GOVERNMENT

AGENT

APR 0 5 1990

KAMLOOPS

FILMED

GEOLOGICAL GEOCHEMICAL REPORT

on the

PLATINUM GIANT CLAIM GROUP KAMLOOPS MINING DIVISION BRITISH COLUMBIA N.T.S. 82L/11W

for

L.D. LUTJEN CHASE, B.C.

CORONA CORPORATION

LOG NO:	0410	RD.
ACTION:		
FILE NO:		

COVERING:

PLATINUM GIANT 1, 2, 3 CLAIMS

PROPERTY OWNER: L.D. LUTJEN

OPERATOR:

PROGRAM SUPERVISOR:

R.C. WELLS REGIONAL GEOLOGIST KAMLOOPS OFFICE 101 - 2985 AIRPORT RD. KAMLOOPS, B.C.

FEBRUARY 28, 1990

R.C. WELLS B.Sc., F.G.A.C.

GEOLOGICAL BRANCH ASSESSMENT REPORT

R.c. end

TABLE OF CONTENTS

SUMMARY AND CONCLUSIONS	1
INTRODUCTION	3
PROPERTY AND OWNERSHIP	3
LOCATION AND ACCESS	4
TOPOGRAPHY AND VEGETATION	4
HISTORY OF PREVIOUS WORK	4
REGIONAL GEOLOGY	6
1989 EXPLORATION PROGRAM	8
 PROPERTY GEOLOGY STREAM GEOCHEMICAL SURVEY SAMPLING AND MAPPING, GENERAL PROSPECTING a) Method b) Trench Sampling c) Prospecting d) Whole Rock Analysis 	8 8 9
BIBLIOGRAPHY	13
STATEMENT OF QUALIFICATIONS	14
STATEMENT OF EXPENDITURES	15

1

FIGURE	NO.		PAGE N	0.
1		PROPERTY LOCATION MAP	2	
2		CLAIM LOCATION MAP	5	
3		COMPILATION MAP - PREVIOUS WORK	APPENDIX	Е
4		STREAM GEOCHEMICAL SURVEY 1989	10	
5		1989 SAMPLING PROGRAM. MILLER ADIT AREA	APPENDIX	E
6		TRENCH PLAN	APPENDIX	E

APPENDICES

AT REAR

APPENDIX A	STATEMENT OF WORK
APPENDIX B	LABORATORY ANALYTICAL PROCEDURES (ECO-TECH Laboratories, Kamloops
APPENDIX C	ASSAY AND GEOCHEMICAL CERTIFICATES WHOLE ROCK ANALYSIS
APPENDIX D	SAMPLE DESCRIPTIONS
APPENDIX E	LARGE FIGURES AND PLANS

SUMMARY AND CONCLUSIONS

The Platinum Giant Property is located 6 kilometres southwest of Salmon Arm and consists of three claims totalling 40 units.

The property lies within the Omineca Belt and covers a mixed assemblage of metamorphosed, Paleozoic sedimentary rocks which have been intruded by a Cretaceous leucogranite stock. The exploration target is greisen alteration hosted polymetallic mineralization and auriferous quartz veins in the roof zone to the intrusion.

Previous work on the property had indicated both styles of mineralization to be present, and a number of old workings are well documented in the literature.

Corona in 1989, as part of a regional program took a close look at the property. A program of stream geochemical sampling, trench sampling, recon.mapping and prospecting was conducted between June and August 1990. A stream geochemical survey appears to have very limited use in the area due to thick glacial overburden in the creek valleys. No geochemical anomalies for the elements Au, Ag, Cu, Pb and Zn were outlined from the creeks draining the property area.

The old workings on the Platinum Giant 3 claim clearly lie within the roof zone to an alkali granite intrusion. Sampling of limited bedrock exposures in the 1967 Annmar trenches locally yielded values in Ag, Cu, Pb, Zn, Sb and Sn. These values came from silicified and quartz veined metasediments, greisen and phyllic alteration.

Sampling at the Miller Adit did not yield gold values as had been previously reported.

Determining the extent of alteration hosted, polymetallic mineralization in this area is a difficult problem due to lack of outcrop, variable overburden cover and poor geochemical response.

INTRODUCTION

This is a short geological-geochemical report on a program conducted on the Platinum Giant Property owned by L.D. Lutjen of Chase, and located near Salmon Arm in Kamloops Mining division.

During 1989, Corona Corporation conducted a regional property generation program in this part of the Omineca Belt. The Platinum Giant Property was examined as part of this program.

The targets for exploration on this property are: 1) polymetallic mineralization associated with greisen alteration in the roof zone to a leucogranitic intrusion and 2) gold quartz veins. Gold values had been previously reported from a number of old workings on the claims.

The program by Corona was conducted between June and August 1990 under the direction of R. C. Wells B.Sc, F.G.A.C. The cost of this program was \$4,500 and is being applied for assessment credit on the property.

PROPERTY AND OWNERSHIP

The Platinum Giant Property consists of three claims with a total of 40 units. All three claims are 100% owned by Mr. L.D. Lutjen, RR1, B-12-S11, Chase B.C., VOE 1MO. The claim data is summarized in the following table.

TABLE 1: PLATINUM GIANT PROPERTY - CLAIM DATA

CLAI	<u>IM</u>		NO. OF UNITS	RECORD NO.	REC.	DAT	E
Platinum	Giant	1	6	6909	Feb.	2,	1987
Platinum	Giant	2	14	6910	**		"
Platinum	Giant	3	20	7456	Jan.	29,	1988

These claims are presently grouped together as the Platinum Giant Property and are shown in Figure 2.

LOCATION AND ACCESS

The Platinum Giant Property is located in southern B.C. (Figure 1), south of Salmon Arm airfield on the northern slopes of Mount Ida (Figure). N.T.S. coverage is by map sheet 82/11W at Latitude $50^{0}40'$ and Longitude $119^{0}17'$. This area lies within the Kamloops Mining Division.

The property is easily accessible by road from Salmon Arm, then by paved road to Rumball Creek, and up the Rumball Creek Logging Road (0114698) for 1.5 km to the northern boundary of Platinum Giant 3 (Figure 2). From here the logging road crosses the property and exits near its southeastern corner. A branch to this road gives access to Platinum Giant 2 at the headwaters of Hobson Creek.

TOPOGRAPHY AND VEGETATION

The property covers the steep northern slopes of Mount Ida with thick stands of fir, cedar, birch and spruce. Elevations range from 600 to 1450 metres and deep valleys/gullies occur along the northwesterly trending drainages, notably Rumball, Hobson and Leonard Creeks.

HISTORY OF PREVIOUS WORK

A number of old workings occur on sulfide bearing quartz veins in the property area. The locations of these are shown in Figure 3.

The Miller Tunnel on Platinum Giant 3 follows a quartz vein zone within a shear (northeasterly) cutting granite. Sampling of the vein by Ferrier (1920) reported values of 8.23 g/t Au and 0.69 g/t Pt across a 4.75 foot width.

The Whitecliff working on Platinum Giant 1 consists of two small adits on sulfide bearing quartz veins. Ferrier's sampling yielded 12 g/t Au and 6.86 g/t Pt.

An important point is that sampling since 1920 has not produced Au or Pt values in the same magnitude as Ferrier's (1920).

In 1926 and 1930 Minister of Mines Reports, reported silver values in the 5 to 10 oz/t range from the Miller.

In 1967 Annmar Mining (Mitchell) completed a number of trenches on the property near the Miller adit. The results from these are not published.

A limited rock and soil geochemical program was conducted on the property by P. Peto in 1983 (Assessment Report # 12055). Samples from the Millar adit area ran upto 0.17% Cu, 6.13% Pb, 0.8% Zn, 44 g/t Ag and 0.45% Sn with no significant gold values.

