ARIS SUMMARY SHEET

istrict Geologist, Kamloops Off Confidential: 90.12.20 ASSESSMENT REPORT 20016 MINING DIVISION: Kamloops ROPERTY: LOCATION: Pooley Lake 50 40 00 LAT LONG 119 59 00 11 5616786 289175 UTM LAIM(S): NTS 082L12W 092I09E Yoo Hoo, Ep 2 OPERATOR(S): Corona UTHOR(S): EPORT YEAR: COMMODITIES Wells, R.C. 1990, 56 Pages SEARCHED FOR: Gold EYWORDS: Triassic, Nicola Group, Andesite tuffs, Andesite flows, Quartz veins Chalcedony WORK **P**NE: Geological, Geochemical, Physical 700.0 ha GEOL Map(s) - 2; Scale(s) - 1:500, 1:10006.8 km LINE Contract of the second ROCK 278 sample(s) ;ME Map(s) - 2; Scale(s) - 1:500,1:1000 TOPO 4300.0 ha Map(s) - 1; Scale(s) - 1:10 000FILMED ELATED 18868

REPORTS:

the state of the s

No.

100

Constraints

and the second se

LOG NO:	0524	RD.
ACTION:		
FILE NO:		

GEOLOGICAL AND GEOCHEMICAL REPORT

on the

POOLEY LAKE CLAIM GROUP KAMLOOPS MINING DIVISION BRITISH COLUMBIA N.T.S 82-L/12W, 92-I/9E

for

CORONA CORPORTATION 1440 - 800 West Pender Street Vancouver, B.C.

COVERING:

-stranger

D

YOO HOO, EP 2, 3, 4, 5, 6, 7 CLAIMS. D. MORAAL - YOO HOO, EP 2 CORONA CORPORATION - EP 3, 4, 5, 6, 7 CORONA CORPORATION

OPERATOR:

PROGRAM SUPERVISOR:

PROPERTY OWNERS:

R. C. WELLS REGIONAL GEOLOGIST KAMLOOPS OFFICE 101 - 2985 AIRPORT RD. KAMLOOPS, B.C.

FEBRUARY 20, 1990

R.C. WELLS B.Sc., F.G.A.C

GEOLOGICAL BRANCH ASSESSMENT REPORT

20.016

TABLE OF CONTENTS

Lugary.

teredeşter.

Ĵ

States of the second

	Page	No.
SUMMARY AND CONCLUSIONS	1	
INTRODUCTION	3	
PROPERTY AND OWNERSHIP	4	
PROPERTY LOCATION AND ACCESS	6	
TOPOGRAPHY	6	
HISTORY OF PREVIOUS WORK	6	
REGIONAL GEOLOGY	7	
PROPERTY GEOLOGY	9	
1989 EXPLORATION PROGRAM	12	
 TOPOGRAPHICAL MAPPING SURVEY CONTROL GRIDS GEOLOGICAL SURVEY GEOCHEMICAL SURVEY 	12 12 13 13	
RESULTS OF THE 1989 EXPLORATION PROGRAM	14	
 a) LITHOLOGY - UNIT DEFINITION b) LITHOLOGY - DISTRIBUTION AND CHEMISTRY c) STRUCTURE d) ALTERATION e) VEINING, ALTERATION, MINERALIZATION f) VEIN AND ALTERATION GEOCHEMISTRY g) DISCUSSION OF RESULTS 	14 17 21 22 23 25 27	
BIBLIOGRAPHY	29	
STATEMENT OF QUALIFICATIONS	30	
STATEMENT OF EXPENDITURES	31	

APPENDICES

At Rear

APPENDIX	А		STATEMENT OF WORK
			NOTICE TO GROUP
APPENDIX	В		LABORATORY ANALYTICAL PROCEDURES (Eco Tech Laboratory, Kamloops, B.C.)
APPENDIX	С	<u>-</u>	GEOCHEMICAL DATA
			STATISTICAL DATA
APPENDIX	D	- 1	LARGE FIGURES AND PLANS

LIST OF FIGURES

Figure No.		Page No.
1	LOCATION AND CLAIM MAP	5
2	AIRBORNE MAGNETIC MAP	10
3	COMPILATION MAP	APPENDIX D
4	GEOLOGICAL MAP - EP 2 GRID: Scale 1:500	••
5	GEOLOGICAL MAP - YOO HOO GRID: Scale 1:1000	**
6	ALKALI SILICA DIAGRAM: ALL SAMPLES	18
7	ALKALI SILICA DIAGRAM: FPSD DYKE/WALLROCKS	19
8	ALKALI SILICA DIAGRAM: FPD DYKE/WALLROCKS	20
9	SAMPLE LOCATION MAP: YOO HOO GRID	APPENDIX D
10	SAMPLE LOCATION MAP: EP2 GRID	"

LIST OF TABLES

Table No.

- Part and -

No.

and an article of the second sec

Nonematica)

- Transform

0

and a

Page No.

1	THE POOLEY LAKE PROPERTY, CLAIM DATA	4
2	WHOLE ROCK ANALYSIS OF DYKES AND WALLROCKS	APPENDIX C
3	EP 2 GRID: SAMPLE DATA	11
4	YOO HOO GRID: MAIN CLIFF ZONE SAMPLE DATA	Ħ
5	YOO HOO GRID: GOSSAN ZONE SAMPLE DATA	· • • • •

SUMMARY AND CONCLUSIONS

I

D

1990 Alexandria

- Anna - Anna

-

The Pooley Lake Property is located 20 kilometres east of Kamloops and consists of seven claims totalling 108 units.

The property lies near the eastern margin of the Intermontane Belt and covers northwesterly striking Nicola Group (Triassic-Jurassic) volcanics overlain by flat lying Tertiary basalts of the Kamloops Group (Eocene). The exploration target is structurally controlled precious metal mineralization which appears to be largely epithermal.

In 1988 Corona Corporation conducted reconnaissance geological and sampling programs over much of the better exposed, southern part of the property. Parts of this area displayed strong fracturing with associated veining and alteration. 16 samples from the total of 160 taken returned gold values between 1 g/t and 14.57 g/t. These and other anomalous values came from two areas 1.5 kilometres apart on the Yoo Hoo and EP 2 claims. They could be related to either northwesterly trending grey quartz veins or a prominent alteration zone (gossan on the Yoo Hoo claim).

Corona's 1989 program on the property consisted of detailed mapping and sampling in the two areas of interest identified by the previous surveys. This work was with the aid of a new topographic base map and control grids.

The geological mapping at 1:500 and 1:1000 scales showed clear relationships between the various structures, vein sets and alteration as well as identifying a number of alkalic dykes on the Yoo Hoo.

Detailed chip sampling confirmed that northwesterly trending, grey quartz veins are auriferous (up to 10.52 g/t Au) and geochemically anomalous in As and locally Mo and Sb. Northeasterly trending veins are more carbonate rich and geochemically different. The Yoo Hoo gossan featuring widespread bleaching and strong veining is geochemically anomalous in As and locally Au, Sb and Mo (incomplete coverage at this stage).

5 (1) (Standard

-

- Andrews

The two auriferous vein/alteration systems on the Yoo Hoo are geochemically similar and may be genetically linked to alkalic intrusives.

Further detailed sampling and mapping is required in 1990 to cover the Yoo Hoo gossan zone and surrounding areas.

INTRODUCTION

and the second

The purpose of this report is to present the results of a mineral exploration program performed on the Pooley Lake Property in Kamloops Mining Division during 1989. This work was under the direction of Corona Corporation personnel and consisted largely of detailed geological mapping and sampling.

A 28 unit claim group under option from D. Moraal has been grouped with the adjacent Corona owned claims into the Pooley Lake Property for assessment purposes. Corona Corporation is presently exploring this property for structurally controlled precious metal mineralization. The aim of the 1989 program was to better define gold mineralization that had been found by previous recon. programs (by Corona) in two areas 1.5 kilometres apart in the southern part of the property. The 1989 program was under the direction of R.C. Wells, Regional Geologist for Corona Corporation based in the Kamloops Office, B.C.

The total cost of the 1989 geological/geochemical program was \$35,108.00 of which \$27,600 is being applied for assessment credit (Statement of Work: Appendix A). The remaining \$7,508.00 is available 50/50 to the PAC accounts of Corona Corporation and D. Moraal.

PROPERTY AND OWNERSHIP

A STREET

Ì

State.

The Pooley Lake Property is located within the Kamloops Mining Division and all the claims are recorded in Kamloops B.C. Two claims, Yoo Hoo and EP 2 (28 units total) are owned by D. Moraal of Kamloops, B.C. and are presently under option by Corona Corporation. The EP 3, 4, 5, 6 and 7 claims are 100% owned by Corona Corporation. Collectively, all the claims are known as the Pooley Lake Property and were grouped for assessment purposes in December 1989.

A list of the claim information on the Pooley Lake Property follows in Table 1. The claims are shown in Figure 1.

CLAIM	NO. OF UNITS	RECORD. NO.	ANNIVERSARY DATE	OWNER
Yoo Hoo	12	7580	April 6, 1988	D. Moraal
EP 2	16	7706	July 7, 1988	D. Moraal
EP 3	1.2	7797	July 7, 1988	Corona
EP 4	12	7798	July 7, 1988	Corona
EP 5	16	8388	April 3, 1989	Corona
EP 6	20	8389	April 3, 1989	Corona
EP 7	20	8390	April 3, 1989	Corona

TABLE 1. THE POOLEY LAKE PROPERTY

Total 108 units 2,700 hectares

PROPERTY LOCATION AND ACCESS

The Pooley Lake Property is located some 20 kilometres east of Kamloops, B.C. overlooking Monte Creek on the South Thompson River (Figure 1). The property straddles N.T.S. sheets 92I/9E and 82L/12W at Latitude $50^{0}40$ 'N and Longitude $119^{0}59$ 'W.

Access to the southern parts of the property is by the Trans Canada Highway (1) exit across the bridge over the South Thompson River at the LaFarge Cement Plant, then 4 kilometres east. From here, old dirt roads give access up the main river terrace to the southern edge of the claim group. Access to the northern part of the property is by a complex network of logging and ranch roads southeast from Pinantan Lake. This lake lies 30 kilometres by road east from Kamloops.

TOPOGRAPHY

i sentite e

- magazin

The property covers an area of 2700 hectares north of the South Thompson River. Much of the southern area consists of steep bluffs and river terraces forming the northern slopes of the South Thompson valley. The relief in this area ranges from 400 to 600 metres. The slopes are generally sparsely treed with large areas of sagebrush and, or talus.

Above the valley at elevations greater than 850 metres ASL, the topography is rolling with a few rounded knolls (upto 1100 metres elevation), gentle valleys and local ponds. This area is more heavily treed with patches of cleared ranch land.

HISTORY OF PREVIOUS WORK

No evidence has been found of mineral exploration in the property area prior to the prospecting and sampling by Dirk Moraal in 1987. Dirk's work indicated a number of structurally controlled, alteration and vein zones on the steep cliffs on the Yoo Hoo, Ep 2 claim area. Samples of siliceous, epithermal looking vein material yielded strongly anomalous values in gold, arsenic, barium and mercury.

Corona worked on the property late in 1988 and conducted preliminary geological and geochemical surveys. These surveys were the subject of a geological report filed for assessment credit in January 1989, author I. Mitchell, BSc.

