FILE NO:		
NOTION.		
LUG NO:	0613	RÐ.
1.00	and the state of t	

REPORT

ON

RECONNAISSANCE DIAMOND DRILLING ON THE CAMBORNE CLAIM GROUP, STOCKHOLM MINERAL CLAIM, RECORD NO. 426 BELONGING TO LUCKY STRIKE RESOURCES LTD. CAMBORNE AREA, B.C.

NTS 82K/13

Revelstoke M.D., British Columbia

N. Latitude 50° 48' 08" W. Longitude 117° 38' 08"

SUB-RECORDER RECEIVED

\$.....

Work by

KELORO RESOURCES INC.

MAY 3 1 **1990**

during the period of

VANCET ALE.C. October 19, to November 19, 1989

Michael A. Jerema, B.Sc. Adv. Project Geologist

GEOLOGICAL BRANCH ASSESSMENT REPORT

20,054

Submitted May 30, 1990

TABLE OF CONTENTS

- -----

			Page
1.0	Intro	oduction	2
	1.1	Purpose	2
	1.2	Location and Access	2
	1.3	Claim Status	3
	1.4	Environmental Setting	3
	1.5	History	4
2.0	Geol	ogy	4
	2.1	Regional Geology	4
	2.2	Local Geology	5
3.0	Diar	mond Drilling	5
	3.1	Introduction	5
	3.2	Drilling Data	6
	3.3	Drilling Results	7
	3.4	Drilling Cost Statement	8
4.0	Con	clusions	9
5.0	Rec	ommendations	9
6.0	Ref	erence Materials	10
	6.1	Papers	10
	6.2	Maps	10
7.0	Cer	tificate	11

LIST OF FIGURES

Figure 1:	B.C. Location Map. 1:1,000,000	follows page 2
Figure 2:	Location Map, Camborne, B.C. 1:50,000	follows page 2
Figure 3:	Claim Map, Camborne, B.C. 1:50,000	follows page 3
Figure 4:	Regional Geology Map. 1:125,000	follows page 5
Figure 5:	Camborne Claim Boundary and Drill Hole Location Map. 1:20,000	follows page 5
Figure 6:	VLF-EM & DDH Locations: Stockholm Claim. 1:1,000	leaflet
Figure 7:	DDH Plan & Long Section-West Half: Stockholm Claim. 1:500	leaflet
Figure 8:	DDH Plan & Long Section-East Half: Stockholm Claim. 1:500	leaflet

LIST OF TABLES

		Page
Table 1	Camborne Claim Group: List of Reverted Crown Grants	3
Table 2	Drill Hole Collar Data: Location, Azimuth, Collar Angle & Length	6

APPENDICES

Appendix I	Assay Certificates
	Analytical Procedures.
Appendix II	Diamond Drill Logs: Hole No.s K89-1 to K89-6
Appendix III	Contractor's Invoiced Cost Statement

SUMMARY

At the request of the Board of Directors of Keloro Resources Inc., the Stockholm adit on the Stockholm mineral claim situated on the south side of the Incomappleux River was relocated, evaluated and subsequently drilled. The Stockholm vein is thought to be the northern extension of the Eva vein system. The Stockholm claim is part of the Camborne mineral claim group owned by Lucky Strike Resources Ltd. and is presently under option by Keloro Resources Inc.

Three lines of VLF-EM geophysics conducted over the Stockholm adit area by Strato Geological Engineering Ltd. of Surrey, B.C. (Oct. 4 to 8, 1989) detected a broad response containing three weak sub-parallel northwest striking anomalies. The central response anomaly B corresponds well with known outcrops of the Stockholm vein. A drill program was proposed Oct. 9, 1989 for the Stockholm area based on the encouraging results of that survey and drilling occurred from October 20 to November 4, 1989.

A total of 639.49 metres (2,098 feet) of BQ-size diamond drilling in six holes was drilled to give a cross-section of the broad area outlined by the VLF anomalies. DDH K89-4 intersected approximately 5 meters of quartz veining and stockwork of the Stockholm vein in Broadview argillic phyllites. A second 16 meter wide zone of quartz stockwork and veining in black argillic phyllites (referred to as Broadview sediments) was located in DDH K89-6.

Only trace green mica and pyrite, siderite and moderate quartz/carbonate alteration are associated with the two vein systems located by drilling with the extensive "Coon Dyke" type alteration being conspicuously absent. Lithogeochemical analyses do show that chromium values are slightly elevated throughout both quartz zones. Significant but weak gold values were encountered in both these vein systems. Despite this, the Stockholm and East vein systems are still good exploration targets and further work is recommended.

Rocks of the Jowett Formation in close proximity to the Stockholm and East vein systems should be prospected thoroughly as they are potential hosts for the extensive carbonate-silica-green mica alteration and lead, zinc, silver and gold bearing mesothermal quartz veins typical of the Lardeau Belt.

Respectfully Submitted Keloro Resources Inc.

Jum

Michael A Jerema, B. Sc. Adv. Geology Project Geologist

1.0 INTRODUCTION

1.1 Purpose

At the request of the Board of Directors of Keloro Resources Inc., the Stockholm adit on the Stockholm mineral claim situated on the south side of the Incomappleux River was relocated, evaluated and subsequently drilled. The Stockholm vein is thought to be the northern extension of the Eva vein system. The Stockholm claim is part of the Camborne mineral claim group owned by Lucky Strike Resources Ltd. and presently under option by Keloro Resources Inc.

Three lines of VLF-EM geophysics (Lines 1, 2 and 4) conducted over the Stockholm adit by Strato Geophysical Engineering Ltd. of Surrey, B.C. (Oct. 4 to 8, 1989) detected a broad response containing three weak subparallel northwest striking anomalies. The central response anomaly B corresponds well with known outcrops of the Stockholm vein. A drill program was proposed October 9, 1989 for the Stockholm area based on the encouraging results of that survey and drilling occurred from October 20 to November 4, 1989.

A total of 639.49 metres (2098 feet) of BQ-size diamond drilling in six holes was carried out to give a cross-section of the broad area outlined by the VLF anomalies at a cost of \$54,245.70. DDH K89-4 intersected approximately 5 metres of quartz veining and stockwork of the Stockholm vein in Broadview argillic phyllites. A second 16 metre wide zone of quartz stockwork and veining in black argillic phyllites (referred to as the East vein system) and the contact between Jowett volcanics and Broadview sediments were located in DDH K89-6.

1.2 Location and Access

The Camborne Group of mineral claims is accessed by 10 kilometres of all-weather gravel road along the south side of the Incomappleux River from the tiny community of Beaton. Beaton is located at the extreme eastern edge of the northeast arm of Upper Arrow Lake. A series of logging and mine roads gives access to much of the property and surrounding areas.

The claims are immediately northeast of the abandoned town of Camborne at the junction of the Incomappleux River and Pool Creek and cover much of the steep lower southwestern slopes of Lexington Mountain.

Access from Vancouver to Beaton is via the Trans-Canada Highway from the town of Revelstoke. Traveling south for 51 kilometres along B.C. Highway No. 23 to shelter Bay, board the ferry across Upper Arrow Lake to Galena Bay. Travel approximately 25 kilometres northeast along Highway No. 31 and turn north at a junction towards Beaton which is another five kilometres (Figures 1 and 2).

A privately owned cabin in Beaton provided accommodation for the crew and the property was accessed with a four wheel drive vehicle. There

are no rental accommodations, phones, food, fuel or other services in Beaton. The nearest services are in the towns of Trout Lake, 20 kilometres to the southeast and Nakusp, 80 kilometres to the south.

1.3 Claim Status

The Camborne claim group contains nine mineral claims consisting of 15 contiguous reverted crown-granted mineral claims covering 292.64 acres in the Revelstoke Mining Division. Present information on the claim group is listed in Table 1. The Camborne group is owned by Lucky Strike Resources Ltd. of Vancouver, B.C. and is presently under option by Keloro Resources Inc. The claims and the Camborne claim group boundary are shown in Figures 3 & 5.

TABLE 1

Record No.	Name	C.G. Lot no.	Rec. Date	<u>Expiry Year</u>
11241	Sleve Na Mon	4761	Oct. 1	1998
322	Mascotte Fr.	5418	Jan. 18	1998
322	Gold Fly	5421	Jan. 18	1998
404	Criterion	5417	Oct. 18	1998
404	Rossland	4775	Oct. 18	1998
405	Highland Mary	5171	Oct. 18	1998
406	Eva	5172	Oct. 18	1998
406	Iron Dollar	5173	Oct. 18	1998
406	Wedge Fr.	5176	Oct. 18	1998
407	Oyster	5416	Oct. 18	1998
426	Stockholm	6934	Dec. 28	1998
426	Stockholm Fr.	5424	Dec. 28	1998
427	Joker	5404	Dec. 28	1998
427	Last Chance	5174	Dec. 28	1998
452	Cholla	5399	Feb. 20	1998

1.4 Environmental Setting

Lexington Mountain is a rugged glaciated peak in the Selkirk Mountains. Surrounding peaks range in elevation from 2,130 metres (7,000 feet) to 2,750 metres (9,000 feet) and are crowned with receding fields of snow and ice. The Incomappleux River occupies a gravel filled V-shaped valley covered with dense stands of cedar, spruce, hemlock, fir and balsam from an elevation of 520 metres (1,700 feet), the valley floor, to treeline, 1,830 metres (6,000 feet). As a result, much of the available accessible timber in this valley has been aggressively exploited in recent years leaving behind a number of useful logging roads in the lower parts of the valley. Topography, the Windflower-Granges camp, the Camborne claim group and the major roads are shown in both Figures 2 and 5.

The climate in this part of the province is marked by short, moderate summers, and cold winters with extremely heavy snowfalls often exceeding 3.8 metres (12.5 feet). Late summer and fall are usually wet but is the best time for exploration at higher elevations due to late melting snow. In general, the field season is from late May to early November for low lying areas.

1.5 History

The Lardeau area was first prospected in 1865 but gold not discovered until 1888. By 1891, several claims were staked in the Incomappleux River valley. During these early years it was the silver-lead ores of the Incomappleux drainage area that attracted prospectors.

It wasn't until gold was first discovered in the Eva claim in July, 1899 that the town of Camborne was built at the junction of Pool Creek and the Incomappleux River. However, most mining operations proved unprofitable and by 1908 the town quickly died. The gold quartz veins, although containing occasionally rich pockets, were, in general, of quite low grade resulting in a boom-bust economy for the district.

Production for the area totals more than 275,000 tons from nine separate properties. The best was from Newmont's Sunshine Lardeau (Spider mine now presently owned by K-2 Resources Ltd.) at Camborne which mined and milled 141,000 tons at 0.08 opt gold, 12.2 opt silver, 8.5% lead, and 9.0% zinc.

The most current activity has been the Granges Inc. joint venture with Windflower Mining Ltd. which has outlined, by diamond drilling and a decline an estimated 150,000 tons averaging between 0.20 and 0.25 opt gold in a pyritic quartz vein. The deposit is on the old Dorothy crown grant of the Independence property and is located just across the Incomappleux valley from the Camborne group at an elevation of 1,066 metres (3,500 feet).

2.0 GEOLOGY

2.1 Regional Geology

The Camborne group lies at the northern end of the Kootenay Arc within a belt of highly folded and deformed meta-sedimentary and metavolcanic rocks of Paleozoic age known collectively as the Lardeau Group. The Finkle Creek synform is the most dominate structural element in the area (See Figure 4) A large long, near-vertical fault is projected sub-parallel along the west side of the Finkle Creek synform axial trace (Figure 3) and is thought to host many of the mineral deposits in the area. Numerous claims have been staked along this trend since the early 1890's, the most productive being the Spider Mine (Sunshine Lardeau) which produced some 141,000 tons of gold, silver, lead, zinc ore.

2.2 Local Geology

Only Broadview Formation Meta-sediments and Jowett Formation metavolcanic rocks of the Lardeau Group are thought to occur in the Camborne project area. Detailed mapping might reveal the presence of rocks from the Sharon Creek and Index Formations as well. Broadview and Jowett Formations rocks on the claims strike between 110° and 140°, dip steeply to the northeast, and are part of the western limb of the very large Finkle Creek synform to the east (Figure 4).

Mesoscopic and microscopic near-isoclinal folding throughout the Stockholm drill core attests to the complex folding that has resulted in the attenuating, thickening, and allochthonous displacement of various formation members. The absence of the Sharon Creek and Index Formations is probably a produce of these forces.

Mineralized deposits on the property are the result of mesothermal hypogene solutions moving along fissures. They appear as milky white quartz veins and stockworks with associated carbonates and sulphide minerals. Gold is thought to be concentrated as a result of secondary enrichment and is the primary mineral of value in the veins. Gold occurs free in these veins but in some cases it is associated with pyrite. Silver and lead may also be present as argentiferous galena.

3.0 DIAMOND DRILLING

3.1 Introduction

The Stockholm mineral claim (Record No. 426) is located about one kilometre southeast of the Granges-Windflower trailer camp and starts at the base of a steep hillside on the south side of the Incompappleux River. It is accessible by turning right onto the old Eva Mine Road just before the bridge crossing over the Incomappleux River. The road has many switchbacks and is in very poor condition. Four wheel drive travel is necessary. (Figure 5)

The Stockholm showing is located at the approximate centre of the claim between the two lowest switchbacks of the road that also provides access to the old Eva Mine. The showing consists of a single upper trench, a caved adit and a single outcrop in the lower switchback that exposes a "barren" milky white quartz vein varying from 0.2 to 1.0 metres in width. Host rocks are gray to black carbonaceous phyllites and argillites thought to be Broadview Formation.