In 1988 the property owner (L. Lutjen) conducted a small program of grid installation, VLF-EM, prospecting and sampling. This work covered the Miller adit and the projected northeasterly extension of the vein system to the Bonnie Brae workings (1.3 km) as shown in Figure 3. The 1967 trenching by Annmar was located and a number of northeasterly trending VLF anomalies are apparent in this area. Two closely spaced grab samples from one trench yielded values upto 305 g/t Ag, 0.28% Cu, >1% Zn, >1% Pb, and 0.24% Sn.

REGIONAL GEOLOGY

The Mount Ida area lies within the Omineca Belt of the Canadian Cordillera. Jones (1959) Mt. Ida Group consisted of four stratigraphic packages: 1) Eagle Bay (Devono-Mississippian)micaceous quartzite, mica schist, phyllites and metavolcanics; 2) Silver Creek Formation (Cambro-Ordovician) quartzite and muscovite schists; 3) Tsalkom Formation (age ?) greenstones; 4) Sicamous Formation (Triassic) phyllitic marble and calcareous phyllite. These low to medium grade metamorphic rocks are overlain unconformably by flat lying, Eocene volcanic rocks.

Intrusive rocks in the area are represented by orthogneiss (Devonian) belonging to the Mount Fowler batholith and Early Cretaceous mica granites (Mount Ida and to the northwest).

1989 EXPLORATION PROGRAM

Corona Corporation conducted a regional property generation program in the Salmon Arm area in 1989. A thorough investigation was made of the Platinum Giant Property as part of this program.

Approximately \$4500 was expended on the property during 1989, largely between June and August. The exploration program consisted of (1) stream geochemical sampling, (2) old trench mapping and resampling, (3) more general prospecting and sampling. All this work was performed by Corona personnel under the direction of R. C. Wells based in Kamloops, B.C.

1) PROPERTY GEOLOGY

Thick sandy to clayey overburden covers large areas on the property. Good exposures do however occur along Hobson and Leonard Creeks, in old workings and along the road system.

The claims are at lower elevations (below) than the Eocene volcanic rocks forming the peak of Mount Ida. Most of the Platinum Giant 3 claim is underlain by altered leucogranite and roof pendants of mica schist and calcareous metasediments. On the eastern claims metasedimentary rocks and porphyritic, felsic dykes outcrop along Hobson and Leonard Creeks. The overall environment appears to be the roof zone to a quartz rich leucogranitic intrusion featuring widespread strong fracturing, silicification and local gneisenization.

2) STREAM GEOCHEMICAL SURVEY

The aim of this survey was to locate anomalous drainages for the elements Au, Ag, Cu, Pb, Zn and Sn. Elevated values for elements in this group would give an indication of the extent and possibly the location of greisen style mineralization in the property area.

a) Method

Three days were spent by a two man crew taking samples at regular intervals from Rumball, Hobson and Leonard Creeks. At each site a silt sample was collected as well as a sieved and panned heavy mineral sample. For this survey a sample interval of approximately 500 metres was chosen, the sites are shown on Figure 4. All the samples were placed in kraft paper envelopes and sent to Eco Tech Laboratories in Kamloops B.C. The samples were run geochemically for Au and 30 element ICP (Appendix C).

b) Results

None of the silt samples produced significantly anomalous values in any of the elements in the target group. This is peculiar as mineralization has been identified in a number of areas above Rumball and Hobson Creeks. A problem appears to be that the drainages are largely clogged by glacial debris. The beds to the creeks are commonly clay with rare bedrock. Transport of material away from mineralized areas appears to be very limited and hence this geochemical method does not appear to work in this area.

2) SAMPLING AND MAPPING, GENERAL PROSPECTING.

During June 1989, three days were spent sampling and prospecting in the Miller Adit area on the Platinum Giant 3 claim. The area between the Miller and Bonnie Brae adits had been trenched by Annmar Mining in 1967 exposing greisen style, polymetallic mineralization.

a) Method

A total of 39 rock samples were taken in this area. Figure 5 shows part of the 1988 (Lutjen) grid, location of old workings and the 1989 sample locations. Figure 6 is a plan of the main trench with geology and chip sample locations. Tables 2 and 3 in Appendix D gives descriptions and other data regarding these samples.

All the samples were taken to Eco Tech Laboratories in Kamloops B.C. and run for Au geochemically and thirty element ICP. Samples yielding high Ag, Pb, Zn, Sn or Sb values (greater than 40 g/t Ag or 1000 ppm rest) were assayed.

A sample of fairly fresh two feldspar leucogranite was taken on the road north of the 1988 grid at approximate grid location 500E, 500N. This sample was analysed by Eco Tech for whole rock (Appendix C).

b) Trench Sampling

A plan of Trench 3 is shown in Figure 6. This trench yielded high Ag, Zn and Pb values and strongly anomalous Cu and Sn in the 1988 sampling by Lutjen and probably in 1983 by Peto.

Large parts of the trench have fallen back in as 3 to 5 metres of unconsolidated, sandy overburden covers the bedrock. The trench exposes strongly altered and fractured micaceous and locally calcareous sedimentary rocks. Original textures are obscured by strong silicification or phyllic alteration (quartz-clay-sericitpyrite). A number of milky quartz veins trending east to northeast cut both types of alteration. They locally reach 20 cm in width, though generally much narrower and in swarms with bleby galena, sphalerite and some finer chalcopyrite. A 2.0 metre true width sample across a quartz vein zone in phyllic alteration yielded 13.65% Pb, 0.18% Cu, 0.35% Zn, 0.58% Sn and .17% Sb.

Trench 2 (Figure 5) lies 30 metres west of Trench 1. It has largely caved in, though a small dump of excavated rock can be examined. Numerous boulders of highly silicified sediments and possibly granite contain quartz veins with pyrite, galena, sphalerite and chalcopyrite. Samples from this material yielded values upto 2.12% Zn, 127.9 g/t Ag, .13% Sn and 1.13% Pb.

Trenches 4,5 and 6 (Figure 5) above the Miller adit poorly expose siliceous metasediments and did not yield any significant values in the target group of elements. The Miller Adit is in strongly fractured and silicified, micaceous sedimentary rocks less than 20 metres north of a granitic intrusion. For much of its length the adit follows a north easterly trending system of quartz veins with local galena and sphalerite. Samples from the veins produced low Pb, Ag and Zn values with no gold.

Silicified granite south of the Miller adit was sampled but did not yield any values.

c) Prospecting

A number of quartz veined outcrops and float was found while prospecting the Rumball Creek road area near the Miller adit. These sample locations are shown on the same plan (Figure 5). Much of the quartz veining cuts micaceous metasediments and did not produce any significant values.

d) Whole Rock Analysis

A single sample of leucogranite taken from just to the north of the grid was run whole rock. This fairly fresh sample was coarse grained and porphyritic (feldspar) with roughly equal amounts of plagioclase and orthoclase with quartz and 1 to 5% muscovite and, or biotite. Chemically it can be classified as a potassic-sodic granite or alkali granite. The whole rock analysis can be found in Appendix C.

12

BIBLIOGRAPHY

Brewer, W. M. (1913) B.C.D.M. Annual Report, p. 198-199.
B.C. Minister of Mines Annual Report (19130) p.183-185.
Ferrier, W. F. (1920) Munition Resources Commission, p. 183-184.
Jones, A.G. (1959) Vernon Map Area, B.C. G.S.C. Memoir 296
L. D. Lutjen (1989) Physical Report on the Platinum Giant Property.
Mitchell, J. A. (1967) Prospectus Report (unpublished), Annmar Mining, 9p.

Peter Peto (1983) Assessment Report #12055.

