GEOLOGICAL, GEOCHEMICAL AND GEOPHYSICAL REPORT

on the

BELL AND JUNIPER 1 TO 6 MINERAL CLAIMS

and

JUNIPER (Lot 1604) AND BULLION FR. (Lot 3450) REV CG'S

Olalla Area Osoyoos Mining Division

82E-4W, 5W (49°15' N. Lat.,119°49' W. Long.)

Ĩ.

for	LOG NO:	0509	RD
	ACTION	-	
GRANT F. CROOKER Box 404 Keremeos, B.C. VOX 1NO (OWNER and OPERATOR)	FILE NO:		
ру		A N C H P O R T	
GRANT F. CROOKER, B.Sc.,F CONSULTING GEOLOGIS		ALBR NTRE	5
April, 1990		L O G I C E S S M E	0,
		G E O A S S	

TABLE OF CONTENTS

		Page
	SUMMARY AND RECOMMENDATIONS	1
1.0	INTRODUCTION	3
	 1.1 General 1.2 Location and Access 1.3 Physiography 1.4 Property and Claim Status 1.5 Area and Property History 	3 3 4 4
2.0	EXPLORATION PROCEDURE	8
3.0	GEOLOGY AND MINERALIZATION	10
	3.1 Regional Geology 3.2 Claim Geology 3.3 Mineralization	10 11 12
4.0	GEOCHEMISTRY	13
	4.1 Soil Geochemistry	13
5.0	GEOPHYSICS	15
	5.1 Magnetometer Survey	15
6.0	CONCLUSIONS AND RECOMMENDATIONS	16
7.0	REFERENCES	17
8.0	CERTIFICATE OF QUALIFICATION	19

APPENDICES

Appendix I - Certificates of Analysis Appendix II - Geophysical Equipment Specifications Appendix III - Magnetic Data Appendix IV - Cost Statement

. .

ILLUSTRATIONS

FIGURE		PAGE
1.	Location Map	follows page 1
2.	Claim Map	follows page 4
3.	Property Geology	follows page 10
4.	Geology	pocket
5.	Geology Adit E	follows page 11
6.	Geology Adit F	follows page 12
7.	Soil Geochemistry, Ag & As	pocket
8.	Soil Geochemistry, Cu & Pb	pocket
9.	Magnetometer Survey	pocket

ź.

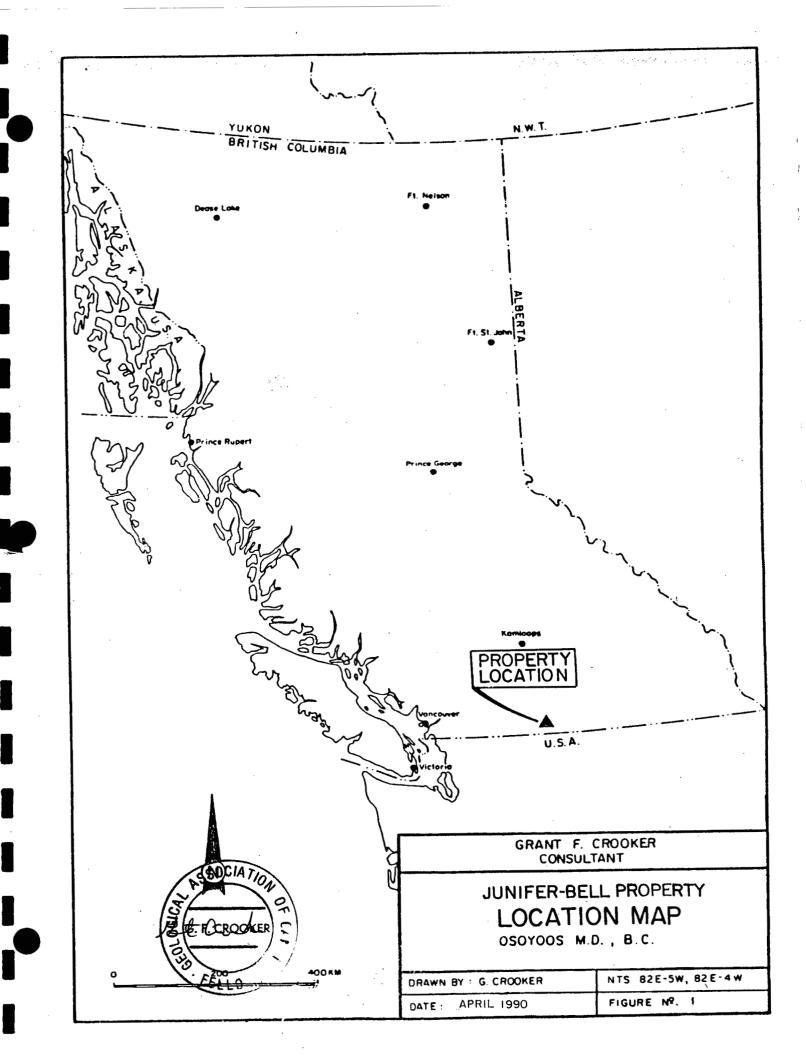
SUMMARY AND RECOMMENDATIONS

The Juniper-Bell Property is located approximately five kilometers north of Keremeos at Olalla B.C. and is owned by Grant Crooker of P.O. Box 404, Keremeos, B.C. It consists of one modified grid claim (Bell), six two post claims (Juniper 1 to 6) and two Reverted Crown Grant's (Juniper Lot 1604, Bullion Fr Lot 3450).

The Olalla area has been the scene of exploration for base and precious metals since the late 1890's. A number of properties including the Shepard-Sunrise, Golconda, Something Good, Dolphin and Bullion have been actively explored since that time.

During the spring of 1990 the Juniper 5 and 6 claims and the Bullion Fr Reverted Crown Grant were acquired. These claims are located adjacent to the Bullion Property. Significant gold and silver values have been reported from skarn mineralization at the Bullion by a number of authors.

Previous work on the Bell Property has discovered a number of small showings with gold and silver values. Mineralization is related to skarns, shears and quartz veins. The highest assay values have been from 3 to 6 centimeter wide quartz veinlets which gave up to 0.324 oz/ton gold and 17.20 ozs/ton silver. Skarn mineralization on the Juniper Reverted Crown Grant has given values up to 0.084 oz/ton gold.


This program consisted of establishing a grid over the northeastern portion of the property in the vicinity of the Bullion Property. Geological mapping, prospecting, soil sampling, magnetometer surveying and surveying of two old adits were carried out.

The 1990 exploration program was successful in outlining several areas which contain anomalous gold values as well as a number of small silver, arsenic, copper and lead soil geochemical anomalies.

A number of 5 to 25 centimeter wide quartz veins containing pyrite, chalcopyrite, galena, azurite and malachite were found. Rock sampling of these veins gave weakly anomalous gold values up to 560 ppb and silver values up to 29.4 ppm.

The most significant mineralization appears to be a magnetite rich skarn which has been silicified and carbonate altered. It occurs at line 11700E & 10175N, and is poorly exposed and of unknown extent. Rock sampling gave values up to 1030 ppb (0.03 oz/ton) gold.

1

Most of the geochemical anomalies appear to be caused by 5 to 25 centimeter wide quartz veins containing chalcopyrite and galena. However silver values were anomalous in the soil along line 11700E and no cause is evident for these anomalous samples.

Recommendations are to continue the work program on the Juniper-Bell Property with particuliar emphasis on 1) the area around the silicified and carbonate altered skarn zone and 2) the West Adit near the Bullion Property.

The work program should include completing the grid, magnetometer survey, soil sampling, geological mapping and prospecting on the property. In addition, a VLF-EM survey should be carried out.

SOCIAT Bonitted, Respect c., F.G.A.C., Gran Consu Ged **Solist** LOW

2

1.0 INTRODUCTION

1.1 GENERAL

Work was carried out on the Juniper-Bell Property from April 2nd to 21st 1990, by Grant Crooker Geologist, and Lee Mollison, field assistant.

The Bullion Fr Reverted Crown Grant and the Juniper # 5 and Juniper # 6 two post claims were acquired in the spring of 1990. These claims are located in the vicinity of the Bullion Property at the northwest corner of the Bell claim. The 1990 work program concentrated on this portion of the property.

A grid was established in the northwest corner of the Bell claim and geological mapping, prospecting, soil sampling and a magnetometer survey were carried out over the grid.

1.2 LOCATION AND ACCESS

The property (Figure 1) is located at Olalla, 5 kilometers north of Keremeos in southern British Columbia. The property lies between 49°14' and 49°16'north latitude and 119°48' and 119°50' west longitude (NTS 82E-4W, 5W).

Access to the property is via Highway 3A, which bisects the property. Several logging and mining roads give good access to various areas of the property.

1.3 PHYSIOGRAPHY

The property covers the bottom of the Keremeos Creek Valley and extends up the hillsides on the east and west sides of the valley. Elevation varies from 500 to 1000 meters above sea level and topography varies from flat on the valley bottom to steep, impassable cliffs on the valley sides. A number of areas are extremely precipitous.

Keremeos Creek flows in a southerly direction through the claims. Vegetation consists of sage-brush and-bunch grass with scattered fir and pine trees.