NO NO CONTRACTOR	
(EBC	
Heigr	Qs
LEGEND	
CENOZOIC - Quatemary	
Os Recent glacial till & alluvium	
MESOZOIC - Cretaceous	
Muscovite-biotite granodiorite	IP IP
PALEOZOIC - Lower Cambrian to	Contract L
	×50
Broadview Formation	IPsco 195
Black argillite & green to gray phyl- litic grit and phyllite	ALL ISIN
Jowett Formation	Dec OSS-
IPJV Green phyllite and yellow-green phyllite, Greenstone	
Sharon Creek Formation	IPes V
Gray - black siliceous phyllite	IP IP
Index Formation	IPBEST CON
Green phyllite and yellow-green 34 phyllite. Greenstone	et 5 all the for
Phyllitic arenaceous limestone and minor gray phyllite	IPBS IPJy Stockholm
IPIP Gray & green phyllite and minor limy phillite and quartz grit	Crown Grant 61* (L-6934)
IPigr Minor quartz & phyllitic grits	N ASTA
Badshot Formation (Lower Cambrian)	and the second sec
ICBC Gray and white limestone	87 27 1 1 1 1 1 1 1 1 20
HAMILL GROUP (Hadry. to LCam)	28
Mohican Formation	
Gray-brown phyllite & micacous	
Marsh Adams Formation	IPas
White, gray and brown quartizte to	¢.
phyllitic quartzite & minor gray to After: Geolog black phyllite Geolog	gical Survey of Canada open file # 432 gy LARDEAU WEST-HALF B .C. 82KW/2
SYMBOLS	Figure 4
Geologic Boundary - defined, approx, assumed	KELORO RESOURCES INC.
www www Fault - defined, approx, assumed	CAMBORNE AREA
the The Foliation - inclined, vertical	Revelstoke M.D. – NTS 82K/13
Cleavage - inclined, vertical	DECIONAL CEOLOGY
Vergence of fold axis - undetermined, known	KEGIUNAL GEULUGY
Gravel road, River	IVIAP To accompany a report by:
2 i 0 2 Km	M.A. Jerema, Geol.
	January, 1990

The Stockholm vein is thought to be the northern extension of the Eva vein system. Both the Eva and Stockholm claims belong to the Camborne mineral claim group presently under option by Keloro Resources Inc. from Lucky Strike Resources Ltd. Because of this and based upon encouraging results of the VLF-EM survey it was decided to test the Stockholm adit area with a small diamond drill program. A drilling proposal dated October 9, 1989 was approved by the Board of Directors and drilling occurred from October 20 to November 4, 1989. The core was logged and sampled between November 15 to 19, 1989 and the core is stored at the Beaton cabin.

The Stockholm adit area is a rather wide zone consisting of three broad but weak VLF-EM anomalies. All three anomalies and several small vein structures at surface dip moderately to steeply to the northeast. Therefore cross-sectional coverage was necessary to catch all structures across the zone that could possibly host mineralization. A total of 639.49 metres (2098 feet) of BQ-sized diamond drilling in six holes was needed to give a cross-section of the 300 to 360 metre wide area outlined by the VLF anomalies. The drill plan and VLF-EM anomalies are shown together in Figure 6.

3.2 Drilling Data

_ . . .

All collar locations, azimuths and dip angles and hole lengths are given in Table 2. A separate drill set-up was necessary for each hole. DDH holes were roughly spaced 60 to 70 metres apart and positioned on the existing road cut close to grid co-ordinates given in Table 2 as physically and practically possible (See Figure 11). A small but adequate water supply was found in a small creek at line 1, 1+15S and again at line 2, 1+10S. This water could be gravity fed to the drill.

Table 2	Drillhole Colla	ar Data		
Hole No.	<u>Location</u>	<u>Azimuth</u>	Angle	<u>Length</u>
K89-1	L2, 3+80S	210°	-43°	112.78m
K89-2	L2, 3+10S	225°	-45°	112.78m
K89-3	L2, 2+32S	225°	-45°	112.78m
K89-4	L2, 1+75S	225°	-45°	112.78m
K89-5	L2, 1+05S	225°	-45°	112.78m
K89-6	L2, 0+35S	225°	-45°	75.59m

Total meters = 639.49m

Assay certificates and analytical procedures are located in Appendix 1 and diamond drill logs are located in Appendix II. A comprehensive combination drill plan and long-section of the Stockholm vein system is given in Figures 7 and 8. A total of 82 samples were taken with the average sample being between 1.0 and 1.5 metres in width.

3.3 Drilling Results

DDH's K89-1 & K89-2 were drilled to cover the very broad VLF-EM anomaly A (Figure 6). Although numerous quartz veins and stringer zones were sampled in both holes, no significant metal values were present. Host rocks are tentatively identified as gray to grayblack phyllites and argillites of the Broadview Formation. Numerous bands of graphitic material noted in this zone may be responsible for the geophysical response (Figure 7).

The area between anomalies A and B was covered by DDH K89-3 to help complete the cross-sectional coverage. The same gray to grayblack graphitic phyllites and argillites were noted along with numerous small "barren" quartz veins and stringer zones. Numerous samples encountered no significant metal values.

DDH K89-4 was drilled to test the central response, anomaly B. This hole intersected approximately 5 metres of quartz veining and stockwork of the Stockholm vein system hosted by Broadview Formation gray black argillites and phyllites. Some quartz stockwork and or brecciation is also present. The intersection projects almost 30 metres vertically below the Stockholm adit, suggesting a near vertical dip for the vein. Despite the large volume of quartz encountered, the material is sparsely mineralized and assays returned only elevated values for gold throughout the vein (Figure 8).

DDH K89-5 was drilled to intersect the VLF-EM anomaly C. Only gray to grayblack phyllites and argillites of the Broadview Formation were encountered playing host to many small quartz stingers and veinlets. Sampling returned no significant metal values. A wide band of black graphitic argillite hosting a rather large broken fault zone is probably responsible for the geophysical response. The fault is about 5.1 metres in width, strikes northwesterly and dips 70° to 73° to the southeast (Figure 8).

The contact between Jowett volcanics and Broadview sediments and approximately 16 metres of "barren" milky white quartz stockwork and veining (newly designated the East vein system) in black argillic phyllites were located by DDH K89-6 (Figure 8). The top half of the zone is barren whereas the bottom nine metres is slightly elevated in gold with values ranging from 35 to 136 ppb gold. A single 1.58 metre sample near the bottom of the zone did however return a value of 1160 ppb gold and is the highest value encountered by the drilling (Figure 8).

Trace green mica, minor traces of pyrite, some carbonate and siderite are associated with the two vein systems with the extensive "Coon Dyke" alteration being conspicuously absent. Lithogeochemical analyses do show that chromium values are slightly elevated throughout these quartz zones. Only weak to nil gold values were encountered in both these vein systems. It is interesting to note that the newly discovered East vein quartz zone in DDH K89-6 is physically closer to the Jowett Formation than the Stockholm vein and that it returned the highest value encountered by the drilling (See Figure 8).

Rocks described here as being Broadview and Jowett Formation may actually be as yet undifferentiated rocks belonging to the Sharon Creek and Index Formations respectively.

3.3 Drilling Cost Statement

The following is a breakdown of drilling costs incurred for the Stockholm mineral claim during the period of October 19, to November 19, 1989:

Drilling Contract

2,093 ft. x \$20.00/foot	\$41,860.00
Materials Used	
Acid tests: 6 x 5 ft. x \$20/ft	600.00
Core Boxes: 80 x \$7.00/box	660.80
Core Box Lids: one bundle	75.04
BQ Bits: 2 @ \$421.26	842.52
Drilling Polymer: 2 @ \$118.00	236.00
Drilling Cutwell: 1 @ \$56.00	56.00
Drilling Shur Flow: 2 @ \$98.00	196.00
Casing Shoes: 1 @ \$220.00	220.00
Core Springs: 12 @ \$10.62	127.44
Core Lifter Cases: 6 @ \$8.05	48.30
Core Barrel	228.60
Mobilization and Demobilization	
Vancouver to Revelstoke (return)	6,000.00

Man Hours: 80 hours @ \$32.50 per hour 2,600.00

Cat Time: 11 hours @ \$45.00/hour

TOTAL \$54,245.70

495.00

(ay 30, 1990

4.0 CONCLUSIONS

Anomaly A in the Stockholm adit area is thought to be caused by numerous bands of graphitic argillite identified in drill core. Outcrops of the Stockholm vein correspond well with the centrally located anomaly B. A large northwest striking fault dipping 70° to 73° southeast and hosted in a rubbly zone of black argillite with clay gouge and broken quartz was identified in DDH K89-5 and is thought to be responsible for anomaly C (Figures 6, 7 and 8).

Although only weak gold values were obtained from the two quartz vein systems discovered by drilling on the Stockholm claim, the Stockholm vein system is still a good exploration target. Further exploration north and south of the adit area and at depth is warranted.

Previous workers report that the most productive quartz leads are hosted by carbonate altered Jowett greenstones and that values drop off once the leads leave the greenstones for the grayblack phyllites and graphitic argillites of the Broadview Formation. Consequently the second quartz zone (East vein system) located by DDH K89-6 may be a better candidate as the extension to the Eva vein system and not the Stockholm vein as past workers believed. The closer proximity to the greenstones and a larger quartz zone width with slightly higher gold values makes the East vein system a more interesting exploration target.

Rocks of the Broadview and Jowett Formations in close proximity to their lithologic boundary with one another are the best potential hosts for carbonate-silica-green mica alteration and lead, zinc, silver and gold bearing mesothermal quartz veins. These rocks are however, indistinguishable from Sharon Creek and Index Formations and differentiation of all four units is based almost solely on stratigraphy alone.

5.0 **RECOMMENDATIONS**

A detailed reconnaissance program involving prospecting, rock and soil sampling, mapping, VLF-EM surveys and drilling north and south of the Stockholm adit area and at depth is warranted. Such a program would establish any continuity of this vein system with the Eva Vein to the south and the Menhinick Creek-Windflower vein systems zones to the north. This work should be concentrated near the Broadview-Jowett Formation boundary as past explorers report the best mineralization is found in veins hosted by carbonate altered greenstones of the Jowett Formation.

Respectfully Submitted Keloro Resources Inc.

Michael A. Jerema, B.Sc. Adv. Geology Project Geologist

6.0 **REFERENCE MATERIALS**

6.1 Papers

Emmens, N.W.

- 1914: British Columbia Minister of Mines Report: Lardeau Mining Division: pp. 245-273
- Jerema, M.A.

1990: (Jan. 15) Report of Regional Geology of the Mount McKinnon Area, Revelstoke M.D., British Columbia prepared for Keloro Resources Inc. by Strato Geological Engineering Ltd.

Jerema, M.A.

- 1990: (Jan. 30) Report of Geological Reconnaissance of the Camborne Area, Revelstoke M.D., British Columbia prepared for Keloro Resources Inc. by Strato Geological Engineering Ltd.
- Read, P.B.
 - 1975: Lardeau Group, Lardeau Map-Area, West-Half (82K W), British Columbia; G.S.C., Paper 75-1, Pt. A, pp. 29-30
- Walker, J.F.
 - 1929: Bancroft, M.F. and Gunning, H.C. Lardeau Map-Area, British Columbia; G.S.C. Memoir 161.

Wheeler, J.O.

- 1966: Lardeau (West-Half) Map-Area, B.C. (82K W); G.S.C. Paper 66-1, pp. 102-103.
 - 1968: Lardeau (West-Half) Map-Area, B.C. (82 K W); G.S.C. Paper 68-1, Part A, pp. 56-58.

6.2 Maps

- 1976: Geology, Lardeau West-Half, 82K W/2; G.S.C. Open File 432. Scale 1:125,000.
- 1976: Mineral Deposits, Lardeau West-Half, 82K W/2; G.S.C. Open File 464. Scale 1:125,000.
- 1979: Camborne, B.C. N.T.S. 82K/13 Topographic Map; Dept of Energy, Mines and Resources. Scale 1:50,000.
- 1989: Mineral Claim Map, 82K/13E (M); Ministry of Energy, Mines and Petroleum Resources, Victoria, B.C. Scale 1:50,000.

7.0 CERTIFICATE

I, Michael A. Jerema, of Unit 112 - 10091 - 156 Street, Surrey, British Columbia, hereby certify:

- 1. I am a graduate of the University of Saskatchewan (1984) and hold a BSc. Advanced degree in geology.
- I am presently employed as a project geologist with Keloro Resources Inc. of 301 - 543 Granville Street, Vancouver, British Columbia, V6C 1X8.
- 3. I have been employed in my present profession by various mining companies for the past six years.
- 4. I have been actively involved with the mineral exploration industry in both Canada and Australia for the past 16 years.
- 5. The information contained in this report is based on my personal on-site supervision of field work conducted on behalf of Keloro Resources Inc. in the Camborne area of B.C. between October 19 to November 19, 1989.
- 6. I do not expect to receive any direct or indirect interest in the property described nor in the securities of Lucky Strike Resources Ltd., the present owner of the claims.
- 7. This report may be used by Keloro Resources Inc. and Lucky Strike Resources Ltd. for all corporate purposes including any public financing.

DATED at Vancouver, British Columbia, this 30th day of May, 1990.

uma

M.A. Jurema, BSc. Adv. Geology Project Geologist

APPENDIX I

Assay Certificates and Analytical Procedures

_td Chemex bs

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE . NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

TE ELORO RESOURCES INC.