STATEMENT OF QUALIFICATIONS

I, Ronald C. Wells of the City of Kamloops, British Columbia do hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada.
- 2. I am a graduate of the University of Wales, U.K. B.Sc in Geology (1974), did post graduate (M.Sc) studies at Laurentian University, Sudbury, Ontario (1976-1977) in Geology.
- 3. That I am presently employed by Corona Corporation as a Regional Geologist based in Kamloops, B.C.
- 4. That I have practiced continuously as a geologist for more than eleven years throughout Canada and have past experience and employment as a geologist in Europe.

Signed and dated in Kamloops, British Columbia this $2^{n/2}$ day of ______ 1990.

STATEMENT OF EXPENDITURES

The following expenses were incurred by Corona Corporation while working on the Platinum Giant Property, Kamloops Mining Division in 1989.

1.	Field Salaries	· ·	
	R. Wells	1 day @\$250 day	\$250.00
	R. Klassen	3 days @\$150 day	450.00
	D. Moraal	3 days @\$150 day	450.00
	P. Watt	2 days @\$150 day	300.00
	R. Lodmell	2 days @\$125 day	250.00
		Sub total	1700.00
2.	Transport	6 days @\$100	600.00
3.	Analytical Cos	ts - Eco Tech Laboratories	975.00
4.	Report Costs -	Writing, maps, reproduction	1225.00
		Total costs	\$4500.00

15

APPENDIX A STATEMENT OF WORK

Province of British Columbia Ministry of Energy, Mines and Petroleum Resource MINERAL RESOURCES DIVISION – TITLES BRANCH	es	DOCUMENT	No	DNLY
· · · · · · · · · · · · · · · · · · ·		6	风日	R
Mineral Tenure Act Sections 25, 26 & 27			200.0	
STATEMENT OF WORK — CASH PAYMENT	• .		JAN 2 6 19	90
Indicate type of title MINERAL (Mineral or Placer)		GOV	ernment ac KAMLOOPS	SENT
Mining Division KAMLOODS	· · · · · · · · · · · · · · · · · · ·	TRAN	SP#CORDING ST	
1, LAREY D. LUTJEN AG	ent for		3 1)	
CHASE, B.C.		(Addres:		· · · · · · · · · · · · · · · · · · ·
679-8022 VOEIMO				. <u>.</u>
(Telephone) (Postal Code) Valid subsisting FMC No. 29.5095 Va	^(Telephone) Iid subsisting	FMC No		(Postal Code)
FMC Code LITTLA	IC Code			
1. I have done, or caused to be done, work on the 1297 PLATINUM GIANT 2, E PLA	TNUM TNUM	GIAN GIAN	71, 73	Claim(s
Record No(s). 6909, 6910, \$ 74	56	107 -	_	.
Work was done from 157 OF JUNE, 198	7, to/	DF DF	OTDEE	1987
and was done in compliance with Section 50 of the Mineral	Tenure Act a	ind ind	6 F 6	
Section 19(3) of the Regulation YES NO			•	
FEE — \$10.00				•
TYPE OF WO	RK			· · · ·
PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, reclame under section 13 of the Regulations, including the map	ation, and constr and cost statem	uction of roads tent, must be g	and trails. Detai iven on this stat	ils as required ement.
PROSPECTING: Details as required under section 9 of the Regulations r only be claimed once by the same owner of the ground	nust be submitte d, and only durin	d in a technical ig the first three	report. Prospec years of owner	ting work can ship.
GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details mu through 8 (as appropriate) of the Regulations.	st be submitted	in a technical re	port conforming	to sections 5
PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum of 30 and/or drilling work on this statement may be withdrawn work value on this statement.	1% of the approve a from the owner	d value of geolog 's or operator's i	gical, geophysica PAC account and	I, geochemical d added to the
TYPE OF WORK	V V	ALUE OF WOR	K] : :
(Specify Physical (include details), Prospecting, Geological, etc.)	Physical	*Prospecting	*Geological etc.	
GEOLOGICAL, GEORINSICAL, AND		¥	\$4,500	<u>e</u>
(Paper To GULOW)				, ¹
(new second)				
TOTALS	A +	в +	C4,500 =	D
PAC WITHDRAWAL — Maximum 30% of Value in Box C Only			E	E
from account(s) of			TOTAL	\$4500
• Who was the Name			•	
operator (provided the financing)? Address	Transfer a	mount in Box	F to reverse si	de of form
Phone:	and comp	olete as requir	ed.	

•,

I

1		
FT 4,500	I WISH TO APPLY \$OTO OF	THE
L170	TOTAL VALUE FROM BOX F AS FOLL	DWS:

Columns G through P inclusive MUST BE COMPLETED before work credits can be granted to claims. Columns G through J and Q through T inclusive MUST BE COMPLETED before a cash payment or rental payment can be credited. Columns not applicable need not be completed.

Cash Payment

CLAIM IDENTIFICATION				APPLICATION OF WORK CREDIT					CASH I	CASH IN LIEU OF WORK OR LEASE RENTAL			
G	Н	1	J	К	L	M	N	0	P	Q	R	S ·	Ti
CLAIM NAME (one claim/lease per line)	RECORD No.	No. OF UNITS	CURRENT EXPIRY DATE	WORK TO VALUE	BE APPLIED YEARS	Recording Fees	PRIOR EXCESS CREDIT BEING USED	NEW EXPIRY DATE	EXCESS CREDIT REMAINING	C/L		LEÃSE RENTAL	
PLATINIM GIANT	6909	6	2F=B90	600	/	\$ 30,00						· 14	1.354
PLATINUM GIANT 2	2 6910	14	2FEB90	1400	1	\$ 70.00		t an air an a'			-		<u>مرع</u>
PLATTNOM GIANT	3 7456	20	29. TAUPS	2,000		\$100.00		2 s.			11.	• • •	E
					,						-	-	
Report n	Foud	ψ <u>]</u>											
		¥											·
													:
													n.
		. 								·····		•••••••••••	·····
· · · · · · · · · · · · · · · · · · ·													
													· · · · · · · · · · · · · · · · · · ·
			• • • • • • • • • • • • • • • • • • • •										
												· · · · · · · · · · · · · · · · · · ·	••••••
		L		4/100		1 AND	<u> </u>	I					
	BECOBD)ED	7×	TØTAL OF K	•	TOTAL OF M	-			TOTAL OF Q	TOTAL OF R	TOTAL OF S	
				"2 POST. FRACTION, REV. AND PLACER CLAIM ARE	CROWN GRANT	•							
Value of work to be credited to po [May only be credited from the Name of 1	ortable assessment c approved value of f	redit (PAC Box C not Nat) account(s). applied to claims.] ne	<u> </u>	Ато	unt	I, the unders statement or if the statem and the expl ment, then the forfeit to and	igned Free Miner, hr provide false inforr tents made, or infor toration and develop he work reported on d vest back to the f	ereby acknowl nation under t mation given, ment has not t this statement Province.	edge and understan he Mineral Tenure A in this Statement of been performed, as t will be cancelled ar	d that it is an or ct. I further ac Work — Cash alleged in this to the subject of	ffence to knowi knowledge and Payment are Statement of V mineral claim(s	ngly make a false J understand that found to be false fork — Cash Pay- jimay as a result,
owner / operator 2 3										May	10	Trul	ias.
					······					~/~~/	-	~ (signe	ture of Applicant

APPENDIX B LABORATORY ANALYTICAL PROCEDURES

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamboos, B.C. V2C 2J3 (804) 573-5700 Fax 573-4557

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION (STANDARD)

- 1. Soil or Sediment: Samples are dried and then sieved through 80 mesh nylon sieves.
- 2. Rock, Core: Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.

