LOG NO:	0627	RD.
ACTION:		
FILE NO:		

PROSPECT

TANGLE CLAIMS

1 - 4

OMINICA MINING DIVISION

BABINE LAKE DISTRICT

NTS MAP 93 L /15 Northeast Corner

DRIFTWOOD CREEK

UTM GRID CO-ORDINATES
OF LEGAL CORNER POSTS

656400 EAST 6089300 NORTH

LATITUDE 54' 56" LONGITUDE 126' 34"

OWNERS

DANIEL ETHIER
BOX 184
SMITHERS B.C.
VOJ 2NO
PH. (604) 847-2814

RALPH KEEFE BOX 5 TELKWA B.C. VOJ 2XO PH. (604) 846-5638

GEOLOGICAL BRANCH
ASSESSMENT REPORT

OUT

TABLE OF CONTENTS

Title page . Table of contents .				1 2		
Location and Access Location Map for B.C. Physiography Property History	•			3 4 5 5		
Topographic Map 1:50,000				6		
Regional and Property Geology				7		
Sample Location Map				8		
Mineralization . Field notes		9,	10,	9 11,	12,	13
Self Potential Survey Graph				14		
Conclusions and Recommendation	ns			15		
Authour's Statement .	•			16		
Statement of Costs .				17		
Appendix A						
Rock Geochem ICP Au				18 19		

LOCATION

The TANGLE CLAIMS are located in west central B.C. in the Omineca Mining Division. Driftwood creek map sheet 93 L / 15 , in the northeast corner of the map . Tanglechain Lake is the key landmark , the claims are southeast of the lake.

ACCESS

By road from the town of Smithers, north along the Babine lake rd. for 52 km. This is the junction for the Granilse rd. and at this point you are on the claims just south (150 m.) and west (150 m.) of the central Initial Posts. Continuing on the Smithers Landing rd. for another 700 metres north there is a side rd. heading east. Take this road which is in good repair for 500 metres. The showing is on the west side of the road.

PHYSIOGRAPHY

The claims are within the Babine Provincial Forest at the elevation of 3,000 feet.

Overburden is less than expected on any of the small hills, usually about 1 metre deep.

A good supply of water and wood exists. The wood is mixed forest of pine, spruce, balsam, hemlock, and poplar, birch, cottonwood. Water supply in the immediate vicinity is not recommended for drinking as it comes from a small swamp that separates the two main shows, however there should be no problem supplying the needs of a drill.

The area has had considerable logging activity in the past as well as presently, and the property and surrounding district is well networked with serviceable roads, most being currently maintained, with a few of the older logging sale access roads requiring a chain saw to clear debris.

Snow cover is between November and April and is normally 3-4 feet deep.

PROPERTY HISTORY

The authour believes the original discovery was made in the 1960's. The oldest claim tags seen were of Paul Kindrat 1967, called the G.K.

REGIONAL SETTING

The Babine Lake District hosts a number of phorphory systems and has proven to be of economic importance in the past. GRANISLE and BELL COPPER are the most prominent mines in the district , located 25 km. to the west of the TANGLE. Approximately 10 km. northeast is the recent discovery called the FIREWEED.

The Fireweed has triggered new interest in this well mineralized area. It is not a phorphory system, but a major shear breccia structure with significant mineralization located in a coarse grained sandstone. Principal commodities are Silver, zinc, lead, copper, with some gold.

PROPERTY SETTING

The TANGLE CLAIMS are situated in an Andesite - Basalt, feldspar porphory, and volcanic breccia systems. It is weakly sheared with intense carbonatization and has local weak silicification and quartz stringers. To the east of the main trench lapilli tuff in a strong fractured shear zone is strongly carbonatized. South of the main trench large zones of volcanic breccia exist, and to the north an andesite basalt agglomerate exists in outcrop.

Areomag survey indicates likely multiphase intrusive at depth, cut by a major NW structure. Rocks indicate island arc setting. Cu, Pb, Zn, Ba, mineralization is a positive indicator of hydrothermal fluids.