301 - 543 GRANVILLE ST. VANCOUVER, BC V6C 1X8

* Page No Tot . Pages: 3 : 3-DEC-89 Date Invoice # : I = 8930724**P.O.** # :

Project :

Comments: ATTN: MIKE GEREMA CC: KEN SANDERS

CERTIFICATE OF ANALYSIS A8930724

CERTIFICATION :

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA +AA	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Çr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Man ppm
469 501	205 238	10	0.42	< 0.2	25	40	< 0.5	< 2	2.50	< 0.5	10	96	15	3.00	< 10	< 1	0.21	< 10	1.07	710
469 502	205 238	45	0.38	0.2	5	50	< 0.5	< 2	1.70	0.5	15	111	23	3.24	< 10	< 1	0.23	10	0.97	530
469 50 3	205 238	35	0.4/	< 0.2	< 3	40	< 0.5	< 2	1.82	< 0.5	13	56	21	4.64	< 10	< 1	0.22	10	1.41	500
469 50 5	205 238	50	0.34	0.2	< 5	50	< 0.5	$< \frac{2}{2}$	2.93	0.5	14	43 74	18	4.23	< 10 < 10	< 1	0.20	< 10	1.60	685
469 506	205 238	60	0.47	< 0.2	30	70	< 0.5	< 2	1.92	< 0.5	20	54	38	4.49	< 10	< 1	0.28	20	1.29	670
469 507	205 238	105	0.41	< 0.2	35	60	< 0.5	< 2	3.20	< 0.5	14	59	25	3.78	< 10	< 1	0.25	< 10	1.22	790
469 508	205 238	395	0.35	< 0.2	25	50	< 0.5	< 2	2.02	< 0.5	17	36	20	3.66	< 10	< 1	0.21	10	1.03	630
469 509	205 238	390 70	0.48 0.49	0.4 0.2	10 55	80 70	< 0.5 < 0.5	< 2 < 2	1.45	0.5	17 21	43 39	31 34	4.47 4.75	< 10 < 10	< 1 < 1	0.29 0.30	20 20	1.23	605 630
460511	205 218	05	0.51	0.6	50	60	<05	· · ·	0.42	< 0.5	17	45	14	4 44	< 10	< 1	0.28	40	1 1 3	515
469512	205 238	< 5	0.58	0.4	ŝõ	70	< 0.5	4	0.19	< 0.5	19	34	37	4.77	< 10	< i	0.31	50	1.15	4 50
469513	205 238	455	0.51	0.4	65	60	< 0.5	< 2	0.56	< 0.5	18	27	40	4.97	< 10	< 1	0.27	40	1.22	510
469514	205 238	10	0.43	0.2	25	60	< 0.5	2	0.21	0.5	19	25	27	4.73	< 10	< 1	0.24	40	1.11	410
469515	205 238	190	0.46	0.6	50	60	< 0.5	< 2	0.76	< 0.5	81	29	44	4.63	< 10	< 1	0.25	50	1.21	555
469516	205 238	5	0.49	0.4	40	60	< 0.5	2	0.41	< 0.5	20	37	35	4.11	< 10	< 1	0.27	50	1.04	470
469517	205 238	40	0.53	0.2	55	60	< 0.5	< 2	0.39	< 0.5	18	51	40	4.79	< 10	< 1	0.26	40	1.19	485
469518	205 238	260	0.29	0.4	15	30	< 0.5	2	0.85	< 0.5	11	65	35	3.48	< 10	< 1	0.14	20	1.00	535
469519	205 238	30 10	0.38	< 0.2	20	40 20	< 0.5 < 0.5	< 2 < 2	2.31	< 0.5	13	34 61	33 19	2.68	< 10 < 10	< 1	0.09	< 10	1.12	725
469 52 1	205 238	15	1.14	< 0.2	< 5	50	< 0.5	< 2	1.41	0.5	17	47	38	4.12	< 10	< 1	0.23	30	1.45	610
469 52 2	205 238	25	1.05	< 0.2	30	50	< 0.5	< 2	1.54	< 0.5	15	47	32	4.02	< 10	1	0.24	20	1.21	825
469 52 3	205 238	220	0.31	< 0.2	20	40	< 0.5	< 2	2.63	0.5	10	79	23	3.13	< 10	< 1	0.17	< 10	1.19	770
469 52 4	205 238	50	0.21	0.2	5	20	< 0.5	2	1.84	< 0.5	12	49	21	4.17	< 10	< 1	0.12	10	1.66	755
469 52 5	205 238	20	0.49	< 0.2	5	60	< 0.5	2	1.11	< 0.5	15	55	25	3.46	< 10	< 1	0.28	20	1.04	620
469 526	205 238	40	0.38	< 0.2	55	50	< 0.5	2	1.85	3.0	17	62	40	3.64	< 10	< 1	0.21	10	1.30	725
469 527	205 238	>>	0.41	< 0.2	20	50	< 0.5	< 2	1.54	< 0.5	15	54	21	3.92	< 10	< 1	0.22	20	1.21	/10
409328	203 238	20	0.39	< 0.2	20	40	< 0.3	< 2	2.0/	< 0.5	10	63	19	3.13	< 10		0.20	10	1.13	033
469530	205 238	35	0.31	< 0.2	35	50	< 0.5	$< \frac{2}{2}$	3.27	< 0.5	15	27	36	3.81	< 10 < 10		0.22	< 10	1.34	875
469531	205 238	520	0.38	0.2	95	60	< 0.5	< 2	3.18	0.5	14	80	25	3.62	< 10	< 1	0.22	< 10	1.15	625
469532	205 238	25	0.30	0.2	< 5	40	< 0.5	2	0.99	< 0.5	9	67	20	2.78	< 10	< 1	0.17	20	0.96	500
469533	205 238	5	1.68	< 0 .2	20	40	< 0.5	< 2	2.47	< 0.5	13	95	25	3.92	< 10	< 1	0.17	10	1.52	655
469534	205 238	< 5	0.88	< 0.2	15	40	< 0.5	< 2	3.02	< 0.5	9	99	15	2.72	< 10	< 1	0.13	< 10	1.20	805
469535	205 238	< 5	1.00	< 0 .2	< 5	30	< 0.5	< 2	5.37	< 0.5	10	95	20	3.03	< 10	1	0.13	< 10	1.35	1 305
469 536	205 238	35	0.50	0.2	10	60	< 0.5	< 2	1.42	1.5	15	63	127	4.06	< 10	< 1	0.26	20	1.23	670
469537	205 238	25	0.33	< 0.2	15	40	< 0.5	< 2	1.71	< 0.5	14	63	26	3.64	< 10	< 1	0.18	20	1.22	655
469538	205 238	20	0.32	< 0.2	10	40	< 0.3	< 1	1.41	14.5	13	03	21	3.23	< 10		0.18	10	1.02	5/0
469539	205 218	20	0.31	< 0.2	40	40	< 0.3	\geq	5.22	< 0.3	14	58	23	3.41 2 <u>4</u> 1	< 10		0.18	< 10	0.92	625
L <u></u>													CER	TIFICATI	ON :	B. (a	J.		

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

.ELORO RESOURCES INC. Т

> 301 - 543 GRANVILLE ST. VANCOUVER, BC V6C 1X8

* Page No. .-A Tot. Pages: 3 Date : 3-DEC-89 Invoice # : I-8930724 P.O. # :

Comments: ATTN: MIKE GEREMA CC: KEN SANDERS

A8930724 CERTIFICATE OF ANALYSIS

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA 1A A	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Ma ppm
469541	205 238	< 5	0.91	< 0.2	2 5	20	< 0.5	< 2	4.72	< 0.5	10	64	22	2.70	< 10	< 1	0.11	< 10	1.06	1095
469542	205 238	15	1.80	< 0.2	20	50	< 0.5	< 2	2.24	< 0.5	14	94	24	3.72	< 10	< 1	0.22	10	1.64	670
469543	205 238	< 5	1.50	< 0.2	< 5	30	< 0.5	2	1.37	< 0.5	10	72	17	3.13	< 10	< 1	0.15	20	1.12	435
469544	205 238	20	1.39	< 0.2	< 5	60	< 0.5	< 2	2.96	< 0.5	17	120	25	3.10	< 10	< 1	0.26	10	1.52	//5
469545	205 238	45	1.02	< 0.2	25	70	< 0.5	< 2	3.85	< 0.5	12	77	25	3.50	< 10	< 1	0.2/	< 10	1.44	905
469546	205 238	20	1.31	< 0.2	30	50	< 0.5	< 2	2.29	< 0.5	17	84	37	3.93	< 10	< 1	0.20	10	1.20	535
469547	205 238	25	1.06	< 0.2	15	60	< 0.5	< 2	3.61	< 0.5	10	71	27	3.29	< 10	< 1	0.2/	< 10	1.3/	8/0
469548	205 238	375	0.27	< 0.2	125	40	< 0.5	< 2	2.39	0.5	17	119	13	3.73			0.13		0.80	400
469549	205 238	45	0.14	< 0.2	30	20	< 0.5	$< \frac{2}{2}$	2.52	< 0.5	3	225	4	2.02	< 10	< 1	0.05	< 10	0.95	470
460561	205 23	60	0.10	< 0.2		70	<03	~ 7	2 47	< 0.5	12	132	20	3 28	< 10	< 1	0.21	< 10	1 38	640
409331	205 230	125	0.39	< 0.2	75	40	< 0.5	$\langle 2 \rangle$	2 93	< 0.5	12	141	- 6	3.38	< 10	< 1	0.12	< 10	1.10	5 50
469552	205 23	105	0.17	< 0.2	20	20	< 0.5	$\langle 2 \rangle$	2.65	0.5	.2	145	4	2.54	< 10	< 1	0.06	< 10	1.01	470
469554	205 23	915	0.28	< 0.2	60	50	< 0.5	< 2	2.53	< 0.5	11	183	7	2.52	< 10	< 1	0.13	< 10	0.98	470
469555	205 23	105	0.55	< 0.2	40	80	< 0.5	< 2	3.16	< 0.5	14	60	23	3.90	< 10	< 1	0.31	10	1.48	760
469556	205 238	< 5	1.94	< 0.2	10	50	< 0.5	< 2	4.54	0.5	30	183	23	4.87	< 10	< 1	0.21	< 10	3.55	1135
469557	205 238	< 5	0.98	< 0.2	90	40	< 0.5	< 2	4.34	< 0.5	23	91	25	5.96	< 10	< 1	0.20	< 10	3.29	1205
469558	205 238	20	0.54	< 0.2	55	70	< 0.5	< 2	3.22	< 0.5	17	25	33	4.12	< 10	< 1	0.32	< 10	1.51	780
469559	205 238	15	0.54	< 0.2	15	70	< 0.5	< 2	3.52	< 0.5	15	34	28	3.66	< 10	< 1	0.30	< 10	1.35	845
469560	205 23	10	1.36	< 0.2	5	50	< 0.5	< 2	1.93	< 0.5	10	58	24	3.08	< 10	< 1	0.25	10	0.95	620
469561	205 238	225	1.66	0.2	100	1 50	0.5	< 2	3.47	< 0.5	17	54	48	3.78	< 10	< 1	0.39	< 10	0.92	745
469562	205 238	65	0.47	< 0.2	25	60	< 0.5	< 2	2.65	< 0.5	14	83	37	3.48	< 10	< 1	0.27	< 10	1.24	765
469563	205 238	40	0.39	< 0.2	15	50	< 0.5	< 2	3.49	< 0.5	10	123	20	3.03	< 10	< 1	0.22	< 10	1.09	740
469564	205 238	< 5	0.36	< 0.2	25	40	< 0.5	< 2	5.03	< 0.5	9	80	11	2.37	< 10	< 1	0.20	< 10	0.83	/43
469565	205 238	< 5	1.61	< 0.2	< 5	130	< 0.5	< 2	1.32	0.5	11	>>	20	3.28	< 10	< 1	0.52	40	0.77	
469566	205 231	3 < 5	0.90	< 0.2	< 5	90	< 0.5	< 2	1.22	3.0	6	41	8	1.74	< 10	< 1	0.30	30	0.44	385
469567	205 23	25	0.43	< 0.2	< 5	60	< 0.5	< 2	6.90	0.5	10	95	17	2.72	< 10	< 1	0.24	< 10	0.90	610
469568	205 23	20	0.49	0.2	< 5	90	< 0.5	< 2	1.64	0.5	12	52	27	3.21	< 10	< 1	0.31	30	0.91	500
469569	205 23		0.31	0.2	< 5	100	< 0.5	< 2	0.85	0.3	13	210	22	3.44	< 10		0.31	40	0.89	220
469570	205 23	\$ < \$	0.10	< 0.2	< >	10	< 0. 3	< 2	1.13	1.0		210	4	1.33	< 10	< 1	0.01	10	0.43	
469571	205 23	3 < 5	0.45	0.2	< 5	100	< 0.5	< 2	1.53	1.0	13	62	33	3.52	< 10	< 1	0.27	20	0.95	515
469572	205 23	3 < 5	0.37	< 0.2	< 5	70	< 0.5	< 2	0.90	0.5	10	85	14	3.09	< 10	< 1	0.23	30	0.76	425
469573	205 23	< 5	0.26	< 0.2	< 5	50	< 0.5	< 2	0.91	0.5	6	127	11	1.98	< 10	< 1	0.15	20	0.54	355
469574	205 23		0.30	0.2	< 5	70	< 0.5	< 2	1.00	0.5	6	98	12	2.00	< 10	< 1	0.20	30	0.33	515
409575	205 23	135	0.23	< 0.2	23	50	< 0.3	< 2	2.33	1.0	8	107	10	2.32	< 10	<u> </u>	0.17	10	0.8/	043
469576	205 23	135	0.61	0.2	5	90	< 0.5	< 2	2.50	< 0.5	11	233	21	2.93	< 10	< 1	0.34	10	0.97	725
469577	205 23		0.37	< 0.2	< 5	60	< 0.5	< 2	1.69	< 0.5	12	83	18	3.21	< 10		0.24	10	1.02	493
4095/8	203 23	33	0.30	< 0.2	33	80	< 0.3	< 2	2.40	< 0.5	10	01	30 36	4.03			0.33	20.	1.40	7/0
460580	205 23	50	0.03	< 0.0	< 5	60	< 0.3	\geq	1 94	< 0.5	13	70	21	3 35	< 10	Â.	8728	207	1.03	855
																6.0	a	. X-		
													CER	TIFICATI				1		

Project :

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE . NORTH VANCOUVER. BRITISH COLUMBIA. CANADA V7.J-2C1 PHONE (604) 984-0221 TE ELORO RESOURCES INC.

301 - 543 GRANVILLE ST. VANCOUVER, BC V6C 1X8 Project:

Comments: ATTN: MIKE GEREMA CC: KEN SANDERS

CERTIFICATE OF ANALYSIS A8930724

CERTIFICATION : β . (ω_{f}

SAMPLE DESCRIPTION	PREP CODE	Au ppb FA +AA	A1 %	Ag ppm	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %	Min ppm
469581 469582	205 238 205 238	10 < 5	1.82 0.09	< 0.2 0.2	< 5 < 5	70 < 10	< 0.5 < 0.5	< 2 < 2	3.56 0.07	< 0.5 < 0.5	16 1	111 278	24 1	3.55 0.81	10 < 10	< 1 < 1	0.31 < 0.01	< 10 < 10	1.52 0.01	920 175
																			·	
	- A man a to																			
L																$\overline{\mathcal{D}}$	<u></u>	- <i>A</i> -		

Alytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221 TELORO RESOURCES INC.