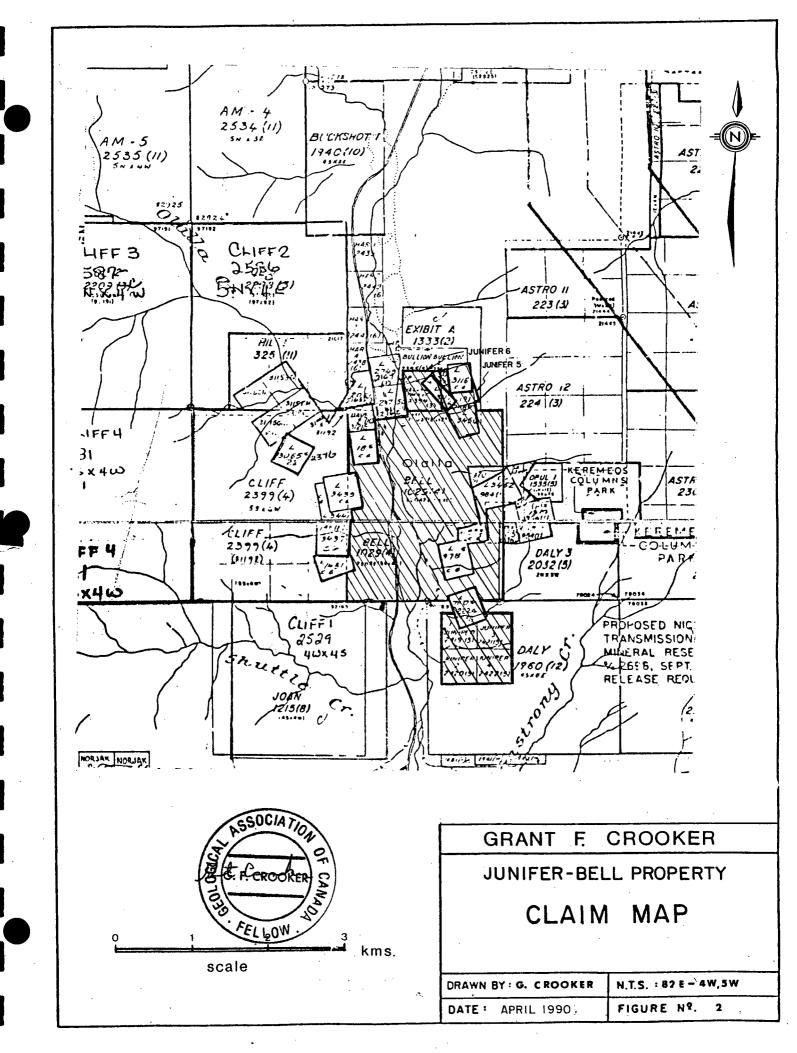
1.4 PROPERTY AND CLAIM STATUS

The Juniper-Bell Property (Figure 2) is owned by Grant Crooker of Keremeos, B.C..

The property consists of one modified grid claim (Bell), six two post claims (Juniper 1 to 6) and two reverted Crown Grant's (Juniper Lot 1604, Bullion Fr Lot 3450). The property is located in the Osoyoos Mining Division.

Claim		Units	Mining Division	Record No.	Record Date	Expiry Date
Bell		20	Osoyoos	1029(4)	04/24/80	04/24/92*
Juniper		1	Osoyoos	2224(5)	05/13/85	05/13/96*
Juniper	1	1	Osoyoos	2419(5)	05/12/86	05/12/92*
Juniper	2	1	Osoyoos	2420(5)	05/12/86	05/12/92*
Juniper	3	1	Osoyoos	2421(5)	05/12/86	05/12/92*
Juniper	4	1	Osoyoos	2422(5)	05/12/86	05/12/92*
Juniper	5	1	Osoyoos	3366(4)	04/04/90	04/04/95*
Juniper	6	1	Osoyoos	3367(4)	04/04/90	04/04/95*
Bullion	Fr	1	Osoyoos	3353(3)	03/15/90	03/15/93

* Upon acceptance of this report.


1.5 AREA AND PROPERTY HISTORY

The property is located in the Olalla Gold Camp in southern British Columbia (Figure 3). Mining activity has been carried out in this area since the 1880's. The property is located 20 kilometers southeast of Hedley, where Mascot Gold Mines Limited began production early in 1987 with ore reserves of 7,200,000 tons grading 0.15 ounces per ton gold and containing 1,000,000 ounces of recoverable gold. Mining will be by open pit methods.

A number of mining properties have been explored in the Olalla area since the 1880's. These include the Bullion, Dolphin, Golconda, Something Good and Shepard-Sunrise. Exploration has been oriented towards copper, molybdenum, silver and gold. Goldcliff Resource Corporation has been carrying out exploration Cliff Claims immediately east of the Bell Claim since on the 1986. Exploration has been directed towards gold with encouraging results.

On the Something Good Property (Lot 1451, Minfile 82E-SW-014) immediately west of the Bell Claim a carbonate shear and breccia zone occurs in argillacious and cherty sediments near the contact of a large pyroxenite body. Calcite, quartz, and pyrite occur within the zone.

Ń

Three adits were driven on the zone in 1936-1937. The No. 1 adit feet ASL) was driven for 350 feet, and followed the (2541 110 feet of the adit footwall of the shear zone. The first a well defined breccia zone. Samples taken by the followed (M.S. resident geologist for the B.C. Dept. of mines in 1937 ranged from 0.05 ounces per ton gold over 54 inches to Hedley) 2.20 ounces per ton gold over 11 inches. Beyond this point the graphitic shear contained negligible gold values. The No. 3 adit (2342 feet ASL) was driven for 385 feet in the pyroxenite. Negligible gold values were encountered in the adit. Limited diamond drilling was also carried out, and some values were reported.

(Minfile 82E-SW-016) located one the Golconda Property On kilometer west of the Bell Property a shear zone up to five feet wide and made up of one or more slickensided and gouge filled fault planes cuts pyroxenite. A number of quartz lenses between and 60 feet long and 12 to 50 inches wide occur within the 30 These zones appear to occur at changes in attitude shear zone. The quartz is crudely banded and contains the structure. in pyrite, chalcopyrite, molybdenum, and minor galena. Values in gold and silver also occur within the structure.

Several adits follow the shear zone, which strikes south 56° east. Limited production has come from the property, and a small mill has operated several times.

The Shepard-Sunrise Property (Lot 18s, Minfile 82E-SW-015) located along the western boundary of the Bell Claim appears to have the most economically significant mineralization in the Olalla Camp. Several mineralized quartz veins on the property have been explored by trenching, diamond drilling and several adits.

The diamond drilling was carried out in two phases, the first between 1946 and 1948 by Hedley-Monarch Mines Ltd., and the second during 1961 and 1962 by Friday Mines Ltd.. The work has indicated ore reserves of 2177.28 tonnes of 0.99 ounces per ton gold and 2.50 ounces per ton silver. It has been reported that 300 tons of ore averaging 0.53 ounces per ton gold and 0.45 ounces per ton silver were shipped during the 1946-1948 period.

The mineralization appears to be related to the east-west striking Valley Fault. During drilling on the quartz veins, a gold bearing pyritic-silicious breccia zone was discovered. This breccia zone also appears to be related to the Valley Fault, and reported drill hole intersections are as follows:

5

D.H. No.	Intersection	Width	oz Au	oz Ag	Location
H-5	315.6'-354.7'	39.1'	0.056	0.14	Shepard-Sunrise
H-8	383.0'-391.1'	8.1'	0.330	1.08	Shepard-Sunrise
H-8	365.2'-400.7'	35.5'	0.110	0.35	Shepard-Sunrise
H-10	354.9'-360.1'	5.2'	0.063	0.25	Shepard-Sunrise
H-10	403.8'-411.7'	7.9'	0.139	0.53	Shepard-Sunrise

Some of these drill intersections are within 200 meters of the Bell Claim boundary, although the exact drill hole locations have been lost.

The only specific references to the area now covered by the Juniper-Bell Property are in the B.C. Department of Mines Annual Reports for 1899 and 1900. They report several open cuts and a 40 foot shaft in the vicinity of the Roadside Showing (108+00E, 83+00N). Good copper ore assaying about \$ 7.00 per ton in gold was reported.

During the period 1980 through 1988 geological mapping, prospecting, geophysical surveys and geochemical sampling were carried out over several areas of the property. Several skarn zones, shear zones and narrow quartz veins containing anomalous gold and silver values were found. The highest assays of 0.324 oz/ton gold and 17.20 oz/ton silver were obtained from a 3 to 6 centimeter wide quartz vein.

During the spring of 1990, 3 claims were acquired surrounding the Bullion Property (Lots 3116, 3117). The Bullion Property contains quartz vein and/or breccia mineralization as well as skarn mineralization. The most significant gold mineralization is associated with the skarns but the quartz veins and breccias also contain anomalous amounts of gold. The skarn mineralization has developed where diorite has contacted limestones and limey sediments of the Apex Mountain Group.

A number of references are available on the Bullion with the most comprehensive being plan and section maps compiled by C.C. Starr in 1934. This work shows 3 main adits at the 2680 (No. 1), 2500 (No. 2) and 2025 (No. 3) foot levels ASL. The most significant skarn mineralization occurs in the area of the No. 1 adit where numerous workings have exposed garnet skarns with pyrite, pyrrhotite, magnetite and chalcopyrite. Gold values of 3.0 oz/ton and silver values of 0.70 oz/ton are reported over 4.6 feet. A number of other significant gold and silver assays have been taken in the area including two by Friday Mines Ltd. in 1962 which gave 3.0 feet of 0.88 oz/ton and 3.25 feet of 0.32 oz/ton gold. The higher gold values appear to be associated with higher copper values.

The No. 2 and No. 3 adits were driven to intersect the mineralization at a lower elevation. The No. 2 adit did not intersect significant mineralization while the No. 3 adit was not driven far enough to intersect the mineralized zone.

On the Juniper-Bell Property, a small pie shaped fraction between the Bullion Crown Grant's was acquired by staking the Juniper 5 and 6 mineral claims. This pie shaped fraction contains the West Tunnel which was sampled by Starr in 1934. The highest value returned from this sampling was 0.04 oz/ton gold and 0.34 oz/ton silver over 3.5 feet in skarn mineralization.

7

2.0 EXPLORATION PROCEDURE

The grid which was established over a portion of the property in 1988 was extended into the northwest corner of the Bell Claim by this years survey. A baseline was established along line 10,500 north and crosslines ran at right angles to the baseline. Geological mapping, prospecting, soil sampling and a magnetometer survey were carried out over the grid.

GRID PARAMETERS

-baseline direction E-W -survey lines perpendicular to baseline -survey line separation 100 meters -survey station spacing 25 meters, slope corrected -survey total - 8.5 kilometers -declination 21°

GEOCHEMICAL SURVEY PARAMETERS

-survey line separation 100 meters -survey sample spacing 25 meters -survey totals - 5.2 kilometers - 225 soil samples collected - 20 rock samples taken -72 soil samples analyzed by 30 element ICP (50 m spacing) -20 rock samples analyzed for Au and 30 element ICP -sample depth 5 to 15 centimeters -sample taken from brown B horizon

All samples were sent to ACME Analytical Laboratories Ltd., 852 East Hastings Street, Vancouver, B.C., V6A 1R6. Laboratory technique for soil geochemical analysis consists of preparing samples by drying at 95° C, and seiving to minus 80 mesh. Rock samples are pulverized to minus 100 mesh.