Mitchell drew attention to structurally controlled alteration zones with quartz carbonate veining cutting the Nicola Volcanics. He identified six separate zones hosting gold mineralization >1 g/t, commonly having a southeasterly trend.

REGIONAL GEOLOGY

The Pooley Property lies within the Intermontane Belt of the Canadian Cordillera. The Louis Creek Fault zone is thought to mark the eastern margin of this belt and lies 10 kilometres to the east of the property.

Much of the Monte Creek area is underlain by Nicola Group (Triassic) volcanic and volcaniclastic rocks with local sedimentary units, commonly limestones. There is a predominant northwesterly strike to these units. The volcanics are typically green augite porphyritic andesites, geochemically alkaline, calc-alkaline. In the Heffley Creek area to the north, the volcanics are intruded by a number of stocks predominantly of dioritic composition and of similar age (comagmatic?).

Tertiary (Eocene) volcanic rocks, chiefly basalts overlie the Nicola sequence with angular unconformity and cap most of the higher hills in the area (erosional remnants).

Thick, recent sand and gravel deposits occur along the Thompson Valley forming a number of terraces.

The only significant nearby precious metal occurrence is on the Harp claim, 8 kilometres west of Pooley. A number of narrow,

westerly trending, quartz veins are exposed in trenches and a small adit. Between 1913 and 1932 small shipments of high grade from these workings yielded .37 to .84 oz/t Au and 4.6 oz/t Ag. Low copper, lead and zinc values are associated with these veins.

8

. Sustantis

- Sector

-

Autor .

A CONTRACTOR

Constant of the

- instanting

- Canada

- and the

PROPERTY GEOLOGY

and the second

In 1988, reconnaissance geological mapping and sampling was conducted by I. Mitchell over much of the original four claims making up the Pooley Lake Property. This mapping was at 1:5000 scale, and indicated that northwesterly striking andesitic flows and tuffs belonging to the Triassic, Nicola Group predominate in this area. Flat lying Kamloops Group (Tertiary) basalts form the higher ground north of Pooley and King Lakes. Geological Survey of Canada airborne magnetic data for the area appears to agree with this interpretation. (Figure 2)

Along the South Thompson Valley section (north side) massive, andesitic flows predominate, interbedded with monolithic, lapilli tuffs of similar composition. A number of northwesterly to westerly trending and younger feldspar porphyritic, trachytic dykes were noted on the Yoo Hoo claim.

I. Mitchell in the 1989 report describes a number of structurally controlled alteration zones in this area. The largest and most obvious of these is on the Yoo Hoo claim (gossan) and appears to be a flat lying zone over 300 metres long located at the top of the main cliff. It features widespread bleaching and limonite staining associated with strong fracturing. A number of grab samples from the zone in 1988 returned gold values in the 1 to 3 g/t range.

To the west of this zone, quartz-carbonate and locally banded to brecciated chalcedony veins follow northwesterly and northeasterly trending structures. The former yielded gold values up to 15.29 g/t from grab samples. Average gold values in this vein system were in the 0.5 to 4.0 g/t range. The northeasterly trending structures and veins generally yielded low gold values. An area with similar veins and structures was found on the EP 2 claim, 1.5 kilomtres to the east. One vein in this area yielded gold values up to 9.25 g/t in 1988.

As mentioned earlier, the 1988 geological mapping and sampling was reconnaissance. It indicated a number of areas with significant veining, alteration and gold values. This work formed the geological base for the more detailed follow up programs in 1989.

11

17 MIQ.

i Statesta

.

1-44933-6

Same and the second second

- Shere

- 11- 11-

1989 EXPLORATION PROGRAM

Corona Corporation conducted a program of geological mapping and sampling on the southern part of the Pooley Property during the period March 1 to December 10, 1989.

This work was supervised be R.C. Wells B.Sc., F.G.A.C., Regional Geologist with Corona Corporation based in Kamloops, B.C., who completed all geological mapping on the eastern EP 2 grid. R. Klassen B.Sc. geologist did much of the geological mapping on the Yoo Hoo grid, assisted with the sampling by P. Watt. D. Moraal and P. Watt were involved with grid preparation and sampling at various times during the program.

1. TOPOGRAPHICAL MAPPING

Eagle Mapping Services of Vancouver B.C. at Corona's request produced a topographic base map at 1:10,000 scale of the Pooley Lake property area. This map was produced using 1:70,000 air photographs (1987), aero triangulation and adjusted to the best available NTS control. The base map is used in Figure 3 and covers an area of 4300 hectares with 20 metre contours.

2. SURVEY CONTROL GRIDS

Survey control grids were installed in two separate areas in the southern part of the property (Figure 3). Both grids were installed using compass, chain, sight pickets, and flagging, and were slope corrected with an inclinometer. No cutting was involved in either area as trees were sparse.

The EP 2 grid on the EP 2 claim (Figure 4) is a conventional grid consisting of a 425 metre base line (Az 340) with 2.1 kilometres of survey line (25 metre spacing).

The Yoo Hoo grid on the Yoo Hoo claim (Figure 5) covers steep slopes and cliffs which are cut by fairly straight talus filled gullies. 4.74 kilometres of base lines were run down the straighter gullies for mapping and sampling control. During the surveys, lines were run with chain and compass from the base lines wherever needed and possible.

3. GEOLOGICAL SURVEY

- Alexandra

- Printer of

- entitelier -

- resident

Ý

- ANALASA

and the second

and the second se

The geological surveys were carried out at the scales of 1:500 (EP 2 grid) and 1:1000 (Yoo Hoo grid) using the control grids.

During the mapping, emphasis was put on the orientation and nature of structures, alteration and veining. Samples were taken from intrusive dykes and adjacent country rocks for whole rock analysis. (Table 2)

The mapping on the Yoo Hoo grid was hindered by a combination of bad weather and difficult topography. As a consequence, areas to the east and west of the grid remain to be mapped in 1990.

4. GEOCHEMICAL SURVEY

During the geological mapping, chip samples were taken where possible across all vein and alteration zones at regular intervals. In total 210 samples were taken from the Yoo Hoo and 68 from the EP 2 grids.

All samples were taken with hammer and chisel and deposited in tough plastic bags. The samples were taken for analysis to Eco Tech Laboratories in Kamloops, B.C. Each sample was analyzed for 31 element ICP and gold geochemically. Samples with gold values greater than 800 ppb were checked by fire assay. A summary of all the 1989 analytical data can be found in Appendix C. Analytical procedures are outlined in Appendix B.

RESULTS OF THE 1989 EXPLORATION PROGRAM

Geological mapping was conducted on both the EP 2 and Yoo Hoo grids during the 1989 field season. These two areas are 1.5 kilometres apart and located in the southern part of the property.

Separate geological maps have been produced for the two grid areas at different scales: Figure 5 - Yoo Hoo Grid at 1:1000 scale, Figure 4 - EP 2 Grid at 1:500 scale. The rock units on both grids are fairly similar.

a) LITHOLOGY - UNIT DEFINITION

Volcanic and volcaniclastic rocks belonging to the Nicola Group of Upper Triassic to Lower Jurassic age dominate the southern part of the property. This thick, north to northwesterly trending sequence is cut by a number of feldspar porphyritic dykes on the Yoo Hoo grid. These have similar to westerly trend.

During the geological mapping several rock units were defined. These are as follows:

TRIASSIC OR LATER, INTRUSIVE ROCKS.

Dykes and sills intruding the Nicola Volcanic Sequence (Yoo Hoo grid).

FPSD - Feldspar Porphyritic Syenodiorite

These fine to medium grained, feldspar porphyry dykes are quite distinct in colour and texture from other dykes. These are pinkish grey, crowded, feldspar porphyries with white to pinkish, tabular, plagioclase phenocrysts between 1 and 4mm long in a fine grained, hard, siliceous groundmass with a significant amount of fine potassic feldspar (from staining). Fine grained, disseminated magnetite occurs throughout, and the dykes are moderately to strongly magnetic. After whole rock analysis, this dyke rock was classified as a syenodiorite.

FPD - Feldspar Porphyritic Diorite

- and the second se

- Signadu -

- Contection

- industry

- Arithtica

- and the second

This is a coarser, crowded feldspar porphyry which is grey in colour and has tabular plagioclase phenocrysts generally in the 4 to 8mm size range. The groundmass is grey and siliceous with a minor amount of fine, potassic feldspar. Fine grained, disseminated, magnetite occurs throughout (moderate to strong magnetism). Epidote veinlets with or without carbonate are common along joints.

Petrochemically these rocks are diorites. Some flows within the Nicola Volcanic sequence are quite similar in appearance to the FPD dykes, though they have less crowded porphyritic textures and contain some coarse grained hornblende. Chemically these rocks plot in the same fields as the flows and are either part of the flow sequence or feeder dykes(?).

UPPER TRIASSIC TO JURASSIC : NICOLA GROUP

Consisting predominantly of massive andesitic flows, coarse tuffs and minor sedimentary units.

Sedimentary Units

These are narrow interflow units that are generally less than 5 metres wide. On the EP 2 grid these consist of grey, fine grained, finely bedded, cherty units which are commonly broken and deformed. Locally the cherts are interbedded with fine tuffs and light grey, siliceous argillites. Narrow barite layers (beds?) were identified at one locality.

Andesitic Volcanic and Volcaniclastic Rocks

These consist of a thick sequence of medium to dark green, variably hematitic andesitic flows and lapilli tuffs. Primary variations occur in grain size and phenocryst composition. Secondary variations occur in the degree and predominance of chlorite, epidote or hematite alteration and degree of fracturing with associated or later veining, bleaching and silicification.

For mapping purposes the flow units were subdivided into the following groups. All are magnetic.

MGA:

Massive non porphyritic green to mauve andesite.

Fine to fine medium grained, equigranular with local and small hornblende phenocrysts (less than 2%). Locally very dark green, magnetic (strong) and could be called basalt (field name).

MGH:

Hornblende Porphyritic Andesite

Massive flow units very similar to MGA but with greater than 2% hornblende phenocrysts, commonly 5% to 10%, locally greater than 20%. Phenocrysts can vary in size from 2mm to 2cm and are tabular. The groundmass is fine grained with or without plagioclase laths. Generally moderately to strongly magnetic.

MGHF: Hornblende Feldspar Porphyritic Andesite

As MGH but lighter coloured and more greyish. Small plagioclase phenocrysts, generally smaller than the hornblende, and not greater than 10%. Volumetrically these flows are very minor compared to MGH.

HA:

Hematitic Andesite

These appear to be hematitic variations of MGA, MGH and MGHF flows and are mauve to mauve green in colour. Macroscopically, fracturing appears to be weak and units are massive in contrast to the strongly hematitic brecciated flows HBA. Coarse Tuff Units (L) are rare on the two grids. A number of green to grey coarse, monolithic, lapilli tuff units were outlined by the previous programs (I. Mitchell) between the grids. These tuffs are interbedded with the flows and are of similar composition. Some reach 10 to 20 metres in thickness.

b) LITHOLOGY - DISTRIBUTION AND CHEMISTRY

The dominant Nicola flow type on the EP 2 grid is non porphyritic andesites (MGA) compared to hornblende porphyritic andesites (MGH) on the Yoo Hoo grid. No significant dykes were found on the EP 2.

Two distinct types of dyke occur on the Yoo Hoo grid. The less common of these is the syenodiorite (FPSD) found two thirds of the way up the cliff face. It is traceable for over 75 metres and has very distinct contacts with the andesites. The more common dyke is a diorite (FPD) which can be up to 50 metres wide. It also has very distinct contacts with the andesites.