METHODS OF ANALYSIS

All methods have either known or in-house standards carried through entire procedure to ensure validity of results.

1. Multi-Element Cd, Cr, Co, Cu, Fe (acid soluble), Pb, Mn, Ni, Ag, Zn, Mo

Digestion

Hot aqua-regia

Atomic Absorption, background correction applied where appropriate

A) Multi-Element ICP

Digestion

Hot aqua-regia

2. Antimony

Digestion

Hot aqua regia

3. Arsenic

Digestion

Hot aqua regia

4. Barium

Digestion

Lithium Metaborate Fusion

Finish

Finish

ICP

ę.

Finish

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S.

ŕ.

Finish

Atomic Absorption

ASSAYING • ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioope, B.C. V2C 2J3 (804) 573-6700 Fax 573-4557

5. Beryllium

<u>Digestion</u>

Hot aqua regia

6. Bismuth

Digestion

Hot aqua regia

7. Chromium

Digestion

Sodium Peroxide Fusion

8. Fluorine

Digestion

Lithium Metaborate Fusion 👘

9. Mercury

Digestion

Hot aqua regia

10. Phosphorus

Digestion

Lithium Metaborate Fusion

11. Selenium

Digestion

Hot aqua regia

12. Tellurium

Digestion

Hot aqua regia Potassium Bisulphate Fusion

<u>Finish</u>

Atomic Absorption

<u>Finish</u>

Atomic Absorption

<u>Finish</u> Atomic Absorption

Finish

Ion Selective Electrode

Finish

Cold vapor generation - A.A.S.

Finish

I.C.P. finish

Finish

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S. Colorimetric or I.C.P.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloope, B.C. V2C 2J3 (804) 673-6700 Fax 673-4567

13. Tin

Digestion

Ammonium Iodide Fusion

14. Tungsten

Digestion

Potassium Bisulphate Fusion

15. Gold

Digestion

Finish

Hydride generation - A.A.S.

Finish

Colorimetric or I.C.P.

Finish

Fire Assay Preconcentration followed by Aqua Regia

Atomic Absorption

16. Platinum, Palladium, Rhodium

Digestion

Finish

Fire Assay Preconcentration followed by Aqua Regia

Graphite Furnace - A.A.S.

ROCK ANALYSIS WHOLE

PROCEDURE:

Preheat muffler to 1050°C.

Weigh 0.10 g of sample into a test tube.

Add 0.50 g of Lithium Metaborate (LiBO2).

Vortex.

Transfer samples to graphite crucibles.

Fuse samples for 30 minutes. While samples are fusing - prepare plastic containers by adding 100 ml of 4% HNOs.

After samples are fused, pour them into the labelled plastic containers.

Shake on the soil shaker for 30 minutes or until sample is dissolved, some black residue (graphite) will remain.

Make sure the silica is dissolved (Silica looks cloudy and slimy).

¥¥

Add 1 ml Hydrofluoric Acid (HF). Swirl.

Add 4 ml of 30% Boric Acid (H3BO3). Swirl and let sit a few minutes.

Be sure to prepare a blank with the same acid matrix as the samples.

Lithium Metaborate (LiBO₂) Hydrofluoric Acid (HF) 30% Borlc Acid (H3BO3) (Prepare Boric Acid ahead of time - it takes awhile to dissolve).

ICP SET UP:

REAGENTS:

WR STANDARD #1

WR STANDARD #2

50 ppm = 12.05% K₂O

Na 50 ppm = 13.48% Na20 Si 250 ppm = 53.47% SiO₂ Al 100 ppm = 18.89% Al₂O₃ ĸ Fe 150 ppm = 21.45% Fe2Og Mg 150 ppm = 19.99% MgO Ca 300 ppm = 41.97% Ca0 50 ppm = 8.34% 1102 ΤÍ 2.29% P205 10 ppm =ρ 6.46% MnO 50 ppm = Mn

HANDLE HF WITH CARE (ie: rubber gloves, safety glasses)

××

.

WHOLE ROCK - ICP FINISH

Sample is fused with Lithium Metaborate. The fusion pellet is dissolved in 4% HNO3. Hydrofluoric acid and Boric acid is added. Sample is bulked up to known volume and run on ICP.

TROUBLE SHOOTING:

Measure HF using plastic test tube, don't let it come in contact with glassware.

Be sure samples are vortexed before transferring to graphite crucibles.

Make sure samples have been fused properly.

Be sure to replace all tubing and clean the spray chamber, nebulizer and torch complete: <u>after</u> analysis. (rinse with reagent alcohol then plenty of distilled H₂O and blow dry)

All the percentages added together for each sample should equal 100%. If results are out +/-10% the numbers can be adjusted. If results are out by more than 10% - run again.

APPENDIX C ASSAY AND GEOCHEMICAL CERTIFICATES WHOLE ROCK ANALYSIS

.

•

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trains Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JUNE 22, 1989

CERTIFICATE OF ANALYSIS ETK 89-301

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: DARREL JOHNSON

SAMPLE IDENTIFICATION:	18 ROCK samples received JUNE 15	, 1989
	PROJECT: 1010 - 890020	
	SHIPMENT: 1010 PG	
	WHOLE ROCK ANALYSIS TO FOLLOW	

`. ·

			AU
ET#		Description	
301 -	===== 1	79101	 ۲>
301 -	2	79102	
301 -	ā	79103	(5
301 -	<u>ح</u>	79104	(5
301 -	5	79105	(5
301 -	6	79106	5
301 -	7	79107	. (5
301 -	8	79108	40
301 -	9	79109	5
301 -	10	79110	<5
301 -	11	79111	5
301 -	12	79112	5
301 -	13	79113	<5
301 -	14	79114	25
301 -	15	79115	<5
301 -	16	79116	(5
301 -	17	79117	<5
301 -	18	79118	<5