Gold is determined by a wet gold analysis. A 10 gram sample is ignited at 600 degrees C, digested with hot aqua regia, extracted by MIBK and analysed by graphite furnace AA. Sensitivity is to one ppb. The 30 element ICP is carried out by digesting a 0.5 gram sample with 3 mls 3-1-2-HCL-HNO3-H20 at 95 degrees C for one hour and is diluted to 10 mls with water. The leach is near total for base metals, partial for rock forming elements and very slight for refractory elements. Solubility limits for Ag, Pb, Sb, Bi, W for high grade samples.

Silver and arsenic, and copper and lead soil geochemistry were plotted on figures 7 and 8 respectively.

GEOPHYSICAL SURVEY PARAMETERS

TOTAL FIELD MAGNETIC SURVEY

-survey line spacing 100 meters -survey station spacing 25 meters -survey totals - 7.9 kilometers -Scintrex MP-2 magnetometer used for all survey -measured total magnetic field in gammas -instrument accuracy ± 1 gamma

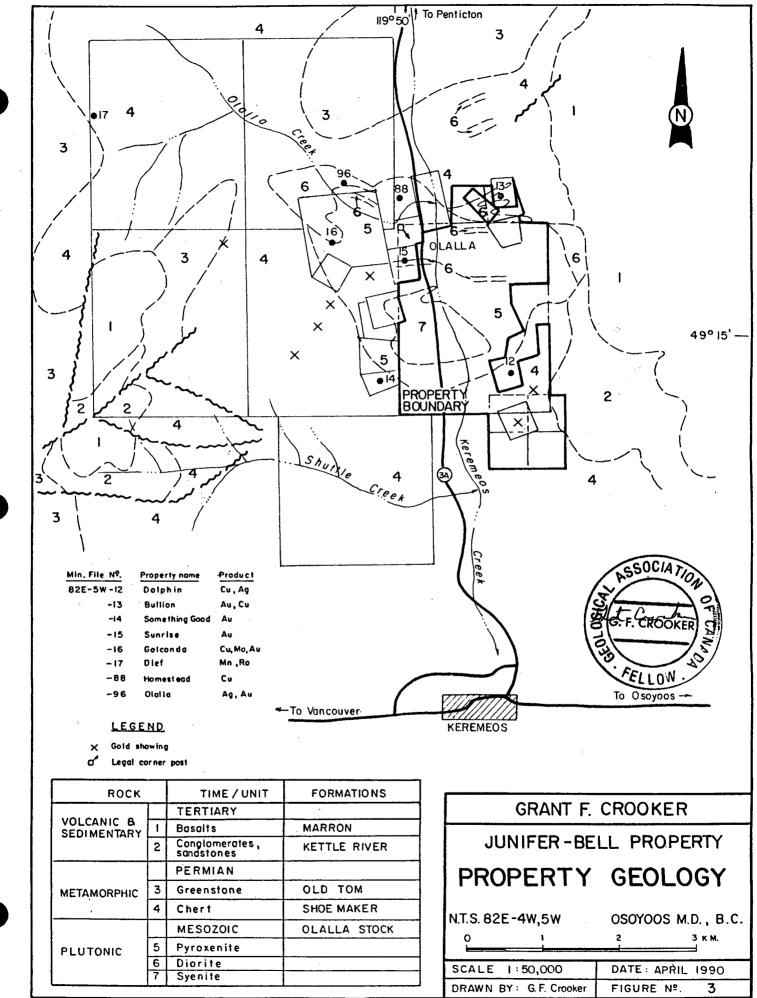
A base station reading was taken at the beginning and ending of each day. These values were used to obtain a standard value for the baseline reading. Baseline readings were then corrected to standard values and all loops ran off the baselines were then corrected to these standard values by the straight line method.

The magnetic data was plotted on figure 9 at a scale of 1:5000.

3.0 GEOLOGY AND MINERALIZATION

3.1 REGIONAL GEOLOGY

The Juniper-Bell Property is located within the Intermontane Belt of British Columbia. An ultramafic to alkalic stock in the central portion of the property (Figure 3) has intruded marine sedimentary and volcanic rocks in the northern and southern portions of the property.


Early work in the area by Bostock and others described the marine sedimentary and volcanic sequence as belonging to the Old Tom, Shoemaker, Bradshaw, and Independence Formations. However as these formations do not form distinct, mappable units, Milford (1984) referred to the sequence as the Apex Mountain Group.

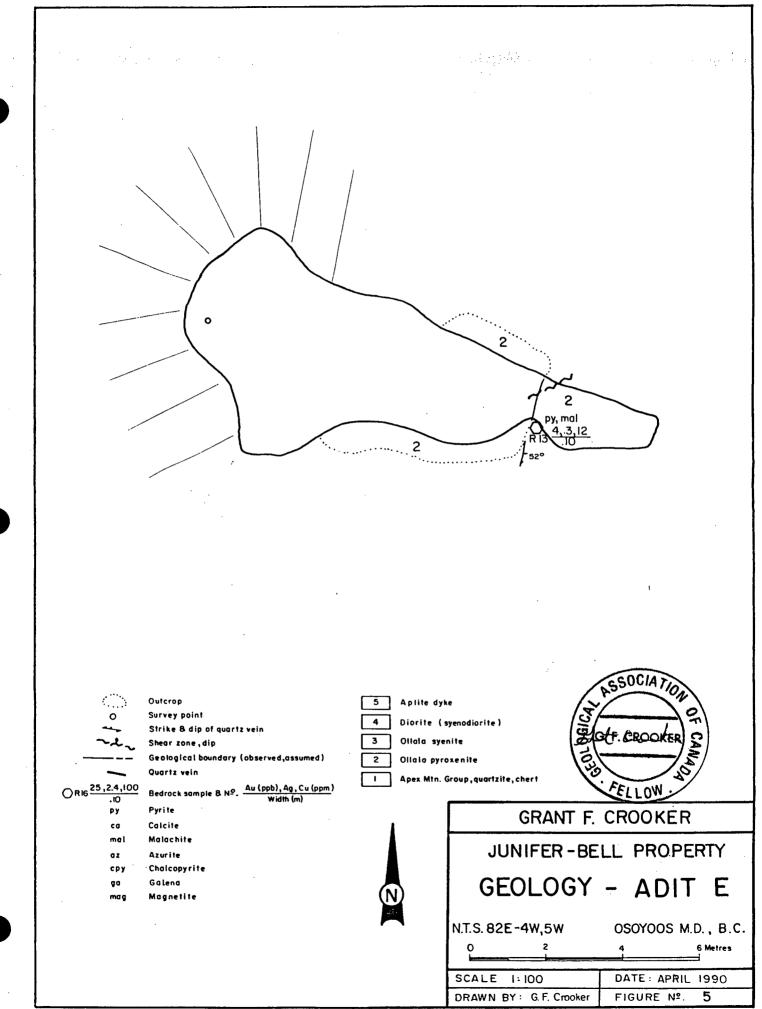
The Apex Mountain Group consists of five major lithofacies: massive and bedded chert, greenstone, chert breccia, argillite and limestone. Together they form a broadly folded, east dipping sequence that has an overall increase in age towards structurally higher rocks in the area. The maximum and minimum ages based on faunal ages in limestones and chert are Early Carboniferous and Middle to Late Triassic respectively.

The depositional environment of the Apex Mountain Group is interpreted to be generally deep, open-ocean basin. Shallow water deposition occurred locally. The group is interpreted to represent at least part of an ancient subduction complex that formed by eastward directed underthrusting and accretion of successively younger slices of oceanic sedimentary and volcanic rocks.

Other assemblages possibly temporally correlative with the Apex Mountain Group include the Kobau, Chapperon, Harper Ranch, and Cache Creek Groups.

The ultramafic to alkalic stock occupies approximately six square miles and is of late Mesozoic age. The stock grades from a peripheral zone of pyroxenite, high in mafics and magnetite, to a magnetite deficient granitic core. Faulting with associated veining, brecciation and mineralization occurred as contemporaneous or post consolidation features.

CHONG


3.2 CLAIM GEOLOGY

The southern and northern portions of the property are underlain by sedimentary and volcanic rocks of the Apex Mountain Group (Unit 1, Figure 4). This is generally a black, grey or green chert or a light grey quartzite. Very fine grained greenish greenstone and light blue crystalline limestone are found within the Apex Mountain Group. This unit underlies the northern portions of the Juniper 5 and 6 claims and parts of the Bullion Property.

Ultramafic to alkalic intrusive rocks of the Olalla Stock underlie the central portion of the property. Augite pyroxenite (Unit 2) makes up the largest portion of the stock. This is a dark green, fine to medium grained equigranular rock consisting almost entirely of subhedral augite with varying amounts of magnetite. Lesser amounts of fine grained, light grey to buff to pink syenite (Unit 3) occurrs within the central core of the stock. The main constituent is orthoclase with augite being the main ferromagnessium mineral. This unit outcrops within the central portion of the Bell Claim.