301 - 543 GRANVILLE ST. VANCOUVER, BC V6C 1X8 * Page No. -B Tot. Pages: 3 Date : 3-DEC-89 Invoice # : I-8930724 P.O. # :

Project :

Comments: ATTN: MIKE GEREMA CC: KEN SANDERS

CERTIFICATE OF ANALYSIS A8930724

SAMPLE DESCRIPTION	PRE COD	P E	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
4(0(0)	2015			0.02		200	10		<u> </u>	126 -	< 0.01	< 10	< 10		< 10	10	
469501	203	230	1	0.03	30	290	18	< 5	2	107 <		< 10	< 10	3	< 10	58	
469503	205	238	2	0.02	33	380	20	$\overline{\langle s \rangle}$	2	98 <	< 0.01	< 10	< 10	ž	< 10	84	
469 504	205	238	2	0.02	37	370	12	5	3	137 <	< 0.01	< 10	< 10	2	< 10	54	
469 50 5	205	238	1	0.02	29	3 30	36	5	3	208 <	< 0.01	< 10	< 10	3	< 10	116	
469 506	205	238	1	0.02	41	3 50	8	5	2	109 <	< 0.01	< 10	< 10	3	< 10	108	
469 507	205	238	1	0.02	28	390	16	5	2	164 <	< 0.01	< 10	< 10	3	< 10	62	
469 508	205	238	2	0.01	33	430	20	5	2	120 <	< 0.01	< 10	< 10	2	< 10	54	
469 509	205	238	1	0.02	36	420	18	5	2	89 <	< 0.01	< 10	< 10	3	< 10	66	
469510	205	238	1	0.02	40	370	22	5	2	68 <	< 0.01	< 10	< 10	3	< 10	96	
469511	205	238	1	0.02	34	440	50	< 5	2	30 <	< 0.01	< 10	< 10	3	< 10	100	
469512	205	238	1	0.02	39	520	16	< 5	2	17 <	< 0.01	< 10	< 10	3	< 10	84	
469513	205	238	1	0.02	38	430	84	< 5	2	41 <	< 0.01	< 10	< 10	4	< 10	96	
469514	205	238	1	0.02	34	480	14	< 5	2	18 <		< 10	< 10	2	< 10	98	
469515	205	238	1	0.02	34	480	60	< >	2	> 8 <	. 0.01	< 10	< 10	2	< 10	114	
469516	205	238	4	0.02	36	470	16	< 5	2	28 <	< 0.01	< 10	< 10	2	< 10	66	
469517	205	238	1	0.03	36	440	28	< 5	2	32 <	< 0.01	< 10	< 10	2	< 10	114	
469518	205	238	1	0.02	22	310	44	< 5	2	61 <	< 0.01	< 10	< 10	2	< 10	74	
469519	205	238	1	0.02	30	410	36	< 5	2	90 <	< 0.01	< 10	< 10	3	< 10	196	
469520	205	238	1	0.02	19	3 50	6	5	2	138 <	< 0.01	< 10	< 10	2	< 10	140	
469521	205	238	1	0.02	40	470	10	< 5	2	83 <	< 0.01	< 10	< 10	8	< 10	160	
469522	205	238	1	0.02	35	3 30	12	< 5	2	87 <	< 0.01	< 10	< 10	6	< 10	80	
469523	205	238	1	0.02	29	200	8	5	2	190 <	< 0.01	< 10	< 10	3	< 10	34	
469524	205	238	1	0.01	26	240	20	< 5	2	161 <	< 0.01	< 10	< 10	1	< 10	62	
469525	205	238	2	0.02	34	340	14	< 5	2	60 <	< 0.01	< 10	< 10	4	< 10	74	
469526	205	238	1	0.02	44	480	6	< 5	2	107 <	< 0.01	< 10	< 10	3	< 10	642	
469527	205	238	1	0.02	37	500	14	5	2	100 <	< 0.01	< 10	< 10	3	< 10	74	
469528	205	238	I	0.02	34	400	12	5	2	114 <	< 0.01	< 10	< 10	3	< 10	64	
469529	205	238	1	0.02	38	430	18	< >	2	10/ <		< 10	< 10	3	< 10	60	
469530	205	238		0.02	30	4 30	10	>		130 <	~ 0.01	< 10	< 10		< 10	04	
469531	205	238	2	0.01	32	790	98	5	3	229 <	< 0.01	< 10	< 10	5	< 10	124	
469532	205	238	< 1	0.01	20	280	12	< 5	2	81 <	< 0.01	< 10	< 10	3	< 10	60	
469533	205	238	< 1	0.01	48	500	8	< 5	3	145 <	< 0.01	< 10	< 10	16	< 10	94	
469534	205	238	< 1	0.01	35	390	6	5	4	147 <	< 0.01	< 10	< 10	9	< 10	52	
469535	205	238	1	0.02	46	400	12	< 5	5	348 <	< 0.01	< 10	< 10	10	< 10	60	
469536	205	238	1	0.02	35	400	16	< 5	3	80 <	< 0.01	< 10	< 10	4	< 10	338	
469537	205	238	l	0.02	30	360	18	< 5	2	93 <	< 0.01	< 10	< 10	3	< 10	86	
469538	205	238	1	0.02	29	290	6	< 5	2	88 <	< 0.01	< 10	< 10	2	< 10	2780	
469539	205	238	1	0.02	33	490	12	< 5	3	184 <	< 0.01	< 10	< 10	3	< 10	66	. 7
469 540	205	238	< 1	0.01	15	280	12	< 5	2	281 <	< 0.01	< 10	< 10	2	< 10	40	$\rho \subset U$
														CER.	TIFICATI	ом : Д	B. (agking

301 - 543 GRANVILLE ST. VANCOUVER, BC V6C 1X8 * Page No. .-B Tot. Pages: 3 Date : 3-DEC-89 Invoice # :I-8930724 P.O. # :

Analytical Chemists * Geochemists * Registered Assayers 212 BROOKSBANK AVE . NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7.J-2C1 PHONE (604) 984-0221

Lad

S

td

Chemex

Project : Comments: ATTN: MIKE GEREMA CC: KEN SANDERS

CERTIFICATE OF ANALYSIS A8930724

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Ti ppm	U ppm	V	W ppm	Zn ppm	
469541	205 238	1	0.01	24	300	12	< 5	2	247 <	< 0.01	< 10	< 10	6	< 10	44	·····
469542	205 238	< 1	0.02	39	370	6	< 5	2	119 <	< 0.01	< 10	< 10	15	< 10	58	
469543	205 238	< 1	0.01	30	310	4	< 5	1	70 <	< 0.01	< 10	< 10	9	< 10	52	
469544	205 238	< 1	0.01	48	340	36	< 5	3	148 <	< 0.01	< 10	< 10	12	< 10	62	
469545	205 238	1	0.02	26	430	14	5	3	228 <	< 0.01	< 10	< 10	8	< 10	44	
469 546	205 238	1	0.01	32	340	16	< 5	2	118 <	< 0.01	< 10	< 10	7	< 10	68	
469547	205 : 238	1	0.02	26	440	16	< 5	3	206 <	< 0.01	< 10	< 10	9	< 10	46	
469 548	205 238	1	0.02	40	320	2	< 5	3	163 <	< 0.01	< 10	< 10	5	< 10	22	
469549	205 238	1	0.04	13	1 50	10	< 5	4	183 <	< 0.01	< 10	< 10	4	< 10	18	
469550	205 238	1	0.03	18	180	6	5	3	175 <	< 0.01	< 10	< 10	4	< 10	18	-
469551	205 238	< 1	0.03	38	380	12	< 5	4	230 <	< 0.01	< 10	< 10	6	< 10	30	
469552	205 238	1	0.05	31	370	< 2	5	5	201 <	< 0.01	< 10	< 10	7	< 10	40	
469553	205 238	1	0.05	24	190	2	< 5	3	181 <	< 0.01	< 10	< 10	4	< 10	20	
469554	205 238		0.02	27	170	50	5	3	174 <	< 0.01	< 10	< 10	6	< 10	24	
469555	205 238	1	0.02	38	360	74	< \$	3	186 <	< 0.01	< 10	< 10	0	< 10		
469556	205 238	1	0.01	180	690	2	< 5	6	237 <	< 0.01	< 10	< 10	24	< 10	100	
469557	205 238	2	0.04	117	480	18	< 5	8	221 <	< 0.01	< 10	< 10	15	< 10	124	
469558	205 238	1	0.03	32	480	4	< 5	3	155 <	< 0.01	< 10	< 10	5	< 10	72	
469559	205 238	< 1	0.03	32	4 50	8	< 5	3	163 <	< 0.01	< 10	< 10	5	< 10	84	
469560	205 238	2	0.01	26	320	6	< 5	2	103 <	< 0.01	< 10	< 10	8	< 10	50	
469561	205 238	1	0.02	44	290	118	5	6	217 <	< 0.01	< 10	< 10	25	< 10	284	
469562	205 238	2	0.01	28	2 50	30	5	2	165 <	< 0.01	< 10	< 10	3	< 10	58	
469563	205 238	< 1	0.02	19	280	16	< 5	2	165 <	< 0.01	< 10	< 10	3	< 10	38	
469564	205 238	< 1	0.03	20	240	10	< 5	2	221 <	< 0.01	< 10	< 10	3	< 10	36	
469 56 5	205 238	1	0.02	23	470	20	< 5	2	104 <	< 0.01	< 10	< 10	9	< 10	68	
469566	205 238	< 1	0.03	12	400	54	< 5	1	77 <	< 0.01	< 10	< 10	6	< 10	628	
469567	205 238	1	0.02	18	200	26	< 5	2	391 <	< 0.01	< 10	< 10	3	< 10	72	
469568	205 238	1	0.02	26	340	28	< 5	2	99 <	< 0.01	< 10	< 10	3	< 10	56	
469569	205 238	1	0.02	27	390	14	< 5	1	61 <	< 0.01	< 10	< 10	3	< 10	58	
469570	205 238	< 1	0.04	13	60	2	< 5	1	96 <	< 0.01	< 10	< 10	2	< 10	228	
469571	205 238	< 1	0.03	33	280	8	< 5	2	120 <	< 0.01	< 10	< 10	5	< 10	52	
469572	205 238	1	0.02	21	340	10	< 5	1	69 <	< 0.01	< 10	< 10	2	< 10	54	
469573	205 238	1	0.02	14	220	60	< 5	1	68 <	< 0.01	< 10	< 10	1	< 10	72	
469574	205 238	1	0.02	14	300	< 2	< 5	1	75 <	< 0.01	< 10	< 10	3	< 10	30	
469575	205 238	1	0.02	15	270	12	< 5	1	152 <	< 0.01	< 10	< 10	2	< 10	216	
469576	205 238	1	0.03	25	1080	22	< 5	2	174 <	< 0.01	< 10	< 10	6	< 10	40	
469577	205 238	1	0.02	22	270	14	< 5	2	115 <	< 0.01	< 10	< 10	3	< 10	54	
469578	205 238	2	0.02	49	4 50	12	< 5	3	171 <	< 0.01	< 10	< 10	4	< 10	64	
469579	205 238	2	0.02	42	680	30	< 5	3	145 <	< 0.01	< 10	< 10	5	< 10	64	_
469580	205 238	1	0.02	27	300	12	< 5	2	98 <	< 0.01	< 10	< 10	5	< 10	58	$\overline{\alpha}$
													CER	TIFICATI	ON :	5. (a-gli-

301 - 543 GRANVILLE ST. VANCOUVER, BC V6C 1X8 * Page No. -B Tot. Pages: 3 Date : 3-DEC-89 Invoice # : I-8930724 P.O. # :

212 BROOKSBANK AVE., NORTH VANCOUVER, BRITISH COLUMBIA, CANADA V7.1-2C1 PHONE (604) 984-0221

Analytical Chemists * Geochemists * Registered Assayers

Labs

Ltd

Chemex

Project : Comments: ATTN: MIKE GEREMA CC: KEN SANDERS

CERTIFICATE OF ANALYSIS A8930724

SAMPLE DESCRIPTION	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W	Zn ppm	
469581 469582	205 238 205 238	< 1 < 1	0.02 0.04	48 6	4 30 1 40	8 4	< 5 < 5	3 1	207 · 7 ·	< 0.01 < 0.01	< 10 < 10	< 10 < 10	16 1	< 10 < 10	66 8	
	1															
L	[]	_											CERI	IFICATIO	on: B. Carglin	

Analytical Chemists Geochemists * Registered Assavers

212 BROOKSBANK AVE., NORTH VANCOUVER. BRITISH COLUMBIA, CANADA V7J-2C1 PHONE (604) 984-0221

To: KELORO RESOURCES INC.

301 - 543 GRANVILLE ST. VANCOUVER, BC V6C 1X8

Comments: ATTN: MIKE GEREMA CC: KEN SANDERS

A8930724

CERTIFICATE A8930724

KELORO RESOURCES INC. PROJECT : P.O.# :

Samples submitted to our lab in Vancouver, BC. This report was printed on 3-DEC-89.

SAMPLE PREPARATION

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
2 O 5 2 3 8	82 82	Rock Geochem: Crush.split.ring ICP: Aqua regia digestion
	1	

* NOTE 1:

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al. Ba. Be. Ca. Cr. Ga. K. La. Mg. Na. Sr. Ti. T1. W.