Whole rock geochemistry was completed on 9 samples of dyke and flow rocks (locations on Figure 9) from the Yoo Hoo grid. Descriptions of the samples and whole rock analyses are recorded in Table 2. This data is plotted on Silica-Total Alkalis plots in Figures 6, 7 and 8. The field boundary separating alkaline from subalkaline rocks is from Irvine and Baragar (1971).

Samples from the dykes and flow rocks plot in the alkaline field. The flows could be called alkali basalts to andesites, and chemically are fairly typical Nicola rocks which do not show any particular iron enrichment. On an AFM diagram they would plot in the calc-alkaline field.

ALKALI SILICA DIAGRAM

- Andrews

and the second

Contraction of the second

ALKALI SILICA DIAGRAM

×.

No.

Figure 7

ALKALI SILICA DIAGRAM

FPD DYKE/WALLROCKS

No. .

2(

c) STRUCTURE

- Line Andrea

sinder.

-

· rautos :

and the second

The volcanic flows, tuffs, sediments and dykes forming the cliffs in the southern part of the property have been subject to a significant amount of brittle fracturing. Faulting is in a number of different forms such as well defined single fractures, zones of multiple fractures, breccia zones and areas of pervasive weak brecciation with gradational boundaries. It is not uncommon for fractures to change "style" along strike reflecting change in the competency of the host rocks.

A structural analysis by I. Mitchell (1988) defined three dominant fracture orientations. These control later veining and alteration. The average strikes and dips for these structural zones are:

Туре	<u>Strike Az.</u>	Dip with Direction
FT 1	145	70 ⁴ SW
FT 2	074	30° NW to 20° SE
FT 3 ·	034	80° NW to 80° SE

Slickensides on FT 1 and FT 2 fault planes are near horizontal and indicate southerly directed strike slip. FT 2 fractures generally contain more fault gouge and clay than the other sets. The sense of movement on some of these is normal-dip slip.

On the EP 2 grid (Figure 4) fault and fault zones with FT 3 orientations dominate. Wider spaced FT 2 structures are generally poorly exposed and may be hidden under talus benches below the cliffs. The relative ages of these fault sets is unclear. Field relationships suggest they are broadly contemporaneous. Displacements of interflow sedimentary units on FT 3 faults indicate dextral, strike slip movements.

Faulting is generally stronger on the Yoo Hoo grid (Figure 5) and all the fault sets are present. West of Baseline 1, FT 1 structures dominate and are locally of post dyke age. They are well defined, single structures with fault gouge and later quartz

veining (Au bearing, see later section). FT 3 structures tend to be wider and may form chloritized (CBA) or hematized (HBA) fault breccias. Widely spaced FT 2 faults are poorly exposed and may be relatively late. East of Baseline 1, the Gossan Zone with its strong fracturing dominates the cliff top. Initial detailed mapping in this area shows a wide variety of fault orientations possibly with an overall FT 2 control.

In both grid areas, jointing in the flow units is locally accompanied by epidote veining with or without carbonate.

d) ALTERATION

and the second

-

-

- Sector

-strates-

No. of Concession, Name

Alteration in the 1989 project area can be divided into two distinct types:

- 1. Alteration associated with well defined faults and structural zones.
 - (a) Associated with veining. Wallrock silicification and carbonate alteration. Type depending largely on vein composition - *ie*. quartz and, or carbonate.
 - (b) Veining weak to absent. Virtually all the fault structures on the cliff face are oxidized to some degree. Most are limonitic, some are strongly hematitic. Many of the stronger structures have associated clay alteration. Structurally controlled breccia zones fall into this category including chloritic (CBA) and strongly hematitic (CBA) breccia zones, largely on the Yoo Hoo grid.
 - (c) Wallrock silicification adjacent to diorite and syenodiorite dykes. In addition, some dykes have been subject to later fracturing and silicification.
- Widespread, pervasive alteration. Fairly large areas on both grids have been subject to pervasive alteration which is not clearly related to well defined structural zones.

- Hematitic alteration is fairly widespread. Pervasive

moderate to strong alteration has some correlation with certain flow units and stratigraphic intervals.

- Moderate to strong, pervasive epidote (propylitic) alteration occurs on both grids and is quite patchy. A core zone of strong alteration and usually moderate fracturing/jointing fades outward to patchy, pervasive (weak) alteration then veinlet epidote. Minor epidote veining with or without carbonate is common (along joints) in the volcanics and dykes throughout the area.

e) VEINING, ALTERATION AND MINERALIZATION

There is a great deal of veining and alteration on both grid areas. The fault systems described in the structural section formed a complex plumbing system for later veining and alteration (type 1).

As mentioned earlier there is a wide variety of fault structures (from single fault to breccia zones) consequently there is a lot of variation in vein style with single veins, vein swarms, stockworks and veined breccias. Changes in the controlling structure along strike and dip is reflected in changes in the vein style. Veining and alteration on the two grid areas are described separately in order to avoid confusion.

(1) EP 2 Grid (Figure 4)

- Same

And the second

- saint saint - s

This area is dominated by a number of strong, northeasterly trending, poorly mineralized, quartz-carbonate vein systems following FT 3 structures. Several of these systems are between 1 and 10 metres wide and can be traced for upto 220 metres along strike and more than 100 metres in elevation.

These veins vary from single veins through stockworks to silicified breccias, and display massive to locally vuggy textures (drusy cavity fill). Milky quartz and carbonate dominate with lesser amounts of banded grey quartz, chalcedony and white barite. Sulfides are generally rare. Vein contacts are usually sharp and locally faulted, the veins themselves form prominent outcrop ridges on the hillside. Wallrock alteration consisting of bleaching, silicification, carbonate, limonitic and or hematitic alteration may extend for many metres from the veins.

Where FT 3 structures are intersected by shallow FT 2 faults, the veins following the former commonly move out upward into the latter (forming stacks of flat lying veins). This dates the veins at post FT 2 structures. One of these flat lying quartz (minor carbonate) veins near the grid origin produced significant gold values upto 9.25 g/t during the previous 1988 sampling program (I. Mitchell).

Weak fracture controlled, disseminated chalcopyrite mineralization was noted in the core zones of propylitic alteration in the northern parts of the grid.

(2) Yoo Hoo Grid (Figure 5)

. .

The veining and alteration on the Yoo Hoo grid is more complicated as a consequence of more complex structure, dyking and probably more than one mineralizing event.

Northwesterly trending and steeply dipping, quartz carbonate veins similar to those on the EP 2 are common but differ in that chalcedony is more abundant (epithermal textures). Poorly exposed and fairly wide (2 to 5 metres) breccia zones containing coarse, banded, milky to bluish chalcedony fragments have this orientation. Alteration envelopes on this vein set are commonly metres wide with clay, carbonate, silica, limonite and, or hematite.

Numerous northwesterly and steeply dipping (FT 1) structures occur throughout the area. These commonly contain narrow but fairly persistent white to grey quartz, chalcedony veins with minor carbonate and local arsenopyrite and tetrahedrite(?). Pinch and swell is common, vein contacts are sharp with little wallrock silicification. Most of the gold values greater than 3.0 g/t and upto 14.6 g/t (1988) come from these veins. A significant point about these veins is that they have similar trends, but do not crosscut the diorite and syenodiorite dykes.

Flat lying FT 2 structures generally feature narrow clayey alteration zones with or without quartz-carbonate veining in the western part of the grid. In the eastern section these zones combined with a large number of other vein structures form the prominent and limonitic gossan. This apparently flat lying alteration/vein zone is over 300 metres long with widespread bleaching obscuring original textures. Vein and fault structures pinch and swell, changing orientation over short distances with numerous truncations. The veins themselves can be quartz and, or carbonate and, or chalcedony. Many tend to be narrow and in swarms. Gold values (up to 3 g/t) appear to be associated with white to grey quartz not chalcedony.

f) VEIN AND ALTERATION GEOCHEMISTRY

During the 1989 program all structurally controlled vein and alteration zones encountered during the geological mapping were systematically chip sampled. The analytical and statistical data for these samples can be found in Appendix C.

(1) EP 2 grid (Figure 10 and Table 3)

Of the 68 chip samples taken in 1989 only two produced significant gold values with 1 g/t and 0.3 g/t. Both these (22701, 22702) were 2 metre panel samples taken from the same flat lying vein that yielded a 9.89 g/t grab sample in 1988 (at grid origin). Other elements including Ag were non anomalous.

Geochemically all the northeasterly trending veins were similar with little to no gold and highly variable Ba. Other elements such as As, Sb and Mo were non anomalous.

(2) Yoo Hoo grid (Figure 9 and Tables 4 and 5)

- abieneger

- ALCONG

The northeasterly trending veins like those on the Ep 2 are rarely anomalous in Au but differ in having locally higher As and Sb values. Ba is again highly variable.

Northwesterly trending grey quartz veins on the grid (outside the gossan) are geochemically distinct. Gold values are generally elevated, frequently greater than 100 ppb. Seven gold values were better than 1 g/t (max. 10.52 g/t). These came from three parallel veins between 0.5 and 1.8 metres wide within the area of dyking in the western part of the grid. All three veins can be traced well over 100 metres and are distinguished by higher As content (to 1500 ppm) and locally anomalous Mo and Sb. Ba is variable.

Sampling on the gossan zone is incomplete. 18 of the 108 samples taken in 1989 produced values greater than 100 ppb, five of which were close to or above 1 g/t. The gossan as a whole is strongly anomalous in As and anomalous in Ba and Sb. The correlation between higher gold values and As is poor. As correlates well with Sb indicating tetrahedrite(?). Ag values are low. Many of the better gold values in the gossan come from northwesterly veins though some other structures carry values.

Geochemically there are similarities between the two gold bearing systems on the Yoo Hoo grid. There are next to no geochemical similarities between these and the gold poor northeasterly trending veins.

g) DISCUSSION OF RESULTS

1.10 March

The second se

The 1988 reconnaissance programs by Corona (I. Mitchell) showed that there were a multitude of structurally controlled vein and alteration zones exposed along the cliffs on the Yoo Hoo and EP 2 claims. Preliminary sampling indicated that some of these contained highly anomalous gold values while others were essentially barren.

The main aims of the 1989 surveys were to determine which veins were auriferous and develop a better understanding of the geological controls. This was achieved through detailed geological mapping and thorough chip sampling. The results largely confirm and expand upon the conclusions made by I. Mitchell in 1989.

On the western Yoo Hoo grid, northwesterly trending and steeply dipping fault structures host auriferous quartz chalcedony veins containing minor amounts of fine arsenopyrite and pyrite (also tetrahedrite?). These are narrow, between 0.5 and 1.8 metres wide with much pinch and swell. They are however persistent and can be traced for well over 100 metres. Geochemically these veins are anomalous in Au, As and locally Sb and Mo. Mapping shows a close spatial relationship between these veins and a series of alkalic, dioritic to sygnodioritic dykes with similar trend.

The flat lying gossan zone lies to the east and above the northwesterly veins. It is an extensive alteration system with much veining. The gossan as a whole has a geochemical signature similar to the auriferous veins with high As, and locally anomalous Au, Sb and Mo. Initial sampling shows that gold values occur in a number of vein systems within this alteration zone. There are indications from the mapping that intrusives lie directly beneath the zone. With this in mind a genetic link appears to be developing between the two auriferous systems.