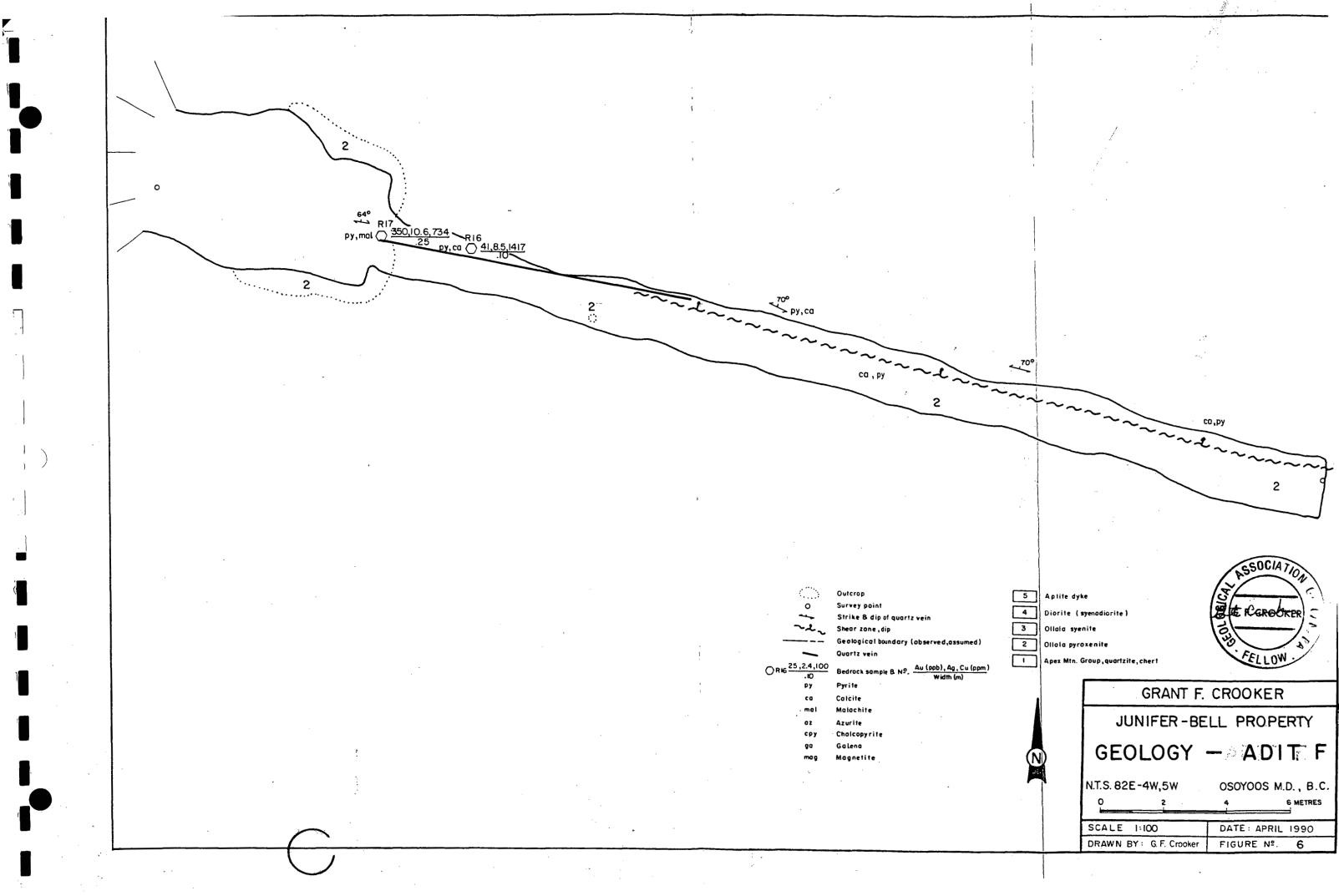
The northeastern portion of the property is underlain by diorite (Unit 4). It is typically a light grey, fine to medium grained rock with hypdiomorphic texture. Augite is the dominant mafic mineral with significant concentrations of magnetite. Sturdevant (1963) termed the rock a sygnodiorite.

The aplite dykes (Unit 5) are generally 10 to 20 meter wide northeast trending dykes which cut the pyroxenite. They are of unknown strike length and are fine grained, pinkish tinged rocks.

.

3.3 MINERALIZATION

A number of showings, mainly quartz ± calcite veins were found during the 1990 program. Several of these showings occur along lines 11500E through 11700E. The clear to white quartz veins (Figure 4) are 10 to 30 centimeters wide, generally north to northwest trending and southeasterly dipping. They generally contain ½ to 1% pyrite with traces of galena, chalcopyrite, azurite and malachite. The samples taken contained only background values of gold and weakly anomalous silver (10.0 ppm).


Two adits, Adit E (Figure 5) and Adit F (Figure 6) were also discovered by prospecting. Adit E is 3 meters long with an additional 9 meters of open cut. An 8 to 12 centimeter wide quartz vein striking 192° and dipping 52° east is exposed in the adit. The vein contains up to ½% pyrite and traces of malachite, but gold, silver and base metal values were background only.

Adit F is 31 meters long. Near the portal it follows a 110° striking, steeply north dipping shear zone and quartz vein. The zone is up to 25 centimeters wide near the portal but quickly narrows to a 1 to 2 centimeter wide fracture with calcite. Up to 2% pyrite, with traces of galena, chalcopyrite, molybdenite and malachite were found in the vein. Sample JB-R17 assayed 350 ppb gold and 10.6 ppm silver.

A small section of the northeast corner of the Bell Claim was prospected and 3 small trenches were found. The trenches expose 5 to 25 centimeter wide, east-west trending, steeply north dipping quartz veins. The veins contain ½ to 1% pyrite with varying amounts of chalcopyrite and galena. Samples JB-R19 through JB-R20 were taken from the 3 trenches. The samples gave anomalous values of up to 560 ppb gold and 29.4 ppm silver. While these values are subeconomic, they are higher than the quartz veins sampled near Adits E and F.

The most significant gold mineralization found during the 1990 program was located adjacent to an old trench at 11700E & 10175N. The trench has sloughed in, but above the trench is an outcrop of magnetite rich skarn with pervasive silicification and carbonate alteration. Up to 5% pyrite occurs with the magnetite, and in some sections the iron minerals are oxidized and the entire rock is silicified and carbonate altered. The mineralization is poorly exposed in outcrop but occurs adjacent to an aplite dyke within the pyroxenite.

Samples JB-R05 through JB-R09 were taken from the exposure and gave values up to 1030 ppb (0.03 oz/ton) gold. While these values are subeconomic, they are anomalous and important as this mineralization is similiar to that found on the western side of Olalla Camp, on the Goldcliff Resources Corporation Cliff Claims.

4.0 GEOCHEMISTRY

4.1 SOIL GEOCHEMISTRY

Seventy-two soil samples were analyzed by 30 element ICP and the background and anomalous values were chosen as follows:

ELEMENT	BACKGROUND	ANOMALOUS
Ag ppm	0.27	≥ 0.5
As ppm	4.3	≥ 7.0
Cu ppm	134.0	≥ 200.0
Pb ppm	16.8	≥ 26.0

Silver, arsenic, copper and lead were plotted on maps due to their association with quartz veins and gold.

Silver

Silver values ranged from 0.1 to 0.9 ppm and one small anomaly was outlined. Anomaly Ag-1 is a small anomaly occurring at the south end of lines 11600E and 11700E. Two narrow quartz veins with pyrite, galena and chalcopyrite are found within the anomaly and explain part of the anomaly. The extension to the north may be caused by additional undiscovered quartz veins.

Line 11700E has anomalous values along its entire length, including the area of magnetite rich skarn with silicification and carbonate alteration. These high silver values may be indicating quartz vein or skarn type mineralization higher up the hill.

Arsenic

Arsenic values ranged from 2 to 20 ppm and one small anomaly was outlined. Anomaly As-1 occurs along line 11100E north of the baseline below a gossanous cliff and talus area. Copper anomaly Cu-2 occurs coincidentally with the aresenic. No further information is known on this area.

Copper

Copper values ranged from 28 to 946 ppm and two small anomalies were outlined. Anomaly Cu-1 occurs along the eastern boundary of the Bell Claim on line 10200N. It occurs near two old trenches which have narrow quartz veins with chalcopyrite and weakly anomalous gold values. However a part of the anomaly occurs up slope from the trenches so additional quartz veins or other copper mineralization must occur in the area. Anomaly Cu-2 occurs at the north end of line 11100N and is coincidental with arsenic anomaly As-1.

Lead

Lead values ranged from 4 to 69 ppm and one small anomaly was outlined. Anomaly Pb-1 occurs at the south end of lines 11600E and 11700E and is thought to be caused by several quartz veins in the area containing galena. Silver anomaly Ag-1 is partly coincidental with the lead anomaly.

5.0 GEOPHYSICS

5.1 MAGNETOMETER SURVEY

The magnetic response shows values ranging from 50555 to 74208 gammas over the grid area. The higher values occur in the eastern portion of the 1990 grid while lower values occur in the northern and western portions of the 1990 grid. The magnetic data indicates the pyroxenite rocks are highly magnetic while the diorite and sedimentary rocks are relatively nonmagnetic.

A magnetic low feature extends from 11300E & 10425N to 11700E & 10500N. This feature appears to outline a major structure which occurs coincidentally with the Bullion Canyon. Magnetic values are as low as 50555 gammas within the structure.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The 1990 exploration program was successful in outlining several areas which contain anomalous gold values as well as a number of small silver, arsenic, copper and lead soil geochemical anomalies.

A number of 5 to 25 centimeter wide quartz veins containing pyrite, chalcopyrite, galena, azurite and malachite were found. Rock sampling of these veins gave weakly anomalous gold values up to 560 ppb and silver values up to 29.4 ppm.

The most significant mineralization appears to be a magnetite rich skarn which has been silicified and carbonate altered. It occurs at line 11700E & 10175N, and is poorly exposed and of unknown extent. Rock sampling gave values up to 1030 ppb (0.03 oz/ton) gold.

Most of the geochemical anomalies appear to be caused by 5 to 25 centimeter wide quartz veins containing chalcopyrite and galena. However silver values were anomalous in the soil along line 11700E and no cause is evident for these anomalous samples.

Recommendations are to continue the work program on the Juniper-Bell Property with particuliar emphasis on 1) the area around the silicified and carbonate altered skarn zone and 2) the West Adit near the Bullion Property.

The work program should include completing the grid, magnetometer survey, soil sampling, geological mapping and prospecting on the property. In addition, a VLF-EM survey should be carried out.

OCIA 7 Symmitted, Respec F.Sc., F.G.A.C., Graht Cons **bdi**st

7.0 REFERENCES

B.C.M.M., Annual Reports 1894-map, 1897, 1899, 1900, 1901, 1902, 1903, 1904, 1906, 1908, 1928, 1962.

B.C.M.M., Minfile; 82E-SW-013, 82E-SW-014, 82E-SW-015, 82E-SW-016.

Bostock, H.S. (1927): Geological Survey of Canada, Map 628A, Olalla.

Bostock, H.S. (1930): Geological Survey of Canada, Map 341A, Keremeos.

Chapman, Wood and Griswold Ltd. (Aug. 1, 1961 to March 7, 1962): Progress Reports Friday Mines Ltd. (NPL) Olalla B.C. Mining Properties, No. 1 to No. 6.

Crooker, G.F. (1981): Geological Report on the Bell Claim, Olalla Area, Osoyoos Mining Division, B.C..

Crooker, G.F. (1983): Geological and Geochemical Report on the Bell Claim, Olalla Area, Osoyoos Mining Division, B.C..

Crooker, G.F. (1986): Geological Report on Lot 1604 (Rev. C.G.) and the Bell Claim, Olalla Area, Osoyoos Mining Division, B.C..

Crooker, G.F. (1988): Geochemical and Geophysical Report on the Bell and Juniper 1 to 4 Claims and Juniper Rev CG (lot 1604), Olalla Area, Osoyoos Mining Division for Lone Jack Resources Ltd..

Crooker, G.F. (1981): Geological Report on the FFH Claim, Olalla Area, Osoyoos Mining Division, B.C..

