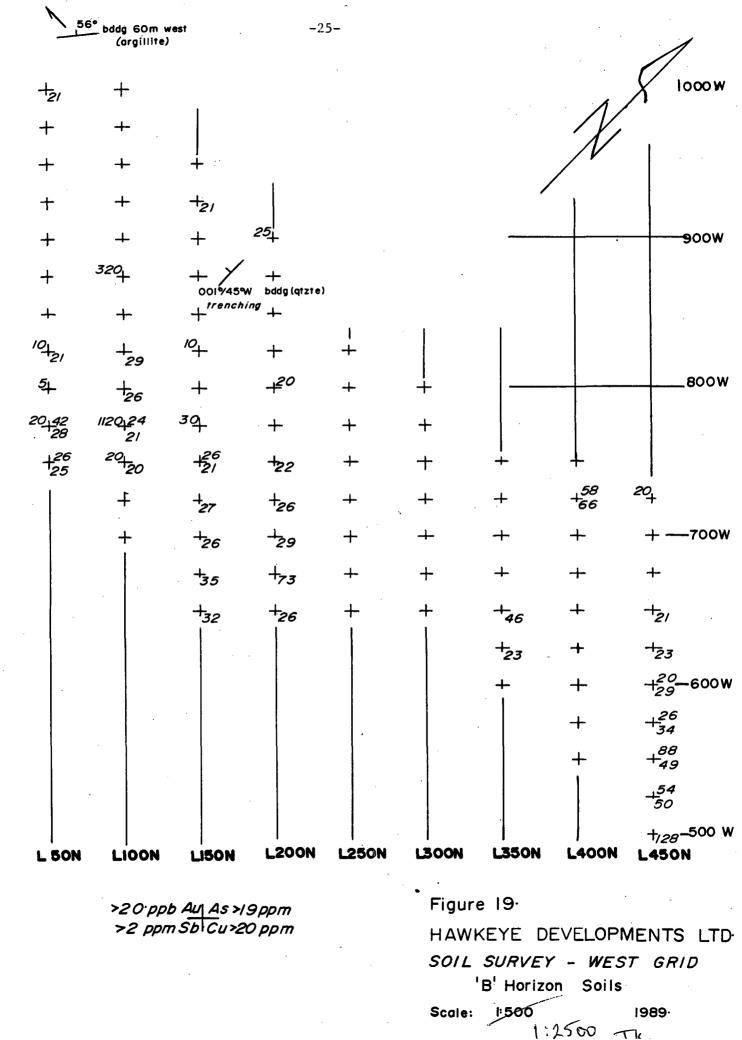
HAWKEYE DEVELOPMENTS LTD INEZ VEIN - SITE "E" view northeasterly -Seale: 1:500. Sept. 1990.

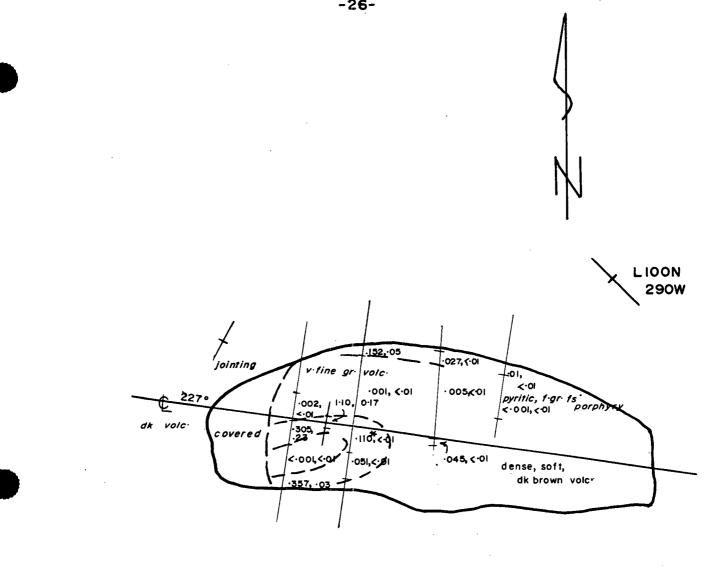
Follow-up work included grid extensions, further prospecting, soil sampling (87 samples), Cobra drilling and blasting, and further, more-detailed, chip sampling. Figure 19 illustrates data obtained from soil samples.

The area of pyritization is located close to granitic intrusions and likely is a thermal halo. No broad areas of anomalous gold content were identified and no further exploration work was undertaken pending assembly of data from other parts of the Second Relief property.

(c) Rand Vein

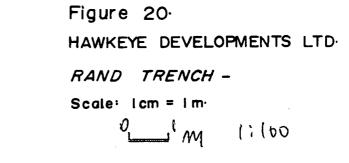
The Rand vein was explored by Relief-Arlington Mines in the later stages of the mine operation. An unknown tonnage of ore was extracted by means of two drift levels with an estimated length of 1000 metres.


The most southwesterly exposures of the Rand vein are at grid point 75N/330W where a shallow waterfilled shaft explores the extension of narrow but massive sulphide mineralization that is exposed in a trench at 100N/290W. Samples from the trench and from a quantity of stockpiled mineralized rock near the shaft head contain in excess of 1 opt gold.


The excavator was used to deepen and extend the Rand trench and to search for the vein extension west of the shaft. Trench samples are illustrated in Figure 20. Trenching west of the shaft failed to reach bedrock and examination of old mine plans indicates that the bottom section of the apparently vertical shaft was in fact inclined to the south where, judging from the "ore" pile, it found the vein.

Detailed sampling of the Rand trench (Figure 19) showed that gold values are erratic. It is probable that the early mining efforts removed all ore that was accessible from the adit levels, perhaps stoping up to the grassroots. Considering the fact that diamond drilling of the nearby Inez vein resulted in data that suggested that the area is underlain at shallow depth by a dioritic intrusion that is not mineralized, there is little incentive to confirm that conclusion at this time by carrying out further exploration of the Rand vein.

(d) Mineral Zones Located at Upper Slopes, East of Erie Creek


Several pyritic areas located near the east ends of the grid lines east of the Second Relief Mine were explored many years ago by trenches, short adits, and shallow shafts. As part of the

Assays - opt gold, silver

🔆 metallic gold

-26-

1989 field program, some of these zones were resampled and, although some substantial gold values were found, none appears to have the size and strength needed to qualify it as deserving further exploration. This conclusion is preliminary and would be reviewed if substantial quantities of potential gold ore were found elsewhere on the property.

The pyritized zones are similar to those in hornfelsed argillite/phyllite described in a previous section of this report. Apart from the presence of several thick augite porphyry and feldspar porphyry dykes of Coryell Intrusions affinity, there are no known nearby outcroppings of granitic rocks and it seems likely that there is no direct genetic relationship between the sulphide flooding and intrusions.

(e) No. 5 Vein

The No. 5 vein is located 100 metres east of workings of the Second Relief mine. A crude road was built to it in fall, 1988, at which time the portal of an old adit was uncovered and samples were taken. Further excavation, in search of southwesterly continuations of the vein, was done during June, 1989. Deep trenches were dug but nothing was found that was similar to material present in the adit where the vein is about 1.5 metres wide and carries pyrite and chalcopyrite. Two 1988 samples, reported by Dr. Kucera, contained 0.002 and 0.774 opt gold.

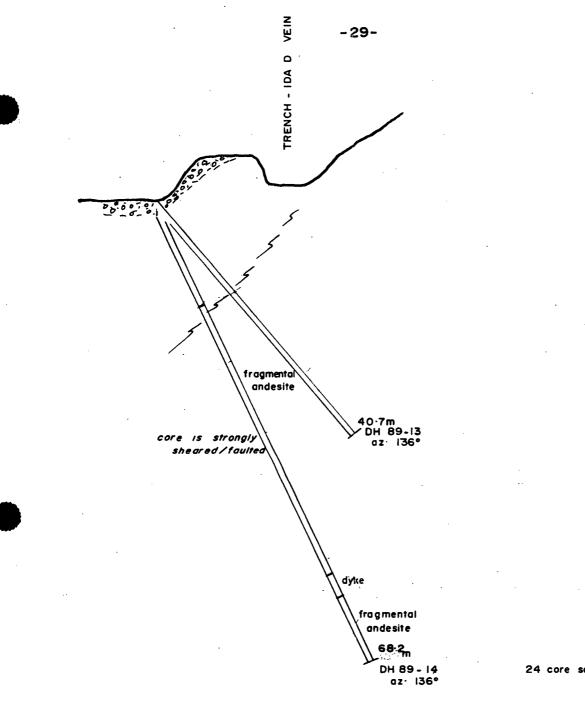
The vein is located in the transition zone between Elise sedimentary rocks and Archibald volcanic rocks. It is terminated at its northeast end by an easterly-striking high angle zone of shearing but its southwesterly continuation was either not excavated or not recognized.

(f) Ida D Vein

The Ida D vein, located about 150 metres west of the Second Relief vein, contributed ores in the early days of the mine. The portal area of the structure was excavated and sampled as part of the 1988 work and Dr. Kucera reported the following gold assays: 0.458, 0.588, 1.040, and 0.003 opt.

In June, 1989, the excavator was used to re-open a caved shaft located about 30 metres southwest of the 1988 workings. A 9-inch wide sample taken from the shaft wall, at depth 5 metres below bedrock surface assayed 0.68 opt gold and less than 0.01 opt silver. Other grab samples from the unstable brow of an adit contained gold particles. Two diamond drill holes, numbers 89-13 and 89-14 (Figure 21), were drilled beneath the vein in search of vertical extensions of the gold-bearing structure. Both holes encountered long sections of strongly sheared Archibald-type rocks and it is apparent that they were drilled into a fault structure. No conclusive evidence was obtained concerning the vertical persistence of the goldbearing structure.

Parenthetically, it should be noted that although about 1000 ounces of gold is reported to have been produced from the Ida D vein, the company does not have any plans or other basic data concerning the productive zone. Trenches excavated many years ago in the area immediately north of the Ida D adit have traced the zone northerly into the so-called "Sinemurian Beds" where one may speculate that gold values diminished. Similar effects were experienced at the north end of the Second Relief mine.


(g) No. 2 Vein

The No. 2 vein structure, in accordance with Dr. Kucera's recommendations, was the principal objective of 1989 exploration work east of Erie Creek. It has numerous similarities to the Second Relief vein and it closely parallels that vein both in strike and dip. Hosted by altered fragmental volcanic rocks of the Elise Formation, the vein is a persistent strand of metallic minerals, variously pyrite, pyrrhotite, magnetite, sphalerite, and chalcopyrite, with an attendant envelope of silicification but very sparce vein quartz. Visible gold particles, noted in several places, are fine-grained.

Widths vary substantially and there seems to be little correlation between widths and gold tenor. 1989 work, supplemental to and in a sense a continuation of the 1988 excavations, was two-fold: (1) additional detailed sampling of the surface portion of the vein and (2) reverse circulation drilling to intersect the vein at significant depths below surface.

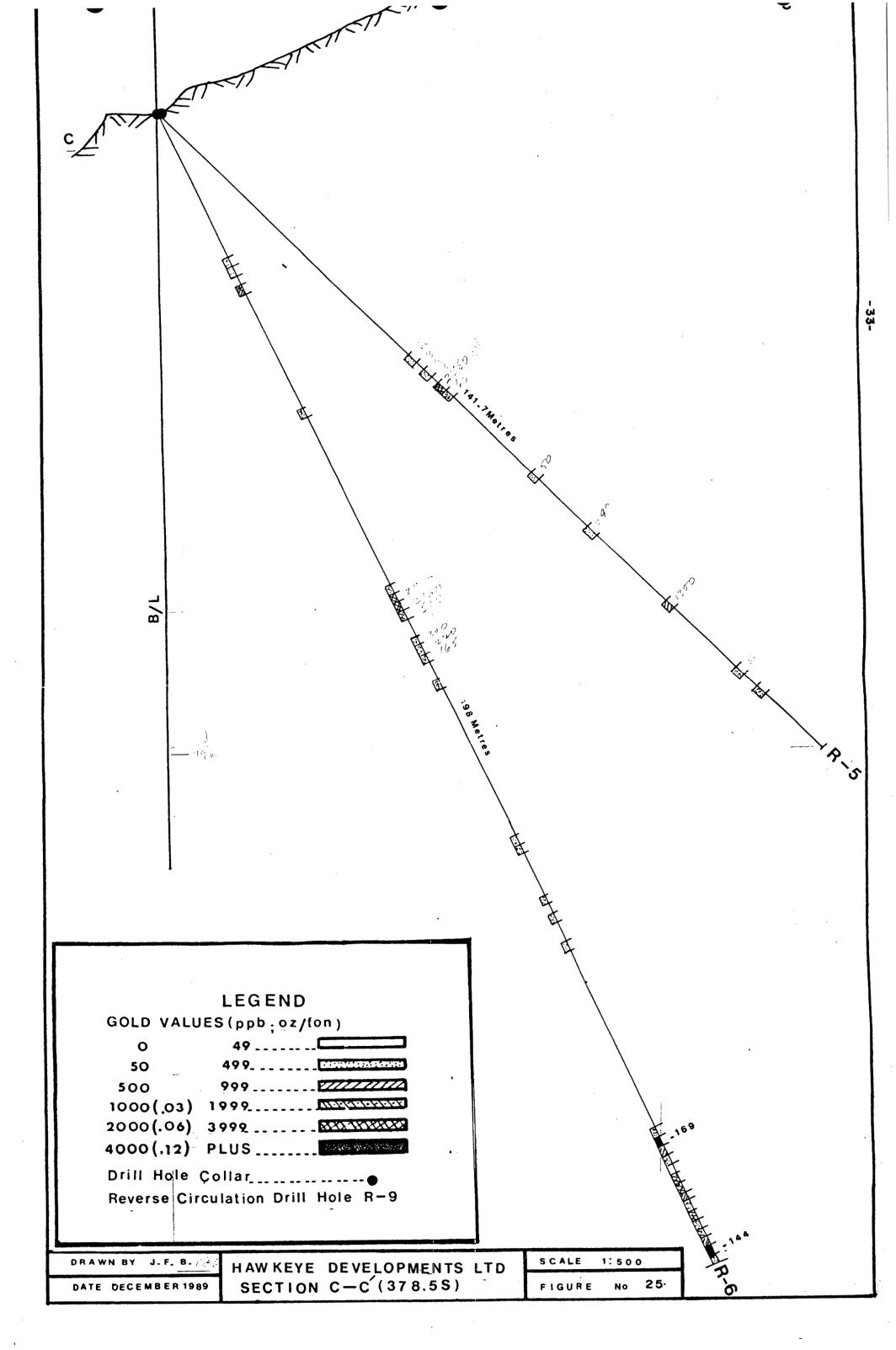
Detailed sampling employed a Cobra drill and dynamite to expose less-weathered material at shallow depths, which material was then chip-sampled by the moil and hammer method. Samples were taken at irregular intervals in a 200 metre length. Some assays can be compared to those taken in 1988 from corresponding but more superficial sites, others are representative of parts of the vein that were not previously sampled. Figure 22 illustrates 1989 samples.

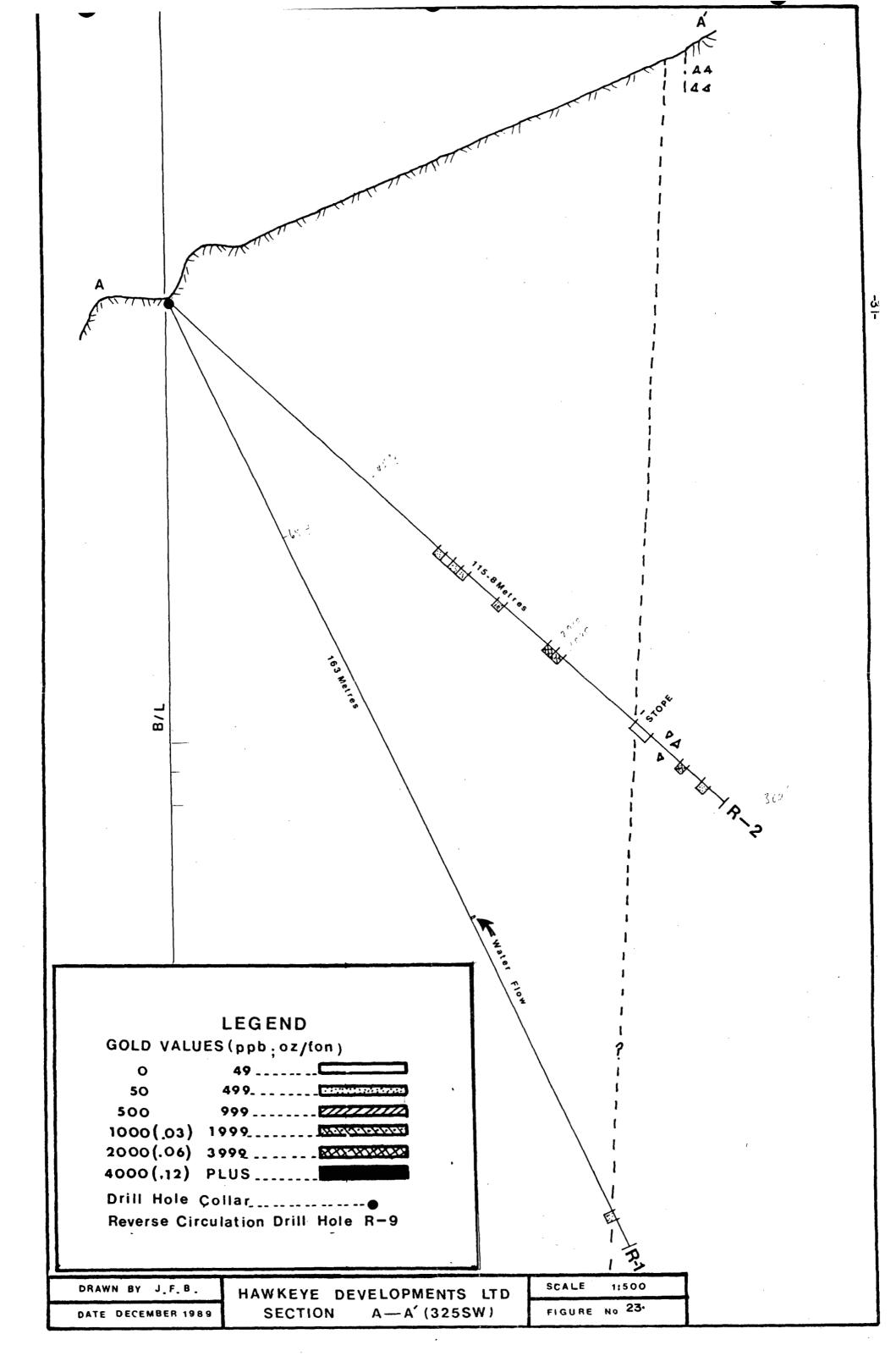
Eight reverse circulation drill holes, numbered RC-89-1 to RC-89-6 and RC-89-10 and RC-89-11, were directed to deeper parts of the No. 2 vein and two holes, RC-89-7 and RC-89-12 tested it

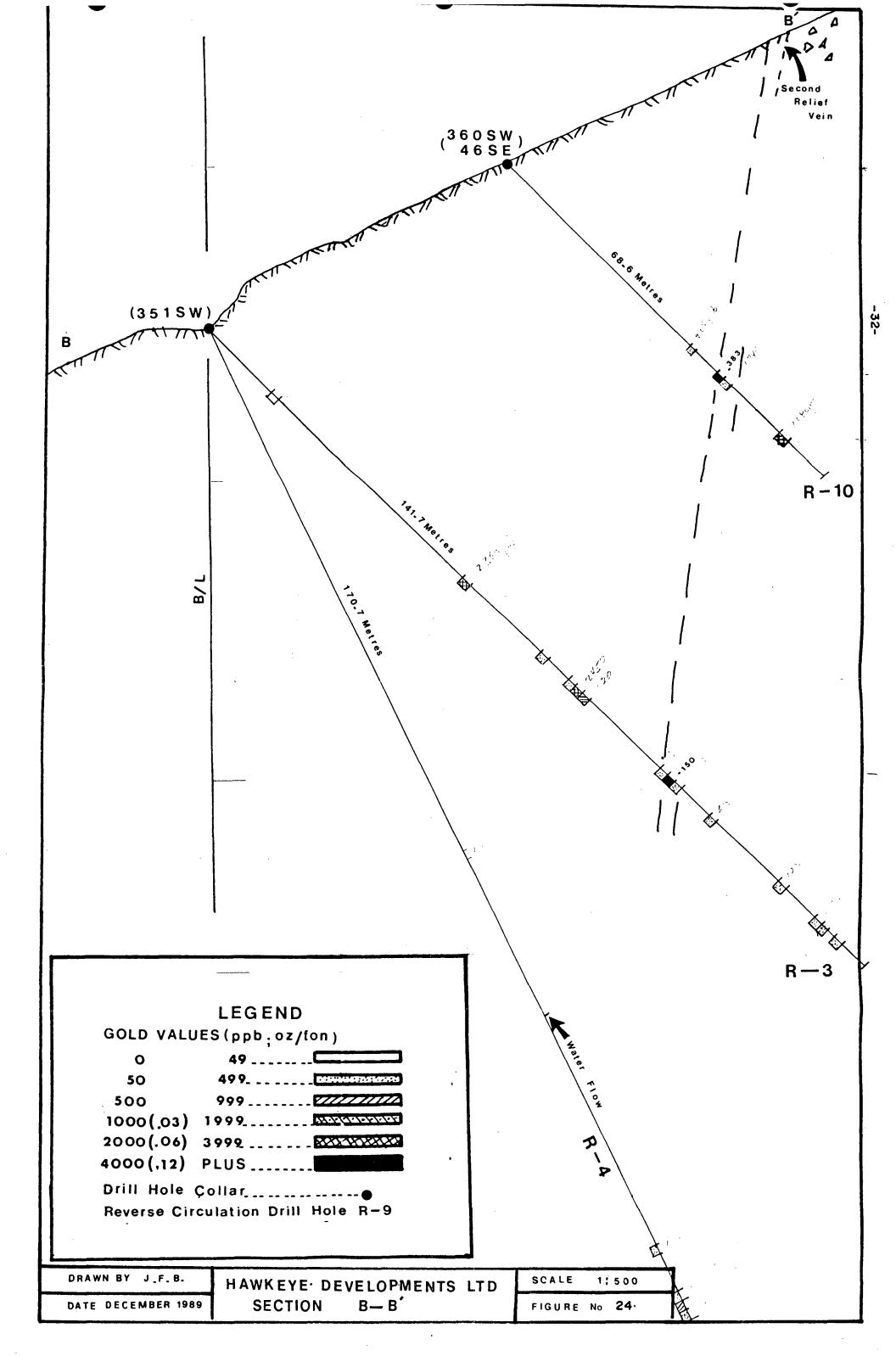
24 core samples — all nil gold

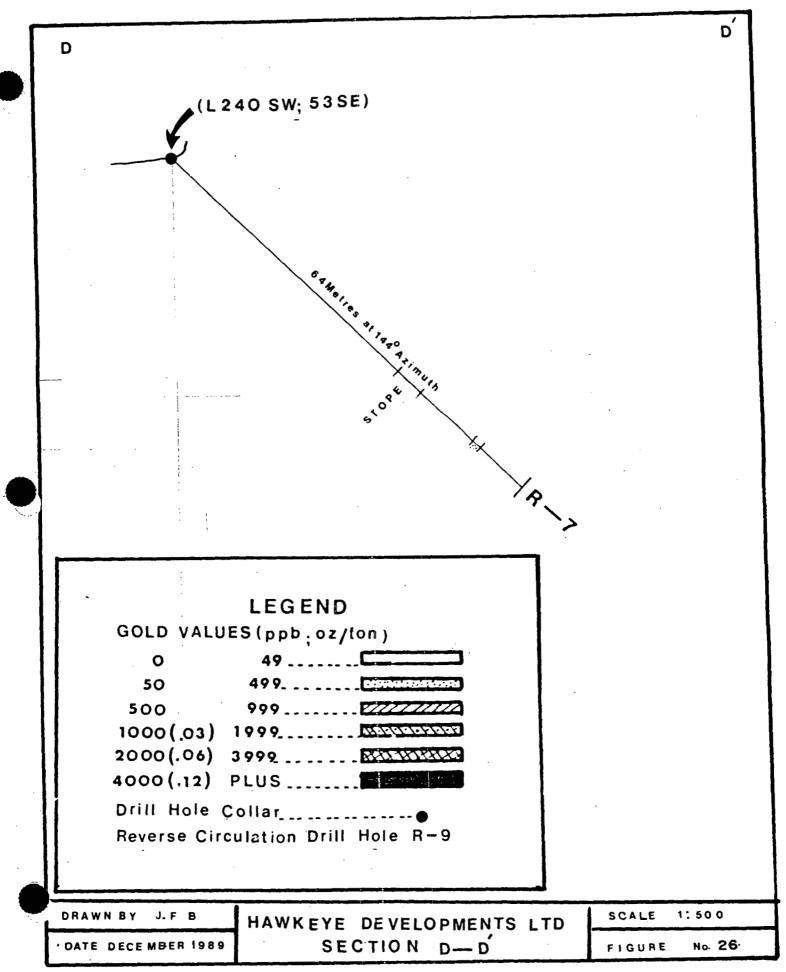
Figure	21.	
HAWK	EYE DEV	ELOPMENTS LTD
IDA D	VEIN -	view northeasterly
Scale:	I:500	Sept· 1989·

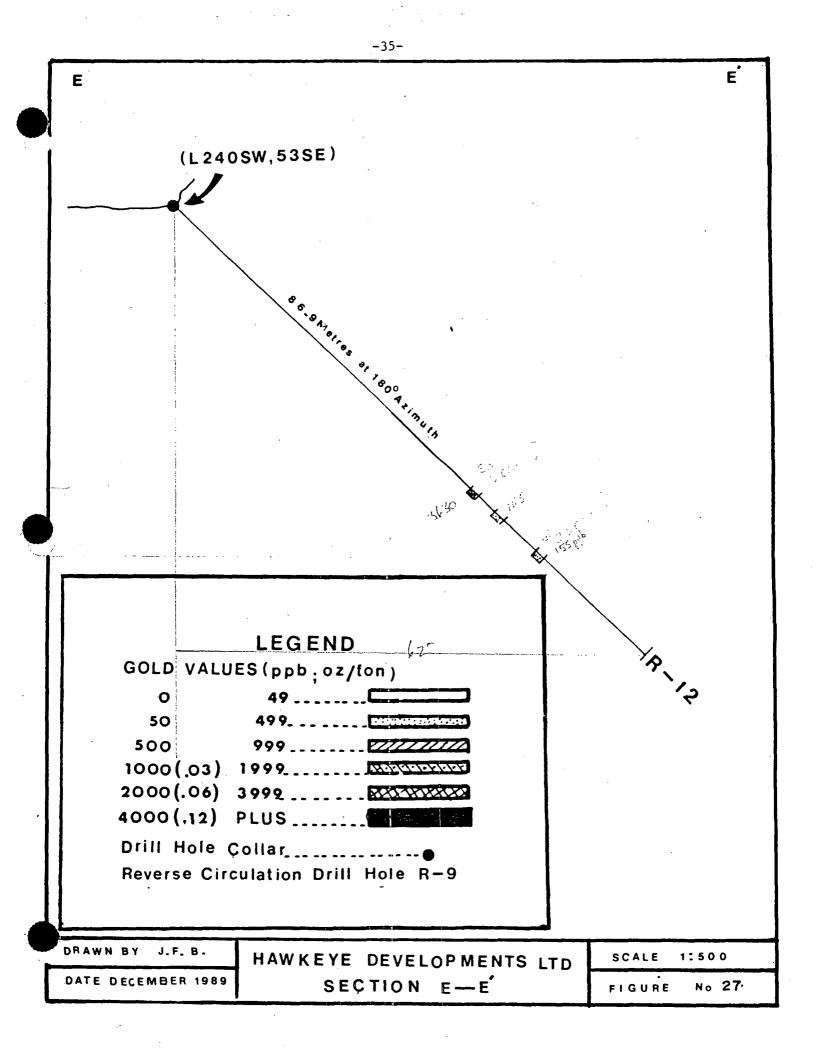
near surface. Figures 23 to 27 are somewhat diagrammatic presentations of vertical sections that illustrate the reverse circulation drill holes, as well as, where they were recognized, Second Relief mine workings and No. 2 vein. Gold assays are plotted on the sections.

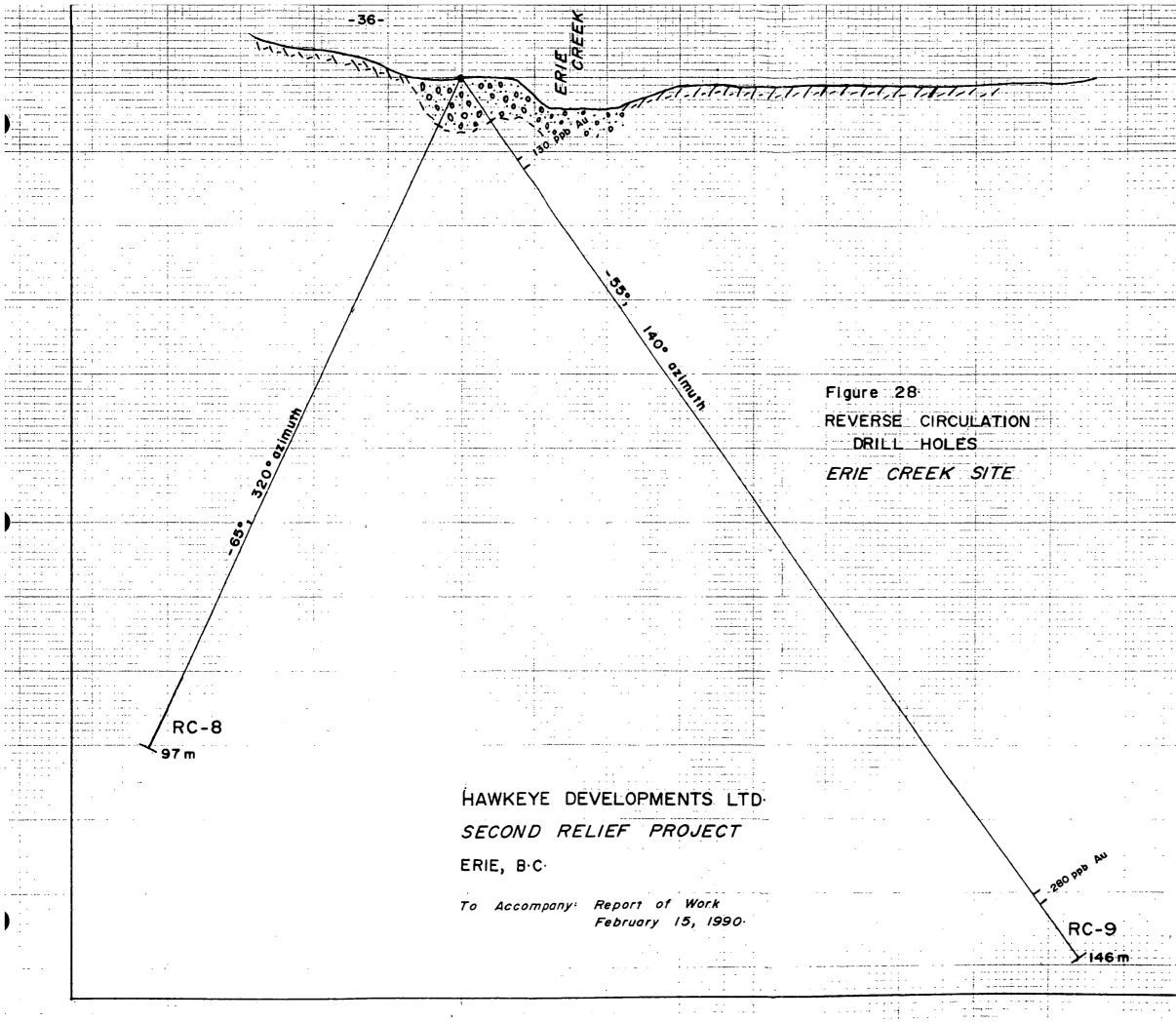

Several reverse circulation drill holes failed to reach their objective, the No. 2 vein, due to over-estimation of the capability of the machinery employed. Initially it was planned to drill two holes, at -65 degrees and -80 degrees, from each of three prepared drill sites. The drill had insufficient power to reliably lift cuttings and water from hole depths of more than about 175 metres so the -80 degree holes were eliminated and the program was changed to -45 degree and -65 degree holes.


The vertical sections show that, where intersected, No. 2 vein contains substantial amounts of gold. The reliability of the sampling method cannot be determined from the limited number of intersections obtained so that the assays should be accepted as being qualitative rather than as being of high precision. Nonetheless these few and very preliminary drill hole results are considered to be strongly encouraging as well as being confirmation of information preserved from work done in the 1930s by Relief Arlington Mines Ltd. Further test work is recommended in a later section of this report.


Review of drill cuttings indicates that wall rocks in the hanging wall of Second Relief vein are strongly propyllitized fragmental volcanic rocks of intermediate composition. Rocks between Second Relief vein and No. 2 vein are dark matrix biotitized feldspar porphyry. Similar rocks are present at surface where they clearly are dykes.


(h) Erie Creek "Zone"


Two reverse circulation drill holes were drilled in the "floor" of Erie Creek channel. Drill hole RC-89-8 was drilled westerly in search of the possible continuation of the Inez and Rand veins (Figure 28). No encouragement resulted from that hole and drill hole RC-89-9 was then drilled easterly beneath Erie Creek to test bedrock in an area of possible mineral potential where there are no outcroppings. Hole RC-89-9 passed through an intensely sheared zone that is likely the southerly continuation of the "Red Mountain Fault" that was mapped by Hoy and Andrew at Fortynine Creek north of the Nelson Intrusions that occupy the upper parts of Erie Creek valley.



IX. COMMENTS AND OBSERVATIONS

1. Veins at Second Relief property are sheared, quartz poor, structures that are irregularly mineralized with one or more iron sulphides plus one or more of magnetite, chalcopyrite and sphalerite. Metallic gold is present as dust-sized particles except at Ida D vein where gold grains are as coarse as 2 mm diameter.

2. Diamond drill holes failed to prove vertical persistence of the Inez vein. Drill core sample assays were less than those obtained from surface channel samples. Dioritic feldspar porphyry intrusive rocks were intersected at shallow depths in drill holes and may indicate that mineral potential is severely restricted.

3. Magnetometer and VLF-EM surveys confirmed data obtained by geological mapping. Vein structures are too narrow and too sharply defined to be reliably traced by the geophysical methods employed but further analysis of the data may yield useful information concerning the entire zones.

4. Strongly iron-stained pyritic and siliceous argillic sedimentary rocks of the Archibald formation contain tantalizing concentrations of iron sulphides but gold values are seldom significantly higher than background.

5. The No. 2 vein is known to contain important amounts of gold in steep zones of moderate thickness that appear at surface in a distance of 200 metres. A few reverse circulation drill holes have confirmed persistence of gold values to at least 200 metres below surface.

6. The Ida D vein has significant gold values, including visible gold, in surface exposures. The vein is cut by a strong fault zone that appears to neither offset the structure nor diminish the gold content.

X. RECOMMENDATIONS

Additional exploration of the No. 2 vein of the Second Relief property is strongly recommended. Experience to date shows that continuation of reverse circulation drilling utilizing a relatively mobile drill unit is unlikely to produce satisfactory results and two alternative methods of exploring the No. 2 vein are suggested.

Conventional wireline diamond drilling, in part following the 1989 reverse circulation drill holes that failed to reach their intended depths, should be able to drill across the open or rubble-filled stopes of the Second Relief mine and reach the No. 2 vein. Obviously only nearly new drill bits should be used because it will be neither reasonable nor practical to withdraw worn drill tools from the stope portion in the expectation that the footwall portion can be re-entered.

£

Until a great amount of information is known about the distribution of gold in a deposit, core samples are generally unsatisfactory for determining with any degree of precision the amount of gold present. They may serve to affirm or deny in general terms the presence of gold and thus encourage or forestall further exploration. Better data are obtained from mine headings where larger samples can be obtained and more detailed sampling patterns can be established. For these and other reasons, it may be desirable to re-enter the old mine workings of the Second Relief mine by way of the former main haulage level. After rehabilitation it should be possible to re-locate one or more of the crosscuts that passed from the Second Relief mine into the No. 2 vein in the footwall and then determine if a program of drifting is warranted. Also it should then be possible to de-water the shaft and gain access to deeper portions of the old mine from which it may be practical to drill several holes into the No. 2 vein.

Timbering and other rehabilitation of the caved portion of the former main haulage level (No. 5 Level) of the Second Relief mine may be only moderately costly and likely could be facilitated by using either a small scooptram (sized to negotiate what was originally a tracked crosscut) or conventional tracked methods. Higher costs relative to drilling from surface would be balanced by advantages mentioned in the previous paragraph. The cost of a program of surface drilling is likely to be about \$100,000. Mine rehabilitation followed by sampling, and possibly by drifting, drilling, and dewatering operations, is recommended and will require a budget of about \$250,000.

Respectfully submitted,

Erik A. Ostensoe, geologist.

APPENDIX I.

PETROGRAPHIC REPORTS

J. F. HARRIS, PhD.,

Vancouver Petrographics Ltd.

August 25, 1989.

To Accompany:

Report of Work, Second Relief Project, Hawkeye Developments Ltd., 1989.

Vancouver Petrographics Ltd.