Canylas Alearand

ECO-TECH LABORATORIES LTD. DOUG HOWARD B.C. CERTIFIED ASSAYER

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC89/LAC1

NOTE: < = LESS THAN

10041 EAST TRANS CANADA HWY. KAMLBOPS, B.C. V2C 2J3 PHONE - 604-573-5700

FAX - 604-573-4557

CORONA CORPORATION - ETK 89-301A

1440, 800 WEST PENDER STRETT VANCOUVER, B.C. VGC 2V6 ATTENTION: D. JOHNSON

JUNE 22, 1989

VALUES IN PPM UNLESS OTHERNISE REPORTED

PAGE 1

PROJECT #1010 P.O. #890020

18 ROCK SAMPLES RECEIVED JUNE 15, 1989

ETKE	DES	CRIPTIONS	AG /	AL (%)	AS	B	BA	ÐI	CA(Z)	CD	CO	CR	CU	FE(%)	K(Z)	LA	MG(Z)	MN	ND I	NA(%)	NI	P	PB	SB	SN	SR	T1(Z)	U.	٧	H	Y	ZN
222222	222223		********	222233																												
301 A-	1	79101	.4	. 26	20	<2	40	(3	. 53	1	4	83	11	1.30	.11	10	.11	202	3	.08	8	210	4	()	(20	104	.02	(10	13	(10	3.	33
301 A-	2	79102	.2	. 39	15	<2	35	(5	. 34	(1	3	136	14	1.12	.17	(10	.10	362	6	.09	8	160	10	0	(20	15	.01	(10	13	20	3.	26
301 A-	3	79103	. 8	.44	25	(2	60	(5	1.10	1	4	141	18	1.70	.16	10	.18	1202	10	.09	13	350	24	5	<20	189	<.01	10	26	(10	8:	46
301 A-	4	79104	1.4	.71	25	<2	160	<5	.72	2	5	100	31	1.52	.41	10	.17	546	5	. 16	9	240	- 14	5	(20	212	.01	20	14	10	5	54
301 A-	5	79105	4.0	.82	20	<2	190	5	1.18	1	4	102	22	1.33	.38	10	.10	535	7	.27	9	220	28	5	<20	262	<.01	20	13	30	5	58
301 A-	6	79106	2.6	.74	30	<2	100	10	1.25	2	6	102	33	2.07	.13	10	.12	865	7	.05	14	240	30	5	<20	119	< .01	30	17	<16	9	99
301 A-	1	79107	9.6	.52	60	<2	75	10	2.64	5	4	125	19	1.54	.09	10	.13	1133	10	.04	9	100	196	5	<20	334	(.01	30	6	10	6	175
301 A-	8	79108 😪	٢.2	.29	355	(2	40	70	.13	110	(1	93	1883	4.60	. 16	<10	.03	408	8	.05	4	1030	>10000	1865	3120	139	(.01	30	5	90	4	3537
301 A-	9	79109	11.4	.41	85	(2	85	<5	.75	5	7	124	80	2.96	.19	10	.15	485	9	.06	12	370	1284	20	20	109	.01	20	14	(10	7	309
301 A-	10	79110	11.6	.32	105	<2	95	(5	.74	4	1	107	44	3.12	.14	10	.06	498	10	.06	10	290	568	20	60	113	(.01	10	10	(10	6	228
301 A-	11	79111	21.4	. 39	130	(2	75	(5	. 25	8	6	128	112	2.69	. 18	10	.06	758	11	.07	9	220	746	25	300	97	<.01	20	8	10	5	381
301 4-	12	79112	16.6	.35	70	(2	80	(5	. 32	29	5	143	243	1.93	.12	(10	.03	1344	10	.05	10	230	594	5	280	121	(.01	20	.6	30	5	1333
301 4-	13	79113	1.0	.47	35	12	70	(5	. 19	1	5	113	28	1.64	.09	10	.04	962	10	.04	13	190	32	(5	(20	6B	(.01	10	11	(10	7	325
201 4-	14	79114	109.4	- 05	570	12	25	5	. 61	513	ā	202	1897	5.17	.03	(10	6.01	88	30	.05	4	1540	9494	155	1720	88	(.0)	30	2	710	4	>10000
301 A.	15	79115	21 4	.03	115	14	170	/5	10	210	2	123	44	1 20	19	(10	03	591	11	.05	Å	160	732	20	120	52	0.01	20	3	20	,	957
301 A-	12	73115	21.7		113	17	195	20	- 10 SQ	23	3	104	10	2 25	20	-/10	01	224	12	11	Ġ	90	226	Š	(20	125	(0)	20	Š	10	2	177
301 A-	10	/3116	20.4	. 11		12	13.1	20	• JO	3	-	00	10	1.33	.20	/10	/ //	244	0	07		40	250	/5	/20	115	/ 01	20	5	/10	Ĩ	20
301 A-	17	19111	.2	. 16	2	12	19	()	.02		4	38	1		.00	10	1.01	175			,	40	0 /	\J /c	120	110	7 01	30	ل د	(10		20
301 A-	18	79118	.4	.20	5	\ 2	105	<5	.01	Ω	3	100		1.14	.12	(10	(.01	8/7	1	.08	þ	40	6	(3	(20	82	(101	20	4	<10	1	11

NOTE: < = LESS THAN

CC: RON WELLS KAMLOOPS, B.C.

FAX

ECO-TECH LABORATORIES LTD. DOUG HOWARD B.C. CERTIFIED ASSAYER

SC89/LAC1

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JUNE 27, 1989

CERTIFICATE OF ANALYSIS ETK 89-301B

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: DARREL JOHNSON

SAMPLE IDENTIFICATION: 18 ROCK samples received JUNE 15, 1989 PROJECT: 1010 - 890020 SHIPMENT: 1010 PG WHOLE ROCK ANALYSIS TO FOLLOW

ET#		Description	AG (g/t)	PB (%)	ZN (%)	SN (%)	SB (%)
====== 301 - 301 -	==== 8 14	79108 79114	 88.5	13.65 .69	2.12	.58 .13	.17

ÉCO-TECH LABORATORIES LTD. DOUG HOWARD B.C. CERTIFIED ASSAYER

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC89/LAC1

1,

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JUNE 29, 1989

CERTIFICATE OF ANALYSIS ETK 89-301A

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: DARREL JOHNSON

SAMPLE IDENTIFICATION: 18 ROCK samples received JUNE 15, 1989 -----PROJECT: 1010 - 830020 SHIPMENT: 1010 PS

ET#	Description	Si 02	A1203	Fe203	MgO	CaO	Na2O
301 - 18	79118	70.01	15.58	1.10	.02	.08	5.18

ET#		Description	K20	P205	Ti 02	MnO	L.O.I.
======	=====						*****************
301 -	18	79118	7.41	.02	.09	.08	.43

ÉCO-TECH LABORATORIES LTD. DOUG HOWARD B.C. CERTIFIED ASSAYER

CC: RON WELLS KAMLÖOPS, B.C. FAX: KAMLOOPS SC89/LAC1

• .*

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kambops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

JULY 5, 1989

CERTIFICATE OF ANALYSIS ETK 89-378

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: DARREL JOHNSON

SAMPLE IDENTIFICATION: 19 ROCK samples received JUNE 18, 1989 PROJECT: 1010 ICP TO FOLLOW

L T T			
E #) 		, uqq)
378 -	1	79120	
378 -	2	79121	15
378 -	Э	79122	10
378 -	4	79123	10
378 -	5	79124	10
378 -	6	79125	10
378 -	7	79126	15
378 -	8	79127	10
378 -	9	79128	15
378 -	10	79129	20
378 -	11	79130	20
378 -	12	79131	25
378 -	13	79132	35
-378 -	14	79133	15
378 -	15	79134	5
378 -	16	79135	10
378 -	17	79136	10
378 -	18	79137	15
378 -	19	79138	10
			Hauges Stoward

ECO-TECH LABORATORIES LTD. DOUG HOWARD B.C. Certified Assayer

cc: RON WELLS 101-2985 AIRPORT RD. KAMLOOPS, B.C. FAX: KAMLOOPS SC89/LAC2

CORDNA CORPORATION - ETK 89-378A

10041 EAST TRANS CANADA HWY. KAMLODPS, B.C. V2C 2J3 PHONE - 604-573-5700 FAI - 604-573-4557

JULY 17, 1989

;