Crooker, G.F. (1990): Geological and Geochemical Report on the Cliff, Cliff 1 to 4 and Great Eastern Claims, Hedley-Olalla Area, Osoyoos Mining Division, for Goldcliff Resource Corporation.

Crooker, G.F. and Rockel, E.R. (1987): Geological, Geochemical and Geophysical Report on the Cliff, Cliff #1 and Great Eastern Claims, Olalla Area, for Goldcliff Resource Corporation.

Little, H.W. (1961): Geology Kettle River (West Half), B.C., Geological Survey of Canada Map 15-1961.

Milford, J.C. (1984): Geology of the Apex Mountain Group, North and East of the Similkameen River, South Central B.C., M.Sc. Thesis, University of British Columbia.

17

Phendler, R.W. (1983): Report on the Bell Property, Olalla, Osoyoos Mining Division, B.C. for Boise Creek Resources Ltd..

Rice, H.M.A. (1947): Geology and Mineral Deposits of the Princeton Map-Area, B.C., Geological Survey of Canada, Memoir 243.

Starr, C.C. (1934): Plan and Section Maps of Bullion Workings by C.C. Starr, copied by Friday Mines Ltd., 1962.

Sturdevant, J.A. (1963) Petrography of the Olalla Stock, Okanagan Mountains, British Columbia, unpublished M.Sc. Thesis, University of New Mexico.

CERTIFICATE OF QUALIFICATIONS

I, Grant F. Crooker, of Upper Bench Road, Keremeos, in the Province of British Columbia, hereby certify as follows:

- 1. That I graduated from the University of British Columbia in 1972 with a Bachelor of Science Degree in Geology.
- 2. That I have prospected and actively pursued geology prior to my graduation and have practised my profession since 1972.
- 3. That I am a member of the Canadian Institute of Mining and Metallurgy.
- 4. That I am a Fellow of the Geological Association of Canada.
- 5. That I am the owner of the Bell, Juniper, Bullion Fr and Juniper 1 to 6 mineral claims.

Dated this $7 \pm h$ day of $m \circ \gamma$, 1990, at Keremeos, in the Province of British Columbia.

.OC*IA* : F.G.A.C. Grant Consul **M**st LLOW

Appendix I

CERTIFICATES OF ANALYSIS

852 E. HASTINGS ST. V. DUVER B.C.

V6A 1R6 PHONE (604) 253-3158

253-1716

FAX (6

GEOCHEMICAL ANALYSIS CERTIFICATE

Grant Crooker File # 90-0929 Page 1 Box 404, Keremeos BC VOX 1N0

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca P % %		Cr ppm	Mg %	Ba Ti ppm %	B ppm	Al %	Na %	K W X ppm
11100E 10800N 11100E 10750N 11100E 10750N 11100E 10700N 11100E 10650N 11100E 10600N	2 1	305 246 122 146 147	21 8 14 11 15	154 106 101 175 113	.2 .1 .1 .1	85 56 28 55 50	26 15 21	2003 946 907 916 1094	5.92 4.73 4.04 4.89 3.51	12 5 10 20 13	5 5 5 5 5	ND ND ND ND	2 2 2 1 1	63 59 77 92 81	1 1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	114 85 90 86 51	.91 .135 .67 .087 .89 .125 1.48 .151 .96 .148	20 14 17 16 17	45 39	1.25 1.04 .55 1.15 .76	339 .34 241 .18	72. 52. 61. 81. 92.	.32 .77 .91	.02	.75 2 .71 1 .25 2 .43 2 .52 1
11100E 10550N 11100E 10500N 11500E 10475N 11500E 10425N 11500E 10375N	2	191 147 81 246 73	17 15 14 20 4	102 90 86 90 78	.1 .1 .1 .1	62 70 34 68 46	24 20 14 24 27	994 914 621 869 631	5.21 4.00 3.72 5.03 7.38	13 12 9 13 2	5 5 5 5	ND ND ND ND	3 8 5	110 93 202 151 112	1 1 1 1	2 2 2 2 2	2 2 2 2 2 2	72 55 72 73 156	.77 .112 .78 .088 .85 .137 1.25 .109 .61 .090	38 23 53 38 31		.98 .94 .80 1.10 1.06	280.21254.16256.20244.19243.23	52. 62. 61. 72. 31.	.49 .97 .43	.02 .04 .04	.62 1 .44 1 .32 2 .51 1 .56 1
11500E 10325N 11500E 10275N 11500E 10225N 11500E 10125N 11500E 10125N	1 1 1	92 70 59 68 118	2 17 13 15 12	61 80 90 90 90	.3 .2 .1 .1	81 53 32 31 48	43 35 15 13 31	449 584 587	12.59 10.92 3.97 3.77 9.04	2 2 6 7 3	5 5 5 5 5	ND ND ND ND	1 2 9 10 3	67 64 224 265 109	1 1 1 1	4 2 2 2	3 2 2 2 2	240 256 81 68 238	.80 .199 .48 .070 .66 .108 .76 .168 .71 .153	8 16 62 78 26	66 39 39	1.74 1.12 .66 .66 1.31	268.24176.26229.20248.19265.25	2 1. 2 1. 4 2. 8 2. 2 1.	.69 . .04 . .02 .	.01 .02 .03	.59 1 .51 1 .48 2 .49 2 .57 1
11500E 10075N 11500E 10025N 11500E 9975N 11500E 9925N 11500E 9675N	1 1 1 1	83 159 231 180 138	9 12 10 13 18	83 107 91 88 82	.4 .4 .5 .4 .1	59 65 68 73 39	48 39 44 44 23	665 686 606	14.34 10.67 12.04 13.52 4.82	2 2 2 2 2 2 2 2	5 5 5 5 5	ND ND ND ND ND	1 1 1 3	36 59 40 36 111	1 1 1 1	4 5 4 7 2	2 2 2 4 2	347 262 307 332 122	.55 .109 .83 .121 .78 .097 .62 .090 .62 .089	5 8 4 3 23	121 125	1.73 1.55 1.65 1.57 .84	214.30212.23223.26207.25237.20	2 1. 6 1. 3 1. 7 1. 3 1.	.24 .34 .23	.02 .01 .01	.70 1 .52 1 .50 1 .54 1 .34 2
11600E 10400N 11600E 10350N 11600E 10300N 11600E 10250N 11600E 10200N	1 1 1 1	75 70 48 53 54	5 9 12 35 23	72 77 83 77 88	.3 .1 .1 .1	59 61 50 53 34	40 38 33 33 18	623	11.60 9.19 9.28 10.53 5.11	2 2 2 2 2 2 2 2 2 2	5 5 5 5 5	nd Nd Nd Nd	1 1 2 1 8	38 65 58 45 188	1 1 1 1 1	5 4 3 3 2	2 2 2 3	244 188 174 252 112	.66 .091 .86 .120 .48 .057 .47 .045 .61 .141	3 7 13 11 58	43	1.40 1.77 1.26 1.05 .73	193.24211.21228.26172.26236.20	4 1. 5 1. 5 1. 5 1. 4 1.	.49 .68 .56	.01 .02	.59 1 .53 1 .62 1 .44 1 .41 1
11600E 10150N 11600E 10100N 11600E 10050N 11600E 10000N 11600E 9950N	1 1 1 1	206 214 42 210 77	16 16 8 7 9	101 88 56 89 78	.1 .2 .1 .3 .1	47 49 74 66 42	27 31 37 42 21	462 550	6.23 9.96 11.08 12.55 7.48	2 2 2 2 2 2 2	5 5 5 5 5	ND ND ND ND ND	6 3 1 1 8	138 104 31 34 173	1 1 1 1 1	2 3 3 4 2	2 2 2 3	169 252 179 319 169	.64 .170 .72 .191 .55 .087 .65 .089 .60 .128	42 27 3 53	101 60	.99 1.04 1.23 1.53 .76	275.25288.23163.19175.24195.19	2 1. 5 1. 5 1. 5 1. 2 1.	.71 . .93 . .14 .	.02 .01	.45 1 .43 1 .50 1 .47 1 .40 1
11600E 9900N 11600E 9875N 11600E 9850N 11600E 9825N 11600E 9800N	1 1 1 1	84 91 214 72 160	10 15 12 16 16	72 79 70 92 81	.1 .1 .1 .1	75 40 55 36 69	33 24 31 17 46	492 464 428 454 542	7.21 6.74 8.33 4.49 9.11	2 2 2 2 4 2	5 5 5 5 5	nd Nd Nd Nd Nd	2 5 1 6 1	77 127 51 168 46	1 1 1 1 1	3 2 2 2 2	2 3 5 5 2	138 143 207 101 249	.55 .089 .55 .103 .46 .055 .61 .107 .49 .050	17 36 10 47 10		.82	231 .21 176 .19 161 .22 199 .19 235 .30	2 1. 4 1. 2 1. 5 1. 2 1.	.60 .35 .83	.02	.48 1 .35 1 .39 1 .31 1 .65 1
11600E 9775N STANDARD C	1 18	111 58	23 39	91 131	.1 6.9	33 68	17 31	580 959	5.02 3.85	4 39	5 20	ND 8	7 36	204 48	1 19	2 16	4 23	118 59	.68 .156 .46 .100	53 37	51 55	.65 .81	209 .19 175 .08	21. 361.			.34 1 .14 12

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 3-1-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND LIMITED FOR NA K AND AL. AU DETECTION LIMIT BY ICP IS 3 PPM. - SAMPLE TYPE: P1-P2 Soil P3 Rock

DATE RECEIVED: APR 12 1990 DATE REPORT MAILED:

and 18/90 SIGNED BY. A. J. M. D. TOYE, C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Grant Crooker FILE # 90-0929