ANALYTICAL PROCEDURES

HFMEX	NUMBER			DETECTION	UPPER
CODE	SAMPLES	DESCRIPTION	METHOD	LIMIT	LIMIŤ
100	82	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
921	82	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
922	82	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	200
923	82	As ppm: 32 element. soil & rock	ICP-AES	5	10000
924	82	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
925	82	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
926	82	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
927	82	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
928	82	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
929	82	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
930	82	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
931	82	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
932	82	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
933	82	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
951	82	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
934	82	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
935	82	La ppm: 32 element, soil & rock	ICP-AES	10	10000
936	82	Mg %: 32 element. soil & rock	ICP-AES	0.01	15.00
937	82	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
938	82	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
939	82	Na %: 32 element, soil & rock	ICP-AES	0.01	5.00
940	82	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
941	82	P ppm: 32 element, soil & rock	ICP-AES	10	10000
942	82	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
943	82	Sb ppm: 32 element, soil & rock	ICP-AES	5	10000
958	82	Sc ppm: 32 elements, soil & rock	ICP-AES	1	100000
944	82	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
945	82	Ti %: 32 element, soil & rock	ICP-AES	0.01	5.00
946	82	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
947	82	U ppm: 32 element, soil & rock	ICP-AES	10	10000
948	82	V ppm: 32 element, soil & rock	ICP-AES	1	10000
949	82	W ppm: 32 element, soil & rock	ICP-AES	10	10000
9 5 0	82	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

APPENDIX II

Diamond Drill Logs: Hole Nos. K89-1 to K89-6

Hole No. K89-1 **KELORO RESOURCES INC.** DIAMOND DRILL RECORD Sheet 1 of 5 **Revelstoke Project**

-

Alteration Code

Alteration scale

Hole Meters 112.78n	Dip and A2 Co Dip n -43° A.T	zimuth Tests Collar Dip 43° prrected Azimuth 210° Azimuth Total Depth 112.78m Collar Elev ~637m Horiz. Length 82.6m	Location Claim Grid Co–ord . Core Size	· · · · · · · · · · · · · · · · · · ·	.Stockhol	m C.G. Strato 3+75S BQ	Drille Date Date Logg Core	ed by Begun . Complete ed by Stored A	Canex Oct. e Oct. M t Beato	Drilling 23, 1989 23, 1989 Jerema on Cabin	Q free C calc S silic G clay P pyri A ank cart M gree	quartz ite ification gouge te erite (iron xonate) en mica	none weak mild modera strong intense	0 1 2 te 3 4 5	none trace 1 to 3 3 to 15 to > 3(: to 1% 3% 15% 530% 0%
Interva	l (Meter)								Assays	S			Al	terat	ion	
From	То	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	QCS	G	P /	A M
0.0	4.57	CASING OVERBURDEN														
4.57	7.01	Quartz rubble to 5.49m. Gray phyllite (Broadview Fm.) rubble from 5.49 to 7.01m. Approximately 90% core loss														
7.01	34.36	INTERCALATED GRAPHITIC GRAY PHYLLITE AND GRAPHITIC GRAY BLACK PHYLLITE Moderate to well foliated graphitic gray black phyllite bands from .05 to 1.0m thick in a weak to moderately foliated gray phyllite. Some minor bands of graphitic black argillite throughout.											222	<u>.</u>	1	
		 Carbonate alteration from (11.3-12.8m) and (14.5-15.5m) Variably silicous from (15.5-18.7m) and (20.6-26.8m) Well foliated argillite bands contain 5.30% quartz in foliation plains and as ptygmatitic folded quartz veinlets and quartz sweats. 											4 4 3 3			
		– Trace pyrite blebs at (8.8m). Foliation Core Angles													1	

С.А. М. С.А. М

Hole Dip and Azimuth Tests

C.A. M 70° 30.6 58° 10.0 60° 17.8 60° 15.5 60° 26.5 50° 33.5

DIAMOND DRILL RECORD

Hole No. K89-1

Interval (Meter)								Assays	5				Alter	ation
From To	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	Q	c s d	GPAM
		Number	Interval (m)	Width	Rec'd	ppm	ppm	ppm	ppb	oz/t	oz/t			
	Unit consists of graphitic meta-sediments of the Broadview Fm													
	 Folded and boudinaged quartz stringers and one 15cm quartz vein with siderite crystal patches (buff yellow iron carbonate associated with veins) 	469501	26.7–28.3	1.6m	1.6	96	38	< 0.2	10			4	12	1
	- 10cm milky white quartz veinlet and stringers.	469502	31.2-31.6	0.4m	0.4	111	58	0.2	45			4	2	1
	Sigmoidal to crenulation folding of bands and quartz stringers from (33.0-34.3m)													
34.36 37.30	SILICOUS QUARTZ BRECCIA - STRINGER ZONE Boudinaged or brecciated quartz veinlets and stringers in graphitic black argillite. Traces and blebs of pyrite along vein contacts Traces green sericite and buff yellow iron carbonate alteration in host rock fragments in quartz material. Foliation Core Angle 45° at 34.9m											4	3	1 1
	- 15cm quartz vein at 35.4m with pyrite blebs.	469503	34.9-35.9	1.0m	1.0	56	84	< 0.2	35			3	3	1 1
	- 5cm quartz vein with 30° lower contact angle, plus veinlets and minor quartz 13x at 37.0m. Traces disseminated pyrite and pyrite blebs.	469504	35.9-37.3	1.4m	1.4	43	54	< 0.2	45			3	3	1 1
37.3 64.0	INTERCALATED GRAY BLACK PHYLLITE, GRAPHITIC BLACK ARGILLITE AND MINOR YELLOW GREEN PHYLLITE Unit consists largely of sandy or gritty textured gray black (graphitic) phyllite with thin laminations of graphitic black argillite and minor sericitic? pale yellow to green gray phyllite. Unit is indicative of a volcaniclastic - meta sedimentary sequence. Minor stringers and quartz sweats throughout.											2	12	

Sheet 2 of 5

-

DIAMOND DRILL RECORD

Hole No. K89-1 Sheet 3 of 5

Interval (N	Meter)								Assays				Alteration
From 7	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	QCSGPAM
•			Number	Interval (m)	Width	Rec'd	ppm	ppm	ppm	ppb	oz/t	oz/t	
		- Same sigmoidal to crenulation folding of bands and quartz material (cm size scale) as above.											
		- (45.3 to 47.2m) - variably silicous with minor quartz-carbonate lenses, patches and stringers. Foliation Core Angles:											2 1 2
		<u>C.A. M C.A. M C.A. M C.A. M</u> <u> 55° 42.1 45° 49.6 55° 54.7</u> 52° 39.5 53° 44.8 65° 52.3 60° 62.1											
64.0 73.	3.5	SILICIFIED QUARTZ STRINGER ZONE Variable silicification of graphitic black argillite with minor sections of gray black phyllite. Stringers, lenses and sweats of quartz along foliation planes gives unit a brecciated appearance. minor blebs and disseminations of pyrite. Barren milky white quartz veins from 5 to 10cms wide at 64.45m, 64.85m, 69.2m, 69.7m. Well foliated with the following core angles:											4 4 1
		C.A. M C.A. M C.A. M 53° 67.5 60° 73.0 60° 73.5											
		 Silicification quartz stringers, veinlets, sweats. Minor silicification and Quartz stringers from (72.5-73.5m). 	469505 469506 469507 469508 469508 469510	64.0-65.0 65.0-66.5 66.5-68.0 68.0-69.5 69.5-71.0 71.0-72.5	1.0m 1.5m 1.5m 1.5m 1.5m	1.0 1.5 1.5 1.5 1.5 1.5	74 54 59 36 43 39	116 108 62 54 66 96	0.2 <0.2 <0.2 <0.2 <0.2 0.4 0.2	50 60 105 395 390 70			4 3 1 3 3 1 3 3 1 4 4 1 4 4 1 3 4 1 2 2
73.5 83	3.8	GRAPHITIC GRAY PHYLLITE Moderate to well foliated with abundant crenulation folding and cleavage. Unit has "gritty or sandy" texture to core.											2 1 1 1

DIAMOND DRILL RECORD

Hole No. K89-1 Sheet 4 of 5

Interva	al (Meter)								Assay	s				Alte	ration
From	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	Q	C S	GPAM
			Number	Interval (m)	Width	Rec'd	ppm	ppm	ppm	ppb	oz/t	oz/t			
		Minor bands of graphitic black argillite. Minor silicification and Quartz stringers throughout.													
		 Clay gouge and argillic alteration at 76.5 to 77.0m Brecciated appearance at 80.4m. Possible bedding plains at 82.8m with 10° C.A. Foliation Core Angles: 													4
		C.A. M C.A. M 55° 75.5 57° 79.6													
83.3	91.3	SILICIFIED QUARTZ STRINGER ZONE Graphic gray black phyllite host with a white spotted mottling throughout; gradational contacts. Trace disseminated pyrite throughout. Buff yellow carbonate associated with 5 to 15cm quartz veins at 87.5m, 89.0m and 90.3m Foliation Core Angles:											4	4	1 1
		C.A. M C.A. M C.A. M 45° 83.2 62° 87.8 60° 90.0													
		- Silicification, quartz veinlets, stringers and sweats:	469511	83.8-85.3	1.5m	1.5	45	100	0.6	95			3	4	
		- Silicification, quartz veinlets, stringers and sweats:	469512	85.3-86.8	1.5m	1.5	34	84	0.4	< 5			3	4	
		- Silicification, quartz veinlets, stringers and traces to 1% pyrite:	469513	86.8-88.3	1.5m	1.5	27	96	0.4	455			3	4	
		- Silicification, quartz veinlets, stringers and traces to 1% pyrite:	469514	88.3-89.8	1.5 m	1.5	25	98	0.2	10			4	4	
91.3	112.78	 Silicification, quartz veinlets, stringers and traces to 1% pyrite: GRAPHITIC GRAY-BLACK PHYLLITE Moderate to well foliated with abundant sigmoidal folding within crenulation cleavages. Minor cm-sized bands of graphitic black argillite. Minor to 5% quartz stringers and sweats with random C.A.s Foliation Core Angles: 	469515	89.8-91.3	1.5m	1.5	29	114	0.6	190			42	42	1
		C.A. M C.A. M C.A. M 59° 96.0 68° 106.0 55° 109.3 60° 103.0 70° 108.5 55° 112.7													
		- Barren 15cm miky white quartz vein plus minor stringers:	469516	103.0-103.5	0.5m	0.5	37	66	0.4	5			4	4	

DIAMOND DRILL RECORD

Hole No. K89-1 Sheet 5 of 5

Interval (Meter)								Assays	5				Alter	ation
From To	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	Q	cso	3 Р А М
<u> </u>	Barren 20cm milky white quartz vein plus minor stringers:	469517	104.5-105.2	5 0.75m	0.75	51	114	0.2	40			4	4	
(109.9 111.3)	QUARTZ VEINS 5 individual barren milky white quartz vein segments with 1-5% buff yellow carbonate (siderite?) separated by bands of graphitic black argillite with traces disseminated pyrite.	459518	109.9-111.3	1.4m	1.4	65	74	0.4	260			5	5	121
	- Very minor trace of green mica at 110m at contact. Indistinguishable, highly variable vein contacts.													1
112.78m	END OF HOLE													
	Corrected acid test = -43° at 112.78m													

DIAMOND DRILL RECORD

Hole No. K89-2 Sheet 1 of 5

-

Hole Dip and Azimuth Tests Meters <u>Corrected</u> Dip Azimuth 112.78m -41.5° A.T.	Collar Dip -45° Azimuth 225° Total Depth 112.78m Collar Elev ~630m Horiz Length 82 6m	Location	Drilled by Canex Drilling Date Begun Oct. 23 1989 Date Complete Oct. 25 1989 Logged by M. Jerema Core Stored At Beaton Cabin	Alteration Code Q free quartz C calcite S silicification G clay gouge P print	Alteration scale none 0 none weak 1 trace to 1% midd 2 1 to 3% moderate 3 3 to 15% strong 4 15 to 30%
112.78m -41.5° A.T.	Horiz Length	Core Size	Core Stored At Beaton Cabin	P pyrite	strong 4 15 to 30%
	-			A ankerite (iron	intense 5 > 30%
				carbonate)	
				M green mica	

Interv	al (Meter)								Assays					Alter	ation
From	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	Q	c s c	JPAM
			Number	Interval (m)	Width	Rec'd	ррт	ррт	ррт	ppb	oz/t	oz/t			
0.0	1.52	CASING OVERBURDEN													
1.52	6.15	GRAPHITIC GRAY PHYLLITE RUBBLE											1	1	
6.15	10.0	GRAPHITIC GRAY BLACK PHYLLITE Well foliated unit with minor silicification, quartz stringers and sweats. Core has a gritty or sandy texture but is still quite graphitic Foliation Core Angles:											1	1	
		C.A. M C.A. M 75° 6.0 55° 9.3													
10.0	14.5	SILICIFIED QUARTZ STRINGER ZONE In intercalated graphitic black argillite and gray/black phyllite, moderately to well foliated. Traces disseminated and blebs of pyrite in graphitic sections. Broken core from 11.0 to 13.5 with 30% core loss. Foliation Core Angles:											4	4	1
		C.A. M 60° 14.0													
		- Milky white mm to cm-sized quartz stringer along foliations.	469519	10.0 -11.5	1.5m	1.12	34	196	< 0.2	30			4	4	1
		- Quartz breccia and stockwork, some drusy quartz veinlets	469520	11.5 -13.0	1.5m	0.98	61	140	< 0.2	10			4	4	1
		 Milky white mm to cm-sized quartz stringers along foliations 	469521	13.0 -14.5	1.5m	1.08	47	160	< 0.2	15			4	4	1

DIAMOND DRILL RECORD

Hole No. K89-2 Sheet 2 of 5

.

Interval	l (Meter)								Assays	6				Altera	tion
From	То	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	QC	C S G	РАМ
14.5	15.2	PALE GREEN/GRAY PHYLLITE (ANDESITE TUFF) Minor secction of massive andesite tuff with an upper contact angle of 55°. Moderately well foliated. Greenish colour due to sericite.													
15.2	23.6	GRAY/BLACK PHYLLITE Moderate to well foliated with minor crenulation cleavage and brecciation. Intercalated thin bands and lamellae of graphitic black argillite. Minor silicification quartz stringers and traces pyrite. Foliation Core Angles:											1	1	1
		C.A. M C.A. M 47° 16.0 65° 18.5													
		– Silicification and quartz stringers and disseminated pyrite to 1% in graphitic black argillite.	469522	16.4 -17.5	1.1m	1.1	47	80	< 0.2	25			3	4	
23.6	36.85	INTERCALATED GREEN/GRAY & GRAY/BLACK PHYLLITES Poor to moderately foliated intercalated meta-sedimentary beds 1cm to 1 meter thick. Gradational contacts, some relict bedding and minor graphitic argillitic horizons. Abundant crenulation cleavage in gray phyllites. Minor silicification and quartz stringers. Green phyllite may represent tuffaccous andesite. Disseminated pyrite up to 1% throughout.											2	2	1
		- A 30cm bed with up to 5% pyrite at 34.0m Bedding Core Angles:											2	2	3
		C.A. M C.A. M 73° 28.0 75° 34.0													