VALUES IN PPN UNLESS OTHERWISE REPORTED

1440, 800 WEST PENDER STRETT VANCOUVER, B.C. VGC 2V6 ATTENTION: D. JOHNSOM

PRDJECT #1010

19 ROCK SAMPLES RECEIVED JUNE 19, 1989

ETK	DESC	RIPTIONS	_ AG A	L(I)	AS	B	BA	91	CA(Z)	CD	CO	CR	CU	FE(1)	K(Z)	LAI	NG(Z)	MN	NO	NA(Z)	NI	P	P8	SD	511	SR	TI (1)	U	V	¥	Y	28
378 A-	1	79120	.4	.13	10	12	30	 (5	.37	1	2	215	11	.60	.07	<10	.07	132	15	.04	5	20	 6	(5	(20	27	<.01	10	2	<10	1	11
378 A-	2	79121	.6	.21	25	8	50	(5	.44	(1	4	167	19	1.43	.11	(10	.08	454	13	.08	8	120	6	<5	<20	48	(.01 -	10	8	(10	3	12
378 A-	3	79122	.4	.11	5	10	20	<5	.32	8	2	244	11	.52	.07	(10	.07	130	19	.04	6	20	2	(5	<20	24	<.01	30	3	<10	1	236
378 A-	4	79123	.2	.05	(5	8	305	<5	.36	(1	3	259	18	.73	.03	<10	.09	175	22	.04	8	190	<2	<5	<20	41	(.01)	20	2	(10	1	11
378 A-	5	79124	.4	.13	10	10	55	<\$	1.63	1	3	20 5	- 14	.92	.07	<10	.15	443	14	.06	7	160	4	<\$	<20	113	.01	20	8	<10	4	33 .
378 A-	6	79125	.2	. Ó5	5	2	10	<5	. 16	(1	2	158	21	. 58	.02	(10	.07	157	13	.04	5	20	2	<5	<20	13	<.01	10	1	<10	2	3
378 A-	7	79126	.4	.16	(5	2	25	<5	5.19	< <u>t</u> -	6	144 .	- 18	1.59	.02	(10	. 46	882	8	.03	10	80	8	<5	<20	197	<.01	30	2	<10	8	12
378 A-	8	79127	.8	.33	45	2	70	<5	3.76	(1	6	92	26	1.89	.20	<10	.33	1740	- 4	.11	10	200	8	<5	<20	335	<.01	30	13	10	10	16
378 A-	9	79128	18.8	.06	10	18	15	100	.54	(1	1	174	9	.52	.05	(10	.07	85	11	.04	4	20	54	<5	<20	25	<.01	10	2	(10	1	26
378 A-	10	79129	102. B	.15	245	12	20	50	1.09	142	1	122	590	2.81	.12	(10	. 18 -	1276	- 4	.03	5	400	8016	<5	<20	98	(.01	30	3	180	2	6244
378 A-	11	79130	5.4	.09	385	8	10	<5	.62	174	6	139	72	4.38	.09	(10	.13	1597	(1	.03	9	160	423	<5	<20	61	<.01	10	1	220	3,	,7745
378 A-	12	791 31	88.8	.36	435	4	20	40	1.15	68	2	125	408	3.86	.45	(10	.06	50	4	. 04	5	280	8816	(5	<20	86	<.01	(10	1	130	2	4043
378 🗛 -	13	79132	41.0	.36	625	<2	10	S	3.40	>1000	3	99	811	4.99	.42	(10	.52	>10000	(1	.04	1	800	2064	<5	20	160	<.01	90	4	1650	131.	0E+0
378 A-	14	79133	151.8	. 15	315	2	60	35	. 81	22	1	237	296	2.30	.17	(10	.06	75	10	.03	3	170	>10000	20	<20	129	<.01	20	2	10	2	927
378 A-	15	79134	1.2	.87	20	6	250	(5	3.09	1	4	134	26	1.78	.47	(10	.13	. 830	1	.20	9	90	50	<5	(20	302	<.01	20	16	(10	8	112
378 A-	16	79135	1.0	.75	10	4	190	<5	1.49	2	5	124	29	1.50	. 32	(10	. 18	464	8	.17	10	300	36	(5	<20	299	(.01	10	20	(10	8	59
378 A-	17	79136	.8	. 29	20	6	55	<5	. 60	2	4	150	23	1.70	. 10	<10	.11	262	8	.05	8	130	6	<5	(20	65	(.01	30	10	(10	2	62
378 A-	19	79137	.4	.19	5	10	40	(5	.32	1	5	94	14	1.51	.05	(10	.12	737	5	.04	9	250	6	(5	<20	76	(.01	10	14	(10	4	36
378 🗛 -	19	79138	.6	.18	10	8	40	(5	. 26	2	3	113	15	1.07	.06	(10	.10	445	6	.05	S	80	8	(5	(20	71	<.01	20	6	(10	1	28

NOTE: < = LESS THAN

CC: RON WELLS KANLGOPS, B.C. FAX SC89/LAC2

.

ECO-TECH LABORATORIES LTD. DOUG HOWARD D.C. CERTIFIED ASSAYER

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 6, 1989

Au

CÉRTIFICATE OF ANALYSIS ETK 89-685

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: DARREL JOHNSON

SAMPLE IDENTIFICATION: 5 ROCK CHIP samples received August 31, 1989 PROJECT: 1010 P.O. NO.: 89-030

ET#		Description	(dad)
685 -	:====== 1	SA 2 ROCK	40
685 -	2	SA 6 ROCK	35
685 -	З	SA 7 ROCK	40
685 -	4	SA 7 R	30
685	5	SA 1 ROCK	25

Thrack 6 cm/4

ÉCO-TECH LABORATURIES LTD. DOUG HOWARD B.C. Certified Assayer

CC: RUN WELLS FAX: KAMLOOPS SC89/LAC2 Eco-Tech Laboratories Ltd. 10041 E. Trans Canada Hwy. Kamloops, B.C. V2C 2J3 September 21, 1989

CORONA CORPORATION 1440 - 800 West Pender St. Vancoever, B.C. VGC 2V6 ATTN: Darrel Johnson

CERTIFICATE OF AMALYSIIS ETK 89-685A 5 Rock Chip Samples, received August 31/89 Project: 1010 P.O. No: 89-030 All values in PPM unless otherwise reported

32352223	*************			******	223232	4 2====	======																									
ETK	DESCRIPTION	Aq	AIZ	As	R	Ra	Ri	 6.7	с. Гл	 C-		····				*******	******			221292						1242222						\$
===========		*******		222222				L94 12222222	60 	L0	L.F	LQ	rei	K2	La	ngi	Na	No	NaX	Ni	P	Pb	50	5n	Sr	Til	U	V	l l	1 1	Le	3
685.1	SA 2 ROCK	46.5	0.26	12	20	47	512	A 54	/ 4		********					11111222		222131		*****	3201111	2225523	222222		2223355		;#242222;		;======		;======	:
685.2	SA 6 ROCK	24	0 12	20	17	77	113	0.34		1	231	13	0.49	0.23	< 10	0.02	84	14	0.01	6	- 14	302	< 5	{ 20	62	<.01	< 10	1	< 10	- < 1	76	
685 7	CA 7 0000		V. 12		13	23	< 2	0.01	(1	1	239	5	0.89	0.09	< 10	(.01	42	19	0.02	5	18	16	65	< 20	29	(.01	< 10	2	(10	<1 >	21	
205 4	JA 7 KULA		V.Z3	< 5	15	35	7	7.51	<1	3	178	13	1.05	0.15	(10	0.31	988	11	<.01	5	60	15	39	(20	460	0.02	(10	12	(10	7	24	
P.LD0	54 / X	1.2	0.43	21	17	68	6	0.50	(1	2	231	11	0.73	0 36	Z 1A	0.05	205	15	0 02	č	22	22	6	/ 20	96	/ 01	/ 10	5	/ 10		25	
80.2	SA I ROEK	۲.2	0.36	9	8	25	< 5	0.18	21		200	10	1 04	A 10	1 10	4.10	303	15	0.03		23	£.J		1 20	70	1.01	10	3	10	· · ·	30	
					2				• •	-	203	10	1.39	V.18	C 10	v. 10	104	10	V. 0I	9.	130	- 39	()	(20	32	(.01	(10	6	< 10	I		

NOTE: < = Less than

cc: Ron Wells FAI: Kamloops

ECO-TECH LABORATORIES LTD. DOUG HOMARD B.C. CERTIFIED ASSAYER

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

SEPTEMBER 7, 1989

A . .

CERTIFICATE OF ANALYSIS ETK 89-686

CORONA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. V6C 2V6

ATTENTION: DARREL JOHNSON

SAMPLE IDENTIFICATION: 14 SILT samples received August 31, 1989 ----- PROJECT: 1010(SA) P.O. ND.: 89-030

ËT#			 	Desc	crip	ot i	ion		 		(p	pb)	
		==== 1 2 3 4 5 6 7 8 9 10 11 12 13		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 12 34 5 8 9 10 11 12 13 14 15	A A A A A A A A A A A A A A A A A A A	08	B				5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
686	~	14		SA	16	Α						5.	•

> NOTE: < = less than</pre>

ECO-TÉCH LABORATORIES LTD.