	Ţ	ag	e	2
--	---	----	---	---

SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe As % pom	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca %	P %	La	Cr	Mg %	Ba	Ti 2	B AL	Na %	K W % ppm
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	~	<u></u>	ppm	ppm		ppm				
11600E 9750N 11600E 9725N	1	191 946	42 21	86 90	.3 .6	40 37	23 27	619 630	7.24 2 6.06 2	5 5	ND ND	5	135 144		23	4 5	171 152		.145	36 37	70 54	.85 1.08		19 22	3 1.69 6 2.04	-02 -02	.29 1
11600E 9700N	1	286	22	110	.3	39			6.37 7		ND	5	116		2	2	161		.153	29	62	.87		23	5 2.40	.01	.27
11600E 9650N		116	19	53	.5	43	43		12.88 2		ND	1	61		5	Ž		1.91		3		1.12		22	4.79	.01	.24 1
11600E 9625N	1	137	11	84	.3	51	30	523	7.53 3	5	ND	3	94		2	2	177	.64	.081	21	80	.93	184 🐰	20	3 1.57	.01	.37 1
11600E 9600N	2	236	50	58	.6	66	41	558	10.19 2	5	ND	1	69		5	2	229	73	.086	8	108	1.68	133	24	2 1.23	.02	.27 1
11700E 10425N	ĩ	76	14	85	1	36			5.88 5	5	ND	6	127		ź	2	133		.093	35		.71		18	3 1.63		.31 1
11700E 10375N	1	222	24	81	.6	42			8.28 4		ND	5	139		2	2	199	.66	.165	36		.99		21	3 1.55		.39 1
11700E 10325N	-	133	53	65	.6	53			7.04 3		ND	2	113		2	3		2.21		20		1.02		16	6 1.08	.01	.30
11700E 10275N	1	118	5	57	.4	52	54	417	7.90 6	5	ND	3	64		3	2	188	.51	.041	15	91	1.12	158	22	7 1.40	-01	.30 1
11700E 10225N	1	180	7	64	.7	46	40	531	15.58 2	5	ND	1	62		2	2	336	1.59	.085	5	43	1.31	341	22	2 1.56	.02	.27 1
11700E 10175N	1	97	21	65	.7	62	. –		15.01 2	5	ND	1	51		2	2		1.25		3		1.71		24	2 1.35	-01	.57 1
11700E 10125N	1	76	4	65	.7	70			15.69 2	5	ND	1	32		3	2	269		.042	5		1.57	222.	27	5 1.46	-01	.67 1
11700E 10075N 11700E 10025N	1	78 38	8 14	89 80	.2 .1	40 24	- 32 13		8.51 2 4.24 4	5 5	ND ND	2 10	66 272		4	2	163 92		.085	11 74		1.29	200	24 19	7 1.83 6 1.50	. –	.70 1
TTTOOL TOOLSN	•	50	14	00		24	15	020	7.67	,	ND	10	212		2	2	72	.04	• • • 7				172		0 1.50	-01	
11700E 9975N	4	79	23	54	.9	30			10.47 5	5	ND	1			5	2		4.61	-9.000 0.000	13		1.39		12	5 1.13	.01	.40 1
11700E 9925N	1	54	7	65	.5	69	41		14.42 2	5	ND	1	33		2	2	316		.053	3	187			23	2 1.09	_01	.44
11700E 9875N 11700E 9825N	1	73 73	13 9	56 70	.4 .7	76 77			15.66 2 13.85 2	5 5	ND ND	1	20 48		2	3 2	253	.43		2	131	1.20		23 24	2 .98 2 1.01	-01 -02	.44 1
11700E 9775N	i	181	9	80	.7	75	44		14.06 2		ND	i	31		3	2	319		.066		154			25	5 1.32	.02	.48 1
										_					_								🎆				
11700E 9725N 11700E 9675N	1	96 84	19 16	57 48	.5 .5	95 84			12.14 2 12.77 2	5 5	ND ND	1	28 41		3 2	2	196 210		.051 .072	`5 7	129 148			21 19	2 1.38 6 1.18	.01 .01	.36 1
11700E 9625N	5	90	69	56	.6	72			8.92 2	5	ND	2	69		2	2	163		.052	12	140			17	6 1.33	.02	.34
10300N 12200E	2	61	20	109	.1	24			3.39 6	5	ND	6	120	1	2	2	64		.092	33	32	.55		20	7 2.99	. 02	20000000000
10300N 12250E	1	92	21	151		20	16	2257	3.21 2	5	ND	3	87	t in the second se	2	2	65	.47	.054	16	24	.55	502	18	4 2.54	.02	.15 1
10300N 12300E	1	125	24	139	.2	20	13	1//86	3.54 5	5	ND	7	133		2	2	67	65	.101	40	24	.48	307	19	3 2.94	. 02	26 1
10300N 12350E	i	37	20	113	1	16			2.72 5	5	ND	8	179		2	2	51		.069	42	24	.40	2022	17	5 2.66	.01	
10300N 12400E	1	28	20	87	1	13	8	1179	2.20 5		ND	3	116		2	2	43		.075	24	19	.33		14	4 2.31		.15 1
10300N 12450E	1	42	14	71		16		803	2.63 3		ND		117		2	2	54		.043	35	21	.41	202	16	3 2.24	.01	.17 1
10300N 12500E	1	41	12	102	.2	15	8	885	2.52 2	5	ND	7	173		2	2	51	-68	.070	51	23	.38	227	15	4 2.04	.02	.20 1
10200N 12225E	1	71	15	114	1	21	12	1009	3.63 7	5	ND	7	139	1	2	2	75	.55	.104	42	30	.47	256	20	4 2.54	.01	.29 1
10200N 12275E	1	79	17	110	•1	20	12	1057	3.70 3	5	ND	-	141	1	2	2	77		.098	48	29	.47		20	3 2.63	.01	.30 1
10200N 12325E	1	60	20	98	1	18			2.64 6	5	ND	6	125		2	2	51		.070	45	22	.38		17	4 2.70	.01	.26 1
10200N 12375E 10200N 12425E	1	205 235	13 24	180 125	.3 .2	23 19			3.55 11 4.71 6	5 5	ND ND	4	110 96	3	2	2	68 108		-096 -093	23 29	29 25	.55 .61		20 20	3 3.14 3 2.74	.01 .01	.25 1
102000 124656	•		6.9	127	• 6	17	17	1374		2	ΝU	4	70		2	6	100			67	C S	.01	L70 ()		J 6.14		
10200N 12475E	1	229		117	.2	18			4.09 5	5	ND		111	2	2	2	92		.111	34		.57		21	2 2.62	.02	
STANDARD C	18	57	37	132	7.2	67	31	1018	3.98 39	18	7	36	48	20	15	21	59	.48	.091	37	55	.83	175 🐰	08	36 1.86	.06	.14 11

Grant Crooker FILE # 90-0929

SAMPLE#

JB-R01 JB-R02

Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	Ū	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Çr	Mg	Ba	Tî	В	AL	Na	K	H	Au*
ppm	ppm	ppm	ppm	bbw	ppm	ppm	ppm	*	ppm	. %	*	ppm	ppm	*	ppm	*	ppm	*	x	X	ppm	ppb								
79	177	113	37	.6	17	9	210	3.08	7	5	ND	1	163	1	2	6	16	4.38	.010	2	5	. 19	100	.01	2	.09	.02	.08		11
38		1433										i i	119		2	22	3	5.43	.010	2	5	.02	32	.01	5	.01	.01	.01		24
1	11-	19	4	1	3	3	1325	.86	3	5	ND	1	616		2	3	58	29.74	.007	2	4	.20	95	.01	6	.06	.01	.01		4
188	894	883	49	6.0	12	3	80	.46	6	5	ND	1	30	1	52	16	7	.40	.001	3	10	.05	- 38	.01	3	.03	.01	.01		10
1	44	12	55	.9	56	35	1006	13.78	2	5	ND	1	197		5	2	345	7.82	.073	2	82	3.51	32	.08	6	.41	.01	.46		92

JB-R03	1	11	- 19	- 4		3	3	1325	.86	3	5	ND	1	616		- 2	3	58	29.74	.007	. 2	4	.20	95	.01	6	.06	.01	.01		4
JB-R04	188	894	883	49	6.0	12	3	80	.46	6	5	ND	1	30		52	16	7	.40	.001	3	10	.05	38	.01	3	.03	.01	.01		10
JB-R05	1	44	12	55	.9	56	35	1006	13.78	2	5	ND	1	197		5	2	345	7.82	.073	2	82	3.51	32	.08	6	.41	.01	.46		92
JB-R06	1	27	12	53	1.0	55	35	1007	14.37	2	5	ND	1	238	1	6	2	384	8.81	.031	2	79	3.01	28	.07	4	.40	.01	.39	1	1030
JB-R07	1	17	11	44	.3	29	25	749	7.02	4	5	ND	1	234		4	- 4	229	7.18	.021	2	47	1.86	20	.02	2	.17	.03	.08		880
JB-R08	6	21	14	46	.4	36	26	962	8.39	7	5	ND	1	223		5	3	103	7.43	.028	2	27	1.42	15	.01	5	.01	.01	.01		810
JB-R09	3	26	12	34		31	23	784	6.29	3	5	ND	1	213	1	2	2	75	6.67	.009	2	16	1.45	23	.01	2	.05	.01	.01		530
JB-R10	81	5	755	7	5.8	6	2	496	.53	2	5	ND	1	142	1	2	15	22	7.55	.003	8	5	.13	64	.01	2	.06	.01	.01		- 37
						_																									
JB-R11	70	57		42	.9	28	37	1073	11.01	-24	5	ND	1	235		7	2	283	9.35	.075	3	20	1.44	- 33	.11	. 4	.74	.01	.20	3	16
JB-R12	75	51	2731	1	17.1	8	2	67	1.00	4	5	ND	1	39		2	40	12	.93	,003	2	6	.03	24	.01	2	.01	.01	.04		7
JB-R13	40	76	732	1	4.5	15	5	84	.76	2	5	ND	1	13		2	13	8	.41	.001	2	7	.02	- 14	.01	2	.01	.01	.01	1	5
JB-R15	8	12	72	2	.3	13	1	88	.60	2	5	ND	1	7	1	2	2	6	.25	.001	2	11	.03	29	.01	3	.01	.01	.01		4
JB-R16	695	1417	1194	37	8.5	40	35	247	10.31	6	5	ND	1	119	1	4	27	178	2.38	.069	2	49	.40	25	.27	4	.13	.04	.21	1	41
JB-R17	562	734	480	37	10.6	11	7	266	6.14		5	ND	1	117	·	2	16	104	2.51	.024	2	24	. 15	32	.14	3	.04	.08	.15		350
JB-R18	10	4031	-98	50	2.1	14	15	180	1.41		5	ND	4	115	2	2	14	13	3.15	.001	2	8	.08	45		2	.02		.02		550
JB-R19	5	199	289	101	8.0		2	294	.52		5	ND	-	27		2	32	40		.011	2	6	.05	15	202.70	2	.17				109
JB-R20		15049	41		29.4	10	10	138		45	5			12		1661	26	28	.23	-000000000	2	5	.16	29	2010/000	2					
	7								4.21	42	2	ND			4	1551				.055	2	2				2		× .			340
JB-R21	3	217	41	8	1.6	8	1	235	.40		5	ND	1	21		22	8	8	1.15	-014	2	1	.04	10	.01	2	.07	.01	.01		560
STANDARD C/AU-R	18	57	41	131	7.1	68	30	945	3.63	36	18	6	39	48	18	16	22	58	.46	.095	38	52	.85	174	.08	35	1.69	.06	.14	11	510

Page 3

. .