DIAMOND DRILL RECORD

Hole No. K89-2 Sheet 3 of 5

Interv	al (Meter)								Assays	;				Alter	ation
From	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	Q	C S ·	GPAM
			Number	Interval (m)	Width	Rec'd	ppm	ppm	ppm	ppb	oz/t	oz/t			
		Foliation Core Angles:													
		C.A. M C.A. M C.A. M 65° 27.6 60° 32.5 60° 36.5													
36.85	38.95	GRAPHITC BLACK ARGILLITE Schistose with minor gray, black phyllite as 10cm intercalations in a massive graphitic black argillite bed. Some minor quartz and quartz carb sweats & stringers throughout. – Nil pyrite. Phyllite sections display a good strong crenulation cleavage.											1	1	
38.95 (49.0	112.78 51.06)	INTERCALATED GRAPHITIC GRAY/BLACK PHYLLITE AND GRAPHITIC BLACK ARGILLITE Minor argillite bands are from 10cm to 1.0m thick quartz/carbonate stringers and sweats 1 to 5% throughout. Minor zones of barren drusy milky white quartz and silicification with disseminated cubic pyrite to 1%. Argillite bed with quartz stockwork and 10cm veins with traces to 2% disseminated pyrite.											1 :	2	1 1
		- Silicification and quartz vein and stringer zone; Tr-2%	469523	47.9-49.0	1 .1m	1.1	79	34	< 0.2	220			4	4	2 1
		disseminated pyrite. - Silicification and quartz vein and stringer zone; Tr-1% pyrite. Drusy quartz with siderite (buff yellow iron carb?) cystals along outer edges of quartz stringers in contact with graphitic host rock. Abundant sigmoidal crenulation cleavage throughout phyllites.	469524	49.0-50.00	1.0m	1.0	49	62	0.2	50			4	3	2 1
(65.25	65.5)	Clay gouge and quartz bx frags in graphitic argillite.													
∈717	77.0)	Silicification and quartz bx, stringers in graphitic argillite.													
		- A 25cm quartz vein and stringers and trace pyrite in graphitic argillite.	469525	71.7-73.0	1.3m	1.3	55	74	< 0.2	20					

-

DIAMOND DRILL RECORD

Hole No. K89-2 Sheet 4 of 5

Interval (Meter)								Assays					Altera	tion
From To	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	Q	c s c	PAM
		Number	Interval (m)	Width	Rec'd	ppm	ppm	ppm	ррь	oz/t	oz/t			
	- Traces pyrite and resinous red-brown sphalerite disseminated in a 20cm Quartz vein at 73.1m and stringers in graphitic arcillite.	469526	73.0-74.0	1.0m	1.0	62	642	< 0.2	40					
	- Quartz bx and stringers and silicification in graphitic argillite.	469527	74.0-75.5	1.5m	1.5	54	74	< 0.2	55					
	- Quartz stringers and silicification in graphitic argillite.	469528	75.5-77.0	1.5m	1.5	63	64	< 0.2	20					
(83.25 85.4)	Graphitic black argillite with minor quartz stringers													
	 About 1-5% Quartz stringers and silicification in graphitic black argillite. Quartz breccia at 87.5m with disseminated pyrite associated with edges of argillite fragments. At 89.5m and 109.6m there are two foliations: 1) Bedding foliation with 60° C.A. 2) crenulation fracture cleavage with 80° C.A. 	469529	87.0-88.5	1.5m	1.5	54	60	< 0.2	15			3	3	1
(105.7 107.7)	- Foliated tectonic breccia consisting of broken quartz fragments and stringers in a graphitic black argillite (with traces to 1% disseminated pyrite in matrix). Possibly a tuff breccia but doubtful. Stringers and fragments have a 65° foliation core angle.	469530	105.7-107.7	2.0m	20	27	64	< 0.2	35			5	5	1
	(108.7m) minor large patches of drusy milky white quartz and minor stringers. Not sampled.													
(112.4 112.78)	Foliated argillic tectonic breccia as above with traces disseminated pyrite. Not sampled.													
	Possible Bedding Contact Core Angles:													
	C.A. M C.A. M C.A. M 65° 60.5 42° 69.5 60° 89.9 60° 67.3 60° 80.4 65° 107.7 55° 110.5													

DIAMOND DRILL RECORD

Hole No. K89-2 Sheet 5 of 5

-

Interval (Meter)	;)		Assays Alteration
From To	Description	Sample Number Interval (m) Width Rec'd	CrZnAgAuAgAuQCSGPAppmppmppmppboz/toz/toz/t
	Foliation Core Angles:		
	C.A. M. C.A. M. C.A. M. C.A. M 70° 40.2 65° 66.0 70° 72.6 50° 92.8 60° 103.1 85° 42.3 75° 68.0 65° 78.0 70° 97.0 65° 107.0 75° 47.0 70° 69.5 66° 80.4 58° 102.5 68° 112.7		
	1 to 5cm quartz veins at: 81.2m, 82.6m, 84.2m, 87.9m, 92.0m		
112.78m	END OF HOLE Correct acid test at 112.78m = -41.5°		

KELORO RESOURCES INC. DIAMOND DRILL RECORD **Revelstoke Project**

Hole Dip and Azimuth Tests				Alteration Code	Alteration scale
Meters <u>Corrected</u> Dip Azimuth 112.78m -45° A.T.	Azimuth	Claim	Date Begun Oct. 25 1989 Date Complete Oct. 27 1989 Logged by M. Jerema Core Stored At Beaton Cabin	Q free quartz C calcite S silicification G clay gouge P pyrite A ankerite (iron carbonate) M green mica	none 0 none weak 1 trace to 1% mild 2 1 to 3% moderate 3 3 to 15% strong 4 15 to 30% intense 5 > 30%

Interva	al (Meter)								Assays					Alte	ration	
From	То	Description		Sample		····	Cr	Zn	Ag	Au	Ag	Au	Q	C S	GP	AM
			Number	Interval (m)	Width	Rec'd	ppm	ppm	ррт	ррЬ	oz/t	oz/t				
0.0	4.27	CASING/OVERBURDEN														
4.27	13.0	GRAPHITIC BLACK ARGILLITE Gradational lower contact to gray black phyllite, Abundant quartz stringers and sweats along foliation plains throughout. Minor silicification and veining. Siderite? Buff yellow iron carbonate crystals and disseminated pyrite associated with veinlet contacts.											3	2	1	
7.5	8.5	 Approximately .80m quartz vein with argillite fragments inclusions with 1-3% disseminated cubic pyrite and siderite. *This vein may be the west side of the Stockholm vein system intersected at depth directly below this point. The Stockholm Vein may split higher up (see drill long section). (6.4 to 6.7m) 2.4cm quartz veinlets and carbonate and pyrite. (11.0 to 11.4m) minor quartz vein and silicification. Foliation core angle of 55° at 5.9m. 	469531	7.5 – 8.5	1.0m	1.0	80	124	0.2	520			5	1	1	
13.0	58.4	INTERCALATED GRAY BLACK AND GREEN GRAY PHYLLITE AND GRAPHITIC BLACK ARGILLITE Moderately to well foliated gray black phyllite with numerous intercalated bands of peagreen to green gray phyllite (possibly andesitic tuffs) 10-30cm thick. Partially silicified and with gradational contacts. Also intercalated are minor .10 to 1.0m beds of rhythmically banded argillite. Unit is variably silicous throughout.											2	1 2	1	

Hole No. K89-3 Sheet 1 of 3

-

DIAMOND DRILL RECORD

Hole No. K89-3 Sheet 2 of 3

Interval (Meter)								Assays					Alte	ration	
from To	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	Q	C S	GP	AM
	1cm quartz stringers and pyrite and Bx in 15cm argillite band at 17.9m								<u></u>	4. <u></u>					
	 – 10cm quartz/carbonate vein and 30cm of quartz breccia. A barren milky white 10cm quartz vein at 35.0m. 	469532	19.5-20.0	0.5m		67	60	0.2	25			5	25	1	
(44.5 51.5)	SILICIFIED QUARTZ STRINGER ZONE														
	 Quartz vein and stringer zone (45.1 to 45.5m = q.v.). Quartz vein and stringer zone and bx and silica in graphitic argillite. 	469533 469534	44.0- 45.5 45.5- 47.0	1.5m 1.5m		95 99	94 52	< 0.2 < 0.2	5 < 5			4 4	3 3	1 1	
	 - 0.5m quartz vein and trace pyrite in silica green phyllite. Minor quartz vein and silicification at (57.6 to 58.0m) Foliation Core Angles: 	469535	50.5-51.5	1.0m		95	60	< 0.2	<5			5	3	1	
	C.A. M. C.A. M. C.A. M. C.A. M. 65° 13.5 85° 19.5 80° 29.5 80° 35.4 85° 48.6 65° 16.5 85° 24.0 75° 31.5 80° 43.0														
58.4 112.5	INTERCALATED RHYTHMIC GRAPHITIC BLACK ARGILLITE, GRAY BLACK AND GREEN GRAY											3	3	1	
	Argillite bands contain much quartz, quartz-carbonate stringers and quartz sweats subparallel to foliation with traces disseminated pyrite in the quartz stringers and host . Gray black phyllite contains much crenulation cleavage and folding. Beds are 10 to 30cm wide. Green phyllite occurs as 2-10cm bands, is variably silicous and is intensely folded and fragmented due to crenulation cleavage. (63.4-64.9m) Quartz breccia fragments in argillite. Quartz stringers have been boundinaged,folded and deformed into segments and rotated in the incompetent argillic matrix. Bedding core angle of 85° at 59.2m and 55° at 82.0m											3	1		
(71.0 94.0)	(Sub unit?) Abundant quartz stringers, minor veins, silicification and trace disseminated pyrite throughout.											3	3	1	

DIAMOND DRILL RECORD

Hole No. K89-3 Sheet 3 of 3

.

Interval (Meter)								Assays	5				Altera	tion
From To	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	Q	c s c	PAM
	-	Number	Interval (m)	Width	Rec'd	ррш	ppm	ppm	ppb	oz/t	oz/t		·····	
	- Silicified quartz stringer zone and trace pyrite.	469537	92.3-93.9	1.6m	1.6	63	86	< 0.2	25			4	3	1
	- Silicified quartz stringer - bx zone and disseminated pyrite.	469538	93.9 95.5	1.6m	1.6	63	2,780	< 0.2	20			4	4	2
	(95.5 to 108.3m) Numerous quartz carbonate stringers along foliations; some boudinage and brecciation of quartz stingers.													
	 A 15cm quartz vein (with a 45° C.A. to upper contact at 108.0m) and quartz stringers, minor silicification and trace pyrite. Foliation Core Angles: 	469539	108.3-109.7	1.5m	1.5	79	66	< 0.2	20			5	2	1
	C.A. M. C.A. M. C.A. M. C.A. M. 70° 62.0 58° 73.5 75° 85.0 75° 91.0 60° 107.0 60° 71.0 65° 79.5 75° 87.5 85° 99.0													
112.5 112.78	GRAY BLACK PHYLLITE Intense crenulation and boudinaged quartz stingers.													
112.78m	END OF HOLE Corrected acid test at 112.78m = -45° A.T. = (stump test?).													

DIAMOND DRILL RECORD

Hole No. K89-3 Sheet 3 of 3

.

Interval (M	Acter)							_	Assays	;				Altera	ition
From 7	Го	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	QC	c s c	PAM
			Number	Interval (m)	Width	Rec'd	ppm	ppm	ppm	ppb	oz/t	oz/t			
		- Silicified quartz stringer zone and trace pyrite.	469537	92.3-93.9	1.6m	1.6	63	86	< 0.2	25			4	3	1
		- Silicified quartz stringer - bx zone and disseminated pyrite.	469538	93.9-95.5	1.6m	1.6	63	2,780	< 0.2	20			4	4	2
		(95.5 to 108.3m) Numerous quartz carbonate stringers along foliations; some boudinage and brecciation of quartz stingers.													
		 A 15cm quartz vein (with a 45° C.A. to upper contact at 108.0m) and quartz stringers, minor silicification and trace pyrite. Foliation Core Angles: 	469539	108.3-109.7	1.5m	1.5	79	66	< 0.2	20			5	2	1
		C.A. M. C.A. M. C.A. M. C.A. M. 70° 62.0 58° 73.5 75° 85.0 75° 91.0 60° 107.0 60° 71.0 65° 79.5 75° 87.5 85° 99.0													
112.5 112.	.78	GRAY BLACK PHYLLITE Intense crenulation and boudinaged quartz stingers.													
112.78m		END OF HOLE Corrected acid test at 112.78m = -45° A.T. = (stump test?).													

DIAMOND DRILL RECORD

Hole No. K89-4 Sheet 1 of 6

.

Hole Meters 112.78n	Dip and Az Con Dip 1 -41° A.T	imuth Tests rected Azimuth	Collar Dip	Location Claim Grid Co–ord . Core Size		Stockhol	m C.G. Strato 1+75S BQ	Drill Date Date Logg Core	ed by Begun . Complete ed by Stored A	Canes Oct. Oct. M tBeat	t Drilling 27, 1989 30, 1989 I. Jerema on Cabin	Alteration Q free C calcii S silici G clay P pyrit A anke carbo M green	on Code quartz te fication gouge e rite (iron onate) n mica	Altera none weak mild modera strong intense	tion sc 0 r 1 t 2 1 te 3 3 5	cale none trace to 1% 1 to 3% 3 to 15% 15 to 30% > 30%
Interva	l (Meter)									Assay	'S			Alt	eratio	n
From	То		Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	QCS	G I	РАМ
0.0	3.05	CASING OVER INTERCALATE GRAY PHYLLI (3.05 to 5.47m) A fragments and ab Massive to rhythm foliated. Abundant quartz planes and minor Minor graphite co 1.0m) gray phyllit Phyllites are varia texture to core. There is much cro mm-sized quartz Traces of dissemi veinlets.	ED BLACK RHYTHMIC ARGILLITE AND TE rgilite rubble with rusty drusy quartz out 55% core loss. nically layered argillite, moderate to well carbonate stringers and veinlets in foliation stockwork. omponent to argillite. No graphite in (.05 to e bands as in holes DDHS K89-1 to 3. bly silicous and have same gritty or sandy enulation folding of thin phyllite laminae and and quartz/carbonate stringers. nated pyrite and some 2mm massive pyrite													

Foliation core angles:

C.A. M C.A. M 50° 7.3 50° 14. 60° 11.0 55° 17.0

 10cm milky white quartz vein and silicification and 	469540	11.6-13.1	1.5m	1.5	58	40	< 0.2	20	4 3 3
quartz/carbonate stringers.									

DIAMOND DRILL RECORD

Hole No. K89-4 Sheet 2 of 6

.