DOUG HOWARD B.C. Certified Assayer

CC: RON WELLS KAMLOOPS, B.C. FAX: KAMLOOPS SC89/LAC2 Eco-Tech Laboratories Ltd. 10041 E. Trans Canada Hwy. Kamloops, B.C. V2C 2J3 September 18, 1909 CORUMA COBPORATION 1440 - 800 M. Pender St. Vancouver, B.C. VGC 2V6 ATTM: Barrel Johnson CENTIFICATE OF AMALYSIS ETK 89-686A 14 Silt Samples, received August 31/89 Project: 1010 (SA) P.D. No: 89-030 All values in PPM unless otherwise reported

\$285551																															
ETK	DESCRIPTION	Ag	ALZ	As	8	J a	Bi	تد	Cđ	Co	Cr	Ce	FeZ	KZ.	La	Naz	Mn	ňo	KaZ	Ni	P	26	Sb	5e	Sr	TiZ	U	۷	N	. 7	Zø
******		*****	******		******								2222533		*******														*******		
685.1	SAIA	۲.2	0.53	< 5	7	38	(5	0.33	< 1	8	13	9	1.21	0.13	C 10	0.33	267	<1	<.01	11	401	7	< 5	(20	50	0.04	< 10	18	(10	4	29
686.2	SA 2 A	<.2	0.56	10	9	40	12	0.32	< 1	7	14	9	1.26	0.14	< 10	0.34	242	(1	(.01	10	450	6	9	(20	50	0.04	< 10	19	< 10	4 -	32
686.3	SA 3 A	۲.2	0.54	(5	8	32	(5	0.32	- C I	· 8	13	9	1.28	0.13	(10	0.33	235	ć i	. (.01	11	465	6	5	(20	39	0.04	°C 10 .	18	(10	5	30
686.4	5A 4 A	(.2	0.50	(5	6 ·	34	(5	0.34	ĊĨ	8	12	9	1.18	0.12	< 10	0.30	271	či	6.01		398	8	13	(20	47	0.04	< 10	17	< 10	Š	30
686.5	SA 5 A	(.2	0.48	< 5	10	30	6	8.35	i i	â	12	é	1.28	0.13	< 10	A 30	197	Ż	< 01	11	491	-	(5	(20	24	0.04	(10	16	< 10	4	27
686.6	SA BAOBB	(.2	0.72	6	9	46	< 5	4.37	èi	10	21		1 66	0.16	15	A 45	200	2.1	/ 01	10	574	10		< 20	49	A 06	< 10	27	(10	6	38
686.7	SA 9 A	(.7	0.76	(5	10	45		0 47	2.	11	22	12	1 70	A 10	17	A 40	370		/ 61	10	576	10	7	/ 20	50	A 0C	/ 10	x	/ 10	ž	49
686.8	SA 10 A	()	0.91	15		44	ć	A 47		11	22	13	1.77	4.10	17	V. 10	393		1.01	10	J10 (50	10	2	(20		V . VG	1 10	10 20	< 1V / 1A	7	47
COC 0		~ ~	A 77				0	V. 1/	N I	12	25	14	1.73	V. 20	10	4.31	303	C I	1.01	17	VC0	7		1 20	43	V. VQ	10	20	(10	-	44
000.3	DA LL A	0.2	0.77	13	10	43	10	9.55	< E	12	22	15	1.97	0.19	17	0.49	313	< 1	<.01	20	625	11	10	(20)	59	Q.05	(10	24	< 10	6	52
686.10	SA 12 A	(.2	0.84	(5	9	46	6	0.58	< 1	13	23	16	2.07	0.22	19	0.55	331	< 1	<.01	22	588	12	(5	(20	60	0.06	< 10	26	< 10	7	54
686.11	SA 13 A	۲.2	0.72	< 5	10	39	12	0.53	(1	12	20	15	1.82	0.17	17 -	0.46	296	(1	10.5	20	530	10	6	(20	59	0.05	(10	73	- 10	6	51
686.12	SA 14 A	(.2	0.91	(5	10	43	(5	0.45	(I	ii ii	22	16	1.97	0.20	17	0.49	205	či	6.01	15	572	7	65	(20	ü	0.05	< 10	25	< 10	7	65
686.13	SA 15 A	02	0.89	15	14	41	10	0.02		17	24	17	2 07	A 17	10	A 50	343		/ 01	26	600	á		1 20	()	A 45	/ 10	×	/ 10	7	*
606 14	SA IC A	/ 2	A 07			10		0.33		14	47		2.07	0.17	10	V. 30	341	V I	(101	24	600	2		1 20	02	V. UJ	1 10	10		<u>'</u>	30
000.11	JNN 10 A	1.2	V. 7/	()	11	43	()	0.41	(1	13	27	1/	2.19	0.19	18	0.62	363	<1	<.01	20	6//	1	(2	(Z0	23	0.06	(10	26	(10	1	- +1

NOTE: C = Less than

cc: Ron Hells Kanloops, B.C. FAX: Kanloops

ECO-TECH LABORATORIES LTD.

DOUG HOMARD B.C. CERTIFIED ASSAYER

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamloops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

September 6, 1989

CERTIFICATE OF ANALYSIS ETK 89-687

CORDNA CORPORATION #1440, 800 WEST PENDER STREET VANCOUVER, B.C. VEC 2VE

ATTENTION: DARREL JOHNSON

ET#	Descript	tion (ppb)	
=======			*******
687 -	1 SA 1 E	3 10	
687 -	2 SA 2 B	3 5	
687 -	3 SA 3 B	3 5	
687 -	4 SA 4 B	3 5	
687 -	5 SA 5 B	3 5	
687 -	6 SA 7 B	3 5	
687 -	7 5A 9 E	3 <5	
687 -	8 SA 10-E	3 5	
687 -	9 SA 11 E	3 5	
687 -	10 SA 12 B	3 5	
687 -	11 54 13 6	-	
E87 -	12 54 14 6	3 5	
E87 -	13 SA 15 F	- R 5	
E87 -	14 SA 16 F		
Surface of the	ան է հուքք է անցեստաք մա	-	

Note: < = less than

CC: RON WELLS KAMLOOPS, S.C. FAX: KAMLOOPS SD89/LAC1

ECO-TECH LABORATORIES LTD.

ALL

DOUG HOWARD B.C. CERTIFIED ASSAYER

Eco-Tech Laboratories Ltd. 10041 E. Trans Canada Hwy. Kanloops, B.C. V2C 2J3 September 19, 1989

COROMA CORPORATION 1440 - 800 W. Pender St. Vancouver, D.C. V6C 2V6 ATTN: Barrel Johnson CERTIFICATE OF ANALYSIS ETK 89-687A 14 Pan Con Samples, received August 31/89 Project: 1010 SA P.D. No: 89 - 030 All values in PPH unless otherwise reported