JAMES VINNELL, Manager JOHN G. PAYNE, Ph.D. Geologist CRAIG LEITCH, Ph.D. Geologist JEFF HARRIS, Ph.D. Geologist KEN E. NORTHCOTE, Ph.D. Geologist P.O. BOX 39 8080 GLOVER ROAD, FORT LANGLEY, B.C. V0X 1J0 PHONE (604) 888-1323 FAX. (604) 888-3642

Report for: Joe Whipple, Hawkeye Developments Ltd., 550-1040 West Georgia Street, Vancouver, B.C. V6E 4H1

Invoice 8355

August 25th, 1989

Samples:

7 rock samples, numbered 1 through 7, submitted by Joe Montgomery for sectioning and petrographic examination. The samples were prepared as conventional thin sections, except for #3, which contains substantial sulfides and was prepared as a polished thin section.

+41-

Summary:

The rocks of this suite are of debatable origin. Several show high contents of epidote and, in one case, pyroxene and garnet, suggesting probable skarnic affinities. Others contain fine-grained biotite and may be hornfelsic. They typically appear microgranularly recrystallized and lack strong foliation suggesting that they are products of dominantly thermal rather than regional/dynamic metamorphism.

Many of these rocks exhibit patchy cryptofragmental textures and probable relict bedding, and are either feldspathic or siliceous in composition. They are thought to have been formed by thermal metamorphism and/or skarnic metasomatism from a sequence of felsic tuffs or coarse wackes, and quartzites or cherts - possibly of somewhat calcareous composition.

Sample 5 is distinct from the rest of the suite in that it is a rather fine-grained trachyandesite porphyry, of normal (non-recrystallized) aspect.

Samples 1, 3, 4, 6 and 7 are all tentatively classified as hornfelsed and/or skarnified meta tuffs or sediments.

Samples 1 and 7 are composed of potassic felsite, with clumps and streaks of epidote and intergrown sericite. They both have skarnic bands or veniform segregations of coarser quartz-epidote.

Samples 3 and 4 are fine-grained, quartzose or felsitic rocks of non-potassic composition. They contain biotite as clumpy segregations and dispersed flecks. The first includes a band or veinlet of quartz and pyrrhotite with traces of Au.

Samples 2 and 6 are of siliceous composition. The first consists of essentially monomineralic, recrystallized quartz, with a skarnic band of pyroxene and garnet. The second is a finer-grained quartz mosaic, abundantly permeated by epidote; it appears interbedded with a potassic felsite, and may be a thermally recrystallized calcareous siltstone or chert.

Individual petrographic descriptions are attached.

J.F. Harris Ph.D.

(929-5867)

Estimated mode

Ouartz 27 K-feldspar 14 Epidote 50 Biotite 2 Sericite 3 2 Carbonate Amphibole 2 Sphene trace Apatite trace

This sample is a fine-grained, weakly foliated, streaky/clumpy rock of partially potassic composition (note yellow cobaltinitrite stain on cut-off block). The slide includes a concordant, coarser-grained, K-free zone, 6 - 7mm in thickness.

The foliated portion of the slide consists essentially of a heterogenous intergrowth of quartz, K-feldspar and epidote, of grain size 0.02 - 0.2mm.

The epidote is mostly strongly segregated, as sub-parallel lenses, clumps and semi-continuous strings of grains. It typically contains sericite - in the form of stubby flakes of similar size to the epidote - as an intergrown accessory.

The epidote/sericite strings and augen are separated by a fine mosaic intergrowth of quartz and K-feldspar. The latter mineral tends to segregate as thin wisps of minutely fine-grained material sinuously outlining the epidote segregations. Some clumpy segregation of coarser quartz is also seen.

Biotite is the other principal accessory. This occurs as tiny, randomly-oriented, ragged flakes, 0.02 - 0.1mm in size, often clumped. It is mainly closely associated with the epidote lenses, but is sometimes also seen as disseminated flecks and elongate clusters within the quartz/K-spar component. It is a strongly pleochroic, Fe-rich variety. Traces of sphene are sometimes associated.

Apatite, as randomly disseminated, euhedral individuals, is a relatively abundant minor accessory.

The coarse, K-free band is composed of a mosaic aggregate of epidote and quartz, of grain size 0.2 - 2.0mm or more, with intergrown accessory carbonate.

The margins of this zone include some ragged porphyroblastic/skeletal grains of brown amphibole, patchily altered to a dark brown opaque material (limonite?). Similar dark brown Sample 1 cont.

flecks (presumably also representing altered amphiboles) are seen throughout the rock, closely associated with the accessory biotite.

This rock is probably a metamorphically recrystallized tuff. The abundance of epidote suggests metacalcareous or skarnic affinities.

Estimated mode

Quartz70Pyroxene12Garnet15AmphiboletraceCarbonate1ApatitetraceMagnetite2

This is a crudely-banded rock composed predominantly of quartz, in the form of a varigranular, crenulate-margined mosaic, of grain size 0.05 - 1.0mm. Occasional much coarser grains, to 2 or 3mm, are also seen. The quartz shows strong, shadowy, strain polarization throughout - indicative of recrystallization under stress.

A central zone, 5 - 10mm thick, is demarked by a strong concentration of brown garnet and pale green pyroxene. The garnet forms irregular poikiloblastic masses, sieved with fine-grained quartz, and the pyroxene forms clusters of irregular granules and aggregated, equant, subhedral grains, 0.05 - 2.0mm in size.

Magnetite forms an intergranular network in the pyroxene aggregate, and irregular inclusions in the garnet. Traces of carbonate are intergrown with the quartz matrix in the vicinity of the garnetpyroxene band.

Generally the garnet and pyroxene are well segregated, but there is some intergrowth. The pyroxene in intimate contact with the garnet is often partially altered to carbonate.

Small pockets and wisps of pyroxene, with minor associated garnet, occur as oblique off-shoots from the main band, and as scattered, disseminated clumps.

A wispy band at one end of the slide is made up of clusters of tiny granules of carbonate and magnetite in the quartz matrix.

This sample has the aspect of a siliceous skarn - possibly derived by thermal recrystallization from a quartzite or chert with calcareous intercalations. SAMPLE 3

Estimated mode

Quartz 45 Sericite 25 Biotite 15 Chlorite trace Apatite trace Tourmaline trace Rutile trace Pyrrhotite 15 Pyrite trace Chalcopyrite trace Bi telluride(?) trace Gold trace

As can be seen from the cut-off block, this is a fine-grained, non-foliated rock, showing irregular, patchy, darker areas of distinctive mineralogy. The slide includes a band or veniform segregation of pyrrhotite, and is cut by a network of hairline microfractures also containing pyrrhotite.

The matrix is a microgranular aggregate of quartz, of grain size 10 - 100 microns. It is a polygonal mosaic of recrystallized aspect.

Abundant accessory sericite occurs as an intergranular meshwork of tiny flakes throughout the quartz. Locally the sericite shows preferred orientation and, emphasized by wisps of sub-opaque rutile, defines a weak, irregular foliation - sometimes reflecting crenulate microdeformation.

In the patchy darker areas the place of the sericite is taken by biotite, typically randomly-oriented and locally quite strongly concentrated as felted aggregates.

Apatite, as sparsely disseminated, individual, tiny euhedra, is a trace accessory, occurring in both the sericitic and biotitic areas.

The fabric of the rock suggests that it is possibly a form of hornfels. The biotite patches may reflect a relict fragmental structure.

The main sulfide band is composed of pyrrhotite, intergrown with coarser, mica-free, granular quartz, of grain size 0.1 - 1.0mm. The quartz forms ramifying, irregular veinlike zones, and also occurs as a selvedge to the more massive part of the pyrrhotite segregation. The pyrrhotite forms coarsely granular, well-polished clumps and masses, with occasional intergrown pyrite grains and tiny marginal pockets of chalcopyrite. Sample 3 cont.

Rare traces of Au and Bi minerals were seen. Probable Bi telluride occurs as discrete blebs within pyrrhotite. Native Au was seen as grains 5 - 15 microns in size, associated with probable bismuthinite in a threadlike veinlet of chalcopyrite in pyrite, and in quartz peripheral to pyrrhotite.

Pyrrhotite, with minor chalcopyrite, also occurs as clusters in small pockets of coarsened crystallization in the quartz/sericite and quartz/biotite matrix, and with granular quartz which forms a bi-directional network of hairline veinlets.

Rare traces of tourmaline are associated with sulfides in the latter context.

Estimated mode

18 Quartz Plagioclase 45 K-feldspar 3 Biotite 25 Sericite 6 Chlorite trace Sphene) 1 Rutile) Apatite trace Opaques 2

The cut-off block of this sample shows a distinctive cryptofragmental texture of etched (and weakly potassic) patches, defined by a network of darker, unetched material. There are also a few sub-concordant zones resembling very fine-grained sedimentary intercalations.

In thin section the rock is found to consist essentially of a microgranular, recrystallized aggregate of felsite, of grain size 20 - 70 microns, with more or less abundant, intergrown, tiny flakes of biotite and minor sericite.

Patches and irregular streaks of segregated quartz (slightly coarser than the predominant biotitic felsite) and concentrations of coarser biotite, constitute the darker, unetched material as seen in the cut-off block.

Minutely granular sphene is sometimes associated with the biotite concentrations. Apatite forms scattered euhedra, to 100 - 200 microns in size.

Fine-grained disseminated opaques (magnetite, and possibly some pyrrhotite), as granules and equant euhedra, 10 - 100 microns in size, form random clusters - without any particular relation to the patchy variations in the host.

The biotite and sericite show a weak preferred orientation (with many local irregularities) throughout the rock. The fine-grained concordant streaks, seen in the cut-off block, are composed of the same microgranular felsite mosaic as the rest of the rock, but are much more homogenous. They include notably well-oriented biotite and sericite flecks and are devoid of the patchy grain size and mineralogical segregations seen elsewhere.

This rock is probably a hornfelsed and/or weakly regionally metamorphosed tuff.

SAMPLE 5

Estimated mode

5 Quartz Plagioclase 60 K-feldspar 7 Sericite trace Biotite 20 Hornblende 3 2 Epidote Sphene 3 Carbonate trace Apatite trace Opagues trace

This sample is an igneous rock, showing a well-defined, porphyritic texture. It could be a coarse-grained flow, or a minor intrusive.

Phenocrysts make up 60% or more of the rock. They consist predominantly of euhedral-subhedral plagioclase, 0.3 - 3.0mm in size. There is also a minor proportion of prominent, rounded to amoeboid phenocrysts of quartz.

Phenocrysts of hornblende were originally a major component. These are now largely converted to prismatic pseudomorphs and more or less diffuse clusters composed of fine-grained biotite, with intergrown granules of sphene and epidote. A few partial remnants of amphibole survive as cores to these pseudomorphs.

The plagioclase phenocrysts are fresh but for an occasional light flecking by carbonate or sericite.

The groundmass is a notably equigranular, minutely fine-grained, mosaic-textured aggregate of fresh plagioclase, of grain size 5 - 30 microns. Accessory groundmass constituents are biotite, hornblende and sphene; these often concentrate as sub-oriented wisps, tending to outline the plagioclase phenocrysts.

The cut-off block shows a marked concentration of positive cobaltinitrite stain marginal to many of the plagioclase phenocrysts. This feature is recognizable, in thin section, as segregations of microgranular K-feldspar - slightly coarser than the general groundmass grain size. These are seemingly products of early groundmass crystallization centred on pre-existing phenocrysts. A few pockety segregations of similar microgranular K-spar are also seen independent of the phenocrysts. -50-

Estimated mode

Ouartz 28 Epidote 62 Amphibole 3 Chlorite 1 Carbonate 3 Sphene trace Apatite trace Garnet 1 K-feldspar 2 Biotite trace

This is another heterogenous, streaky-textured rock of skarnic aspect. It is composed essentially of quartz and epidote.

The quartz forms a rather equigranular, polygonal to interlocking mosaic, of grain size 0.05 - 0.2mm.

Epidote is a major constituent, permeating the quartz as interconnected clumps, streaks and intergranular networks. It shows a general grain size similar to that of the quartz, but locally shows poikiloblastic habit, as coarse, optically continuous patches sieved with quartz.

The compact aggregates of epidote contain scattered, partially replaced grains of intergrown green hornblende, and pockets and streaks of fibrous chlorite. Minutely granular sphene is a random trace accessory.

In one area, the epidote shows intimate intergrowth with fragmentary /porphyroblastic garnet.

Carbonate is a minor accessory, sporadically intergrown with the patches of quartz mosaic, or as individual grains or small clumps within epidote.

One end of the slide incorporates a portion of a band(?) of fine-grained felsitic K-spar with accessory flecks of biotite.

This is a totally recrystallized rock of indeterminate ancestry. Its mineralogy is consistent with the skarnified tuff/sediment environment indicated for the rest of the suite. -51-

Estimated mode

Quartz 14 K-feldspar 34 21 Sericite Epidote 26 2 Biotite Amphibole) 1 Chlorite) Tourmaline trace Carbonate trace Garnet trace Apatite trace Sphene 1 1 Opaques

About 75% of this slide consists of a cryptofragmental intergrowth of small patches of unetched material in a fine-grained matrix rich in K-feldspar (see cut-off block). This shows some similarities to Samples 1 and 4. One end of the slide incorporates part of a veniform segregation of unetched, non-potassic material - discordant to the crude foliation recognizable in the potassic area.

The latter consists of a minutely microgranular aggregate of K-feldspar, of grain size 5 - 20 microns, with minor intergrown biotite and sericite and scattered, somewhat coarser, individual grains and small clumps of guartz.

Randomly oriented flakes of sericite, up to 0.2mm in size, and similar sized anhedral grains of epidote, form intergrown clumps and streaks throughout the felsitic matrix. These are the abundant fragment-like, unetched areas visible in the cut-off block. They show a general parallelism of elongation which defines a weak foliation.

This lithotype has the aspect of a thermally recrystallized tuff or coarse clastic. Apatite, sphene and tourmaline are trace accessories. The rock also contains relatively abundant opaques, as random disseminations of tiny grains 10 - 150 microns in size. These appear to be mainly pyrrhotite - partially oxidized.

The veniform zone is coarser grained and free of K-feldspar. It is composed predominantly of a mosaic of quartz, of grain size 0.05 - 0.15mm, strongly permeated by clumps and networks of epidote. It thus resembles the material of Sample 6.

A selvedge to the zone includes concentrations of coarse epidote with sphene and green amphibole, and incipient/fragmental development of garnet with intergrown carbonate. Sample 7 cont.

This rock appears to be a recrystallized tuff or impure calcareous arkosic wacke, permeated by irregular skarnic veinlets.

APPENDIX II.

- (a) Assay Certificates Rock Chip Samples and Diamond Drill Core Samples
- (b) Geochemical Certificates Drill Core Specimens
- (c) Soil Samples Geochemical Reports
- (d) Reverse Circulation Drill Hole Samples
 R.C.-89-1 to R.C.-89-12

To Accompany:

Report of Work, Second Relief Project, Hawkeye Developments Ltd., 1989 (a) Assay Certificates - Rock Chip Samples and Diamond Drill Core Samples

.

•

.

- -

· ___

	MLOOPS SEARCH & ASSAY	912 - 1 LAVAL CRES		CERTIFIED ASSAYERS B.C. V2C 5P5 PHONE (604		-1112 <u>CTA</u> ,
	BORATORY LTD.	[HEMICAL REPOR		-1112 ETA
•••••	HAWKEYE DEVELOPMENTS 550 - 1040 WEST GEO VANCOUVER, B.C.				G 2155 JUNE 12,	1989
Attn:				Proj.:		
Aun.					PAGE 1 /	1
KRAL NO	. IDENTIFICATION	AU PPB	AG PPM			
1 2 3	30824 30825 41677	3.0 3.0 3.0	0.6 1.0 0.4			
<u> </u>	IN AU COLUMN 3 IN	DICATES (5	PPB		<u>,, , , , , , , , , , , , , , , ,</u>	ann a ann ann Ailte Féillinn Allan Ailte ann an Stair Chill Stairtean An Stair a
				. ·		
	· · · · ·					-
				•		
		· ·				
- -						
						<u> </u>

-

	MLOOPS SEARCH & ASSAY	912 - 1 LAVAL CRESCEN	T, KAML		IFIED ASSAYERS	372-2784	4 FAX 372	-1112	
LA	BORATORY LTD.		**	ASSAY	CERTIFICA	ſE •	• •		<u>V</u>
Го:	Hawkeye Development 550 - 1040 West Geo Vancouver, B.C.				Number: Date:	K 95 June	546 ≥ 19,	1989)
Attn:					Proj.:			·	

No.	Description	Au	Ag	CuS	ω.
•	0001E	ozs/ton	ozs/ton	percent	percent
1 2	30815	.158	1.66 3.79		<.01
	30816	.051	<.01		(.01
3	30817	<.001			
4	30818	.006	.06		
5	30819	.006	.08		
6	30820	<.001	<.01		
7	30821	<.001	<.01		
8	30822	<.001	<.01	.129	
9	30823	.002	<.01		
10	41678	+ 1.24	.23		
11	41679	.021	.14		
12	41680	<.001	<.01		
13	41681	.006	<.01		and a second
14	41682	.225	.61		
15	41683	.009	.03		
16	41684	.001	<.01		
17	41685	<.001	<.01	har an in a contract to a constant of the test of the second	
18	41686	.003	1.55		
19	42462	6.97	1.11		
20	42463	* 2.76	.32		
				an conservation and con-	
21	42464	.002	<.01		
. 22	42465	.30	.14		
23	42466	<.001	<.01		
24	42467	.114	.09		
25	42468	.86	.20		
26	42469	.061	.03		
27	42470	.38	<.01		
28	42471	.041	.49		
29	42472	* .068	.20	non na sa kanana kanôn nên kana t an sa titut se olana ding	er fall in mins fillen inde dasse af som en sen sen som date fra film inden skalendage af som i film af af fall film
30	42473	.069	.11		
31	42474	.002	.05		
32	42475	.127	.50		
				to conte	ain coarse gold. See
Page 2					

.....

Neck A Blundell

	MLOOPS SEARCH & ASSAY	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 CTA						
	BORATORY LTD.	** ASSAY CERTIFICATE **	<u>y</u>					
То:	Hawkeye Developments							
	550 - 1040 West Geor Vancouver, B.C.	Date: June 19, 1989						
Attn	• •	Proj.:						

ł

	No.		scrip		Percent Weight	Au ozs/ton	Combined ozs/ton	
	10 20	42463	+100 -100	mesh mesh mesh	99.71 .29 99.93 .07	1.23 4.11 2.48 384.	1.24 2. 7 6	
	29	42472	-100		99.81	.061 3.84	.068	·
. The clock work is a set								• • • • • • • • • • • •
	enementering gruppe en e e e				, , , , , , , , , , , , , , , , , , ,			······································
	2012 - 10 - 10 - 10 - 10 - 10 - 10 - 10	9997, 9 · · · · · · · · · · · · · · · · · ·		*				
							* ** · · · · · · · · · · · · · · · · ·	rig and the former for an
				n o o una e vers anteresta	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·····	
							- <u></u>	

. .

Leule A Studeel - -B.C. Certified Assayer

RE	AMLOOPS ESEARCH & ASSAY ABORATORY LTD.	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 ** ASSAY CERTIFICATE **
Го:	Hawkeye Development 550-1040 West Georg	
	Vancouver, B.C. V6E 4H1	Date: June 29, 1989
Attn	1:	Proj.:

No.	Descrip		Ag			
•		ozs/ton	ozs/ton			
1	41687					
2	41688		.14			
<u></u> 3	41689		.50			
4	41690		<.01			
5	41691	.032	.08		· · · · · · · ·	
6	41692	.040	.03			
7	41693					
8	41694	.001	<.01			
9	41695	.002			· · · · ·	· · · ·
10	41696					
11	41697		<.01			
,						
		Percent		Combined A		
4	41690 -100 1	Weight	ozs/ton	Combined A ozs/ton .013		
4	41690 -100 1	Weight mesh 99.96		ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		· · · · · · · · · · · · · · · · · · ·
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		· · · · · · · · · · · ·
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		
4		Weight mesh 99.96	.008	ozs/ton		· · · · · · · · · · · · · · · · · · ·
4		Weight mesh 99.96	.008	ozs/ton		· · · · · · · · · · · · · · · · · · ·
4		Weight mesh 99.96	.008	ozs/ton		· · · · · · · · · · · · · · · · · · ·
4		Weight mesh 99.96	.008	ozs/ton		

Ŵ:

KAMLOOPS RESEARCH & ASSAY 912-1 LAVAL CI	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 <u>CTA</u> ,						
LABORATORY LTD.	RESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112						
To: Hawkeye Developments	Number: K 9587						
550-1040 West Georgia St., Vancouver, B.C. V6E 4H1	Date: July 5, 1989						
Attn:	Proj.:						

1 65501 022/ton 022/ton percent 1 65501 .026 .03 .10 2 65502 .347 .05 .16 3 65503 .123 .08 .15 4 65504 .250 .06 .14 5 65505 .063 .01 .06 6 65506 .002 <.01 .06 7 65507 .006 <.01 .06 7 65507 .006 <.01 .06 7 65507 .006 <.01 .06 7 65510 .008 <.01 .08 12 65511 .0081 .05 .17 13 65513 .081 .05 .15 16 65516 .101 .02 .10 * Sample has been acreened and found to contain coarse gold. See below: 9 66503 -100 mesh 99.94 .425 .437		Description	Au ozs/ton	Ag ozs/ton	Cu percent	Zn percent
2 65502 .347 .05 .16 3 65503 .123 .08 .15 4 65504 .250 .06 .14 5 65505 .063 .01 .06 6 65506 .002 <.01 .06 7 65507 .006 <.01 8 65508 .001 <.01 9 65509 • .437 .02 .10 10 65510 .008 <.01 11 65511 .107 <.01 .08 12 65512 .081 .05 .17 13 65513 .174 .01 .10 .02 14 65514 .359 .08 .09 15 65515 .081 .05 .15 16 65516 .101 .02 .10 * Sample has been screened and found to contain coarse gold. See below. Percent Au Combined Au Weight ozs/ton ozs/ton 9 66509 -100 mesh 99.94 .425 .437	1	65501				percent
3 65503 .123 .08 .15 4 65504 .250 .06 .14 5 65505 .063 .01 .06 6 65506 .002 <.01						
4 65504 .250 .06 .14 5 65505 .063 .01 .06 6 65506 .002 <.01						
5 65505 .063 .01 .06 6 65506 .002 <.01						
6 65506 .002 <.01						· · · · · · · · · · · · · · · · · · ·
7 65507 .006 <.01	5					
8 65508 .001 <.01	6	65506	.002	<.01	.06	
9 65509 • .437 .02 .10 10 65510 .008 <.01 11 65511 .107 <.01 .08 12 65512 .081 .05 .17 13 65513 .174 .01 .10 .02 14 65514 .359 .08 .09 15 65515 .081 .05 .15 16 65516 .101 .02 .10 * Sample has been acreened and found to contain coarse gold. See below. Percent Au Combined Au Weight ozs/ton ozs/ton 9 66509 -100 mesh 99.94 .425 .437	7	65507	.006	<.01		
10 65510 .008 <.01	8	65508	.001	<.01		
10 65510 .008 <.01	••••			• • • •		· , •
11 65511 .107 <.01					.10	
12 65512 .081 .05 .17 13 65513 .174 .01 .10 .02 14 65514 .359 .08 .09 15 65515 .081 .05 .15 16 65516 .101 .02 .10 * Sample has been screened and found to contain coarse gold. See below. Percent Au Combined Au 9 66509 -100 mesh 99.94 .425 .437						
13 65513 .174 .01 .10 .02 14 65514 .359 .08 .09 15 65515 .081 .05 .15 16 65516 .101 .02 .10 * Sample has been screened and found to contain coarse gold. See below: Percent Au Combined Au 9 66509 -100 mesh 99.94 .425 .437						
13 65513 .174 .01 .10 .02 14 65514 .359 .08 .09 15 65515 .081 .05 .15 16 65516 .101 .02 .10 * Sample has been screened and found to contain coarse gold. See below. Percent Au Combined Au 9 66509 -100 mesh 99.94 .425 .437	12	65512	.081	.05		
14 65514 .359 .08 .09 15 65515 .081 .05 .15 16 65516 .101 .02 .10 * Sample has been screened and found to contain coarse gold. See below. Percent Au Combined Au Weight ozs/ton ozs/ton 9 66509 -100 mesh 99.94 .425 .437	13	65513	174	01		02
15 65515 .081 .05 .15 16 65516 .101 .02 .10 * Sample has been screened and found to contain coarse gold. See below: Percent Au Combined Au Weight ozs/ton ozs/ton 9 66509 -100 mesh 99.94 .425 .437						.02
16 65516 .101 .02 .10 * Sample has been acreened and found to contain coarse gold. See below: Percent Au Combined Au Weight ozs/ton ozs/ton 9 66509 -100 mesh 99.94 .425 .437						
* Sample has been screened and found to contain coarse gold. See below: Percent Au Combined Au Weight ozs/ton ozs/ton 9 66509 -100 mesh 99.94 .425 .437						
Percent Au Combined Au Weight ozs/ton ozs/ton 9 66509 -100 mesh 99.94 .425 .437						
Weight ozs/ton ozs/ton 9 66509 -100 mesh 99.94 .425 .437	-	.				
9 66509 -100 mesh 99.94 .425 .437						coarse gold. See
			Pe	ercent	Αυ	Combined Au
+100 mesh .04 21.5	below		Pe	ercent	Au ozs/ton	Combined Au ozs/ton
	below	66509 -100 me	Pe We esh S	ercent eight 99.94	Au ozs/ton .425	Combined Au ozs/ton
	below	66509 -100 me	Pe We esh S	ercent eight 99.94	Au ozs/ton .425	Combined Au ozs/ton
	below	66509 -100 me	Pe We esh S	ercent eight 99.94	Au ozs/ton .425	Combined Au ozs/ton

L. LL 2100 ٠. X.

RE	MLOOPS SEARCH & ASSAY BORATORY LTD.	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 - ASSAY CERTIFICATE **	
То:	Hawkeye Development: 550-1040 West Georg.		
	Vancouver, 3.0. V6H 4H1	Date: July 7, 1989	•

Proj.:

Attn:

N	io.	Descrip	tion	Au ozs/ton	Ag ozs/ton	Cu percent	Pb percent	Zn percent
		53517		.030				······································
		65513		.124				
ć	3	38519		* .209	<.01	.05	<.01	.30
2	1	65520		.010	<.01			
Ę	5	35521		<.001	<.01	a - Arth gh'n ynghynniwyr angel yr rae yn yr rae yn rae ar ar ar yn	не монискурной частични пакалана и конструкционе кандурная селоне чести	
e	-	85522		.096	<.01			
-	•	33520		* .217	<.01 ·			
<u> (</u>	3	-55524		.146	<.01			
5	Э	\$5525	analanan Mag Shaganga Aga go Conservation - Land at Law a	* .241	K.01		анбаналтанган колон колон каран ана у у уналтан к	talaan aanaan maddidaa aga balay ay gayaa ya y ahaa ahaanaa yoo ay yoo yoo dhada
	10	65601		* .48 <u>2</u>		.03	<.01	.09
	1	S560.2		005	<.01			
,		ple haa b	en scre		found to	contain	coarse go	old. See
	-Sam	ple haa b	en.scre	ene <u>d</u> and	found to		-	old. See
-	-Sam	ple haa b	enscre	ened_and Percent	found to	Combine	ed Au	old. See
) .	-Samp Selow	ple haa b •		ened and Percent Weight	found to Au ozs/con	Combine ozs/t	ed Au	old. See
)	-Sam	ple haa b)0 mesh	Percent Weight 99.35	found to	Combine ozs/t	ed Au	old. See
	-Samp Selow	ple haa b	00 mesh 00 mesh 00 mesh	Percent Veight 99.35 .05 99.31	found to Au ozs/ion .206 5.16 .213	Combine ozs/t .2	ed Au	old. See
	Sampelow	ple haa b	00 mesh 00 mesh 00 mesh	Percent Veight 99.35 .05	found to Au ozs/ion .206 5.16	Combine ozs/t .2	ed Au .on 209	old. See
	Sampelow	ple haa b 65519 -14 65523 -14 65525 -14	00 mesh 00 mesh 00 mesh 00 mesh 00 mesh	ened and Percent Weight 99.95 .05 99.91 .09 98.41	Au ozs/lon .206 5.16 .213 5.10 .236	Combine ozs/t .2	ed Au .on 209	old. See
	Samp Selow	ple haa b 65519 -14 65523 -14 65525 -14	00 mesh 00 mesh 00 mesh 00 mesh 00 mesh	Percent Veight 99.95 .05 99.91 .09	found to Au ozs/lon .206 5.16 .213 5.10	Combine ozs/t .2	ed Au on 209 217	oldSee
	Samp Selow	ple haa b 65519 -14 65523 -14 65525 -14	00 mesh 00 mesh 00 mesh 00 mesh 00 mesh 00 mesh	Percent <u>Weight</u> 99.95 .05 99.91 .09 98.41 1.59	Au 023/10n .206 5.16 .213 5.10 .236 .540	Combine .2 .2 .2	ed Au on 209 217	old. See

Jour

B.C. CERTIFIED ASSAYERS
ESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112
** ASSAY CERTIFICATE **
Number: K 9602
Date: July 19, 1989
Proj.:
- 7

No.	Description	Au ozs/ton	Ag ozs/ton	Cu percent	
1	41698	<.001	<.01		
2	41699	<.001	<.01		
3	41700	<.001	<.01	·	· .
4	59005	<.001	<.01		
5	59006	.108	. 38	. 47	
6	59007	<.001	<.01		
7	59008	<.001	<.01		· ·
8	59009	<.001	<.01		
9	59010	<.001	<.01		n na anna an anna an anna anna anna an
10	59011	<.001	<.01		
11	59012	.003	<.01		
12	59013	.005	<.01		
13	59014	.013	<.01		
14	59015	<.001	<.01	r.	
15	59016	<.001	<.01		
16	59017	<.001	<.01		
17	59018	* .68	<.01		
* Sa belo	mple has been so w.	creened and	d found to	o contain coam	rse gold. See
		Percent	Au	Combined-A	u
		Weight	ozs/ton		
17	59018 -100 mesh	-	.588	-	
÷ '	+100 mesh	.02	455.7		

Ineli A S kell

	MLOOPS	B.C. CERTIFIED ASSAYERS					
	SEARCH & ASSAY BORATORY LTD.	912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 ** ASSAY CERTIFICATE **					
То:	Hawkeye Development 500-1040 West Georg						
	Vancouver, B.C. V6E 4H1	Date: July 26, 1989					
Attn:		Proj.:					

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	59019 59020 59021 59022 59023 59024 59025 65003 65004 65005 65006 65007 65008 65009 65010 65011	ozs/ton .002 .027 .012 .021 .003 .015 .105 .002 .004 .001 .305 .005 .052 .004 .162 .025	<pre>ozs/ton <.01 <.01</pre>	
2 3 4 5 6 7 8 9 10 11 12 13 14 15	59020 59021 59022 59023 59024 59025 65003 65004 65005 65006 65007 65008 65009 65010	.027 .012 .021 .003 .015 .105 .002 .004 .001 .305 .005 .052 .004 .162	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	
3 4 5 6 7 8 9 10 11 12 13 14 15	59021 59022 59023 59024 59025 65003 65004 65005 65006 65007 65008 65009 65010	.012 .021 .003 .015 .105 .002 .004 .001 .305 .005 .052 .004 .162	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	
4 5 6 7 8 9 10 11 12 13 14 15	59022 59023 59024 59025 65003 65004 65005 65006 65007 65008 65009 65010	.021 .003 .015 .105 .002 .004 .001 .305 .005 .052 .004 .162	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	
5 6 7 8 9 10 11 12 13 14 15	59023 59024 59025 65003 65004 65005 65006 65007 65008 65009 65010	.003 .015 .105 .002 .004 .001 .305 .005 .052 .004 .162	<.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01	
6 7 8 9 10 11 12 13 14 15	59024 59025 65003 65004 65005 65006 65007 65008 65009 65010	.015 .105 .002 .004 .001 .305 .005 .052 .004 .162	<.01 <.01 <.01 <.01 <.01 .11 <.01 <.01 <	· · · · · · · · · · · · · · · · · · ·
6 7 8 9 10 11 12 13 14 15	59024 59025 65003 65004 65005 65006 65007 65008 65009 65010	.015 .105 .002 .004 .001 .305 .005 .052 .004 .162	<.01 <.01 <.01 <.01 .11 <.01 <.01 <.01 .08	
7 8 9 10 11 12 13 14 15	59025 65003 65004 65005 65006 65007 65008 65009 65010	.105 .002 .004 .001 .305 .005 .052 .004 .162	<.01 <.01 <.01 <.01 .11 <.01 <.01 <.01 .08	
8 9 10 11 12 13 14 15	65003 65004 65005 65006 65007 65008 65009 65010	.002 .004 .001 .305 .005 .052 .004 .162	<.01 <.01 <.01 .11 <.01 <.01 <.01 .08	· · · · · · · · · · · · · · · · · · ·
9 10 11 12 13 14 15	65004 65005 65006 65007 65008 65009 65010	.004 .001 .305 .005 .052 .004 .162	<.01 <.01 .11 <.01 <.01 <.01 .08	· · · · · · · · · · · · · · · · · · ·
10 11 12 13 14 15	65005 65006 65007 65008 65009 65010	.001 .305 .005 .052 .004 .162	<.01 .11 <.01 <.01 <.01 .08	· · · · · · · · · · · · · · · · · · ·
10 11 12 13 14 15	65005 65006 65007 65008 65009 65010	.001 .305 .005 .052 .004 .162	<.01 .11 <.01 <.01 <.01 .08	· · · · · · · · · · · · · · · · · · ·
11 12 13 14 15	65006 65007 65008 65009 65010	.305 .005 .052 .004 .162	.11 <.01 <.01 <.01 .08	· · · · · · · · · · · · · · · · · · ·
12 13 14 15	65007 65008 65009 65010	.005 .052 .004 .162	<.01 <.01 <.01 .08	· · · · · · · · · · · · · · · · · · ·
13 14 15	65008 65009 65010	.052 .004 .162	<.01 <.01 .08	· · · · · · · · · · · · · · · · · · ·
14 15	65009 65010	.004 .162	<.01 .08	
14 15	65009 65010	.162	.08	
15	65010	.162	.08	
				· · · · · · · · · · · · · · · ·
10				
			<u>.</u>	
			• ••• • •• •	

B.C. Certified Assayer

- mili

١.

. ..

107 samples

	MLOOPS SEARCH & ASSAY	912 - 1 LAVAL CRESCENT, KAML	B.C. CERTIFIED ASSAYERS						
LA	BORATORY LTD.	**	ASSAY	CERTIFICA	TE **				
То:	Hawkeye Development			Number:	к 963	6			
	500-1040 West Georg Vancouver, B.C.	jla St.,		Date:	Augus	t 1,	1989		
Attn:	V6E 4H1			Proj.:					

No.	Description	Au ozs/ton	Ag ozs/ton	
1	41729	<.001	<.01	
2	41730	.006	<.01	
3	41731	* 1.02	.76	
4	41732	.056	.08	
5	41733	.003	<.01	· · · · · · · · · · · · · · · · · · ·
6	41734	.095	.05	
7	41735	.021	.03	
	41736	.004	<.01	
8	41/30	.004	1.01	· · · · · · · · · · · · · · · · · · ·
9	41737	.132	.08	
10	41738	.002	<.01	
11	41739	.001	<.01	
12	41740	.062	.06	
	ا المعالية المحمولية المعمولية المعمولية المعمولية المعمولية المعالية المحمولية المعالية المعالية المعالية الم المعالية المحمولية المحمولية المعالية المعالية المعالية المعالية المعالية المحمولية المعالية المعالية المعالية ا		•••	
13	41741	.015	<.01	
14	41742	.061	.03	
15	41743	* .218	.03	
16	41744	.016	<.01	
	Notices a company, to define a charges			e e e e e e e e e e e e e e e e e e e
17	41745	.021	<.01	
18	41746	.146	.05	
19	41747	.001	<.01	
20	41748	.004	<.01	
21	41749	* .65	.20	
22	41750	<.001	.08	
23	45705	.119	<.01	
23	45706	.013	<.01	
25	45707	.004	<.01	
26	45708	* .452	.21	
27	45709	.002	<.01	
28	45710	* .004	<.01	
	AE7711	043	/ 01	
29	45711	.043	<.01	
30	45712	.001	<.01	
31	45713	.001	<.01	
32	45714	.119	.11	

C. Serete 1 Server B.C. Certified Assayer

,

KAMLOOPS	B.C. CERTIFIED ASSAYERS					
	RESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112					
LABORATORY LTD.	** ASSAY CERTIFICATE **					
To: Hawkeye Developments Ltd.	Number: к 9636					

10: Hawkeye Developments Ltd. 500-1040 West Georgia St., Vancouver, B.C. V6E 4H1

Date: August 1, 1989

I.