Interv	al (Meter)							_	Assays	5			Alteration
From	То	Description	Number	Sample Intervai (m)	Width	Rec'd	Cr	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	QCSGPAM
19.20	48.6	INTERCALATED GRAY PHYLLITE, GREEN GRAY PHYLLITE AND BLACK ARGILLITE Quite silicous phyllite with minor bands and laminae of argillite. Dark gray black clay replaces graphite in argillite. Abundant quartz/carbonate stringers to 15% parallel to foliation and up to 15% Quartz stringers as stockwork. Unit is moderately well foliated with much crenulation cleavage. Trace discominent a put											3 3 3
(23.8	25.0)	Fault and clay gouge with 66% core loss.											4
(27.0	33.8)	BLACK ARGILLITE SECTION. Mostly broken core Core Loss Between Core Markers											
(27.0 3;		(26.82-28.35m) 40% (28.35-29.87m) 66% (29.87-31.39m) 30% (34.44-35.97m) 50% (35.97-37.49m) 50% (37.49-39.01m) 48% (42.06-43.59m) 33%	Significant abundant f	core loss bet foliation clear	ween ma vage resu	arker block Ilting in m	cs - No fault uch of the co	structure! ore breakin	Just poor 1g apart an	recovery o d washing	due to a hi g away !	gher clay	e content to core and
		- Quartz and quartz/carbonate stringers and disseminated	469541	34.1-35.6	1.5m	1.13	64	44	< 0.2	<5			
		 Quartz and quartz/carbonate veins and stringers in broken green gray obvilite 	469542	42.1-43.6	1.5m	1.05	94	58	< 0.2	15			5 2 3
		- Quartz and quartz/carbonate veinlets and stringers in broken gray phyllite.	469543	43.6-45.1	1.5m	0.92	72	52	< 0.2	< 5			4 2 3
		- Quartz and quartz/carbonate veinlets and stringers in broken gray phyllite.	469544	45.1-46.6	1.5m	0.75	120	62	< 0.2	20			4 2 3
		- Quartz and quartz/carbonate stringers and silica in gray phyllite rubble.	469545	46.6-48.6	2.0m	1.01	77	44	< 0.2	45			4 2 3

DIAMOND DRILL RECORD

Hole No. K89-4 Sheet 3 of 6

Interval	(Meter)								Assays	5			Alterat	ion
From	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	QCSG	РАМ
		······································	Number	Interval (m)	Width	Rec'd	ppm	ppm	ppm	ррь	oz/t	oz/t		
		Foliation core angle of 73° with a crenulation cleavage of 45° at 48.0m in gray phyllite. Foliation core angles:												
		C.A. M C.A. M C.A. M 50° 21.0 60° 33.2 60° 41.0 45° 25.8 60° 38.0 70° 48.0												
48.6	51.3	GREEN PHYLLITE (Andesite Tuff) Moderately foliated andesitic tuffaceous unit. Possibly good marker horizon for Stockholm Vein. Lower bedding contact of 83° core angle. Foliation core angle of 73° at 50.0m. 100% recovery. Hand sample taken at 49.5m. Trace disseminated cubic pyrite only.											1 1	1
51.3	54.5	INTERCALATED RHYTHMIC BLACK ARGILLITE AND GRAY BLACK PHYLLITE Argillite and phyllite are much more clay rich with a very minor graphitic component. Argillite has a contorted rhythmic layering due to foliation cleavage. Foliation contains minor quartz/carbonate stringers throughout. Lower bedding contact angle of 55°. Foliation has 75° C.A. at 51.8m. Minor free carbonate and minor blebs of pyrite only. – Silicous section with minor quartz as veinlets, stringers + bx.	469546	54.0-54.75	0.75m	0.75	84	68	< 0.2	20			2 1 2	1
		. , ,												
54.5	70.58	INTERCALATED GRAY PHYLLITE AND GRAY, BLACK PHYLLITE Some minor 5 to 10cm bands of black argillite with traces of pyrite. Well foliated with abundant crenulation cleavage giving the appearance of fingerprints all over the core											2 1 2	I

DIAMOND DRILL RECORD

.

Hole No. K89-4 Sheet 4 of 6

Interva	al (Meter)								Assays				Alteration	n
From	То	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn	Ag ppm	Au ppb	Ag oz/t	Au oz/t	QCSGP	AM
		Quartz and quartz/carbonate stringers and stockwork evenly spread throughout. Trace to 1% disseminated pyrite and minor pyrite blebs throughout. Minor barren milky white quartz veins with yellow iron carbonate crystals (siderite?) from 1-5cm in size at 56.2m, 61.6m, 65.2m, 66.7m.												
(63.4	65.9)	Fault? Gouge and gray phyllite rubble and quartz fragments with up to 66% core loss. (67.15-67.97m)Broken phyllite and minor gouge; 53% core loss. (67.97-70.58m)Core broken into 1 to 5cm pieces; 20%C.L. Various foliation core angles from 55° to 70°												
70.58 (70.58	70.95 72.0)	GRAPHITIC BLACK ARGILLITE (Hanging Wall Contact) Argillite unit in contact with Stockholm vein system. Unit has been replaced by the vein and a small portion (70.58-70.95m) contains the contact with much quartz stockwork. Unit contains, outer contact stockwork and a portion of the vein to 72.0m. There are some silicified fragments of gray phyllite and argillite in the vein material that also are partially replaced by siderite (yellow iron carbonate) crystals. Trace to 1% disseminated pyrite. Lower contact (east side of Stockholm Vein) = 45° C.A. suggesting that the vein is near vertical.											414 1	
70.95	77.45	- Hanging (east) wall contact, quartz stockwork and trace pyrite. STOCKHOLM QUARTZ VEIN/STOCKWORK ZONE Rather barren drusy milky white quartz with angular (.5to5cm) fragments of argillite and gray phyllite (10%) throughout with traces to 1% disseminated cubic pyrite and minor blebs. Fragments are partially replaced by yellow iron carbonate crystals.	469547	70.58-70.9	5 0.37m	0.37	71	46	< 0.2	25			4141	

DIAMOND DRILL RECORD

.

Hole No. K89-4 Sheet 5 of 6

Interv	al (Meter)								Assays	; ;				Alter	ition
From	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	Q	c s c	, PAM
			Number	Interval (m)	Width	Rec'd	ppm	ppm	ppm	ppb	oz/t	oz/t			
		Both upper and lower contacts have 45° core angles suggesting that the vein is vertical. Exclusively argillite fragments to (72.0m). Largely gray phyllite fragments from (72.0 to 77.45m).													
(70.95	73.6)	Quartz vein and fragments = Hanging wall (east vein) 100% core recovery													
(73.6	75.3)	Either a very large fragment of gray phyllite or just quartz stockwork in phyllite host separating two parallel vein structures. Pyrite to 1% with some blebs and large cubic crystals. 100% core recovery													
(75.3	77.45)	Quartz vein and fragments = Footwall (west vein)													
		Argillite													
		 Milky white drusy quartz and yellow siderite crystals and pyrite blebs. 	469548	70.95-71.6	0.65m	0.65	119	22	< 0.2	375			5	5	1 2
		– Milky white drusy quartz and yellow siderite crystal and pyrite blebs. Gray Phyllite	469549	71.6-72.6	1.0m	1.0	163	18	< 0.2	95			5	5	12
		 Massive milky white drusy quartz and phyllite fragments and pyrite and siderite. 	459550	72.6-73.6	1,0m	1.0	225	18	< 0.2	45			5	5	1 2
		- Quartz stockwork in gray phyllite and traces pyrite.	469551	73.6-74.6	1.0m	1.0	132	30	< 0.2	60			4	4	1 2
		- Quartz stockwork in gray phyllite and traces pyrite.	469552	74.6-75.6	1.0m	1.0	141	40	< 0.2	125			4	4	1 2
		 Massive drusy milky white quartz vein and pyrite. 	469553	75.6-76.6	1.0m	1.0	145	20	< 0.2	105			5	5	1 2
		- Massive quartz and pyrite and gray phyllite fragments.	469554	76.6-77.45	0.85m	0.85	183	24	< 0.2	915			5	5	1 2
77.45	80.5	GRAY PHYLLITE With minor black argillite bands and laminae Unit variably silicous; Nil pyrite Hand sample taken from 80.0m. Gritty core.											2	2	1
		 Silicified phyllite footwall to Stockholm Vein, nil pyrite; minor quartz stringers. 	469555	77.45-78.6-	1.19m	1.19	60	52	< 0.2	105			3	3	2

DIAMOND DRILL RECORD

Hole No. K89-4 Sheet 6 of 6

-

Interval (Meter)								Assays		_			Alter	ation	
From To	Description	Number	Sample	11/:4-1		Cr	Zn	Ag	Au	Ag	Au oz/t	Q	cso	3 P	AM
		Number					ррш	ррш	ppo						
80.5 112.78	INTERCALATED GRAY PHYLLITE. GREEN GRAY PHYLLITE AND BLACK ARGILLITE Bands are mm to 2 meters thick well foliated and contorted. Thin lamellae and quartz stringers boundinaged into segments and fragments. Traces disseminated pyrite throughout. (84.6 to 87.6m)silicified and 25% quartz as sweats and stringers. Beds have some core angles as foliation. Green phyllites range from yellow to pea-green in colour and probably represent andesite tuff layers.											2	2	1	
(80.5 81.1)	Black argillite (tetonic) breccia band. Contains boudinaged and rotated quartz/carbonate stringers														
	- Silicified green adesitic tuff (phyllite) band with minor quartz stringers and 1% disseminated cubic pyrite.	469556	86.0-87.0	1.0m	1.0	183	100	< 0.2	<5			3	3	1	1
	- Tetrahedrite + galena specks at 106.9m in a 5cm quartz stringer in preasureen phyllite (andesitic tuff bed)	469557	106.4-107.5	1.1m	-	91	124	< 0.2	<5			2	3	1	
	 Silicous contorted rhythmic black argillite with 1-3% disseminated pyrite. 	469558	107.5-108.5	1.0m	-	25	72	< 0.2	20			2	1	2	
	- Rhythmic black argillite with 1-3% pyrite. as above. Foliation Core Angles:	469559	108.5-109.5	1.0m	-	34	84	< 0.2	15			2	1	2	
	C.A. M C.A. M 50° 84.5 45° 91.2 = BEDDING 55° 88.2 72° 94.0 = CRENULATION CLEAVAGE														
112.78m	END OF HOLE Corrected acid test for $112.78 \text{m} = -41^{\circ}$.														

DIAMOND DRILL RECORD

Hole No. K89-5 Sheet 1 of 4

.

Г

Hole Din and Azimuth Tests				Alteration Code	Alteration scale
Meters <u>Corrected</u> Dip Azimuth	Collar Dip	Location	Drilled by Canex Drilling Date Begun Oct. 30, 1989 Date Complete Nov. 1, 1989 Logged by M. Jerema	Q free quartz C calcite S silicification G clay gouge	none 0 none weak 1 trace to 1% mild 2 1 to 3% moderate 3 3 to 15%
	Horiz. Length 82.5m	Core Size	Core Stored At Beaton Cabin	P pyrite A ankerite (iron carbonate) M green mica	strong 4 15 to 30% intense 5 > 30%

Interva	l (Meter)								Assays					Al	erati	on
From	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	Q	C S	G	PAM
			Number	Interval (m)	Width	Rec'd	ppm	ppm	ррш	ррб	oz/t	oz/t				
0.0	2.13	CASING/OVERBURDEN														
2.13	8.90	GREEN GRAY PHYLLITE Pea-green to grayish green colour; unit probably represents an andesitic tuffaceous unit. Moderately foliated with a 60° C.A. at 6.5m Lower contact with argillite has a 55° C.A. @ 8.9m. Good quartz/carbonate stringers and traces disseminated pyrite. Variably silicous. Good calcite present.											2	2 2		1
8.90	33.2	INTERCALATED BLACK RHYTHMIC ARGILLITE, GRAY PHYLLITE AND GRAY BLACK PHYLLITE Well foliated with gradational bedding contacts. Much boundinage quartz and quartz/carbonate stringers in agillites. Gradational lower contact. Good crennulation cleavage. Minor band of pea-green phyllite as 24.5m.											2	12		1
		– Quartz stringers, bx and silica in black argillite. Traces disseminated pyrite. Nil graphite; more clay rich Silicous sections at 24.3m, 25.2m, 28.6m, 31.0m and 32.2m Foliation Core Angles:	469560	10.06-10.	56 0.5m	0.5	58	50	< 0.2	10			4	3		1
		C.A. M. C.A. M. C.A. M. C.A. M. 50° 9.5 55° 18.0 65° 24.5 85° 32.5 70° 12.0 35° 21.0 85° 29.0														

DIAMOND DRILL RECORD

Hole No. K89-5 Sheet 2 of 4

.