EIK	DESCRIPTION	Ag.	A1 Z		******* B	ressea Ba	====== Bi	Cal	 Cd	со Со	 Cr	Cu	FeZ		La	nssesses Ngl	n. Ka	No	naz Naz	ni Ni	 P	 Pb	55 SP	50-50	Sr.	Ti z :		V	¥	Y	20
*******				*******			******	*======									*********						******			*******	3122535	******		******	***=
687.1	SA 1 B	۲.2	0.72	15	5	76	< 5	0.53	<1	10	118	11	1.86	0.14	16	0.47	349	6	0.02	12	674	6	8	(· 20	86	0.06	< 10	30	< 10	6	31
687.2	5A 2 B	۲.2	0.67	(5	5	60	(5	0.51	(1	10	113	n	1.76	0.12	15	0.45	318	6	0.02	14	697	6	15	〈 20	84	0.06	< 10	. 29	14	6	29
687.3	5A 3 B	۲.2	0.64	19	8	57	12	0.45	(1	10	107	10	1.73	0.13	14	0.42	313	5	0.02	13	573	5	16	{ 20	73	0.05	(10	28	11	6	29
687.4	SA 4 B	٢.2	0.69	31	7	66	(5	0.44	<1	10	125	11	1.72	0.13	15	0.44	340	5	0.02	13	607	5	20	{ 20	88	0.06	< 10	28	< 10	5	31
687.5	5A 5 B	۲.2	0.62	22	6	47	(5	0.70	(1	12	112	11	1.72	0.14	13	0.40	322	7	0.02	13	527	6	< 5	(20	66	0.05	(10	25	11	5	29
687.6	SA 7 B	٢.2	0.67	< 5	7	52	8	0.31	< 1	11	157	12	1.80	0.15	14	0.39	336	6	0.02	19	460	6	13	〈 20	60	0.05	< 10	27	< 10	5	31
687.7	SA 98	۲.2	0.64	24	8	41	18	0.34	< 1	11	118	11	1.77	0.16	14	0.37	319	7	0.01	15	406	5	< 5	(20	48	0.04	K 10	22	< 10	4	30
687.8	SA 10 B	٢.2	0.64	22	7	43	9	0.51	< 1	11	130	13	1.91	0.16	- 14	0.36	332	6	0.01	16	365	1	< 5	{ 20	SI	0.04	< 10	21	< 10	4	31
687.9	SA 11 B	٢.2	0.63	9	8	59	19	0.51	< 1	10	156	12	1.82	0.17	13	0.36	350	10	0.01	15	360	12	< 5	21	62	0.04	(10	21	< 10	4	33
687.10	SA 12 B	۲.2	0.61	(5	9	51	8	0.59	<.1	9	109	11	1.72	0.17	12	0.35	303	5	0.01	13	368	6	(5	(20	58	0.04	< 10	20	< 10	4	32
687.11	SA 13 B	(.2	0.62	45	9	66	11	0.60	(1	10	151	12	1.85	0.17	• 13	0.37	328	8	0.01	15	389	10	8	〈 20	63	0.04	(10	21	< 10	4	34
687.12	SA 14 B	۲.2	1.02	27	4	86	9	2.53	< 1	13	111	26	2.39	0.30	19	0.65	592	5	0.01	19	430	6	9	{ 20	135	0.05	K 10	25	< 10	6	80
687.13	SA 15 B	۲.2	0.94	< 5	7	52	(5	1.19	<1	13	123	18	2.54	0.24	16	0.61	393	5	0.01	21	390	5	5	{ 20	71	0.04	(10	26	< 10	5	34
687.14	SA 16 B	(.2	1.03	20	7	44	(5	1.03	C I	14	122	19	2.71	0.74	17	0.67	415	5	0.01	23	493	5	17	(20	68	0.05	< 10	30	(10	5	37

MOTE: < = less than

cc: Ron Wells

÷

t

Kamloops, B.C. FAX: Kamloops

ECD-TECH LABORATORIES LTD. DOUG HOMARD B.C. CERTIFIED ASSAYER

APPENDIX D SAMPLE DESCRIPTIONS

TABLE 2 PLATINUM GIANT SAMPLING

Taken: June 14, 1989 To: Eco Tech June 15, 1989

SAMPLE CORONA	NO. ECO TECH	LOCATION	CHIP SAMPLE (m)	DESCRIPTION
1.0	79101 79102	0E 12.5S	REP. 1.0	Highly siliceous, parting with coarse py & elongate tabular wolframite xstal? Silicified white/grey coarse grained altered alb? granite
2.1	79103	0E 25.0S	1.25	Similar to above linear fracture sets with sulfides.
2.2	79104	5 f	1.70	As above & gtz vein (milky) dissem & fracture control sulfide.
2.3	79105	8 1	1.25	As above, much qtz veining.
3.1	79106	Trench at 1+85E	2.0	Carbonate metaseds & conc. qtz minor py
3.2	79107	8	2.2	At contact between metaseds and rubbly sil greisen
3.3	79108	a	2.0	Rubbly greisen & qtz & galena vein
3.4	79109	. 9	2.0	Mixed micaceous sed & greisen (faulted in block?)
3.5	79110	*	2.0	Contact of above with greisen.
3.6	79111	n	2.0	Rubbly greisen & gtz & gal & sph.
3.7	79112		2.0	8 8
3.8	79113	8	1.5	Milky qtz veins in highly fractured silicified sparse sulfides.
4.1	79114	2+10E 0+25S	mineralized qtz vein boulder	Qtz cutting sil/greisen 5% gal 5% patchy dissem. py
5.1	79115	Miller Adit	2.0 chip	Above adit qtz veins & sil metaseds? seams of fine gal?
5.2	79116	" Dump	grab	Qtz vein material with clots of coarse py
		Other road		
6.1 .	79117	500W 200N	character	Albitic granite-silicified. ICP
6.2	79118	۹ ۹	8	Whole Rock Analysis

TABLE 3 PLATINUM GIANT SAMPLING

Taken: June 14, 1989 To: Eco Tech June 27, 1989

SAMPLE CORONA	NO. ECO TECH	LOCATION	DESCRIPTION
1.1	79120	Bend in road above Miller Adit	White qtz vein in greisen, float.
1.2	79121	N side of road at grid coor. 109S, 081E	Dark grey qtz in greisen, py, float
1.3	79122	N side of road at 370m from BL	White qtz in greisen. St. 034 deg., dip 56 deg. E.
1.4	79123	N side of road at 385m from BL	Grey/opaque qtz vein in greisen. St. 124 deg., dip 56 deg.
1.5	79124	N side of road at 475m from BL	Grey/translucent qtz vein in greisen. F.g. diss. py, high S.G.
1.6	79125	N side of road at 525m from BL	Same as 79124.
1.7	79126	N side of road at 665m from BL	White qtz vein float in greisen, f.g. diss py.
1.8	79127	N side of road at 15W, 172S	Grey qtz vein float, py blebs to 3mm.
2.1	79128	E side of trench road at 121E, 100S	Rusty/white brecciated qtz float.
2.2	79129	Bench at Tr.2 196E, 010S	Dump material of qtz & py, cpy, gal, sphl. 70% in bag.
2.3	79130	E side of trench road 207E, 003S	Qtz vein cutting greisen float.
2.4	79131	E side of trench road 212E, 003N	White to grey qtz float, py, cpy.
3.1	79132	188E, 000	Qtz float veins & gal, cpy, py cutting greisn.
3.2	79133	179E,000	Qtz float & diss./bleb, cpy, py, gal.
4.1	79134	Tr. 5	Grey /translucent qtz vein float, f.g. diss. py.
4.2	79135	Tr. 5	Sil'd greisen, fine qtz stringers, blebby py, sericite.
4.3	79136	Tr. 6	Qtz breccia zones in greisen. St. 106 deg. Dip 76 N.
4.4	79137	Tr. 6	Sil'd greisen with rusty qtz veins.
4.5	79138	Tr. 4	Highly silicified, greisen, qtz veins, sericite.

APPENDIX E LARGE FIGURES AND PLANS

GEOLOG ASSESS

 \bigcap

GICAL BR SMENTRE	ANCH PORT
7 X	9126
ONA CORPO	RATION
PLING PRO R ADIT AR	GRAM EA
PLING PRO R ADIT AR	GRAM EA PROJECT NO :

٠