Large, northeasterly trending quartz-carbonate vein systems are widespread in both grid areas (1.5 km apart). They are however barren in gold and geochemically different from the auriferous systems (besides being far more carbonate rich). The EP 2 grid area largely has this type of vein and no significant dykes. It appears to be peripheral (or high above!) the gold mineralized system.

and and

da gara

and the second

in the second

- phietos

- 15 **(1999)** - 15 - 15

A THE REAL

Sec.

A STREET

and the second

Further detailed mapping and sampling is required between the two grids, as well as to the west and north. The potential is for low grade, large tonnage - vein/alteration gold systems and also for higher grade structurally controlled quartz veins.

BIBLIOGRAPHY

14.0.

. An grant

- +4 (and)+ - -

- 4.1.4 det 2007. .

1998 States

G magness.

an ta da se

· satisfica

confidence - -

.....

, contracting for the second

A. Berlin

a familie -

-

1.	JONES, A.G. (1957)	VERNON MAP	AREA. GSC	MEMOIR NO. 196
		an ta shi she ar		
2.	MITCHELL, I.G. (1989) CLAIM GROUP, ASSES	GEOLOGICAL SMENT REPORT	REPORT on B.C.	the POOLEY LAKE
3.	IRVINE, T.N. and BARA CHEMICAL CLASSIFIC CANADIAN JOUR. EAR	GAR, W.R.A. ATION of the TH SCI., VOL.	(1971) COMMON VOI 8, p. 52	A GUIDE to the LCANIC ROCKS. 3-548

STATEMENT OF QUALIFICATIONS

I, Ronald C. Wells of the City of Kamloops, British Columbia do hereby certify that:

- 1. I am a Fellow of the Geological Association of Canada.
- 2. I am a graduate of the University of Wales, U.K. B.Sc in Geology (1974), did post graduate (M.Sc) studies at Laurentian University, Sudbury, Ontario (1976-1977) in Geology.
- 3. That I am presently employed by Corona Corporation as a Regional Geologist based in Kamloops, B.C.
- 4. That I have practiced continuously as a geologist for more than eleven years throughout Canada and have past experience and employment as a geologist in Europe.

Signed and dated in Kamloops, British Columbia this _____ day of ________ 1990.

· Sandaran ·

- Andrew Mar-

h. . . brell

STATEMENT OF EXPENDITURES

. states .

- Loregia

, silter d

- 1968

stratinise.

And the second second

مربع قالب محمد ا

- 1999

- citedatore

a second

The following expenses were incurred by Corona through the 1989 exploration program on the Pooley Lake Property:

1.	Topographic Base Map (Eagle Mapping Services	3)		\$5,500.00
2.	Grid Preparation Salaries Other Field Expenses			4,000.00 2,000.00
3.	Geological Mapping Salaries Other Field Expenses			5,000.00 2,500.00
4.	Geochemical Sampling Salaries Analyses Helicopter Charter Other Field Expenses			6,100.00 3,129.00 1,879.00 1,500.00
5.	Report Preparation			3,500.00
		Total	Cost	35,108.00

Of the \$35,108 total expenditures, \$27,600 is being applied for assessment credit (geological, geochemical) as detailed in the Statement of Work (Appendix A). The remaining \$7508.00 is to be split 50/50 between the PAC accounts of Corona Corporation and D. Moraal.

APPENDIX A

there is a second

SALE.

. secondaria

- Ala teleforti-

. Alter to

1000

in the second second

- Constant

stiller.

Province of British Columbia Ministry of Energy, Mines and Petroleum Reso MINERAL RESOURCES DIVISION TITLES BRANCH	Durces	DOCUMEN	T No OFFICE USE	ONLY
Mineral Tenure Act Sections 25, 26 & 27 STATEMENT OF WORK — CASH PAYMEN	٩T	a la	SUB-RECOR RECEIVED DEC 20	I989
Indicate type of title MINERAL (Mineral or Placer)	·····	M.R	VANCOUVER	<u>, В.С.</u>
Mining Division KAMLOOPS			RECORDING S	ТАМР
I, ELAINE M. KERRY	Agent for CORO	NA CORPORA	TION/DIRK M	ORAAL
1440 - 800 W. Pender St.	1440 -	800 W. Pen	der St.	· · · · · · · · · · · · · · · · · · ·
Vancouver, B.C.	Vancouv	(Addres	is)	
689-5453 V6C 2V6 (Telephone) (Postal Code) Valid subsisting FMC No. 271783	689-545 (Telephone) Valid subsisting	3 FMC No28	V6C 2V6	(Postal Code)
FMC Code KERREM	FMC Code	CORCO /	MORADN	
STATE THAT: (NOTE: If only paying cash in lieu, turn to 1. I have done, or caused to be done, work on the <u>You</u>	reverse and cor HOO, EP 2	mplete colui	mns G to J a	and Q to T.)
Record No(s). 7280, 7796			· · · · · · · · · · · · · · · · · · ·	Claim(s
Work was done from March 1 , 19	, 89 , to	December 1	5	. 19 ⁸⁹
and was done in compliance with Section 50 of the Min	eral Tenure Act a	and		,
Section 19(3) of the Regulation YES X NO				
I hereby request that the claims listed in Column G on the	his Statement of	Work be Gro	ouped and I	confirm that
all claims listed are contiguous YES X NO FEE — \$10.00				
TYPE OF	WORK			
PHYSICAL: Work such as trenches, open cuts, adits, pits, shafts, recl under section 13 of the Regulations, including the r	amation, and constr nap and cost statem	uction of roads ient, must be g	and trails. Deta iven on this stat	ils as required ement.
PROSPECTING: Details as required under section 9 of the Regulation only be claimed once by the same owner of the gro	ns must be submitted und, and only durin	d in a technical g the first three	report. Prospec years of owner	ting work can ship.
GEOLOGICAL, GEOPHYSICAL, GEOCHEMICAL, DRILLING: Details through 8 (as appropriate) of the Regulations.	must be submitted i	n a technical re	port conforming	to sections 5
PORTABLE ASSESSMENT CREDIT (PAC) WITHDRAWAL: A maximum o and/or drilling work on this statement may be withdra work value on this statement.	f 30% of the approved awn from the owner's	d value of geolog s or operator's F	ical, geophysica PAC account and	I, geochemical added to the
TYPE OF WORK	V	ALUE OF WOR	к	
(Specify Physical (include details), Prospecting, Geological, etc.)	Physical	*Prospecting	*Geological etc.	
GEOLOGICAL/GEOCHEMICAL			27,600	
r			· · · · · · · · · · · · · · · · · · ·	
WRITTEN REPORT TO FOLLOW				
TOTALS	A +	B +	$C_{27,600} =$	D\$27,600
PAC WITHDRAWAL - Maximum 30% of Value in Box C Only			E	E
from account(s) of	-	· · · · · · · · · · · · · · · · · · ·	TOTAL	F \$27,600
• Who was the Name <u>CORONA CORPORATION</u> operator (provided the financing)? Address <u>1440 - 800 W. Pender St.</u>	- Transfer ar	nount in Box I	- to reverse sid	le of form
vancouver, B.C. Phone: 689-5453	_ and compl	ete as require	ed.	

1949

- sheiddisti -

1103405-1

1,500

- and the second

Statistics.

-1200 Back

Configuration of

- ALESS

Statistics of

MTL 112 Her 89/03

\$27,600 I WISH TO APPLY \$ 27,600 OF THE TOTAL VALUE FROM BOX F AS FOLLOWS:

F

Columns G through P inclusive MUST BE COMPLETED before work credits can be granted to claims. Columns G through J and O through T inclusive MUST BE COMPLETED before a cash payment or rental payment can be credited. Columns not applicable need not be completed.

Cash Payment

	CLAIM IDE	NTIFICATION					APPLICATION OF WOR						, , , , , , , , , , , , , , , , , , , 	
-	G	н	1	J	К	L	M	N	0		CAS	H IN LIEU OF V	VORK OR LEA	SE RENTAL
	CLAIM NAME	BECORD No	No. OF	CURRENT	WORK TO	BE APPLIED		PRIOR	NEW	EXCESS	<u> </u>	- H	S	T
\mathbf{F}	(one claim/lease per line)	3. 6.112	UNITS	EXPIRY DATE	VALUE	YEARS	Hecording Fees	EXCESS CREDIT BEING USED	EXPIRY DATE	CREDIT REMAINING	C/L	FEE	RENTAL	NEW EXPIRY DATE
	YOO HOO	7,380 2.2		.91/04/6		2			93/94/6					
1	EP 2	7.796	. 16	.91/07/7		2			93/07/7					
.	EP 3	7.797	12	91/07/7	3.600	2	180		03/07/7					
	EP 4		.12	91/07/7	3,600	2	190		93/07/7			••••	•••••	•••••••••••••••••••••••••••••••••••••••
	EP 6	8389	20	90/03/25	6,000	2	200							·····
	EP 7	8390	20	90/03/26	6,000	3	300	• • • • • • • • • • • • • • • • • • • •	93/03/25					
				• • • • • • • • • • • • • • • •					<i>J J J J J J J J J J</i>	• • • • • • • • • • •			· · · · ·	
ľ	•••••••••••••••••••••••••••••••••••••••	·····								· · · · · · · · · · · · · · · · · · ·				
1				•••••				·····						
		••••••	·····						· · · · · · · · · · · · · · · · · · ·					
	·····		· · ·											· · · · · · · · · · · · · · · · · · ·
 												•••••••••	•••••••••••••	•••••
١.,									••••••••••••••••••••••			••••	• • • • • • • • • • • • • • • • • • • •	
									••••	•••••			· · · · · · · · · · · · · · · · · · ·	·····
					· · · · · · · · · · · · · · · · · · ·	·····			•••••••	••••••	•			·····
	· · · · · · · · · · · · · · · · · · ·	••••••••••••••••••••••••••••	•••••	•••••		•••••••••••		· · · · · · · · · · · · · · · · · · ·	·····					
	•••••••••••••••••••••••••••••••••••••••	·····	• • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·····							
[··			• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •								
														••••••
		· · · · · · · · · · · · · · · · · · ·										· [· · · · · · ·]		•••••••••••••••••••
L												·		······
<u> </u>					\$27,600		\$1,380			i				
N	OTICE TO GROUP No.	RECORDE	D_Dec	/89	TOTAL OF K		TOTAL OF M	12			TOTAL OF O	TOTAL OF R	TOTAL OF 6	
					"2 POST, FRACTION, REV. C AND PLACER CLAIM ARE 1	ROWN GRANT UNIT EACH		•			L IONAL OF G	TIONEOFH	IUIAL OF 5	
	Value of work to be credited to porta	ble assessment cre	dit (PAC)	account(s).				I, the undersig	ned Free Miner, he	reby acknowled	ge and understa	nd that it is an off	ence to knowie	alu maka a falco
	that only be breaked from the up		Nama Nama	e poied to claims.		Amou		statement or p if the stateme	provide false inform	ation under the	Mineral Tenure	Act. I further ack	nowledge and	understand that
					ľ			and the explor	ation and developn	ent has not be	en performed, as	alleged in this S	latement of Wo	rk Cash Pay-
Nam Swni	e of t	·····		·····		·····		forfeit to and	vest back to the Pr	ovince.	in be cancelled a	nd the subject m	ineral claim(s)	may as a result,
	2			••••••							P	110		
	3				·									