				:: ::::::	7		11::::::::	<u> </u>	· • · · · · · · · · · · · · · · · · · ·	A10	ni con con		4	·,
									SCALE	1:3:	This is			
									F) AL	مادهم المالية				
										A12	Perpetare	to the sale		
												45.44	=======================================	
										1				
,	1					: : : : : : : : : : : : : : : : : : :							#######################################	
Pag .														
				i li ii ii i										
20 248		F	2											
4 D 14														
2 400														
													4	<u>الرا</u>
			440											
393N	N												1	ſ
														V
	1													H
2014	,													
angla 44		//	200				TANG	a *:						
3														
								1						
		· · · · · · · · · · · · · · · · · · ·				a -12								i
3			5		7.41	IN THE	metre	mde						
V			1300			MP6 Z	A Ha	in.	25					
		h	, ,	,VE	7	TAN 8	896	766 T	2					
150			V	7		4								
125		· · · · · · · ·		V					5. R					
P& .	ß	, a	,		•	3		376	Lives					
				7										
// · · · · · · · · · · · · · · · · · ·	33	%	Dec	eades .					•	-w/w	DFALL	Zont	Z	
56	- 3	. 1		0	======				6	89	in 1-	7		
11 25				, ,						89 6	60	-609		
		<u> </u>	Y ?		4									
N#		2 T	P		4				•			- EE		- 53
				1	1			•		_ = +	eccia			
SI and	lesite			1			. \$			34	eccia	2002		
11					Ctore	*								
						*								
3.1														
7.7														
	4		*	5.										
61				7.6	RANISL	6								
			1111	:::::::: !			1	:::::: :	:::::::::::::::::::::::::::::::::::::::		:::::::::::::::::::::::::::::::::::::::			
								<u> </u>	<u> </u>		<u></u>		4	
1							74.9							
77466							TANGL	c #2						

pg. 9

MINERALIZATION

Mineralization occurs as chalcopyrite, sphalerite, galena, tetrahedrite, and barite. Silver occurs in the main showing up to 5.4 oz/ton in grab samples. In the feldspar porphory there is up to 1 % chalcopyrite, disseminated and in fractures.

The main trench has been cleared of overburden along side of the road and a quartz vein of 0.6 - 1 metre width is exposed. Blasting to a 1 metre depth has given a cross section of this shear vein. Strike 330' sub-vertical. The strike length is 80 metres. To the east 230 metres the feldspar porphory as seen in the main trench is seen in the outcrop on a small ridge, disseminated chalcopyrite up to 1% with occasional spots of galena.

Discussion of Field Work

On June 29/89, S.W. and D.E. 2 men visited the property to locate any previous showings, and to begin the prospecting. The main showing area was found and reviewed. One man was left on site to sample the trench area and the second man began a regional reconnaissance in a 3 km area surrounding the claims via motorcycle.

Samples DE 467 - 470 are from this days work in the main trench, and represent grabs and channel samples.

DE 467

grab sample taken from the main trench of hygrade mineralization. Galena, chalcopyrite and pyrite within a qtz. vein in a feldspar porphyry.

Ag 35.9ppm, Cu 2207ppm, Pb 3924ppm, Zn 359ppm, Ca 11%

DE 468

same as above, 10 metres north, grab sample taken from the main trench of hygrade mineralization. Galena, chalcopyrite and pyrite within a qtz. vein in a feldspar porphyry.

Ag 173.2ppm, Cu 5193ppm, Pb 5045ppm, Zn 377ppm, Ca 8 %

DE 469 A

channel sample taken from the main trench of hygrade mineralization, over 0.3 metres. Galena, chalcopyrite and pyrite within a qtz. vein in a feldspar porphyry. Aq 22.2ppm, Cu 1098ppm, Pb 41496ppm, Zn 312ppm, Ca 6%

DE 469 B

channel sample taken from the main trench of hygrade mineralization, over 0.6 metres. Galena, chalcopyrite and pyrite within a qtz. vein in a feldspar porphyry. Ag 10.1ppm, Cu 292 ppm, Pb 24509ppm, Zn 374ppm, Ca 12%

DE 470

grab sample taken from the main trench of hygrade mineralization. Galena, chalcopyrite and pyrite within a qtz. vein in a feldspar porphyry.

Ag 84.9ppm, Cu 3107ppm, Pb 19696ppm, Zn 470ppm, Ca 12%

The reconnaissance trip indicated a large andesite - basalt with contacts to a feldspar porphyry on the north, east, and south sides.

Aug. 3 /89 R.K. and D.E.

There are a number of old logging roads in this immediate vicinity and it was considered wise to walk these roads to look for obvious outcrop.