Interv	al (Meter)								Assay	s				Alter	ation
From	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	QC	sc	БРАМ
		50° C.A. to crenulation cleavage and 76° C.A. to laminae at 16.5m.	Number	Interval (m)	width	Kec'd	ррш	ppm	ppm	рро	021	02/1			
33.2	43.6	INTERCALATED GRAY PHYLLITE AND MINOR BLACK ARGILLITE Gritty textured gray phyllite with minor .01 to 0.5m bands of black argillite; moderate to well foliated. Some contorted/boudinaged quartz and quartz carbonate stringers along foliation planes. Broken core and core loss at the following intervals: (39.01 to 40.54m) has 74% core loss (40.54 to 42.06m) has 48% core loss (42.06 to 43.59m) has 45% core loss Foliation core angle of 75° at 35.0m.													
43.6	71.0	BLACK ARGILLITE TECTONIC BRECCIA Between 30 to 60% fragments consisting of boudinaged to strongly folded or contorted bedded gray phyllite and quartz carbonated stringers and veinlets in a matrix of 40 to 70% graphitic black argillite. Very minor specks of cubic pyrite throughout. Fragments range in size from 1mm to 6cm, and are angular to subangular. Average fragments are between .5 to 2cm. Some fragments appear to have been thin 2-3mm lamellae folded and boudinaged into fragments. Buff to yellow iron carbonate (siderite?) crystals have replaced both quartz/carbonate and phyllite fragments. Core Loss Between Core Blocks											2	1	1 1
		(43.59 to 45.11m) 33% core loss (45.11 to 46.63m) 21% core loss (46.63 to 48.16m) 55% core loss (48.16 to 49.68m) 26% core loss													
(44.45	47.4)	Fault/Gouge; Black clay gouge with quartz fragments and rubbly broken core. Possibly this broken clay rich zone may represent the VLF-EM Anomaly C.											2		

DIAMOND DRILL RECORD

· · ·

Hole No. K89-5 Sheet 3 of 4

Interval (Meter)								Assays					Al	terati	on
From	То	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	Q	C S	G	PAM
		– Black graphitic clay fault gouge and quartz fragments. Trace of some baby blue crusty secondary mineral. About a 52% core loss.	469561	44.45-45.2	0.75m	I	54	284	0.2	225			2		5	
		 An 18cm quartz vein at 61.3m and 19cm quartz vein at 62.0m and 25cm quartz vein at 62.7m. Some silicification. Foliation unmeasurable, highly variable. Gradational contact to a less altered or folded version of graphitic black argillite with thin laminae of gray metasediment. 	469562	61.3-62.9	1.9m		83	58	< 0.2	65			4	1	l	
71.0 84	4.9	BLACK RHYTHMIC ARGILLITE Graphitic black argillite with minor thin laminae and bands of gray phyllite that are some what boudinaged or folded. Argillite unit here differs in amount of fragments to matrix: 80% to 95% matrix 5% to 20% quartz and phyllite laminae fragments, otherwise it is the same unit as in (43.6-71.0m) Minor quartz carbonated vein (6cm) at 72.4m Minor quartz veins and stringers at 74.0, 80.2 and 82.7m and minor quartz stringers throughout. (75.59-77.11m) Broken rubbly 56% core loss. Foliation Core Angles:											1			
84.9 94	4.5	C.A. M C.A. M C.A. M 80° 77.5 60° 80.2 85° 84.0 GRAY PHYLLITE Minor intercalated bands and laminae of black argillite with gradational contacts. Much crenulation folding/cleavage of thin laminae otherwise moderately foliated. Traces very fine disseminated cubic pyrite.											2	2		12

DIAMOND DRILL RECORD

Hole No. K89-5 Sheet 4 of 4

Interval	(Meter)								Assays					Altera	tion
From	То	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	QQ	C S G	РАМ
(88.3 9	91.1)	Thick bed of argillite with quartz veinlets, quartz/carbonate stringers, silicification and buff yellow iron carbonate Foliation core angles of 50° at 92.5m and 65° at 93.7m.													
		- Silicification, quartz veining and quartz/carbonate stringers and siderite crystals.	469563	88.35-89.65	i 1.3m	1.3	123	38	< 0.2	40			4	4	2
		- Silicification, quartz veins and quartz carbonate stringers and	469564	91.3-92.0	0.7m	0.7	80	36	< 0.2	<5			4	4	2
94.5 1	12.78	INTERCALATED GRAY BLACK PHYLLITE. BLACK ARGILLITE AND GRAY PHYLLITE Start of abundant quartz/carbonate alteration. Carbonate is pervasive in all bands of phyllite and argillite. However quartz/carbonate stringers are largely confined to argillite and are somewhat contorted or boundaged along in cleavage planes with 75° to 85° core angles. Thin lamellae in phyllites are sigmoidally folded as a result of abundant crenulation cleavage. Large patches of < 50% quartz/carbonate at 95.8m, 96.5m, 99.0m. 101.6m, 102.2m and 103.7m. Bedding plane core angle of 55° at 98.0m.											3 3	3 1	1
(103.0 1	06.0)	Large single band of gray phyllite. Foliation Core Angles:													
		C.A M C.A. M 85° 98.0 80° 108.2 70° 101.0 60° 109.3													
112.78m		END OF HOLE Corrected acid test at 112.78m = -40.5°													

.

DIAMOND DRILL RECORD

Hole No. K89-6 Sheet 1 of 4

-

				Alteration Code	Alteration scale
Meters <u>Corrected</u> Dip Azimuth	Collar Dip 45° Azimuth 225° Total Depth	Location	Drilled by Canex Drilling Date Begun Nov. 1, 1989 Date Complete Nov. 4, 1989	Q free quartz C calcite S silicification	none 0 none weak 1 trace to 1% mild 2 1 to 3%
75.59m -42° A.T.	Horiz. Length	$Co-ord \dots Equation E$	Core Stored At Beaton Cabin	G clay gouge P pyrite A ankerite (iron carbonate) M green mica	moderate 3 3 to 15% strong 4 15 to 30% intense 5 > 30%

Interv	al (Meter)								Assays					Alt	eratio	n
From	То	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	Q	C S	G	РАМ
0.0	3.35	CASING / OVERBURDEN														
3.35	7.40	Broken rubbly core (81% core loss). Limonitically stained regolith of green phyllite; as belon.														
7.4	39.45	MEDIUM GREEN PHYLLITE (Massive Andesite Tuff) Jowett Formation andesitic volcanics. Massive, fine grained, medium green, unbroken tuffaceous andesite sequence; variably siliceous. Foliation is parallel to thin lamellae of tuff. Quartz and quartz/carbonate stringers throughout appear highly folded contorted and sometimes boudinaged.											2	22		1 1
(8.9	23.8)	5% TO 20% quartz and quartz/carbonate as minor veinlets and stringers and silicification with good traces of yellow iron carbonate crystals (siderite?) and minute traces of very fine grained disseminated pyrite. Some traces of 1cm angular ghost fragments (lapilli?) at 19.5m			·								3	2 3		1 1
		– 20% quartz and quartz carbonate stringers and up to 20% silicification. Plus good traces yellow iron carbonate (siderite).	469565	8.9-10.1	1.0m	1.0	55	68	< 0.2	<5			4	23		1 1

DIAMOND DRILL RECORD

Hole No. K89-6 Sheet 2 of 4

.

Interval (Mete	r)							Assays				Alteration
From To	Description	Number	Sample Interval (m)	Width	Rec'd	Cr ppm	Zn ppm	Ag ppm	Au ppb	Ag oz/t	Au oz/t	QCSGPAM
	(10.1-12.9m) 5-20% quartz carbonate and silicification. Nil iron carbonate. – Minor traces of galena and brown sphalerite in quartz/carbonate stringers at 12.9m (58°C.A.), 13.1m (65°C.A.) and 13.2m (60°C.A.)	469566	12.6-13.4	0.8m	0.8	41	628	< 0.2	<5			· 3 2 3 1 1 1 1
(23.8 39.45)	Moderately well foliated with traces to 5% quartz/carbonate stringers with little to no silicification or quartz veining. Pervasive carbonate alteration throughout. Thinly laminated with good preservation of primary structures showing a tuffaceous origin. Quartz/carbonate stringers follow foliation planes and form "patches". The stringers show up beds and have a preference for coarser tuff, leaving alone the finer or "muddy" chlorite tuffs. Hand sample taken at 28.0m.											
	Foliation Core Angles: Average C.A. = 51°											
	C.A. M C.A. M C.A. M C.A. M 40° 9.5 49° 16.5 50° 23.0 70° 31.0 50° 38.0 50° 12.5 45° 18.9 50° 25.5 50° 32.0 50° 39.0 53° 18.9 50° 21.0 55° °27.5 60° 34.5 40° 39.45 Lower contact angle of 40° between Jowett and Broadview Formations											
39.45 48.16	INTERCALATED CALCAREOUS GRAY BLACK PHYLLITE AND BLACK ARGILLITE. (BROADVIEW FORMATION) Gradational contacts between intercalated beds ranging from .01 to 1 metre in size Pervasive carbonate and traces fine disseminated pyrite throughout. Abundant .01 to .1 metre boundaged quartz/carbonate stringers follow along foliation planes. Some minor barren 10cm quartz veins. Foliation Core Angles:			·								331 1
	C.A. M C.A. M 45° 39.9 60° 41.5 55° 40.4 75° 45.0											

DIAMOND DRILL RECORD

· ·

Hole No. K89-6 Sheet 3 of 4

Interval (Meter)							Assays					Alteration			
From	То	Description		Sample			Cr	Zn	Ag	Au	Ag	Au	QC	: s	GPAM
			Number	Interval (m)	Width	Rec'd	ррт	ppm	ppm	ppb	oz/t	oz/t			
		(42.6m) Minor black graphitic clay (fault?) gouge.													
(42.7	46.63)	Siliceous section with quartz veining and quartz/carbonate stringers.													
		– Minor quartz veins at 43.0m (15cm) and 43.5m (10cm) Barren milky white veins in rubbly core. Nil pyrite or carbonate.	469567	43.3-45.11	1.81m	.57	95	72	< 0.2	25			4	2	
		- Quartz/carbonate altered gray black phyllite	469568	45.11-46.3	1.19m	1.14	52	56	0.2	20			4 3	3 1	
		- Quartz/carbonate altered gray black phyllite	469569	46.3-48.16	1.86m	1.35	61	58	0.2	10			4 3	3 1	
48.16	49.3	"BARREN" MILKY WHITE QUARTZ VEIN – Drusy milky white quartz vein with 50° C.A. to upper contact From 1-5% iron carbonate crystals around small fragments and outer edges of the vein.	469570	48.16-49.3	1.14m	1.02	210	228	< 0.2	<5			53	\$ 5	2
49.3 (49.3	63.40 57.3)	SILICIFIED QUARTZ STRINGER ZONE Zone is hosted in gray black phyllite:											4	4	1
		 Silicified and quartz stringers and traces to 2% pyrite. No quartz/carbonate. A 20cm milky white quartz vein and iron carbonate at 50.8m 	469571	49.3-51.21	1.91m	1.53	62	52	0.2	<5			5	4	2 1
		- Silicified and quartz stringers and 10cm quartz vein at 51.3m. Trace purite	469572	51.21-52.7	3 1.52m	0.98	85	54	< 0.2	<5			4	4	1
		- 35cm milky white quartz vein at 54.0m. Trace pyrite.	469573	52.73-54.2	5 1.52m	0.89	127	72	< 0.2	<5			51	5	1
		- 25cm milky white quartz vein at 55.7m. Trace pyrite.	469574	54.25-55.78	3 1.53m	1.00	98	30	0.2	<5			51	5	1
		 25cm milky white quartz vein at 55.8m. Trace pyrite. (Roughly 40% core loss between 49.3-57.3m Therefore sample intervals are between core blocks) 	469575	55.78-57.3	1.52m	0.53	107	216	< 0.2	135					
(57.3	3.40)	Zone is hosted in black argillite:													
		- Milky white quartz rubble in black argillite host.	469576	57.3-58.83	1.53m	0.23	233	40	0.2	135			4 1	. 1	1
		- A 20cm quartz vein at 59.1m. Trace 2% pyrite and iron carbonate.	469577	58.63-60.3	5 1.52m	1.10	83	54	< 0.2	35			3 1	3	2
		- Silicified and quartz/carbonate stringers with 70°C.A.'s	469578	60.35-61.8	7 1.52m	1.47	61	64	< 0.2	55			3 1	. 3	2

DIAMOND DRILL RECORD

Hole No. K89-6 Sheet 4 of 4

.

Interval (Meter)								Assays					Alteration				
From	То	Description	Number	Sample	Width	Pecid	Cr	Zn	Ag	Au	Ag oz/t	Au	Q	С	S G	ΡΑΝ	1
		- Silicified and quartz/carbonate stringers. Trace 2% pyrite and iron carbonate. (Due to broken nature of core between 57.3 to 63.40m, sample intervals were taken between core blocks).	469579	61.87-63.40) 1.53m	1.25	71	<u>64</u>	0.6	1160			3	1	3	2	
63.4	72.8	GRAY PHYLLITE With minor intercalated bands of black argillite Minor traces pyrite and trace quartz/caronate only. Argillite band has 80° C.A. at 66.8m. Crenulation cleavage has 85° to 90° C.A.s at 70.5m.											3	1	2	1	
		– Silicification and minor milky white quartz veins and trace pyrite.	469580	63.4-64.92	1.52m	1.26	70	58	< 0.2	50			3	1	2	1	
72.8	75.59	INTERCALATED BLACK ARGILLITE, GRAY PHYLLITE, GRAY BLACK PHYLLITE AND GREEN GRAY PHYLLITE Small bands of phyllite and andestic green phyllite in essentially black rhythmic argillite. Minor quartz and quartz/carbonate stringers. No pyrite. Traces buff yellow iron carbonate crystals in quartz stringers. Foliation core angles of : 80° at 66.8m and 80° at 74.0m											2	1	2		
		– 15% to 20% quartz and quartz/carbonate stringers along foliations	469581	74.7-75.59	0.89m	0.89	111	66	< 0.2	10			4	2	3		
		Between black rhythmic argillite and green andesite sequences. Variably siliceous. No pyrite.															
75.59	m	END OF HOLE Corrected Acid Test at 75.59m = -42°															

APPENDIX III

Contractor's Invoiced Cost Statement

CANEX DRILLING CORP.

November 15, 1989

Keloro Resources Inc. 301 - 543 Granville Street Vancouver, B.C. V6C 1X8

Luuna Nay 30,1990

INVOICE

	TO:	DRILLING CONTRACT RE Revelstoke Property 2093' x \$20.000/foot \$	41,860.00
	MATER	RIAL USED	
	Acid Core BQ Bi Drill Drill 1 Cas Core Core Core	tests: 6 x 5 ft x \$20/ft Boxes 80 x \$7.00 Box lids - one bundle its - 2 @ \$421.26 Ling Polymer - 2 @ \$118.00 Ling Cutwell - 1 @ \$56.00 Ling Shur Flow - 2 @ \$98.00 Sing Shoe - 1 @ \$220.00 Spring - 12 @ \$10.62 Lifter Cases - 6 @ \$8.05 Barrell LIZATION & DEMOBILIZATION Duver to Revelstoke (return)	600.00 660.80 75.04 842.52 236.00 56.00 196.00 127.44 48.30 228.60 6,000.00 V
	Man H	Hours: 80 man hours @ \$32.50 per hour	2,600.00 V
j.d at	TOTAL <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i> <i>Juturnal</i>	<i>Fe</i> <i>march</i> 13/90 <i>ice</i> 04 04 1.44 1.44 1.62 1.62 1.62 1.62 <i>Party Ht thui involue</i> <i>Qarty Ht thui thui involue</i> <i>Qarty Ht thui th</i>	54,245.70 5 <u>3</u> 45 <u>3</u> 5 <u>4</u> 7 <u>9</u> 1 - 86 7 <u>9</u> 1 - 86 Ch. # 0136 Ch. # 0139 245.70 To fue ch. # 0139 Ch. # 0139 Ch. # 0139
~ ~	~ ~ ~ ~ ~ ~		

Suite 17, 7449 Hume Avenue, Delta, B.C., V4G 1C3 Telephone (604) 946-5560 Fax 946-2941 7.8.

,

-

њ *н*

• · > •

. . .

.

•

and a second second

· •••

ч., 12 12

.

.

•