Signature of Applicant

Signatur

Ministry of Energy, Mines and Petroleum Resources Mineral Resources Division – TITLES BRANCH Mineral Tenure Act section 28 NOTICE TO GROUP INDICATE TYPE OF TITLE Mineral or Placer)* INDICATE TYPE OF TITLE Mineral or Placer)* Indicate the mineral sector of the mineral of th	OFFICE USE O B-RECORD RECEIVED EC 2 0 19 39 ICOUVER, I RECORDING ST I/DIRK MO ler St.	DNLY DER 989 \$./ <i>390</i> B.C. TAMP RAAL
MINERAL RESOURCES DIVISION – TITLES BRANCH Mineral Tenure Act SECTION 28 NOTICE TO GROUP INDICATE TYPE OF TITLE MINERAL (Mineral or Placer)* 1. ELAINE M. KERRY (Name) 1440 – 800 W. Pender St. Vancouver, B.C. (Address) Vancouver, B.C. 689–5453 V6C 2V6 (Address) Vancouver, B.C.	B-RECORD RECEIVED EC 20 15 39 JCOUVER, I RECORDING ST V/DIRK MO ier St.	DNLY DER 989 \$./.390 B.C. TAMP RAAL
Mineral Tenure Act SECTION 28 SU NOTICE TO GROUP D INDICATE TYPE OF TITLE MINERAL (Mineral or Placer)* D 1 ELAINE M. KERRY (Name) MINERAL (Mineral or Placer)* VAN 1 ELAINE M. KERRY (Name) 1Agent for CORONA CORPORATION (Name) (Name) 1440 - 800 W. Pender St. Vancouver, B.C. 1440 - 800 W. Pender (Address) 1440 - 800 W. Pender SC. 689-5453 V6C 2V6 689-5453 Vancouver	B-RECORD RECEIVED EC 20 19 39 ICOUVER, I RECORDING ST I/DIRK MO Ier St.	DER 989 \$./.390 B.C. TAMP RAAL
Mineral Tenure Act SECTION 28 SU NOTICE TO GROUP D INDICATE TYPE OF TITLE MINERAL (Mineral or Placer)* D 1 ELAINE M. KERRY (Name) *Agent for CORONA CORPORATION (Name) *Agent for CORONA CORPORATION (Name) 1440 - 800 W. Pender St. Vancouver, B.C. *Agent for CORONA CORPORATION (Name) *Address) Vancouver, B.C. 689-5453 V6C 2V6 689-5453 Vancouver	B-RECORE RECEIVED EC 20 19 39 NCOUVER, 1 RECORDING ST V/DIRK MO ler St.	DER 989 \$./.390 B.C. TAMP
NOTICE TO GROUP D INDICATE TYPE OF TITLE MINERAL (Mineral or Placer)* VAN 1, ELAINE M. KERRY (Name) *Agent for CORONA CORPORATION (Name) 1440 - 800 W. Pender St. Vancouver, B.C. *Agent for CORONA CORPORATION (Name) 689-5453 V6C 2V6 689-5453 V6C	EC 20 19 39 NCOUVER, 1 RECORDING ST V/DIRK MO ler St.	989 \$./. <i>390.</i> B.C. TAMP
INDICATE TYPE OF TITLE MINERAL (Mineral or Placer)* I, ELAINE M. KERRY (Name) 1440 - 800 W. Pender St. Vancouver, B.C. (Address) Vancouver, B.C. (Address) Vancouver, B.C. (Address) Vancouver, B.C. (Address) Vancouver, B.C. (Address) Vancouver, C. (Address) Vancouver, C. (Address) (Address) Vancouver, C. (Address) Vancouver, C. (Address) Vancouver, C. (Address) Vancouver, C. (Address) Vancouver, C. (Address)	39 ICOUVER, I RECORDING ST I/DIRK MO ier St.	\$./.390 B.C. TAMP
(Mineral or Placer)* I, ELAINE M. KERRY (Name) 1440 - 800 W. Pender St. Vancouver, B.C. (Address) Vancouver, B.C. (Address) Vancouver, B.C. (Address) Vancouver, B.C. (Address) Vancouver, C. (Address) Vancouver, C. (Address) Vancouver, C. (Address) Vancouver, C. (Address) Vancouver, C. (Address) (Address) Vancouver, C. (Address) Vancouver, C. (Address) (Add	RECORDING ST N/DIRK MO ler St.	
I. ELAINE M. KERRY 1Agent for CORONA CORPORATION (Name) 1440 - 800 W. Pender St. 1440 - 800 W. Pender St. Vancouver, B.C. 1440 - 800 W. Pender St. 689-5453 V6C 2V6	RECORDING S	
1, ELAINE M. KERRY 1Agent for CORONA CORPORATION (Name) 1440 - 800 W. Pender St. 1440 - 800 W. Pender St. Vancouver, B.C. (Address) 689-5453 V6C 2V6	N/DIRK MO ler St.	RAAL
689-5453 V6C 2V6 689-5453 V6		
UUJ-J4JJ VUUZYU UUJ+J4JJ VU	5C 2V6	
(Telephone) (Postal Code) (Telephone)	(Postal Cc	ode)
Valid subsisting FMC No. 271783 Valid subsisting FMC No. 280728	3/ 29391	9
KERREM CORCO / MOR	ADN	
Mining Division KAMLOOPS Map No. 82-L/12W Name of Claim No. of Title Number Name of Claim	No. of	Title Numb
YOO HOO 12 7380	Units	
EP 2 16 7796		
EP 3 12 7797		
EP 4 12 7798		
EP 6 20 8389		
EP 7 20 8390		
	· • •	

11 5 (Signature of Applicant) \sim

MTL 114 REV. 88/07 M28-2146

*Note: Mineral claim(s) and lease(s) cannot be grouped with placer claims and leases Note: Agent must be authorized in writing

APPENDIX B

3

A HERE A

1 - See

- Trades

2

Contract of

-การ เป็นให้สุดที่ว่าง ให้สมบัตร

end Ballerin

Specific constraints

the second s

1

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (604) 573-5700 Fax 573-4557

GEOCHEMICAL LABORATORY METHODS

SAMPLE PREPARATION (STANDARD)

1. Soil or Sediment: Samples are dried and then sieved through 80 mesh nylon sieves.

2. Rock, Core:

Samples dried (if necessary), crushed, riffled to pulp size and pulverized to approximately -140 mesh.

METHODS OF ANALYSIS

All methods have either known or in-house standards carried through entire procedure to ensure validity of results.

1. Multi-Element Cd, Cr, Co, Cu, Fe (acid soluble), Pb, Mn, Ni, Ag, Zn, Mo

Digestion

Einish

Hot aqua-regia

Atomic Absorption, background correction applied where appropriate

A) Multi-Element ICP

Digestion

Hot aqua-regia

2. Antimony

Digestion

Hot aqua regia

3. Arsenic

Digestion

Hot aqua regia

4. Barium

Digestion

Lithium Metaborate Fusion

Finish

ICP

÷.

<u>Finish</u>

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S.

Í.

Finish

Atomic Absorption

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamioops, B.C. V2C 2J3 (804) 573-5700 Fax 573-4557

5. Beryllium

Digestion

Hot aqua regia

6. Bismuth

Digestion

Hot aqua regia

7. Chromium

Digestion

Sodium Peroxide Fusion

8. Fluorine

Digestion

Lithium Metaborate Fusion

9. Mercury

Digestion

Hot aqua regia

10. Phosphorus

Digestion

Lithium Metaborate Fusion

11. Selenium

- Southers

and the second

inerain a

South States

and the

Digestion

Hot aqua regia

12. Tellurium

Digestion

Hot aqua regia Potassium Bisulphate Fusion Finish

Atomic Absorption

Finish

Atomic Absorption

Finish

Atomic Absorption

Finish Ion Selective Electrode

Finish

Cold vapor generation - A.A.S.

Finish

I.C.P. finish

Finish

Hydride generation - A.A.S.

Finish

Hydride generation - A.A.S. Colorimetric or I.C.P.

ECO-TECH LABORATORIES LTD.

ASSAYING - ENVIRONMENTAL TESTING 10041 East Trans Canada Hwy., Kamboope, B.C. V2C 2J3 (804) 573-5700 Fax 573-4557

13. Tin

ditrate 1

r to to t

- internation

cristeric.

. Andreader.

1. Jacobal

Digestion

Ammonium Iodide Fusion

Finish

Hydride generation - A.A.S.

Colorimetric or I.C.P.

14. Tungsten

Digestion

Finish

Potassium Bisulphate Fusion

15. Gold

Digestion

<u>Finish</u>

Fire Assay Preconcentration followed by Aqua Regia

Atomic Absorption

16. Platinum, Palladium, Rhodium

Digestion

Einish

Fire Assay Preconcentration followed by Aqua Regia

Graphite Furnace - A.A.S.

WHOLE ROCK ANALYSIS

PROCEDURE:

Preheat muffler to 1050°C.

Weigh 0.10 g of sample into a test tube.

Add 0.50 g of Lithium Metaborate (LiBO2).

Vortex.

Transfer samples to graphite crucibles.

Fuse samples for 30 minutes. While samples are fusing - prepare plastic containers by adding 100 ml of 4% HNOs.

After samples are fused, pour them into the labelled plastic containers.

Shake on the soil shaker for 30 minutes or until sample is dissolved, some black residue (graphite) will remain.

Make sure the silica is dissolved (Silica looks cloudy and slimy).

Add 1 ml Hydrofluoric Acid (HF). Swirl.

Add 4 ml of 30% Boric Acid (H3BO3). Swirl and let sit a few minutes.

Be sure to prepare a blank with the same acid matrix as the samples.

REAGENTS:

reliated a

- 1-1-66 (BP) 0-1-

Lithium Metaborate (L1802) Hydrofluoric Acid (HF) 30% Boric Acid (H3803) (Prepare Boric Acid ahead of time - it takes awhile to dissolve).

ICP SET UP:

ж×

WR STANDARD #1

××

WR STANDARD #2

Na 50 ppm = 13.48% Na20 K 50 ppm = 12.05% K20

Si 250 ppm = 53.47% SiO₂ Al 100 ppm = 18.89% Al₂O₃ Fe 150 ppm = 21.45% Fe₂O₃ Mg 150 ppm = 19.99% MgO Ca 300 ppm = 41.97% CaO Ti 50 ppm = 8.34% TiO₂ P 10 ppm = 2.29% P₂O₅ Mn 50 ppm = 6.46% MnO

HANDLE HF WITH CARE (ie: rubber gloves, safety glasses) (galanta)

in statistics and

· · · · · · · · ·

- an<mark>tern</mark>are

- 1940940-

· advice :

Service - -

. second

A DESCRIPTION OF

WHOLE ROCK - ICP FINISH

Sample is fused with Lithium Metaborate. The fusion pellet is dissolved in 4% HNO3. Hydrofluoric acid and Boric acid is added. Sample is bulked up to known volume and run on ICP.

TROUBLE SHOOTING:

1

- 12

Paddysta -

10 Martine

Measure HE using plastic test tube, don't let it come in contact with glassware.

Be sure samples are vortexed before transferring to graphite crucibles.

Make sure samples have been fused properly.