Appendix II

GEOPHYSICAL EQUIPMENT SPECIFICATIONS

MP-2 PROTON PRECESSION MAGNETOMETER

Resolution:	1 gamma
Total Field Accuracy:	± gamma over full operating range
Range:	20,000 to 100,000 gammas in 25 overlapping steps.
Internal Measuring Program:	A reading appears 1.5 seconds after depression of Operate Switch & remains displayed for 2.2 secs. Recycling feature permits automat- ic repetitive readings at 3.7 sec. intervals.
External Trigger:	External trigger input permits use of sampling intervals longer than 3.7 seconds.
Display:	5 digit LED readout displaying total magnetic field in gammas or normalized battery voltage.
Data Output:	Multiplied precession frequency and gate time outputs for base station recording using interfac- ing optionally available from Scintrex.
Gradient Tolerance:	Up to 5,000 gammas/meter.
Power Source:	8 size D cells ≈25,000 readings at 25° C under reasonable conditions.
Sensor:	Omnidirectional, shielded, noise- cancelling dual coil, optimized for high gradient tolerance.
Harness:	Complete for operation with staff or back pack sensor.
Operating Temperature Range:	-35 to +60° C.
Size:	Console, 8 x 16 x 25 cm; Sensor, 8 x 15 cm; Staff 30 x 66 cm;
Weights:	Console, 1.8 kg; Sensor, 1.3 kg; Staff, 0.6 kg;
Manufacturer:	Scintrex 222 Snidercroft Road Concord, Ontario

Appendix III

MAGNETIC DATA

Grant Crooker Data Listing Line & Station + = northing/easting Area: Juniper-Bell Claims - = southing/westing Grid: Bell File Name: junibell.xyz Date: April 13, 1990 Instrument Type: Details Scintrex MP-2 Corrected total field magnetic values Data Types #1 Total field magnetic values

1	Line # ine 11100	Station	# 1.	. #	2.	#	3.	#	4.	#	5.	#	6.
<u>ل</u>		0600	58252										
	11100	9600											
	11100	9625	57949										
	11100	9650	58214										
	11100	9675	58013										
	11100	9700	58226										
	11100	9725	58014										
	11100	9750	58301										
	11100	9775	57872										
	11100	9800	59394										
	11100	9825	59405										
	11100	.9850	60053										
	11100	9875	59540										
	11100	9900	59642										
	11100	9925	59442										
	11100	9950	58862							•			
	11100	9975	57823										
	11100	10000	57726										
	11100	10025	57619										
	11100	10050	57467										
	11100	10075	57218										
	11100	10100	57075										t
	11100	10125	57528										
	11100	10150	57254										
	11100	10175	57004										
	11100	10200	57102										
	11100	10225	57020										
	11100	10250	56778										
	11100	10275	56701										
	11100	10300	56681										
	11100	10325	56758										
	11100	10350	56960										
1	11100	10375	56855										
	11100	10400	57194										
	11100	10425	57679										
	11100	10450	57755										
	11100	10475	57903										
	11100	10500	58316										
	11100	10525	58474										
	11100	10550	59095										
	11100	10575	59540										
	11100	10600	57630				ъ.						
	11100	10625	56352										

	11100	10650	54874
	11100	10675	54629
	11100	10700	54971
,	11100	10725	53990
	11100	10750	54162
	11100	10775	52903
	11100	10800	53136
	11100	10800	53056
	11100	10825	53095
	11100	10850	52900
	11100	10875	53137
	11100	10900	53367
			53332
	11100	10950 10975	53332 53486
	11100 line 11200	T03/2	22400
	line 11200	0600	50040
	11200	9600	59240
	11200	9625	59670
	11200	9650	59340
	11200	9675	59164
	11200	9700	59126
	11200	9725	59116
	11200	9750	59601
	11200	9775	59718
	11200	9800	60428
	11200	9825	60553
	11200	9850	61176
	11200	9875	60581
	11200	9900	60979
)	11200	9925	61471
	11200	9950	60892
	11200	9975	61618
	11200	10000	58683
	11200	10025	58311
	11200	10050	58429
	11200	10075	58320
	11200	10100	57823
	11200	10125	58152
	11200	10120	56396
	11200	10150	57044
	11200	10175	57106
	11200	10225	56550
	11200	10250	56559
	11200	10275	56650
	11200	10300	56581
	11200	10325	56578
	11200	10350	56599
	11200	10375	56801
	11200	10400	56432
	11200	10425	56862
	11200	10450	56886
	11200	10475	57105
	11200	10500	57413
	11200	10525	57449
	11200	10550	59553

. N

11200	10575	58950
11200	10600	57973
11200	10625	55341
11200	10650	53155
11200	10675	55084
		54646
11200	10700	54646
line 11300		
11300	9600	60280
11300	9625	59896
11300	9650	59386
11300	9675	60004
11300	9700	59995
11300	9725	60104
11300	9750	59296
11300	9775	61092
11300	9800	60365
11300	9825	59992
11300	9850	59774
11300	9875	61731
11300	9900	62942
11300	9925	63172
11300	9950	61236
11300	9975	62603
11300	10000	61873
11300	10025	61832
11300	10050	63346
11300	10075	62542
11300	10100	62367
11300		
	10125	58688
11300	10150	59930
11300	10175	59711
11300	10200	58084
11300	10225	57571
11300	10250	57702
11300	10275	57765
11300	10300	57550
11300	10325	57445
11300	10350	56770
11300	10375	56044
11300	10400	55976
11300	10425	55623
11300	10450	55717
11300	10475	56140
11300		
	10500	56937
11300	10525	59276
11300	10550	61673
11300	10575	58716
11300	10600	54860
line 11400		
11400	9600	61631
11400	9625	61251
11400	9650	60958
11400	9675	60819
11400	9700	60432
		00

. .

11400	9725	60577	
11400	9750	61717	
11400	9775	60727	
11400	9800	58623	
11400	9825	63835	,
11400	9850	63030	
11400	9875	63209	
11400	9900	63897	
11400	9925	60268	
11400	9950	62386	
11400	9975	65007	
11400	10000	62395	
11400	10025	62599	
11400	10050	64990	
11400	10075	66473	
11400	10100	64182	
11400	10125	65689	
11400	10150	66284	
11400	10175	62063	
11400	10200	68957	
11400	10200	62025	
11400	10225	63232	
11400	10250	60764	
		55931	
11400	10300	55931 57983	
11400	10325		
11400	10350	57693	
11400	10375	59132	
11400	10400	55392	
11400	10425	51411	
11400	10450	53957	
11400	10475	54007	
11400	10500	54325	
line 11500			
11500	9600	62014	
11500	9625	60490	
11500	9650	60410	
11500	9675	59244	
11500	9700	58355	
11500	9725	63519	
11500	9750	62820	
11500	9775	58510	
11500	9800	59213	
11500	9825	61577	
11500	9850	62464	
11500	9875	62595	
11500	9900	61476	
11500	9925	58952	
11500	9950	64232	
11500	9975	63477	
11500	10000	62848	
11500	10025	61206	
11500	10050	64414	
11500	10075	66838	
11500	10100	67641	
11300	10100	01041	

.

·\

t .

· ·

11500 11500 11500 11500 11500 11500 11500 11500 11500	10125 10150 10175 10200 10225 10250 10275 10300 10325	67259 66952 64975 58791 59548 62660 62602 66981 60171	
11500	10350	55028	
11500 11500	10375 10400	56821 54301	
11500	10400	52889	
11500	10450	53765	
11500	10475	56183	
11500 line 11600	10500	54032	
11600	9600	55954	
11600	9625	61864	
11600	9650	68232	
11600	9675	57050	
11600	9700	62431	
11600 11600	9725 9750	59480 56433	
11600	9775	60410	
11600	9800	58402	
11600	9825	55885	
11600	9850	59813	
11600 11600	9875 9900	58112 58269	
11600	9925	59949	
11600	9950	61417	
11600	9975	63673	
11600	10000	60931	
11600 11600	10025 10050	62449 57483	
11600	10075	64547	
11600	10100	66461	
11600	10125	64329	
11600 11600	10150 10175	66793 74208	
11600	10175	70010	
11600	10225	67520	
11600	10250	59301	
11600	10275	62807	
11600 11600	10300 10325	60114 58566	
11600	10350	56755	
11600	10375	52716	
11600	10400	56441	
11600	10425	51360	
11600 11600	10450 10475	50555 51361	
11600	10500	53015	

(

.

	line 11700		
	11700	9625	61226
	11700		65047
		9675	66144
	11700		
	11700	97.00	58601
	11700	9725	61366
	11700	9750	73093
	11700	9775	67471
	11700	9800	60743
	11700	9825	68083
	11700	9850	64001
	11700	9875	60069
	11700	9900	55615
	11700	9925	61129
	11700	9950	55247
	11700	9975	58884
	11700	10000	60818
	11700	10025	57984
	11700	10050	61905
	11700	10075	65478
	11700	10100	64024
	11700	10125	60057
	11700	10150	68190
	11700	10175	62107
	11700	10200	72161
	11700	10225	66585
	11700	10250	64491
	11700	10275	65789
	11700	10300	59423
	11700	10325	57055
	11700	10325	56585
	11700	10375	57078
	11700	10400	59754
	11700	10425	55029
	11700	10450	52972
	11700	10475	52032
	11700	10500	50847
	b110500		
	10500	11100	58316
	10500	11125	57948
	10500	11150	57657
	10500	11175	57562
	10500	11200	57413
	10500	11225	57429
	10500	11250	57427
	10500	11275	57433
	10500	11300	56937
	10500	11325	57066
	10500	11350	56078
	10500	11375	54181
	10500	11400	54325
	10500	11425	54540
	10500	11450	53855
	10500	11475	53736
•			

.

`\

ι.