From the main show, SE approx. 150 metres, there are trenches made by machine that expose bedrock. This is Hazelton Volcanics (purple), a andesite - basalt feldspar porphyry volc. breccia, with locally strong carbonatization and moderate silicification, with some evidence of minor shearing. The geology indicates some size to the system and a pass was made through the bush. At the top corner of a logging sale, several trees at the edge have been blown down, the upturned roots exposing bedrock.

Blow Down Showing

89 Tan 01

from the landing east of the LCP, behind the swamp and uphill bearing approx. 070', porphyritic stock common along ridge, strike 045' 45'NW, elev. 3050 ft. Distance to the road and stream junction is 125 metres. Malachite and pyrite, much evidence of alteration. Grab.

89 Tan 02

20 metres from 01 east, chalcopyrite and galena and 1" of calcite.

Aq 6.2ppm Cu 1122ppm, Pb 747ppm, Cd 385ppm.

89 Tan 03

30 metres east of 02, on top of the knob, Barite, cpy, pyrite, in fine disseminations, and fracture fills. (small scale), float from the immediate area. Ag 0.4ppm Cu 884ppm, Ba 2245ppm.

89 Tan 04

10-15 metres east of 03 into the bush, galena, malachite, chalcopyrite, ankorite. in relatively unaltered volcanics.

Ag 9.1ppm Cu 137 ppm, Pb 8418ppm, Cd 1982ppm.

89 Tan 05

20 metres north of 04, downhill, disseminated Pb and Cu in porphyritic volc., dense carbonates and limonite. Ag 4.8ppm Cu 344 ppm, Pb 618ppm, Cd 132ppm.

89 Tan 06

5 metres east of 05, contact or dyke, dense black staining Mn?

89 Tan 07

20 metres north of 05, downhill, possible dyke material rock is pastel green with limonite blobs and vuggs, silicious, galena disseminated.

Ag 5.6ppm Cu 382 ppm, Pb 18748ppm.

89 Tan 08

Hygrade grab from main trench, Cu, Pb, Zn, tetrahedrite. Ag 120.0ppm, Cu 11437ppm, Pb 35622ppm, Zn 660ppm, As 172

On Aug. 4 /89 a small grid was established to prepare for a self potential geophysical program. Two kilometres of line were put in, but not cut. Prospecting was carried out trying to determine strike length, and any parallel veins.

On Aug. 5 /89

A Self Potential Survey was conducted on 4 lines spaced 25 metres apart and stationed 25 metres. From the Initial posts travel 100 metres west to the base line. North for 100 m brings you to line 2+100 N and station 0+000 E which is the base station.

A graph of the results is presented in this report.

```
2+100 N
Line
                  Direction of travel; east
Station
                reading
                           shift
                                      actual
0+000 E
                            0
                                       0
            +1,-1,0
0+025 E
                           0
                                       .015
                 .015
0+050 E
                 .007
                           0
                                       .007
                           0
0+075 E
                .000
                                       .000
0+100 E
                -.004
                           Ω
                                     -.004
0+125 E
                -.025
                           0
                                     -.025
0+150 E
                 .029
                           -.025
                                       .004
                 .044
0+175 E
                           -.025
                                       .019
                 .041
                           -.025
0+200 E
                                       .016
0+225 E
                 .037
                           -.025
                                       .012
                .025
0+250 E
                           -.025
                                       .000
                -.002
                           0
0+275 E
                                     -.002
                           0
0+300 E
                -.010
                                     -.010
0+325 E
                -.004
                           0
                                     -.004
                                     -.006
0 + 350 E
                -.006
                           0
0+375 E
                -.001
                           0
                                     -.001
0+400 E
end of line
Line
        2+125 N
                  Direction of travel; east
Station
                           shift
                reading
                                      actual
0+000 E
                .001
                           -.001
                                        .000
0+025 E
                .004
                           -.001
                                        .003
                .000
                           -.001
0+050 E
                                       -.001
                           -.001
0+075 E
               -.008
                                       -.009
0+100 E
               -.006
                           -.001
                                       -.007
0+125 E
               -.014
                           -.001
                                       -.015
                           -.015
0+150 E
                .010
                                       -.005
0+175 E
                .019
                           -.015
                                        .004
                .031
                           -.015
                                       .016
0+200 E
0+225 E
                .018
                           -.015
                                       .003
0+250 E
                .025
                           -.015
                                       .010
0+275 E
               -.014
                            .010
                                      -.004
               -.031
                                      -.021
0+300 E
                            .010
               -.029
                                       -.019
0+325 E
                            .010
0+350 E
               -.020
                            .010
                                      -.010
0+375 E
               -.011
                            .010
                                      -.001
0+400 E
               -.004
                           -.001
                                      -.005
end of line
```