Proj.:

Attn:

No.	Description	Au ozs/ton	Ag ozs/ton	Cu percent	Zn percent	. •
33	45715	.001	<.01			
34	45716	<.001	<.01			
35	45717	.060	<.01			
36	45718	.001	<.01			
37	45719	.032	.05			
38	45720	.006	<.01			
39	45721	.008	<.01			
40	45722	.035	<.01			
	13122	.0.5.5				
41	45723	.004	<.01			
42	45724	.235	.23			
43	45725	.125	.03			
44	65526	.003	<.01			
	00020			n x .		 ,
45	65527	.051	<.01		•	
46	65528	.037	<.01			
47	65529	.024	.06			
48	65530	* .63	.35	.24		
4 0	00000	•••••	• • • •	• 2 - 1		
49	65531	.003	<.01			
50	65532	.002	<.01			
51	65533	.008	<.01			
52	65534	.101	.08			
					·	· · · · · · · · · · · · · · · · · · ·
53	65535	.002	<.01			
54	65536	.073	<.01			
55	65537	. 48	.29	.36		
56	65538	.047	.08			
					• • • •	
57	65539	.030	.17	.34	.04	
58	65540	.226	. 29			
59	65541	.003	<.01			
60	65542	.005	<.01		•	
		••••		·····		
61	65543	.346	.26	.37	.20	
62	65544	.002	<.01			
63	65545	.003	<.01			
64	65546	.256	.35	.62	.01	
	00040	.200		.02	. U 1	

بالمسامين B.C. Certified Assayer

	NLOOPS EARCH & ASSAY	912 - 1 LAVAL CRES	SCENT, KAMLO		IFIED ASSAYERS 2C 5P5 PHONE (604,	372-2784 FAX	372-1112	
	ORATORY LTD.	[**	ASSAY	CERTIFICA	TE **		
	Hawkeye Development				Number:	к 9636		
	500-1040 West Georg Vancouver, B.C.	ia St.,	• .		Date:	August	1, 19	989
Attn:	V6E 4H1				Proj.:			

No.	Description	Au ozs/ton_	Ag ozs/ton	Cu percent	Zn percent	
65	65547	.001	<.01	percent	percent	
66	65548	.001	<.01			
67	65549	.64	.29	.41	.12	
68	65550	.005	<.01	• • •		
			····		<i></i>	
69	65612	.022	<.01	N.		
70	65613	.002	<.01			
71	65614	.015	<.01			
72	65615	.002	<.01			
			1 - A			
73	65616	.039	<.01			
74	65617	.002	<.01			
75	65618	.001	<.01			
76	65619	.020	<.01			
	· · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
77	65620	.001	<.01			
78	65621	<.001	<.01			
79	65622	.090	<.01			
80	65623	.001	<.01			
Spendergeneren verbrunden anderen ver			1 00			
81	65624	2.78	1.98			
82	65625	.007	<.01			
83	65726	.009	<.01			
84	65727	.021	<.01			
85	65728	.38	.29			
86	65729	* .012	<.01			
87	65730	.181	<.01			
88	65731	.142	<.01			
		• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	a and the second s	ang gang ang sa	the constant and the second
89	65732	.006	<.01			
90	65733	.020	<.01			
91	65734	.042	<.01	.06		
92	65735	.156	<.01	.08		
II TOLIGAD MANNAGANA AND AND AND AND AND AND AND AND AND 	naninan ku nan angangang semelandenan ini ola ini pinan samalah kulangenar (s		and a second	a annual Anna Markalan an anna aitean aitean	жинин ире отол отолого собласти с отос от отологи. Политики	a tea an an ann ann an ann an ann an ann an
93	65736	.056	<.01			
94	65737	<.001	<.01			
95.	65738	.004	<.01	·		
96	65739	.018	<.01			
	· · · · · · · · · · · · · · · · · · ·					······

- - inite -----B.C. Certified Assayer

RESEA)OPS RCH & ASSAY	912 - 1 LAVAL	CRESCENT, KAML	B.C. CERTIFIEL) 372-2784 FAX	(372-1112	
	ATORY LTD.		**	ASSAY CE				
To: _{Hawk}	eye Developmen	∎ ts Ltd.			Number:	K 9636		
	-1040 West Geor couver, B.C.	gia St.,			Date:	August	1, 198	9
V6E	4H1				Proj.:			
Attn:								
No.	Description	Au ozs/ton	Ag ozs/ton	Cu percent				
97	65740	.022	<.01					
	65741	<.001	<.01					
98			4 01					
98 99	65742	<.001	<.01					
	65742 65743	<.001	<.01	.05		v	<i></i>	
99				.05		w,	и .	×
99 100	65743	.001	<.01			u,	и .	
99 100 101	65743 65744	.001	<.01 .03					

.03

<.01

* Sample has been screened and found to contain coarse gold. See

Au

1.00

5.53

.215

.52 49.4

.68

. 44

.002

.62

2.78

.009

.34

96.3

14.58

ozs/ton

.055

.084

Percent

Weight

99.60

99.39

99.73

.27

9.9.99

.01

99.98

99.54

.46

99.15

.85

.02

.61

.40

106

107

3

15

21

26

28

48

86

below.

65749

65750

41731 -100 mesh

41743 -100 mesh

41749 -100 mesh

45708 -100 mesh

45710 -100 mesh

65530 -100 mesh

65729 -100 mesh

+100 mesh

.07

.04

Combined Au

ozs/ton

1.02

.28

.65

. 4.52

.004

.63

.012 .

KAMLOOPS RESEARCH & ASSAY	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112						
LABORATORY LTD.		** ASSAY CER	RTIFICA	<u>rr **</u>]		
To:	-		Number:	K 9646			
Hawkeye Development 550-1040 West Georg			Date:	K 3040			
Vancouver, B.C.	•			August	9,	1989	
V6E 4H1			Proj.:				
Attn:							

No.	Description	Au	Ag	Cu	Zn	
		ozs/ton	ozs/ton	percent		
1	1000	* .526	<.01	.08	.20	
2	1001	.035	<.01			
3	1002	.002	<.01			
	1.003	* .009	.01		· · · · · ·	· · · · · · · · ·
5	1004	.059	<.01			
6	1005	.001	<.01			
7	1006	.019	<.01			
······ 8 · ··· ·	1007	.040	<.01		· · · ·	x
9	1008	.004	<.01			
10	1009	.089	<.01			
11	1010	.017	· <.01			
12	1011	.005	<.01	· · ·		an a
13	1012	.006	<.01			
14	1013	.041	<.01			
15	1014	.418	.14			
16	1015	<.001	<.01			
17	1016	.017	<.01			
18	1017	.019	<.01			
19	1018	.027	<.01			
20	1019		<.01			a ya kata kata kata manananya kata manana
21 .	1020	.049	<.01			
22	1021	.033	.05			
23	1022	* .105	.03			
24		*	.06	a a a a a a a a a a a a a a a a a a a	ж	an a deale deale deale territor an esta territor to
25	1024	.051	<.01			
26	1025	.152	.03			
27	1026	.109	.06		•	
	1027	-017	.06	er mennen i Laffernen with Pilekartik van arveren er i Lefte		aan ah
29	1028	* .291	<.01	.12	1.86	
30	1029	.123	<.01	.12	.60	
31	1030	.072	<.01	.04	.36	-
32	1031	.099	<.01	.08	4.88	

(encili ķ 1. L

	MLOOPS		E	B.C. CERTI	FIED ASSAYERS				
RES	SEARCH & ASSAY	912 - 1 LAVAL CRESCEI	NT, KAMLOC	DPS, B.C. V2	2C 5P5 PHONE (604) 372-278	14 FAX 37	'2-1112	
	BORATORY LTD.		**	ASSAY	CERTIFICA	TE	**		
То:	Hawkeye Development	-			Number:	к 9	646		
	550-1040 West Geore				Date:				
	Vancouver, B.C.	-				Aug	ust	9, 19	89
	V6E 4H1				Proj.:				
Attn:									

No.	Description	Au	Ag	Cu	Zn		
		ozs/ton					
33	1032	.087	<.01	.07	1.06		
34	1033	.035	<.01	.01	.23		
35	1034	.062	<.01	.07	1.24		
	1.035 ·	044 .	<.01	.01	.09	· · · · ·	
37	1036	.028	<.01				
38	1037	.130	.03				
39	1038	.103	.11	.19	13.6		
40 ·	····· 1039. ·	.019	<.01	. <.01 .	.08		
41	1040	.011	<.01	.06	.69		
42	1041	.007	<.01	.01	.07		
43	1042	.085	.17	.02	.02		
·····		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	·· ·	···· ·
45	65552	<.001	<.01				
46	65553	.001	<.01				
47	65554	<.001	<.01				
4.8		*	· <0 <u>1</u>	ten i en en en	·		•••••
49	65556	.041	.05	.08	<.01		
50	65557	.001	<.01				
51	65558	.114	<.01	•			
52	65559				an a		
53	65560	.090	<.01	.07	.31		
54	65561	.008	<.01				
55	65562	.085	<.01				
56	65563	230	<01				
. 57	65564	* .144	<.01				
58	65565	.010	<.01				
59	65566	.010	<.01				
60-	65567	.044	<.01	.03	.01	The manager and the second	
			_				
61	65568	.003	<.01				
62	65569	.002	<.01				
63	65570	.151	<.01				
64	65571	.001	<.01				
			<u>`````````````````````````````````</u>			······································	

KAMLOOPS RESEARCH & ASSAY	912 - 1 LAVAL CRESCENT	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112							
LABORATORY LTD.		**	ASSAY	CERT	IFICA	TE.	**		N
То:	-			N	umber:				
Hawkeye Developmen 550-1040 West Geor					Date:	K	9646		
Vancouver, B.C. V6E 4H1	yia st.,				Proj.:	A۱	igust	9,	1989
Attn:									

No.	Description	Au	Ag	· Cu	Zn	
		ozs/ton	ozs/ton	percent	percent	
65	65572	.038	<.01			
66	65573	.121	.06			
67	65574	.006	<.01			
6.8	65575	.101	.01	• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
69	65576	.006	<.01		1	
70	65577	.003	<.01			
70 71	65578	.003	<.01			
72	65579	.019	.05			
12	6100	.009	.05			
73	65580	.258	.11		•	
74	65581	.225	.08			
75	65582	.004	<.01			
7676	65583	.077		•** • • • •	· · · · · · · · · ·	· · · · · ·
77	65584	.015	<.01		•	
78	65585	.175	.06			
70	65586	.025	<.01			
	65587	.004	<.01			
80	05507	.004		-		
81	65588	* .142	<.01			
82	65589	.004	<.01			
83	65590	.004	<.01			
	65591					na sa an
85	65592	.046	<.01			
86	65593	2.10	.85			
87	65594	.52	.20			
8-8	65595		.20 			
8.8	6225		······································	The second s	n an	a fee as a se a
89	65596	.050	<.01			
90	65597	<.001	<.01			
91	65598	.035	<.01			
92	65599			. O C for one washing a second with a first of a second for	anna an ann an an an an ann ann a an an	
93	65600	.113	<.01			

* Sample has been screened and found to contain coarse gold. See below.

· · ·

.

B.C. Certified Assayer

	MLOOPS SEARCH & ASSAY	912 - 1 LAVAL CRESCE	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112						
	BORATORY LTD.		**	ASSAY	CERTIFICA	<u>TE **</u>			
То:	Hawkeye Development 550-1040 West Georg Vancouver, B.C.				Number: Date:	K 9640 August	-	.989	
Attn:	V6E 4H1				Proj.:				

No.	Description	Percent	Au	Combined Au	
		Weight			
1	1000 -100 mesh	-		.526	
-	+100 mesh		110.8		
					· ·
		99.80		.009	
	+100 mesh	.20	3.05		
23	1022 -100 mesh		.095	.105	
	+100 mesh	.11	9.54		
24	1023 -100 mesh		.395	.406	
	+100 mesh	.07	15.17		
29	1028 - 100 mesh	99 91	.265	.291	
2.5	1028 -100 mesh +100 mesh	00		• 2 7 1	
	+100 mesn		20.22		
48	65555 -100 mesh	99.99	.059	.064	
	+100 mesh				
52	65559 -100-mesh	99.04		110	· ·
	+100 mesh		.824		
57	65564 -100 mesh	99.83	.141	.144	
	+100 mesh	.17	2.12		
n a sea an an 19 de annaighte fheige an sea ann an a	и и т. т. на поли и на		· · · · · · · · · · · · · · · · · · ·	···· · · · · · · · · · · · · · · · · ·	
81	65588 -100 mesh		.137	.142	
	+100 mesh	.10	4.82		

... ...

 $\mathbb{C}($ B.C. Certified Assayer

....

.

KAMLOOPS	B.C. CERTIFIED ASSAYERS NE A Water shoft
RESEARCH & ASSAY 1912-11 LABORATORY LTD.	AVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112
To: Hawkeye Developments	Number: K 9655
550-1040 west Georgia St Vancouver, B.C.	., Date: August 21, 1989
V6E 4H1	Proj.:

No. D	escription	Au ozs/ton	Ag ozs/ton					
	67501	<.001	<.01					
2	67502	.010	<.01					
3	67503	.045	<.01					
4	67504	.005	<.01					
5	67505	.027	<.01		-			
	67506	.051	<.01					
	67507	* .110	<.01					
	67508	<.001	<.01					
•	67500		X • 01			• •	• · · · ·	
	67509	.152	.05					
	67510	1.10	.17					
	67511	.357	.03					
12	67512	<.001	<.01					
13	67513	* .305	.23					
	67514	.002	<.01					
* Sample	has been sc	reened and	d found t	o contain	coarse	gold.	See	
* Sample	has been sc	reened and	đ found t	· · · ·		gold.	See	
* Sample	has been sc	reened and Percent	d found t Au	Combined	Au	gold.	See	
* Sample below.	has been sc	Percent Weight	d found t Au ozs/ton	Combined ozs/ton	Au	gold.	See	
* Sample below. 7 67507	has been sc -100 mesh	Percent Weight 99.96	Au ozs/ton .107	Combined	Au	gold.	See	
* Sample below. 7 67507	has been sc	Percent Weight	d found t Au ozs/ton	Combined ozs/ton	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	· · · · · ·
* Sample below. 7 67507 13 67513	has been sc -100 mesh +100 mesh -100 mesh	Percent Weight 99.96 .04 99.99	Au ozs/ton .107 7.0 .256	Combined ozs/ton .110 .305	Au	gold.	See	· · · · · · · · · · · · · · · · · · ·

С 1 K.Ý ent B.C. Certified Assayer

	CH & ASSAY	912 - 1 LAVAL	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 ** ASSAY CERTIFICATE **							
To: Hawke 550-1 Vanco	550-1040 West Georg Vancouver, B.C. V6E 4H1			ASSAI	Number:	к 9702	24, 1989			
No.	Description	Au ozs/ton	Ag ozs/ton							
1 .	1042	<.001	<.01							
2	67517	<.001	<.01							
3	67518	<.001	<.01							
. 4	67519	<.001	<.01							

<.01

5

67520

<.001

2

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 ** ASSAY CERTIFICATE **
To: Hawkeye Developments 550-1040 West Georgi	■ Ltd. Number:K 9720 a St
Vancouver, B.C. V6E 4H1	Date: Sept. 5, 1989
Attn:	Proj.:

ł

No.	Description	Au	Ag	
_		ozs/ton	ozs/ton	
1	45752	<.001	<,01	
2 3	45753	<.001	<.01	
3	45754	.081	2.68	
4	45755	<.001	<.01	
5	45756	<.001	<.01	
6	45757	<.001	<.01	
7	45758	<.001	<.01	
8	45759	<.001	<.01	
9	45760	<.001	<.01	···· · ····· · · · · · · · · ·
10	45761	<.001	<.01	
11	45762	<.001	<.01	
12	45763	<.001	<.01	
12	40100	T	1.01	
13	45764	<.001	<.01	
14	45765	<.001	<.01	
15	45766	<.001	<.01	
16	45767	<.001	<.01	
	45768	<.001	<.01	· · · · · · · · · · · · · · · · · · ·
18	45769	.094	.58	
19	45770			
		.115	.58	
20	67522	.003	<.01	
21	67523	.002	<.01	
	առաջորություն երկությունները է հրանությունները ու հանդերությունները է հանդերությունները է հանդերությունները է տ	արի է Mill է է երկերություն անհանդանին տեղելությունը։ Դերե	t n na kara na wijekere najsta na o postan nati satawakawana t	

-

Sell ente 4

KAMLOOPS RESEARCH & ASSAY		B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112						
	LABOHATORY LTD.	** ASSAY CERTIFICATE **						
To:	Hawkeye Development 550-1040 West Georg							
	Vancouver, B.C. V6E 4H1	Date: Sept. 14, 1989						
Attn:		Proj.:						

No.	Description	Au ozs/ton	
1	45771	.070	······································
2	45772	.015	
3	45773	.017	
4	45774	.040	
			e estate and an and an and an and an and an
5	45775	.003	
6	65651	* .40	
7	65652	.158	
8	65653	.015	
			· · ·
9	65654	.50	
10	65655	* .56	
11	65656	.124	
12	65657	.067	
			and a second
13	65658	.073	
14	65659	.009	
15	65660	.014	
16	65661	.061	
17	65662	.169	a definition of the state of the
18	65663	.097	
19	65664	* .029	
20	65665	.102	
21	65666	.163	
22	65667	.071	
23	65668	.035	
24	6.5669	.025	
25	65670	.243	
26	65671	.010	
23	65672	.45	
28	65673	.066	
29	65674	.092	
30	65675	.149	
31	65676	.112	
32	65677	.062	

Slandell 17 lc B.C. Certified Assayer

.

RES	VLOOPS SEARCH & ASSAY BORATORY LTD.	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 ** ASSAY CERTIFICATE **	
To:	Hawkeye Developmen 550-1040 West Geor		
	Vancouver, B.C. V6E 4H1	Date: Sept. 14,	1989
Attn:	7	Proj.:	

ļ

No.	Description	Au ozs/ton			
33	65678	.092	·····	 ·····	
34	65679	.258	÷ -		
35	65680	.38			
36	65681	.84			
37	65682	.70			** • • • • •
38	65683	. 82			
39	65684	.110			
40	65685	.019			

* Sample has been screened and found to contain coarse gold. See below.

 - 6	65651	mesh mesh			Combined ozs/ton .401	Au -
10	65655	mesh mesh	99.99 .01	.555 119.6	.560	
 19	65664	mesh mesh	99.94 .06	.027 4.01	.029	· · ··· · · · · · · · · · · · · · · ·

dell arek A

	AMLOOPS SEARCH & ASSAY	912 - 1 LAVAL CRESC	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 CTA,						
	BORATORY LTD.		**		CERTIFICATE	**			
	Hawkeye Developments 550-1040 West Georgi				Number: K	9775			
	Vancouver, B.C. V6E 4H1					ept. 21, 1	989		
Attn	:				Proj.:				

No.	Description	Au ozs/ton	Ag ozs/ton	Cu percent
1	65686	<.001		
2	65687	.020		
3	65688	.010	DH 89-1	
4	65689	.015	<i>Mu</i>	
5	65690	<.001		
6	65691	<.001	-	
7	65692	<.001	DH 89-2	
8	65693	<.001_	yı	
9	65694	<.001		
10	65695	<.001		
11	65696	<.001		
12	65697	<.001		
13	65698	<.001		
14	65699	<.001		~ 4 8 - J
15	65700	.115		DH 89-3
16	67526	.005		
17	67527	.440	and the first start of the star	
18	67528	.030		
19	67529	.027		
20	67530	.063	<.01	
21	67531	.002	.08	·
22	67532	<.001		
23	67533	<.001		<u> </u>
24	67534	.143	<.01	.27
25	67535	.002		~ //
26	67536	.135	.06	.32 -11 85-4
27	67537	.021		.32 DH 89-4
28	67538	.001		
29	67539	.005	AND MARKAR HITTIN OLI	
30	67540	<.001		
31	67541	.349	1.92	.28
32	67542	.090		

dill Q, B.C. Certified Assayer

	AMLOOPS RESEARCH & ASSAY	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112				
	ABORATORY LTD.	·	** ASSAY CERTIFIC	ATE **	N	
То			Number:	к 9777		
	550-1040 west Geor Vancouver, B.C. V6E 4H1	igia St.,	Date:	Sept. 22,	1989	
• •			Proj.:			

Attn:

1

	No.	Description	Au ozs/ton	Ag ozs/ton	Cu percent	Pb percent .43	Zn percent
	1	65705	<.001	<.01	.01	.43	.65
		· .					
. Fra Francisco de Carlo de Ca	որուաբու ու հիշուս եք չուսել որ ուսել ու Գ		· · · · · · ·				a to also at a
		· ·					
an a	- NARAHAN NUT 1 - 180, 1800 - 1	and and the					· · · · · · · · · · · · · · · · · · ·
		u	i electric grane destruction des entre en				, .
-							
				•			
· · · · · · · · · · · · · · · · · · ·	enne oors, ooder fordige, da, of oor	., , , , , , , , , , , , , , , , , , ,					
			·				
			•		•		
		ศกระ ใหญ่สมัสพฤษภูณ (1991) 11 X X X X X เอาร์ สุดให้เสริกระบัติชู และ เอาร์ เอาร์ (1994) 16 เอ	Name and a state of the state o		1977 - Alaska Strand I., († 1970) 1	· ·····	
i i i							
8 2 2 2			•				
		······································	· · · · · · · · · · · · · · · · · · ·				

dich

KAMLOOPS RESEARCH & ASSAY		B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112					
LABORATORY LTD.	**	ASSAY CERTIFIC	CATE **				
То:	Hawkeye Developme		Number:	к 9782			
	550-1040 West Geo: Vancouver, B.C. V6E 4H1	gia St.,	Date:	Sept. 22,	1989		
Attn:			Proj.:				

	No.	Description	Au ozs/ton	Ag ozs/ton	Cu percent	
	1	67543	<.001			
	1 2 3	67544	<.001			
	3	67545	.114			
	4	67546	.001	<.01	.13	DH 89-5
an a	5	67547	<.001			NH 87-3
5	5 6	67548	<.001			<i>J</i> .
)	7	67549	.026	<.01	.17	
	8	67550	<.001			
**************************************	9	67551	<.001			
	10	67552	.005			
	11	67553	<.001			
	12	67554	<.001		1	
	13	67555	<.001	DH 89.	-6	
1.	14	67556	.001	V''		
6	15	67557	.002			
	16	67558	<.001		·	
	17	67559	<.001	та стор е де и с	an an Araba	an ann an an Ann an
	18	67560	<.001			
	19	67561	.006			
	20	67562	<.001		_	
7	21	67563	<.001	DH 89		· · · · · · · · · · · ·
partial	21 22	67564	<.001	00		
	23	67565	.003			
	24	67566	.002			
	27	07300	· • • • • 2			

	MLOOPS EARCH & ASSAY	912 - 1 LAVAL CRESCENT, I			D ASSAYERS P5 PHONE (604) 3	72-2784 FAX 372-111	12 <u>CTA</u> ,
	ORATORY LTD.		* *	ASSAY	CERTIFIC	ATE **	<u> </u>
То:	Hawkeye Developme				Number:	K 9808	
	550-1040 West Geo Vancouver, B.C. V6E 4H1	Jryla St.,			Date:	Oct. 5,	1989
Attn:			-		Proj.:		

1

NC	-	ozs/ton	Ag ozs/ton	Cu percent	Zn percent	
1	67567	<.001	DH 89-8		4	
2	67568	<.001				
3	67569	.003				·
4	67570	<.001		· ·		
5	67571	<.001	DH 39-7	7	• • • • • -	•
6	67572	<.001	0.011			
7	67573	<.001				
8	67574	<.001	X			
9	67575	<.001				
ī		.002	- 11 09	9		
11		<.001	DH 89-			
12		<.001	·			
1:	67579	<.001	· .		· · · · ·	
1		<.001				
19		<.001				
10		<.001				
						v i isos kau v
1		<.001				
18	67584	<.001				
19		<.001				
20	67586	.006				
21	67587	.002	· · · · · · · · · · · · · · · · · · ·	· · · · · ·		•
2	2 67588	<.001				
23		.001				
2.		.002				
2!	67591	.235	<.01	.23	3.30	
2		.012	<.01	.09	<.01	
2		.295	<.01	.13	.31	
2		.023	<.01	.06	.59	
29	67595	.003	Annes and the construction of a second s	n ann ann an Ann ann an Thar ann an thar an thar an thar an thar an than a start an than a start an than a star	n an	
3		.006				
3		.001				
3		.001				
3	6 01000	.001	N			

 \mathcal{O} ore erek B.C. Certified Assayer

	ALOOPS		B.C.	. CERTIFIED	ASSAYERS	·	
	earch & Assay Oratory Ltd.	912 - 1 LAVAL CRESCENT,	KAMLOOPS		5 <i>PHONE (604) 37</i> CERTIFIC		
То:	Hawkeye Developm			、	Number:	K 9840	
	550-1040 West Ge Vancouver, B.C. V6E 4H1	orgia st.,			Date:	Oct. 16,	1 9 89
Attn:					Proj.:		

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
8 67606 $<.001$ 9 67607 $.004$ 10 67608 $.140$ 11 67609 $.005$ 12 67610 $.002$ 13 67611 $<.001$
9 67607 $.004$ 10 67608 $.140$ 11 67609 $.005$ 12 67610 $.002$ 13 67611 $<.001$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
12 67610 .002 13 67611 <.001
12 67610 .002 13 67611 <.001
12 67610 .002 13 67611 <.001
15 67613 <.001
16 67814 <.001
17 67615 <.001
18 67616 <.001 m / 3
19 67617 <.001 NH 87-15
18 67616 <.001 19 67617 <.001 20 67618 <.001 DH 89-/3
21 67619 <.001
22 67620 <.001
23 67621 <.001
24 67622 <.001
25 67623 <.001
26 67624 <.001
27 67625 <.001

cci ¢: B.C. Certified Assayer

	ALOOPS EARCH & ASSAY	912 - 1 LAVAL CRESCEI	· · · · · · · · · · · · · · · · · · ·		ASSAYERS 5 PHONE (604) 33	72-2784 FA	X 372-1112	<u></u>
	ORATORY LTD.		**	ASSAY	CERTIFIC	ATE	**	V
То:	Hawkeye Developm 550-1040 West Ge				Number:	К 9	850	
	Vancouver, B.C. V6E 4H1				Date:	Oct.	18, 1	.989
Attn:					Proj.:			

No.	Description	Au ozs/ton	
1	67626	<.001	······································
2	67627	<.001	
3	67628	<.001	in the
4	67629	<.001	D.H. 89-14
5	67630	<.001	
6	67631	<.001	
7	67632	<.001	
8	67633	<.001	
9	67634	<.001	
10	67635	<.001	
11	67636	<.001	

Sul C B.C. Certified Assayer ,

	OCT 24 '89 08:44 KRAL 1	604 3721112				v	P.2
KAM	LOOPS	Ř	B.C.	CERTIFIED	ASBAYERS		
RESE	ARCH & ASSAY	912 - 1 LAVAL CRI	ESCENT, KAMLOOPS,	B.C. V2C 5P	5 PHONE (604) 37	2-2784 FAX 372-1112	
ABC	RATORY LTD.		**	ASSAY	CERTIFIC.	ATE **	
To:	Hawkeye Developm				Number:	K 9857	
	550-1040 West Ge Vancouver, B.C. V6E 4H1	orgia St.,			Date:	oct. 20,	, 1989
	AOF AUT				Proj.:		
Attn:							

NO.	Description	Au ozs/ton_	Ag ozs/ton	Cu percent	Pb percent_	Zn 	
1	28403	<.001	<.01	<.01	1.35	1.25	
2	28404	<.001	<.01	<.01	1.16	1.37	
3	28405	<.001	<.01	<.01	.97	1,45	
4	28406	<.001	<.01	<.01	1.08	1.91	
5	28407	<.001	<.01	<.01	2.62	2.26	

(b) Geochemical Certificates - Drill Core Specimens

KAMLOOPS RESEARCH & ASSAY 912-1 LAVAL CRE	B.C. CERTIFIED ASSAYERS
LABORATORY LTD.	** GEOCHEMICAL REPORT**
TO: HAWKEYE DEVELOPMENTS LTD.	Number: G 2208
550-1040 WEST GEORGIA ST., Vancouver, b.c.	Date: OCT 18, 1989
VGE 4H1 Attn:	Proj.:
	PAGE 1 / 2

ł

KRAL NO.	IDENTIFICATION	AU PPB	AG PPM	CU PPM	PB PPM	ZN PPM	
1	89-7 44.6	3.0	0.0	4.0	10.0	98.0	
2	89-7 53.4	3.0	0.0	4.0	5.0	35.0	
З	89-7 89.7	3.0	0.2	49.0	7.0	54.0	
4	89-8 5.7	З.О	O.1	1.0	4.0	50.0	
5	89-8 17	3.0	0.0	0.0	4.0	49.0	
6	89-8 24.3	З.О	0.1	64.0	6.0	59.0	
7	89-8 31.7	з.0	0.0	0.0	3.0	73.0	
8	89-8 34.3	З.О	0.1	0.0	14.0	45.0	
·9	89-8 41.9	з.о	0.0	0.0	4.0	61.0	
10	['] 89-8 54.3	З.О	0.0	2.0	18.0	46.0	
11	89-8 60	з.0	0,2	5.0	6.0	66.0	
12	89-8 72.6	3.0	0.1	0.0	4.O	18.0	
13	89-8 73.5	3.0	O.1	31.0	э.о	58.0	
14	89-8 93.2	З.О	0.2	42.0	8.0	45.0	
15		$\mathbb{C}_{n} \subset \mathbb{C}$	0.1	(将…))	7. O	57.O	
16	89+0 12 8.5	з.о	0.0	1.0	6.0	74.0	
17	89-9 10	3.0	0.0	0.0	З.О	36.0	
18	89-9 58. 8	3.0	0.0	6.0	4.0	72.0	
1 9	89-9 69	3.0	0.1	41.0	6.0	66.0	
20	89-10 21.3	3.0	0.0	5.0	з.о	65.0	
21	89-10 59.5	3.0	0.1	40.0	З.О	78.0	
22	89-10 76.6	З.О	0.1	28.0	7.0	53.0	
23	89-11 11.9	3.0	0.5	91.0	8.0	54.0	
24	89-11 27	3.0	0.1	45.0	7.0	53.0	
25	89-12 6.4	3.0	0.0	6.0	з.о	63.0	
26	89-12 13.8	З.О	0.0	9.0	5.0	52.0	
27	89-13 17	3.0	O.1	60.0	10.0	34.0	
28	89-13 22	З.О	0.1	63.0	4.0	57.0	
29	89-13 28.8	3.0	୍ରୁ ଓ	355.0	6.0	56.0	
30	89-14 21.2	3.0	0.2	- 58. 0	11.0	42.0	
31	89-14 28.0	3.0	0.0	48.0	10.0	28.0	
32	89-14 36	3.0	0.1	40.0	14.0	27.0	
33	89-14 42	З.О,	0.0	43.0	10.0	16.0	
34	89-14 43.6	З.О	0.1	51.0	11.0	34.0	
35	89-14 50.1	з.о	0.0	48.0	8.0	32.0	

IN AU COLUMN 3 INDICATES <5 PPB

KAMLOOPS RESEARCH & ASSAY			72-2784 FAX 372-1112
To: HAWKEYE DEVELOPMEN 550-1040 WEST GEOR VANCOUVER, B.C.		Number: Date:	G 2208 OCT 18, 1989
V6E 4H1 Attn:		Proj.:	PAGE 1 / 2

Т

F

	KRAL NO.	IDENTIFICATION	BI	AS PPM	SB PPM		
	1	89-7 44.6	0.0	10.0	2.0		
	2	89-7 53.4	0.0	10.0	2.0		
	3	89-7 89.7	0.0	10.0	2.0		
	4	89-8 5.7	0.0	10.0	2.0		
	5	89-8 17	0.0	10.0	2.0		
	6	89-8 24.3	0.0	10.0	2.0		
	7	89-8 31.7	0.0	10.0	2.0		
	8	89-8 34.3	0.0	10.0	2.0		
	Э	89-8 41.9	0.0	10.0	2.0		
-	10	89-8 54.3	0.0	10.0	2.0		
	11	89-8 60	0.0	10.0	2.0		
	12	89-8 72.6	0.0	10.0	2.0		
	13	89-8 73.5	0.0	10.0	2.0		
	14	89-8 93.2	0.0	10.0	2.0		
	15	89-8 108	0.0	10.0	2.0		
	16	89-8 128.5	0.0	10.0	2.0		
	17	89-9 10	0.0	23.0	2.0		
	18	89-9 58.8	0.0	10.0	2.0		
	19	89-9 69	0.0	10.0	2.0		
	20	89-10 21.3	0.0	10.0	2.0		
	21	89-10 59.5	0.0	10.0	2.0		
	22	89-10 76.6	0.0	10.0	2.0		
	23	89-11 11.9	0.0	10.0	2.0		
	24	89-11 27	0.0	10.0	2.0		
	25	89-12 6.4	0.0	10.0	2.0		
	26	89-12 13.8	0.0	10.0	2.0		
	27	89-13 17	0.0	10.0	2.0		
	28	89-13 22	0.0	10.0	2.0		
	· 29	89-13 28.8	0.0	10.0	2.0		
	30	89-14 21.2	0.0	10.0	2.0		
	31	89-14 28	0.0	10.0	2.0		
	32	89-14 36	0.0	10.0	2.0		1
	33	89-14 42	0.0	10.0	2.0		
	34	89-14 43.6	0.0	10.0	2.0		
	35	89-14 50.1	0.0	10.0	2.0	-	

IN BI COLUMN O INDICATES <1 PPM

•

IN AS COLUMN 10 INDICATES <20 PPM

IN SB COLUMN 2 INDICATES <4 PPM

(c)	Soil	Samples	-	Geochemical	Reports	
-----	------	---------	---	-------------	---------	--

•

KAMLOOPS RESEARCH & ASSAY LABORATORY LTD.

B.C. CERTIFIED ASSAYERS

912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112

** GEOCHEMICAL REPORT**

CTA

To: HAWKEYE DEVELOPMENTS LTD. 550-1040 WEST GEORGIA ST., VANCOUVER, B.C. V6E 4H1

Number: 6 2183

Date: AUGUST 30, 1989

Proj.:

PAGE 1 / 3

KRAL NO.	IDENTIFICATION	AU PPB	CU PPM	SB PPM	AŚ PPM	
1	SR 1	3.0	128.0	2.0	10.0	
2	SR 2	З.О	50.0	2.0	54.0	
3	SR 3	3.0	49.0	2.0	88.0	
4	SR 4	З.О	34.0	2.0	26.0	
5	SR 5	° 3.0	29.0	2.0	20.0	
. 6	SR 6	З.О	23.0	2.0	10.0	
7	SR 7	3.0	21.0	2.0	10.0	
8	SR 8	З.О	17.0	2.0	10.0	
÷	SR 9	з.о	16.0.	2.0	10.0	
io	SR 10	20.0	18.0	2.0	10.0	<i></i>
11	SR 11	3.0	9.0	2.0	10.0	
12	SR 12	з.0	66.0	2.0	58.0	
13	SR 13	з.О	18.0	2.0	10.0	•
14	SR 14	з.0	17.O	2.0	10.0	
-15	SR 15	·· 3.0	- 15.0	2.0	····1·00 ··;	• • • • • • • • •
16	SR 16	3.0	15.0	2.0	10.0	
17	SR 17	3.0	14.0	2.0	10.0	
18	SR 18	З.О	18.0	2.0	10.0	
19	SR 19	з.о	16.0	2.0	10.0	
20	SR 20	3.0 "		2.0	10.0	· · · · · · · · · · · · · · · · · · ·
21	SR 21	3.0	23.0	2.0	10.0	
22	SR 22	З.О	46.0	2.0	10.0	
23	SR 24	з.0	9.0	2.0	10.0	
24	SR 25	з.о	13.0	2.0	10.0	
	SR-26	3.0	6.0	2.0	10.0 ~	e e e e e e e e e e e e e e e e e e e
26	SR 27	3.0	8.0	2.0	10.0	
27	SR 28	з.0	8.0	2.0	10.0	
28	SR 29	3.0	9.0	2.0	10.0	
29	SR 30	3.0	14.0	2.0	10.0	
30	SR-31	3:0	12.0		- 10.0	
31	SR 32	З.О	17.0	2.0	10.0	
32	SR 33	3.0	19.0	2.0	10.0	
33	SR 34	3.0	10.0	2.0	10.0	
34	SR 35	3.0	17.0	2.0	10.0	
35	SR 36	3.0	18.0	2.0		ana an
36	SR 37	3.0	18.0	2.0	10.0	
37	SR 38	3.0	15.0	2.0	10.0	
38	SR 39	3.0	14.0	2.0	10.0	
39	SR 40	3.0	13.0	2.0	10.0	-
	<u> </u>	3.0	26.0	2.0	10.0	

Attn:

Kamloops *Research & Assay* Laboratory Ltd.