Be sure to replace all tubing and clean the spray chamber, nebulizer and torch complete <u>after</u> analysis. (rinse with reagent alcohol then plenty of distilled H₂O and blow dry)

All the percentages added together for each sample should equal 100%. If results are out +/- 10% the numbers can be adjusted. If results are out by more than 10% - run again.

APPENDIX C

- Aliterative

- venerative

 $\frac{d_{1}}{d_{1}} = \frac{d_{1}}{d_{1}} \frac{d_{1}}{d_{1}} = \frac{d_{1}}{d_{1}} \frac{d_$

and the second

and the second

e restate en-

La Angeladita S

induced in the second sec

- Hereiter

- Addates

alitar.

- Alexandro

Lawrence .

- The second sec

n Ligh y the .

inineese .

	POOLEY LAKE					NOV. 1	0, 198	9								
	WHOLE ROCK ANALYSIS OF DYKES AND WALLRO	CKS				WHOLE	ROCK R	ESULTS	i					ICP F	ESU	LTS
SAMPLE NO.	SLAB DESCRIPTION	\$102 (%)	A1203 (%)	Fe203 (%)	Mg0 (%)	Ca0 (%)	Na 20 (%)	K20 (%)	TiO2 (%)	P205 (%)	Mn0 (%)	L.O.I. (%)	AS ppm	BA ppm	MO ppm	SB ppm
													::			
	TYPE A															
79404(dyke)	Medium grained feldspar porphyry syenodiorite dyke.	58.10	15.58	8.15	2.45	3.37	5.83	2,99	0.55	0.31	0.12	2.55	20	35	6	10
79405(footwall)	Pootwall, Dark green, medium grained hornblende porphyry andesite.	47.85	15.17	12.25	6.29	10.01	1.96	1.31	0.78	0.27	0.17	3.54	10	20	2	10
79406(hangingwal)	l)Kangingwall, Dark green to grey coarse hornblende porphyry andesite.	r49.08	13.70	12.87	5.83	7.41	1.82	4.53	0.73	0.53	0.18	3.12	10	40	2	10
	TYPE B		•													
		•		•											•	
79407(hangingwal)	I)Hangingwall, Dark green, medium grained porphyryitic andesite. 5 mm euhedral hornblende phenocrysts, 2mm tabular	47.29	11,20	14.63	6.85	11.00	2.12	2.18	0.94	0.48	0.28	2.96	15	55	4	10
79408(dyke)	feldspar phenocrysts. Coarse grained epidote stained diorite feldspar porhyry dyke.	55.54	15.24	7.98	3.24	7.56	4.35	2.57	0.81	0.42	0.24	2.79	10	90	2	5
79409(footwall)	Pootwall, Dark green to grey coarser hornblende porphyry andesite.	38.56	13.01	12.99	9.43	17.34	1.45	2.36	0.94	0.45	0.21	3.16	10	50	3	10
	TYPE C						•									
79410(footwall)	Pootwall, Dark green, fine grained porphyritic andesite. 4mm euhedral hornblende phenocrysts, 1mm tabular	47.74	12.61	11.26	7.50	11.28	1.73	3.27	0.82	0.51	0.24	3.14	5	55	2	10
79411(dyke)	feldspar phenocrysts. Medium grained hornblende-feldspar porphyry dyke/flow . Abundant 3mm epid	44.82 ote	11.21	12.11	7.37	13.22	2.06	2.48	0.82	0.58	0.24	5.09	10	75	3	10
	stained subhedral feldspar phenocrysts, 4 mm euhedral hornblende phenocrysts. Dark grey to marcon colour.															
	TYPE D															
79414(dyke)	Silicified Dyke. For Au results see	60.32	6.63	4.68	4.05	9.38	0.13	2.09	0.43	0.18	0.12	11.91	120	20	6	5
	sample 33558 from Main Cliff Grid.															

POOLEY LAKE SEPT. 17 TO SEPT. 24, 1939 LOWER EAST GRID SAMPLE DATA

SIMPLE	VIOTH	ORIENTATION	ÅS	BA	XO	SB	AU	AU
30.	(2)	(VEINING)	pps	ppa	·pp≢	ppa	200-	3/1
22701	2.00x2.00	hor.					980	9.98
22792	2.00x2.00	nor.					280	9.20
22703	2.25x1.00	nor.		se icp	YOR N	10.'5	80	0.08
22704	1.20x1.00	hor.		2270	1-??!	07	50	
22705	2.00x1.50	hor.)	
12706	2.50x2.00	hc:.						
22,63	1.50	nor.					Şê.	
19210	1.50	hor.	10	13	3		25	
79271	1.50	hor.	5	129	. 1	.10	30	
19272	1.00	har.	5	230	5	10	15	
79273	1.00	hor.	5	1545	?	5	20	
79274	1.10	hor.	5	1290	1	- 5	15	
19275	1.40	hor.	· 5	130	·]	5	20	
79276	1.50	hor.	5	28	3	5	25	
:9277	1.50	hor.	5	30	2	5.	20	
79278	1.50	hor.	5	20	ł	. 5	35	
19779	1.50	hor.	5.	-45	- 3	5	25	
79280	1.10	hor.	5	20	3	5.	15	
79781	1.00	hor.	5	5	5	Ş.	20	
79782	1.00	har.	10	175	4	15	10	
19783	1.63	hor.	10	45	1	10	5	
79791	1.00	har	5	100	- 2	5	10	
79785	1 00	hor	10	575	3	10	5	
10396	1.00	vert	i,	25	- 1	10	10	
17200	1.00	enh-vart	- 10	1175		ç		
10100	0.1	Supreil.	ι <u>τ</u>	1675		ś	ŝ	
17/00	1 40	iiųi. bor	10	50	. ,	10	10	
17267	1.00	nur.	10	200		·	10	
19230	1,90	101.	·] [200	1	, ¢	10	
19291	1.00	500-VEIL.		200	5	10		
19292	1.00	nor.	· 17 	-00	, j , j	10	, ,	
70201	1.00	ЛОГ. Ъст	. 10	1.1) 	10	10	
77774	1.10	nor.	5	15	1 L 1 L	10	·	
70201	1 (A	801. 5	10	 	, u	20	, i	
10201	1.30	nor.	10	10	1 1	τυ ζ.		
17/7/	1.00	nui.	10	50	; ; ; ;	ç	10	
: 7270	1.10	nur.	ز خ		, , , ,		10	
17(77	् । . 29 ः . २०	nur.			, , , ,		- 15	
79300	1.20	AQT.	j L	160		γ. ζ	10	
19331	1.00	aor.	ן 10	101	,		10	
17352	1.30	avr.	10	20	, , , , ,	10	10	
13353	i.UU- 1.00	Vert.	10	14	, , , ,	10	10	
(3)34	1.00	. 10p	10	101	, . 	, i 1	1.2	
/////	1.20	SUD-VEIL.	۲ ۲	17.	,] ; [10 10	[IJ 	
19326	1./3	nor.	10	. 43	, 4 (1	10	16	
/9357	1.50	Vert.	10	1. 	ј ј Е. е	13	61 · · ·	
/9358	1.00	AQ1.	10		נינ גו	10	. j	
/9359	1.30	hor.	. J) 11	1) ; /	IV .	.) 1A	
/9350	1,00	nor.	1)))	10	
79361	1.20	hor.	10	11	; J		1 1	
79362	1.10	hor.	- 5	100	j 6	5.	- 19	

.

, tan

Jipppine -

Sugar Sec.

and a second

. S.

- Stanty

version in .

feet a

And parts of

artantua

			-	• • •		-		
79363	1.40	hor.	30	25	4	10	5	
79364	1.00	hor.	10	25	5	Ś	10.	
79365	1.00	hor.	5	395	5	20	10	
79366	1.00	hor.	35	15	2	25	. 10	
79367	1.00	hor.	20	20	6	20	15	
79368	1.00	hor.	15	20	3	15	5	
79369	I.00	hor.	10	25	5	5	5	
79370	1.20	hor.	- 5	10	- 4	5	5	
79371	1.80	hor.	5	. 15	1	5	5	
79372	1.50	vert_	15	50	- 6	5	10	
79373	2.00	hor.	5	355	6	10	10	
79374	1.00	hor.	ç	10	5	5	5	
79375	1.10	hor.	50	15	7	10	··· 5	
79376	1.00	hor.	20	85	3	10	15	
79377	1.00	hor.	20	50	. 1	- 15	10	
79378	1.20	hor.	15	50	- 2	10	· · 5	
79379	1.50	hor.	10	1125	2	15	10	
79380	1.60	hor.	15	955	I	., 10	10	
AVERAGE			10.5	221.1	3.7	8.8	32.5	
STANDARD	DEVIATION		8.5	386.2	1.6	4.8	121.1	
VARIANCE			74.3	149148.8	2.5	22.1	1465313	

ANOMALUS THRESHOLD

- - Didepini

a that a start of the start of

 $\mathcal{O}(dt) \geq$

-44-

in the second second

-

niteres.

- Incompanyation

- and a company

1

17.2 172.4 3.2 9.5 242.1 0.24

POOLEY LAKE MAIN CLIFF GRID SAMPLE DATA

SAMPLE	WIDTH	SAMPLE TYPE	AS	BA	MO	SB	AU*	AU	ORIE	NTATION	
NO.	(m)	(CHIP)	ppm	ppa	ppm	ppm	ppb	g/t	(STRIKE) (DIP)	
			1:111		=====	======		******			
	P	OOLEY LAKE			(OCT. 14	TO NOV.1	6, 1989			
M	AIN CLIF	P GRID SAMPLE	DATA								
SAMPLE	WIDTH	SAMPLE TYPE	AS	BA	MO	SB	AU*	AU	ORIE	INTATION	
NO.	((CHIP)	ppm	bbp	ppm	ppn	ррр	g/t	(STRIKE	(DIP)	
		**********					*********		======	=======	
		4	24			10	1.0		100	0.0 17	
22708	1.5	hor.	20	45	- 4	10	- 10		100	00 E	
22709	1.5	hor.	15.	40	2	5	5		100	1 80 B	н.,
22710	2.0	hor.	25	50	4	5	20		. 165	80 E	
22711	2.0	hor.	20	20	1	5	10		36	40 N	
22712	1.8	hor.	20	65	2	. 5	70.		36	40 N	
22713	1.2	hor.	. 20	50	1	5	15		165	80 E	
22714	1.3	sub-hor.	205	120	1	35 -	155		-30	75 E	
22715	1.4	sub-hor.	150	225	2	15	15		25	50 E	, . ,
22716	0.8	vert.	25	50	7	10	.10		80	80 N	
22717	1.0	hor.	30	15	2	5	5		80	80 N	
22718	1.0	sub-vert.	15	875	2	. 5	10		80	80 N	
22719	1.0	sub-vert.	15	1335	7	5	10		- 65	80 S	i
22720	0.6	hor.	1500	25	-11	5	10520	10.52	120	80 N	с ·
22721	1.5	sub-hor.	20	885	2	10	5	-	172	75 W	ļ.
22722	1 2	bor	240	175	6	- 15	1110	1.11	160	65 W	
22722	1 0	hor	80	360	1	20	105			n 1	
11723	0 6	hor	1075	35	11	15	5700	5 70	160	65.94	6.
22729	1 0	nor.	· 10/J	3.05	11)	10	3700	J.70	160	ี 1. 35 เม	1
22123	1.0	Veru	00	305		10	100		102	. 0,0 m . 55 w	1
22120	0.9	nor.	95	300	2	10	. 100		1.00	: UJ 11) CE 14	
22121	1.0	sup-nor.	40	020		, c	40		100	000 m 75 m	;
22728	1.8	hor.	10	493	2	10	10		30	1 13 M	
22729	1.6	hor.	25	365	<u>b</u> :	35	- 30		100	N C 6	
22730	1.8	hor.	15	435	9	10	20		40	85 5	1.
22731	0.5	hor.	30	330	3	30-	10		140	1 65 W	1
22732	0.4	vert.	10	270	7.	25	5		120	30 S	ŧ.
22733	1.2	sub-vert.	20	340	1	5	15		36	5 45 W	ł
22734	0.6	hor.	90	65	5.	10	10		140	80 W	t.
22735	1.7	hor.	155	155	5.	25	40		145	5. 80 W	i
22736	grab	hor.	20	40	3	10	5		145	5 90	
22737	1.5	hor.	65	760	3	. 5	20		1.20	80 S	5
22738	1.0	hor.	30:	210	1	5	- 15		120	80 S	
22739	1.5	hor.	15	215	8	5	5		25	5 80 W	ł
22740	1.5	hor.	20	515	3	5	5		25	5 80 W	1
22740	1.5	hor	205	230	ĩ	10	20		21	80 W	ł
22742	1.5	hor	05	790	1	5	45		25	80 W	ŀ
44194 337*3	1.5	hor	70	710	, j.	ג ג					1
22/43	1+J. + 1	nut.	10	/10 FE	۲ ۲	2	. 5		4. วร	, 00 m 30 w	i
22/44	1.2	nor.	50	170	· 0.	J. n.	. J.		1.00	, UV 11 1. CE 11	1
22/45	1.5	vert.	22	370	5	- 10			120	1 00 N 1 10 1	1
22/46	1.5	sub-nor.	50	290	b	40	30		12/). 30 W : En -	J .
22747	2.0	sup-vert.	40	220	2	15	150		2) JUE	j.
22748	1.0	vert.	1/0	190	- 3	45	20		14(j: 90.	•
22749	1.0	hor.	90	310	4	15	50		2	b 80.₩	Ľ
22750	1.3	hor.	280	215	5	40	135		25	80;₩	i -