Line 2+150 N	Direction	of travel;	west
Station	reading	shift	actual
0+000 E	.081	080	.001
0+025 E	.081	080	.001
0+050 E	.079	080	001
0+075 E	.085	080	.005
0+100 E	.084	080	.004
0+125 E	074	006	068
0+150 E	.010	006	.004
0+175 E	006	006	012
0+200 E	006	006	012
0+225 E	015	006	021
0+250 E	001	005	006
0+275 E	004	005	009
0+300 E	012	005	017
0+325 E	001	005	006
0+350 E	001	005	006
0+375 E	004	001	005
0+400 E			
end of line			

TANGLE CLAIM SELF POTENTIAL SURVEY 1989 1" = 50m.

+.100

CONCLUSIONS AND RECOMMENDATIONS

The andesite basalt feldspar porphyry, volcanic breccia zone is showing weak shears and intense carbonatization. Weak silica alteration and qtz. veining carrying mineralization indicate we are seeing a large porphyry system that has not been sufficiently eroded to expose the more economic mineral zones. The property is covered with overburden which limits conventional prospecting.

A recommended program would be to run a I.P. survey and geochemical soil survey over the property to ascertain whether the copper values are consistent within the porphyry and whether sufficient gold values exist to warrant mining.

pg. 16

AUTHOUR'S STATEMENT

- I, Daniel Ethier am a Prospector , with residence at 3644 3rd ave., Box 184, Smithers B.C. VOJ-2NO.
 - I have worked in exploration activities since 1979.
 - I have been an independent prospector since 1983.
 - I have worked as a prospector for Tom Richard's Prospecting, 1986 -1988.
 - I am a graduate of the Advanced Prospecting Course of Malaspina College 1987.
 - I am a graduate of the Petrology for Prospectors, 1990 Smithers, B.C. Instructor T.A. Richards
 - I am sole owner and operator of Ethier Exploration.

pg. 17

STATEMENT OF COSTS

July - August 1989

D. Ethier prospector, Keefe prospector, 3 da S. Watling assistant 1	ays @ \$200./day 600.	.00
Camp, supplies, Groceries	4 days @ 60./day 8 man days @ 21./day	
3/4 ton 4X4 truck	4 days @ \$55./day	220.00
A.T.V.	3 days @ \$35./day	105.00
Fuel		150.00
Geochemical analysis		519.00
Self Potential Geophysic 2 days @	cal equip. rental \$ 50.00/ day	100.00
Report preparation, typi Drafting	ng	200.00
	3,	,502.00