B.C. CERTIFIED ASSAYERS

912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112

* GEOCHEMICAL REPORT *

To:HAWKEYE DEVELOPMENTS LTD. 550-1040 WEST GEORGIA ST., VANCOUVER, B.C. V6E 4H1

Number: G 2183

Date: AUGUST 30, 1989

Proj.:

PAGE 2 / 3

KRAL NO.	IDENTIFICATION		CU PPM	SB PPM	AS PPM	
41	SR 42	з.о	73.0	2.0	10.0	
42	SR 43	з.о	29.0	2.0	10.0	
43	SR 44	З.О	26.0	2.0	10.0	
44	SR 45	3.0	22.0	2.0	10.0	
45	SR 46	3.0	17.0	2.0 "	10.0	
46	SR 47	з.о	15.0	2.0	20.0	
47	SR 48	З.О	15.0	2.0	10.0	
48	SR 49	З.О	18.0	2.0	10.0	
49	SR 50	З.О	17.0	2.0	10.0	
50	SR: 51	25.0	11.0	2.0	10.0	
51	SR 52	з.о	32.0	2.0	10.0	
52	SR 53	З.О	35.0	2.0	28.0	
53	SR 54	з.о	26.0	2.0	10.0	
54	SR 55	3.0	27.0	2.0	10.0	
55	SR 56	3.0	21.0	2.0	26.0	· · · · · · · · · · · · · · ·
56	SR 57	30.0	14.0	2.0	10.0	
57	SR 58	З.О	15.0	2.0	10.0	
58	SR 59	10.0	17.0	2.0	10.0	
59	SR 60	3.0	17.0	2.0	10.0	
60	SR 61	0.2	16.0	2.0	10.0	- A
61	SR 62	3.0	18.0	2.0	10.0	
62.	SR 63	з.о	21.0	2. 0	10.0	
63	SR 64	3.0	14.0	2.0	10.0	
64	SR 65	3.Ö	9.0	2.0	10.0	
65	SR 66	3.0	11.0	2.0	10:0	та по на по на По по на п
66	SR 67	20.0	20.0	2.0	10.0	
. 67	SR 68	1120.0	21.0	2.0	24.0	
68	SR 69	З.О	26.0	2.0	10.0	
- 69	SR 70	З.О	29.0	2.0	10.0	
70	SR 71	3.0	14.0	2.0	10.0	
71	SR 72	320.0	14.0	2.0	10.0	
72	SR 73	3.0	12.0	2.0	10.0	
73	SR 74	• 3.0	16.0	2.0	10.0	
74	SR 75	3.0	12.0	2.0	10.0	
75	SR 76	3.0	13.0	2.0	10.0	a man - halan dan dinangkanan ditu - a ara ana anya data barta ara ara a daga carar ata araw ang araw
76	SR 77	3.0	16.0	2.0	10.0	
77	SR 78	3.0	25.0	2.0	26.0	
78	SR 79	20.0	28.0	2.0	42.0	
79	SR 80	5.0	19.0	2.0	10.0	
	<u>SR 81</u>	10.0	21.0		10.0	

Attn:

	<i>arch & Assay</i> Ratory Ltd.	912 - 1 LAVAL CRE		PS, B.C. V2C 5P CHEMICAL	· · ·		FAX 372	-1112	
	EYE DEVELOPMENTS			<u></u>	Number:	G 218	3		
	-1040 WEST GEORGI COUVER, B.C.	[A ST.,			Date:	AUGUS	т зо	, 198	9
Attn:	TIL		·		Proj.:				
		•		· <u></u>		PAGE	3 /	3	
RAL NO.	IDENTIFICATION	AU PPB	CU <u>PPM</u>	SB PPM	AS PPM	1			
81	SR 82	3.0	16.0	2.0	10.0			_	
82	SR 83	3.0	17.0	2.0	10.0				
83 84	SR 84 SR 85	3.0	16.0 14.0	2.0 2.0	10.0 10.0				
	SR 85	3.0	-11.0		10.0				
85	SR 87	3.0	14.0	2.0	10.0				
86 87	SR 88	3.0	21.0		10.0				
	IN AU COLUMN 3 : IN SB COLUMN 2 : IN AS COLUMN 10	, INDICATES <∘	1 PPM			• • •		 	
	IN SB COLUMN 2 :	, INDICATES <∘	1 PPM	. <u>.</u>		•			
	IN SB COLUMN 2 :	, INDICATES <∘	1 PPM			•			
	IN SB COLUMN 2 : IN AS COLUMN 10	, INDICATES <∘	1 PPM			• • • •			
	IN SB COLUMN 2 : IN AS COLUMN 10	, INDICATES <∘	1 PPM	· · · · · ·		•	· · · ·		
	IN SB COLUMN 2 : IN AS COLUMN 10	, INDICATES <∘	‡ PPM (20 PPM			•		· · ·	
	IN SB COLUMN 2 : IN AS COLUMN 10	INDICATES <	‡ PPM (20 PPM			• • • • •		· · ·	
	IN SB COLUMN 2 : IN AS COLUMN 10	INDICATES <	‡ PPM (20 PPM			· · · · ·		· · ·	
	IN SB COLUMN 2 : IN AS COLUMN 10	INDICATES <	‡ PPM (20 PPM			•			
	IN SB COLUMN 2 : IN AS COLUMN 10	INDICATES <	‡ PPM (20 PPM						

(d) Reverse Circulation Drill Hole Samples R.C.-89-1 to R.C.-89-12

-57-

	OCT 25 '89 15:59 KRAL 1	604 3721112			P.2
KÅ	MLOOPS		B.C. CERTIFIED ASSAYERS	· · · · · · · · · · · · · · · · · · ·	
RES	SEARCH & ASSAY	912 - 1 LAVAL CRESC	ENT, KAMLOOPS, B.C. V2C 5P5 PHONE (60	4) 372-2784 FAX 372-1	112 CTA
	BORATORY LTD.		** GEOCHEMICAL RE	PORT**	E-ALIENTIC
То:	HAWKEYE DEVELOPMEN	TS LTD.	Number;	8 2209	
	550-1040 WEBT GEOR Vancouver, B.C.	GIA ST.,	Date:	OCT. 24	, 1989
	V6E 4H1		Proj.:		
Attn:	•			PAGE 1	/8

KRA	AL NO.	IDENTIFICATION	AU			
	1	5-10 89 R-1	3.0			
	2	10-15	3.0			÷
	3	15-20	3.0			
	4	20-25	Э.О			
	5	25-30	3.0	• •		
	6	30-35	3.0			
	7	35-40	3.0			
	. 8	40-45	3.0			
	9	45-50	3.0			
	10	50-55	3.0			
	11	55-60	3.0			
	12	60-65	Э.О			
	13	65-70	3.0	•		
	14	70-75	3.0			
	15	75-80	3. 0 '	э н	• •	
	1 G	00 05	3.0			,
	17	85-90	3.0			
	18	90-95	3.0			
	19	95-100	3.0			
	20	100-105 89 R-1	З.О			
	21	105-110	3.0			
	22	110-115	3.0			
	23	115-120	3.0			
	24	120-125	Э.О			
	25	125-130	3.0	÷ .		
	26	130-135	3.0			
	27	135-140	3.0		Nega s	
	28	140-143	3.0			
	,29	145-150	3.0			
	30	150-155	3.0			
	31	155-160	3.0			
	32	160-165	3.0			
	33	165-170	3.0			
	34	170-175	3.0			
	35	175-180	3.0	***	• • • • •	
	36	180-185	3.0			
	37	185-190	з.0			
	38	190-195	3.0		ι.	
	39	195-200	3.0			
	40	<u>200-205 89 R-1</u>	3.0	· · · · · · · · · · · · · · · · · · ·	······	

34290

OCT 25 '89 15:59 KRAL 1 604 3721112

RES	MLOOPS SEARCH & ASSAY BORATORY LTD.	912 - 1 LAVAL CRESCEN	B.C. CERTIFIED ASSAYERS - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V20 5P6 PHONE (804) 372-2784 FAX 372-1112 * GEDCHEMICAL REPORT *			
To:	HAWKEYE DEVELOPMEN 550-1040 WEST GEOR Vancouver, B.C. V6E 4H1		Number: Date: Proj.:	G 2209 DCT. 24, 1989		
Attn:		1	F10j.,	Page 2 / 8		

	KRAL NO.	IDENTIFICATION	AU
	41	205-210	Э.0
	42	210-215	3.0
	43	215-220	3.0
	44	220-225	3.0
	45	225-230	3.0
	46	230-235	3.0
	47	235-240	3.0
	48	240-245	3.0
	49	245-250	3.0
• •	50	250-255	3.0°
	51	255-260	3.0
	52	260-265	3.0
	. 53	265 270	3.0
	54	270-275	3.0
	55	275-280	3.0 • • • • • • • • • • • • • • • • • • •
	56	280~285	3.0
	57	285-290	3.0
	58	290-295	3.0
	59	295-300	3.0
	60	300-305 89 R-1	3.0
	61	305-310	3.0
	62	310-315	3.0
	63	315-320	3.0
	64	320-325	3.0
	65	325-330	3.0
	66	330-335	3.0
	67	335-340	3.0
	68	340~345	3.0
	69	345-350	3.0
	70	350-355	3.0
	71	355-360	3.0
	72	360-365	3.0
	73	365-370	3.0
	74	370-375	3.0
	75	375-380	3.0
	76	380-385	3.0
	. 77	385-390	3.0
	78	390-395	3.0
	79	395-400	3.0
		400-405-89 R-1-	

OCT 25 '89 15:59 KRAL 1 604 3721112

KA	KAMLOOPS RESEARCH & ASSAY		B.C. CERTIFIED ASSAYERS B12 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112			
ABORATORY LTD.			* GEOCHEMICAL REPOR	r *		
To:	HAWKEYE DEVELOPMEN		Number:	G 2209		
	550-1040 WEBT GEOR Vancouver, B.C.	gia st.,	Date:	OCT. 24,	1989	
Attn;	V6E 4H1		Proj.:			

· · · · · ·

P	AGE	3	/ 8

. . •

KR	AL NO.	IDENTIFICATION				
	81	405-410	3.0			
	82	410-415	3.0			
	83	415-420	3.0			
	84	420-425	3.0			
	85	425-430	3.0		··· · ·	
	86	430-435	3.0	11 . 1		
	87	435-440	З.О	HOLE		
	88	440-445	3.0	poce		
	89	445-450	3.0			
• •	90	450-455	3.0	•	2 - 19 - 2	
	91	455-460	3.0			
· 👝	92	460-465	3.0			
	93	465-470	3.0			
	94	470-475	3,0			
· · · ·	95	475-480	3.0	, i		
	96	480-485	3.0			
	97	485-490	3.0			
	98	490-495	3.0			
	99	495-500	3.0			
	100	500-505 89 R-1	3.0			•
	101	505-510	3.0			
	102	510-515	3.0			
	103	515-520 /51-/20	50.0			
	104	520-525	3.0			
	105	525-530	3.0	,,, II		
	106	530-535 89 R-1	3.0			
	107	170-175 89 R-2	3.0			
	108	175-180	3.0	112		
	109	180-185	3.0	Hole 2		
	110	185-190 56.4 - 57.9	90.0	[10 ·		
	111	190-195 - 564		•		
	112	195-200 - 61	90.0			
	113	200-205 89 R-2-4				
	114	205-210	3.0			
	115	210-215	3.0		· · · · · ·	
	116	215-220	3.0			
	117	220-225	3.0			
-	118	225-230 686 - 70				
	119	230-235	5.0			
	120	235-240	3.0			

P.4

-OCT 25 '89 16:00 KRAL 1 604 3721112 P.5 KAMLOOPS B.C. CERTIFIED ASSAYERS 812 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 8P5 PHONE (604) 372-2784 FAX 372-1112 V RESEARCH & ASSAY ABORATORY LTD. * GEOCHEMICAL REPORT * Number: To: 6 2209 HAWKEYE DEVELOPMENTS LTD. 550-1040 WEST GEDROIA ST., Date: OCT. 24, 1989 VANCOUVER, B.C. V6E 4H1 Proj.: Attn: PAGE 4 / 8 KRAL NO. IDENTIFICATION AU PPR 121 240-245 3.0 122 245-250 3.0 123 250-255 3.0 124 255-260 3.0 .08 260-265 19.2-80.77 2910.0 125 - 62-3 1020.0 .029 126 265-270 UDIE 2 127 3.0 270-275 128 275-280 3.0 3.0 129 280-285 130 285-290 3.0 131 290-295 3.0 132 295-300 з.0 133 300-305 89 R-2 3.0 134 305-310 3.0 3,0 135 310-315 stope ? 136 315-320 -3.0/ 137 330-335 3.0

1330.0 .04 350-355 0-1-105-2 3.0 142 355-360 143 360~365 3.0 365-370 11 25-112.5 205.0 144 145 370-375 3.0 375-380 89 R-2 -1 3.0-146 147 10-15 89 R-3 3.0 148 15-20 3.0 149 20-25 3.0 3.0 - 150 25-30 3,0 151 30-35 3.0 152 35-40 40-45 3.0 153 45-50 13-7-15-2 50.0 154 155 50-55 3.0 55-60 3.0 156

10.0

5.0

3.0

3.0

3.0

3.0 3-0

138

139

140

141

157

158

159

160

;

335-340

340-345

345-350

60~65

65-70

70-75

75-80

HOLE 3

#2 ?

OCT 25 '89 16:00 KRAL 1 604 3721112

. ·

• •	KAMLOOPS RESEARCH & ASSAY		B.C. CERTIFIED ASSAYERS SCENT, KAMLOOPS, B.C. V20 6P5 PHONE (604) 3	72-2784 FAX 372-1112			
ABORATORY LTD.			* GEOCHEMICAL REPORT *				
To:	HAWKEYE DEVELOPMEN		Number:	G 2209			
	550-1040 WEST GEOR Vancouver, B.C.	514 31.,	Date:	OCT. 24, 1	989		
	V6E 4H1		Proj.:				
Attn:				PAGE 5 /	8		

KRAL NO.	IDENTIFICATION	AU PPB						- <u></u>	
161	80-85	3.0	\sim						
162	85~90	3.0		\mathbf{i}					
163	90-95	З.Ф							
164	95-100	3.0							
165	100-105 89 R-3	3.0							
166	105-110	3.0						•	
167	110-115	з.0							
168	115-120	3.0							
169	120-125	3.0							
170	125-130	3.0							•
171	130-135	3.0							
172	135-140	3.0							
173	140-145	3.0							
174	145-150	3.0							
175	150-155	3:0			• •			•	
176	155-160	3.0							
177	160-165	3.0		1	,				
178	165-170	3.0		1					
179	170-175	3.0							
180	175-180	3.0							
181	180-185 54 86 - 58 -	4 2360.0	.00						
182	185-190	40.0	- :						
183	190-195	10.0		Į					
184	195-200	Э.О							
185	200-205 89 R-3	3.0		N C					• ·
186	205-210	3.0		· · · · · · · · · · · · · · · · · · ·	1	2			
187	210-215	3.0		<u>`> ľ</u>	かぼ)			
188	215-220	3.0		6	<u> </u>	9			
189	220-225	3.0		1					
190	225-230	3.0		1					
191	230-235	3.0		ĺ					
192	235-240 746-734	50.0		[
193	240-245	3.0							
194	245-250	3.0							
195	250-255	10.0	· .	1. 1					· •
196	255-260 77-7 - 79-1								
197	260-265 -80		.06						
198	265-270 - 82		•••				•		
199	270-275	40.0							
200	275-280	3.0							

.

P.6

٦

	OCT 2	25 '89 16:01 KRAL 1	604 3721112						: P	.7
KAN	MLO	OPS			B.C	CERTIFIED AS	SAYERS			
		CH & ASSAY	912 - 1 LAVAL CRESCEN	T, KAML	DOPS	, B.C. V2C 5P5 PH	IONE (604) 3	72-2784 FAX	372-1112	STA
		ATORY LTD.		_	_	OCHEMICAL]	
To:						N	umber:	G 220	94	
10.		KEYE DEVELOPMEN -1040 west geor								
	VAN	COUVER, B.C.	•				Date:	ост.	24, 1	983
	VEE	4H1					Proj.;			
Attn:							•			
								PAGE	6/	8
KRAL	NO.	IDENTIFICATION								
			PPB						<u>.</u>	
	201	280-280	3.0	$\overline{}$						
	202	285-290	20.0		\backslash					,
	203	290-295	3.0							
	204	295-300	3.0		1					
•	205	300-305 89 F								
	206	305-310	3.0							
	207	310-315	3.0							
	208	315-320	3.0							
	209	320-325 97 5-		12		Assay -	0.150			
	210		-100% 4000.0		- 1	issay -	0=			
	211		102 / 50.0							
-	212	335-340	3.0							
	213	340-345	3.0		1					
	214	345-350	3.0			> HOLE 3		< ^e		
	215	-350-355	3.0			Have	5 -9	5		
	216		-2-101-7 410.0 ·	•		> HOLE -				
	217	360-365	3.0			/				
	218	365-370	3.0							
	219	370-375	3.0		1					
	220	375-380	3.0		/					
	221	380-385	30.0		1					
	222 223	385-390 390-295	3.0	- 1						
	224	395-400	3.0							
	225	400-405 89								
	220	405-410 12:4								
	226	410-415	10.0							
		415-420	3.0	1					•	
	228			1						
	229	420-425	0.6	1.			,			
• •	230	425-430	30.0							
	231	430-435 (3)		2 1						
	232	435-440	- 134 / 50.0	1						
	233	440-445	Э.Ф	λ						

233 440-445 3.0 234 445-450 135(-137) 160.0 235 450-455 3.0 236 455-460 3.0 237 460-465 B9 R-3 14173.0 238 10-15 B9 R-4 3.0 239 15-20 3.0 240 20-25 3.0 $\int \log (-6^{-137})$ $\int \log (-6^{-137})$

	OCT 25 '89 16:01 KRAL 1	604 3721112			P.8
KAN	MLOOPS		B.C. CERTIFIED ASSAYERS		
	EARCH & ASSAY	912 - 1 LAVAL CRE	SCENT, KAMLOOPS, B.C. V20 5P5 PHONE (604) 3		V
AE	ORATORY LTD.				Stream Stream II-C TI attached
To:	HAWKEYE DEVELOPMEN		Number:	G 2209	
	550-1040 WEST GEOR Vancouver, B.C.	514 81 × 1	Date:	DCT. 24, 3	1989
• •	V6E 4H1	,	Proj.:		
Attn:				PAGE 7 /	8

;

:

÷

٦

KRAL NO.	IDENTIFICATION	AU	
241	25-30	3.0	
242	30-35	3.0	
243	35-40	3.0	
244	40-45	З.О	
245	45-50	3.0	
246	50-55	э.0	
247	55-60	3.0	· ·
248	60-65	3.0	
249	65-70	3.0	
250	70-75	3.0	
251	75-80	3.0	
	80-85	3.0	
253		3.0	
254	90~95	3.0	
		Э.О	
256		З.О	
257		3.0	
258		3.0	
259		3.0	
260		3.0	
261		3.0	
262		3.0	
263		3,0	2
264		3.0	10 10 100
265		3.0	HOLE 4 HOLE 1 535
266		3.0	SHOLE 4 MICE
267		20.0	/ HVD 1 2-380
265		3.0	
265		3.0	3-465
270		3.0	
271		3.0	4-225
272		3.0	
273		3.0	1 John
274		3.0	1605 M.
275		3.0	
276		3.0	-
277		3.0	
278		3.0	
279		3.0	
2/3		3.0	

IN AU COLUMN 4000 INDICATES >4000 PPB 3 = <5 PPB

- ; L

.

OCT 27 '89 11:16 KRAL 1 604 3721112

8

-

Ľ

RES	VILOOPS SEARCH & ASSAY SORATORY LTD.	912 - 1 LAVAL CRESCE	NT, KAMLOC	B.C. CERTIFIED DPS, B.C. V20 6P GEOCHEM	5 PHONE (804) 3		372-111	
To:	HAWKEYE DEVELOPMEN				Number:	G 221	10	
	550-1040 WEST GEDR VANCOUVER, B.C. V6E 4H1	GIA 21.,			Date:	ост.	26,	1989
· • • •					Proj.:			
Attn:						PAGE	1.	/ 3

	KRAL NO.	IDENTIFICA	TION	AU	
	1	225-230 8	39 R-4	3.0	
	2	230-235		3.0	
	3	235-240		3.0	
	4	240-245		3.0	
	5	245-250		3.0	فالمحجا المراجع والمعاصية المحال وحجا المحجا المحجا المراجع
	6	250-255		3.0	
	7	255-260		3.0	
	8	260-265		3.0	
	9	265-270		3.0	
· · -	10	270-275		3.0	
	11	275-280		3.0	
	12	280-285	85.3-96.9	50.0	
	13	285-290		3.0	
	14	290-295		3.0	
	15.		89.9-91.4	130.0-	المراجعة المراجع المراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع
	16	300-305		3.0	
*	17	305-310		10.0	
	18	310-315		3.0	
	19	315-320	•	3.0	
	20.000	320-325		3.0	and the second
	21	325-330		3.0	
	22	330-335		3.0	
	23	335-340		З.О	
	24	340-345		3.0	
	25	345-350		3.0	
	26	350-355		3.0	
	27	355-360		3.0	
	28	360-365		3.0	
	29	365-370		3.0	·
•	30	370-375	· ·	3.0	فالمعاد المعام ومحارب والمناف المستحد والمتعاد والمتعاد والمستح
	31	375-380		3.0	
	32	380-385		3.0	
	33	385-390		3.0	
	34	390-395		3.0	
		395-400		3.0	and the second
	36	400-405	89 R-4	3.0	
	37	405-410		3.0	
	38	410-415		3.0	
	39	415-420		3.0	
	40	420-425			

P.2

OCT 27 '89 11:17 KRAL 1 604 3721112

		CH & ASSAY	912 - 1 LAVAL CRESC			C SPS PI	HONE (604) 5		372-1112	° Č	
AB	ORA	TORY LTD.		*	GEOCHE	MICAL	REPO	RT *			
To:		(EYE DEVELOPMEN -1040 WEST GEDR				, Ni	umber:	8 22	10		
		COUVER, B.C.					Date:	аст.	26,	1989	
Attn:							Proj.:		•		
							· · · · · · · · · · · · · · · · · · ·	PAGE	2 /	3	
KRAL	NO.	IDENTIFICATION	AU PPB								
	41	425-430	3.0								
	42	430-435	3.0								
	43	435-440	3.0								
	44 45	440-445 445-450	3.0 3.0								
	46	450-455	3.0								
	47	455-460	3.Õ								
	48	460-465	3.0		A						
	49	465-470	3.0		D / M						
	50	470-475	3.0	Ϋ́κ							
•	51	475-480	3.0								
1	52	480-485	3.0								
	53	485-490	З.Ф								
	54	490-495	3.0								
	55	495-500	3.0								
	56	500-505 89 8									
	57	505-510	3.0								
	58	510-515	3.0								
	59	515-520	3.0								
	60	520-525 158.4 -									
	61 62	525-530 530-535	3.0								
	63 63	535~540	3.0 3.0								
	64	540-545	3.0								
	65	· 545-550 1661									
	66		-169.16 845.0								
	67		-4-170.7375.0								
	68	15-20 89 F		and the second s							
	69	20-25	3.0			/					
	70	25-30	3.0	· •	R-	5					
	71	30-35	3.0		$(\ \)$						
	72	35-40	3.0								
	73	40-45	3.0								
	74	45-50	з.о								
	75	50-55	3.0	· .							
	76	55-60	3.0								
	77	60-65	3.0								
	78	65-70	3.0								
	79 80	70-75	3.0								

RESEARCH & ASSAY ABORATORY LTD. P13-1 LAVAL GREEGENT, KAMALOOPS, B.C. VIC SPA PHONE (BOA) 378-2784 FAX 3724 FA	CAMLO	ops						
ABORATORY LTD. Image: Constraint of the state of t	RESEAR	CH & ASSAY	912 - 1 LAVAL ORESC	ENT, KAMLO	OPS, B.C. V2C 5P8 PHONE (604)	372-2784 FAX 5	172-1112	CTA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ABORA	ATORY LTD.		*	GEOCHEMICAL REPO	RT *		
VANCOUVER, B.C. Date: DCT. 26, 1989 VGE 4H1 Proj.: inth: PAGE 3 / 3 itt: PAGE 3 / 3 (RAL NO. IDENTIFICATION AU PPB 90-96 61 60-85 90-96 3.0 82 95-90 83 90-96 84 96-101 85 101-105 89 R-5 86 105-110 87 100-115 90 120-125 91 130-135 92 135-140 93 140-145 94 145-150 95 150-155 96 155-160 97 160-165 96 155-160 97 160-185 98 165-170 99 170-173 99 170-173 99 170-173 99 170-173 99 170-175 90 105-190 514-514 91 195-200 594-64 92					Number:	0 221	0	
VGE 4H1 Proj: AGE 3 / 3 RAGE 3 / 3 PPE G1 60-85 3.0 B2 90 93 0 B3 90-96 3.0 B4 96-101 3.0 B4 96-101 3.0 B5 101-105 89 R-5 3.0 B6 105-110 3.0 B7 110-1115 3.0 91 120-125 3.0 91 130-135 3.0 92 135-140 3.0 93 140-145 3.0 93 3.0 93 3.0 93 95 150-155 3.0 100 175 180 050 <			RGIA ST.,		Date:	oct.	26, 198	9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					D		-	
PAGE $3 / 3$ RAL ND. IDENTIFICATION AU PPB PPB 61 $60 - 65$ 3.0 82 $85 - 90$ 3.0 83 $90 - 96$ 3.0 84 $96 - 101$ 3.0 85 $101 - 105$ 89 97 $10 - 115$ 3.0 98 $115 - 120$ 3.0 99 $120 - 125$ 3.0 90 $125 - 130$ 3.0 91 $130 - 135$ 3.0 92 $135 - 140$ 3.0 93 $140 - 145$ 3.0 94 $145 - 150$ 3.0 95 $150 - 155$ 3.0 96 $155 - 160$ 3.0 97 $160 - 185$ 3.0 98 $165 - 170$ 3.0 100 $175 - 180$ 5.0 101 $180 - 185$ 3.0 102 $185 - 190$ 3.0					Proj.:			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	166675			_		PAGE	3/3	
B2 B5-90 3.0 B3 90-96 3.0 B4 96-101 3.0 B5 101-105 B9 R-5 B6 105-110 3.0 B7 110-115 3.0 B9 120-125 3.0 90 125-130 3.0 90 125-130 3.0 91 130-135 3.0 92 135-140 3.0 93 140-145 3.0 94 145-150 3.0 95 150-155 3.0 96 155-160 3.0 98 165-170 3.0 99 170-175 3.0 99 170-175 3.0 100 175-180 5.4-5.4 60.0 101 180-185 3.0 102 185-190 5.4-5.4 50.0 103 190-195 3.0 104 195-200 5.4-6.4 2360.0 105 200-205 B9 R-5-6.5	RAL NO.	IDENTIFICATION						
B3 $90-96$ 3.0 B4 $96-101$ 3.0 B5 $101-105$ 89 B6 $105-110$ 3.0 B7 $110-115$ 3.0 B8 $115-120$ 3.0 90 $125-130$ 3.0 91 $130-135$ 3.0 92 $135-140$ 3.0 93 $140-145$ 3.0 94 $145-150$ 3.0 95 $150-155$ 3.0 96 $155-160$ 3.0 97 $160-165$ 3.0 98 $165-170$ 3.0 99 $170-175$ 3.0 100 $175-180$ $52.9-53.48$ 60.0 101 $180-185$ 3.0 102 $185-190$ $52.9-53.48$ 60.0 103 $190-195$ 3.0 104 $195-200$ $89.8-5-61.2$ 60.0 105 $200-205$ $89.8-5-61.2$ 60.0								
84 96-101 3.0 85 101-105 89 $R-5$ 3.0 86 105-110 3.0 87 $110-115$ 3.0 87 $110-115$ 3.0 87 $115-120$ 3.0 89 $120-125$ 3.0 89 $120-125$ 3.0 90 $125-130$ 3.0 89 $130-135$ 3.0 91 $130-135$ 3.0 93 $140-145$ 3.0 92 $135-140$ 3.0 93 $140-145$ 3.0 93 $140-145$ 3.0 95 $150-155$ 3.0 94 $145-150$ 3.0 95 $155-160$ 3.0 96 $155-160$ 3.0 96 $155-170$ 3.0 98 $165-170$ 3.0 3.0 100 $175-180$ 54.50 80.0 102 $185-190$ 54.50 80.0 3.0 102 $195-195$ 3.0 103 $190-195$ 3.0 2360.0								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
86 $105-110$ 3.0 87 $110-115$ 3.0 88 $115-120$ 3.0 89 $120-125$ 3.0 90 $125-130$ 3.0 91 $130-135$ 3.0 92 $195-140$ 3.0 93 $140-145$ 3.0 94 $145-150$ 3.0 95 $150-155$ 3.0 96 $155-160$ 3.0 97 $160-165$ 3.0 98 $165-170$ 3.0 100 $175-180 532-54.54$ 60.0 101 $180-185$ 3.0 102 $185-190 5.4-57.5$ 3.0 103 $190-195$ 3.0 104 $195-200 59.4-61$ 2360.0 105 $200-205 89.8-5-623 60.0$ 60.0								
87 110-115 3.0 89 115-120 3.0 89 120-125 3.0 90 125-130 3.0 91 130-135 3.0 92 135-140 3.0 93 140-145 3.0 93 140-145 3.0 94 145-150 3.0 95 150-155 3.0 96 155-160 3.0 96 155-170 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 $52.2-58.58$ 60.0 101 $180-185$ 3.0 102 $185-190$ $51.4-57.5$ 3.0 102 $185-190$ $51.4-57.5$ 3.0 104 $195-200$ $59.8-5-62.5$ 60.0 105 $200-205$ $89.8-5-62.5$ 60.0								
89 $120-125$ 3.0 90 $125-130$ 3.0 91 $130-135$ 3.0 92 $135-140$ 3.0 93 $140-145$ 3.0 94 $145-150$ 3.0 95 $155-160$ 3.0 96 $155-160$ 3.0 97 $160-165$ 3.0 98 $165-170$ 3.0 99 $170-175$ 3.0 100 $175-180532-58.5600$ 60.0 101 $180-185$ 3.0 102 $185-19053.4-57.6600$ 3.0 103 $190-195$ 3.0 104 $195-20059.4-61$ 2360.0 105 $200-205.89.8-5-62.600$ 60.0		110-115	3.0					
90 125-130 3.0 91 130-135 3.0 92 135-140 3.0 93 140-145 3.0 94 145-150 3.0 95 150-155 3.0 96 155-160 3.0 97 160-165 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 $532 - 53.54$ 60.0 101 180-185 3.0 102 185-190 $5.4 - 57.4$ 80.0 103 190-195 3.0 104 195-200 $59.4 - 61$ 2360.0 105 200-205 89 R-5 - 62 60.0	68	115-120	3.0		0 5			
91 130-135 3.0 92 135-140 3.0 93 140-145 3.0 94 145-150 3.0 95 150-155 3.0 96 155-160 3.0 97 160-165 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 533 - 58.8 60.0 101 180-185 3.0 102 185-190 58 4 - 53.6 80.0 103 190-195 3.0 104 195-200 59 4 - 6 2360.0 105 200-205 89 $R-5 = 60.0$	89	120-125	3.0		11-0			
92 135-140 3.0 93 140-145 3.0 94 145-150 3.0 95 150-155 3.0 96 155-160 3.0 97 160-165 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 533 - 54.5 60.0 101 180-185 3.0 102 185-190 5.4 - 57.5 80.0 103 190-195 3.0 104 195-200 59.4 - 6 2360.0 105 200-205 89 $R-5 - 62.5$ 60.0								• •
93 140-145 3.0 94 145-150 3.0 95 150-155 3.0 96 155-160 3.0 97 160-165 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 $5^{3/2} - 5^{3/3}$ 60.0 101 180-185 3.0 102 185-190 $5^{1/4} - 5^{7/5}$ 80.0 103 190-195 3.0 104 195-200 $5^{1/4} - 6^{1/2}$ 2360.0 105 200-205 89 R-5 - 62 60.0								
94 145-150 3.0 95 150-155 3.0 96 155-160 3.0 97 160-165 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 $5.2 - 5A.5$ 60.0 101 180-185 3.0 102 185-190 $5.4 - 57.6$ 80.0 103 190-195 3.0 104 195-200 $59.R - 5 - 62.5$ 60.0 105 200-205 $89.R - 5 - 62.5$ 60.0								
95 150-155 3.0 96 155-160 3.0 97 160-165 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 $5^{3/2} - 5^{3/5}$ 60.0 101 180-185 3.0 102 185-190 $5^{3/2} - 5^{3/5}$ 80.0 103 190-195 3.0 104 195-200 $5^{9/4} - 6^{1}$ 2360.0 105 200-205 89 $R-5 - 6^{2/5}$					•			
96 155-160 3.0 97 160-165 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 $53 - 54.5 - 60.0$ 101 180-185 3.0 102 185-190 $5 - 4 - 57.4$ 80.0 103 190-195 3.0 104 195-200 $59.4 - 61$ 2360.0 105 200-205 89 $R - 5 - 62.5$ 60.0								
97 160-165 3.0 98 165-170 3.0 99 170-175 3.0 100 175-180 53-3 - 54.5% 60.0 101 180-185 3.0 102 185-190 5 x 4-57.5 80.0 103 190-195 3.0 104 195-200 59.4-61 2360.0 105 200-205 89 $R-5 - 62$ 60.0								
98 $165-170$ 3.0 99 $170-175$ 3.0 100 $175-18052-54.56$ 60.0 101 $180-185$ 3.0 102 $185-19052-54.56$ 80.0 103 $190-195$ 3.0 104 $195-20059.4-61$ 2360.0 105 $200-205 89 8-5-625$ 60.0								
99 $170 - 175$ 3.0 100 $175 - 180 53 - 54.54$ 60.0 101 $180 - 185$ 3.0 102 $185 - 190 54 - 57.4$ 80.0 103 $190 - 195$ 3.0 104 $195 - 200 59.4 - 61$ 2360.0 105 $200 - 205 89 8 - 5 - 62 560.0$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
101 180-185 3.0 102 185-190 5.4-57.4 80.0 103 190-195 3.0 104 195-200 59.4-61 2360.0 105 200-205 89 $R-5 = 62.5$		175-100 52.0	- 53.58 - 50.0	,			· - ·	••
102 185-190 $5^{-4} - 5^{-6}$ 80.0 103 190-195 3.0 104 195-200 $59.4 - 61$ 2360.0 105 - 200-205 89 $R - 5 - 62$ 60.0 60.0			- 00.0					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		185-190.5	-57.4 80.0					
104 195-200 59.4 - 6^{1} 2360.0 		190-195	3.0					
		195-200 59.4-	- 6 2360.0					
		200-205 89	R-5 / 60.0		به ما به ما ما م	· · ·	· • · · ·	
IN AU COLUMN 3 INDICATES <5 PPB			- 62					
IN AU COLUMN 3 INDICATES <5 PPB								
		IN AU COLUMN	3 INDICATES	<5 PPB				

والمراجع المراجع

• • •

...

۰.

.

:

-

OCT 30 '89 11:12 KRAL 1 604 3721112

KAMLOOPS RESEARCH & ASSAY		812 - 1 LAVAL CRESCEA	B.C. CERTIFIED ASSAYERS ENT, KAMLOOPS, B.C. V2C 5P6 PHONE (804) 372-2784 FAX 372-1112
			ENT, KAMLOOPS, B.O. V2C 5P6 PHONE (804) 372-2784 FAX 372-1112
To:	HAWKEYE DEVELOPMEN		Number: G 2212
-	550-1040 WEST GEOR Vancouver, B.C. V6E 4H1	GIA ST.,	Date: 007. 30, 1989
	A CC		Proj.:
Attn:			PAGE 1 / 3

KRAL NO.	IDENTIFICATION	AU PPB	
1	10-15 89 R-2	3.0	
. <u>2</u> 3	15-20	3.0	
3	20~25	3.0	
4	25-30	3.0	
5	30-35	3.0	
6	35-40	3.0	
7	40-45	3.0	
8	45-50	3.0	· · · ·
9	50-55 152-167	50.0	
- 10	55-60	3.0	
11	60-65	3.0	
12	65-70	3.0	
13	70-75	3.0	
14	75-80	3.0	
15	80-85	3.0	
16	85-90	3.0	
17	90-95	3.0	
18	95-100	3.0	
19	100-105 89 R-2	3.0	
20	105-110	3.0	·
21	110-115	3.0	
.22	115-120	3.0	
23	120-125	3.0	
24	125-130	3.0	
25	130-135	3.0	
26	135-140	3.0	
27	140-145	3.0	
28	145-150	3.0	·
29	150-155	3.0 3.0-	
30	155-160	3.0	
31	160-165	3.0	
32	165-170 89 R-2 205-210 89 R-5	3.0	
33			.)
34	210-215	3.0	
35	215-220	3.0	
36	220-225	3.0	
37	225-230	3.0	
38	230-235	3.0	
39	235-240	3.0	
40	240-245	J.U.	

.

P.2

, OCT 30 '89 11:13 KRAL 1 604 3721112

I

..