T.4.

a strategy a

- States

s aptimies.

 $(1)_{j \neq 0} (j)$

undakte.

- Company -

POOLEY LAKE MAIN CLIFF GRID SAMPLE DATA

1

alla.

e universitation

1. Andrews

and Styles -

e pressante La registration

- Lickies -

A Companyation of

. dan.

a green

OCT. 14 TO NOV.16, 1989

÷ C

SAMPLE NO.	WIDTH (m)	SAMPLE TYPE (CHIP)	AS ppm	BA ppm	0M nqq	SB ppm	AU* ppb	AU g/t	ORI (STRI	ENTATION (DIP)
33551	1.1	hor.	250	200	-4	40	265		111111	15 80 W
33552	1.4	hor.	280	140	3	55	60			15 80 W
33553	1.5	hor.	155	275	4	40	5		2	5 80 W
33554	1.5	vert.	390	140	· 5°	25	1340	1.34	13	10 75 W
33555	1.0	hor.	485	125	6	30	1790	1.79	14	0 83 W
33556	1.1	hor.	130	200	7	10	75		. 6	8 80 S
33557	1.2	hor.	55	170	7	10	45		10	10 10 N
335 58	2.0	hor.	55	50	8	10	5		(8 80 S
33559	1.5	hor.	290	135	3	60	65		4	2 70 E
33560	1.3	vert.	175	380	7	25	5		9	10 40 S
33561	1.5	hor.	20	510	3	10	5		4	0 40 W
33562	1.5	hor.	125	170	3	15	5		. 4	0 80 W
33563	1.5	hor.	140	185	6	30	- 5		4	0 80 W
33564	1.4	hor.	35	.85	7	20	10		1	5 80 E
33565	1.5	hor.	50	45	6	30	10		. 1	5 80 E
33566	1.5	hor.	105	125	6	20	10		3	0 75 W
33567	1.5	hor.	80	300	3.	20	10		3	0 75 W
33568	1.5	hor.	25	280	6	15	- 15		16	8 85 W
33569	1.2	hor.	340	155	6	45	5		1	8 90
33570	0.5	hor.	60	435	4	25	570		16	0 80 W
33571	0.9	hor.	50	100	7	15	1160	1.16	4	5 60 N
33572	1.0	hor.	4/5	160	9	25	5		.10	0 90 :
335/3	1.4	hor.	245	135	8	10	55		10	0
33574	- 1.5	hor.	145	310	4	25	680		. 13	0 80 W
33575	1.8	hor.	170	145	6.	20	1440	1.44	14	0 80 W.
33576	1.6	hor.	4/0	105	5	60	20		4	0 80 E
335/7	1.2	hor.	08	115	4	15	5		4	0 80 E
335/8	1.0	hor	150	245	6	20	. 10		1	5 80 W
33579	1.0	vert.	55	40	6	10	2		14	0 30 E
33280	2.0	nor.	10	135	5	10	5		4	0 80 E
33381	1.5	hor.	100	343-	4	- 40	. 40		10	8 30 W
33382	0.9	nor.	130	- 330	. 4	20	5U 10		10	U /UW E 00
33303 33504	1.1	nor.	33 1:20 -	200	2	20	10		4	3 90 °
33505	1.1	sub-nor.	120	200) . r	20	10		19	ບ ບັທ ກໍ່ 2 ກັພ
33202	1+2	sup-nor.	100	135	່ ງ ່	50	JU 70		19	0 00 M
33500	1.0	hor.	150	110	 	3 5	1020	1.02	16	U 00 M 0 90 W-1
11588	0.7	hor.	365		6	45	1010	1 01	10	ง 00 ค 8 ่ ผิว ย
11580	0.9	vert	120	155		15	.5	1.01	11	0 03 M
33590	0.9	hor.	55	100	τ.	10	5		8	0 70 N
33591	1.8	hor.	425	250	10	25	950		13	0 75 W
33592	1.5	hor.	210	165	8	20	370		15	6 85 W
13593	1.5	hor.	100	135	7	35	65		13	3 45 W
33594	1.5	hor.	110	90	3	30	35		. 2	0 60 W
33595	1.5	hor.	10	52	6	5	10		8	0 90
33596	1.1	vert.	20	30	6	· Ş	40		6	0 45 N
33597	1.5	har.	105	100	5	5	265		18	0 65 W
33598	1.1	hor.	25	30	5.	5	10		6	4. 85 N
33599	1.0	hor.	60	115	· 3.	5	40		11	0 90
33600	1.5	hor.	130	75	2	15.	205		1.4	0 65 W

POOLEY LAKE MAIN CLIFF GRID SAMPLE DATA

10

i,

- Alter

and the second sec

initia .

a de la compañía de l

nighter.

5.45

- columns

a jestes tau.

OCT. 14 TO NOV.16, 1989

SAMPLE NO.	WIDTH (m)	SAMPLE TYPE (CHIP)	AS	BA	0M mqq	SB	AU*	AD q/t	ORIEN (STRIKE)	TATION (DIP)
						======				
79401	1.0	hor.	115	385	1	40	10			
79402	1.0	hor.	335	205	13	10	975		90	90
79403	1.2	hor.	45	70	8	15	. 15		30	70 W
79412	1.3	hor.	75	335	3		35	•	140	85 W
79413	1.0	vert.	75	390	7	8	15		65	45 N
79415	1.3	sub-vert.	120	260	5	15	255		110	65 S
79416	1.5	sub-vert.	75	535	3	20	205		110	65 S
79417	1.5	hor.	15	170	1	8	5		106	68 S
79418	1.5	hor.	720	40	5	30	1660	1.66	106	68 S
TOTAL	102	SAMPLES				•••••	•			
TOTAL	102	ASSAYS								
MAX. VA	LDE		1500	1335	13	60	10520	10.52		
AVERAGE			148.4	235.4	4.7	19.2	330.7	0.3		
STANDAR	D DEVIAT	ION	209.7	217.3	2.5	14.0	1211.4	1.2		
VARIANC	E		43955.5	47201.4	6.3	195.6	1467505.1	1467.5		
		OT D	410.3	434 E	с л	20.0	2422.0	, , , , , , , , , , , , , , , , , , ,		
ANUMALU (2 x S	ið Inkesn H. Dev.)	070	413.3	4)4.3	3.0	20.0	2422.0	4.0 4		

+88>250

			SIGNIFICAL	IT SAMPL	ES (Ai	a > 250	ppb)				
SAMPLE	WIDTH	SAMPLE TYPE	AS	BA	MO	SB	AU*	AU	ORIEN	FATION	ł
NO.	(m)	(CHID)	ppm	ррш	ppn	ррш	ppb	g/t	(STRIKE)	(DIP)	
		**********							11111111	======	1
22720	0.6	hor.	1500	25	11	5	10520	10.52	120	80 N	ł
22722	1.2	hor.	240	175	6	15	1110	1.11	160	65 W	ŧ
22724	0.6	hor.	1075	35	11	15	5700	5.70	160	65 W	ł
33551	1.1	hor.	250	200	4	40	265		25	80 W	ł
33554	1.5	vert.	390	140	5	25	1340	1.34	130	75 W	1
33555	1.0	hor.	485	125	6	30	1790	1.79	140	83 W	ŧ.
33570	0.6	hor.	60	435	4	25	570		160	80 W	ł
33571	0.9	hor.	50	100	7	15	1160	1.16	45	60 N	1
33574	1.5	hor.	145	310	4	25	680		130	80 W	1
33575	1.8	hor.	170	145	6	20	1440	1.44	140	80 W	ŧ.,
33587	1.0	hor.	360	110	9	25	1020	1.02	160	80 W	1
33588	0.7	hor.	365	95	6	45	1010	1.01	148	63 W	ł
33591	1.8	hor.	425	250	10	25	950		130	75 W	ŧ.
33592	1.5	hor.	210	165	8	20	370		156	85 W	1
33597	1.5	hor.	105	100	5	5	265		180	65 W	ł
79402	1.0	hor.	335	205	13	10	975		90	90	
79415	1.3	sub-vert.	120	260	5	15	255	1.1	110	65 S	5
79418	1.5	hor.	720	40	5	30	1660	1.66	106	68 S	5