1

10500	11500	54032	
10500	11525	54423	
10500	11550	54835	
10500	11575	54046	
10500	11600	53015	
10500	11625	52839	
10500	11650	52701	
10500	11675	51200	
10500	11700	50847	
10500	11725	51717	
10500	11750	52156	
10500	11775	52843	
10500	11800	53474	
10500	11825	52862	
10500	11850	53735	
10500	11875	53474	
10500	11900	53467	

*

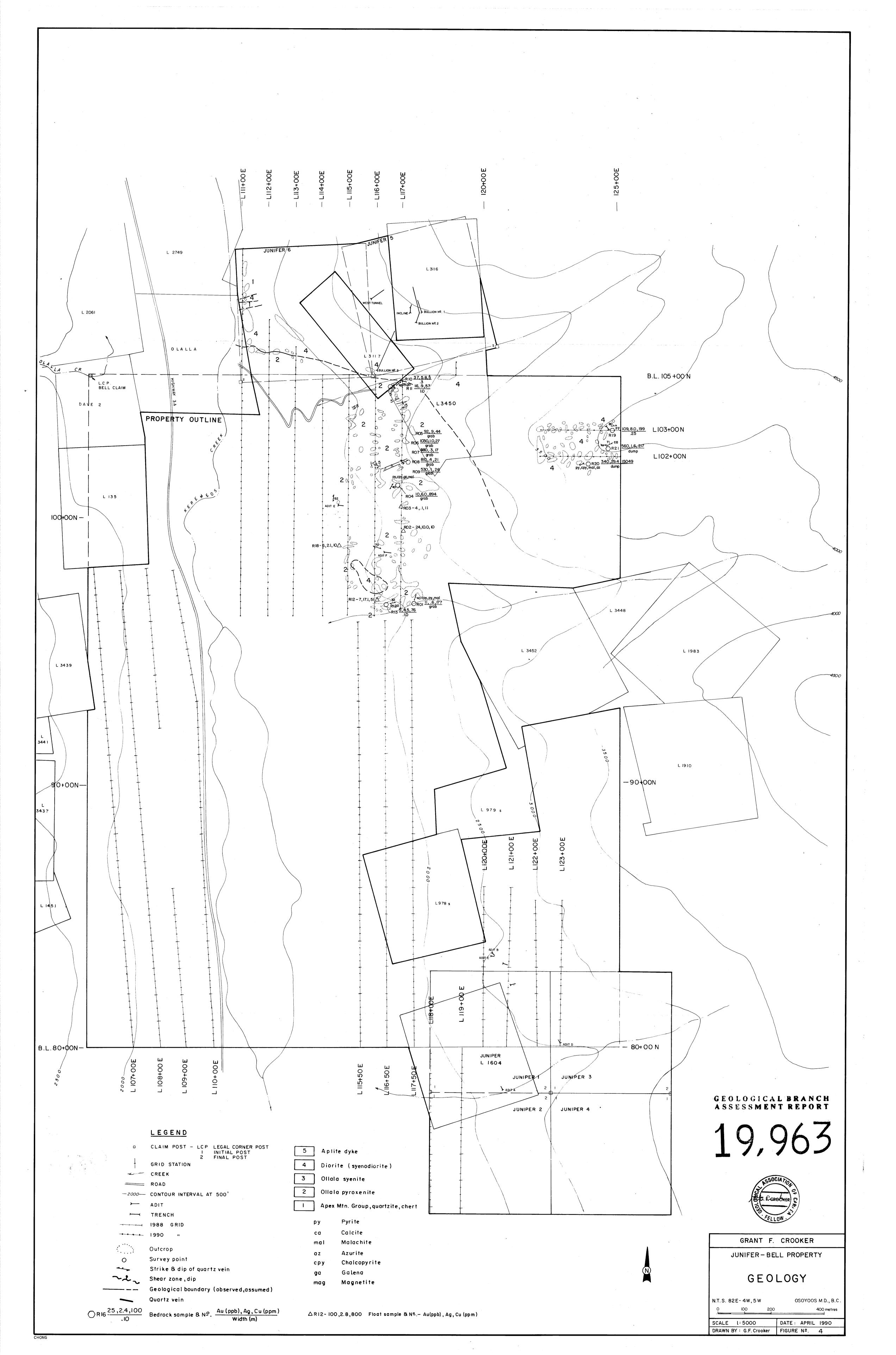
5. 1

t.

'

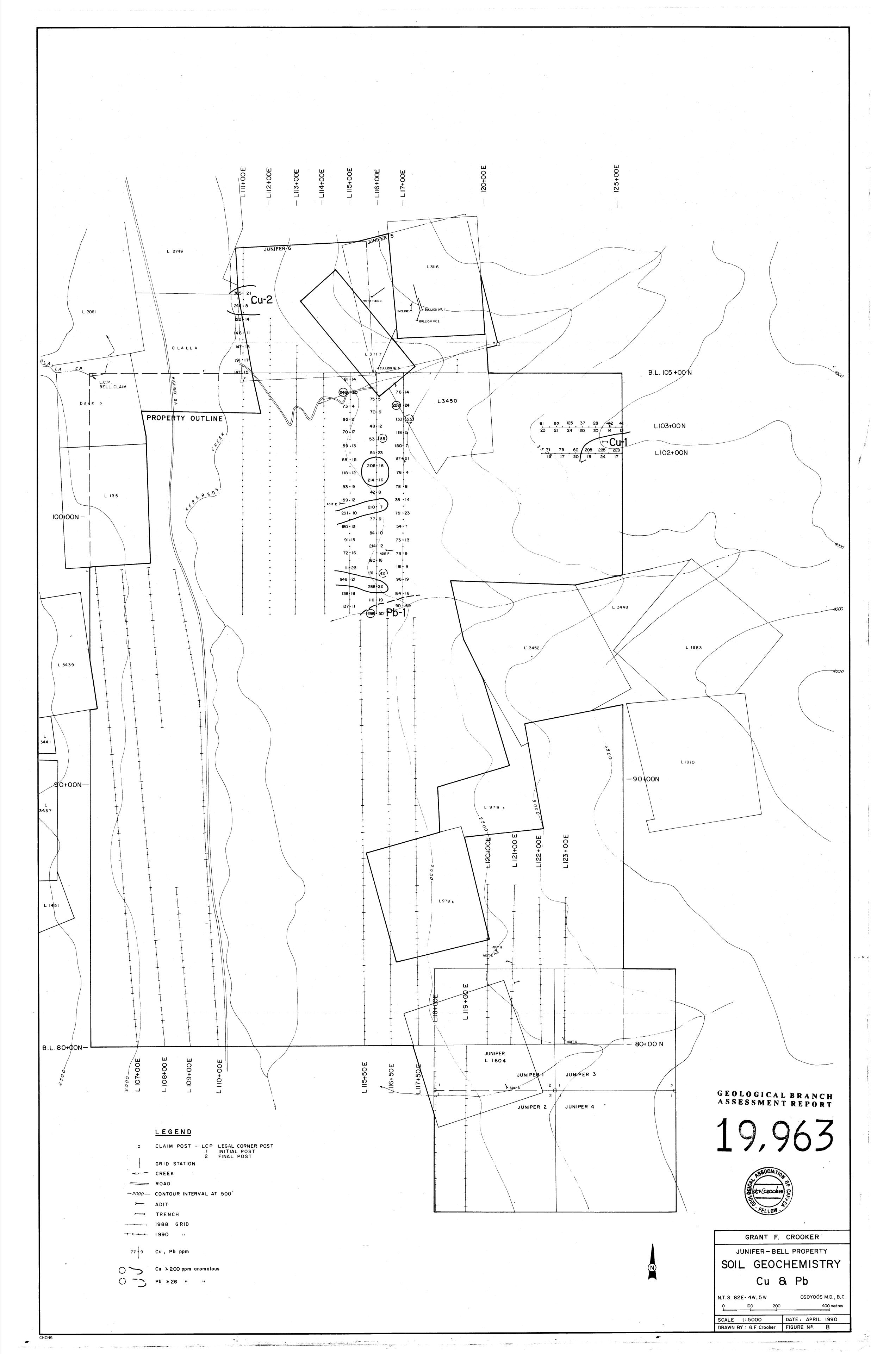
.

Appendix IV

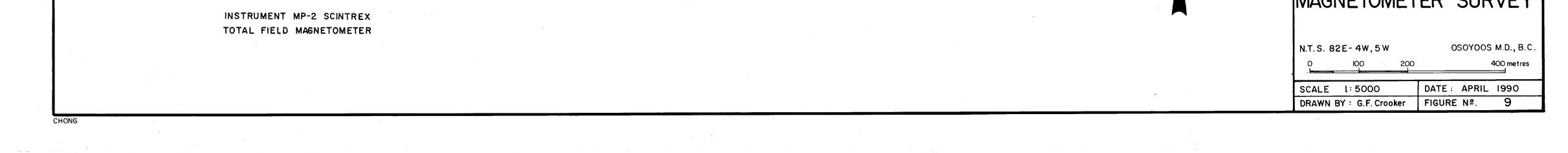

COST STATEMENT

COST STATEMENT

SALARIES


Apri	t Crooker, Geologist 1 2-7, 9-13, 16, 21, 19 days @ \$ 350/day	990	\$ 4,375.00
Apri	Mollison, Field Assista 1 3-6, 9-11, 1990 ys @ \$ 175.00/day	ant	1,225.00
MEALS and	ACCOMMODATION		
	t Crooker - 8 days @ \$ Mollison - 7 days @ \$ (480.00 420.00
TRANSPORT	ATION		
Apri	cle Rental(Ford 3/4 to: 1 2-6, 9-11, 1990 ys @ \$ 60.00/day line	n 4x4)	420.00 60.10
EQUIPMENT	RENTAL		
Apri	etometer - Scintrex MP 1 3-6, 9, 10, 1990 ys @ \$ 25.00/day	-2	150.00
SUPPLIES			t
- Hipc	hain thread, flagging,	etc.	101.30
FREIGHT			13.65
ANALYSIS			
	oil samples, 30 elemen 4.10 per sample	t ICP	295.20
	ocks, 30 element ICP, . 10.25	Au,	205.00
DRAUGHTIN	G		450.00
PREPARATI	ON of REPORT		
	etarial, reproduction, ce overhead etc.	telephone,	600.00
		TOTAL	\$ 8,795.25

`\



Ă • O ____ Ag ≫.5 ppm anomalous ○ ____ As ≫ 7 " " Ag & As N.T.S. 82E-4W,5W OSOYOOS M.D., B.C. 0 100 200 400 metres DATE: APRIL 1990 SCALE l: 5000 . DRAWN BY : G.F. Crooker FIGURE Nº. 7 CHONG