Kamloops Research & Assay Aboratory Ltd.		B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112					
			* GEOCHEMICAL REPOR	72-2784 FAX 372-1112			
To: HAWKEYE DEVELOPMENT 550-1040 WEST GEORG			Number:	G 2212			
	VANCOUVER, B.C. V6E 4H1		Date:	OCT. 30, 1989			
Attn;			Proj.:				
				PAGE 2 / 3			

KRAL NO.	IDENTIFICATION AU		,
 41	245-250 3.4	· · · · · · · · · · · · · · · · · · ·	
42	250-255 3.0		
43	255-260 3.0		
44	260-265 79.2 - 80 7 50.0		
 45	265-270 3.0	· · · · ·	
46	270-275 3.0		
47	275-280 3.0		
48	280-285 3,0		
49	285-290 3.0		
50	290-295 3.0	n 1.	
51	295-300 3.0		
52	300-305 B9 R-5944. ⁸ 240.0		
53	305-310 3.0		}
54	310-315 3.0		
 35	315-320 3.0	· · ·	· · · · ·
56	320-325 3.0		
- 57	325-330 3.(
58	330-335 3.0		
59	335-340 3.0		
60	340-345 3.(
61	345-350 3.0		
62	350-355 3.0		[
63	355-360 Epul - 1017 1300.0	•	
64	360-365 3.0		
65	365-370 3.0	• • • • •	· · · ·
66	370-375 3.0		
67	375-380 3.0		
68	380-385 3.0		
69	385-390 3.0		
70	390-395 3.0	e i e e e e e e e e e e e e e e e e e e	· · · · · · · ·
71	395-400 3.0		
72	400-405 89 R-5 20.0		
73	405-410 123.4 -125 60.1	· ·	
74	410-415 3.0	Y :	
75	415-420 20.0	· · · · · ·	· · · ·
76	420-425 128- 1295 60.0		
77	425-430 20.0		
78	430-435 3.(-	
79 80	435-440 3.0		
80	440-445 3.0		

. •

Р.З

, OCT 30 '89 11:13 KRAL 1 604 3721112

	MLOOPS SEARCH & ASSAY	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V20 5P5 PHONE (604) 372-2784 FAX 372-1112					
LABORATORY LTD.			* GEOCHEMICAL REPORT *		72-1112		
To:			Number:	G 2212			
	550-1040 WEST GEOR Vancouver, B.C. V6E 4H1	GIA ST.,	Date:	OCT. 30, 1	989		
Attn:			Proj.:				
AU116				PAGE 3 /	3		

· • • • • •

Ρ.4

	KRAL NO.	IDENTIFICATION	AU PPB	
	81	445-450	3.0	
	82	450-455	3.0	R-5
	83	455-460	3.0	
	84	460-465 89 R-5	3.0	
. .	85	10-15 89 R-6	3.0	
	86	15-20	5.0	
	87	20-25	20.0	
	88	25-30	3.0	
	89	30-35	20.0	R.V
	-90	35-40	30.0	
	91	40-45	10.0	
	92	45-50	20.0	
	93	50-55	5.0	
	94	55-60	20.0	
$\mathbf{-}$	95	60-65	40.0	
	96	65-70	45.0	
	97	70-75	10.0	
	98	75-80	3.0	
	99	80-85 24.4-25.9	100.0	1
	100	85-90 - 27.0	180.0	
	101	30-95	10.0	
	102	95-100 2895-305	660.0	
	103	100-105	3.0	
	104	105-110	3.0	·
	105	110-115 89R-6	10.0	

.

IN AU COLUMN 3 INDICATES (5 PPB

	NOV 01 '89 12:11 KRAL :	604 3721112 %		P.2		
Κ́Α	MLOOPS		B.C. CERTIFIED A AYERS			
RESEARCH & ASSAV			SCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (804) 372-2784 FAX 372-1112			
ABORATORY LTD.			** GEOCHEMICAL REPOR			
TO: HAWKEYE DEVELOPMENTS LTD.			Numbera	2214 ? 6 <u>22214</u>		
	550-1040 WEST GEOR Vancouver, B.C.	GIA ST.,	Date:	OCT. 31, 1989		
	V6E 4H1		Proj.:			
Attn:				PAGE 1 / 3		

KRA	AL NO.	IDENTIFICATION	AU		
	1	115-120 89 R-6	S.0		
	2	120-125	3.0		
	З	125-130	з.О		
	4	130-135	3.0		
	5	135-140	з.о		
	6	140-145	З.О		
•	7	145-150	з.0		:
	8	150-155	з.о		
	Э	155-160	Э.О		
	10	160-165	Э.О		
	11	165-170 5.3 51.8			
	$1 \ge$	170-175	25.0		
	13	175-180	з.О		
	14	18 0-185	3.0		·
	15	185-190	з.о		
	16	190-195	з.0		
	17	195-200	Э.О		
	18	200-205 89 R-6	З.О		
	19	205-210	3.0		
	20	210-215	З.О		
	21	215-220	3.0		
	22	220- 225	з.о		
	23	225-230	Э.О		
	24	230-235	з.о		
	25	235-240	3.0		
	26	240-245	З.О		
	27	245~250	3.O		
	20	250-255	Э.О		
	29	255~260	3.O		
	30	260-265	3. 0		
	31	265-270 - ²⁶⁻² ***			
	32	270-275 623-834	> 2910.0		
	33	275-220 - 85	³ 2160.0		
	34	280-285 - 56	64 525.O		
	35	285-290	10.0		
	36	290-295	Э.О		
	37	295-300 849 - 914	300.0		•
	38	300-305 89 R-6-			
	39		au 5 165.0		
	40_	310-315	40.0		

	NOV	01 '89 12:12 KRAL	1 604 3721112 A					P.3
ĆΔΝ	<u> </u>	OPS (ب	HC. CERTIFIED	ERS			
KAMLOOPS		912 - 1 LAVAL CRESCEN	IT, KAMLOOPS, B.C. V2C 5P5 PHON	E (604) 37	2-2784 FAX	372-1112		
				* GEOCHEMICAL F				
AB	UKA	TORY LTD.						
'o:				Num	ber:	G /22:	214	
0.	HAWK 550-	EYE DEVELOPMEN -1040 WEST GEOR	GIA ST.,	'n	ate:	,		1000
	VANC	COUVER, B.C.		U	2101	UCI.	31,	1905
	VĢE	4H1		P	roj.:			
Attn:						PAGE	2 /	2
						P-P1012		
RAL	NO.	IDENTIFICATION	AU					
			<u> </u>					
	41	315-320 320-325 41.51	3.0 - 44 75.0					
	42 43	325-330	3.0					
	40 44	330-332	3.0					
	45	335-340	з.0					
	46	340-345	з.0					
	47	345-350	3.0					
	48	350-355	3.0					
	49	355-360	3.0 3.0					
	50	360-365	3.0					
	51 52	365-370 370-375	3.0					
	53	375-380	3.0					
	54	380-385	3.0					
	55	385~390	3.0					
	56	380-395	3.0					
	57	395-400	20.0					
	58	400~405 89						
	59	405-410	3.0 http://				t.	
	60 63	410-415 v28- 415-420	- 126 180.0					
	61 62	420-425	40.0					
	62 63	425-430	20.0					
	64	430-435	З.О					•
:	65	435-440	10.0					
	66	440-445	3.0					
	67	445-450 🖂						
	69	450-455	30.0					
	69	455-460 108	n- 149-2 100.0					
	70	460-465	30.0					
	71	465-470	20.0 20.0 80.0					
	72	+ 7 0-475 (4) 475-480	20.0					
	73 74	480~485	 3.0					
	74 75	485-490	3.0					
	76 76	490-495	3.0					
	77	495-500	20.0					
	78	500-505 89	26 3.0					
	79	505-510	10.0	1				

RES	ALO(CH & ASSAY	912 - 1 LAVAL CRE	SCENT, KAM	B.C. CERTIFI	5P5 PHONE (604) 3	72-2784 FAX	372-1112	CT/
		TORY LTD.				ICAL REPOR]	
To:	HAWK	EYÉ DEVELOF 'EN	X TS LTD.			Number:	G #2:	214	
	550-	1040 WEST GEOR DUVER, B.C.				Date:	OCT.	31, 198	ġ
	VGE	4111				Proj.:			
Attn:							PAGE	3/3	:
KRAL	NO.	IDENTIFICATION	AU	<u></u>					
	B1	515 -520		0					
	82	520-525	З.	0					
:	83	525-530	10.	0					
:	84	5 30-537	40.	0					
:	85	535-5	10.	0					
	8Ē	540-1	з.	0 ·					
	87	545-66	20.	Ŏ.					
	6	550-555	10.	0					
	89	555-560	з.						
	90 .	560-565	10.						
	91	565-570	10.						
	92 	570-575		Ŏ					
	93	575-580	120						
	94	580-585	4000.	4 J ·					
	95	585-590	560.						
	96	590-595	270.						
	97	595-600 89 F							
	98	10-18 89 5		-					
	99	15-20	3.						
	100	20-20	10,						
	101	25 -30	10.						
	102	3 0- 38	3.						
		35-40	э.						
	103	40-45	3.						
	104 105	45-50 89 R-1		0					

_

	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112					
LABORATORY LTD.	** GEOCHEMICAL REPORT					
TO: HAWKEYE DEVELOPMENTS LTD.	Number:	G 2216				
550-1040 WEST GEORGIA ST., Vancouver, B.C.	Date:	NOV. 2, 1989				
V6E 4H1	Proj.:					
		PAGE 1 / 3				

KRAL NO.	IDENTIFICATION	AU PPB	
1	50-55 89 R-7	3.0	
2	55-60	З.О	· ·
· 3	60-65	3.0	
4	65-70	3.0	
5	70-75	3.0	· · · · · · · · ·
6	75-80	3.0	
7	80-85	3.0	
· 8	85-90	з.о	
9	90-95	3.0	
	95-100	3.0	
11	100-105	3.0	
. 12	105-110	3.0	
13	110-115	3.0	
14	115-120	з.о	
	120-125	3.0	11 * 7 * 7 1
16	125-130	3.0	
17	130-135	3.0,	STOPE
18	150-155	3.05	31010
19	155-160	3.0	
		3.0	
21	165-170	3.0	
22	170-175	3.0	
23	175-180	3.0	
24	180-185	120.0	
			and the second
26	190-195	3.0	
27	195-200	3.0	
28	200-205	3.0	
29	205-210 89 R-7		·
30	20-25 89R-8		
31	25-30	3.0	
32	30-35	3.0	
33	35-40	3.0	
33			
	40-45	3.0	
35	45-50	3.0	nan manana kanya kany
36	50-55	3.0	
37	55-60	3.0	
38	60-65	3.0	
39	65-70	3.0	
40	70-75	3.0	

·

*

Kamloops <i>Research & Assay</i> Laboratory Ltd.		B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112				
			* GEOCHEMICAL REPOR	₹Т *		
To:	To: HAWKEYE DEVELOPMENTS LTD. 550-1040 WEST GEORGIA ST.,		Number:	G 2216		
	VANCOUVER, B.C. V6E 4H1	Jin Ul.,	Date: Proj.:	NOV. 2, 1989		
Attn:		•	P10j	PAGE 2 / 3		

.

KRAL NO. IDENTIFICATION	AU PPB	
41 75-80	3.0	
42 80-85	3.0	
43 85-90	3.0	
44 90-95	3.0	
45 95-100	3.0	
46 100-105 89 R-8	3.0	
'47 105-110	3.0	
48 110-115	3.0	
49 115-120	3.0	
50 ··· 120-125 ···	3.0	
51 125-130	3.0	
52 130-135	3.0	
53 135-140	3.0	
54 140-145	3.0	
55 145-150	3.0 · · · · · · · · · · · · · · · · · · ·	
56 150-155	3.0	
57 155-160	3.0	•
58 160-165	3.0	
59 165-170	3.0	
60	3.0 · · · · · · · · · · · · · · · · · · ·	
61 175-180	3.0	
62 180-185	3.0	
63 185-190	3.0	
64 190-195	3.0	
65	3.0	
66 200-205 89 R-8	3.0	
67 205-210	3.0	
68 210-215	3.0	
69 215-220	3.0	
70 220-225	······································	
71 225-230	3.0	
72 230-235	3.0	
73 235-240	3.0	
74 240-245	3.0	
	3.0	
76 250-255	3.0	
77 255-260	3.0	
78 260-265	3.0	
79 265-270	3.0	
80 270-275	3.0	

RES	MLOOPS EARCH & ASSAY ORATORY LTD.	912 - 1 LAVAL CRESCE	B.C. CERTIFIED ASSAYERS NT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 3 * GEOCHEMICAL REPOR	IV	
То:	HAWKEYE DEVELOPMEN		Number:	G 2216	
	SSO-1040 WEST GEOR VANCOUVER, B.C. VGE 4H1	51A 51.,	Date:	NOV. 2, 1989	
			Proj.:		
Attn:				PAGE 3 / 3	

!

KRAL NO. IDENTIFICATION	AU PPB	
81 275-280	3.0	
82 280-285	3.0	
83 285-290	3.0	
84 290-295	3.0	
85	3.0	
86 300-305 89 R-8	3.0	
87 305-310	3.0	· .
88 310-315	3.0	
89 315-320 89 R-8	3.0	
	3.0	
91 30-35	3.0	
92 35-40	3.0	
93 40-45	3.0	
94 45-50	130.0	
95	3.0	
96 55-60	3.0	
97 60-65	3.0	
98 65-70	3.0	
99 70-75	3.0	
	3.0	
101 80-85	3.0	
102 85-90	3.0	
103 90-95	3.0	
104 95-100	3.0, ·	
105	···· 3.0/···· ·····	

and a second second

IN AU COLUMN 3 INDICATES <5 PPB

.....

·· ····

NOV 03 '89 17:17 KRAL 1 604 3721112

o.

	NLOOPS EARCH & ASSAY	912 - 1 LAVAL CRE	B.C. CERTIFIED ASSAYERS SCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (804) 372-2764 FAX 372-1112
	BORATORY LTD.	[** GEOCHEMICAL REPORT**
To:	HAWKEYE DEVELOPMEN	S LTD.	Number: G 2218
	550-1040 WEST GEOR Vancouver, B.C,	BIA ST.,	Date: NOV 3, 1989
	V6E 4H1		Proj.:
Attn:			PAGE 1 / 3

KRAL	ND.	IDENTIFICATION	AU PEB			
	1	105-110 89 R-9	3.0			
	2	110-115	3.0			
	3	115-120	3.0			
	4	120-125	3.0			_
	5	125-130	3.0			
	б	130-135	3.0			
	7	135-140	3.0			
	8	140-145	3.0			
	9	145-150	3.0			
	10	150-155	э.			
	11	155-160	3.0			
<i>~</i> .	12	160-165	3.0			
	13	165-170	3.0	-		
	14	170-175	э. о		,	
	15	175-180	3.0			
	16	180-185	3.0			
	17	185-190	3.0			
	18	190-195	3.0			
	19	195-200	3.0	<i>,</i>		<i>, .</i>
	20	200-205 89 R-9	3.0			
	21	205-210	3.0			
	22	210-215	3.0			
	23	215-220	3.0			
	24	220-225	3.0	· · ·		
	25	225-230	3.0			
	26	230-235	3.0			
	27	235-240	3.0			
	28	240-245	3.0			
	29	245-250	3.0	-	ан 19	
• •	30	250-255	3.0			
	31	255-260	3.0			
	32	260-265	3.0			
	33	265-270	3.0			
	34	270-275	3.0			
	35	275-280	3.0			
	36	280-285	3.0			
	37	285-290	3.0			
	38	290-295	3.0			
	39 40	295-300 <u>300-305_89_8-8-8</u>	3.0			

P.2

NOV 03 '89 17:17 KRAL 1 604 3721112

P

KAMLOOPS RESEARCH &	ASSAY BIZ- 1 LAVAL CRE	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112		
LABORATORY	LTD.	* GEOCHEMICAL REPOR	RT *	
TO: HAWKEYE DEVELOPMENTS LTD.		Number	6 2218	
550-1040 l Vancouver	WEST GEORGIA ST., , B.C.	Date:	NOV 3, 1989	
V6E 4H1		Proj.:		
Attn:			PAGE 2 / 3	

KRAL N	O. IDENTIFICATION	AU PPB	 		
41	305-310	3.0			
42	310-315	3.0			
43	315-320	3.0			
2. 2.	320-325	з.о			
45	325-330	Э.О			
46	. 330- 335	з.о			
47	335-340	3.0			
48	340-345	з.0			
43		3.0			
50		Э.О			·
51		3.0			
52		3.0			
53		3.0			
54		Э.О			
55		3.0			
56		3.0			
57		3.0			
55					
59		3.0			
60			·		
61		Э.О			
62		3.0			
63		3.0			
64	•	з.0			
65		3.0		<i>.</i> .	
66		3.0			
67		З.О			
68		3.0	•		
69		280.0 <			
70		3.Q			
71	455-460	3.0			
72	2 460-465	.́э.о			
73	3 465-470 89 R-9	э з.о			

.

IN AU COLUMN 3 INDICATES <5 PPB

• •

,

P.3

٦

NOV 07 '89 16:47 KRAL 1 604 3721112

.

.

	MLOOPS SEARCH & ASSAY	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112				
LA	BORATORY LTD.	** GEOCHEMICAL	REPORT**	12-1112		
To:	HAWKEYE DEVELOPMEN		ber: G 2219	!		
	550-1040 WEST GEORE Vancouver, b.C. V6E 4H1	A ST., Di	ate: NOV 6,	1989		
Attn:		Pr	roj.:			

KRAL NC. IDENTIFICATION AU DDB 1 5-10 89 R-10 3.0 2 10-15 3.0 3 15-20 3.0 4 20-25 3.0 5 25-30 3.0 5 25-30 3.0 5 25-30 3.0 7 35-40 3.0 9 45-50 3.0 10 50-55 3.0 11 55-60 10.0 12 60-65 3.0 14 70-75 3.0 15 75-80 3.0 16 80-85 3.0 17 85-90 3.0 18 90-95' 3.0 19 95-100 3.0 20 100-105 89 R-10 3.0 21 105-110 3.0 22 110-115 3.0 23 155-120 3.0 24 120-125 3.0 25 130-135 3.0 26 130-135	-						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ند. الفریزیون	KRAL NO.	IDENTIFICATION	AU			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	5-10 89 R-10	3.0	· · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	10-15	з.о			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Э	15-20	3.0	<i>,</i>		
		4					
7 $35-40$ 3.0 8 $40-43$ 3.0 9 $45-50$ 3.0 10 $50-55$ 3.0 11 $55-60$ 10.0 12 $60-65$ 3.0 13 $65-70$ 3.0 14 $70-75$ 3.0 15 $73-80$ 3.0 16 $80-85$ 3.0 17 $85-90$ 3.0 19 $95-100$ 3.0 20 $100-105$ 89 $8-10$ 3.0 21 $105-110$ 3.0 22 $110-115$ 3.0 23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ $59.6-41.1$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 21 $105-15$ $45.7-47.7$ 4000.0 31 $155-160 - 4g.76$ 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $150-185$ 3.0 37 $185-190$ 3.0 36 $190-195$ 3.0 37 $185-190$ 3.0 39 $195-200$ $544-6.94$ 2080.0		5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
10 $50-55$ 3.0 11 $55-60$ 10.0 12 $60-65$ 3.0 13 $65-70$ 3.0 14 $70-75$ 3.0 15 $75-80$ 3.0 16 $80-85$ 3.0 17 $85-90$ 3.0 18 $90-95'$ 3.0 20 $100-105$ $89' R-10$ 3.0 21 $105-110$ 3.0 22 $110-115$ 3.0 23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ $3^{9.L}-4^{1/2}$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 28 $140-145$ 3.0 28 $140-145$ 3.0 29 $145-150$ $-4f^{72}$ 4000.0 $6.2g3$ $3mm_{2}$ 31 $155-160$ $-4g7b$ 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 39 $195-200$ $5^{74}-b0.9b$ 2080.0							
11 $55-60$ 10.0 12 $60-65$ 3.0 13 $65-70$ 3.0 14 $70-75$ 3.0 15 $73-80$ 3.0 16 $80-85$ 3.0 17 $85-90$ 3.0 19 $95-100$ 3.0 20 $100-105$ 89 R-10 3.0 21 $105-110$ 3.0 22 $110-115$ 3.0 23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ $3.(2-41.)$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 30 $150-155$ $4(.7-47.)$ 4000.0 31 $155-160$ -48.76 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $190-195$ 3.0 37 $185-190$ 3.0 36 $190-195$ 3.0 37 $185-190$ 3.0 39 $195-200$ $574 - 60.96$ 2080.0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
13 $65-70$ 3.0 14 $70-75$ 3.0 15 $75-80$ 3.0 16 $80-85$ 3.0 17 $85-90$ 3.0 18 $90-95^{-}$ 3.0 19 $95-100$ 3.0 20 $100-105$ $89^{-}R-10$ 3.0 21 $105-110$ 3.0 22 $115-120$ 3.0 23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130^{-}$ 3.0 26 $130-135$ $34.(-41.)$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 30 $150-155$ $45.7-47.7$ 4000.0 31 $155-160$ $-4g76$ 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 39 $195-200$ $54.4-60.46$ 2080.0							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					· .		
16 $B0-85$ 3.0 17 $B5-90$ 3.0 18 $90-95'$ 3.0 19 $95-100$ 3.0 20 $100-105$ $B9$ R-10 3.0 21 $105-110$ 3.0 22 $110-115$ 3.0 23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ 3.0 26 $130-135$ 3.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 21 $155-160$ $-4g76$ 28 $140-145$ 3.0 30 $150-155$ 45.7 31 $155-160$ $-4g76$ 32 $160-165$ 3.0 33 $165-170$ 3.0 35 $175-180$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.:	
18 $90 - 95'$ 3.0 19 $95 - 100$ 3.0 20 $100 - 105$ 89 R - 10 3.0 21 $105 - 110$ 3.0 22 $110 - 115$ 3.0 23 $115 - 120$ 3.0 24 $120 - 125$ 3.0 25 $125 - 130$ 3.0 26 $130 - 135$ $3.4 - 41.1$ 27 $135 - 140$ 3.0 28 $140 - 145$ 3.0 29 $145 - 150$ 3.0 30 $150 - 155$ $45.7 - 47.2$ 4000.0 31 $155 - 160$ $-48.7b$ 74.72 32 $160 - 165$ 3.0 33 $165 - 170$ 3.0 34 $170 - 175$ 3.0 35 $175 - 180$ 3.0 36 $180 - 185$ 3.0 37 $128 - 190$ 3.0 38 $190 - 195$ 3.0 39 $195 - 200$ $5^{64} - b0.9b$ $2080 - 0$ 3.0						,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
20 $100-105$ 89 R-10 3.0 21 $105-110$ 3.0 22 $110-115$ 3.0 23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ $39.6 - 41.7$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 30 $150-155$ $45.7 - 47.2$ 4000.0 0.283 2000.0 31 $155-160$ -48.76 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 38 $195-190$ 3.0 39 $195-200$ $59.4 - b0.9 b$ 2080.0							
21 $105-110$ 3.0 22 $110-115$ 3.0 23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ $39.6-41.7$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 30 $150-155$ $45.7-47.2$ 4000.0 0.383 2000.0 31 $155-160$ -48.76 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 38 $190-195$ 3.0 39 $195-200$ $57.4-b0.9b$ 2080.0					·		· · · · · · · · ·
22 $110-115$ 3.0 23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ $39.6-41.7$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 30 $150-155$ $45.7-47.7$ 4000.0 31 $155-160$ $-48.7b$ 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 38 $190-195$ 3.0 39 $195-200$ $59.4-b0.9b$ 2080.0					•		
23 $115-120$ 3.0 24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ $39.6 - 41.1$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 30 $150-155$ $45.7 - 47.2$ 4000.0 0.383 300 31 $155-160$ -48.76 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 38 $190-195$ 3.0 39 $195-200$ $594 - 60.96$ 2080.0					\$		
24 $120-125$ 3.0 25 $125-130$ 3.0 26 $130-135$ $39.6 - 41.7$ 225.0 27 $135-140$ 3.0 28 $140-145$ 3.0 29 $145-150$ 3.0 30 $150-155$ $45.7 - 47.2$ 4000.0 0.3 g3 31 $155-160$ $-4g.76$ 1740.0 32 $160-165$ 3.0 33 $165-170$ 3.0 34 $170-175$ 3.0 35 $175-180$ 3.0 36 $180-185$ 3.0 37 $185-190$ 3.0 38 $190-195$ 3.0 39 $195-200$ $59.4 - b0.9b$ 2080.0							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Χ.	
26 $130 - 135 39.6 - 41.7$ 225.0 27 $135 - 140$ 3.0 28 $140 - 145$ 3.0 29 $145 - 150$ 3.0 30 $150 - 155 45.7 - 47.2 4000.0$ 0.383 31 $155 - 160 - 48.76 1740.0$ 32 $160 - 165$ 3.0 33 $165 - 170$ 3.0 34 $170 - 175$ 3.0 35 $175 - 180$ 3.0 36 $180 - 185$ 3.0 37 $185 - 190$ 3.0 38 $190 - 195$ 3.0 39 $195 - 200 59.4 - 60.96 2080.0$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					• •		•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					7 2 82		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					U. 285 anoy.		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					· • · · · ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		37					
			190-195	3.0			
				2080.0			
		40	200-205 89 8-10	<u> </u>			

P.2

PAGE 1 / 4

.

.., . ..

	MLOOPS SEARCH & ASSAY	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112				
LAE	BORATORY LTD.	* GEOCHEMICAL REPORT *				
To: HAWKEYE DEVELOPMENTS LTD. 550-1040 WEST GEORGIA ST., VANCOUVER, B.C. VGE 4H1		B LTD. Number: 6 2219				
		IA ST., Date: NOV 6, 198	9			
		Proj.:				
Attn:		PAGE 2 /	4			

RAL NO.	IDENTIFICATION	AU		
41	205-210	3.0		
42	210-215	3.0		
43	215-220	3.0		
44	220-225 89 R-10	3.0		
45	35-40 85 R-11	3.0		
46	40-45	3.0		
47	45-50	3.0		
48	50 - 55	3.0		
49	55-60	3.0		
50	60-63	3.0		
51	65-70	3.0	, , , , , , , , , , , , , , , , , , ,	
52	70-75	3.0		
53	75-80	3.0		
54	80-85 24.4 - 25.91	195.0		
55	85-90	3.0		
56	90-95	3.0		
57	95-100	3.0		
58	100-105 89 R-11	3.0		
59	105-110	3.0		
60	110-115	3.0		• •
61	115-120	3,0		
62	120-125	3.0		
63	125-130	3.0		
64	130-135	3.0		
-65	135-140	3.0		
66	140-145	3.0		
67	145-150	3.O		
69	150-155	40.0		2
69	155-160	3.0		
70	160-1 65	3.0		
71	165-170	3.0		
72	170-175	3.0		
73	175-180	3.0		
74	180-185	3.0		
75	185-190	3.0	· · · ·	
76	190-195	3.0		
77	195-200	3.0		
78	200-205 89 R-11	3.0		
79	205-210	3.0		
80				

NOV 07 '89 16:48 KRAL 1 604 3721112

........

2

	MLOOPS EARCH & ASSAY	B.C. CERTIFIED ASSAYERS 912 - 1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112				
	BORATORY LTD.		CENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112 * GEOCHEMICAL REPORT *			
TO: HAWKEYE DEVELOPMENTS		I Te lïd.	Number: G 2215			
	550-1040 WEST GEORG VANCOUVER, B.C.		Date: NOV 6, 1989			
	V6E 4H1		Proj.:			
Attn:			PAGE 3 / 4			

KRAL NO.		AU	
81	215-220 R-11	3.0	
82	220-225	3,0	
83	225-230	3.0	
84	230-235	3.0	
85	235-240	3.0	
86	240-245	3.0	
87	245-250	3.0	
89	250-255	3.0	
89	255-260	3.0	
90°	260-265	3.0	
90 91	265-270	3.0	
91 92	265-275	3.0 3.0	
	275-280	3.0	
93		3.0 60,0	
94	280-285 46-3-37-9 285-285	5,0 5,0	
95 `	285-290		
96	290-295	10.0	
97	295-300	3.0	
98	300-305 89 R-11	3.0	
99	305-310	3.0	• •
100	310-315	3.0	
101	315-320	3.0	
102	320-325	3.0	
103	325-330	3.0	
104	330-335	3.0	
105	335-340	3.0	
106	340-345	3.0	· · ·
107	345-350 105-15-196-1	1475.0	
108	350-355		
109	355-360	3.0	
110	360-365	3.0	
111	365-370	3.0	· ·
112	370-375	3.0	› ·
113	375-380	3.0	
114	380-385 115.8-117.3	4000.0	
115	385-390	Э.О	· · · ·
110	390-295	3.0	
117	395-400	3.0	
118	400-405 89 R-11	3.0	
113	405-410	3.0	
120	410-415		

P.4

NOV 07 '89 16:48 KRAL 1 604 3721112

.

•	MLOOPS SEARCH & ASSAY	912 - 1 LAVAL CRES	B.C. CERTIFIED ASSAYERS SCENT, KAMLOOPS, B.C. V2C 5P8 PHONE (604) 372-2784 FAX 972-1112
LABORATORY LTD.			SCENT, KAMLOOPS, B.C. V2C 5P8 PHONE (604) 372-2784 FAX 972-1112
To:	HAWKEYE DEVELOPMEN.	IS LTD.	Number: G 2213
	550-1040 WEST GEOR VANCOUVER, B.C.	SIA ST.,	Date: NOV 6, 1989
	V6E 4H1		Proj.:
Attn:			PAGE 4 / 4

.

 KRAL NO.	IDENTIFICATION			
121	415-420	3.0		
122	420-425	3.0		
123	425-430	3.0		
124	430-435	3.0		
125	435-440	3.0		
126	440-445	3.0		
127	445-450	Э.О		
128	450-455	3.0		
129	455-460	з.0		
130	460-465	З.О		
131	465-470	3.0		
132	470-475	3.0		•
133	475-480	3.0		
134	480-485	3.0		
135	485-490 \4 ^{7 8}	·/····································	·	
136	490-495	з.0		
137	495-500	З.Ф		
138	500-505 89 R-			
139	505-510	з.0		
140	510-515	3.0		
141	515-520	3.0		
142	520-525	З.О		
143	525-530	Э.О		
144	530-535	3.0		
145	535-540 89 R-	11 3.0		

IN AU COLUMN 4000 INDICATES >4000 PPB 3 = <5 PPB

P.5

NOV 07 '89 16:49 KRAL 1 604 3721112

.

ंद

Ĩ

	KAMLOOPS RESEARCH & ASSAY 912-1 LAVAL CRESC		B.C. CERTIFIED ASSAYERS CENT, KAMLOOPS, B.C. V2C 5P5 PHONE (804) ;	372-2784 FAX 372-111	
LABORATORY LTD.			** GEOCHEMICAL REPO	DRT**	
To:	HAWKEYE DEVELOPMEN	∎ Is LTD.	Number:	G 2221	
	550-1040 WEST GEOR VANCOUVER, B.C.	JIA ST.,	Date:	NOV 7, 19	989
	V6E 4H1		Proj.:		
Attn:				PAGE 1	/ 3

	KRAL NO.	IDENTIFICATION	AU	
	. 1	10-20 89 R-12	3.0	
	2	20-25	3.0	
	3	25-30	3.0	
	4	30-35	3.0	· ·
	5	35-40	3.0	
	6	40-45	Э.О	
	7	45-50	3.0	
	8	50-55	3.0	· · · · · · · · · · · · · · · · · · ·
	÷Ð	55-60	з.0	
	10	60-65	э.0	
	11	65-70	3.0	
	12	70-75	3.0	
	13	75-80	3.0	
	14	80-85	з.0	
	15	85-90	3.0	
	16	90-95	3.0	
	17	95-100	3.0	
	18	100-105 89 R-12	3.0	
	19	- 105-110	3.0	
	20	110-115	3.0	
	21	115-120	3.0	
	22	120-125	3.0	· · · ·
	23	125-130	3.0	
	24	130-135	3.0	
•	25	135-140	3.0	
	26	140-145	10.0	
	27	145-150	3.0	
	28	150-155	3.0	
	29	155-160	3.0	a second s
	30	160-165	3.0	
	31	165-170	З.О	• ·
	32	170-175	3.0	
	33	175-180	Э.О	
	34	180-185 54,86 - 56,9	/ 3630,¢	
•	35	185-190	3.0	
	36	190-195	3.0	
	37	195-200 59.4 -61		
	38	200-205 89 R-12		
	39	205-210	3.0	
		210-215		