a senten

- State

- Independent --

1-10 volution -

NOV.22 TO DEC.6, 1989

POOLEY LAKE GOSSAN ZONE GRID SAMPLE DATA

SAMPLE	WIDTH	SAMPLE TYPE	AS	BA	MO	SB	AUx	AU a/t	(5	ORIENT (TRIKE)
	(W/			122222223 12222223	255722		2222222222	9,0 ::::::::	: ==	
	F	POOLEY LAKE			1	NOV.22	TO DEC.6,	1989		
(GOSSAN ZO	ONE GRID SAMPL	E DATA							
SAMPLE	WIDTH	SAMPLE TYPE	AS	BA	MO	SB	A0*	AD		ORIENT
NO.	(m)	(CHIP)	ppm	ppm	ppn	ppm	ppb	g/t	(5	STRIKE)
							*********		: • • = :	
22601	1.6	whether	70	105	1	20	د در			68
33603	1 2	hor	155	135	2	25	25			80
33603	1.0	hor.	1185	45	6	60	5			30
33603	1.0	vert	105	330	2	ς	· 5			140
22605	1 0	hor	2125	35	6	40	5			30
11606	1 1	hor	2020	1.05	Å	75	Š			20
33607	1 1	hor	1040	405	7	30	. 5			60
33607	1 4	hor	1025	210		20	· 5			40
11609	0.5	hor.	360	360	5	5	. 75			110
33610	0.4	sub-hor.	270	50	ž	15	90			55
33611	0.9	vert.	45	310	1	15	. 5			135
33612	1.0	hor.	130	180	2	17	25			1 20
22612	05	vert	50	90	7	q	80			40
33614	1 0	vert	60	5	ંગ	15	5			10
33615	1.0 A	hor	20	145	ŷ	10	5			100
33616	1 2	sub-vert.	140	130	Δ	35	.5.			90
22617	1 5	vort	740	50	. 9	40	140			7
33618	1.1	sub-hor	1.80	1.70	5	50	30			110
33610	1 2	sub-hor	145	170	1	30	5			110
33620	1 0	sub-bor	170	05	7	25	155			60
33620	1.19	Sup-nor.	. 800	95	7	30	133			10
33633	1.0	vert.	640	70	. 7	30	115			60
33633	1.0	veru.	1680	10	,	60	5			23
22022	1.5	hor.	1000	40 55	Å	- ς	5			25
33024	1 2	hor.	50	25	3	ι. J ξ	5			25
33623	1.5	nor.	125	120	3	ت ج	10			07
33640	1.5	hor.	255	230	2	15	10 5			20
33021	1.5.	hor.	233	230	10	20	120			20
33020	1.0	nor.	275	2.45	10	20	100			25
33029	1.0	nor.	373	34J 100	່ ງ: 	2.0	. J.			20
33030	1.5	101.	220	100	. J.	15	100			10
11011	1.0	vert.	1.60	50	· 0. 2	10	10			20
33032	0	nor.	1115	-010	5. E	20	10			100
33033	1.5	vert.	105		·)	20	105			50
33034	2.0	sub-vert.	190	140	ະ 3. . າ	20	-103			10
33035	1.0	sub-vert.	1030	133	. 1.	00	20			5.
33636	1.1	sub-vert.	1000	200	· 5	90 E0				1.40
33537		vert.	1290	140	0	00	20			110
33638	1.0	sub-vert.	390-	315	7	20				140
33639	1.1	hor,	230	185	3	20	10			140
33640	1.0	hor.	310	330	3	10	10			10
33641	1.0	vert.	570	30	2	- 25.	125			110
33642	1.0	vert.	150	235	9.a	1.5	5			40.
33643	1.2	hor.	1730-	155	. 5-	80	ć			10

POOLEY LAKE GOSSAN ZONE GRID SAMPLE DATA

1 - 1889 M2

a second

- statistic

- Andrease -

- Tablet

A REPORT

SAMPLE	WIDTH	SAMPLE TYPE	AS	BA	MO	SB	AU*	AU	ORIENT
NO.	(m)	(CHIP)	ppn	ppm	ppm	ppn	ppb	g/t	(STRIKE)
			=====						
33644	1.2	hor.	130	320	1	10	5		30
33645	0.9	vert.	1075	120	. 5	30	100		140
33646	0.8	hor.	40	350	6	15	125		110
3364/	1.8	hor.	2/60	125	<u>, I</u> .,	15			20
33648	1.0	hor.	12/5	160	4	30)		20
33049	1.0	nor.	1400	. 80	2	40	·)		20
33030	1.5	nor.	3985	60	0	10	5		20
/4311	1.5	nor.	303	285	10	10	100		100
74512	U.D	nor.	20	105	2	10			20
74013	U.F 1. A	nor.	210	100	4. C	20	··· /25		110
/4014 74516	1.0	nor.	00	105	0	10	3		UC EO
74010	1.2	nor.	210	195	- Ö.	10	175		5U 1 D 0
/4310	0.0	nor.	1010	140		10	1/5		120
74517	1.0	nor	2020	10	1	JU.) 6		20
74510	1.5	nor.	1400	13	y 0.	40	2°		30
74319	1.0	nor.	940	10		JU 10) 5		3 U. 1 O
74520	- U - I 5 t	nor.	.0U 55	10		10	·).		10
74321	1.5	nor.	22	20	0 di	10	··· 5		10
74522	0.0	nor.	80	2/5	. 0	20			-14/
74523	1.0	nor.	1/5	120	4 E	20			
74524	1.0	vert.	10.5	910	. 0.	20	· J.		10
74525	1.1	nor.	. 490	1010	10	10) 5		20
74520	1.1	nor.	40	1010	10	10	្រ		10
74530-	1.0	. 101	10	30 75	5	15	ງ ເ		40
74320	1.0	vert.	2 J -	105	J. 0-	13.	675		1/4
74527	1.0	nor.	900	110	0 2	20	1450	1 45	100
74530	1.3	Vert.	505	110	: 0 1 3	70	14.00	1.40	100
74331 -	1.2	nur.	100	00 335	12	90 25	. CC		201
74532	1.0	sup-vert.	705		· 4	25	. J.J.		160
74333	1+9	hor	25	0 J 3 K	2	3.J 1.A:	J. K		100
74535	1.0	hor	120	105	3 9	10	100		20
74535	1.0	vort	285	85	4	45	875		10
79419	-1 5	hor	1-10	265	ς.	τ,5 Γ	15		20
79410	1 5	vort	10	570	1	5	10		40
79421	1.5	sub-hor.	10	955	4	Š	65		110
79422	1:0	vert	15	445	· 4.	5	5		120
79423	1.5	vert.	10	295	4	ς	5		100
79474	2.0	vert.	5	455	L	5	5		100
79425	1.5	vert.	1.0	205	2	5	5		0
79426	2.0	har.	560	95	6	15	10		45
79427	1.7	hor.	1030	120	4	30-	5		180
79428	1.5	hor.	595	105	7	15	5		25
79429	1.0	hor.	30	355	3	5	5		25
79430	1.5	hor.	20	290	4	10	10		50
79431	1.3	hor.	10	335	3	10	5		50
79432	1.4	hor.	15	685	4	10	5		45
79433	1.5	hor.	15	700	5 -	15	5		47
79434	1.3	hor.	15	145	3	10	10		82
79435	1.4	sub-hor.	35	485	4	10	35		180

POOLEY LAKE GOSSAN ZONE GRID SAMPLE DATA

- Long and a long

STAR BARR

an an

arbienter (* 1

- replacedore

Southern P.

vigitir etili († 11

NOV.22 TO DEC.6, 1989

SAMPLE NO.	WIDTH (m)	SAMPLE TYP (CHIP)	E AS ppm	BA ppm	MO Bdd	SB ppm	AU* ppb	AU g/t	ORIENT (STRIKE)
79436	2.0	hor.	60	130	3	10	255		100
79437	0.7	hor.	220	60	5	5	1610	1.61	110
79438	1.3	hor.	25	250	1	5	20		30
79439	1.5	hor.	50	360	6	15	10		110
79440	1.5	vert,	65	295	6	65	5		100
79441	1.5	hor.	50	150	3	35	30		100
79442	1.2	hor.	90	65	6	20	-15		115
79443	1.2	vert.	65	470	6	45	5		75
79444	1.2	hor.	205	225	6	25	5		40
79445	1.6	hor.	650	60	5	25	5		20
79446	1.3	hor.	30	140	1	15			. 60
79447	1.2	sub-hor.	180	50	8	20	950		62
79448	1.1	sub-vert.	175	25	4	30	105		90
79449	1.5	sub-vert.	20	715	6	10	5		133
79450	1.3	sub-hor.	150	115	3	15	105		40
TOTAL TOTAL	108 S 108 A	AMPLES SSAYS				• • • • • • • •			
MAY, VAL	18		1985	1010	12	۹0	1610	1 61	
AVERAGE			491.2	203.9	5.0	22.9	94 6	0 1	
STANDARD	DEVIATI	ON	773.7	187.2	2.3	18.6	261 7	0 1	
VARIANCE			598563.8	35053.3	5.2	347.4	68474.1	68.5	
ANOMALUS	THRESHO	LD	1547.3	374.5	4.6	37.3	523.4	0.5	
(2 x St.	Dev.)								

+H8>250

SAMPLE NO.	WIDTH (m)	SAMPLE TYPE (CHIP)	SIGNIFICAN AS PPB	r SAMPLE BA ppm	S>250 pp MOSE ppn ppn	ob Au 3	AU* ppb	AU g/t	ORIENT (STRIKE)
						• • • • •		******	
74513	0.7	hor.					725		110
74529	1.0	hor.					675		160
74530	1.3	vert.					1450	1.45	180
74531	1.2	hor.					835		165
74536	1.0	vert.					875		30
79436	2.0	hor.					255		100
79437	0.7	hor.					1610	1.61	110
79447	1.2	sub-hor.					950		62

APPENDIX D

Alderer

and the second

LEGEND

GEOLOGICAL

_____ 1988. Area covered by recon. geology and prospecting/sampling.

1989 Grids.

GEOPHYSICAL

Airborne magnetic anomaly (High 600 - 1000 gammas above background)

GEOCHEMICAL

_____ 1988-89 Lithogeochemical anomaly (veins, structures) As, local Sb, Mo Sample group Au >3 g/t

Claim boundary with LCP.

GEOLOGICAL BRANCH ASSESSMENT REPORT

Quartz and or carbonate veining, local chalcedony

Moderately to strongly fractured. Commonly limonitic

DYKES AND SILLS CUTTING THE NICOLA VOLCANIC SEQUENCE Coarse grained feldspar/hornblende porphyry syenodiorite

Coarse grained feldspar/hornblende porphyry diorite.

MGA Massive non-porphyritic green to grey to mauve andesite. MGH Hornblende porphyry andesite. MGHF Hornblende/feldspar porphyry andesite HBA Hematitic brecciated andesite (alteration/structure).

Faults or jointing (dip and strike)

Geological contact (dip and strike)

Schistocity, fracture cleavage (dip and strike)

GEOLOGICAL BRANCH ASSESSMENT REPORT CU,

.

COKONA CORPORATION

POOLEY LAKE PROJECT GEOLOGICAL MAP

YOO HOO GRID

LT.S.: 82 L/12 W DA	TE: DEC. 1989	MAP NO.: 5

Quartz and or carbonate veining, local chalcedony

Moderately to strongly fractured. Commonly limonitic

BC Bleached volcanics/intrusives/tuffs

DYKES AND SILLS CUTTING THE NICOLA VOLCANIC SEQUENCE

Coarse grained feldspar/hornblende porphyry diorite.

NICOLA VOLCANICS (UPPER TRIASSIC LOWER JURASSIC)

Massive non-porphyritic green to grey to mauve andesite.

Hornblende porphyry andesite.

Hornblende / feldspar porphyry andesite

HBA Hematitic brecciated andesite (alteration/structure). CBA Chloritic brecciated andesite (alteration/structure).

Chip sample location and Eco-Tech number.

* ⁷⁹⁸⁰⁴ Grab sample taken for whole rock analysis.

.

GEOLOGICAL BRANCH ASSESSMENT REPORT

COKONA CORPORATION

POOLEY LAKE PROJECT SAMPLE LOCATION MAP

YOO HOO GRID

PREPARED BY: R.K./K.G. SCALE: 1: 1000 N.T.S.: 82 L/12 W DATE: DEC. 1989 MAP NO.: 9

PROJECT NO .: 1049

.