TOTAL APPLICABLE TO ASSESSMENT REPORT

for 5 years

\$ 2800.00

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

1

13

5

A TANGLE CH 93L15

2225 S. Springer Ave. . Burnaby. British Columbia, Cam. 758 381

TYPE OF ANALYSIS : ICF PAGE # : 1 PPH PPN PPK PPM PPM PPN PRE I PPM PPM PPM Z PPM CO FE FII SAMPLE NAME SR SB BI 602 0.02 1 1122 747 123 6.2 9 1118 14 44 2.30 0.08 23 0.12 396 0.01 85 0.40 0.03 0.03 6 1320 2.48 1 584 23 148 15 57 0.4 2 5 5 53 1.65 0.08 8 13 0.35 2245 0.02 48 0.72 0.02 0.03 1 137 3419 388 9.1 15 2070 2.07 33 ND 31 1982 2 10 28 5.31 0.06 6 20 1.47 328 0.01 70 0.18 0.02 0.03 16 1996 2.87 30 4.44 0.07 15 0.79 518 0.01 37 0.27 0.04 0.03 5 26 15 0.1 4 898 1.14 10 5 ND ND 12 4 0.23 0.01 14 39 0.02 119 0.01 49 0.23 0.02 0.03 1 382 18748 142 5.6 1 1406 1.87 ĸ ND 19 5 2.01 0.03 13 0.62 2 5 1 2 16 11 226 0.01 52 0.25 0.02 0.03 ND 77 149 193 0.01 113 0.10 0.02 0.01 89-TAN-B 1 11437 35622 660 120.0 1 3505 3.72 172 5 ND 16 3 7 10.80 0.03 2 5 2.21 72 89-DE 460 3 106 583 200 1.3 17 29 6190 5.86 43 ND 28 58 8.52 0.09 12 23 1.22 71 0.01 673 0.58 0.02 0.04 5 2 8 1395 1.86 32 ND 47 37 4.92 0.04 423 0.01 2 59 259 236 0.9 ND 34 30 1.31 24 0.30 0.01 0.04 1 2207 3924 359 35.9 8 3046 2.65 65 ND 92 22 30 11.60 0.03 12 2.77 260 0.01 47 0.23 0.01 0.02 377 173.2 4 2636 2.40 96 NĐ 7 52 2 22 8.21 0.04 15 2.18 1 5193 5045 5 NO. 62 4 414 0.01 38 0.25 0.01 0.02 1 1098 41496 312 22.2 3 2345 2.41 2 35 2 22 25 12 6.32 0.06 2 7 1.87 160 0.01 95 0.33 0.05 0.02 6 4068 3.43 2 ND ND 58 3 2 7 12.57 0.02 4699 1 292 24509 374 10.1 5 4 5 10 3.53 634 0.01 57 0.17 0.03 0.01 7 3991 3.51 ND ND 70 7 59 25 13 12.52 0.03 7 9 3.22 817 0.01 53 0.18 0.04 0.02 1 3107 17676 470 84.9 89-DE 470 89-6-599R 8 2147 2.47 41 5.36 0.05 28 1.46 547 0.01 45 0.30 0.02 0.02 164 2 2 5 0.03 0.01 1 14 0.02 3364 0.01 47 0.12 0.01 0.01 AOIR 139 300 0.4 12 2903 3.39 38 25 30 50 4.74 0.11 12 11 0.49 1427 0.01 33 0.42 0.01 0.04 7 1504 2.58 227 153 1.5 17 16 12 43 1.56 0.10 15 0.36 819 0.03 37 0.48 0.02 0.03 127 0.1 13 2091 5.27 11 NO 5 156 0.20 0.08 21 1.17 0.04 0.03 14 8 5 0.81 258 0.07 2 2052 1.41 13 0.74 0.03 43 49 0.17 478 0.01 29 0.19 0.05 0.04 605R 1 1702 181 0.4 3 726 2.74 2 ND NO 5 2 71 0.22 0.10 8 0.22 439 0.02 39 0.64 0.06 0.02 1 113 16 162 4.3 2 17 1097 1.93 NB 606R 26 5 ND 3 2 2 43 0.19 0.10 5 18 0.40 1433 0.01 27 0.78 0.02 0.03 8 1788 2.60 607R 42 65 81 2.2 30 5 ND 11 3 2 35 3.17 0.11 A 16 0.41 1054 0.02 28 0.33 0.02 0.03 608R 1 2 2 54 0.2 2 3 955 2.27 ND 11 13 0.56 0.03 1 23 0.29 233 0.01 18 0.24 0.03 0.03 609RA 127 116 703 25 3058 4.84 ND 103 26 9.74 0.03 25 2.51 2124 0.01 7 0.13 0.04 0.03 89-6-609RB 38 35 806 2.96 ND 13 42 0.16 0.08 10 9 0.05 76 0.05 22 0.35 0.02 0.03 1 2568 20185 316 43.2 6 2295 2.79 ND 39

4 31 20 25 6.21 0.08

5 10 1.59 146 0.01 71 0.28 0.02 0.03

CERTIFIED BY ;

ROSSBACHER LABORATORY LTD.

CERTIFICATE OF ANALYSIS

2225 S. Springer Ave., Burnaby, British Columbia, Can. V5B 3N1 Ph: (604)299-6910 Fax: 299-6252

Æ		PPB	
	SAMPLE NAME	Au	
`	99-TAN-1	5	
4	2	5	
4	3	5	
4	4	5	
4	5	5	
	5	5	
	7	5	
1	89-TAN-8	5	
}	89-DE 460	20	
	466		
<u>}</u>	467	10	
	468		
1	469A	5	
	469B	10	
	89-DE 470	5	
	89-G-599R	F.5	
)	500R	The state of the s	
!	601R	5	
	602R	5	
	603R		
l L	504R	5	
	<u> </u>	5	
	606R	5 5	
	607R	5 5	
	608R	5 5	
	CX-4CXF1		
	40000		
	<u>609RA</u> 89-6 -609RB	5	

CERTIFIED BY :