 $\phi \phi$

Р.6

NOV 07 '89 16:49 KRAL 1 604 3721112

KAMLOOPS <i>RESEARCH & ASSAY</i> LABORATORY LTD.		B.C. CERTIFIED ASSAYERS 912-1 LAVAL CRESCENT, KAMLOOPS, B.C. V2C SP5 PHONE (604) 372-2784 FAX 372-1112 * GEOCHEMICAL REPORT *					
		· .	* GEOCHEMICAL REPOR	₹ 1 ₩			
To:	HAWKEYE DEVELOPMEN.		Number:	G 2221			
	530-1040 WEST GEDRU Vancouver, B.C.	SIA ST.,	Date:	NOV 7, 19	89		
Attn:	V6E 4H1		Proj.:				
~~~~				PAGE 2 /	3		

KRAL NO.	IDENTIFICATION	AU				
41	215-220	3.0				
42	<b>220-225</b> 67 - 68.	6 155.0				
43	225-230	з.0				
44	230-235	з.о				
45	235-240	Э.С			;	
46	240-245	3.0				
47	245-250	3.0				
48	250-255	Э.О				
49	255-260	3.0				
50	260-265	3.0		•		
51	265-270	3.0				
52	270-275	3.0				
53	275-280	3.0				•
54	280-285 89 R-12					
55		15AN 330.0	•			
56	605-610 - <i>165</i>					
57		860.0				
58	<b>615-620</b> <i>18</i>					
59		2 1060.0				
60		125.0				
61		3.51060.0				
62			staf -			
63		62 4000.0 , 2 1981 445.0	•7•7			
64			And the second s			· .
65	89-1-18	··· 3.0				
66	89-1-31	3.0	•			
67	89-1-40.4	3.0				
68	89-2-50	3.0				
69	89-2-73.4	3.0 3.0				
70 71	89-3-11.6 89-3-26	3.0				
72	89-3-28	3.0				
72	89-4-23.5	3.0				
74	89-6-27.7	3.0				
75	89-6-30.5	3.0				
/3	0,00-0-60	نيا پر ت				

IN AU COLUMN 4000 INDICATES >4000 PPB 3 = <5 PPB

P.7

WV 08 '89 16:31 KRAL 1 604 3721112

۸Ñ	<b>ILOOPS</b>		<u>8.C</u>	. CERTIFIEI	D ASSAYERS		
{ESt	EARCH & ASSAY	912 - 1 LAVAL CRESCEN	T, KAMLOOPS	, B.C. V2C 6/	P5 PHONE (604) 3	72-2784 FAX 372-11	
	ORATORY LTD.		**	ASSAY	CERTIFIC	ATE **	
To:	Hawkeye Developm				Number:	K 9891	
	550-1040 West Geo Vancouver, B.C. V6E 4H1	orgia St.,			Date:	Nov. 7,	1989
Attn:	AOF AUT				Proj.:		

Ρ.2

No.	Description	Au ozs/ton		
2 89 3 89 4 89	R-3 325-330 R-6 580-585 R-6 640-645 R-10 150-155 R-11 380-385	.150 .169 .144 .383 45.77 .386 115.8	- 47. z - 1/7. 3	

el. B.C. Certified Assayer

-----

. . .

	MLOOPS EARCH & ASSAY	912 - 1 LAVAL CRESCEN		CERTIFIED ASSAYERS B. C. V2C 5P5 PHONE (604) 37		<u>CTA</u>
	ORATORY LTD.		**	ASSAY CERTIFIC	ATE *1	
То:	Hawkeye Developm 550-1040 West Ge			Number:	K 9904	
	Vancouver, B.C. V6E 4H1	Jigia St.,		Date:	Nov. 16,	1989
Attn:				Proj.:		

No.	Description	ozs/ton				I	
 1 89	R-6 575-580 5		69	······································			
2	585-590	.005 .012	•				
3 .	590-595	.007					
4	595-600	<.001					
5	600-605	.050					
6	605-610	.031					
7	610-615	.024					
8	615-620	.016			-		
 9	620-625	* .023					
ío	625-630	.008					
11	630-635	.035					
12	635-640	.026					
13 89	R-6 645-650	.009			· · · ·		
	le has been s		found t	co contain	coarse gol	ld. See	

				Percent	Au	Combined Au
ĩ				Weight	ozs/ton	ozs/ton
9	620-625	-100	mesh	97.23	.019	.023
		+100	mesh	2.77	.172	

. . . .

Jerek A St. Jul B.C. Certified Assayer

	MLOOPS SEARCH & ASSAY	B.C. CERTIFIED ASSAYERS LAVAL CRESCENT, KAMLOOPS, B.C. V2C 5P5 PHONE (604) 372-2784 FAX 372-1112	
LA	BORATORY LTD.	** GEOCHEMICAL REPORT**	
To:	HAWKEYE DEVELOPMENTS		
	VANCOUVER, 3.C. VSE 4H1	Date: NOV, 23, 15	989
		Proj.:	
Attn:		PARE 1 / 1	

KRAL N	O. IDENTIFICATION	AS PPM	CC PPM	ZN PFM	AS PPX	
4 	575-580 89 R-6	0.6	328.0	160.0	10.O	
.2:	380-585	3.8	112C.O	279.0	30. O	
3	585-590	O	83.0	103.0	n an	
4	590-59 <b>5</b>	$\circ$ . $\circ$	45.0	86.°	10.0	
5	893-600	0.0	24.0	80.C	10.0	
6	600-605	$\circ$ , $\in$	160.O	130.0	10.0	
7	605-610	1.9	134.0	115-0	10.0	
, 8	5i0-6i5	$O$ , $z_{i}$	111.0	104.0	10.O	
9	51 <b>5</b> -620	0.1	84.O	terz, c	20.O	
10	620-625	Çi _n diş	86.0	105.0	10.0	
به ۲۰ اسانه	623-630	$\bigcirc$ , $\bigcirc$	82.O	94., C	10,0	
1.72	: 530~635	0.5	165.0	$\mathbb{E} \subseteq \mathbb{C}_{n} \subseteq \mathbb{O}$	10.O	
13	635-640	20 ST	146.O	112.0	1010	
24	640-645	$\odot_{e}$ 7	405.0	108.0	10.0	
15	5 545-650 89 R-6	0.2	156.0	93.C	30.O	
16	45-50 89 R-9	$\circ$ , $\circ$	15.0	62.0	10.O	
17	95-100 89 R-9	0 . O	Θ.Ο	100.0	10.O	

.

. .

IN AG COLUMN O.O INDICATES KO.1 PPM

IN AS COLUMN 10 INDICATES <20 PPM

•

. .... . . . .

#### APPENDIX III.

#### DRILL CORE LOG SUMMARIES

D.D.H. 89-1 to 89-14

To Accompany:

Report of Work, Second Relief Project, Hawkeye Developments Ltd., 1989.

188	3.55 8.5 W	HAWKEYE DE DIAMOND			Vo	· · ·	NQS	ize	HOLE NO	89-1	
Azimu	174 13	15° DIP-51° LENGTH 485 m, 159 f	eet.	INE	Z VEI	N- 1	A'zon	VE	PAGE Nº:	1 of Z	
MET	RES   to	DESCRIPTION	SAMPLE Nº	• MET	TRES to	LENGTH METRES	Au	Ag oz./ ton	Cu %	Alter.	Pyrit
0	-3.65	Overburden.		· · · · · ·	1						<u>+</u>
3.65		Mixed fragmental andesitic volcanic rx	· · · · · · · · · · · · · · · · · · ·		+	1		· · · · · · · · · · · · · · · · · · ·			
		Epidotic alteration - mettled pattern	65686	8.84	10.64	1.8 m	2.001		· · · · · · · · · · · · · · · · · · ·	Chl.Ep.	20
<u> </u>		8.64-10.64 - ven quarts zone with Du			· · · · ·						
•		8.64-10.64 m - vein quartz zone with py, green chlorite seams, some black acicular				1		<u>├</u>			
·		tourmaline (?) grains. At 15° to cite 2415.		· · · · · ·		1		<u> </u>			+
	·	10.7-11.7 dense, black dyke, Imm & phenes.				1					+
		11.9-12.34 dark dyle as abuse. hower centerts		· · · · · · · · · · · · · · · · · · ·	+	ļ		<u>├</u> ────┼			+
		at 90° A C A.		<u> </u>	+			┟────┼┈			ł
		12 P= 15.5 Ik for stid to = featen (de	h					<u> </u> <u> </u>			+
	i	12.8-15.5. dk f.gr. sil. dyke = fs phenes ( - Imm white anydules v Imm d.a. Few tractures.	y								<u> </u>
15.5	27.8	Strong although Franch relax Stratics h			<del> </del>						+
10.0	~ 1.0	et mexice epidote Minor py. Tight Fractures			+		· · · · · · · · · · · · · · · · · · ·	┟		<u>_</u>	_
		at 2.8 CA have all a st	1510.1				0.00				
<u> </u>		at 30° ~ C.A. have strong alteration.	65681	25.69	25.84	020	0.02	<u> </u>		VQisilie	<u>t</u>
27.8	20 27	U.Q. 25.7 - 25.8. Crushed. Chloritic Minor py.			<u> </u>	<u> </u>	L				_
×1.8	20,32	Mostly dense dk green dyke. Short sections	· · · · · · · · · · · · · · · · · · ·		<u> </u>	<b> </b>					
		have coarse fs (!) phencerysts white, to			<u> </u>	ļ					<b>_</b>
		I can in length. At 28.6 Oilm band				ļ			·		<b>_</b>
		appearance, f.gr. magnetite. 24.7-29.0m			L	ļ	····-				
		choritic textures . vistronigly sitered the Grey									
		29.0 -29.65m - dark dyke - chilled contact									
		E muted feldspathic and matic phenociysts									
		2445-2972 - Epidotizid feldyrathe wile				]					
		29.12-30, 35 - V. Conviely porphyritic dhi green									
		dyke hur contact perpendicular to C.A.									1
30.35	31.42	Heterogeneeus vele. formation, Dioritic textures	65688	31.0	31.44	0.44	0.010			biotite	Tr.
			65689				0.015			Dorthe	
		Sorongly pyritic 3136 31.42 - Aline grains E. 4 mm				····					<u> </u>
31.42	36.8	Mixed dyke - dense, chilled contacts, dive			1						t
		green; nost is green, finely porphyritic croude	l	<u> </u>	<u>+</u>		<u> </u>				<u>+</u>
		Broken sections have similar withoung.			<u> </u>	<u> </u>		┝───╋			<u>+</u>
		Possibly two generations of dyle employement				· · · · ·					<u> </u>
		with sharp contacts.			<u> </u>	<u> </u>		┝ <b>───</b> ┥			
71 C	37.0	sharp comacis,	·		<u> </u>	·		┝────╂─	<b>_ </b>		┥
36.8	37.5	Springly epiditic feldspathic volcanics Fs porphyry dyle-phanos. to loum. Chilled			ļ	ļ		L			<b></b>

:

HAWKEYE DEVELOPMENTS LTD. HOLE NO: DIAMOND DRILL RECORD 89-1 PAGE No: 2 of 2 · :.. SAMPLE METRES METRES LENGTH Au Ag Cu DESCRIPTION Alter. Pyrite to N♀ to from from METRES oz/ton oz./ ton % Rossland volcanics 37.5 47.5 Rossland volcanics feldspithized and epidetized on tractures sub-parallel to C.A. short sections of garnet, few grams of sphalevite 44.6-45.8 apple green epidote situation of crowded-type lifetdspar porphyry 45.8-47.5 crowded for porphyry 65690 44.75 45.67 0.92 40.001 strong Tr. possibly has some time grained dyke with dark, vagnely-defined matic grains. 47.5m. E.O.H.

208.	5 S 5 W	HAWKEYE DE DIAMOND				<u></u>	NQ	size	HOLE NO	89-2	
		5°. Dip - 63". Length 76.2m, 250.	feet,	ING	EZ VE	IN -	'A' Zo	DNE	PAGE Nº:	1 of 1	
ME1 from	TRES to	DESCRIPTION	SAMPLE Ng	from	TRES	LENGTH	Au oz/ton	Ag	Cu %	Alter.	Pyrite
0	2.7	overburden.									
2.7		Dense dark green-brown skarn altered andesite		ļ		_				·	
		Broken sections Varyingly purphyritic Minor pyritization, epidotization	L			_					<u> </u>
		pyritization, epidotization	·						·		
	ļ	12.9- 14.05 dk f.gr. andesite dyke. Calc.	·		ļ						<u> </u>
		alteration - white fracture fillings, Minor		· · · ·							1
		fautting - crushed rock with you've at				_	L				
	<u> </u>	H.5-14.8 sub-purallel to C.A.									
	ļ	14.8-16.1 greenish coloured dyke - indesite			L						<u> </u>
		varyingly amygdalaidal, calcareous Cruched textures at lower contact of dyke			+		ļ				4
16.1		Crushed textures at lower constant of dyke-	L					L			<b>.</b>
		Followell by narrow zone of epidote and less						L			
·······	ļ	interse epidetization of andesite, Probably much				_					1
		modified Tapillistone formation Fracturny 45	LC A.								
		18.3-19.6 Broken core, Some surface-type		1	$\perp$			<b></b>			<u> </u>
		Weathering effects. Hematate in shears "									<u> </u>
	ļ	21.4 - 22.4 As above Some intense epidetization	~				ļ				
		in lapillistone Fractured 60 nCA.									<b>_</b>
321	329)	Divk andesite dykes - compare 124-14m chilled margina, irregularly anyodakidat.		<u> </u>							<u></u>
35.0	35.76	chilled margins, irregularly anyodakidal.									+
37.4	39.8)	Varying degrees if epidetization. Figripyrite at contracts.	65691	371	374	0.30	1001	+		epidote	
		et contacts.	L		+		ļ				
39.8	41.0	Interse epidotization - bright applegreen.									<u></u>
	+	Related to Fracturing sub-pirallel to C.A.	65692	49.65	51.0			<u> </u>		intense epidate	mt.p
41.0	49.65	Followed by heterogeneous epilotte, porphyritic andesite and fragmental andesite (lap.11)itone)						++			
	+	andesite and traginental andesite Vlapillitone)	65693	57.0	576	0.60	2.001	$ \downarrow                                   $		Epidete	te O
49.65	51.1	Speckled appearing apple green 'couldte rock' with	L				ļ	<b>↓</b>			<b>_</b>
	+	Speecks of chlorite. Few nation seams py/mt at 45° A C.A. Followed by rock that is chuicusty of	ļ						l		<u> </u>
	+	45 ~ A. Followed by rock that is chinesity of	<b> </b>	ļ	·		<u> </u>				
	÷	Vilcanic origin. Tew patches of garnet (realish)		· · ·	<b></b>		Į	┥───┥			+
	+	37 U 57.6 broken core = Fecx Cado; se.	143 to Sa				ļ				<b>_</b>
57.6	16.2	V. strongly epidetipid incleante vile. Fragmental	l	<u> </u>			ļ				<b></b>
	·	Apple-green & patches of reddish garnet lanx,	Discon.				ļ	<u> </u>			. <b> </b>
	<b>_</b>	chlorite on shears. Cacily on Fracis? Reck read	<u>k</u>	l	1		L				<b>_</b>
	<u> </u>	Ho HCL (10%)	I				L			l	

L152 212		<u>HAWKEYE</u> DIAMOND			<u>TS L</u>	<u>T</u> D,	NQ	size.	HOLE	[№] 89	-3	
-		35°. Dip -61°. Length 56m. 18	34 Feet.	INE	EZ VEI	N -	'B'za	NE	PAGE	Nº: 1	of Z	
MET from	RES to	DESCRIPTION	SAMPLE Nº	MET from	RES to	LENGTH METRES		-	Cu		Alter.	Pyrli
0	3	overburden and broken altered volcanics							·			
3	23.3	"Rossland volcanics" - dark green strougly										
		epidotic fragmental and esite. Broken sections										
		to 8 metres. Mottled green and dark green.										
		15.8 - 16.7 m f.gr. dense, dk green anderle dyke.	65694	18.6	19.0	0.4	4.001				Epidete	
		218-22.6m broken core, some losses, weathered	65695	19.0	20.05	1.05	2.001					
		surfaces, A/so 23-233	65696	20.05	1	<u> </u>	f					1
23.3	30	Biotitized feldsoar porphyry-equivalent	65697	21.8		<b>+</b>	2.001					1
		Biotitized feldspar porphyry-equivalent to diorite porphyry dyke between	65698	22.25	232	T	2.001		Rec. 80%			1
		Second Relief and No. 2 veins ?	65699	23.2	25.6	2.4					````	1
				25.6	26	0.4	· · · · · · · · · · · · · · · · · · ·		1			
		29.54, 29.9	67526	26	27.75	1.75	.005					
			67527	27.75	28.1	0.35	.440					1
		a O.Im QV has irregularly scattered grains	67528	28.1	29.7	1.6	.030	1				1
		of cpy and purchetite including mixed	67529		30	0.3	.027					1
		grains. Similar sulphides are present in	67530	30	30.7	0.7		2.01				1
<u></u>		Folia in feldener prophycy	67531	30.7		1.4						1
30	30.7	Folia in feldspar porphyry. At 300 sharply defined contact with	67532	32.1	32.6	0.5		- V				1
		grey, Heached servicite schist, some	67533	32.6	33.8		4.001				1	1
		arey sulphides or sulphosalts smearer									1	1
		on folia. Pyrite is bright and enhedral.					<b> </b>				1	1
30.1	32.1	Grey schistore rock - strongly attered		Sparat	e 1-29	1					1	1
	<b></b>	andeste - bleached ? with Fe new press	ut.			· · · · · · · · · · · · · · · · · · ·	1				1	1
		in the classic the second citized to		1	1						1	1
32.1	33.2	Apple green epidote. Rock not 28 strongly foliated as above. Mottled appearance. Feldspar porphyry andesite. Biotitized Patchy epidote.			1		1					1
		strongly fileted as show Matthed		1			· · · · · ·				1	1
		appearance		· · · · ·		<u> </u>	t		†		1	1
33.2.	35.17	Foldsor prohury andeste Bistitized:			t	1						1
		Patchy physics			<u> </u>	· · ·	<u>+</u>					1
35.17	35.8	Linely duko -v dk oropa weski producity		· · · · · · · · · · · · · · · · · · ·	+		<u> </u>		†		<u>†</u>	+
<u></u>		Linely dyke - v dk green, weakly porphyritic Few white phenos to 0.70m diameter.		<u> </u>	<u> </u>		<u> </u>		1		t	+
35.8	35.95	Nawrow Spotion of I changly showed		<u> </u>		ł	<u> </u>			<del>-:</del> .	<u> </u>	+
33.0		gaugy material. Has pale green colour, dioritic appearance - chlotite + epidotic		<u> </u>	<u> </u>		<u> </u>				<del> </del>	+
	<b> </b>	which material that ball green colour,		· · · · ·	<u> </u>	<u> </u>	+				<del> </del>	+
<del></del>		CLOCITIC - Appearance - Chiorite + "MADTIC		<u> </u>	<u>├</u>		-	ļ	·{		<b> </b>	<b></b>

• ·

HAWKEYE DEVELOPMENTS LTD.

DIAMOND DRILL RECORD

HOLE NO: 89-3

									PAGE	^{№:} 2 °	12	
MET from,	RES (	DESCRIPTION	SAMPLE Nº	MET from	RES to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %			Pyrite
35.45	38.2	V. dk green chloritized andeste. No fragmental			t	1 1	<u> </u>					
		textures but small matic particles which may be modified phenocrysts. Black ardesite - dyke or chilled edge of		·								
	· ·	may be notified phenocrusts.			1							
38.2	38.6	Black andesite - duke or chilled edge of	•									
		a duke.										
38.6	39.75	De have autor a mark attach all the		·								
39.75	49.1	Porphyritic andesite Moderately chloritized.										
		~15% feldspir phencorysts-saysseritized,										
		Fractured 50° 70° C.A. At 45.0m.										
		1.5 cm layer of wory-white 9+2 in fratture					·					
		zone at 30° CA. 10										
49.1	51.0	DK green auresne sproryly allerat. Chieringer Porphyritic andesite. Moderately Chloritized. ~15% feldspir phenocrysts-sansseritized. Fractured 50° 70° C.A. At 45.0 m. 1.5 cm layer of wory-white 9tz in fratture Zone at 30° CA. TO Black andesite foliated. Dense to 50.0				L						
	L	then Fragmental textures. Trraquiar shapes, grey										
	ļ	3 to 5 cm. diameter.										
51.0	52.4	then fragmental textures. Irregular shapes, grey 3 to 5 cm. diameter. Epidotized andesite - fragmental textures,						L				
ļ		potphyritic textures. Es grains are wholly epidetic, Likely some interflow effects. Same as 49.1-51.0 but epidotic.			L	1						
		epidetic, Likely some interflow effects.			ļ	+		<b> </b>				
52.4	54	Same as 49.1-51.0 but epidotic.			ļ	<b> </b>		└───┼				
54	55.2	Islack and exitic dyke = phenos to 1.20	n			+	 	<b>├</b> ───┼				
		Black and exitic dyke = phenos to 1.20 chilled contacts (Possibly basalt)		l		+		┝───┼				
55.2	56	Epidotic andesite.	ļ			+	ļ			L		
	<b> </b>		ļ			+		<u> </u>		I		
ļ	<del> </del>	5. 0. H.	ļ	Į	<b></b>	+	ļ	┟────┤		ļ		
	<u> </u>		<b> </b>	<b> </b>	<b> </b>	+	ļ	┟───┼		l		
	<u> </u>		ļ		<b> </b>	+	·	┟		L		
			ļ		<u> </u>	+		┟∔				
	<b>.</b>		ļ	·	<b> </b>	+	ļ	┝───┼		L		
		·	ļ	ļ	<u>+</u>	+		<b>├</b> ──── <b>├</b>		L		·
	<b>+</b>		ļ			+i		┟────┼		<b> </b>		
	+		ļ		<b> </b>	+	ļ	┟───┼		L		
			ļ	<b> </b>	l	+	ļ	<u> </u>		ci		·
<u> </u>	<b>.</b>			<u> </u>	1	+	ļ	┝		l		
	·			· · · · · · · · · · · · · · · · · · ·	ļ	+		↓ <b>↓</b>		L		
L	<b> </b>		L		<b></b>	+	L	<b> </b>		L		
	1		١	1			1			¶ )	1	

L152 212	S W	HAWKEYE Z DIAMOND				/ <u></u>	N	Q size		- 89 - A	
AZIMUTH	/35	DIP -71° LENGTH 47.8 m. 157 feet.			NEZ V	EIN .	- B'Zo,	UE	PAGE	№: / of 2	
MET from		DESCRIPTION	SAMPLE Nº	MET from		LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %	Al1	er. Pyrii
0	1.5	Overburden.						I			
1.5	6.4	Broken core. Strongly epidotic porphyritic		·							
		fragmental volcanics - andesite composition.									
		Fractures at 45° ~ C.A. I withy.									
6.4	8.45	DK grey andesite dyke upper contact broke	п								
		Lower contact chilled - narrow Strong		· · · ·							
		reaction to 10% HCl. Rock is mod. soft.		L				ļ		· · · ·	
8.95	13.0	Fragmental volcanics - very strongly epidetiz	ed					ļ			
		- same as 1.5 - 6.4 m. 10.4 to 11.6m.						ļ		<b></b>	
	14-	is intensely epidotic. tragments to 4cm.									
13.0	14.3	Much lost core. Crushed butitic maternal			30.1		. 143	2.01	.27	Q-m	agn 1-3
		- may be lamprophyre, but from 13.4			316	1.5	.002				
		rock is dk grey andesite as 8-15 to	67536	31.6	32	<u> v.4</u>	-135	.06	.32	T	Q. Bo, Py,
		6.4 to 8.95 m. / Strongly reactive to Hel.			32.7	0.7	1501			QV	$-P_{i}$
	15.5		67538		33.18	0.48	1001	ļ	· · · · ·	····	
15.5	26.0				34	0.82	.005	ļ		<u> </u>	
		varyingly porphyritic and fragmental			36/		1.001			l	
		Non-tealtive to HCI. Epidote/varies from			366		. 349	1.72	.28	<u> </u>	Pacp
		narrow seams to pervasive - especially	61342	36.6	374	.8	.090			<b>↓</b>	
		in Finer grained portions. 25.3 # 26 m!		0.00							
		is mixture of epidotic scams sub-paral	e/	28.96	34	5.04	.047			<u> </u>	
71.0	34.0	to c.A., feldspathization and chloritizat	0.41	7/ 1	37.4	1.7	100				
210-0	3710	Crowded feldspir porphyry - rock is dark blush-gree colour with prominent		36:1	51.4	1.3	.190				
······································		white feld spises up to 4mm. diameter		<u>-</u>		+		<u> </u>		<u> </u>	
		30 to 60 % of rock. Matrix is foliated				+	·	<u> </u>		<u> </u>	
	· · · · · · · · · · · · · · · · · · ·	with development of biotite. At 28.96.			<u>+</u>	+				<u> </u>	
		contact at eno to A. align to a			<u>+</u>	+				<u> </u>	
		Tome of an ant and an an at the that			<u> </u>	+		<u> </u>		╂───╂──	
		Tone of quartz and magnetite that purallels E.A. Width appears to be only		· · ·	<u> </u>	+		<u> </u>		<u> </u>	
		2 few cms. Magnetite is 35% +			<u> </u>			<b> </b>		<u></u>	
		1 to 3 % supplies - mixed pyrchetite, chalcopyrd				<u>+</u>		<b> </b>		<u> </u>	
		and pyrite - continues to 30.1 m.	· · · · · · · · · · · · · · · · · · ·		<u> </u>	+				<u> </u>	
		30 to 30.1 m white vitreous quantz vem Some sulphides present in folia of diorite			<u> </u>	+		<b> </b>		<u> </u>	
		Some sulphides appoint in falst of ant	a colu		<u> </u>	1		1		t	

.....

. . ..

.....

# HAWKEVE DEVELOPMENTS LTD.

.

.

DIAMOND DRILL RECORD

H	OLE	N9:		89	4
P	AGE	<b>N</b> <u>0</u> :	2	of 2	

. . .....

· . · · · · · · ·

							· · · · · · · · · · · · · · · · · · ·		<u> </u>	2	or <u>2</u>	<del></del>
MET from	IRES   to	DESCRIPTION	SAMPLE Nº	MET from	IRES   to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %		Alter.	Pyrit
34	36.1	Brown f.gr. biotitized andesite, formogeneous.			1							
		Includes pyrite disseminated graine h 0.3 m	h dia.									
		Also minor sericite. May be a dyke co-eval										
		with fragmential lok. 1	۰.									
36.1	37.4	Strongly attered indesite - chlorite. U.Q.R.								Ι		
-		Includes a seam of massive purchatite		· .								
		streaked with cpy, and including a few nodules of purvice up to / cm in diameter from 36.1st to 361-25 m. Less								[		
		few nodules of purite up to I can in										
		diameter from 36.1st to 361-25 m. Less										
		massive sulphide streaks, mostly pyrite,										
	L	massive sulphide streaks, mostly pyrite, follow from 36.25 to 36.60 m. Then les	\$							L		
		Pyritic grey feldspathized (?) andesite. Dioritic textured for porphyry-grey								L		
37.4	38.5	Dioritic Textured for porphyry-grey	(						·		L	
	ļ	Momer and lower contacts are sheared	(									<u> </u>
		crushed with calcite and a non-calcute		L	ļ							
	<u> </u>	white filling. Hairline calenveous fractures	·	ļ								1
38.5	4785	DK green andesite with disseminated dark		ļ					·			<b></b>
	<u> </u>	(matic) grains or x1 fragments much		ļ	·					ļ		<b></b>
·	<u> </u>	shearing/crushing. Varying amounts of			1					<b> </b>	<b> </b>	
	+	porphyry weak calkateous reaction to					<b> </b>			<u> </u>	ļ	
		Hell Bragmental textures from 41.9 to		ļ				<b>  </b>		<b>_</b>	ļ	
	<u> </u>	42.5m. Thereafter strongly altered			+					<b></b>	<u> </u>	<b> </b>
		chlorite (bictite?) andesite/ fs					<b>_</b>	<b>↓</b> ↓		L		
		phenocyusts are blurred to indistinct		L				┝──┤		ļ	<b> </b>	
<del>.</del>	<u> </u>	due to alteration.					 	ļ		<b></b>		<u> </u>
	<b>_</b>				ļ			ļ		L	ļ	<u> </u>
	ļ	£. O. H.	·		+			<b> </b>		L	ļ	<b>_</b>
	<b>\</b>	· · · · · · · · · · · · · · · · · · ·					ļ			L	ļ	$\downarrow$
							ļ					<b>_</b>
	<u> </u>			ļ			ļ	<u> </u>		ļ	<u>                                     </u>	<b></b>
	·	+	ļ		·			↓ ↓	··	nł		
							ļ			ļ	<b>_</b>	∔
<u></u>	ļ			ļ			ļ			L	<b> </b>	
	L			L	·	_	ļ			L	L	<b>_</b>
		1										L

2121	Š,	<u>HAWKEYE</u> DIAMOND	DRILL RE		<u></u>				HOLE	^{No:} 89 -	5	
AZIMU	TH 13	35°. DIP - 80°, LENGTH 48 m. 15	7 ft.		NEZ V	EIN	'B' Z	ONE	PAGE	Nº: 1 ° ¹		
	RES to	DESCRIPTION	SAMPLE Nº		IRES   to	LENGTH METRES	Au	Ag oz./ ton	Cu %		Alter.	Pyrit
0	0.8	No core						1				
	10.5	Epidotized Fragmental andesite.	1	· · ·				1				
0.0		Broken Lore with weathering on			-	1	<u> </u>	<u>+</u>				<u> </u>
		surfaces 3.5-4.3 in and 5.5-6.7m.	:			1	+	+				
	<b> </b>	Fractures sub-parallel C.A.			+			1		† †	·····	<u> </u>
10.5	14	NK dense dyke as m d.h. 89-4.			+	1		+				<u> </u>
	<u>                                     </u>	Gouged from 11.4 - 12m.	67543	16.8	27.1	1.3	20.00	/				<u> </u>
14	29.10	V strongly altered and epidotizing antesite	01245			11.3	20.00	<b>H</b>				<u> </u>
• • • • • • • • • • • • • • • • • • • •		below dyke - apple green and grey gree			1	1						<u> </u>
		colours. Fracs and folia ~ 40° ch J	Y			+		1				<u>†</u>
			t a ca		+	1						+
	<b>+</b>	Thin Cacos costings on Fracs. Epidotizist is weaker from 27.5 to 29.6 - this is a			<u> </u>	1		<u>+</u>				1
	<u>+</u>	mixed zone of grey-plack anders with	67544	78.3	29.6	1.3	10.001	-				
	+	Mixed zone of grey-black andesite with shore porphyritic sections ~1% dissemipy Diorite porphyry - crowded feldspar porph	1	60.3	2/-	1.5		<u> </u>				1
29.6	33.4	Diorite populary - crowded feldsar poro	uru		1	1	1	1				1
	J	25-30% white feldspar phenocrysts	1545	33.7	34.2	0.5	0.114	1				1
		Similar to Main dyke at Second Relief Ver	u.			1						
33.4	41.75		67546	34.2	35.	0.8	.001	2.01	.13			1
		disappear in grey much of fine andesite			36.1	1.1	2.001					1
	1	with sections of white quartz at	67548	36.1			2.001					1
		with sections of white quarts at 34.2 - 35 m - with streaks of pyrchotile 35.9 - 36.1	To Con			1	1					
		35.9 - 36.1	67549	37.4	38.5	1.1	0.026	2.01	.17			1
		36.75 - 36.85	67550	38.5	39.5		2.001					
		37.45-37.65 - streaks of Py, pymhotite	67551		40.6	1.1	2.001					1
	· ·	37.45-37.65 - streaks of py, pyrnhotite This may be 2 former shear zone or	67552		41.75	1.15	0.005					T
		flow structure										Ι
41.75	48.	At 41.75m - norrow crushed zone - dark	· · · · ·				· · · · ·					
	1	green chlorite, also at 42.6-42.8m.										
	1	Homogeneous de green andesite										
	1	indistinctly porphyritic.										
	1	E.O.H.										
					1							
			[		1							I
	1			[		1						

L/ 88 174	8 5 W	HAWKEYE DEVE DIAMOND	DRILL RE		· <i>Di</i>		NG	ζ.	HOLE	No: 89-	6
Azim	UTH_	325°. DID - 57°. LENGTH 51.8m. 17	0 feet.	INEZ	VEIN	- C	-1 zo,	VE	PAGE	Nº:⊥ of 2	2
ME1 from	TRES   to	DESCRIPTION	SAMPLE NΩ		RES to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %	•	lter. Pyri
0	2	Overburden			1						
2		Porphyritic andesite. Medium to			+			<u>†</u>			
		dark green, Fs phenos to Imm. dia.			<u> </u>	1		<u>†                                    </u>			
	-	Remnant fragmental textures Broken	· .			1		+			
<u> </u>	+	core at 2m Much epidetic alteration of			+			<u> </u>	·		
	+	Cove at 2m princh epidelic alleration of								┝┈───┤╌──	
. · · · -		feldspar grams and particularly of matr	IX		+		<b> </b>	┢∲			<u> </u>
		B.9m-1 sheared/coushed zone, with CaCO3						┟────┤			
	+	developed, also contams epidote. This	1	10 1							
		is not particularly broken - pechaps healed.	67553	12.4	13.	0.6	2.001	┟────┤			
		12.4 m. 1- sheared/crushed andesite-bleached.			· ·			L			
		much chlorite. Fragmental texture still	67554	17.7	18.6	0.9	2,001				
		2003rent 2	67555	18.6	19.6	1.	6,001				
		17.7m - S.K.R. Epidote and chloryte									
		alteration quite strongly developed.	67556	21.3	221	0.7	,001				
		alteration, quite strongly developed. Fragments.	67557	22.	23.8	1.8	.002				
		21.3 - 22m. FAULT ZONE Gaugy at	67558	23.8	25.	1.2	2.001				
		20° to 25° C.A. White vein quartz,	67559	25.	27.1	2.1	2.001	11			
		chlorite.	67560	27.1	28.		2.001	11			
	1	Shearing continues without any ViQ.	67561		28.9		.006	1			
	1	22.6- 24 m. Broken core Possibly some						<u> </u>			
		Core losses. From 24 m. rock/continu		······		1		++			
	-	25 stand and the marked astrong	·>	·····							
	+	as strongly epidotized, weakly calcareous		······	+	<b>+</b>	<u> </u>	┟╌──┤			
	+	mottled applearing, varyingly porphyrotic			+	<b> </b>		┨────┤			
		andesite, Increasingly Findet grained,				<u> </u>	<b> </b>	∔			
	+	greyer coloured From 27 m. Crushed				ļ	<u> </u>	<b>├</b> ────┼	·		
		appearance with white calcute veinlets.						↓			
		Minor pyrite seams with tracks cpy, po.	•					ļļ	· · ·		
		Minor pyrite seams with tracks cpy, po. Irregularly distributed, up to 1.5 mpt wid	e .			ļ					
		Foliation ~730° CA.				<u> </u>					
28.9	31.8	Very dank grey Fine andesite									
31.8	41.4	Very dark grey Fine andesite Dark grey mottled rock - dioritic texture	S								
		over natrow widths - ANDESITE. Much									
		variation					[				
41.4	44.5	Apple-green heterogeneous. Party						1			
<u>`</u>		Apple-green heterogeneous, partly porphyritic andesite. Some crished			1	1	1			1	

HAWKEVE DEVELOPMENTS LTD.

		HAWKEYE DE			LTD.				HOLE	N9: 80	9-6	
									PAGE	^{№:} 2, 9	n Z	
MET	IRES   to	DESCRIPTION	SAMPLE Nº	MET from	RES to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %			Pyrite
41.4	44.5	continued textures, gouge serpentinous shears 15° A CA. Probable water course on either										
L	1	textures, gouge serpentinous shears										
		15° CA. JJ								_		
44.5	45.8	15° A CA. Probable Water course on either Contact of a dark brown weathering Weakly porphyritic dyke - surface type Weathering   alteration. ANDESITE - heterogeneous, dark grown to medium green, epidotic. From 47.9 m blackish green andesite dense, homogeneous Epidote andesite, minor porphyritic sections, some heavily epidotized sections. E. O. H.							•			
		contact of a dark brown weathering										
		Weakly porphyritic dyke - surface type										L
		weathering / atteration !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!										
45.8	49.5	ANDESITE - heterogeneous, dark green										
	ļ	to medium green, epidotic.										
		From 47.9Jm blackish green andesite										ļ
		dense, homogeneous										
49.5	51.8	Epidote andesite, minor porphyritic	·									<b> </b>
		sections, some heavily epibliotized										ļ
		sections.										<b>}</b>
	+	E, O, H.										<b> </b>
												<b> </b>
	+					1						
· · · · · · · · · · · · · · · · · · ·												<u> </u>
		· · · · · · · · · · · · · · · · · · ·				+		<u> </u>				ł
	+				<u> </u>			<u> </u>				
		······										<u> </u>
	+					1		·		· ·		
	+					+			<u>.</u>		<u> </u>	
	· ·					1			:			1
	1					1	· · · · · · · · · · · · · · · · · · ·					
	1	· ·				1			· · · · · · · · · · · · · · · · · · ·			· · ·
									<u></u>		1	
						· ·						<b></b>
				·								
		· · · ·										
										1.	1	
										[		
						L						

L188. 174	S W	<u>HAWKEYE DE</u> DIAMOND	DRILL RE		~10			NQ	HOLE	Nº: \$9-	7	
Azimu	тн 2	90°. DIP -57°. LENGTH 133m. 303	<del>St</del> .	11	EZ VEI	N	C-1 2		PAGE	Nº: 1 of	I.	
	RES to	DESCRIPTION	SAMPLE Nº	· MET	RES   to	LENGTH	Au	Ag	Cu %	•	ter.	Pyri
0	32.4	Dark green to black homogeneous	1			<u> </u>	· ·					
		partly porphyrutic andesite with				1						
		apple-lareent Jepidote patches and				1				· .		
		seams. Fracturing sub-parallel to C.A.	67562	21	21.8	0.8	2,001					
		Some fragmental testures. Bleaching 29.5	67563	21.8	12.3							
	* <del>.</del> .	to 32.5 m. but not strong. Minor V.Q. at						1				
		30.6 to 30.7m	67564	29.6	30.5	0.9	2,001					
32.4	42.05	DYKE? From 32.4m rock is dense	67565				.003	1				
		dark green andequite similar to same	67566			1.	.002					
		section of di 189-6. Some sub-dioritic				1						
		textures.	6756	42.05	42.85	0.8	.003					
		36-6- paler grew, weakly chloritized										
		36-6 - paler grey, weakly chloritized andesite. Occasional sinall (3 cm) lenses	67570	81.85	82.6	0.75	1.001					
		of vitreous to white V.Q. Kock type	67571	82.6	83.6	1.	<.001					
		passes into almost black anderite	67572	83.6	84.2	0.6	2.001					
		with white crystals- approvently phenod	usts									
	ļ	but possibly analogues near lovet	67573	84.2	85	0.8	4,00)					
		contact of a duke	67574	85	85.85	0.85	2.001					
42.05	87	Return to light green notfled strongly epidotic										
		Fragmental anciesite. Transition/contact										
		From 42.05 to 42.85m. 15 fine-graine	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-								·	
		and purity, toliated. Mmor VQ.				•						
	ļ	Frond 45.6 perphyritic texture, darker green. Epidote is mon massive										
	L	darker green. Epidote is more massive										
	·	where confined to seams and fractures,										-
		also present as alteration of feldspar					· .					
		pheur crusts, At 58.8 m. 2-3 am-shear 15, CA	· · · ·									
81	92.4	Pale grey-green coarsely purphyritic andesite (duoritic) - see d. k B9-B.							_			
	ļ	andesite ( dioritic) - see J.K. 69-8.										
		Fish-egg-like textures blurred outlines of										
		phencerysts to 5 mm. dia. Continues to										
		E.O.H but increasingly altered (chloritic)								-		
		and less obviously porphyritic.										
<u> </u>	<u> </u>											
<u></u>	1	E.O.H.	1									

L 1885 1 74 W			HAWKEYE DEVELOPMENTS LTD. DIAMOND DRILL RECORD						HOLE NO: 89-8				
AZIMI	4TH =	2.90°. DIP -70°. LENGTH 138.4m.		INEZ	VEIN		-1 20	NE	PAGE	No: 1 of	3		
	TRES	DESCRIPTION	SAMPLE Nº	MET	RES	LENGTH	Au	Ag	Cu		Iter.	P ₁	
		A/	NY	from	10	METRES	oz/ton	oz./ ton	%		<u> </u>		
0	216	No core recovered.				-		,					
3.66	12.6	Partly overburden frags.	·····					<u> </u>					
3106	12:6	Pale to apple green fragmental and crushed, weakly sheaved andesite Shearing	·	· · · ·				++					
- <del> </del>		Crushed, Weaky sheaved andesite. Shearing						<u> </u>	•				
<u> </u>		Cont accord 4133 to 1.0M. Jomes											
	·	tracturing Due puratel to C. H. Other	· · · · · · · · · · · · · · · · · · ·			+	·····				<u> </u>		
		Most developed 4.55 to 7.0 m. Some fracturing Sub parallel to C.A. Other jointing/shearing at 45° to 70° CA. Epidote the oughout.		· · · · · · · · · · · · · · · · · · ·				┼──┼	·	·			
12.6	151	Dk grey andesite dyle co-eval with				-						<u></u>	
100	13.00	English the the Color with					··· ,	<u> </u>				<u> </u>	
		fragmental unit. V. F.gr. 5 phenocrysts altered to epidote	····				··· · ···—	<u>├</u>			<u> </u>		
15.6	25.1	avered 10 Epidore						┟───┼	· · · · · · · · · · · · · · · · · · ·	<u> </u>			
9.6		Epidotic andeste Fragmental textures are highlighted by epidotization Some diontic textures, too						++					
	+	direct tot me to					·····	<u> </u>		<u> </u>			
25.1	26.5	Dick and hist to ad dulla - mucht ha						┞────╉				<u> </u>	
	<u> </u>	Dark grey biotitized dyke - might be called lamprophyre in fouterops but does not akhabit discrete mich grams.				+		++			<del>_</del>		
	+	does not alleght discusto mich orange			····· ;			++	-				
26.5	27.3	strongly foliated andesite. Foliation 10-15%	. <i>C</i> .A.					<u> </u> +		t			
		Namoral at leases some small 1-2 mg	<u> </u>		· · · · ·	-		<u> </u>		<u> </u>			
	1	Narrow qt 2 lenses, some small, 1-2 mm, pyrite grains in foliation, Broken zone				1							
		at 17.3-27.5 m. Likely a water course.						1					
-		Minor VQ.							····				
27.3	29.0							1		1			
		Feldsper change what to deferrent from											
		adjoining andresto but lacks egidate	••••••••••••••••••••••••••••••••••••••		*····							-	
29	39.6	Exidate andesite "in part very intensely					·						
		adjoining andesite but lacks epidote Exidote andesite "in part very intensely epidotic. Porphyritic textures vary. Continuation of the above but much			<u> </u>								
39.6	52.1	Continuation of the above but much			1	1							
		areyor 1 less intengely altered to coidote		<u> </u>									
		Dioritic appearance. Carbonate			1								
	1	alteration - moderately strongly dovelvies,											
		at 41.9 to 43, Pornhunitic in anot		·	1		<b></b>						
52.1	56.35	arever 1 less intengely altered to coidote Divertie appearance. Carbonate alteration - moderately strongly developed at 41.9 to 43. Porphyritic in part Dk grey, V f. gr. andeste dyke. Clearly intrusive into the andesite tragmental.			1								
	<u>+</u>	intrusive into the andesite fragmental.			<u> </u>								
		Dioritic epidotic andesite at 52,92 to 53.8m				T							

HAWKEYE DEVELOPMENT LTD.

DIAMOND DRILL RECORD

HOLE NO: 89-8 PAGE NO: 2 of 3

		I	SAMPLE				<b>A</b>			1 1		
ME I from	IRES   to	DESCRIPTION	SAMPLE Nº	ME1 from	RES to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %		Alter.	Pyrite
521 0	Intimed	Dyke to 54. mixed dyke and epidotic										
		andesite, in part sheared and serpertinous							•			
		to 54.7. Dyke To 56.35 - some v. coarse										
		Fragments - look like phenocrysts but		-								
		have granitic textures. Irregular amoebic										
		shapes. V. chloritized. Lower contact is		92.7	93.9	1.2	2.001			.8mCor	ν	
		chilled, sharply defined at 85° AC.A.										
6.35	61.	Porphynitic epidetized andesite - dioritic										
		appearance, Minor shearing 10-15° CA.										
		Fragmental textures present in a few										
		portions.										
61	93.9	SKR continues - greyish coloured feldson	r		l	ļ	ļ					
		porphyry with apple green epidotization. Some variations in texture and in				ļ						L
		Some variations in texture add in				<b>_</b>						
		intensity of epidotization. Banding is										
		due to epidotization along fractures -				<b>_</b>						
		60° to 85° A CA. Homogeneous denser				ļ						ļ
		grey andesite sections are probably				ļ						ļ
		Lykes or tuff beds. Numerous hasswel				· · · · ·				4		
		epidote bands. Minor reddish garnet at			ļ							ļ
		84.1 m. Irregular pattern of narrow					ļ					
		weakly attered sections - paler sections of				ļ						
		grey andesite - some have tr. pyrite.				L	1					
	·   · · · · · · · · · · · · · · · · · ·	93.1-93.9 has fish-egg-like textures-			ļ	<b> </b>	ļ		•			<b> </b>
	ļ	chloritized grains up 1/6 5mm dia.			ļ	<b> </b>	ļ					<b> </b>
		Short grey breen coloured time gramed					ļ					L
<del>.</del>		sections - SER but slightly showed					ļ	<u>                                     </u>				<u> </u>
		and non-porphyritic. Widths 20 to 80 cm	5,				ļ			- <b> </b>		<b>_</b>
<u> </u>		Chlorate present but apidate not obvious		· · ·	·	· ·	ļ			4		ļ
43.4	116.1	Loavse 'teldspar porphyry - diorite			<b> </b>	<b> </b>	· ·			<b> </b>		<b> </b>
		Coarse feldspar porphyry - diorite porphyry - not too different from Second Rehief dyke - overall green			ļ	<b> </b>	L	<b> </b>		1		<u> </u>
	+	Second Kenet dyke - overall green			·	ļ	ļ	Į				<b> </b>
	<b>_</b>	colour rather than reduch colour.	·		ļ	<b> </b>		ļļ				ļ
	L	Occil I cm wide fractures with epidote				L					L	
			÷									

		SAMPLE NETRES LENCTH AU AO CU							89-8			
MET		DESCRIPTION	SAMPLE		-	LENGTH		Ag	Cu		Alter.	Pyrii
from	to		Nº.	from	to	METRES	oz/ton	oz./ton	%			
116.1	117.6	Lower contact - Fractured andesste					<del>.</del>	<u>├</u>				
<u></u>		35° A CA, some whote calcute in								+		
/	101	Fractures. Pale grey-green. Dix green epidotized andesite-same			·			<u>├</u> ───┤				
117.6	138.4	DK green epidotized andesite - signe						<u>}</u> }	·			<u> </u>
		29 before 193.9m. some vuggy epidote layers - filling between		· · · · ·					· · · ·			<u>}</u>
		epidote layers - filling between			1		· · · · · · · · · · · · · · · · · · ·			+		
		Fragments I and seams up to	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				<u> </u>	-			
		7 Ito 10 cm wide, also sections	<b></b>			_		┟┫				
		of feldspar porphyry ~ up to I metre wide. Epidote is diminished						<b> </b>	, , , , , , , , , , , , , , , , , , ,			<u> </u>
		matre wide. 2 pid de 18 diminished								+		
		below 124.7m but is still present								+		<u>↓</u>
		Westely sheared at 10-15° CA							-a			<u> </u>
		especially at 130.1 to 130.8 m.		· · · · · · · · · · · · · · · · · · ·								<u>+</u>
····-		et Crushed chlorute-epidate sone at	· · · · · ·	ļ								<u> </u>
		134.8-135.3. Fragmental textures present	•						· · · · ·	+		
		This may be border phase volcanity close to an intrusion.								+ $-+$		<u> </u>
		Volcantes close to lan intrusion.					·····					
		138.4m - E.O.H.		}					<u> </u>			<u> </u>
	· · · · · ·	$130.7 \text{ m} = C \cdot 0.7 \text{ H}$										
												<u></u>
	<u> </u>			·					···· · ·			<u> </u>
	<u> </u>			<u> </u>				<u> </u>		+	· · ·	+
<u> </u>	· · · · ·			<u> </u>					· · · · · · · · · · · · · · · · · · ·			+
				<u> </u>				····	<u> </u>		<u> </u>	
•					<u> </u>		·····				<u></u>	<u> </u>
	<b> </b>				<u> </u>			·		-	<u> </u>	<u> </u>
	<b></b>				<u> </u>						<u> </u>	
_					<u> </u>						ł	
			<b></b>	· · · · · ·				<u> </u>		+	<u> </u>	╂────
·••·				<u> </u>	<u> </u>						<u> </u>	<u>+</u>
								<u> </u>			<b>{</b>	╂────
	<b>+</b>				<b>}</b>			<u> </u>			<u> </u>	<u> </u>
			·	<u> </u>	<b>.</b>			<u> </u>			<b> </b>	+
	ļ		L	<b> </b>	L		L	Ļ		- <b> </b>	<b>.</b>	<b>_</b>

L2145 167W			<u>HAWKEYE DEVEZOPMENTS LTO.</u> - DIAMOND DRILL RECORD						HOLE NO: 89-9				
AZIMU	TU 2	300°, DIP - 45° LENGTH BOM. (263						EIN	PAGE	NO ·	+3		
MET from		DESCRIPTION	SAMPLE Nº		RES   to	LENGTH	Au	Ag oz./ ton	Cu %		Alter.	Pyrii	
0	1.7		14 =		10	MEINES	02/101		70				
1.7	17.6												
_1.1	110	sheared, chloritic , From 7.3 in - streak	7							<b>  </b>		<u>+</u>	
		with apple green epidote, fragil taturas, Eliated										<u> </u>	
17.6	31.6	Epidote ends at 17.6 m. followed by dense			+	<u> </u>				<u>├</u>			
	21.6				<u>+</u>	<u> </u>			*			<u> </u>	
		Sand scams at 18.9 to 19.1m, 214-215m.			+	1				<u>├</u>		<u> </u>	
		Not Provent if the is a duta me a flag			<u> </u>	<u> </u>		<u>├</u> ┨		<b>├</b> ────┤		<u>†</u>	
		Not apparent if this is a dyke or a flow- no culled contacts. Lur contact at 31.6m			<u>†</u>	1		<u>∤</u>				<u> </u>	
•		is weakly sheared transition to evidetic bing	/		1	· ·						<b> </b>	
		with miner corporate, some dark green chlorite				1					-	<u> </u>	
	1	Contact 30° CA				1			· · ·				
31.6	321	Gray-green epidote-chlorite rack Somewh	t			1							
	· ·	broken. Track of FEOX - Surface type with g.	67575	32.1	33.5	1.4	2,001						
		Andesite Monor amounts of chl, py, Fr. U.Q.	67576	33.5		1.2	0.002			•		1	
32.1	34.7	32.2-32.4 . black green andesite dyke	67577	34.7	35.7	1.	2.001			.75m con	'e_	<u> </u>	
· · · · ·			67578	35.7	37.	1.3	2.001						
		long and they white flecks (<0.5mm)	67579	37.	38.	1.	6.001				_		
		which may be Cacoz. Childcontacts	67580	38.	39.	1.	2.001						
		ave paler coloured. Minor shearing.	67581	39.	40.	1.	4,001						
		Rock is altered andesite - chloritized,			41'	1.	2.001					1	
·		minor epidote less altered than 7.3 to			42.	1.	2.001						
		17.6 m. Lacks apple green cohom. Broken	67584	42'	43.	1.	4.001						
<u> </u>		core with signa mind seams, core losses	67585	43	43.9	0.9	2.001						
		at 34.7-35.5m	67586		44.5	0.6	.006						
34.7	35.7	Fragmental andersite - stringly altered	67587	44.5	46	1.5	-002						
35.7	47.5	SKR but Greyer colourd more strongly	67588	46.	47.6	1.6	2.001						
		Foliated, Exidetic. Probably kadmitic.	67589	47.6	49.	1.4	1001						
		Fol's 20' C.A. TV. ZMOUNTS & DY. VQ. Vem	67590	49.	504	1.4.				Zn			
		calcute. Biotitized matrix. 111	67591	504	51	0.6	,235	10.2	, 23	3.30			
			67592	51.	51.7	.7	.012	2.01	.09	2.01			
		magnetite								·			
		Surface type with continues. 50.4 to											
		50.8m - band of makeive purchasite with											
		pyrote, chalcopyrite, sphaldedte and		L									

•

HAWKEYE DEVELOPMENTS LTD.

## DIAMOND DRILL RECORD

- 1	_		
	HOLE	NQ:	89-9

			-						PAGE	^{№:} 2 °	13	<u>Baar in 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>
MET	RES to	DESCRIPTION	SAMPLE'	NET from	RES   to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %			Pyrite
35.7	contracti	d green chlorite, whitish silicate (9+2?)							· · · · · · · · · · · · · · · · · · ·			<u></u>
35(1		Sulphides comprise 60% of rock from				1						
		50.4 to SD. 8m. Below SD.8 m. sulphides		·						+	·····	
	1	much reduced; interfoliated.					···	ł		1		<u> </u>
475	50.4	fism - transition to dk green massive	·····				······································					<u> </u>
	120.7	more homogeneous rock - AN DESITE.									<u>_</u> _	<u> </u>
50.4	507	12pilli tuff - popeon texture is we	11		<u>+</u>	+						<u> </u>
501	0.0	preserved. Grey, green, weakly foliated.	1		<u> </u>	-				1		
	1	clasts are fs por phyritic up to 3 cm.	lisuator					<u> </u>		1		
59.2	61.3	Transition zone - V. dk green andesit				1				Zinc %		
		with irreq. seams of epdote, Acterogeneaus		70.8	71.13	0.33	. 295	2.01	•13	•31		<u> </u>
		short sections are strongly attered.	67594			0.57		2.01	.06	1.59		1 ·
61.3		Sharphy defined contact!	67595		72.7	1,	.003			1		<b></b>
61.3	69.7					1.	.006					
		porphyry. Black and green notrix	67597			1.	.001	<b></b>		1		
· · · · · · · · · · · · · · · · · · ·	1	with white Is phenocry its 25%, up to					.001			1		
		6 mm diameter. Crisscrossed by Factures								1		
	t	that are emphasized by pervasive										
<u></u>		bleaching, Some epidetitation. Fish-ein texture	Ø.			1						
69.7	67.8	MUD AND SAND SEAM.				1					<del>_</del>	
68.6	69:7	Colour gradation to very pale grey/green										[
<b>Z. M</b>		Pyrite as disseminated grains, very										
		narrow fracture fillings.										
69.7	70.8	Pale grey fs porphyritic dacite dyke.										
70.8	71.1	Minerall zone - U. & with pyrchotite,										
		minor sokalerite and chaldpurite										
		Also a massive, soft brittle grey										
		motelling memorel a article thead										
71.1	74.	Andesite - grey, foliated, blenched irroular					-					
		uter-folioted streaks of brown Sphahente,										
	1	pyrite; croes cutting vemlets to I cm.										
	1	wiff voiourite, purchetite										
74	80.2	Coarsely Simply Fitic Testine reallow	-									
		Andesite - grey, foliated, bleached; wregular inter-foliated chreates of brown Sphilterite, pyrite; cross cutting vemlets to /cm. with VQ, pyrite; pyrchetite Coarsely Somphyfitic Texture reappear at 74m. Becomes stronger along with weakening of bleached effect				I						
	1	with westowne of bleached effect		[	1		·					

				MAW	<u>ikeve Deve</u> diamond							HOLE	^{Ng:} 89	7-9	
								•				PAGE	^{№:} 3	of 3	
MET from	l to			CRIPTION		SAMPLE Nº	METI	RES to	LENGTH METRES	Au `oz/ ton	Ag oz./ ton	Cu %		Alter.	Pyrite
74.	Continu	6 Eldi	cascal	sulation up	inlets - nueto								†	1	<u> </u>
	Continu	Koluler to	cillante	Continue	are - pyrne,					<u> </u>		<u> </u>	1		
		76.8 to E	· O.H. 25	- 80, 7. m -	por ohunte		· · ·		1						
		Howtwee ~	very st	rong FS A	henos are								·		
		e haroly	mutthed	, u. rregu	Jac. bleachy	0							1	1	
		15 absen	red alo	ne Fractu	res which										
		Vary f	rom h	autlines to	Icm. O.Z.C	h .					11		-		
		seams S	py-1	sulphide ve continue - 80.2m- rong FS virregu ng fractu autlines to 20 at 77.	, 78.25m										
					,										
	80.2	E,	OH												
												•			
			· · ·												
· ·									1						
			·												
			<u> </u>					·							
	·												· · ·		
								L							ļ
				·····		· .	L		_				ļ		
	ļ			· · · · · · · · · · · · · · · · · · ·				ļ	_				<u> </u>	ļ	<u> </u>
ļ			·····					ļ			$\downarrow$		<b> </b>	<b> </b>	
<b>_</b>				·····				ļ			ļ		ļ	ļ	<b> </b>
ļ		 				· · · · · · · · · · · · · · · · · · ·							ļ	<u> </u>	ļ
ļ			·			·····		L		·	ļ		L	<u> </u>	
								L						1	
		L		·			L	L	· · ·						
					·		·						ļ	ļ	
L														L	L
L		l						·							L
	L				· · · · · · · · · · · · · · · · · · ·										
											1 7				

· ·

• .

2145 167h		HAWKEYE I Diamon	D DRILL RE			<u>v</u>		NQ	HOLI	ENO: 89	-10	
Azimu	TH 30	0 Dip - 55° LENGTH 101.5m	/	NEZ U	EIN -	DZ	ONE		PAGE	E Nº: /	of Z	
METI from	RES	DESCRIPTION	SAMPLE Nº	· MET	RES   to	LENGTH	Au oz/ton	Ag oz./ton	Cu %		Alter.	Pyrit
0	1.	No core	1		1						1	
1	8.65	Broken core. Epidotic andesite brigely			1					1		
		porphyritic, with very irregular streaks			1			1 1			-	· · · · · · · · · · · · · · · · · · ·
		of adole-oncen e ordetel	ŀ								1	
8.65	11.7	of apple-green epidotel Sheared but healed contact with fig	e .		1	1		1	·····			
	·····	argined usquely smallingthe feldess and		· · ·	1	-		11				
		grained vaguely purphyritic feldspir and sugeste grans to Imm. Mostly homogeneous			1			11				
1.7	16.9	Some as 1 to 8:65m. Epidotic anderite.			1						1	
16.9	17.2	Dense dark green dyke -also grey. ANDE Heterogeneous epidotic anderste mottle at 21, 21.3. Short sections of pale green	site									
7.2	26.9	Hoteroconcours explortic anderite motile	1	1		-		1			1	
·		2+ 21, 21,3. Short sections of only oreer			1					· · · · · · · · · · · · · · · · · · ·	1	
		ainsture of epidote and silica. Very brother.	1	1				1 1		1	1	-
		with core losses at 201 to 1204.	1	1	-	-						
267	29.3	Dense black dyke Lower contact at.	2		1	· ·		1		1		
		V. flat angle to C.A. Some small obs	care								1	
		FS grains ~ 0.5 mm.										
29.3	A2.7	Edidotic andesite If's perphased	1								1	
42.7	48.2	Epidotic and esite / FS porphyry Dyke similar to 26.7 to 29.3 but wit	(				Ì			·		
		proshuritic sections. rossity zunodalaida	/		1	-					1	
		porphysic sections - possibly anyodaloida, non-carbonate, non-foliated. Broken a	78	1	1			11			1	
		at lower contact the B to 4B.2m. Sheare	Λ							1		
		at lower contact +6.8 to 48.2m. Sheare at less than 10° C.A.	1					1			1	
18.7-	53.3	Foliated medicin green andeste - chloritic a	1								1	
		epidotic, Foliation almost pirallel to C.A.										
53.3	57.6	Strongly foliated tuffaceous anderste w.	H									
		chlorite, epidote, some gouge, broken core	. ]				· · ·					
57.6	64.2	Similar to 533 to 576m More epidotic.	T									
<u>×./.</u>		Textures are duritic over narrow	1									
		widths. Some farshware Davallel to C.A.								1		
		Trace amounts of Mess at 63.9 to 6.	in.		1							
64.2	80.2	Dark Endesite Ayke crosscutting	T		1							
		foliation: Same as 26.7 m. Black mat	od.					11			1	
		is flecked with white feidspar grains, all			1		1	1 1			1	
•		anoulary Massive, Louis of Engline .	`	1	1 .			<u>†      †                             </u>		1	1	1
	<u> </u>	angular. Massive. Lower C. 5 metres is greenish with prominent small (40m) blac	. K	+	1	-				1	1	

.

HAWKEYE DEVELOPMENTS LTD

,		HAWKEYE DET	VELOPME	NTS	LTD	-						
		DIAMOND				-			HOLE	N9:	-10	
										01	10	
						•			PAGE	<u>8</u> 9: 2.ª	# 2	
MET	RES		SAMPLE	METR	RES	LENGTH	Au	Ag	Cu			
from	to	DESCRIPTION	Nº	from	to	METRES	oz/ton	oz./ ton	%		Alter.	Pyrite
64.2	Continue	1) flecks (likely aug te), Chilled Marain.										
80:2	89	1) flecks (likely aug te). Chilled margin. Abrupt change - weakly sheared contact										
		Broken chloring pale areen coarsely,										
		Broken chloritic pale green coarsely, porphyritic andesite - sub-dicrite, Feldspir crystals are up to 5mm diameter, angular, Matrix is varyingly altered,	•									
		crystals are up to 5mm diameter.										
		angular, Matrix is varyingly altered.										
		chloritized. Color becomes very pale green										
		with dark green "spots"- altered matic										
		phenocrysts (?) to 3 mm. Strength of										
	ļ	shearing varies from zero to moderately										
	ļ	strong, Pyrite on some fractives.										
	0.1	angular Matrix is varying altered, chloritized. Color becomes very pale green with dark green "spots"- altered matic phenocrysts (?) to 3 mm. Strength of shearing varies from zero to moderately strong. Pyrite on some fractives. 87.2 to 87.5 - dyke - see below.										
<u>8</u> 9,	-11-1	JUNE - CLAIR MAITIE 14 DE MOBSINE ADOUR										
	1	nampin is chilled. 1				<u> </u>						
91.1	101.5	Coarsely porphyrite andesite as										
		Davsely porphyritic andesite as above. May be a border plase of Nelson Intrusions? Few flactures at 60° C.A. with bleached selvages.										
		Nelson InTrusions? Few fractures at										
	<u> </u>	60° C.A. with bleached selvaper.										
·												
		E.O.H' Oct 2/89.										
	<u> </u>											
		· · · · · · · · · · · · · · · · · · ·										
	+							<u>├</u> ───┤				
						<u> </u>		<u></u> }}				
	1					<b> </b>						
	<u>+</u> -					<b> </b>						
· · · · · · · · · · · · · · · · · · ·	1	· · · · ·	·····			1				· · · · · ·		
	+							<u> </u>				
	+											
	1			· · · · · · · · · · · · · · · · · · ·		1						
	1				· · · · · · · · · · · · · · · · · · ·	<b>†</b>						
	<u>+</u>		· · · · · · · · · · · ·									[
	+			· · · · · · · · · · · · · · · · · · ·		1						
	1					1						

266 \$		HAWKEYE DE DIAMOND			20	-	*	J Q	HOLE N	89-11	
	-	0°. Dip -50° LENGTH 39.6m (130-	ft.)	.1	wer Ve	EW - 1	ZONE	E	PAGE Nº	1 of 1	_
	RES	DESCRIPTION	SAMPLE	· PHE I	RED	LENGIN	~~	AV	Cu %	Alter.	Pyrii
from	1		Nº.	from	to	MEIKES	oz/ton				
0	2.6	No core. Strongly epidotized tragmental									
2,6	20.7	Strongly epidotized tragmental		110	153	0.0	<u>an i</u>	+		· · · · · · · · · · · · · · · · · · ·	<u> </u>
		andesitic volcanics, porphyritic textures Disseminated pyrite - f. gr. 1, about 3% from 14.8-15.3 m. Broken core at 19.2-19	67603	14.8	13.5	0.5	2001	╉────┼			
		Disseminated pyrite - Flgr. 1, thout 3%						++	·		<u> </u>
		from 14.8-15.3 m. Broken core at 19.2-19	5m	·				++			+
		Also small (up to 5 mm) pyrite grains enclosed in epidote. Black matrix F. gr. homoveneous andesite						++			<u> </u>
		enclosed in epidote.						++			+
20.7	21.3	Black matrix f.gr. homoveneous andesite						++			+
		(basselt?) dyke. Strong reaction to HCL. Some as 2.6 to 20.7m. Anderte i epilite						++			+
21.3	23.5	Same as 2.6 to 20.7m. Andesite 3 epidete	<b></b>					++			<u>+</u>
23.5	23.9	Black dyke	10101	2.0	201	0.2	tr.	+			+
23.9	24.3	Epidote landesite - 23 above	67604	.50.2	50.1	0.6	-17,	+ +			<u>+</u>
24.3	33.4	Duke smutar to above (20.7 to 21.3 m) but	<b> </b>					+			+
		interior portion is more crystally lighter coloured and does not react	رع				<u> </u>	++			+
		lighter coloured and does not react	<b> </b>				<u> </u>				+
		To HCI. Ingular brecciption 25.3-65.9	<b></b>		+		╂────	┨────┥			+
		At 30.5 to 30.7 m. band of greyish						++			+
		feldspathic rock against which the						++			+
	· · · ·	dyke maternal 15 - chilled Rock is	<b> </b>					+			+
		Verocaed by narrow pyrite seams						++			+
		with chlorite.	·					++			+
		31.5 to 33.3 m. 18 matic rich dyke	·	······	+						+
		-brownish green colour - attered by	<b>.</b>				-				+
		chloritization possibly incripient	· · · · · · · · · · · · · · · · · · ·			_	+				
		epidotization. Reacts moderately strongly					· · · ·				+
		to HCL. Lower contact has 3 an wide									+
			<b></b>	·			+				-+
33.4	35.5	Grey, non-descript (!) unit. Streaked	<u> </u>								+
		E epidote may be transitional to	<b>_</b>		· · · · ·						+
		E epidote may be transitional to following unit					+				+
35.5	39,6	Coavely porphyritic andesite -	<b>_</b>				+				+
		biotitized, grey matrix.	<b> </b>								
		) ´ J .J	ļ	<b></b>							+
		E.O.H.		1							

 $\checkmark$ 

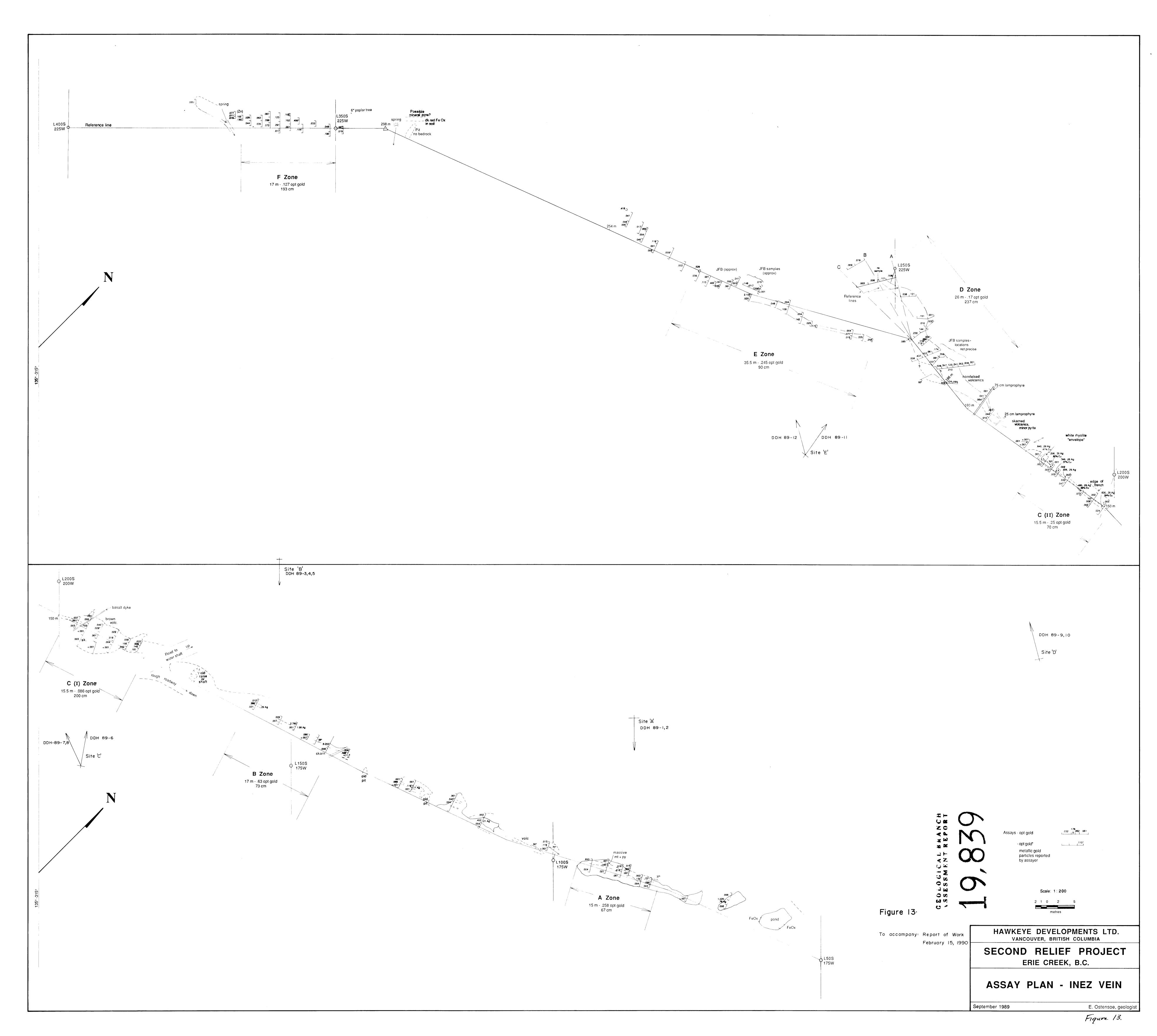
.

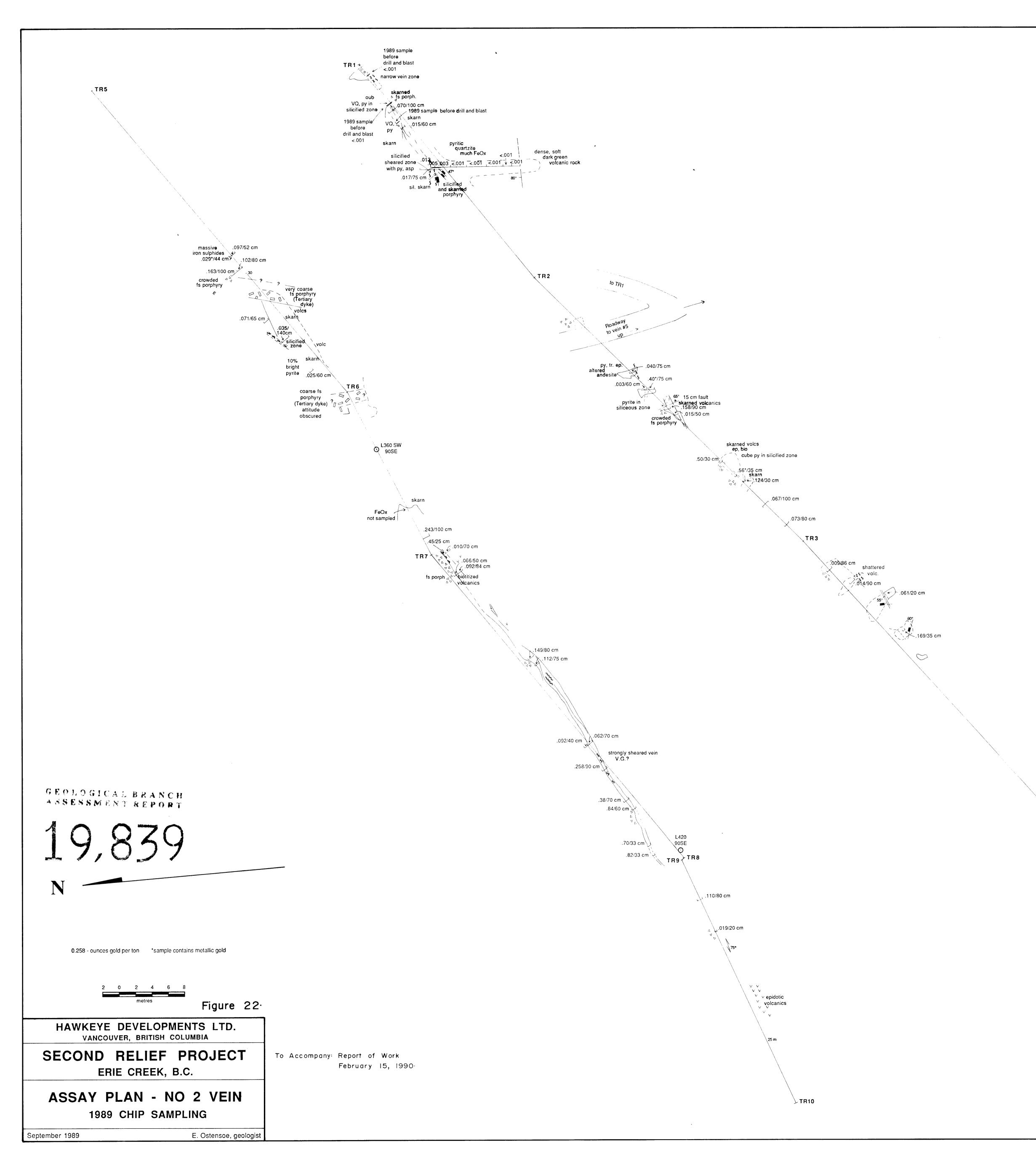
•

L 2665 191.50		DIAMOND DRI	LL RECO	RD				NQ	HOLE NO: 89-12 PAGE NO: 1 of 1.				
HZIMUTH	300°. DIP -50°, LENGTH 34	.4m (113 ft.)		lNEZ	VEIN	- E	Zowe		PAGE	<u>1</u>	+ 1.		
from 1	DESCRIPTION	SA	MPLE	METR	RES to	LENGTH	Au	Ag oz./ ton	Cu %		Alter.	Pyrite	
0 2	5 No Cere.				_								
2.5 17	4 Epidotized framental ande	stein											
	part porphyritic, dk gree pale green epidote = the all of pyrite with epidote 7 Grey "andesite"- possibly d	n except											
	paile dreen epidote streak	5. Traces							•				
	of pyplite with epidote	) 61	605 1	18.7	19.3	0.6	.002						
17.4 28	7 Grey "andesite"- possibly d	acite: 67	1606 Z	22.6	23.5	0.9	Tr.						
	Some brown but the theheur	sts from 67	7607 2	23.5	24.2	0.7	.004						
	2 to 4 mm. diameter are	ubdued 67	608 2	24.2	24.75	.55	.140						
	by incipient alteration to 20.	5m 6	7809 2	4.75	25.4	.65	.005						
	Fractures have selvages of p	enetrative 6-	7810 2	25.4	26.2	•6	1002						
	alteration - pale grey (feldsha	c) and 6	7811 3	6.2	28.1	1.9	tr						
	dark green (chlorite). Quartz	veining 15 67	1812 2	8.1	28.65	1.55	,004			Cone			
	weak tollows tractures ato	los to J								1			
	35° C.A., accompanied by gameti sphalente, pyrrhotisk	nmor pyrite											
	gamet, sphalente, pyrrhotite	weater											
	at 29.3m / cm wide,	notite &							-				
	Broken core 28.6 to 28.9 m	,											
28.7 34													
	Alteration is weaker an												
	grains are much more proi	nment 1									`		
	I relative to overlying that	enal. Tr.											
	narrow widths along fract	ition in									<u></u>		
	narrow widths along fract	ruves -											
	also calcite				. <u></u>	ļ							
						ļ			····				
	E. O.H. 34.4 DE	.5/89.											
						· ·							
	· · · · · · · · · · · · · · · · · · ·												

· . .

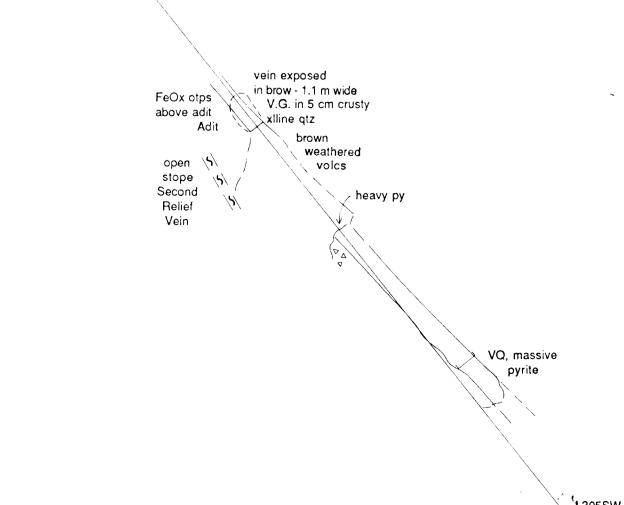
:

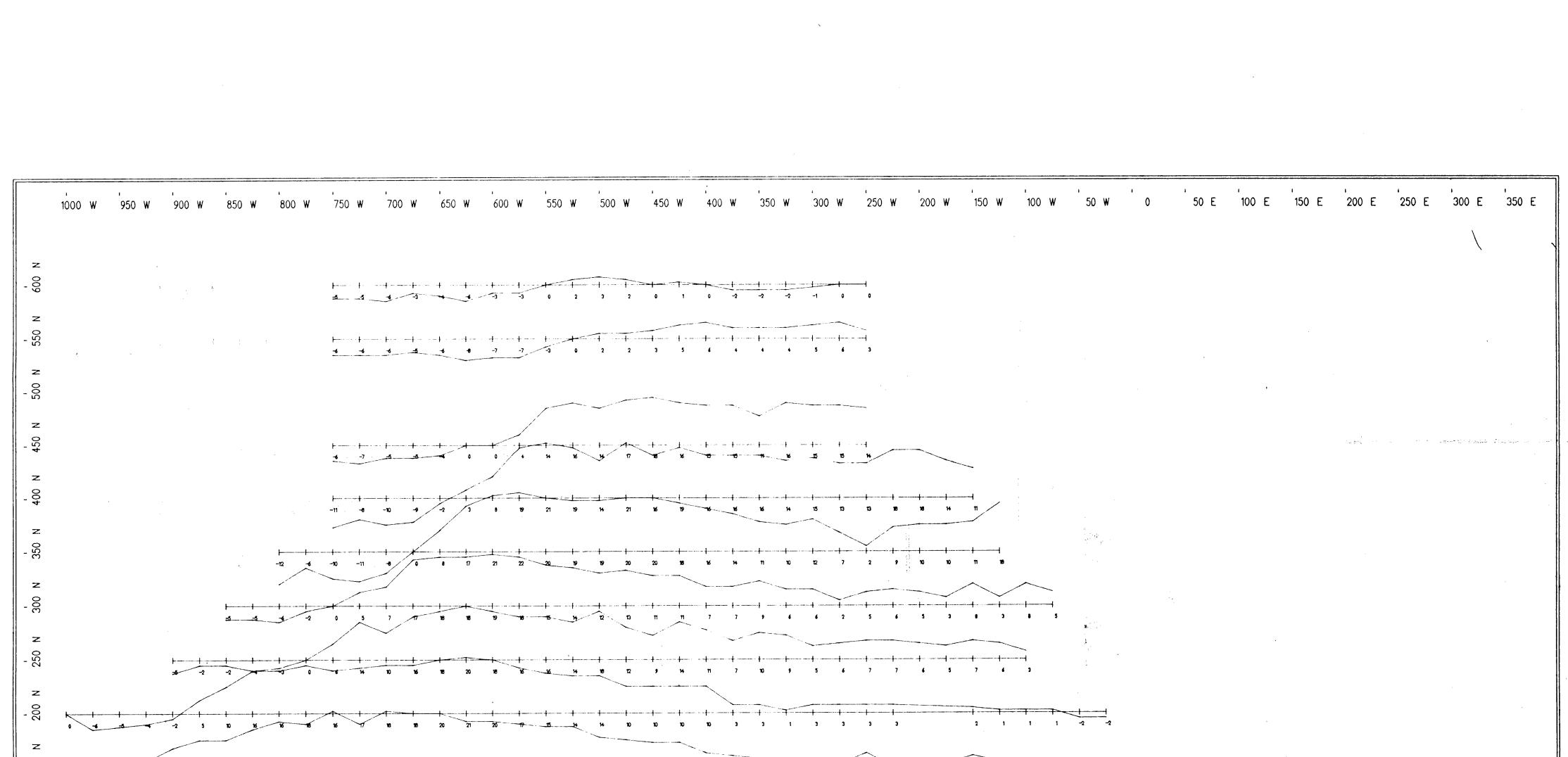

MET from <u>О</u> З.	res 10 3. 16.3	36°. DIP - 50°, LENGTH 40.75m ( DESCRIPTION No core Upper Portion of hole is very crushed and broken, brown weathering 2 andesite short solid intervals are feldspar- porphyry andesite - dk bluish-greyist greenish colours.	SAMPLE N9	NET from	RES to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %		Alter.	Pyri
0 3.	3.	Upper portion of hole is very crushed and broken, brown weatharing andesite short solid intervals are feldspar- porphyry andesite - dk bluish-greyist				MEIRES	02/100		76			<u> </u>
3.	16.3	Upper portion of hole is very crushed and broken, brown weatharing andesite short solid intervals are feldspar- porphyry andesite - dk bluish-greyist	•			+		1 1				
		and broken, brown weathering Vandesite short solid intervals are feldspar- porphyry andesite - dk bluish-greyist	•		+							<u> </u>
16.3	40:15	short solid intervals are feldspar- porphyry andeste - dk blush-greyist				+		<u> </u>				
16.3	40.75	porphyry andeste - dk blush-hveyist				+		<u>├</u> ───┼				
16.3	40.75		4			<u> </u>				+	- wier 4-	<u> </u>
16.3	40:15	greenligh colours.			+		·	┨────┤-				<u> </u>
16.3	40:15	1.1	67613	20 1	211	10		<u> </u>		Craekle	1	
1/2 3	- <del></del>	At 16.3 m. core becomes slightly	6/6/3		31.6		Trace	┟┈┈┈╶┼		craence	<u> </u>	49
		ITT 163 m. Core Decomes signily	6.1614	31.6	· · · · · · · · · · · · · · · · · · ·	· · ·		} <del> </del>				
		more competent, mottled purples	67615	33.4	334	$+ \frac{\nu}{\omega}$		<u> </u>		-	<u>.</u>	
		pake green colour. Lighter coloured material is atteration that has	67616	35.4				} <u>-</u>				1
		material is afteration that has	6/6/	25	35.0	- 'b		<u>├</u>				<u> </u>
		penetrated andeste, creating a	67618		36	1 7		<u> </u> <del> </del>			<u> </u>	<u> </u>
		by forming a feldspithic - epidetac mixty	61614	36.	31.7	1.			, / IPA-IEA-	+		<u> </u>
		by tooming a teldspithic - epidetec mixte	6/620	30.7	37.7					-+		┨
		- Similar rock continues to EOI		37.7	+	+		<b>├</b> ──┼				<u> </u>
		Malachite at 32.4 m. Rock is very		38.1	39.7	+	┥──┤──	┠			·	
		variable - also broken and fractured	67623	39.Z	40.7						<u></u>	
		with surface weathering present to	67624	40.7	41.3	·6						
		total depth. Intervals are strongly		41.3	41.75	.45	<u> </u> <u> </u> <u> </u> <u> </u> <u> </u> <u> </u>					+
		biotitid - mostly in sections that				<b> </b>		$ \rightarrow $				<u> </u>
		are porphyritic. Pyrite is present				<b> </b>		┟────┼				<b> </b>
		but very veriable in occurrence an	1		· · · · · · · · · · · · · · · · · · ·							<b> </b>
		Renounts - strong in strongers at	<b>_</b>		<b></b>	<u> </u>		-		-		<b>_</b>
		31.9 - 33.2m / +//	<b>.</b>			+		<b>├</b> ─────				ł
		Crystalline calcute - grey to black -	· · · · · · · · · · · · · · · · · · ·								~	
		present in fractures and in strongly altered crackled section	1		<u> </u>	<b>}</b>	ļ	ļ				<u> </u>
		strongly altered crackled section	· · · · · ·		+			<b>↓</b>				ļ
		No guartz veining.	- <b> </b>	·····	<u> </u>	· .		<b>├├</b>				ļ
····	L				ļ	·		<b> </b>		_	,	<b>_</b>
• •••••	<u> </u>				<b> </b>	<u> </u>		┟────┼				<b> </b>
	<b> </b>					ļ		┟────┼				<u> </u>
		E OH Oct 8/89						┟∔		_		ļ
	<b></b>	· · · · · · · · · · · · · · · · · · ·	<b>_</b>		ļ	ļ		<b>↓</b>				<b> </b>
	ļ				ļ	ļ		<b>↓</b> ↓				<b></b>


1.101	D VE SW	EIN <u>HAWKEYE</u> D DIAMON	D DRILL RE		<u>LTD.</u>	.: 		NG	HOLE NO: 89-14				
911 Azimu	NTM 1	44°. DID -65°. LENGTH 68m. (2:	(4 ft)						PAGE		of 2		
	IRES   to	DESCRIPTION	SAMPLE Nº	ME from	TRES   to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %	Rocky	Alter.	Pyri	
0	2	No core								0			
2		Broken core. Poor recovery.											
		ANDESITE - in part dark order											
		solid, with vaguely defined feldsp	rtu										
		grains and Imatic grains. 1								21.2	Sp.	19	
· · · · · · · · · · · · · · · · · · ·		Schloritized, In part sofit, make rich								28.0	Ep		
		thoroughly weathered andersite with granut	ur-							36.0	50	17	
· · · ·	1	textures. The latter whit may be a	67626	47.6	47.87	,27	2.00l			42.0			
	1	greywacke-like se dement that has been				1				43.6			
		obscured by surface within and leaching		50.9	51.5	0.6	2:001						
	1	Poor core recovery and very broken											
	1	core to 20.7m.	67628	53	54	1.	2.001						
			67629	· · · · · · · · · · · · · · · · · · ·	55	1.	6.001						
15.5	24,1	Fragmental andesite - epidotio, weakly pyri	to 67630	55	55.6	0.6	1						
*	1	mottled appearance, Fracturing. 30°/ c.	4.67631	58.75	59.8	1.05							
		up to 1450 A C.A. Pyrite becaus in	67632	59.8	61	1.2	2.001						
	1	packets in bleached zones interstitial	67633		61.9	0.9	1001						
		to fragments	67634		62.9	1.	2.001						
24.1	24.6		2 67635	62.9	64	1.1	1001						
		grains, possibly anyquiles rather				1.	×.00/						
		Ithan shenocrysts								-			
24.6	55.6	Fragmental andesste 28 from 15.5 to 24.1.	7.										
		190 pyrite. Heterogeneous appearance 1											
		due to varied amounts of entitletis strong	1										
		due to varied amounts of epillotis ation, biotitization Fractured at 450 CA											
		but weakly and with widow spaced							_				
		Jointinp. Feldspor porphyritic texture is											
		present but varied in intensity. Matic											
	1	phenos. are present. Narrow, 01 to 0.2	<b>n</b> .										
		Sections of strong alteration, bleached as	/				Ι						
		carlamated, minor by megent M											
		21/consted, minor py present HT 21/cond cectoris - 1.00, 57-57.5m.					1			1			
		No free guarte present											
55.6	58.75		a.		1	1	1			1			
· · · · · · · · · · · · · · · · · · ·		Latter are weakly reactive to HCl.		1			T	T					

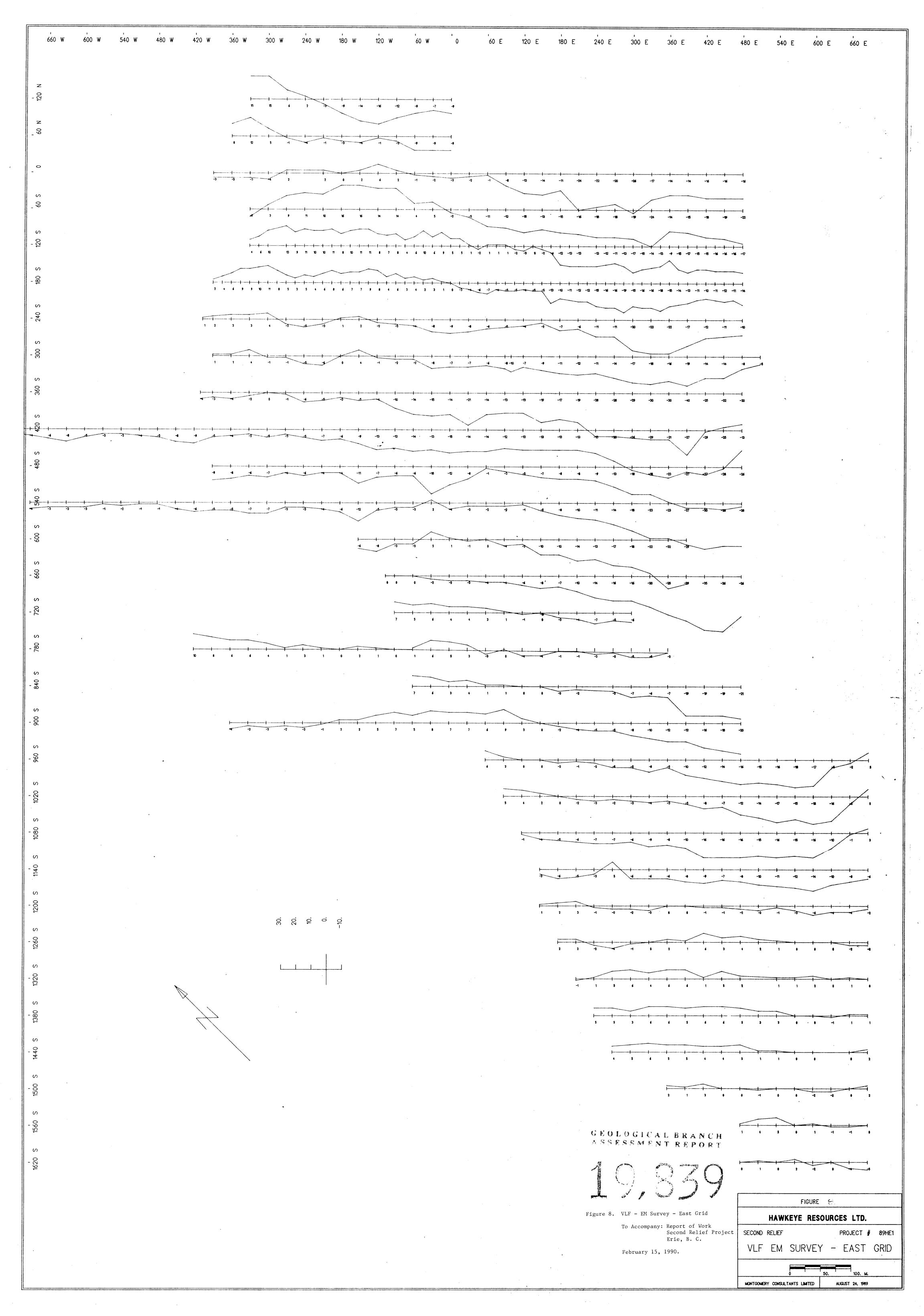
1

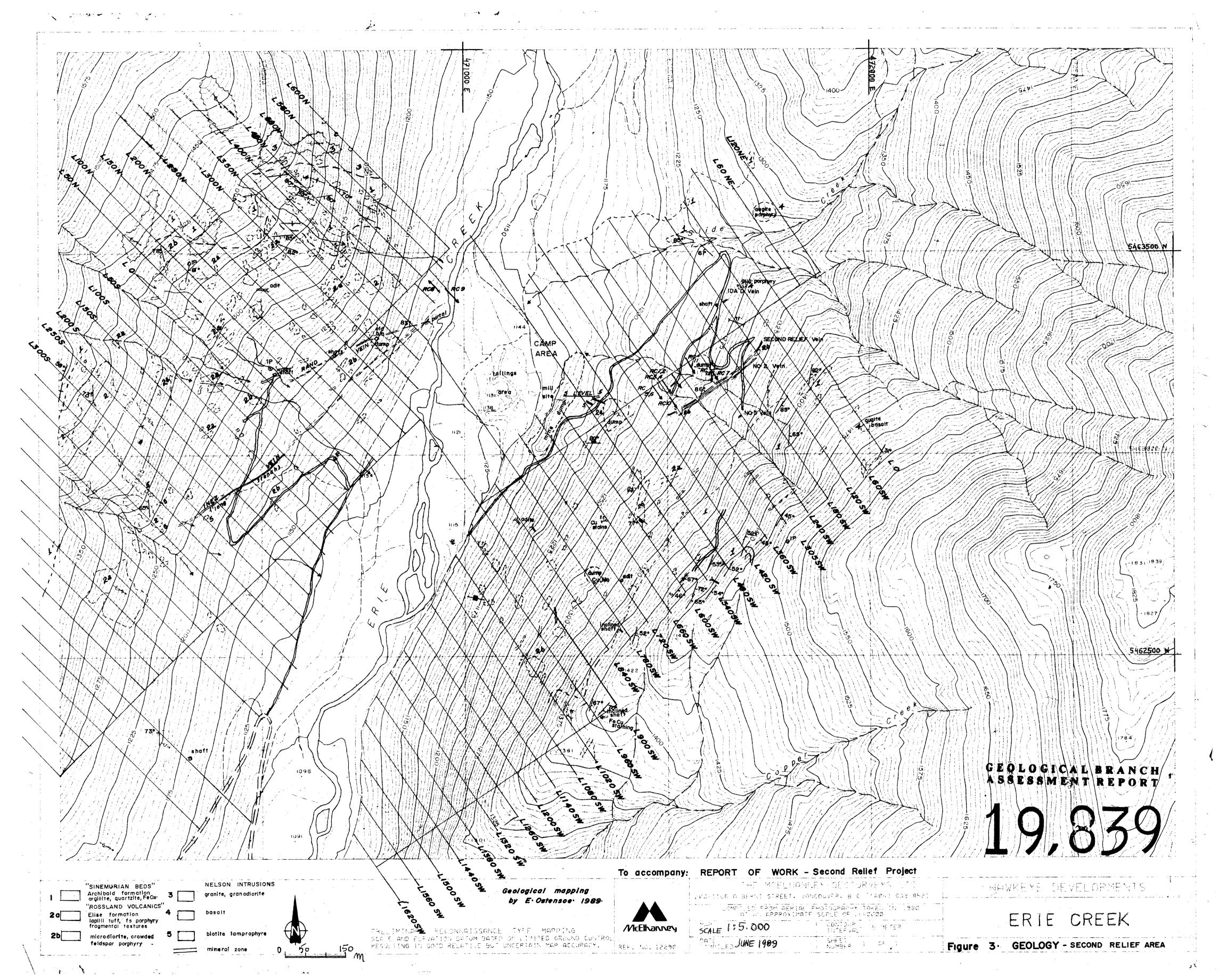
_____

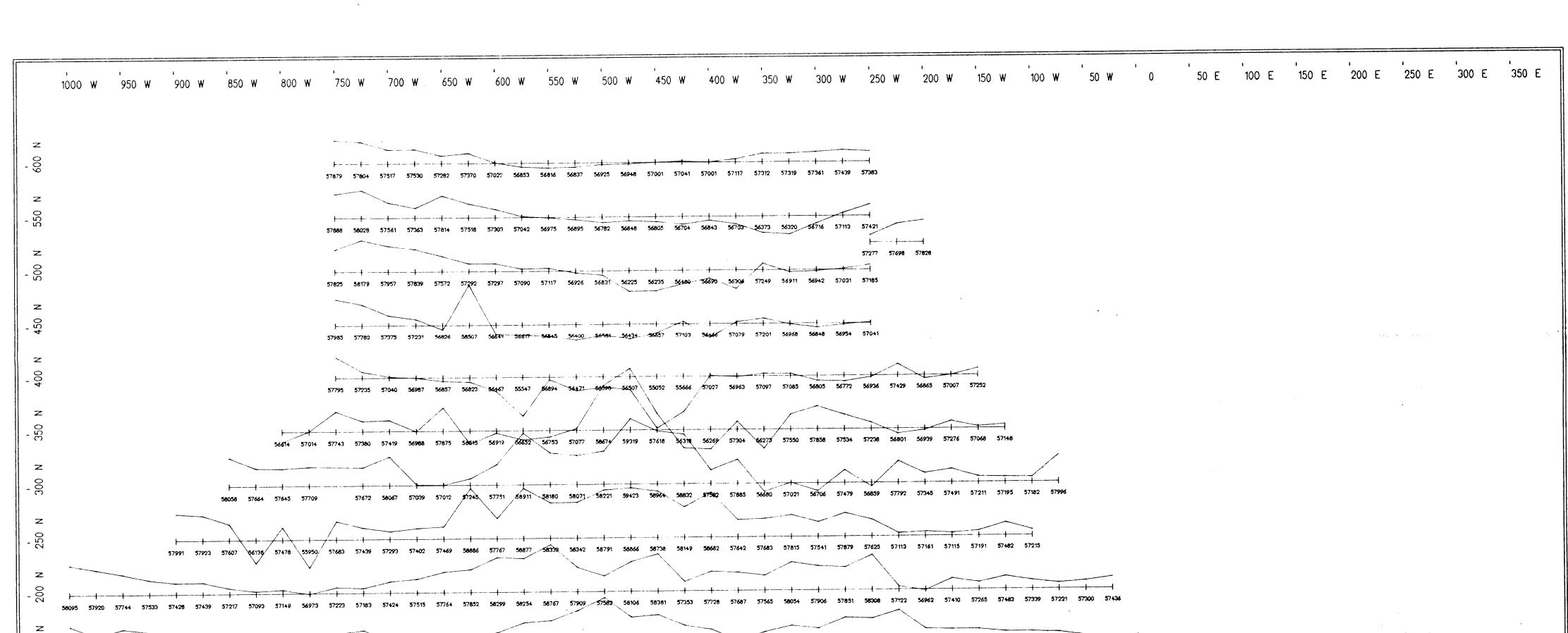

<u> </u>		HAWKEYE DI DIAMOND	<u>eveupm</u> drill re		LTD.			,a,	HOLE	[№] :89 №:2°	-14	
					-	÷.,			PAGE	[№] : 2 °	12	
from	RES to	DESCRIPTION	SAMPLE Nº	METR from	RES to	LENGTH METRES	Au oz/ton	Ag oz./ ton	Cu %			Pyrite
58:75	68.2	Same rock type 28 24.6 to 55.6m. Mottled pattern of epidotic alteration. Pyritic alternation throughout grains are 0.5 mm. diameter, disseminated and present in calcoreous seams parallel to or almost parallel to C.A. E.O.H. 68.2m. Oct 11/89.										
		mottled partern of epidetic alteration.						++				
		Fyritic attendition intorphont grains						+				
	<u> </u>	Vare U.s. mm. diameter, dissemunaved	<u> </u> ;							ł – – ł		
		and present in carcorreous seams						<u>├</u> ───┼				
		paraller to A amorsi paraller a CIA;										
	<u> </u>	F.D.H. 68.7 Dr + 11/89				-		† †				
			<b> </b>					<u>† – – †</u>				
	<u> </u>		· · · ·					1 1		·		
						-		1 1		1		
	1	· · · · · · · · · · · · · · · · · · ·										
										·		
									<u>-</u>			
							-					
· · · · · · · · · · · · · · · · · · ·												
	ļ								- <u></u>			
	ļ. <u>.</u>											
	ļ		9 1					· .				ļ
	<u> </u>	·	ļ									
							ļ	↓		<b>_</b>		<b> </b>
	ļ		<b> </b>					╞────┝				<b> </b>
	· ·		<b>├</b>				ļ	<u> </u>				ļ
	<b> </b>							<u>↓</u>				
	<b> </b>							┟┼		<b> </b>		<b> </b>
	<b> </b>	· · · · · · · · · · · · · · · · · · ·	<b> </b>					╂╂				<b> </b>
	<b> </b>		i			- <b> </b>	ļ	· · · · · · · · · · · · · · · · · · ·		<b>}</b>		<b> </b>
			l	· · ·				┥				
······								┟		<b>}</b>	ļ	<b> </b>
		· · · · · · · · · · · · · · · · · · ·						╉╼╍╍───╉		<b> </b>		<b> </b>
••••••••••••••••••••••••••••••••••••••			<b> </b>			<u> </u>		╂╂		<b> </b>		<b> </b>
	<b> </b>							<u> </u>	<del></del>	<b> </b>		
	<u> </u>	. I <u></u>	↓		L		l			L	I	L







## .


TR4






150 -1 1 0 2 7 10 10 14 17 16 21 16 21 20 20 17 17 16 15 15 11 10 9 9 5 4 3 -2 1 1 5 0 -1 1 4 2 -1 -2 -2 Z . 8 15 5 11 11 8 6 5 5 4 3 5 4 3 5 4 4 2 2 2 4 3 2 2 4 7 3 5 5 4 6 12 15 17 20 18 16 15 14 12 15 14 z 50 10 7 6 8 8 10 12 15 18 19 15 15 10 16 15 16 16 13 12 11 10 8 8 8 6 7 5 6 9 7 4 -1 1 0 0 -2 -1 -2 2 4 13 0 <u>╶┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼</u>─┼─┼─┼─┼─┼─┼ 6 8 8 8 8 7 7 8 7 7 8 7 4 7 5 6 6 2 4 3 2 1 <del>3</del> 4 <u>-12</u> <del>3</del> 3 -2 -3 S 50 4 5 12 12 10 5 4 4 6 4 2 2 6 6 5 3 4 4 3 6 8 2 0 2 0 4 2 1 12 S - 02 15 14 15 17 9 9 13 15 16 12 16 12 14 14 12 12 8 12 8 8 9 4 5 4 2 3 6 4 5 5 4 6 4 7 6 6 3 4 0 1 0 2 S 30. 10. 0. 50 0 9 7 5 5 4 6 8 7 7 8 6 5 7 6 4 4 1 4 4 2 - 2 2 8 4 2 1 1 1 0 0 1 1 S 7 8 9, 8 7 8 6 6 9 9 6 4 5 5 4 4 3 2 0 1 1 <del>-</del>1 0 6 6 4 3 1 0 0 9 1 2 2 3 S 250 3 4 5 8 8 8 8 8 8 4 4 4 3 3 2 3 3 3 1 2 4 9 6 4 2 2 1 1 0 2 6 7 7 5 3 S 300 з 6 6 6 7 7 7 8 8 11 11 10 9 9 6 4 2 2 1 1 -1 1 4 2 2 0 -1 -1 1 2 3 3 **3 2 3** 4 4 S 350 3 1 0 1 2 2 6 8 6 6 6 8 10 10 10 10 10 9 9 7 5 7 8 5 2 1 <del>-</del>1 <del>-</del>2 -2 2 2 2 1 1 3 2 2 S 400 10 6 5 1 2 1 1 3 ⁻3 6 7 10 ¹¹ 9 12 10 10 10 9 8 7 8 8 6 7 6 5 4 6 4 2 1 1 1 2 **3** 2 9 1 1 S 450 то с о 4 7 7 ю п п 9 14 12 13 14 10 10 8 9 8 4 7 5 6 6 3 2 -1 1 4 2 2 2 2 0 -2 S 500 16 17 12 12 10 10 10 12 13 12 11 8 9 9 8 8 8 6 6 4 4 4 4 4 4 4 4 4 4 2 2 0 0 -1 -3 -4 S 550 14 12 9 8 10 11 10 9 6 10 5 9 10 12 12 12 12 9 8 10 6 6 5 4 2 2 3 4 4 4 2 2 1 2 0 -1 2 2 3 9 1 S 600 12 11 13 14 12 12 13 12 12 10 11 9 9 <u>10 11 11 10 10 8 5 6 7 5 5 4 1 1 1 2 2 0</u> S -650 10 9 8 10 9 8 9 10 10 10 13 10 14 15 14 13 10 10 8 5 3 2 1 1 0 1 0 0 2 2 3 1 -1 -2 -1 -2 -1 -1 9 2 9 -2 9 1 S 700 m 8 5 3 3 8 8 9 9 9 14 13 12 14 14 13 9 10 9 8 7 3 4 3 3 3 2 3 1 1 1 0 0 0 -2 -1 -2 -1 -1 -2 -2 S 12 11 8 9 7 4 3 4 3 4 6 5 6 7 9 8 9 <del>14 13 11</del> 10 9 6 6 5 3 -1 0 0 0 0 <del>-3 -2 -1 -2</del> S 800 8 7 5 4 2 3 5 10 6 4 10 7 <u>8 10 12 13 16 14 12 8 5 4 5 4 4 3 -1 0</u> S 850 S . 006 17 14 14 12 14 10 12 10 12 16 19 20 21 20 Te 12 12 16 12 6 6 4 4 4 3 2 4 S 950 10 9 10 10 10 9 9 3 3 2 7 H 18 18 17 18 8 6 7 4 4 2 4 -1 0 -2 -2 -1 -1 -1 -3 -2 -3 -4 -4 S <u>╶╌╄╌┈┈╸</u>╋┈┈╸┈┢┈┈╸╴╞┈┈╶╺╌╋┈┈╸╉┑ 1000 14 13 15 13 12 11 10 10 7 5 2 2 5 4 12 15 17 21 20 16 12 5 4 3 3 2 -1 -3 -1 -2 -3 -1 1 1 2 3 5 4 3 3 1 1 0 0 where the 12 22 Figure 7. VLF - EM Survey - West Grid 2. 0 To Accompany: Report of Work, ₹ A. Second Relief Project, × . Erie, B. C. **20** February 15, 1990. and from ~ Z HAWKEYE RESOURCES LTD. نعة ري PROJECT # 89HE1 SECOND RELIEF **~** % WEST GRID VLF EM SURVEY mer put 4 × × × 3 P. a na sainte Nava AUGUST 24, 1989 MONTGOMERY CONSULTANTS LIMITED







╾╪╶╴╍╪╌╍╶╪╌╍╶╪╌╍╶╪╌╍╶╪╌╍╶╪╴╴╌╪╴╌╌╪╴╴╴┊ 57447 57706 57580 57461 57130 57113 56741 55552 57058 57482 57609 57176 57375 57340 57328 57498 57855 57920 58297 58775 58030 58114 57716 57554 57131 57455 57682 57574 57974 57935 58238 57533 57518 57516 57411 57413 57385 57250 57230 57217 57558 56889 57193 56852 57131 57511 57438 57665 57776 57779 58284 57815 58269 57644 58006 57603 57766 57446 57266 57749 57396 57148 57294 57459 57449 57096 57049 57193 57293 57797 57879 58067 58246 58119 57263 56743 57843 57518 58437 57858 57991 58831 57528 58067 57723 57114 57231 57127 57839 56933 57153 57099 57018 57122 57044 57253 57431 57399 57372 58750 58299 58997 58213 54224 57352 57112 57679 57245 58038 57911 57938 57248 57214 57366 57849 57464 57027 57200 57689 57459 56832 57037 56950 56912 57235 57461 57349 57140 57468 20 58030 57987 58902 58925 57614 57200 57164 57102 57278 55278 57586 57759 57443 57056 57793 57813 56962 57595 57185 57167 57040 57280 56836 57025 57388 57067 57179 57122 56861 56844 57574 57996 58545 57881 57857 58670 57263 57890 56792 56805 56827 57089 56161 57477 57490 57869 57925 57662 57608 57005 57893 57752 57280 57148 57415 57358 57289 57303 56911 56780 50000. 9000. 58000. <u>_____</u> 58597 58440 58541 57900 57525 58664 58680 57956 57566 57766 56769 57497 56954 57224 57500 57740 57854 57726 57865 57604 57738 57603 57617 57373 57492 57391 57646 58909 57291 57421 57386 57345 57329 -+---+---+----+----+----+----+ <del>┈┥╸┈┥╸┈┥┈╸┥╶╸┥</del> 200 57443 57352 57696 58082 57946 56387 57403 57403 57103 57447 57468 57182 57745 57299 57705 58170 57438 57890 57739 57553 56975 57790 56569 57827 57343 57839 57403 57103 57101 57587 57167 57105 57418 57803 57569 <u>-+-----+----+----+-</u> <del>──┼───┼───┼───┼───┼───┼───┼</del>───┼───┼ 250 56319 57319 57367 57592 57773 58763 58468 57822 58134 57809 58571 58024 56992 57518 57464 57602 58105 57708 57615 57671 57541 57060 57580 57427 57671 57845 57916 57536 57169 57282 57099 57003 57237 57816 57725 57472 <del>──┼────┼────┼────┼</del>────┼────┼ 57181 57337 56918 57562 57367 56946 57642 57982 58055 58188 58263 57203 57580 57065 57117 57241 57418 57808 57737 57991 57863 57192 56755 57494 57452 56897 57717 57258 57630 57456 57172 57265 57461 57576 57442 57383 57967 57113 57127 57237 57235 57239 57197 57373 57440 58467 57984 57575 58037 57470 56690 56420 56927 57569 57267 57234 57429 57276 58047 57293 57584 57475 57499 57453 57245 57174 57504 57510 57581 57107 57209 57254 57227 57331 S 001 57287 57127 56969 57169 57049 56642 57524 57245 57234 58082 57675 57476 58096 57838 57791 57642 58566 57884 56896 57210 57212 57353 57502 58412 58040 57513 57161 56838 57268 57497 57471 57660 57871 57769 57139 57054 56903 57067 57129 57137 <u>56832 - 56526 56694</u> 56871 57150 56870 57013 57474 58003 57711 57151 56693 57274 57492 57707 57034 56895 57382 57211 57322 57324 57394 57381 57319 57173 56773 36563 56851 57277 57069 57126 57632 58540 57623 57534 57053 57560 \$6203 ഗ 57055 56889 56755 57216 56782 57236 57752 57711 57368 56960 57011 57173 58091 57812 57968 57693 57545 57354 57435 57119 57162 57248 57016 56942 57271 57614 57942 57906 57393 57183 57131 57609 57322 57222 57125 57211 57323 57075 57267 57247 S 57099 56981 56994 57070 56209 56904 57348 57933 57776 57573 57590 57651 57488 57399 57876 58961 58344 57859 86009 57801 57628 57889 57033 57635 57462 57842 56932 57395 57788 57660 57893 57370 57066 57147 57219 57371 56908 57379 57461 57258 56840 56937 57084 57019 56843 56888 55746 57472 57125 56867 57591 57515 57403 57654 57676 57514 58605 58651 58142 58711 58563 57724 57525 56906 56967 56949 57131 57219 57449 57633

•

S

650

S

700

S

S

800

S

850

S

900

S

S

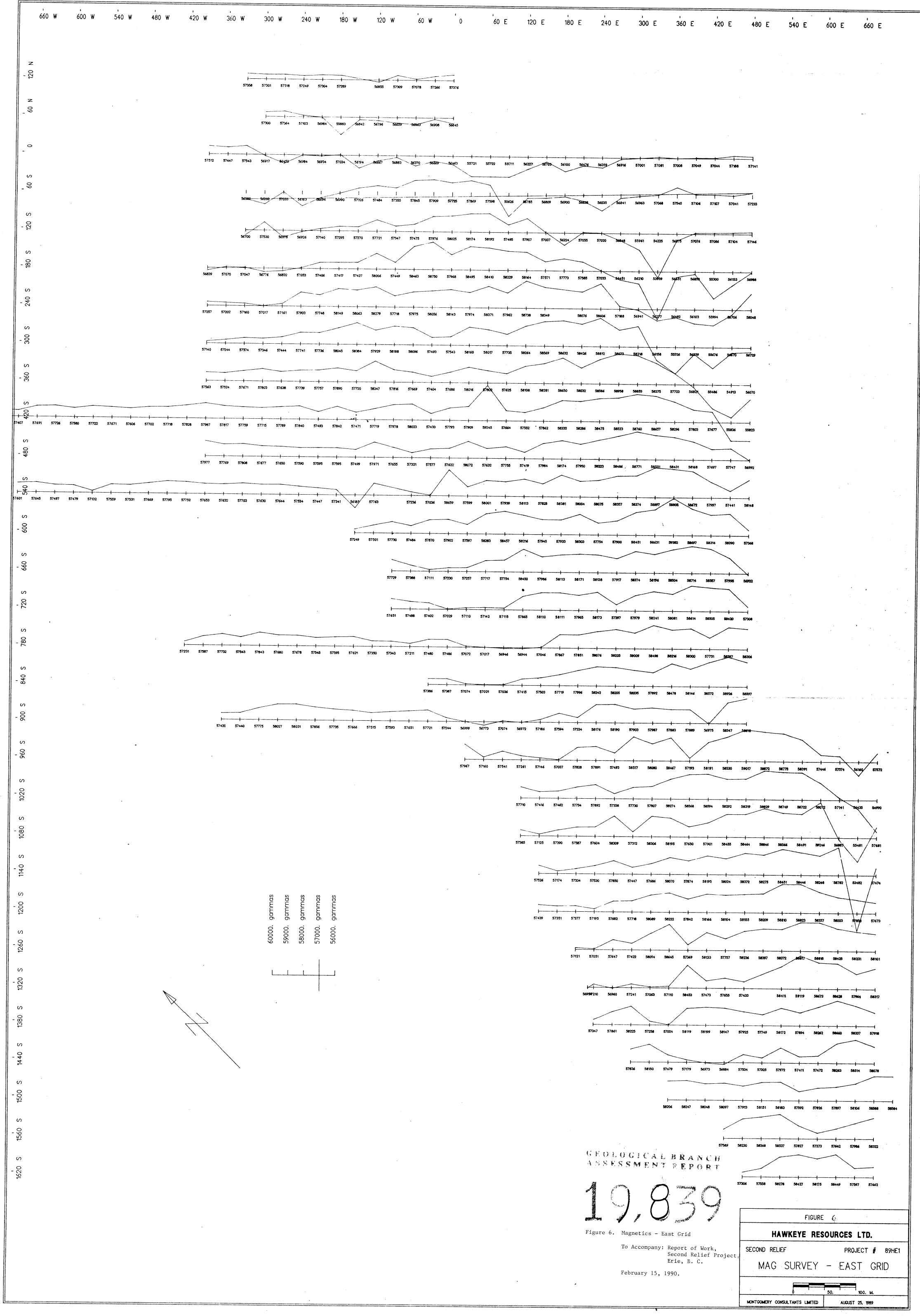
 $\overbrace{}$ 57225 57125 56962 56966 56832 56122 55420 57178 56996 56176 55433 58584 57919 57722 57869 58126 58854 57899 58175 58280 58063 58624 58652 58339 57678 56960 56281 56849 57486 57248 57064 57203 57381 57112 57932 57791 58031 57556 57326 57047 56960 57266 57296 58854 57899 58175 58280 58063 58624 58652 58339 57678 56960 56281 56849 57486 57248 57064 57203 57381 57112 57932 57791 58031 57556 57326 57047 56960 57266 57296 58854 57899 58175 58280 58063 58624 58652 58339 57678 56960 56281 56849 57486 57248 57064 57203 57381 57112 57932 57791 58031 57556 57326 57047 56960 57266 57296 58859 58063 58624 58852 58339 57678 56960 56281 56849 57486 57248 57064 57203 57381 57112 57932 57791 58031 57556 57326 57047 56960 57266 57296 58859

57360 57148 57050 57417 56893 57083 56906 36517 55241 56715 56970 58819 56653 56886 57162 57693 57919 58063 57956 58254 58905 57887 5773 58060 57248 57986 57882 57588 56774 57051 57088 57697 56697 56597 56597 56653 56886 57162 56789 56743

57983 57448 57195 57160 57136 57187 53764 58310 55596 55874 56712 57975 57155 56803 56657 56849 57779 57803 58676 58166 57969 57429 58960 57812 57959 57967 57901 57996 57938 58336 57684 57771 57311 57891 57313 57645 57033 55860 57509 56742 56780 57575 57822 57051 56869

58045 57790 57587 57463 57169 57522 57450 57279 57284 56905 56693 56707 56402 56287 56815 56696 56785 56968 57352 58348 57528 51747 57866 57799 57801 57527 57874 58238 58350 58708

58022 56754 58022 57209 57316 57236 57266 57409 57264 56217 57150 57036 56850 58571 56821 56852 56585 58735 58893 57438 58165 58535 58735 58603 58193 58148 57930 58275 57297 58292 57928 56907 57051 57835 57381 58557 58441 57238 57661 57543 57277 57938 56807


58345 58432 57594 57388 57300 57496 57453 57268 56613 57309 56771 57657 57605 56978 57338 57367 57433 58740 58162 58212 59295 59131 58757 58969 57908 58008 57786 58087 58155 58054

57916 58015 58217 57627 57382 57350 57200 57391 57080 57316 58066 55572 55716 58636 58469 57423 56826 57699 57890 58619 58237 58337 58337 58357 58119 58276 58620 58239 58311 58271 57852 58345 58423 58518 57344 57747 58052 57816 57890 57897 57198 57785

┝┄╍┼╴╶┼╶╌┼┈╶┼╴╴┼┈╴┼┈╌┼┈╶┼┈╶┼┈╶┼┈╶┼┈╶┼╴╌┾╴╌┼╴╌┾╴╌┼╴╌┼╴╶┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼╴╴┼ 58253 58034 57671 57364 57223 57169 57446 57301 57327 57858 57630 56900 57470 58026 57562 58159 57637 58094 57704 58105 58196 58788 58724 58542 59397 58890 58939 57961 58257 57536 58059 58131 58447 57970 57468 57669 57810 58033 57358 57595 57986 57496 57294

## Figure 5. Magnetics - West Grid

SERSEMENT REPOR	
the second se	February 15, 1990.
19.839	HAWKEYE RESOURCES LTD.
and the second and	SECOND RELIEF PROJECT # 89HE1
	MAG SURVEY – WEST GRID
	Ó 50. 100. M. MONTGOMERY CONSULTANTS LIMITED AUGUST 24, 1989

